A SYSTEMATIC STUDY FOR EVOLUTION OF BACTERIAL DRUG RESISTANCE: PHENOTYPE TO GENOTYPE

by

AYŞEGÜL GÜVENEK

Submitted to the Graduate School of Engineering and Natural Sciences in partial fulfillment of the requirements for degree of Master of Science

Sabanci University

Spring 2014

© Ayşegül Güvenek, 2014 All rights reserved

A SYSTEMATIC STUDY FOR EVOLUTION OF BACTERIAL DRUG RESISTANCE: PHENOTYPE TO GENOTYPE

Ayşegül Güvenek

Sabancı University, Faculty of Engineering and Natural Science, MSc Program, 2014

Thesis Advisor: Assist. Prof. Erdal Toprak

Keywords: Bacterial evolution, Antibiotic resistance, Cross resistance, Antibiotics

Abstract

Bacterial drug resistance is a worldwide problem threatening millions of lives. Several studies showed that bacteria develop direct resistance against an antibiotic compound used throughout treatment. However, recent studies demonstrated that resistance to one antibiotic can pleiotropically lead to resistance to other antibiotics, a concept known as cross-resistance, imposing serious limitations for combating against infectious diseases. Therefore, slowing down evolution of cross-resistance is critical and important task for developing effective antibiotic therapies. Despite its importance, mechanisms behind crossresistance are not well understood due to lack of systematic studies. Here in this systematic study, we aim to provide a better understanding of evolution of antibiotic resistance using state of the art genetic tools. In this study, we evolved 88 initially isogenic *Escherichia coli* populations against 22 different antibiotics for 21 days. For each drug, two populations were evolved under strong selection and two populations were evolved under mild selection. Representative clones from each evolved population were phenotyped against all 22 drugs we used in our experiments and their resistance levels were carefully quantified. Furthermore, these clones were genotyped by Illumina whole genome sequencing and resistance-conferring mutations were identified. Bacterial populations evolved under strong selection acquired stronger resistance against higher number of antibiotics compared to populations evolved under mild selection. Strongly selected populations also acquired higher number of mutations compared mildly selected populations and there mutations were found to be more pathway specific among strongly selected populations. Finally, populations evolved against aminoglycosides were found to develop hypersensitivity against several other antibiotic classes due to mutations in trkH gene, coding for a membrane protein. Our study provides a thorough understanding for phenotype to genotype in the context of antibiotic resistance and demonstrates that selection strength is an important parameter contributing to the complexity of evolution of antibiotic resistance.

ANTİBİYOTİK DİRENCİNİN EVRİMİNE DAİR SİSTEMATİK BİR ÇALIŞMA: FENOTİPTEN GENOTİPE

Ayşegül Güvenek

Sabancı Üniversitesi, Mühendislik ve Doğabilimleri Fakültesi, MSc Program, 2014

Tez Danışmanı: Yard. Doç. Erdal Toprak

Anahtar Kelimeler: Bakteri evrimi, Antibiyotik direnci, Çapraz direnç, Antibiyotik

Özet

Bakteri direnci dünyada capında sağlığını tehdit eden önemli bir sorundur. Bir cok calışma bakterilerin tedavi esnasında maruz kaldığı ilaca karşı direnç kazandığını ispatlamıştır. Ancak yeni çalışmalar bakteri hücrelerinin bir antibiyotiğe direnç kazanırken, daha önce maruz kalmadığı başka antibiyotiklere karşı da direnç kazandığını ispatlamıştır. Capraz direnç denen bu soruna çözüm bulmak günümüzde önemli bir hal almıştır. Bu konuda bir çok çalışma yapılsa dahi sistematik çalışmaların yetersizliğinden ötürü çapraz direncin mekanizması yeterince bilinmemektedir. Bu sistematik calışma genotipik ve fenotipik bulgularıyla çapraz direnç mekanizmasının daha iyi anlaşılmasını sağlayacaktır. Genetikleri tamamen aynı (izojenik) 88 Escherichia Coli hücresi 22 farklı ilaca 21 gün boyunca maruz bıraktırılarak direnç kazandırıldı. Her ilaç için iki hücreye yüksek miktarda ilaç verilip kuvvetli seçilimle, iki hücreye daha az miktarda ilaç verilip zayıf seçilimle direnç kazandırılarak iki farklı seçilim denenmiştir. Direnç kazanan hücrelere fenotip analizi yapılmış ve diğer ilaçlara karşı direnç seviyelerine bakılmıştır. Ayrıca dirençli hücrelerin tamamının genetik analizi Illumina tüm genom dizilimi ile yapılmıştır. Sonuçlar göstermiştir ki kuvvetli seçilimle direnç kazanan hücreler daha kuvvetli çapraz direnç kazanırken, zayıf seçilimle direnç kazanan hücreler daha zayıf çapraz direnç kazanmıştır. Aynı şekilde kuvvetli dirençle seçilen hücrelerdeki mutasyon sayısı daha fazla olup, mutasyon yolundaki mutasyon sayısı yine zayıf seçilimle direnç kazananlardan daha fazladır. Bu çalışmanın bir diğer önemli bulgusu aminoglikozit sınıfına direnç kazanan bakterilerin diğer bütün ilaç gruplarına karşı çapraz hassaslık kazanmasıdır. Aynı çapraz direnç gibi, aminoglikozite dirençli bakteriler hiç direnç kazanmamış bakterilere kıyasla daha düşük ilaç konsantrasyonlarında ölebilmektedir. Bunun sebebi olarak da *trkH* genindeki mutasyon tespit edilmiştir. Bu çalışma antibiyotik direncinin genetik sebeplerinin fenotipik özelliklere etkisini göstererek antibiyotik direncinin anlaşılması açısından önemli olup, seçilimin antibiyotik direncini etkileyen önemli bir faktör olduğunu ortaya koymuştur.

ACKNOWLEDGEMENTS

I would like to thank Erdal Toprak, my supervisor for supporting me. Thanks to him I had chance to do such a strong research project at that early in my career. I appreciate all his contribution for my career.

I would like to thank Murat Çokol, my lifetime advisor. He thought me meaning of research and helped me to be a real scientist.

Master is a tough road, we do lots of research, and teaching and we have to decide whether we will continue to PhD or not. Many students change their ideas about PhD after seeing this difficult road. The friendly and happy environment of Toprak Lab makes this decision easier. Our lab was a group of happy people, and this warm environment makes me like science world even more. So I would like to thank Tuğçe Altınuşak, Yusuf Talha Tamer, Sadık Yıldız, Gizem Hazal Şentürk, Tugçe Öz and Enes Karaboğa.

I would like to thank Hazal Büşra Köse, she was honorary member of Toprak Lab and my dear friend. Her fingerprints are in everywhere in my Master. Our conversation, her ideas and friendship are one of the biggest gain of my years at Sabancı University. I am sure that her contribution in my life will last forever.

I started Sabancı with my best friend Enes Karaboğa near me. I was probably luckiest Master student at Sabancı University. His unique personality, smart ideas and endless friendship are the main reasons of my happiness during last two years. There are no enough words to thank to Enes but he knows my appreciation and his meaning in my life.

My family deserves the biggest thanks for all their supports in every step of my career. Their understanding and their supports in every way were unbeatable. I cannot thank enough to them.

Lastly I want to thank Fatih Özay. He was always behind me in my decision and he always motivated me, anytime I was hopeless. I cannot think a life without him and I hope I won't have one.

Table of Contents

1	Introd	uction	1			
	1.1 An	tibiotics	2			
	1.1.1	Cell Wall Biosynthesis Inhibitors				
	1.1.2	Protein Synthesis Inhibitors	4			
	1.1.3	DNA/RNA Synthesis Inhibitors	6			
	1.1.4	Folic Acid Synthesis Inhibitors	7			
	1.2 An	tibiotic Resistance	8			
	1.2.1	Mechanisms of Antibiotic Resistance	9			
	1.2.2	Cross-resistance and Multi Drug Resistant Bacteria	11			
	1.2.3	Minimize Antibiotic Resistance	12			
2	Metho	ds	14			
	2.1 M9	9 Minimal Media	14			
2.2 Evolution of Bacterial Strains						
	2.3 Sel	lection of Representative Colony	17			
	2.4 Ph	enotypic Characterization	17			
	2.5 Co	nstructing Cross-resistance Networks	18			
	2.6 Ge	enotypic Characterization	19			
	2.7 Fu	nctional Classification	20			

3	Res	Results21					
	3.1	Evolution Experiment	.21				
	3.2	Cross-resistance Experiment	.23				
	3.3 Genotypic Characterization						
	3.4	Mutants Behavior on Different Temperature	.39				
4	Dis	scussion	.42				
5	Co	nclusions	.44				
6	Ref	ferences	.45				
7	Appendices						
	7.1	Appendix A	.50				
	7.2	Appendix B	.65				
	7.3	Appendix C	.66				

List of Figures and Table

Figure 1-1: Major Antibiotic Classes and their target mechanisms	2
Figure 1-2: Structure of β Lactams. (A) Ampicillin, (B) Piperacillin, (C) Cefoxitin	3
Figure 1-3: Structure of 30 S inhibitors	4
Figure 1-4: Structure of 30S Inhibitors	5
Figure 1-5: Structure of 50S inhibitors	6
Figure 1-6: Structures of DNA/RNA Synthesis Inhibitors	7
Figure 1-7: Folic Acid Synthesis Inhibitors.	7
Figure 1-8: Bacterial evolution of drug resistance	9
Figure 1-9: Mechanisms of drug resistance in bacteria	.11
Figure 2-1: Evolution experiment in liquid culture under strong selection	.16
Figure 3-1: MIC level of resistance strains	.23
Figure 3-2: Cross-resistance measurement of all strains	.25
Figure 3-3: Cros resistance network	.27
Figure 3-4: Pearson Linear Correlation	.28
Figure 3-5: Frequency and cross-resistance levels of strains evolved against drug classes	.29
Figure 3-6: Growth rate of each evolved strains	.31
Figure 3-7: Mutations found in strains	.36
Figure 3-8: Effect of selection strength on genetic diversity	.38
Figure 3-9: Effect of selection strength on growth rate at different temperatures	.41
Figure 3-10: Growth rate of all strains at different temperatures	.41

Table 3-1: List of all drugs that have been used in project.	21
Table 3-2: Drug classes, drugs used for selection, mutated pathway-specific genes, muta	ıted
off-pathway genes	39

1 Introduction

Shortly after the introduction of the first antibiotic penicillin, antibiotic resistance became a problem for human health (Levy and Marshall 2004). It is still a major health problem and we still do not have a permanent and effective solution to overcome it (Gootz 2010).

In 1940's Penicillin became available for medical use and in 1967, penicillin resistant bacteria - *Streptococcus pneumoniae* was observed in Australia. (Davies and Davies 2010).

Antibiotic resistance is development of a defense mechanism by the bacterium to evade the activity of a drug which once it was susceptible to(Davies and Davies 2010). Once the microbes become resistant to an antibiotic, it becomes more difficult to inhibit bacteria with the regular drug dose. In some cases bacteria develop resistance to more than one antibiotics, which are called multidrug resistant bacteria (Nikaido 2009).

Antibiotic resistance is a natural process, which is a part of the natural selection of evolution. When bacteria are exposed to an antibiotic, their survival instincts try to find a way to thrive within the environmental stress of the antibiotics(Martinez, et al. 2009; Davies and Davies 2010). They develop some genetically changes that help them to survive, grow in the presence of antibiotics and pass this ability to their progeny (Davies and Davies 2010).

In order to overcome bacterial drug resistance mechanisms, different approaches are developed. Using a synergistic drug combination is one of the most commonly used method which uses more than one drug to work together and allow the antimicrobial effect to take place(Chait, et al. 2007; Cokol, et al. 2011).

Major and most important cause of the acquired antibiotic resistance is repeated exposure to antibiotics. Repeated antibiotic exposure can take place in hospitals, where multi-drug resistant strains are mostly seen, and it can also take place in outpatient circumstances due to over the counter availability of antimicrobial agents(Lee, et al. 2013).

1.1 Antibiotics

Antibiotics are chemicals that are either kills or inhibits bacteria (Kunin 1978). Antibiotics that kill bacteria are called bactericidal, and antibiotics that inhibit bacteria growth are called bacteriostatic(Pankey and Sabath 2004).

According to their mechanism of action there are four major antibiotic classes. These are protein synthesis inhibitors, DNA/RNA repair inhibitors, cell wall biosynthesis inhibitors, and folic acid synthesis inhibitors (Cuddy 1997).

According to specific targets of antibiotics, they have been branched in the classes.

Figure 1-1: Major Antibiotic Classes and their target mechanisms. (Miesel, et al. 2003)

1.1.1 Cell Wall Biosynthesis Inhibitors

Cell wall biosynthesis inhibitors (β Lactams) are mostly bactericidal antibiotics and they inhibit synthesis of peptidoglycan layer of bacterial cell wall. Peptidoglycan layer is important for bacterial division; it protects bacteria from lysis, osmotic or mechanical damage, as well as it takes part in bacterial pathogenicity(Ghooi and Thatte 1995). β Lactam Antibiotics binds Penicillin Binding Protein (PBP) in bacteria, and then inhibit cell wall biosynthesis. PBP is an important protein for synthesis of peptidoglycan layer. Inhibition of this protein leads to defective cell wall synthesis, loss of selective permeability and eventual cell death and lysis(Ghooi and Thatte 1995).

 β Lactams have two main groups:penicillins and cephalosporins. Bacitracin and Vancomycin also inhibits bacterial cell wall biosynthesis.

Penicillin, ampicillin, penicillin G, penicillin V,amoxicillin, ticarcillin, mezlocillin, piperacillin, and carbenicillin are belongs the class of penicillins(Demain 1991). Cephalosporins are semi synthetic antibiotics, have many members and affect both gramnegative and gram-positive bacteria(Tune and Fravert 1980).

In this study, we used ampicillin, piperacillin and cefoxitin antibiotics to inhibit bacterial growth.

Figure 1-2: Structure of β Lactams. (A) Ampicillin, (B) Piperacillin, (C) Cefoxitin

1.1.2 Protein Synthesis Inhibitors

Protein synthesis inhibitors contain so many different antibiotics and each can exert their effects in different stages of protein synthesis (Coutsogeorgopoulos, et al. 1975). In this study we worked with 3 main groups of this class: 30 S robosomal subunit inhibitors, 50 S ribosomal subunit inhibitors and aminoglycosides.

30S ribosomal subunit inhibitors act via binding to 30 S ribosomal subunits resulting in inhibition of aminoacyl-tRNA - mRNA/ribosome complex binding. We used tetracycline, doxycycline and spectinomycin from this class.

Figure 1-3: Structure of 30 S inhibitors. (A) Tetracycline (B) Doxycycline (C) Spectinomycin.

Aminoglycosides inhibit the protein synthesis via interfering with the elongation of peptide on 30S subunit (Tanaka 1986). We used amikacin, tobramycin, streptomycin and kanamycin from this class.

Figure 1-4: Structure of 30S Inhibitors. (A) Amikacin (B) Tobramycin (C) Streptomycin (D) Kanamycin.

50 S inhibitors inhibit bacterial growth by binding 50 S ribosomal subunit and inhibiting peptidyltransferase. We used chloramphenicol, clindamycin, erythromycin, spiramycin and fusidic acid from this class.

Chloramphenicol is one of the important antibiotics because of its wide spectrum(Jardetzky 1963).

Erythromycin is member of sub group macrolides. In order to inhibit protein synthesis, they prevent elongation of peptide chain(Tanaka, et al. 1973).

5

Figure 1-5: Structure of 50S inhibitors. (A) Chloramphenicol (B) Clindamycin (C) Erythromycin (D) Fusidic Acid

1.1.3 DNA/RNA Synthesis Inhibitors

Nucleic acid synthesis inhibitors can either inhibit DNA replication or RNA transcription(Chatterji, et al. 2001). Different antimicrobial from this class have different mechanisms of action. For example some of antimicrobials such as rifampicin binds enzyme that help transcription and stop RNA synthesis(Trnka 1969). Quinolones binds enzyme in DNA synthesis and prevent coiling of DNA strands(Fabrega, et al. 2009).

Figure 1-6: Structures of DNA/RNA Synthesis Inhibitors. (A) Ciprofloxacin (B) Lomefloxacin (C) Nalidixic Acid.

In this study we used ciprofloxacin, nalidixic acid and lomefloxacin from this class.

1.1.4 Folic Acid Synthesis Inhibitors

Antifolates are inhibits folic acid synthesis that is necessary for bacteria synthesis of amino acid. Hence inhibition of folate results inhibition of protein synthesis, DNA/RNA synthesis and cell division(Burchall 1973; Bodey, et al. 1982).

Many of the drugs in that class are dihydrofolatereductase inhibitors (DHFR). DHFR inhibitors are also used in cancer treatments. In this project, we used trimethoprim, sulfamethoxazole and sulfamonomethoxine (Bodey, Grose, & Keating, 1982).

Figure 1-7: Folic Acid Synthesis Inhibitors. (A) Trimethoprim (B) Sulfamethoxazole

1.2 Antibiotic Resistance

Antibiotic resistance is defined as ability to cope with the inhibitory effects of an antibiotic by the bacterium(Davies and Davies 2010). Some bacteria are naturally resistant to certain types of antibiotics; but mostly with repeated exposure, they become resistant to antibiotics by mutations, acquiring resistance genes from its surroundings.

Antibiotic resistance is one of the major health related problems in modern world. More bacteria are gaining resistance due to overuse of antibiotics(Lee, Cho, Jeong, & Lee, 2013). It is especially a serious problem in prolonged hospitalizations, since the bacteria are constantly exposed to antibiotics and the resistant strains cause serious infections.

As demonstrated in**Hata! Başvuru kaynağı bulunamadı.**Bacteria bacterial evolution may depend on environmental stress. When the population exposed to a stress factor such as antibiotics, resistant ones survive and proliferate(Martinez, et al. 2007).

Nature Reviews | Microbiology

Figure 1-8: Bacterial evolution of drug resistance. In population antibiotic sensitive bacteria (green) dominates population in the absence of antibiotics (1). In presence of antibiotics, antibiotic sensitive wilt type bacteria growth will be inhibited and resistant bacteria (red) survive and proliferate (2) (3). When antibiotics are removed, bacteria may loose its resistance mechanism completely (1) or some bacteria may still have the mechanism and some of them loose (4) in order to growth better. (Martinez, et al. 2007)

1.2.1 Mechanisms of Antibiotic Resistance

There are two general types of antibiotic resistance: intrinsic and acquired (Tenover, 2006).

Intrinsic resistance refers to bacteria's natural ability to neutralize toxic effects of the antibiotic(Cox and Wright 2013). Naturally resistance in bacteria established by being inaccessible to the drug, being able to efflux the internalized drug via pumping mechanisms, lacking the target cellular elements for the drug to exert its effects, naturally occurring enzymes that inactivate the drug(Tenover 2006; Cox and Wright 2013). For example, bacteria that lack mycolic acids are intrinsically resistant to isoniazid, or anaerobic bacteria are resistant to aminoglycosides, which require oxidative metabolism to enter the cell.

Acquired resistance refers to gaining ability to an antimicrobial drug, which the bacteria were susceptible to (Tenover, 2006). Acquiring the ability of non-preexisting resistance can be via mutation of bacterial chromosome, obtaining foreign genetic material that contains resistance genes or combination of both. Sensitive bacteria are dead when exposed to antimicrobial agent. But some of the bacteria successfully develops a resistance mechanism and lives on to pass those resistance genes to its progeny, which is called vertical gene transfer(Martinez, et al. 2009; Davies and Davies 2010). Bacteria also are able to perform horizontal gene transfer, which means acquiring genetic material outside of the bacterial transformation (uptake of genetic material from the environment, which mostly belongs to dead bacteria), transduction (uptake of genetic material via sexual pilus between two bacteria)(Martinez, et al. 2009; Davies and Davies 2010).

According to mechanism of action, there are four pathways of antibiotic resistance: prevention of the antimicrobial agent to reach its target, expulsion of the antimicrobial via efflux pumps, inactivation of the drug via modification or degradation, modification of antimicrobial target within the bacteria (Figure **1-9**).

Figure 1-9: Mechanisms of drug resistance in bacteria. (Encyclopædia Britannica Online. Web. 29 May. 2014.)

Since antibiotic resistance become serious public health problem in the world, scientist used alternative antibiotics for treatment. However with this approach, scientist realize new and probably worse problem about drug resistance, which is cross-resistance(Sanders 2001). In 2010 Kohanski made that observation on developing cross-resistance against antimicrobial drugs to which bacteria have never been exposed before(Kohanski, et al. 2010). By helping sequencing now we can make assumption on which changes caused cross-resistance. Kohanski suggests that mutation in multidrug efflux pumps reason of the cross-resistance(Kohanski, et al. 2010). Even though this observation is true, this is not the only reason behind cross-resistance. Cross-resistance can be result of very different gene mutation. In this study we revealed different genes responsible for cross-resistance, even cross sensitivity.

As a result of cross-resistance multiple drug resistant (MDR) bacteria has been aroused. Commonly known MDR bacteria are methicillin resistant Staphylococcus aureus (MRSA), Vancomycin-Resistant Enterococci (VRE) and multi drug resistant tuberculosis. Those super bug causes death in many cases(Rice 2007).

In this study, by exposing antibiotic to bacteria, we produced MDR *Escherichia Coli* and revealed genetic changes that cause this.

1.2.3 Minimize Antibiotic Resistance

There are many different strategies suggested to minimize antibiotic resistance. Since the first antibiotic has been discovered, antibiotics used as a treatment worldwide. However not every patients and every physicians are educated enough to know how to use antibiotics(Baquero and Negri 1997; Lee, et al. 2013). Wrong usage of antibiotics is considered one of the important reasons of antibiotic resistance. Appropriate prescribing antibiotic is very important to slow sown antibiotic resistance(Lee, et al. 2013). Educating the patient is also important since physician cannot control the patient all the time(Lee, et al. 2013).

Studies showed that inappropriate prescription cause rapid increase of antibiotic resistance(Nathwani and Davey 1999).

Development of novel antibiotics is also a way to kill resistant bacteria. Development of new antimicrobial agents is very straightforward way to reduce resistance however bacteria can be resistant eventually even before the new agent released to market(Silver and Bostian 1993). Because of this problem, companies are not willing to invest for this method(Coates and Hu 2007).

Using synergistic drug pair is another suggestion to cope with resistant bacteria. Synergy of antibiotics definition is combination of two antibiotics is significantly more effective then one alone(Yeh, et al. 2006; Bollenbach, et al. 2009; Yeh, et al. 2009; Cokol, et al. 2011). Using synergistic drug pair can be effective on drug resistant bacteria. However some other studies suggest that using synergistic drug pair may increase the rate of bacterial evolution (Chait, et al. 2007; Hegreness and Kishony 2007; Michel, et al. 2008).

Our study aims systematic exploration of antibiotic resistance in order to understand genetic reason behind this problem and find a possible path for resistant mechanism.

2 Methods

2.1 M9 Minimal Media

Minimal Media contains only minimal amount of nutrient that bacteria needs. For 1-liter M9 Minimal media; 11.28 mg M9 salt has been dissolved in 860ml distilled water and autoclaved at 121 C for 15 minutes. Then 40ml, 25X sterile glucose solution, 100ml, 10X sterile amicase solution, 2ml CaCl and 100ul MgS4 added in to M9 salt.

In order to make 25X Glucose, 50gr Glucose has been dissolved in 500ml distilled water and autoclaved for 15 minutes.

In order to make 10X Amicase, 10gr amicase has been dissolved in 500ml-distilled water. Amicase may be denaturate in autoclave so filter sterilization has been applied for sterilization.

2.2 Evolution of Bacterial Strains

At first MG1655 *Escherichia coli* has been spread on to agar plate and incubate at 30 C for 16 hours. Single colony obtained from agar plate and has been growth at minimal media at 30 C for 24 hours.

Minimal inhibitory concentration (MIC) of *Escherichia coli* in different antibiotics has been determined by following method. In 96-well plate, antibiotic concentration has been logarithmically decreased in each 10 well. Each well has half concentration of its left neighbor well. After antibiotics in minimal media added in to plate, bacteria has been added in to each well. Plate has been put in to shaker in the incubator for 24 hours. After 24 hours, OD measurement has been done by using Tecan. The lowest concentration that has no growth is MIC 22 different antibiotics have been selected. MIC of each antibiotic has been determined. MG1655 strain has been exposed to antibiotics separately, with 2 biological replicas, with 2 different strategies for each drug.

First day drug concentration have been prepared in 6 culture tube with 3ml minimal media in it. First tube has one eight of MIC of drug. Second tube has one four MIC, third has half MIC, and others has higher concentration accordingly. Then bacteria have been added, as final OD was 0.0001. Then culture tubes placed in to incubator with shaker for ~22 hours. 4 replicates have been done at first day.

At second day, growth can be observed at first three concentration tubes. Growing cultures observed by visual examination or measured by spectrometer if the growth was not clear on eyes. Starting from second day we evolved populations as two different strategies. Two isogenic population evolved under strong selection, other two population evolved under mild selection (Figure 2-1).

Strong selection means that cells were taken from half MIC concentration. For second day we made new concentration gradient, this time the lowest concentration tube has half MIC of drug. So each day we are expecting better survival since bacteria exposed high amount of drug and survived.

Mild selection means that cells were taken from one eight MIC. Which means that we select bacteria from one four lower concentration of drug comparing to strong selection. Again taken concentration will be the lowest concentration tube for second day.

Figure 2-1: Evolution experiment in liquid culture under strong selection. Bacterial populations were grown in several tubes with increased drug concentrations that span the expected minimal inhibitory concentration (MIC) of the population. Populations were grown for ~22 hours and the populations surviving in the highest drug concentration were transferred to new culture vials (yielding 60X dilution, 6-7 generations per day if new mutants do not appear) with increasing drug concentrations.

The minimum drug concentration that inhibited growth (ODfinal< 0.1) was daily recorded as MIC of the population (Table 3.1). At the end of each day 30ul bacteria taken from growth culture and transferred fresh media tubes with different antibiotic concentration.

This experiment was made for 21 days with 22 different antibiotics. Each antibiotic has two different strategies with two replicas, so we had 88 different populations (Figure 2-1).

At the ends of 21 days, each population MIC shifted higher concentration comparing to wild type.

On a daily basis, 1 ml of cells were frozen and stored at -80° C in 15% glycerol for further characterization.

As a negative control wild type *Escherichia coli* exposed to minimal media without antibiotic for 21 days.

2.3 Selection of Representative Colony

Mixed cultures of 21st day of each drug were spread on agar plate in order to isolate single colonies. 10 single colony isolated for each replica, 40 colony isolated for a single drug. MIC values determined for each single colonies. Resistance levels of these colonies did not show much variations in their MIC values comparing with population MIC, therefore, one colony from all evolved populations were assigned as representative colonies to carry out all future genotyping and phenotyping experiments.

Each representative colony named according to drug name, selection strength (strong or mild) and replica order. For example; AMP-S-1 means Ampicillin strong number 1.

2.4 Phenotypic Characterization

88 representative colonies has been growth separately in minimal media and placed in to 96 well plates with glycerol. This master plate used for our cross-resistance experiments.

For cross-resistance experiments 96 well plates prepared with different drug concentration for each drug. At least ten different drug concentration 96 well plates were prepared. Drug concentration of these plates ranged from drug free to the highest concentration that we can dissolve in growth medium Drug concentrations across plates were diluted by a factor of 101/2 ([drug]n-1 = $101/2 \times$ [drug]n). However if the colony's resistance level is not very high comparing to wilt type, in that case a dilution factor of 21/2 was used in order to observe more delicate range.

After concentration gradient plate with 150ul volume of minimal media was prepared, colonies from master plate transferred in to those 96 well plates with antibiotic by using 96-pinner (V&P Scientific) and were grown for 22 hours with rapid shaking at 30°C.

Final optical densities of the cells were measured using a plate reader (Tecan M200). Phenotyping experiments were performed in duplicates for every drug and the mean values of these measurements were used for MIC calculations. Background corrected ODfinal reads from phenotyping experiments were used to calculate the MIC values of the evolved strains. We calculated mean ODfinal values for every strain in every drug concentration we used. The MIC values were calculated by interpolating the drug concentrations corresponding to mean ODfinal reads corresponding to 0.03.

2.5 Constructing Cross-resistance Networks

MIC observation experiment applied for each resistance strain against 22 different antibiotics by using master plate, as described above. MIC values saved and normalized for analysis and building cross-resistance network. Those values then converted to -1, 0, 1, respectively antibiotic sensitivity, no change in resistance, and antibiotic resistance. For both strongly selected and mildly selected strains, strains are grouped according to drug classes and their cross-resistance frequencies (f_{CR}) and antibiotic susceptibility frequencies (f_{AS}) against each drug class are calculated. Moreover, the mean cross-resistance ($0 \le CR \le$ 1; 1 being the strongest possible resistance) and antibiotic susceptibility ($-1 \le AS \le 0$; -1being 20 fold less resistance compared to the wild type ancestor) values are calculated for each cluster. A seven by seven matrix has been created(Figure 3-5) with frequency and cross-resistance (or antibiotic sensitivity) values for strongly selected (panels on the left) and mildly selected (panels on the right) strains. The 22 by 88 trinary matrix is then randomly shuffled for 10^5 times and the actual f_{CR} and f_{AS} values for each group is recorded (histograms in panels). Finally, we calculated the probability (p) of randomly getting a frequency higher than the actual f_{CR} and f_{AS} values. We consider the phenotypic changes within clusters which have p values less than 0.05 as significant and score these interactions as increased cross-resistance or increased antibiotic susceptibility.

2.6 Genotypic Characterization

In order to understand genetic changes and mutations in the evolved strains bacterial cells were genotyped by Illumina whole genome sequencing using a HiSeq platform. Cells prepared for sequencing in agar stabs and were submitted to Genewiz Incorporation for sequencing service. Service from Genewiz included genomic DNA extraction, library preparation, multiplexing, sequencing, and data delivery. Sequencing was performed on the Illumina HiSeq2000 platform, in a 2x100bp paired end configuration, with at least 100X coverage for each sample. We aligned resulting reads onto the MG1655 reference chromosome (NC_000913.2) using the Bowtie 2 toolkit (Langmead and Salzberg 2012).

Aligned sequences were analyzed for genetic changes by using SAMtools and BRESEQ software (Barrick et al., 2009; Li et al., 2009). Both tools gave similar results for finding SNPs, however BRESEQ is better for finding insertions and deletions. If there is detected mutation by only one tool, visual inspection has been used to confirm the mutation.

Six strains have been sequenced twice in order to confirm accuracy of sequencing.

MG1655 wild type bacteria also sequenced to examine if there is contamination during experiment. There was no contamination between species however we wanted to make sure if there is any contamination between our selected colonies, so that we compared all genetic changes in all strains. All strains have different mutations accept TMP-M-1 and TMP-S-2. However the mutations, that both have, are pathway specific folA mutation, which are expected to observed in TMP resistant bacteria.

Cefoxitin resistant strains; CEF-S1 and CEF-S-2 interestingly have more then 200 mutations. It requires deep and separate analyze to understand all those mutations. Therefore we exclude their mutation, during analyzing our data.

2.7 Functional Classification

In order to understand and analyzed mutations, we used EcoCyc gene database for the bacterium *Escherichia coli* K-12 MG1655. EcoCyc we giving properities of that gene, and according to information on EcoCyc we have decided wheter the mutation on that gene is pathways specific or not. Pathway specific means that; such mutations are directly effect of mechanism of the drug.

3 Results

3.1 Evolution Experiment

First part of the project was evolving wilt type *Escherichia coli* against 22 different antibiotics. For each antibiotic we had 2 different evolution strategies: strong selection, mild selection. For each selection we made 2 biological replicas. At the end of 21 days, we had 88 different strains that are resistant to 22 different antibiotics (Figure 3-1).

Concentration of drug increased day by day if necessary according to our method. However Fusidic Acid has been reached its maximum solubility (3200ug/ml), at day fifth, so Fusidic Acid concentration remained say for the rest of experiment.

Drug	Solvent	MIC (µg/ml) for Wild Type E. coli	Maximum dose used for selection	Clinical Dose (µg/ml/day)	Highest MIC Reported in Literature (µg/ml)	Mechanism of Action	Phenotypic Effect
Chloramphenicol (CHL)	Ethano	6.1	256	100	512	Protein Synthesis, 50S	Bacteriostatic/Bactericidal
Clindamycin (CLI)	DMSO	97.5	1280	120	NA	Protein Synthesis, 50S	Bacteriostatic/Bactericidal
Erythromycin (ERY)	DMSO	65.80	1280	100	NA	Protein Synthesis, 50S	Bacteriostatic/Bactericidal
Spiramycin (SPR)	Ethanol	260	2560	75	NA	Protein Synthesis, 50S	Bacteriostatic
Fusidic Acid (FUS)	Water	647	3200	37.5	NA	Protein Synthesis, 50S	Bacteriostatic
Amikacin (AMK)	Water	14.36	640	37.5	32	Protein Synthesis, 30S (Aminogylcoside)	Bactericidal
Tobramycin (TOB)	Water	1.14	512	0.1875	32	Protein Synthesis, 30S (Aminogylcoside)	Bactericidal
Streptomycin (STR)	Water	15.2	163840	25	512	Protein Synthesis, 30S (Aminogylcoside)	Bactericidal
Kanamycin (KAN)	Water	11.70	1280	37.5	512	Protein Synthesis, 30S (Aminogylcoside)	Bacteriocidal
Tetracycline (TET)	Ethanol	1.23	4.8	5	512	Protein Synthesis, 30S	Bacteriostatic
Doxycycline (DOX)	Water	1.70	16	5	128	Protein Synthesis, 30S	Bacteriostatic
Spectinomycin (SPT)	Water	61	40960	50	512	Protein Synthesis, 30S	Bactericidal
Piperacillin (PIP)	Water	1.88	128	375	≥ 512	β-lactam, Cell Wall	Bactericidal
Ampicillin (AMP)	Water	4.4	40	50	512	β-lactam, Cell Wall	Bactericidal
Cefoxitin (CEF)	Water	1.9	2048	300	128	β-lactam, Cell Wall	Bactericidal
Nalidixic Acid (NAL)	Chloroform	7.9	300	100	512	DNA Gyrase	Bactericidal
Lomefloxacin (LOM)	Water	0.3	6.4	10	NA	DNA Gyrase	Bactericidal
Ciprofloxacin (CIP)	HCL	0.015	2.56	37.5	128	DNA Gyrase	Bactericidal
Sulfamonomethoxine (SMO)	Acetone	1.40	410	NA	NA	Folic Acid Synthesis	Bacteriostatic
Trimethoprim (TMP)	DMSO	4.83	614	5	≥ 512	Folic Acid Synthesis	Bacteriostatic/Bactericidal
Sulfamethaxozole (SUL)	Acetone	2.45	640	20	≥ 512	Folic Acid Synthesis	Bacteriostatic
Nitrofurantoin (NIT)	DMSO	4.75	320	10	128	Multiple Mechanisms	Bacteriostatic/Bactericidal

Table 3-1: List of all drugs that have been used in project. Drug names and abbreviations, solvent, MIC values for wild type Escherichia Coli MG1655, maximum dose that used in experiment, daily clinical dose average (taken from <u>http://www.globalrph.com</u>), higher MIC reported in EUCAST, mechanism of action and phenotypic effect: bacteriostatic or bactericidal. (Oz & Guvenek & Yildiz 2014)

Strong selections and mild selections act differently in some cases, such as; Tobramycin, Kanamycin, Spectinomycin, Cefoxitin, Ciprofloxacin and Nitrofurantoin. For those drugs resistance level of strong selection and mild selection are far from each other. However in other drugs, resistance level of strong selection and mild selection are same or very close with each other.

Resistance pathway of each strain may show differences, both phenotypically and genotypically. When we look at Spectinomycin strong selection strains and mild selection strains get very different level of resistance. However two replicates of strong selection strain act similar.

When we look at Streptomycin both 4 strains resistance levels are same in the end, however their behaviors are different than each other.

We can say that strongly selected strains have relatively higher resistance level. In some cases strong and mild selection strains have same resistance level. But there is no case such, mild resistant strains have higher resistance level.

Figure 3-1: MIC level of resistance strains. Daily-recorded MIC values of resistant strains strongly selected (red circle and red triangle) and mildly selected strains(black circle and clack triangle) for each drug. X axis stands for days and Y axis stands for minimum inhibitory concentration of drug. (Oz & Guvenek & Yildiz 2014)

3.2 Cross-resistance Experiment

After observing changes in MIC level against corresponding antibiotics, we design a cross-resistance experiment in order to build a cross-resistance network.

We expect resistant strains were pleiotropically developed cross-resistance against other antibiotics. Our expectation was antibiotics that are in the same class should have developed cross-resistance against each other. In order to build this map, we did concentration gradient for all 22 drugs in order to calculate MIC level of the resistant strains (Methods).

In this cross-resistance map, we used Mat Lab for visualization. We compared MIC of the strain with MIC of wild type.Figure **3-2**-A shows MIC of 3 different resistant strains, and

wilt type in Chloramphenicol. As it shown Chloramphenicol resistant strain has higher MIC (~60 times) then wilt type MIC, as expected. Doxycycline resistant strain also shows higher MIC. Doxycycline resistant strain has never been exposed to Chloramphenicol during evolution experiment. However a cross resistant occurred in that strain.

On the other hand, Tobramycin resistant strain sensitivity against Chloramphenicol has been decreased, as can be seen in Figure 3-2-A. This was an interesting result. Understanding why a strain become even more sensitive then wild type against other drug was one of the important questions of this project.

Finally we build up a cross-resistance map, for all strains (Figure **3-2**-B, C). Figure 3-2 B shows cross-resistance behavior of strongly selected strains. Figure 3-2-C shows cross-resistance behavior of mildly selected strains. Similar behaviors can be observed at both maps. Red color represents if the strain has at least 3 times higher MIC then wilt type. Blue color shows if the strain has at least 3 times lower MIC then wilt types. White colors means that strain has same MIC as wilt type. By looking these maps, we can say that resistance behavior is relatively higher in strongly selected strains.

Figure 3-2: Cross-resistance measurement of all strains. (A) Representative strains for extreme examples. Chloramphenicol resistance of wild type ancestor strain (green circles), a strain evolved against doxycycline (DOX-S-2, orange triangles), a strain evolved against chloramphenicol (CHL-S-2, red circles), and a strain against kanamycin (TOB-S-2, blue circles) were measured. (B) Cross-resistance map of strains evolved under strong selection. (C) Cross-resistance map of strains evolved under mild selection. (Oz & Guvenek & Yildiz 2014)

In order to understand behavior of a antibiotic class against other classes we built a crossresistance network for both strong and mild selection. (Figure **3-3**)

Figure 3-3-A shows resistance/sensitivity behavior with in the antibiotic classes and if there is general trend between classes. Again red represent increased cross-resistance and blue represent increased cross sensitivity, and intensity of the color in a line represents the frequency of increased cross-resistance or antibiotic susceptibility against a drug or drug class.

Increased cross-resistance is very common within the antibiotic class. Almost all of the antibiotic resistant strains gain resistant to other antibiotic in its own class, although, there were two exceptions of this trend. Such interaction cannot be observed for Folic acid synthesis inhibitors and Ribosomal 30S Inhibitors.

Very important observation of this project is increased sensitivity of Aminoglycoside resistant strains against other antibiotic classes. On both Figure 3-2and Figure 3-3we observed that resistant strains of Aminoglycoside (Tob, Str, Amk, Kan) have increased resistance against each other, but increased sensitivity against other drug classes. This observation on their phenotype led us to discover a specific gene mutation, when we analyze the sequencing results. Another thing is, addition to this unique behavior of aminoglycoside, none of the other drug classes developed resistance against aminoglycoside.

Folic acid synthesis inhibitors were another interesting observation of this study. As mentioned above, they didn't developed resistance within the group. Also they didn't developed resistance against other drugs from other classes. So we can say that their resistance mechanisms can be an independent mechanism.

Figure 3-3: Cros resistance network. (A) Network for strains evolved under strong selection. (B) Network for strains evolved under mild selection. Red lines represent cross-resistance and blue lines represent sensitivity. Resistance or sensitivity activity of a strain against other drugs in its class is shown in each circle. Resistance or sensitivity of all strains in one class against other drug classes are shown between circles. (Oz & Guvenek & Yildiz 2014)

Figure 3-4: For every evolved strain, we calculated direct-resistance values and mean cross-resistance values. Using these values we calculated Pearson's linear correlation coefficients and p values separately for (left panel) strongly selected strains (R=0.28, p=0.064), (middle panel) mildly selected strains (R=0.047, p=0.76), and (right panel) strongly selected and mildly selected strains together (R=0.23, p=0.033). Direct-resistance values are plotted against mean cross-resistance values (black and red circles are used for mildly and strongly selected strains respectively) for all 88 evolved strains and blue lines show the best linear fit. (Oz & Guvenek & Yildiz 2014)

Figure 3-5: Frequency and cross-resistance levels of strains evolved against drug classes. Normalized values of cross-resistance converted to -1, 0, 1, respectively antibiotic sensitivity, no change in resistance, and antibiotic resistance. For both strongly selected and mildly selected strains, strains are grouped according to drug classes and their crossresistance frequencies (fCR) and antibiotic susceptibility frequencies (fAS) against each drug class are calculated. Moreover, the mean cross-resistance ($0 \le CR \le 1$; 1 being the strongest possible resistance) and antibiotic susceptibility ($-1 \le AS \le 0$; -1 being 20 fold less resistance compared to the wild type ancestor) values are calculated for each cluster. A seven by seven matrix has been created with frequency and cross-resistance (or antibiotic sensitivity) values for strongly selected (panels on the left) and mildly selected (panels on the right) strains. The 22 by 88 trinary matrix is then randomly shuffled for 105 times and the actual fCR and fAS values for each group is recorded (histograms in panels). Finally, we calculated the probability (p) of randomly getting a frequency higher than the actual fCR and fAS values. We consider the phenotypic changes within clusters which have p values less than 0.05 as significant and score these interactions as increased cross-resistance or increased antibiotic susceptibility. (Oz & Guvenek & Yildiz 2014)

3.3 Genotypic Characterization

In order to understand genetic changes on evolved strains, 88 evolved strains has been sequenced. All the genetic changes can are available on Appendix A. In addition to 88 strains, we sequenced two wild type, 4 replicas of randomly selected colonies, and 2 wild type strains who has been growth in minimal media for 21 days, without any antibiotic.

Two strains that exposed nothing but minimal media have same genetic changes. There were deletions of 82 base pair in the *pyrE-rph* operon in both strains. In order to understand if that mutation has any effect on bacteria we compared growth rates of all 88 evolved strains, media adapted 2 strains, and wilt type MG1655. Doubling time for MG1655 was 70 ± 4 minutes (mean \pm standard deviation), as well as the doubling time for minimal media adapted strain was 48 ± 3 minutes, which means that *pyrE-rph* deletion causes an elevation in growth rate. This mutation was previously reported as a minimal media adaptation related mutation(Conrad, et al. 2009). This result led us to understand changes in growth rate in some resistant strains.

On Figure **3-6** green line represent growth rate of MG1655, and blue line represent growth rate of media adapted strains. Without knowing the effect of *pyrE-rph*deletion it would be difficult to understand the strains have better growth rate then wild type. Mutations in the *rph-pyrE*operon were observed in 29 of the resistant strains and majority of these strains (24 out of 29) were growing significantly faster (Figure **3-6**, p<0.05, Wilcoxon rank-sum test) than the wild type ancestor strain. Again, majority of fast growing strains were mildly selected strains (20 out of 24).

There were 17 strains that have significantly lower growth rate (twelve strongly selected and five mildly selected. When we compared growth rate of strongly selected and mildly selected strains, average growth rate for the strains evolved under strong selection was 71 ± 16 minutes whereas the average growth rate for the strains evolved under mild selection was 59 ± 12 minutes.

Figure 3-6: Growth rate of each evolved strains in 30°C in M9 minimal medium. Red color represents strong selection strains and black color represents mildly selected strains. Green rectangle represent mean growth rate of wild type ancestor MG1655 and blue rectangle represents strains evolved in minimal media for 21 days. Error bars show the standard deviations of 6 growth rate measurements per strain. Upward triangle used for strains that growth rate is higher than ancestor strains and downward triangle used for strains that growth rate is lower than ancestor strains. Filled markers represent strains that carry deletions of 82 base pair in the pyrE-rph operon. (Oz & Guvenek & Yildiz 2014)

All the mutations in all strains are provided in Appendix A. We observed total 215 mutations, 113 of them were SNPs and 102 of them were indels. In order to better understand those mutations, mutations were grouped according to their antibiotic class inFigure 3-7. In Figure 3-7 the genetic changes found in strains has been shown by radially distributing mutations on circular plots according to mutations' locations on E. coli reference genome. Indels has shown as filled red and black triangles and SNPs has shown as filled red and black circles. Strongly selected strains had 124 mutations in total (111 in coding regions, 13 in intergenic regions) and mildly selected strains had 91 mutations (83 in coding regions, 8 in intergenic regions).

Two of the strains (CEF-S-1 and CEF-S-2) have 558 mutations in total, so they were excluded from all analyses. Out of 558 mutations 139 of them were synonymous mutations.

According to drug's mechanism of action, we classified mutations in to two; pathway specific and off pathway mutation. In Figure 3-7pathway specific mutations are shown in blue color. Outer red circle represents mutations of strains evolved under strong selection and inner black circle represents mutation evolved under mild selection. If a mutation has been seen more than once, it can also be detected on Figure 3-7.

С

F

Е

Figure 3-7: Mutations found in strains evolved against a drug class under strong selection (outer red circle) and mild selection (inner black circle) are shown with filled red and black markers respectively. SNPs are shown with filled circles and insertions/deletions are shown with filled triangles. Mutated genes' names are printed using standard annotations; however mutations are printed as "unknown" if there are no annotated genes found in literature. Pathway-specific mutations are printed in blue. (A) Mutations found in strains evolved against antibiotics with multiple mechanisms (nitrofurontain). (B) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against beta-lactams. (F) Mutations found in strains evolved against 50S ribosomal inhibitors. (C) Mutations found in strains evolved against folic acid synthesis inhibitors. (Oz & Guvenek & Yildiz 2014)

In order to understand our results better, we made Table 3.2, which allows us to see mutations that belong to a specific drug group. However Table 3.2 only contains mutations that occur more than one times. In Table 2 pathway specific and off pathway mutation for each drug can be seen. For all of the drugs we used in evolution experiments (except chloramphenicol, doxycycline and tetracycline), we were able to identify several pathway-specific gene mutations in evolved strains. Mutated gene names marked with asterisks are genes that previously reported in literature to be involved antibiotic resistance studies.

For example SNP in *folA* has been reported to be involved with trimethoprim resistance in *Escherichia Coli* (Keith Miller 2004).

We conclude that since mutations in Table 2 has been observed more than one time, more than one strain, these entire mutations can ben related with drug resistance.

Off pathway mutations were interesting observation of this study. They are obviously related with drug resistance behavior of our resistance strains. There are 71 off pathway mutation in strongly selected strains and 38 off pathway mutation in mildly selected strains (Figure 3.8). Again mutations that previously reported in literature to be involved antibiotic resistance studies have been shown with asterisk on the gene name.

Number of mutation belonging to major pathways of strong selection and mild selection for each class has been demonstrated in Figure 3-8-A. Figure 3-8-B shows number of pathways specific mutations accordingly.

Figure 3-8: Effect of selection strength on genetic diversity. (A) Number of mutation belongs major cellular pathways in strongly selected (S) and mildly (M) selected strains. Strains clustered according to major antibiotic classes. (B) Pathway specific mutations per classes for strongly selected (S), and mildly selected (M) strains. (C) *trkH* mutations and drug sensitivity on aminoglycosides. Blue color weight of bars indicated strength of sensitivity. (Oz & Guvenek & Yildiz 2014)

One of the most important finding of this study was aminoglycoside resistant strains behavior against other drugs. Aminoglycoside resistant strains were resistant to other drugs in their class but susceptible to other drugs from other class. We found out that six of the eight aminoglycoside resistant strains have mutation in *trkH* gene (Figure 3.8-B).

	mutations	On-pathway mutations
Chloramphenicol		[soxR]*; [mdfA]*
Clindamycin	[prmB]; [rplB]*; [rpmG]	
Fusidic Acid	[fusA]*	[yibE]
Spiramycin	[rplD]*; [rimN]*	
Erythromycin	[rplV]*	[acrB]*; [fis], [ylbE]
Streptomycin	[lysW]; [rimP]; [rpsL]*	[trkH]
Amikacin	[cydA]; [fusA]*	[trkH], [ylbE]
Kanamycin	[cpxA]*; [fusA]*	[trkH]; [fis]
Tobramycin	[fusA]*	[trkH]; [fis]; [atpG]; [yiaO], [ylbE]
Doxycycline		[acrR]*; [fis]; [marR]*
Spectinomycin	[rpsE]*; [rplB]*	
Tetracycline		[mlaA];
Ampicillin	[ftsi]*	[acrB]*; [envZ]*
Cefoxitin	[ftsl]*	[acrB]*; [envZ]*; [ompR]*; [ompF]*
Piperacillin	[ftsl]*	[envZ]*;[ompR]*
Ciprofloxacin	[gyrA]*; [gyrB]*	[acrR]*; [ompF]*
Nalidixic Acid	[gyrA]*	
Lomefloxacin	[gyrA]*	[acrR]*; [marR]*
Trimethoprim	[folA]*	
Sulfamethaxozole	[foIP]*; [foIM]*; [foIX]*	
	Chloramphenicol Clindamycin Fusidic Acid Spiramycin Erythromycin Streptomycin Amikacin Kanamycin Tobramycin Doxycycline Spectinomycin Tetracycline Ampicillin Cefoxitin Piperacillin Ciprofloxacin Nalidixic Acid Lomefloxacin Trimethoprim Sulfamethaxozole	ChloramphenicolClindamycin[prmB]; [rplB]*; [rpmG]Fusidic Acid[fusA]*Spiramycin[rplD]*; [rimN]*Erythromycin[rplV]*Streptomycin[lysW]; [rimP]; [rpsL]*Amikacin[cycA]; [fusA]*Kanamycin[cpxA]*; [fusA]*Tobramycin[fusA]*DoxycyclineSpectinomycin[fts]*Cefoxitin[fts]*Ciprofloxacin[gyrA]*; [gyrB]*Nalidixic Acid[gyrA]*Lomefloxacin[gyrA]*Trimethoprim[folP]*; [folM]*; [folX]*

Table 3-2: Drug classes, drugs used for selection, mutated pathway-specific genes, mutated off-pathway genes. Genes that are reported in literature to be related to antibiotic resistance are marked with asterisks. (Oz & Guvenek & Yildiz 2014)

3.4 Mutants Behavior on Different Temperature

Slow growth in mutant strains has been observed in previous studies before (Blackburn and Davies 1994). In this project some resistant strains such as: AMK-S1, KAN-S-2, ERY-S-1, CHL-S1,S-2 have significantly slower growth rate comparing to their ancestor wild type. Slower growth rate in resistant strains has been observed before, even when the stress factor has been remove, resistant bacteria turn back to be sensitive because of cost-benefit

optimization (Dekel and Alon 2005). The interesting observation of this study was some strains were growing better than its ancestor (Figure 3.6). In order to understand those fast growing strains we first tested all resistant strains in different temperature. Resistant strains and their wild type ancestor has been growth at 9 different temperature between 28 °C and 42 °C (Figure 3.9). For almost all strains 37 °C were optimal temperature except NIT-S-1 (Figure 3.10). NIT S-1 was an interesting strain that cannot grow temperatures above 37 °C. KAN-M-1 growth rate was also dramatically decreased temperatures above 39 °C. All these different behaviors at different temperatures should be investigated more in future studies.

About faster growing strains, we observed rph-pyrE mutations majority of those strains. We sequenced two strains that were propagated for 28 days in the absence of any antibiotics in minimal media, and those two also had deletion on rph-pyrE operon. And those media adapted strains also grow faster than its ancestor. We come up with a conclusion that this mutation is related with faster growing behavior. In literature pyrE previously reported with its relation with minimal media adaptation (Jensen 1993; Conrad, et al. 2009). Considering our result with Jensen's study, deletion in rph-pyrE operon should be related with our observation.

Figure 3-9: Effect of selection strength on growth rate at different temperatures. (A) Mean of growth rates. Red marker indicates strongly selected strains; black marker indicates mildly selected strains and green lines indicates growth rate of wild type. (B) Mean of growth rates in different temperatures. Red marker indicates strongly selected strains; black marker indicates mildly selected strains; green marker indicates growth rate of wild type and blue marker indicates mean of all strains.

Figure 3-10: Growth rate of all strains at different temperatures between 28 °C and 42 °C. Each circle represents growth rate of different temperatures.

4 Discussion

In this study we accomplish systematic study of antibiotic resistance of *Escherichia Coli*. We pointed out the affect of selection strength as an important factor on bacterial evolution resistance mechanism. We combined phenotypic observation with genotypic observation and revealed important facts about evolutionary mechanisms. Bacteria developed resistance under stronger selection developed cross-resistance against several other drugs. Bacteria developed resistance, however that was significantly lower comparing to strong selection strains.

Strength selection has important effect on genetic diversity. Strong selection bacteria have more mutation in both number and diversity. Strongly selected strains have more pathway specific mutations comparing to mild selection. However pathway specific mutation and probably multidrug resistance gene mutation cost is higher, so fitness is lower. If mutated genes are important genes that effect cellular machinery, changes have huge fitness cost. An example of higher genetic diversity in strongly selected strain is aminoglycosides. Strongly selected aminoglycosides have 32 mutations in total and 13 of them were pathway specific mutation. Whereas mildly selected aminoglycosides have 22 mutations in total and only 4 of them were pathway specific. On the other hand folic acid synthesis inhibitors does not show such diversity. Strongly selected strains and mildly selected strains almost have same number of mutation. However when we look at the evolutionary experiment (Figure 3.1) we saw that evolutionary pathway of strongly selected strains and mildly selected strains are not very different on this group. Another interesting observation about folic acid synthesis inhibitors that TMP-S-2 and TMP-M-1 have exactly same mutations, and all strains have mutation in *folA* gene. This result in not surprising since pathway specific DHFR mutation has been observed in TMP resistance strains in previous studies (Toprak, et al. 2012).

Collateral sensitivity of aminoglycoside was another important discovery of this study. Recently another research group also discovered same collateral sensitivity of aminoglycosides(Imamovic and Sommer 2013). In Imamovic's study they applied strong selection in order to evolved bacteria. Similarity between Imamovic's work and this project is not surprising since we observed stronger collateral sensitivity in strongly selected strains. They demonstrate phenotype of collateral sensitivity but their study was lack of genetic data. Meanwhile another group Lazar *et al* evolved Escherichia Coli against several antibiotics including aminoglycosides and sequenced resistant strain and discovered *trkH* mutation behind this sensitivity, similar to our findings(Lazar, et al. 2013). In addition to their findings we contribute these finding by studying selection strength. This collateral sensitivity can be a new strategy to minimize antibiotic resistance. In future research combined therapy of aminoglycoside with antibiotics that are not member of aminoglycosides should be tested.

5 Conclusions

In this study we pointed out a hidden factor in antibiotic resistance, which is selection strength. We concluded that selection strength is an important parameter that affects complexity of resistance evolution. We observed that population evolved in high concentration of drug acquired significantly higher cross-resistance. This result can lead new perspective on evolution of resistance, since physicians prefer to use highest concentration of drug in order to minimize cross-resistance. High concentration is useful the drug kills all the population, however in case of survival, bacteria will develop stronger cross-resistance.

To minimize cross-resistance, cross sensitivity aminoglycoside can be used in clinic, although it requires further investigation. During the treatment combination therapy can be used for patient, not because synergistic effect of drugs, but because cross sensitivity properties of aminoglycosides. During antibiotic treatment in specific days aminoglycoside can be used to slow down the resistance. This kind of study has not been done yet, however it may give promising result for resistance evolution.

Our study highlighted important and newly discovered facts about resistance evolution and further studies about selection strength and cross sensitivity will give better understanding about this area.

6 References

Baquero F, Negri MC. 1997. Strategies to minimize the development of antibiotic resistance. J Chemother 9 Suppl 3:29-37.

Blackburn CD, Davies AR. 1994. Development of antibiotic-resistant strains for the enumeration of foodborne pathogenic bacteria in stored foods. Int J Food Microbiol 24:125-136.

Bodey GP, Grose WE, Keating MJ. 1982. Use of trimethoprim-sulfamethoxazole for treatment of infections in patients with cancer. Rev Infect Dis 4:579-585.

Bollenbach T, Quan S, Chait R, Kishony R. 2009. Nonoptimal microbial response to antibiotics underlies suppressive drug interactions. Cell 139:707-718.

Burchall JJ. 1973. Mechanism of action of trimethoprim-sulfamethoxazole. II. J Infect Dis 128:Suppl: 437-441.

Chait R, Craney A, Kishony R. 2007. Antibiotic interactions that select against resistance. Nature 446:668-671.

Chatterji M, Unniraman S, Mahadevan S, Nagaraja V. 2001. Effect of different classes of inhibitors on DNA gyrase from Mycobacterium smegmatis. J Antimicrob Chemother 48:479-485.

Coates AR, Hu Y. 2007. Novel approaches to developing new antibiotics for bacterial infections. Br J Pharmacol 152:1147-1154.

Cokol M, Chua HN, Tasan M, Mutlu B, Weinstein ZB, Suzuki Y, Nergiz ME, Costanzo M, Baryshnikova A, Giaever G, et al. 2011. Systematic exploration of synergistic drug pairs. Mol Syst Biol 7:544.

Conrad TM, Joyce AR, Applebee MK, Barrett CL, Xie B, Gao Y, Palsson BO. 2009. Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biol 10:R118.

Coutsogeorgopoulos C, Miller JT, Hann DM. 1975. Inhibitors of protein synthesis V. Irreversible interaction of antibiotics with an initiation complex. Nucleic Acids Res 2:1053-1072.

Cox G, Wright GD. 2013. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 303:287-292.

Cuddy PG. 1997. Antibiotic classification: implications for drug selection. Crit Care Nurs Q 20:89-102.

Davies J, Davies D. 2010. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417-433.

Dekel E, Alon U. 2005. Optimality and evolutionary tuning of the expression level of a protein. Nature 436:588-592.

Demain AL. 1991. Production of beta-lactam antibiotics and its regulation. Proc Natl Sci Counc Repub China B 15:251-265.

Fabrega A, Madurga S, Giralt E, Vila J. 2009. Mechanism of action of and resistance to quinolones. Microb Biotechnol 2:40-61.

Ghooi RB, Thatte SM. 1995. Inhibition of cell wall synthesis--is this the mechanism of action of penicillins? Med Hypotheses 44:127-131.

Gootz TD. 2010. The global problem of antibiotic resistance. Crit Rev Immunol 30:79-93.

Hegreness M, Kishony R. 2007. Analysis of genetic systems using experimental evolution and whole-genome sequencing. Genome Biol 8:201.

Imamovic L, Sommer MO. 2013. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med 5:204ra132.

Jardetzky O. 1963. Studies on the mechanism of action of chloramphenicol. I. The conformation of chlioramphenicol in solution. J Biol Chem 238:2498-2508.

Jensen KF. 1993. The Escherichia coli K-12 "wild types" W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401-3407.

Kohanski MA, DePristo MA, Collins JJ. 2010. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37:311-320.

Kunin CM. 1978. Problem of antibiotic usage. Definitions, causes, and proposed solutions. Ann Intern Med 89:802-805.

Lazar V, Pal Singh G, Spohn R, Nagy I, Horvath B, Hrtyan M, Busa-Fekete R, Bogos B, Mehi O, Csorgo B, et al. 2013. Bacterial evolution of antibiotic hypersensitivity. Mol Syst Biol 9:700.

Lee CR, Cho IH, Jeong BC, Lee SH. 2013. Strategies to minimize antibiotic resistance. Int J Environ Res Public Health 10:4274-4305.

Levy SB, Marshall B. 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122-129.

Martinez JL, Baquero F, Andersson DI. 2007. Predicting antibiotic resistance. Nat Rev Microbiol 5:958-965.

Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martinez-Solano L, Sanchez MB. 2009. A global view of antibiotic resistance. FEMS Microbiol Rev 33:44-65.

Michel JB, Yeh PJ, Chait R, Moellering RC, Jr., Kishony R. 2008. Drug interactions modulate the potential for evolution of resistance. Proc Natl Acad Sci U S A.

Miesel L, Greene J, Black TA. 2003. Genetic strategies for antibacterial drug discovery. Nat Rev Genet 4:442-456. Nathwani D, Davey P. 1999. Antibiotic prescribing--are there lessons for physicians? QJM 92:287-292.

Nikaido H. 2009. Multidrug resistance in bacteria. Annu Rev Biochem 78:119-146.

Oz T, Guvenek A, Yildiz S, Karaboga E, Tamer YT, Mumcuyan N, Ozan VB, Senturk GH, Cokol M, Yeh P, Toprak E. 2014. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. (Avaible online)

Pankey GA, Sabath LD. 2004. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 38:864-870.

Rice LB. 2007. Emerging issues in the management of infections caused by multidrugresistant gram-negative bacteria. Cleve Clin J Med 74 Suppl 4:S12-20.

Sanders CC. 2001. Mechanisms responsible for cross-resistance and dichotomous resistance among the quinolones. Clin Infect Dis 32 Suppl 1:S1-8.

Silver LL, Bostian KA. 1993. Discovery and development of new antibiotics: the problem of antibiotic resistance. Antimicrob Agents Chemother 37:377-383.

Tanaka N. 1986. [Aminoglycoside antibodies: mechanism of action and resistance]. Nihon Saikingaku Zasshi 41:587-601.

Tanaka S, Otaka T, Kaji A. 1973. Further studies on the mechanism of erythromycin action. Biochim Biophys Acta 331:128-140.

Tenover FC. 2006. Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 34:S3-10; discussion S64-73.

Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R. 2012. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet 44:101-105.

Trnka L. 1969. Mechanism of rifampicin action on mycobacterial cells. Consideration to the potentiation problem of antimycobacterial treatment. Acta Tuberc Pneumol Belg 60:356-365.

Tune BM, Fravert D. 1980. Mechanisms of cephalosporin nephrotoxicity: a comparison of cephaloridine and cephaloglycin. Kidney Int 18:591-600.

Yeh P, Tschumi AI, Kishony R. 2006. Functional classification of drugs by properties of their pairwise interactions. Nat Genet 38:489-494.

Yeh PJ, Hegreness MJ, Aiden AP, Kishony R. 2009. Drug interactions and the evolution of antibiotic resistance. Nat Rev Microbiol 7:460-466.

7 Appendices

7.1 Appendix A

Genetic changes found in all sequenced strains except CEF-S-1 and CEF-S-2.Sequence ID, strain ID, drug class used for selection, genome position of the mutation, nucleotide change, annotation of the mutation, mutated gene(s), description of the mutated gene(s), gene function, selection strength, exclusivity (exclusive: mutation found in only mildly selected or strongly selected strains, common: mutation found in both mildly selected and strongly selected strains), pathway-specifity

Sequence ID	State D	Antibiastic Class	Pasition	Minterline:	Anomietan	Give	Description	Gene Function	Selection	Earlinivity	Pathway Specific
B103	5PR-81	500 mbihikor	2641064	81.7p	coding (443/1155 nl)	$rimN \leftarrow$	dual specificity 238 rR564 m(2)A2503, tR564 m(2)A37 methyltrau5rase, RAM: dependent	Froten synthesis	strong.	ectory	Υm
ETOI	SPR-51	500 inhibitor	3450111	dit tip	colling (193-199/606 td)	$\eta i D \leftarrow$	300 microsmi adout proten L4	Proton synthesis	itrong	corneoes	Taz
ET01	SPR-51	500 ebil-bor	(#1.295.3	482 Vp		194	defective ritronuclease R4+ adaptation to meanal neithe	Hot damified	wing	common	No
ETUI	SPR-52	300 adubitor	3413963	882.1p		7 ¹⁸	defective ribunuclease PH+ adaptation to minimal media	Not classified	store	common	No
8703	5PR-MI	500 ubilition	3450113	c-4	066C (00C→T0C)	njil)	500 thoronal advant proton 1.4	Proban synfloria	milt	common.	Yu
E203	5PR-M1	500 inhibitor	3012953	A#2 by		44	defective etionactionse IH+ adaptation to meanal metha	adaptation to material media	mid	common	No
8294	SPR-M2	300 ubbitor	3450112	C→T	066D (990-40AC)	rpiD ←	508 ribosomal automit protras L4	Protein nyttilvesir	mild	computers	Υn
8704	SPR-M2	500 mbbilor	3413953	Δ52 tφ		spk	defective ribonuclease PH - adaptation to minimal media	adigitation to manamal media	mid	Smmon	No
ET%	CLI-51	300 ebbior	2445/618	Δ9 hp	coding (407-405/933 nl)	prm8)05 glutamine methykramierase	protean synthese	itrong	ectory	Tez
BT06	CLINI	500 abilitor	3809327	AT by	coding (114/168.nt)	грж G	500 ribotomal subsatt protein L39	Protein synthesis	strong	enture	Tet
8706	CLI-NI	300 abhtor	3613947	o⊣t	atmpnu: (*364-39)	pprtf ⊷/ ⊷ np b	orotate phosphoribory/transferance/defective riboraclease PH- adaptation to minimal media	ediptation to matural media	strong	eschawe	Нa
1208	CLI-82	302 stability	3440671	43.9b	coding (704-706/022 nl)	rpiß	502 ricenoral advant preton 1.2	Protein synthesis	strong	octure.	Yes
ET04	CLI-52	\$00 white	3013963	A #2 bp		94	diffective ribonuclease IN- adaptation to minimal rie the	adiptation to marinal media	atory.	commoh	No
8109	CLI-MI	385 inhibitor	3612953	å82.tp		94	defective ribonuclease (H+) adaptation to minimal rivide	edagisten is mérenel media	mid	common	No
ET10	CLI-M2	500 inhibitor	381.395.3	д.92 Тр		igat	def ective ribonaclease 191 - adaptation to mineral ree dia	adaptation to manimal media	mild	common	7411

8712	ERY-82	502 abilitor	2959972	C-sk	utergenic (+1157-00)	$M^{HH} \xrightarrow{f} M^{HH}$	putative transcriptional regulator, Deck Tamby/putative deby/kngenase, with NAZOD busing Romman Sidt domain	Other	string	encluire.	382
82112	ERY-52	311 abbitur	3441953	43 Jp	sofng (301-303/333 st)	qu(V	502 rikonamal sabanit protein 1.22	Protein synthesia	strong	enclusive	Tes
870	ERY-MI	SIE abbitor	405479	0-44.	8737C (00T-470T)	art	multifrag effice systemprotein	Malti Drug Resistance	nd.	enclusive.	Яs
ET13	ERY-MI	505 abilitor	3403405	4617 tip		(54)-3AdJ)	(July, Dough)	Other	nit	enclusere	38a
ET14	ERY-M2	205 mbibilite	547832	19.	coding(478/1229nt)	$\rho \partial {\cal E} \rightarrow$	Uninom	Unknown .	3774	milaire	y2
8714	ERY-M2	500 mbdote	421479	0-4	8717C (COT-+EOT)	- bra	mikidnig effike system protein.	Multi Drug Resistance	mit	oncluster.	360
ET16	CHL-51	305 abbier	458014	12196 (+) +6 bp - à1	ateges: (+70-33)	$c {\rm d} p X \to \ell \to {\rm dom}$	AT Fire and specificity advoid of CBX - CBF ATF-dependent sense protester/DRA hashing ATF-dependent protester La	Uskacwa	dring	enclusive.	360
ET16	CHL-S1	207 nbbtor	882776	1230 (+) +1 hp	abergenic (*1651-118)	yhyG ⊷/ → md f4	unde opræsyl pyrophoghateplumplatasebuilteining efflur system protein	Multi Drug Resistance	string	encluire.	No
HI16	CHE-81	505 abiblior	3919571	a513 hg		(ugd)-(ugil)	{aqu83; [aqu1]	Methode protects	drieg	entrates	189
8716	CHL-S1	515 bbb4or	4275909	्न	A146V (ЭСА-«ЭТА)	$\mu a c R \rightarrow$	CBA-binding transmittional dual regulator, Fe 3 order for reducionsing	Multi Emig Resistance	dring	dicitity.	Ho
E 117	CHL-82	320 ebbior	408016	20100 (-) +4 tp	ntargenac (+301-33)	$e {\rm d} p X \to \ell \to \log$	AFPus and specificity about of CpX -CpF ATF-dependent sense protocor(DNA familing ATF-dependent protocor La	uninown.	dring	mhare	на
.EI17	CHL 82	500 ebbleir	882984	C-4	storgenic(-275/-12)	ybyG⊢/→ml f4	undersprenzyl gyrephosphale phosphatassinadialnag office system protein	Multi Drug Resistance	$\pi r r_{\rm f}$	enclusive	261
8717	CHL-82	505 shibitor	201629	G→C	(TDG=TD0) A84	yg07	makifantional endomelwase Cast, CRIEFR adaptation proton, DHA repor- maying	DIVARIA rysthese	dring	entheire	240
82117	CHL-82	202 gbibtor	4275919	G→A	(960−100) (1000)	$+ g_{249}$	CHA-basing incorptional dual regulator, Fe-S order for rocks: sening	Mulii Drug Resultance	drog	enclastee	362
ET18	CHL-M1	500 kibiter	No.	152 bp		nguk.		adaptation to matanal			

FT10	CHL-M2	508 while and		AS2 Me		mb		adaptation to minimal			
			3613963				defective ribonadease PH - adaptation to minimal media	meta	maid	common	No
ET21	KA74-82	Amnoglycosiden	392191	45,466 bp	IE3-mediated	yal7-fjai07	jua7, jua97, umpi4, strend, (jua1997	Unknown	strong	excluse a	No
E721	KAN-82	Amnoglyconder	3469722	A-+C	F605L (717→77(0)	$fas A \leftarrow$	protein dum elongation factor 337-O, 072-binding	Protein synthesis	strong	comments	Yes
ET21	KA34-52	Amnoglycosides	4031406	T-A	L80Q (079-+0A9)	$tt kH \rightarrow$	potussiam tratsporter	Mentrune protests	strong	enclusive	No
ET21	KAN-52	Amnoglycoailer	4102440	C⊶Đ	AIRTP (OCA-+OCA)	qux4 ↔	aensary hatalass knase in two-component regulatory system with QufR	Membrane protoins	strong	encluive	Tes
F122	KAN-MI	Ampoglyconder	118793	T→A.	C215 (79C→A9C)	атр0 →	1,6° arbydro-10° aostylmarany(-L-slataise amdase, Zn-dependent, marein iarataas	Cell wall optitiess	-ait	enclusive	ыo
ET22	KAN-MI	Aminoglymsides	450605	125 (~) +4 tp	ending (227-230/948 nt)	cynd ↔	cytachrome subspanol midease subunt II	Other	niit	exchance.	No
E122	KAN-MI	Amnoglymades	3469903	A43	15497 (AZC-+AOC)	fand	protein chain elongation factor EF-O_077P-binding	Proten synthesis	maild	commun	Tet
ET22	KAN-MI	Amnoglycondes	3013953	045 pp		7%	defective riborwolease PH- adaptation to minimal media	adaptation to minimal melia	neid	common	No
ET23	KAN-M2	Ammoglycoadea	3409306	0-4	ESL-(090-+070)	far→	global DRA-binding transcriptional dual regulator	Other	nalit	enclaser e	Во
ET24	SUL-51	Fole Acid tabletor	1105468	T→C	L375M(371A→070)	ial →	e14 prophage, incenter dehydrogenase, specific for NADO+	Cell wall synthesis	strong	.exclusive	Но
ET24	SUL-S1	Folic Acul stability	1679046	0~47	E16L(03T-+CTT)	folM →	ditydrononapterio reductane, NADPH: dependent, ditydrofolate reductane isniptne	Folic and synthese	strong	conteriors	Tes
E224	SUL-\$1	Fole Acid shilder	3327744	A,←D	P(48 (CCA→TCA)	folP←	7,0-ditydropteroate synthuse	Polic and synthesiz	strong	en:lanve	Tes
ET25	SUL-S2	Folic Acid publisher	1679653	a4 bp	ooding (654-657/723 ni)	fotM →	dihydromonapteris reductase, INALIPH: dependent, dihydrofolate reductase is orgene	Folic acid synthesis	strong	common.	Ťes
BT25	SUL-82	Fole Acid tibblor	3372744	a⊶a.	P64II (CCA→TCA)	føl₽↔	7,8- dihydropheroate rytthuse	Folic acid synthesis	strong	constants	Yes
ET26	SUL-MI	Fole Acid stability	3419514	.a.1 tp	(b) (b) (b) (b) (b) (b) (b) (b) (b) (b)	fetX →	D' styffuro 7,8' ditydroneopterin trybuophate 2'' sydnerase and ditydroneopterin aldolase	Folic and synthesis	eald	exclusive	Tei

8224	SUL-MI	File Ant abblor	3322744	0-4A	PHHE (00A(TOA)	$fulP \leftarrow$	7,0-ditydesptorsato sprifiasos	Folc and systems	hân	CONTRACTOR .	Tπ
17777	SUL-542	Polic Acal abdotor	241.0071	$352(4)\pm5hp$	coling (32-36343 al)	.jbdX -=	D-wyther-7,8-skiple-on-opteric triphoghate 2-spansesse and skiple-on-opteric triphoghate 2-spansesses	Folic and synthesis	mbi	en: kastra	Yes
8727	SUL-M2	File Ald shifts	2551265	0-47	Q7*(CA0-45A0)	$hcmP' \rightarrow$	organgi oʻgatyranogan 122 candum	Other	mild	exchance	261
8727	SUL-542	Tyle Acid abbility	3322050	h-A	F28L-CTTTCTA)	$f\!$	2.8-00pdropterodie spittase	Fole and sythesis	1000		Υn.
8274	CIP-51	200A Oyran athletor	405701	41.46	enting (401/64115)	wett	ERA badag transmitional represent	Mohi Erog Renistance	string	milterre	Sto
8729	CIP-51	201A Oyun shibdor	000571	21 hp	onding (0557)003-at)	amp2*	untile manuferance prevail a $\langle (a,b,F)$	Membrane protoast	trong	1000000	Ho
8229	CIP-81	2006 Ogram athletor	2337195	0A	\$68L-(200420)	\$evi ←	DRA gyrae dys e II logoinateraeit, robait A	LIKA90/A gethesis	string	statutus	те
8271	CIP-82	1964. Ogram atalakar	996129	III (*) 18ge	TransChilt	Jonep#7	outer membrane ports 1a (3x,5,37)	Meeting potent	time	common."	311
8231	CIP-82	2006 Oyun xishkor	403107	Att2 hp	co-ling (119-130940 at)	$acrit \rightarrow$	DBM, basing transmittanal repressor	Midi Ding Resistance	tining	common	3fa
8231	CIP-82	2014 Oyrase shihitor	23371195	0++A	288L (700-4720)	gent	DRA grass (type II inpotenses), robust A	1864936 pribris	times	10000000	Tel
8731	CIP-82	2064 Oyrus obibilir	2650804	#1.9p	roday (20094642)	and	3 merceptopyrande nathetransferane	00wr	thing	en laire	14
82.92	CIP-MI	DOGA Oyeane induktion	985734	+0	coding (472/3009.00)	umpt*	initial strengthening potent ($a_{\rm c}(2a,b,2)$	3-decolutions productor	1084	0000008	Sto
REAT	CIP-MI	DMA Oyran abibdor	23371.95	06	BHR. (TO9(T79)	$g_{VM} \leftarrow$	DBGA gyraes (type II tope instruments), substat A	DRATINA INDRES	nili	-compton	THE
8233	CIP-MI	1994 Oyran athletor	3613953	442 MP		guk	defective elecencheae Pri adaptation to meaned media	aligitation to minimal meta	****	ogenetion	Ne
8773	CIP-MI	1964 Ograes athirdor	985632	dik tip	coding (571 - 574/1009-00)	0898°	inte menbesepren 14 (ad.9)	Mentruse protezza	mbi	summers.	34
12233	CIP-M2	D066 Oyean solution	3014752	C-4A	DAMA (2/22-40VE)	B+8	If know, when a	DRAIDIA milania	0.000	anchairs.	Ter
8233	CIP-M2	105A Oytun alabdur	3413953	AR2.9p		igek	defective riborudeaux RV-adaptation to menual media	adaptation to rostornal market	entil	common	140

ET34	TRT-51	TILLADDAY	1707043	843p	-day 0/78-481-10/8 etc	ALL +	electron transport complex protein required for the reduction of DodB, predicted northerase protein	Medinar potenz	mig	exclusive	340
ET34	TET-51	310 years	2442034	$\boxplus 1(*) + dh \mu$	ioday matters	mist	ABC transporter manifesting OM lipsi argumetry, OM lipspectan component	Medicase proteina	drive	echairs	Ro
8734	TET-81	XXI shihe r	2955304	7-4	NO128 (200003)	fiel -	L-factor instance	Other	thing	entere	340
8775	TET-52	NC address	34256	$\Xi 1 \left(r \right) + \delta 1 \mu$	colay instea	miai	ABC transporter maintaining CM liqui argumetry, CM lipoprotein composed	Methodor proteine	itring	ectory	ю
ET 74	TET-MI	NE shines	913953	212 lg		94	Mictive choracleses Dri adaptation to receival media	alightion to cananal metia	mit		144
8277	TET-M2	NII shhere	3033063	art te		7#	defective relocuciones R4 - adaptation in retrieval media	aliptation to manual meta			No
8770	вох-мі	NT abbits	34(947)	42,9404		[flef-cm+R	[hi].yhdt.yhdt.envit	Other	mit	estate	36
6739	DOX M2	35 vinketar	1015480	ALMEN		(rym47	spokysaustvanske PGA-seconder, OM pores, poly beta 1,6-fs acetyl & glucosamere	Tangot	nit	4121014	142
8239	DOX-M2	327 abb 6 m	H1983	ant to		19.8	defective relocucience R4+ adaptation to minimal media	alightion to mained mela	mid	common	No
8740	DOX-81	NU abd-6-rr	403014	10.05(+)+F8p = &	stepsic (+0/-31)	cφX→/→ km	ATPue and gendledy advant of CQX - CQP ATP- dependent series protocol/DIA, building ATP- dependent protocol La	Other	itrag	milare	345
14740	DOX-SI	NO ebberr	485076	C-44	ENT (DCC-dAC)	and -+	286A-bedag transitional repeator	Milli Drug Returnee	strong	ectore	25
8740	DOX-81	XC shifts or	3399829	0-44	Q219*(CAG-47AG)	jMP⊷	conversed membrics-protein, predicted transporter	Mederase proteins	idning	enters	्रमत
8741	DOX 82	NV edd to er	470754	1118(+)+05p=A	atimptus (+957-27)	ripX→/→ im	ATYue and greaterly indust of ChX+ChP ATP-dependent series pretrainf216A-bandag ATP-dependent pretrains La	Obe	reng	echore	
E741	DOX-52	101 solubilitie	1417023	0	8279-(000005)	maril	196A biolog transpices) represent of multiple atthets residance	Malh Teng Remitatore	strong	-	25+

1742	TOD-51	Anneghmaile	392191	40.000 hps	10 metated	yat7-ganaj	yall, sail, angik, dood, yalk yall, yall, sail, akka walt, (pisa)	Other	string	echaire.	36
3242	TOB-SI	Aninoglymades	2722072	C-4T	84400 (090-4790)	past	phosphatidytanense synthese (CDP-dacylghevers)-server Oʻphosphatidythraudinuos)	Mathema pritona	strong	anthanes.	264
1243	TOB-SI	Annogymades	3471106	C-vA	01170 (907-4707)	fie.1	protein chain elongation factor XF-O, OTP-handing	Frotein synthesia	string	-common	Tes
1242	TOB-51	Antestyrouder	3144558	$\subset -\alpha \beta_j$	83485 (000-4600)	yw0	L-debydroscorfole transporter, perglamic tending protein for YRAP (TRajurtic ATP-solig-ended Perglamic) familyticsoporter Tablitio	Menkrone proteins	strong	mbates	34
3342	TOB-SL	Anneghrendes	3015554	A1 by-	ondarg (733/bi4 st)	apG ⊷	F1 setsy of matchene-local ATP synthese, govern tobanit	Methows pritons	dring	anti-aire	351
174	TOB-M	Animgly-side	4033404	T-sh	L80Q (070-4060)	antH →	potentier transposter	Mentioner proteins	strag	entane e	P 0
2743	TOB-52	Animply-sales	202121	A5463gr	321-metabol	pet7-gaitt)	1007, 1017, 10197, 1016A, (10187)	Obe	densig	antiante.	24
1243	TOB-82	Anicoglymates	1104516	A15p	colleg (302/1137 el)	paci	polynemics transporter mitrant.	Methone prileau	dring	enfaire	9%
3243	TOB-32	Anteoglyovaller	\$471188	0-4	01120 (207-000)	fact-	proten dan singatun fator EP -0, OTP biding	Proton synthesis	strong	compass.	Two
3343	TOB-52	Anneghrender	3429733	$\tau{\rightarrow}c$	C000-0AD) 0H51	yhil	hyperthetical protects	Uninows	dring	an basis	354
1211	TOB-82	Attingly-siles	3794558	C-sk	8348 (000600)	yiir0 →	L-delphraemetate transporter, perplanate biolog proton for 75.62 (TR3partie ATP-independent Ferplanate) family transporter Tablibio	Mankease proteau	strong	on there a	20
3243	TOB-52	Amoglyunalez	3015559	440	ooding (130/64 at)	aqc7	F1 actor of matchine-found ATP sysbars, gamma tabast	Medimor proteins	string	echary	314
2743	TOB-52	Antogyoule	4013406	7-14	1.80Q (CTOCA2)	$p 6 H \rightarrow$	poturnian bestap of er	Medinacprismi	string	enthere.	394
3244	TOBMI	Annogyreader	449164	*CACAOT	solarg (752/1997.st)	cynd	2 Reader materic longedu i verentezijo	Mechanie protesta	mild	enhore	3%
2744	TOP-MI	Annegyrader	340206	0-4	13L (000070)	<i>p</i> - <i>n</i>	glike/2004-basing transmittened deal regulator	Citive	mit	en hañre	24
170	TOB-M2	Anteseghysender	50701	-6	coding (476/1258 rd)	,0r	thiores	this we	mild	- entrance	- 34
2245	TOB-M2	Amonghymasiles	2012/000	+0	ntergeral(+89/4)	pef 4/4-ph	or state phosphorikosyltrasofrasoflaficture ritomations 200 adaptation to means and a	eligitation to meaned mode	1004	0080m	30+
12145	TOB-M2	Annoghroader	3413963	282 hp		$\eta \dot{n}$	defective elicenzimme PH+ adaptation to exercise nuclea	adaptation to manufal media	mid	amman	Tem

8749	\$MO-81	Folic Acid philolog	3678917	2639	soding (718-523723 m)	јым	döyörsmongeleres reductant, NACPH: dependent, döpörofokterreductant socijene	Folic soil synthese	tree	(comes	Yes
1210	8360.53	Fole Acid tablear	2310941	41 hp	colleg (135/1104.st)	ampC ←	outer mendenne porto protein C	Mentruse proteins	tree	estare	369
8751	SMO-52	File Acid athlear	1679783	+0716	oxing/5/390	ифС+	ing particular datified	Mentrace proteau	8776 B	ectory	pia
ET7)	SMO-82	Pole Acid adultar	1003605	815.179 to		[cicl]-[vdpC]	17 genne [ck:8], paple, mic., paple, say, pigel, pigel, pigel, mikl, mikl, typ.4, path, pigel, pigel, pigel, field, [pigel]	Pole and ottlette	tree	entaive	Tes
8731	\$MO-52	Fole Acti etchior	2003204	62.Vp	coding (475-476731 at)	mprit	CHA busing instargional opposer of microin 217 publics and militing effici	Multi Drug Kerefature	strang	organs	349
PTO	550.301	Toly And philder	1477907	A1.0173m		failed) Joseff (Subolt Add ward and Switt	Inde and evelopie	weld	and and	Tes
PTG	SMO MD	This And Middle	TRUNK	AT he	under (25 - 2003) and	Beerd	DIG-basing transmittional organizer of microcas 207 synthesis and multidrug	Multi Deur Bassinere	-		10.
ALC:		Coll. Prov Lawrence	second .		and the second	mpros	da	Table 1 Long Frequence			
E253	\$M0-M2	Fole Acid ethilutor	1181136	0-47	FIDEQ (CCA-+CAA)	pec)	Industry database in the second	Mentrus protein	raid	ectors	pla
ET53	8MO-M2	Telic Acal abhdur	MOHES!	24 hp	coding (854-453723 et)	pit	- däydremenigtiere reductare, YAEFR -dopendent, skydrofiskte reductare singene	Fide and systems	mit	rotetum	Tes
E233	\$MO-342	Folz Acut shibitor	2534719	C→A	EHD (GAG-4947)	snepk	2014 - Indag response regulator in two-component regulatory system with Errol	Methoda probabi	-	entarie	342
8754	LOM 51	Dilla Orman abdultar	401014	Cont	ATHE CONT-ORC	arell	1964 - Maday International Internet	Mail: Drug Resistance	Dise	and any	244
ET14	LOM-51	186A Oyun Hildor	1617410	A13 bp	ending (247-27944)5 m)	mark -+	201A binding transplational repretate of multiple authority resistance	bhilti Dwig Renifance	three a	company	20
ET34	LOMAI	DEG Oyrun shihdor	2317194	C-4A	DITY (0AC-GAC)	gnt-	100A genue (hgs-11 toponomenos), minust A	IRA/SIA gellens	tricq	connex	74
ETM.	LONE	Dilla Orme sheker	artist	125 (1) 44 14	andres (717-720) and an		THA hadres transmittened reasoning	Multi Tana Baristana	the second		184.
1114	100155	THE Case white	ababar		and a first of	and the	abota a se	Taxian anther			
A176	1098-32	THE SAME REACH	- SPEAK	2-46	mannand (nor 40	11% IF 1-	20204-240	Lines derives	mag		100
E126	LOM-52	DBA Oynue atabéor	3657975	34 bp x 2	duplication	maril	2014, binding traucoptanal operator of endigie antibatic resultance	Multi Drug Resolution	57.94	entance	340

8157	LOM-M1	CHA Oytane adabidor	2337195	0-+A	BSRL (TOD-4TTO)	gest	DNA graze (type II toposomerate), adont A	LINAENA quibea	mis	remented	Tet
ET58	LOM-M2	ENA Gyran adıbdor	2937195	G-→A	BISL (TOB-4TTB)	g×t⊷	DBIA gyrase (type II toposomerace), infount A.	DNARNA symbols	mid	compos	Tei
ET53	NIT-51	Mate	547682	+6	coding (47%/1259-nd)	sibE -+	Uningeren	Usknown	iboig	enchair e	No
ET59	NIT-51	blatte	431459	0sA	minigense: (* 24/2/+37)	tan ⊷/ ⊷ yaft	nucleoside channel, receptor of plage T-6 and colion Kepatative lipoproten	Unknown	strong	enclusive	340
ET59	NIT-51	5date	575009	430,955 bp	105-metated	JampCJ-Bibli()	Hapma (impl), and, mil, rad, rad, birl, thr. f. yhr. yhr. mhl, and, the yhr. yhr. and app 5 cmp1 pauls on 1 yhr. afr. afr.	Other	strong	-stchaire	340
8159	NIT-\$1	bdalki	890552	al to	coding (146723 nf)	e\$14 -→	ndroreductase A, NADFH -dependent, FMN-dependent	Other	strong	enclusive.	Ted
8119	NIT-51	34(2)	1906836	155 (-) +4 bp	attergenic (~44/-110)	mgrß ←/→y ubR	regulatory peptide for PloPQ, feedback inhibition/typothetical protein	Other	strong	enclusive	840
8159	3417-51	50,81	2909160	+11	oning (369631 nD	mpe4 ->	DNA: basing transcriptional represent of more-on $B17$ performs and multidrug effort	Multi Drog Sezidance	strong	eschare	No
ET59	NIT-51	56iti	3476945	c→t	(356D (363C-+9AC)	rpa4 ⊷	BNA polynemics, abbs subunit	DMA/RSIA synthesis	strong	etchave	Yes
ET35	NIT-SI	stati	3534678	105(+)+43p	attergenic (~72/~153)	ongR / g mB	DNA-binding response regulator in two composent regulatory system with Row2/nearontpl clearage factor	Unknown	strong	entrates	No
ET60	NIT-S2	Mutu	175009	671,250bp	125-metadod.	[ampC]-frbdK]	کو پوست (میں 2), میں 2), میں 2, میں 2, میں 2, میں 2, میں 2, میں 2, میں 2, میں 2, میں 2, میں 2, میں 2, میں 2, م میں 2,	other	strong	etchove	нэ
E100	NIT-52	Stute	690790	Al lp.	coding (364/723 nf)	$ajbd \to$	nitrovenlations A, HADFH-dopendent, Fadel-dopendent	other	strong	exclusive	Yes
8240	7411-52	3-faite	2909147	Al lp	coding (356/531 m)	mprot	204A-binding innortytional represent of microits B17 spathesis and multidrug efflux	Multi Drug Residance	strong	exclusive	39n
FLeg	NIT-82	56/6	3134071	Δ7 lp	reding (526-532/720 st)	ompilt	DRA binding response equilator in two component regulatory system with $\widehat{E} w \widehat{u}$	Mechanic proteins	read	exchaive	340
E141	NIT-MI	bhiti	3813953	457 bp		7 ^a	defective riboruid-ease PFF adaptation to reviewal media	sliqtation to momeal media	mid	common	146
E162	NIT-M2	bdubi	1973713	#1 pb	coding (56)/527 st)	mat I	protein that making Bayellar notor rotation	Medicate proteina	mit	echare	No

E762	NIT-M2	24682	3720257	$T{\rightarrow} h$	attergenus (+105/+94)	$\operatorname{Int} K \to / - g_0/$	III150 immposare Biglyone IIOAA synthetiase, beta culounit	Other	mili	etclasive.	36
£162	NIT-M2	Maki	1413583	all23p		gek	defective ebonuclease PH - adaptation to minimal reads	adoptation to manual metai	mid	cammon	No
8763	PIP-81	vil Wall Dynth Inhiber	72439	044	043H (0AC~4AC)	fhit	iranip-ptilase avoired in reptal poptitoglysis grathesis (periodin binding grates 3)	Cell wall synthese	strong	enclastive	Υes
8243	P2P-51	ted Wall Dynth. Indahin	3553169	A-40	V2410 (07A-400A)	antZ	sensory hataline knows in two component regulatory option with CripII.	Methonie proteina	strong	ouminuty	No
X764	P1P-52	vil Walt typth Dinise	.4377058	A-d	V111D(07C0A())	fntD	famante reductare (anaerolos), mentenne andror tubunit	Mentione proteins	strong	eschuire	No
8765	PIP-MI	vil Wateynih Dente	3053953	A07 bp		78	defective réconvolueue PH - adaptation to minimal me da	aligitation to minimal media	mid	common)	Pap
82.04	PD-M2	vil Walt Tyrch, Scholer	3554564	0-4A	8150(000-4790)	ompit	ENGA basing response regulator as two component regulatory options with Energy	Mestinine proteins	mM	en: laire	30
K166	PIP-M2	vil Walt lijnih. Inhish	10125553	A-82 bp			defective else nuclease PV-adaptation to renernal mode	adigitation to mananal media	mbd	common	. No
E769	CEP-MI	Vi Wali Synth Intel-to-	401611	C-47	E673E (3AA-4AAA)	acril 1-	makabag effan system proteis	Milli Drug Kentlance	mH	common	182
17.09	CEF-MI	stiWatoyeth bene-	915125	0→4	Q361* (CA0-4TA0)	omp#	-outer membrane p or in Ia $({\rm Ia}, b, F)$	Mechanie proteine	mid	enclusive	340
ET 69	CEF-MI	vel Wall Synth Indole	3409255	153 (-)=#bp	coding (954-961/966int)	elund +	URMA- daty-descriptions synthians II	Other	mild	exclusive	340
8769	CEF-MI	M Web Djeth, Total-Io	2234256	A13p	coding (21/720 dQ	$empt \mapsto$	$\Sigma \partial G_{\rm c}$ binding response regulator in two component regulatory system with $${\rm Hee}Z$$	Mechanics protoga	mit	enclusive	36
R230	CEF-M2	wi wat synth totake	401611	. c→r	E673E (GAA-4AAA)	acril	multiding efflue system protein	Mult Drug Readance	mit	ionamon	No.
KT 70	CEF-M2	Will Wall Dynth Inthèn-	2362723	Chrone &	0280D (097-+04F)	$\textit{set} l \rightarrow$	inclosedgharmee efflux system	Mentione proteins	mili	michany	No
RT 70	CEF-M2	vi Watoyoh Déne	3534600	C-4A	(0,470.40) *E3	ompit	201A busing response regulator in two component regulatory system with $$\rm EeC$$	Mechanic proteins	mit	enchaire	Mo
.ET70	CEF-M2	sil Wall Synth Jobsher	3420862	A43	B1216R (00A-+000)	rhell	rhalls element core protein Rabili	Other	mit	exclusive	Mo

8770	CEF-M2	Sel Weil Dynth, Seleke	301,2853	-6423-p		ili the second s	defective riboruclease TH- adaptation to minimal media	adaptation to meanad media	mid	centron	744
8771	NAL-SI	DRA Oynachibblor	1279421	AT bp	roday (015/1395 at)	pik0 -+	putative areasa	CQue.	strong	eclary	14:
8271	NAL-81	DRA Oyner Isbiblior	207195	0A	548L (TC0→TT0)	gni	EBIA, grase (tge II trposcownos), solutit A	DINA3DIA mothera	strong	0(000000)	Tes
10772	NAL-52	DIGA Option Subjective	2337103	-0-4A	BBL (TC0+4TT0)	get	DBIa, grate (tge II toposonenot), subsat A	DIABIA pithes	dring	common.	Tel
8273	NAL-MO	ERA Option Schubelow	2337195	G-sk	SHL (TC9-4779)	gret	ERA grass (lps II topozomeso), silazit A	Dilažska gebous	est.	DOM: N	Tee
8774	NAL-M2	DRA Oynes Subbier	2137104	0-4	DRH GACHMAD	gent	CHA grave (age D lop-command), solved A	DHA031A onthine	mit	1000000	Ter
8773	TMP-81	Fole Acid Stability	1004	C→T	PUL(000010)	J044 -+	döptirolohite relluitare	Folic acid synthesis	string	common	Tes
307/5	TMP-91	Folic Acid Jubihor	4909	c⊸r	A2HR (000-+010)	fblA-+	döytörifi;late reduztase	Fold and synthesis	intring	0.0000.00	Yes
8775	TMP-SI	Folic AcaEbhlelor	1185697	62,554.5g		(pep17-(pho(s)	3mt 13. 1470, 3mm Q3	Other	strong	enclass-e	362
87%	TMP-52	Fole Acid Inhibitor	40765	c⊸t	abrgenic (+ 1342-58)	$\operatorname{figl} C \to / \to \operatorname{fid} A$	potastaan protos antipoteridžydrožalse reduzta je	Foir and system	streeg		Υm
8776	TMP-52	Folic Acid Jub/hotor	4000	T→A	(AAC+5AC) 3F10	jbiA -+	däyibrifolate reductate	Folic acail spathenia	strong	0.0000000	Yes
2776	1349-52	Tolic Acid Stabilitier	42010	τ→0	W300 (000000)	j6da →	döyörilide relatası	Polic acid gethesis	string	controls	Tel
1277	TMP-MI	Fole worldshire	49785	0→7	attergena (*1342-54)	$\underset{\mathcal{A}}{\operatorname{heffC}} \rightarrow fol$	pokassam proton antiporter falgeir of dete reducteae	Polic and synthesis	mM.	000000	Ťυ
82777	TMP-MI	Fold Actil 2th hitter	49903	T-M	(AAC+-3AD) 3730	<i>1</i> 944	dilipieuli ide redutare	Folic and synthesis	mää	0.000000	Ter
82777	TMP-MI	Fole Acid Inhibitor	49930	T-43	WX00 (T003-4000)	/ht/l -+	dityrind; late relactore	Felic and synthesis	mit	onmo	Yes

X 770	TMP-M2	Folic Acid Inhibitor	49765	d→d	miergenic (+134/-50)	$ \begin{array}{c} \textit{kefC} \rightarrow \textit{fol} \\ \textit{A} \end{array} $	polassiano protos, and porter diligide of slate reducta in	Fold and synthesis	mild	common	Yes
E 77#	TMP-M2	Folic Acid Inhibitor	49910	T→C	W30R (T-93-+090)	1624	ditydrodolate reductate	PoSe acid synthesis	mkt	common	Yes
3779	TMP-M2	Folic Acid Inhibitor	90279	T→0	11131D (TAT-49AT)	<i>J</i> 064 →	ditpricticiate reductage	Ecit soid gritheis	mili	common	Yes
8779	\$715-51	508 substor	547682	+G	coding (476/1299 nt)	yihit	Unknown	Ukimowo	strong	enchany e	No
8779	FUS-51	308 mbbitor	3470224	A-47	L4342 (CT10→CA/3)	βush ←	protein chain elongation factor EP-G, GTP-binding	Protein synthesis	strong	common	Yes
£290	FUS-N2	508 inhibitor	3470224	A~47	L439Q (CTO→CA/3)	fue4 ←	protein chain elongation factor EF-O, OTP-binding	Proteau synthesis	strong	common	Yes
RT91	FUN-MI	50 fl ashdoltor	3470224	7-4	L438Q (CT9-4CA0)	fiu.4	protein chain elongation factor EP-0, 9TD-binding	Protein synthesis	mbi	common	Yu
8762	FUS-M2	508 misiotor	1656421	A0	D1103 (0A2 ~007)	yngtt	putative selenate reductase, perplanna:	Membrane proteins	trabil	antikute o	Ho
XT02	FUS-M2	5011 utilitator	3475369	A→C	V1260 (0TA-400A)	fun4 ←	protein chain elongation factor EP-O, OTP-bending	Protein synthesis	edd:	common	Yei
8703	AMK-51	Amonghycondes	392191	45,466 bp	157 -mechaile d	yalT-bai#7	yart, yart, anpH storA [part9]	Other	strong	common	He
8283	AME-SI	Amenghyronden	770729	di hp	ording (09/1569mD	egald	cylichronie il terminal onidase, subunit l	Mendeane proteins	strong	incluive	Yes
327.93	AM00-51	Aminoghyconides	1923333	C-47	keeC(C07→T9T)	holE	DNA polymerate III, theta subunit	DHA/ERA grithesis	strong	enchaire e	Но
ET 03	AMK-51	Ananoglycoustes	3469504	$\otimes \!$	$\mathbb{V}_{\mathrm{GLAA}} (\mathbb{C}/\mathbb{C} \mathbb{V} \to \mathbb{C}/\mathbb{U})$	Aust +-	protein chain elongation factor EF-O, OTP-binding	Protein synthesis	strong	common	Yes
X703	AMK-NI	Aminoglycondes	4011625	$T{\rightarrow} C$	L110P (CT C-+00C)	srkH →	polanisan transportar	Membrane protesta	strong	eschaeve	No
ET04	AME-52	Amnoglyconies	3470425	C-4	30711.(COT-CTT)	Juct ⊷	proten chain elongation factor EF-9, OTP-binding	Protons synthese	strong	common	Yes

X714	AMK-52	Annoglycoadae	3216925	C-44	Q352H (CAO-4CAT)	agı.4 ⊷	F1 sector of membrane bound ATP synthese, alpha subunit	Mentrese protons	dring	enclaire e	300
E 705	AME-MI	Annoglycoster	992191	45,406 bp	EED mediated	yalT-&aiW]	yart, yart, washi abash Jaritti	Other	mild	common	во
¥715	AMK-MI	Annoglycondee	4196204	A-40	K1172Q (AAACAA)	$\operatorname{spec}^{\prime} \rightarrow$	ROIA polyrosrais, beta prave subanal	DHATOR synthesis	mbi	ette kante e	Ho
8796	AMK-M2	Annoglycontes	547(02	+6	coding (476/1259 rd)	ythit	Duknown	Unknown	tska	-mochanister	
XT06	AMK-M2	Amonghymatas	3469574	A7	165491 (ACC-+AAC)	Aud	proton chan alongation factor EF -O, OTP-binding	Proteen syntheses	reald	caramón	Yes
8216	AMK-M2	Aminglycolides	3613647	0 - 47	utergenic (+564-39)	pyrff / rp A	orotale phosphorihosyltransferans/defective ribonuclease 191- adaptation to maximul media	adaptation to minanal media	malif	ets: kuniv e	No
E797	AMP-51	vel Wall Synth. Induka.	92312	A++T	LBETQ (CTO-+CAO)	ful →	transpeptidate arrolved in septid peptidoglycan epidhesis (penicilian-biology protein 30	Cell wall synthesia:	strong	encluser a	Yez
\$717	AMP-N1	iell Well Dynth, Julidain	411263.6	0-47	£3310 (000→0A0)	and	moltidrug efflux systemprotein	Iduki Drug Resistance	strong	common	No
8787	AMP-51	ol Walitynik, Johdon	3533169	A-+0	V2410 (0TA-400A)	env2 ⊷	sensory holidate knows in two \cdot component regulatory system with $\Box m \mu R$	Menkrator protona	strong	common	Но
8710	AMP-52	odi Wali Dynib, Indole	93043	c→o	A5449 (000300)	fui →	transportable involved is sortal populargican synthesis (pensilin-beating protein 3)	Cellwali synthesis	strong	encluive	Yes
X780	AMP-52	hel Walt Dyrth, Johnson	401922	T-A	Q569L (CAOCT0)	$arr \theta \leftarrow$	maitairug efflas system protem	Multi Drug Residance	sbrong	acumaco	No
17788	AMP-52	vii Walt Synth. Inhibati	3153169	A0	(ACC+-ATE) 0142V	em2	annory hatefane kanase in two-component regulatory system with Cmpill.	Mentrare proteina	strong	common	0 M 0
£799	AMP-MI	340 Wall Synth: Tehlete	482636	0-4	PIIIQ (000-+CA3)	aces	mitting effict systemprotein	bluits Drug Resistance	mlit	common	ж
£719	AMP-MI	'ell Wall Synth. Inhobe	3533169	AHC	V2410 (3TA90A)	ens2	sensory halishes know in two-component regulatory system with $\operatorname{Sup}\mathbb{R}$	Mérchrane protenue	milā	common	B 9
1710	AMP-M2	'el Wal Synth Tolshik	3133169	A-40	(ACC+-ATC) 0145V	end	sensory hutchine kinase at low-component regulatory system with Corpli	Membrane protesta	mit	common	Но
	1										
8791	\$PT-51	NU adultation	3075037	7→0	MD48L-0429CT09	1889	pulaire depringence	Ordename	itring	mages	345
-------	---------	---	----------	-------------------------------------	--------------------------	---------------	---	----------------------------------	--------	------------	-------
8291	SPT-S1	307 428141.01	3443129	C-44.	V29 (017-4711)	epall	302 elemental advant proton (25	Textosi quibera	string		TH
RT91	8PT-51	700 abblest	3448714	$\mathbb{C}{\rightarrow}\mathbb{T}$	(340+370) GH10	rpit	202) relicional advant protein L2	Protes spilletz	thing	mature	Tei
REA.	SPT-51	NO address	942,3880	+0	= be ge i (+ 1%/4)	poll	instate plumphor for phraselinear bidled in a choraclesia 205 adaptation to material oscila	alaptation to manual media	string		385
8231	SPT-51	NC stables	M1387	ALC by		ding.	defective indexuctionse (H-) adaptation to instantal me dia	algistics to constal costa	(7.74)	cannon	76
RTV2	SPT-52	Number	340075	T-sk	RZHE (AAA-wRZA)	rpst	302 réconcetail advant pretoin 25	Troine sydleriz	itring		Ти
8291	SPT-52	NUMBER	9613963	a12.1g		qui	délective rélocudeme (N+ subgitation to movinal me dia	adoptation to example solvers	thing	common	: No
		12 12/2 0101-1									0.011
8778	SPT-MI	202.69946.97	547632	+0	Pilogenc(+262/38)	fd44/4-y84	agreen	winces.	milt	endures	345
8299	SPT-MI	NIS adult in m	3443179	C-4A	¥25# (011→111)	epail	300 chosonal subust protein 25	Protein synthesis	mild	omeun	Tet
87/1	SPT-MI	NU abiter	3813947	0-47	iderpetic (-569-32)	pref/ 19 k	orstata phosphor frog Wynelles and Indexe redonacious 178 - edge tation to maximal metha	abptation to maneral media	mahl	enclasses.	34
87.94	8PT-342	307 abit to er	340102	A319	coding (60-70/594 nt)	qui	302 eboscenal subout posters 25	Print systems	mild	11223.0	Ter
8714	SPT 342	XXabber	3473963	and to		τ^{\pm}	alf active risorucleum PH-adaptation to mennal media	abplation to example media	ndi	ammin	10
8715	STB-51	Anatoglycouler	300707	o-r	DET (CCT-414E)	head	5 mizzlevilate Mythiae (jopbililarge geflas)	Other	ing	ectors	26+
\$TV5	STR-51	Ananglycinite	331,5877	AS by	milling (140-152/453 nl)	dat -	theorem mataration factor for 200 subunity	Protess synthesis	string	such as a	Tei
8215	579-51	Anatoglycoles	3472447	7-0	EXIT (AAA-44/CA)	geć	30E elveromal advant preton 212	Proton systems	rinne	0.0854	Tet
8774	STR.52	Ampogheorides	792133	0-4	nancodary (MP75-m)	lastr	d36x-2m	Trainin andiress	17114	ectore	Tei
17714		and the second se					No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Participant and an			
6175	018042	second house	3412313	(break)	Funts (2011 - #7(31)	der	Non taxonican annear biologic o re-	Automate charactery	raing	COLUMN A	1.40

82.04	STR-82	Ananylymoides	3472510	Ar-O	FOR (COT-CIT)	opeL	300 ribesorial advant protein 812	Probin synthesis	string	common	Yes
STH:	STR-82	Amnoglycosider	3021670	111 (+) +0 bp	codang (27-34/824 nž)	$\mathit{rane}G \gets$	168 iSBA mi730537 methylraudence, IIAbd "dependent, gloccoe" inhibited cell-dwinion protein	Protein gytthesiz	strong	enclust++	Yes
87%	NTR-82	Ananglyconder	4031406	T→A	L80Q (CTO→CA(8)	trkl/ →	polaritam transporter	Identicase protezza	strony	etti kuire	Но
8797	STR-MI	Ananglycondes	450635	c-4	W0*(007-007)	on4+-	cylicchrome o ubsquinol coolane advant II	blentrase proteau	rald	on:kanve	Ma
87.97	STR-MI	Annoglycondes	3472312	THE	KIUR (AAA-HAUA)	opel	300 riboasmi sobarii proten 312	Protein synthesis	mild	commun	Yes
8297	STR-MI	Ananglymates	3813880	+C	intergence(+30/-6)	$pert \sim -q a$	orotate phosphoribory/finanticase/defective efficience/anasi PH- adaptation to minimal mella	adaptation to minimal minima	suid	common	mii
8797	STR-MI	Aminophycosides	3613953	A82 bp		.gub	defective chorusdesie PH - adaptation to minimal media	elaptation to minimal rowla	mid	communi	PAD
8774	STR-M2	Amnoglycosides	645970	T∙≢G	1255P (ACC+CCC)	±RØ €-	2-(3°-trephosphorihosy0-P-dephosphocoensyme-A synthase	Other	mid	common	Ho
8779	STR M2	Aminoglycosidee	3472446	$T \rightarrow O$	(DAAH-AAA) RENE	nput	300 ribosomal subunit protein 812	Protein grittenia	mild	(oranoor)	Yes
37795	STR-M2	Aminglymodes	3013953	$\Delta 12~h_{\rm F}$		syste	defective chonacturase Pri - adaptation to renormal media	adaptation to minimal media	and (mman	Nac

7.2 Appendix B

Daily MIC values of 88 strains.

rifteen	Day 1	onyz s	aya j	and a la	WAD I	win r	My / S	wye u	MY 2 . 1	Der yeu	Call 11	Dail Th	nai 13	1944 14	049 15	Day to	net av	ney se	Day 12	Day 20	Day 21
DIL-5-1		4				16	32	33	- 11	- 32	64	32	64	- 64	64	- 64	- 64	128	128	128	128
DI5-2	2	.4				16	32	32	13	32	64	32	64	- 44	128	128	128	128	128	255	256
DE-M-1	2	. 6							10	16	16	16	16	32	32	32	112	32	32	32	\$2
F18.48.7						1.1			16	10	16	16	16	37	37	12	12	32	12	64	17
								- 202	1.4.4	1.22		- 22	- 22			1.12	- 172	1.12			
101-9-1	0.3	0.0	0.6	0.0	3.4	1.1	14	4.4	- 68		6.4	4.4	- 6.9	4.0	2.0	9.8		- 194			4.8
TET-5-2	0.3	0.6	0.6	0.6	3.2	1.2	2.4	2.4	2.4	2.6	2.4	2,4	2/4	2.4	2.4	4.8	4.8	4.8	4.8	- 4.8	4.8
TET-M-1	0.3	0.6	0.6	0.6	1.2	1.2	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
TET.M.3	0.3	0.6	0.6	0.6	1.2	12	3.4	24	2.4	2.4	24	34	3.4	2.4	2.4	24	34	2.4	3.4	3.4	3.4
101111-2		0.0	1.0	0.0	4.6	4.6								200	- 62	1.55	100	222		2.00	2.00
NI1:0-1	2.5	10	10	10	10	10	20	20	-40	-49	40	40	80	80	80	90	160	190	190	\$20	320
NIT-5-2	2.5	10	10	10	10	10	30	10	10	10	20	20	40	40	-80	80	80	160	160	160	320
NET-M-1	2.5	10	10	10	10	10	10	10	10	10	10	10	10	10	20	10	10	10	10	10	10
	1.4.4	10	1.0	10	10	10			1.0		10	10		50	10		+4	10	10	- 10	20
NU-WHZ	2.5		10	10		10	- 44	- 44		- 10	10	10	10	20	10	1.144	10		10	10	1m
\$11-2-1	D.62	2.5	10	10	10	10	30	-20	- 20	. 40	- 60	40	80	80	100	360	320	320	640	320	320
5111-5-2	0.62	2.5	10	10	10	10	20	20	20	40	40	40	80	80	160	360	320	320	640	3.20	120
SUL-M-1	0.62	25	5	10	10	10	30	40	45	40	40	80	80	80	40	80	160	325	325	120	120
F117 . 8.8 . 1				1.0		2.0						-		1000		110					
2011-00-5	0.62	4.5	- 28	10	10	10	10	40		- 0.99	au	80	80	300	140	320	420	949	640	- MU	ing.
KAN-5-1	1.25	2.5	- 38	20	40	80	80	80	- 80	160	320	320	320	160	120	320	320	640	640	640	1280
KAN-5-2	1.25	2.5	5	20	60	80	80	80	560	16D	160	160	320	160	320	320	320	640	640	1280	1280
	1.30	5.0	100	1.2		20	40	30	45	30	00	60	60	1.00	30	246	40		300	40	40
NAM-N1-1	1.43	4.5	- 3		10	20		20		~	DV.	DU	80	2. C	20	- 25			20	40	40
KAN-M-2	1.25	2.5	5	- 5	10	20	20	80	40	- 40	80	80	40	25	20	- 20	42	40	10	40	40
D0%-S-1	0.5	2	2	2	- 4	- 4	8	8	8	8	- 8	8	16	16	8	8			- 8	8	8
008.5.2	05	2			- Ca		8	8	8				16	16	- 8	R.			16	8	16
DOM 34 5	4.6		- 2	1.5	1.0	1.1		1	- 2	- 2		- 0				2	- 2	- 2			
DOX-M-1	0.5	2		-	- 4	- 2		- 52												8	a
DOX-M-2	0.5	2		2			- 4	4	 .	- 4	- 4				A	- 4	- 4		4	8	8
CIP-5-1	0.005	0.01	0.02	0.04	0.02	0.02	0.04	D.CH	0.16	0.32	0.64	0.32	0.64	0.65	D.64	3.28	1.25	1.28	1.28	2.55	1.20
085.2	0.005	0.01	0.01	0.04	0.02	0.03	0.04	0.08	0.36	0.11	0.64	0.77	0.64	0.64	0.64	3.38	1.30	1.18	1.78	3.64	1.70
Charles .	0.009		0.04	0.04	0.002	0.02	0.04	0.08	0.40	4.44			0.104	0.04	0.04	4.60		4.49			1.40
OP-M-1	0.005	0.02	0.02	0.04	0.04	0.04	0.04	0.06	0.06	0.08	0.08	0.08	0.09	0.08	0.16	0.36	0.16	0.16	0.16	0.16	0.16
OP-M-Z	0.005	0.02	0.02	0.04	0.04	0.04	0.04	D.DE	0.06	0.08	0.08	0.08	0.08	0.08	0.16	0.16	0.16	0.16	0.16	0.16	0.16
17184-5-5	0.05	0.2	0.7	0.2	614	0.8	0.4	10	16	1.5		3.1		6.4	6.8	12.0	64	6.4	11.8	2.4	6.4
LOBE C T	0.00	0.5		0.0	2.4		0.0		0.0		1.0		1.1	11	22	10	- 23	1.0	10.0	122	2.2
10M13-5	0.05	0.2	0.5	0.2	0.4	6/4	6.9	4.8	0.8	7.6	1.6	5.4	3.2	0.2	0.4	1.6	8.4	1.6	5.6	8.4	8.4
LOM-M-1	0.05	0.2	0.2	0.4	0.2	0.8	0.8	0.8	0.8	0.8	0.8	0.8	5.8	1.6	1.6	1.6	32	3.2	3.2	3.2	3.2
LOM-M-2	0.05	0.2	0.2	0.4	0.2	0.8	0.5	0.8	0.8	D.B.	0.8	0.8	0.8	1.6	16	16	.9.2	5.2	4.2	3.2	3.2
CILS.1		- 20	44	140	19.94	\$ inte	640	640	640	240	640	2.64	1100	1100	1340	1940	1940	1040	1000	1360	1200
00-3-5	2	20	80	100	3.00	240	DHO	040	040	040	040	Det	1480	1280	1280	1790	1090	1100	1180	1200	1200
CU-5-2	5	.20	80	160	320	320	640	640	640	640	640	640	1280	1280	1280	1280	1280	1280	1280	1280	1280
CU-M-1	5	20	80	160	160	320	640	640	640	640	640	640	640	640	640	640	640	640	640	640	640
TILMS.T		20	80	160	165	\$20	640	640	640	645	640	640	6.00	640	640	640	640	640	645	640	6.00
Con- Here	12.51							-					0.000								
SMO-5-1	0.2	1.0	3.7	6.4	6.4	12.8	12.8	12.8	25.6	25.6	51.2	31.2	305 V	25.6	25.0	102.4	51.2	103.4	204.8	201.8	302.4
SMO-5-2	0.2	1.6	3.2	6.4	6.4	12.8	12.8	12.B	25.6	25.6	51.7	51.2	102.4	25.6	53.2	102.4	51.2	51.7	102.4	102.4	102.4
SMO-M-1	0.7	0.8	8.2	6.4	6.4	12.8	25.6	25.6	25.6	25.6	\$1.7	51.7	102.4	107.4	507.4	102.4	102.4	204.8	204.8	JDA 8	204.8
Chiro. 14.7	13.7	0.0	1.4	2.4	2.4	63.0	30.0	10.0	75.5	75.0	51.7		302.4	100.4	100.4	103.4	102.4	704.0	400.0	400.0	302.4
SMPL-MLA	N.4	0.0		0.0	10.4	16.0	45.0	62.0	40.0	49.0	24.4	34.6	100.04	3542.4	1992.4	104.4	100.4	2011/0	409.0	403.0	104.4
SPR-S-1	- 30	80	160	160	160	350	350	350	320	350	640	1580	1280	1280	2560	2960	2960	3560	2560	2560	2560
SPR-5-2	30	80	160	160	160	320	320	320	640	640	640	1280	1280	1280	2560	2560	2560	2560	2560	2560	2560
KDD-AA-T	10	95	160	230	835	220	3 20	320	640	640	640	6.99	6.65	620	1280	1280	1245	1295	1290	1360	1380
200.00.2			200	222		2408	2404	340					1000	0.00	1000	1000	1000	1200	1100	1200	1200
2411-90-2	- 29	90	100	300	3.00	2403	3.00	340	040	940	040	0.40	D-40	peu	1580	1790	1790	7790	1280	1280	1260
ERY-S-1	- 10	40	80	80	80	160	160	320	160	160	160	320	320		640	640	1280	1280	1280	1280	1280
ERY-S-2	10	40	80	80	80	80	160	160	320	640	640	320	520	320	320	640	320	640	640	640	1280
ERV AL.1	2.0		46	160	165	160	160	160	160	140	165	165	160	160	820	930	110	120	435	495	160
FM1-90-7			04	1000	100	100	100	100	200	200	1.00	400	100	100	320	360	320	360	300		100
ERY-M-2	30	-40	80	160	160	160	160	160	160	160	160	160	160	160	320	320	320	320	520	320	160
NAL-5-1	2.5	2.5	10	80	80	80	80	200	200	150	75	75	150	150	300	150	150	150	300	300	300
NAL-5-7	25		10	80	80	80	80	200	300	25	25	75	150	150	100	150	150	300	300	300	200
ALC: 1 4				-		200		100	300				100	100	100	100	100	100	1.00	-	100
MMT-06-3	4.0		10	49	30	499	40	300	500	10		- 12	190	790	100	390	190	196	136	300	300
NAL-M-2	2.5	5	10	10	20	20	80	200	200	37	- 75		150	150	300	150	150	300	. 300	300	300
STR-5-1	2.5	5	5	20	60	40	80	40	40	- 43	160	1280	30240	10240	40960	163840	163840	163640	163840	163840	163840
\$78.4.2	25	E.		20	40	4n	40	40	40	640	220	645	3560	\$520	41060	01020	pigin	103045	1616-91	1638/07	163840
2111 2 2			100	80						040			8,200		44300	01360	OL SED	TEDOLA	1030-04	7426043	103040
518-M-1	25	5	2	10	- 2	3	10	20	20	- 20	- 20	20	10	20	40	- 80	160	320	1280	40960	163840
5TR-M-2	2.5	5	5	10	. 5	- 5	5	5	40	80	160	320	640	1280	2560	5120	5120	20480	40960	163840	163840
TMP-5-1	0.6	4.8	1.2	1.2	5.6	19.2	19.2	38.4	38.4	38.4	76.8	158	153	153	158	26	153	153	153	307	153
				4.4	2.2		-		44.4	112.4		100.00	increase.	64.0	area.		34.7	10.0			
1000-04	0.0	9.0	*.D	14	4.4	2,0	20.0	20.0	20.0	4.33.0	341	133.0	207	D74	307	120	301	133	0.44	-228	51.0
TMP-M-1	0.6	1.5	2.6	9.8	5.6	19.2	3.0	3.6	9.6	9.5	36.4	38.4	38.4	38.4	38.4	9.0	38.4	76.8	153	307	307
TMP-M-2	0.5	1.6	2.4	4.8	9.6	19.2	4.8	4.8	19.2	38.4	38.4	38.4	38.4	76.2	76.2	153	307	614	614	153	307
AMP-S-1	2.5	5	5	10	20	10	10	10	20	20	- 60	40	40	40	20	20	40	60	40	40	40
AMD T 2	3.0			10	30	10	30	20	35		40	40	415	40	40	45	100		40	40	40
100 016		1.50		10	20	10	44	- 10	-		41	94	94)	46		44	41		-	44)	
AMP-M-1	2.5	2.5	2,5	- 5	. 5	10	50	30	30	- 20	50	10	30	30	10	30	10	10	10	10	30
AMP-M-2	2.5	2.5	2.5	. 5	5	.10	20	10	30	-20	20	10	30	30	30	30	10	10	10	10	10
AMR-S-L	2.5	E	20	40	60	40	- 80	80	- 20	80	40	80	40	40	160	160	90	81	165	160	640
ALSO T D	2.0		200	- C.	445	10	10	40	100			00	100	100	100	330	330	100	220	100	2.55
nNR-5-2	2.5	5	20	40	40	40	-80	80	160	-80	80	80	160	160	350	350	350	320	320	320	520
AMK-M-1	2.5	5	2.5	10	10	5	10	40	40	-40	-40	40	80	40	.40	80	80	80	80	160	8D
AMK-M-2	2.5	5	25	10	10	.5	10	40	40	40	- 60	40	80	40	40	30	. 80	80	80	160	40
CHE 6.1	100	Q.		1.6	1.0	14	- 52	44	230		24	44	1.10		160	1034	1034	10.65	30.60	3040	2040
-0-3-1	1	2		10	10	10	10	32	128	128	04	32	128	100	256	1024	1024	1048	a Della	1048	2048
CEF-S-2	1	2	-4	16	16	15	36	32	- 54	32	64	52	128	128	128	128	128	128	128	512	1024
CEF-M-1	1	2	1	2	1.1	8	8	26	E.	37	64	64	32	32	32	64	64	64	54	32	32
CELM 2								2.0	- 20		6.7	22	37	10			4.0	10.0	64	12	8.5
	+	*	25	1						-14	04	199	24	34		94	04	04	Dei		24
PIP-5-1	1	4	5	2	- 4	4		2		4	4	A	8	. 6	2.8		16	16	16	16	16
PIP-5-2	1	4	2	4		4	8	8	32	128	64	68	128	512	128	512	64	128	128	128	128
PIP-84-1	1	2	1			2						0.5		36	10 A	10	14	100		16	
THE AS A		- 0	- 12	10	1	1.2		2		- 2	- 2	0.5			1.2			: <u>5</u>	- 2	10	10
HI-WAY	1	4			- a	4	8	8				- 14	8	1.5		16			- #	16	1.5
T08-5-1	0.5	2	- 64	2	. 4	8	8	16	16	32	64	64	128	128	129	512	256	512	512	512	512
TO8-5-2	0.5	1	14	4		8	8	16	16	32	64	64	64	÷6	64	128	128	128	255	512	256
7000 64 1		1			1.5	0.10		0.35	0.6	0.95	0.95			22							
100-61-1	03	1	1		6	0.75	1	0.25	0.5	0.25	9.25	0.5	0.5	0.5		1.4	1.5		- ÷	0.5	-
108-M-2	0.5	1	1	2	1	0.25	1	0.25	0.5	0.25	0.25	0.5	0.5	0,5	1	1	2	2	2	0.5	1
SPT-5-1	20	80	40	80	160	320	320	2560	5120	20480	20480	40960	40960	40960	40960	40960	40960	40960	40960	40960	40960
SPT-5-2	20	85	40	80	80	160	3.10	2560	5120	20480	20480	40950	40960	40960	40080	40560	40360	40960	40960	40955	40060
			1	100	100										- ALCONE		140	100000	10000		1000
34-1-W-T	- 40	40	-92	100	and a	80	80		80	180	80	Da	-	eD	aD	90	250	100	100	80	100
SPT-M-2	30	40	40	900	80	80	8D	80	80	180	80	80	80	80	BD.	80	160	160	160	80	160
FUS-5-1	100	800	6400	6400	3200	3200	3200	1600	1600	1200	3200	1600	3200	3200	3200	1600	3200	3200	3200	3200	3200
FUS.S.T	100	800	6500	6400	1200	3200	3200	1600	8200	1600	3202	1600	3300	1600	1400	2200	2200	3200	3703	3200	3200
FUE NO.	100	000	1000	0400	2200	0200	2200	1.000	bon)	1000	2600	1000	3200	2000	1000	20140	2000	2404	3400	3600	3600
FU5-M-1	300	400	900	900	9500	3200	3200	1900	1600	1600	9500	3600	1600	3500	3200	5200	5200	3500	9500	3200	3500
FUS-M-2	200	400	800	800	3200	3200	3200	1600	1600	1600	3200	3600	1600	1600	3200	3200	3200	3200	3200	3200	3200

7.3 Appendix C

MIC values of all evolved strains in 22 antibiotics.

ug/ral	04-51	06.52	D4.441	04-14-2	0)-5-1	0.52 0	U-M-E C	HW-Z ERY	\$1 IN	52 BR	HI 1	08-915 2	99-5-1 S	952	\$P\$-W-1	\$94.94.2	FUS-5-1	R651 F	US-M-1	US-M-2	AMESS A	4652 A	MC451 A	MG4-2 1	108-5-1
Chierampherikal	224.558	382,477	65.345	28.351	2.057	5.837	6.220	8.067 5	368 1	580	5.955	2,399	20.154	6375	17,718	20.585	SILLE	6.049	6.308	5.828	4.468	4670	6.290	5,445	52.472
Cindumyon	348.528	178.873	941.852	844.455	1171.254	10/83/5 3	54,689 2	4.155 9	510 3	1805 34	2.002	105.168	\$59,305	355.054	958,189	891.439	123,314	385.961	100.471	308.843	298.954	95.995	110.908	313,292	98,005
Sulface and the second se	270.262	240,717	192.046	72.422	17.398	SECTA -	10,700	5.865 73	154 200	417 10	B.729	720,545 3	211.894 2	255,140	287.991	810.094	74.575	54,452	10.431	10.00	20.985	18,015	73.024	50,349	21.358
Sprawyca Cultur And	1124 811	9121/9	1716 806	1002.200	3/4.887	214 252 3	03.64/ <i>0</i> 127.66 E	54,245 253 17.045 001	235 78	1490 184	1 226	161,026 3	260.171	585,600	19/4,815	1899/1014	218.555	100.000	101210	387.857	379 636	188.090	239,725	15,000	132.862
Amilanto	4.30	13,936	15.045	14.051	15.072	14.071	14 855	5116 16	H1 5	1902 24	6.141	16.961	15.107	14 640	12,698	15 101	54 757	15,203	15.217	17.679	276 079 1	#1 75F	197485	152 068	1560.000
Talarametri	0.838	2.514	2.00	1,012	1092	1964	2.516	2.900 1	.002	200	1.028	0.973	1.120	166	2.963	7.885	2.857	1.805	0.395	8.515	16.877	106,205	3.055	12.104	505.567
Streat provin	4,727	14.407	15.543	15.407	14.882	14.850	15.255	5.228 14	907 12	208	5.194	15,131	34,864	54,896	47.198	15.180	15.346	16,203	14.835	15.002	347,648	439 313	143.943	144.157	1586.145
Kanamycin	3,711	12,993	12.335	16.978	11.571	13 311	11526	15 527 53	515 1	1313 1	1.952	11.525	11.875	11.541	95.379	\$1.872	12,379	36.283	91.577	44,245	361181 1	129.406	138.965	155,471	3683.578
Tatracycline	8.570	3.555	1.594	2.579	1,235	1.242	1,354	1.240 1	293	238	865.0	2.756	1.131	2,626	1.321	2.553	1.373	1.778	1,750	1.823	4.554	0.365	1.155	0.425	1.387
Gosycycline .	9,581	6.908	3,477	1515	1.157	1175	1.559	1797 1	14 7	316	0,217	3.070	2.463	2407	1.572	2.254	1.814	1.713	1.493	1.782	0.642	0.570	0.174	0.551	0.352
Spectromysin	15.004	54.531	88.855	76.048	12.618	72,029 1	54.572 3	2,096 35	B31 5	541 . 6	8.495	38.604	61.448	6335	70,166	81.792	62.672	157,218	54.342	36.815	61.732	62.534	59.982	38.478	47.507
Pperacilie	5.678	5.430	5.682	2.260	2.718	2.700	2.670	2,685 1	317 2	1274	1,390	2.374	2.023	1.515	1.390	3,874	1.696	2,308	1,257	1571	1,590	1.390	1.390	1.390	2,690
Ampioliin	14.85	11.948	27.055	8,870	8.813	8,801	6.798	8,760 4	108 1	208	1315	14.429	9,558	1128	2,363	9.519	11,385	15.300	4,873	6.325	1.067	2.690	5.235	1342	9,367
Cefoxitin	17.482	7.853	7.535	1,897	1844	1875	1.903	1928 1	522	1916	2.381	1,838	3.858	36.195	1.857	7.309	1,895	1.898	1.909	20.042	177.509	175,410	4,853	1.830	5.833
Nebslat: acid	71,498	68.687	7.798	7.645	15.140	7.637	1575	7.738 1	332 1	111	1330	8.389	117.213	225.594	25,315	1,118	T.635	7.681	8.262	3,334	7.200	7.438	7.625	7.726	7377
Lonefloxacit	8.787	5.04	8,313	6104	2,946	4.105	0.176	0.106 0	302 1	290	0.000	1,340	0.308	0.198	0.940	0.308	0.304	0,295	0.298	0.307	0.099	0.335	0.304	0.041	0.2%
Certaken Certaken	1.775	1 975	9,749	1 355	8,002	8.004	1.365	1.610 1	147	208	0.011	1 167	+ 180	1 120	1 201	1 723	1.476	1 4 4 4	1.608	1.616	8.000	0.004	1.165	0.651	0.336
Treathoaster	15.646	11.012	14,450	14.041	12.471	1.761	1.303	5,000 15	428 1	LANE .	4 253	8.440	1.100	13 18	12.000	15.001	4.851	6.555	6.300	5 363	1504	4 577	5.080	1 340	1 198
Submethoweri	6,717	0.658	2.008	1.805	2168	2.455	2374	2.105 2	263	1.538	3.416	2.198	2,561	1.641	1414	2,491	2.345	1.547	2,231	3 417	0.400	2.191	2.630	7.354	0.790
Nitrofusatole	1.788	2.670	4.544	4,745	4,794	4773	4.871	4.865 4	804	1672	4,735	4,670	4,654	34,072	4,672	5.647	4.664	4,730	4.658	4,506	4.510	4,278	5.579	4,553	1.768
ug/ml	PIP(M(1	PIP(M(2	AMP(S(1	AMP(S(2	AMP(M(1	AMP(M(2	CEF(S(1	CEF(S(2	CEF(M(1	CEF(M(2	NAL(S	(1 NAL(S)	2 NAL(M(1	NAL(M	(2 LOM(S	1 LOM(S)	2 LOM(M	(1 LOM(M)	2 CIP(S(1	CIP(S(2	CIP(M(1	CIP(M(2	SMO(S(1 S	SMO(S(2 S	5MO(M(1
Chloramphenicol	6.667	20.307	23.501	27.882	20.22	6 6.967	58.800	56.626	20.442	18.48	6.1	.37 5.97	4 5.850	6.1	12 57.3	66 178.6	32 6.0	66 6.14	5 9.12	28 21.8	82 19.691	6.110	6.104	5.968	5.964
Clindamycin	347.775	318.113	99.897	99.578	103.92	1 104.430	89.268	8 114.298	357.811	309.77	99.5	83 100.90	6 99.854	99.5	07 384.9	00 970.4	27 103.8	72 100.76	5 299.90	02 101.9	72 330.471	97.516	97.859	89.303	98.889
Erythromycin	174.461	183.882	62.445	61.311	61.13	6 65.290	58.663	62.661	60.504	59.76) 71.1	.38 65.41	3 73.530	71.8	98 226.6	25 590.6	91 76.3	20 81.16	4 72.47	3 183.1	20 67.036	66.724	76.777	91.983	73.044
Spiramycin	624.260	624.333	245.563	251.136	245.32	2 232.372	190.412	195.363	254.633	170.62	275.9	13 255.74	5 244.256	242.5	07 657.9	61 612.7	16 282.3	09 269.43	3 229.00	601.9	20 597.329	634.942	277.421	253.989	242.345
FusidicJAcid	1107.103	1057.580	609.960	586.701	468.08	6 459.864	264.316	5 273.835	516.756	505.42	2 527.2	36 545.45	4 915.795	866.2	41 1707.2	03 1237.3	59 1060.4	37 935.37	9 1554.82	21 1727.0	25 991.876	917.700	782.868	571.191	491.998
Amikacin	14.817	15.119	14.902	4.565	14.56	8 4.878	14.600	19.364	14.997	14.57	9 14.7	51 14.39	8 14.822	14.0	56 5.8	04 4.5	70 14.3	84 15.05	0 15.46	52 14.8	94 14.983	14.993	5.713	14.659	13.321
robramycin	2.842	2.713	2.974	0.961	2.90	b 2.711	2.909	3.109	2.995	2.96	0.9	1.03	b 1.236	1.2	US 0.9	ož 0.9	bi Z.8	24 2.77	1 2.78	54 1.0	/2 2.936	2.968	0.975	1.177	1.145
Streptomycin	15.435	14.864	14.485	4.793	14./4	8 14.208	16.128	44.541	44.500	14.83	5 14.9	19 14.8/	2 14.810	15.1	b3 14.5	62 14.0	03 15.0	18 15.00	6 15.00	19 14.8	91 15.519	15.082	14.968	14.826	14.//6
Kanamycin	11.599	2 520	2 5 05	3./61	. 11./4	0 35.403	7 710	0 35./89	30.50:	i 31.981	11.5	0 11.61	5 11.334 7 1.724	13.1	44 11.3 16 26	49 10.2 10 2 E	2/ 11./· 72 1.2	4/ 11.55 07 1.20	9 11.51	1/ 11.5	61 12.738 60 3 537	2 454	11.505	11.6/8	1 200
Dovycycline	2.333	2 202	0.871	0.804	0.78	0 2.473 7 0.773	/./1:	6 088	1 177	1.60	1.2	56 1.64	7 1.750	1.2	10 5.0 51 7.3	15 3.J 26 4.7	1.2 1.3 07 7.0	27 2.08	0 3.J.	16 3.5	67 1 785	2 007	2 508	1.250	1.200
Snectinomycin	73 249	69 687	63200.000	57.049	63200.00	0 87.885	58 405	5 70.825	1043 229	157.02	2 59 3	74 59 59	8 58 700	1 58.2	71 59.8	57 543	45 593	37 60.02	6 65 36	6 5.0 58 60 1	99 170 037	162 346	58 866	61 464	60 710
Piperacillin	3.929	5.525	11.988	5.970	3.95	4 5.531	2.930	7.677	5.489	5.45	2.0	79 1.84	1 2.210	2.3	64 9.1	80 11.8	84 2.7	61 2.70	7 5.32	0 5.5	26 4.071	5.406	2.860	1.761	1.390
Ampicillin	9.735	19.823	82.476	82.502	30.34	7 27.792	115.130	120.000	56.53	39.55	13.7	13 4.79	1 4.864	3.6	73 14.2	02 30.9	68 28.1	29 28.42	9 7.26	6 15.4	06 13.696	13.417	6.386	6.732	6.464
Cefoxitin	5.910	18.351	58.029	58.069	207.31	0 18.089	4256.058	3 1758.138	222.509	519.30	6.2	87 105.70	2 7.083	16.2	42 17.1	26 23.8	17 1.9	01 2.59	4 22.85	52 16.3	22 15.210	34.762	1.971	1.932	1.873
Nalidixiclacid	7.647	7.689	7.770	7.821	8.03	3 7.700	214.130	221.810	7.624	7.81	790.0	00 790.00	0 790.000	790.0	00 790.0	00 250.0	67 790.0	00 790.00	0 790.00	0 790.0	00 790.000	234.348	31.873	73.636	74.698
Lomefloxacin	0.311	0.310	0.308	0.294	0.29	9 0.318	0.346	0.367	0.222	0.88	3.1	.51 3.19	3 3.209	3.0	00 9.6	87 9.5	27 3.3	46 3.25	5 9.61	18 9.8	75 3.261	3.154	0.342	0.312	0.299
Ciprofloxacin	0.015	0.047	0.044	0.040	0.04	6 0.047	0.040	0.039	0.013	0.01	5 1.3	08 1.32	4 1.258	8 0.5	08 1.6	00 1.5	36 1.3	83 1.35	9 1.60	00 1.6	00 1.513	1.513	0.016	0.015	0.017
Sulfamonomethoxine	e 1.711	1.723	1.680	1.639	1.65	4 0.924	25.472	17.135	21.944	3.98	1.4	43 1.52	2 1.388	1.5	17 10.4	36 5.8	24 1.7	41 1.48	4 1.80	06 1.7	76 1.708	1.761	7.612	8.656	4.184
Trimethoprim	358.287	4.462	4.001	3.781	3.65	4 3.681	404.208	31.329	363.161	4.24	7.2	34 4.84	0 7.409	6.6	42 41.1	46 13.5	56 5.2	58 13.62	0 19.68	35 22.0	71 7.326	14.705	15.200	5.252	12.416
Sulfamethoxazol	2.470	2.407	1.890	1.856	1.66	2 1.560	20.541	2.976	9.519	3.03) 2.3	62 2.27	9 2.175	2.2	47 2.6	78 2.6	07 2.3	74 2.36	6 2.36	57 2.3	97 2.461	2.994	2.967	2.706	2.667
Nitroturantoin	5.083	12.491	4.642	4.548	4.5/	4 4.492	4.855	13.462	13.830	15.29	4.6	4.60	4 4.644	4.0	/1 12.0	93 12.8	29 4.6	99 4.93	2 17.00	JU 13.5	19 14.405	14.790	5.2/5	14.200	12./18
Agrie .	64994	6578	6101	1 C (1)	5-904	2019/19-12 - 2 E 0400	10002	0.095	1 629	00494-3	50015	NE 50	1119-2	111-10-	01 6.53	2 00091	34,634	500-001	6,360	81101. C #10	2 419 2	210-001	5- 518 S41-96-5	19925	10000
Gadamatia	16.801	HARE	158.236	96147	88.191	198,055	110 191	a 16.715	30,694	116.62	288.0	PHE 0.0	23 31 69	3424	54 967 H	H 134 W	5 . 180 200	312 190	98 179	999 541	887 867	112.03	0.00 21630	6 94 303	0 49 975
Enderstein	21.079	60.038	86.719	- 55,130	30 821	in hit	65.20	34.408	21.814	81.11	175.0	103 19.1	67 1839	1 188.7	71 80-63	0 70.11	181.808	611.144	72,729	99.318	62,851	60.68	1 51.57	1 71.337	64 982
Solamatio	98.380	745.485	100 100	178.517	212.685	322.079	594.50	142 315	63.000	Masa	409.	154 565.0	62 63.00	645	16 620 86	2 334.51	618 899	185.8081	158.853	197,920	10.96	212.84	0 197.43	6 574.681	356 195
Fusidic Acid	236.146	800,064	731.088	768,950	84.000	490,237	482.75	5 575.362	167.323	106.57	774.6	661 1019.8	16 455.99	1050.0	(9 994.06	3 1685.26	1483.376	1651.021	373.604	338,803	357 843	501.07	1 357.73	8 505 852	498.217
Amikacin	1546.517	47.303	15,006	20.158	15,448	48.047	14.84	613.190	1481.112	40.77	- 43	58 5.6	48 19.22	34.4	N 1451	6 5.20	13.600	14.994	14.434	25,420	14,760	14.98	6 54.83	0 14173	14482
Tobramycie	902.595	3.195	2,947	3.114	9.380	5.288	3.05	281,208	302.958	30.75	113	123 0.5	72 1.552	25	04 2.00	1 0.96	4 0.952	2.985	2.786	3.084	2,038	2.87	1 0.51	2 2,700	5.152
Streptomycie	481,291	47,238	15.345 15	8000.000	96863.84T	1825 771	158000.00	141379	467,283	47.503	45,	187 14.1	5 34.88	15.5	27 15.65	7 25.84	34,543	16.024	15.396	15.576	14,966	15.00	1 5,28	5 13.469	14.817
Kanamycin	3701.218	37.362	13.720	48.602	40.225	32.847	59.18	5 1180,994	3611.278	119.993	1163	\$55 20.5	11 11.60	11.4	88 1173	2 11.47	11.004	36.507	11.964	36.627	38/017	15.74	8 10.57	5 32,135	5 12.425
Tetracycline	1179	1.304	1703	0.681	0.181	1157	117	7 0.860	0.302	1.30	11	M5 1.1	01 1.52	1 33	55 3.44	3 3.77	30.908	2.525	1235	1,218	1.795	1.37	6 1.38	5 1,298	5.329
Doquidre	0.801	1,427	140	0.789	0.280	1264	1.81	0.883	0.380	0,634	1	213 0.3	94 0.75	23	24 3.38	a 30.25	1 1940	3.734	2362	0.870	1.287	0.80	6 D.RI	8 2.581	1,290
Spectionampoin	22.544	63.425	367.240	961.076	61200.000	159,755	61.62	2 59,817	55.658	59.59	14	117 58.8	85 81.55	1 166.3	84 155.30	8 60.25	5 53,676	352.355	61.895	61200.000	63300.000	63208.00	0 51280.80	0 56.607	58.86
Paperacilin	1.682	1.128	2179	1,580	1.390	1916	175	1,890	1.890	1.58	- 21	28 28	41 1.74	4.0	53 125	8 5.21	5,843	4.123	1.529	1.893	1,855	2.12	9 171	5 13.462	1.529
Ampolia	0.000	3.656	1.034	1000	0.10	6.738	8.67	2,800	1.004	9.40		108 7.5	00 8,25		4 3.80	9 7.0%	10.565	4.09	3.542	0.000	1.010	9.94	2 9/2	G 46.945	82.941
Building and	6.290	2447	3.665	3 245	2 410	1410	3.20	7 615	0.200	1,02		56 64	10 5.00	27	26 100	1 85.12	a powro I skete	2.836	38 295	7.728	1.962	2.00	1. 1.91	2 1.535	3.041
Longinguin	0.005	0.005	0.154	6.781	0.313	0.100	2.10	0.345	0.000	0.10	0.1	100 01	0.000	01	10 211	2 0.00	0.021	0.114	2 171	0.113	0.202	0.12	0 010	6 0.000	0 101
Cprofloxacin	0.005	0.005	8.005	1.004	0.016	0.012	101	0.013	0.006	0.00	0.	10 80	45 0.04	0.0	16 0.01	5 0.01	0.045	0.013	1.036	0.015	0.015	0.00	4 0.01	1 1.048	1.005
Sultanonenethosine	1.390	1,724	1.499	1170	0.309	1202	1.20	1.200	0.150	0.90	1	677 1.2	89 1.40	1.17	\$ 17	5 1.63	2.47	4.379	1.917	1.676	164	1.64	1 154	8 149	1577
Trimethapelm	D.RTI.	5.403	6.487	4.799	1.174	4.410	4.26	1.817	0.800	4.17	12.0	415 4.3	27 4.30	34.0	57 11.62	1 11.53	12.164	15.110	18.641	4,858	4.549	4.75	1 1.05	5 1.00	1.711
Sufarrethousai	0.790	2,387	2.258	2.485	0.798	3.201	2,63	2.88	0.532	2.55	21	523 2.3	W 2.63	2.4	41 2.56	4 1.65	2 2.312	250	2,835	2,377	2.269	2.09	0 3.38	0 1,209	2,748
Nonfwartois	1.580	4642	4.807	3,060	3.388	4.734	4.68	4.299	1.581	4.67	. 41	NI 48	72 4,743	5.3	41 5.04	1 1.58	4.009	4,700	4,399	4.676	4.722	4,79	8 4.64	2 4.575	4,683
ug/n	ni	SA	10-M-3	TMI	P-5-1	TMP-S-:	2 TN	IP-M-1	TMP	-M-2	SUL	-5-1	SUL-S	2 5	UL-M-	1 SUL	-M-2	NIT-S-1	NIT	5-2	NIT-M-	1 NIT	-M-2	WILD	TYPE
Chloramphe	nicol		8.74	3 1	5.874	6.24	49	6.025		6.063		6.041	5.9	05	6.06	а 1	5.976	22.99	8 18	132	6.05	i4 -	6.012		6.104
Clindamycin			95.70	5 85	9.139	101.3	52 1	05.769	10	6.660	9	9.323	96.6	96	97.98	7 96	5.586	292.38	1 95	5.332	347.42	28 36	3.380	93	7.577
Erythromyci	n		79.48	0 67	7.298	76.6	28	69.150	6	8.995	. . 7	6.615	71.6	86	66.66	8 65	2.236	71.95	1 73	1.739	65.99	9 6	5.103	6	5.833
Spiramycin			347.04	8 221	1.378	300.5	93 2	49.526	24	9.593	27	2.020	265.9	58	256.06	1 270	0.768	200.98	5 299	9.346	567.03	22 54	9.837	255	9.084
Fusidic Acid			736.19	1 924	1.455	1017.6	20 7	56.651	51	0.760	103	6.316	787.9	67	757.83	8 24	5.644	680.07	7 621	.189	812.10	06 58	1.156	64.	7.427
Amikacin			13.12		2.255	14.6	40	14.974	5 3	4.880	1	7.043	15.3	10	18.35	4 14	1.005	14.50	a 14	.774	15.22	- 1	3.058	1	9.360
Street			14 70		1.534	14.0	40	15.025		5.9.47	8.1	5 9 9 7	9.1	40	14.04	3	354	1.00		643	95.90	10 A	5.070		5 160
Streptomyci	n		14.78	1 14	1.535	14.6	49	15.091	1	5.142	1.2	3.113	14.5	89	14.94	4 3	1.254	14,84	1 14	500	15,15	4 1	3.070	1	5,160
Tetraceline			3.40	6 Å	1.230	2.61	31	1.22	6 đ	1.231	5 5	1.745	1.2	40	1 74	3 1	1115	3.57	4 3	540	1.2	17 3	1,237	1	1,232
Doxycycline			7.89	2 7	1776	2.3	79	1,765	0 13	1.710		1.760	1.5	53	1.51	8 4	1.772	7.53	0 1	066	1.34	UR .	1.618	- 33	1.710
Spectinon	cin.		57.39	1 5	7.345	57.4	02	59,357		9.336	1.4	0.743	59.6	68	60.10	4 5	3350	64.75	9 58	828	168.0	15 17	1.067	5	1.209
Piperacillin	8.10		2.03	6 1	1.753	5.4	70	2.832	1	1.913	8 8	2.677	2.6	77	2.68	3. 3	1.960	2.78	2 1	.782	2.0	4	1.899		1.885
Ampicillin			10.27	3 S	1.512	7.7	45	4.938	6 8	6.615		3.833	4.9	13	5.06	1 .	2.641	10.23	2 7	.276	9.4	19	5.382	- 23	4.409
Cefoxitin			53.59	2	1.850	5.3	91	1.896	7	1.358		1.922	1.9	60	1.92	5 7	2.180	57.20	4 19	0.067	2.85	14	1.905		1.916
Nalidixic acid	4		211.65	0 1	7.789	62.0	18	7.823	6 6	8.119		7.889	7.8	51	7.83	7 1	128	75.95	1 68	1.940	7.70	17	7.767		7.928
Lomefloxeci			0.34	0 0	3.393	0.3	23	0.305	1	0.317		0.302	D.3	00	0.29	9 (3.317	0.33	3 0	.306	0.10	13	0.493		0.303
Ciprofloxacia	n		0.05	1 (0.016	0.0	16	0.015	8 10	0.016		0.015	0.0	15	0.01	5 (2.015	0.04	9 0	0.047	0.01	15	0.015	1	0.015
Sulfamonom			34 38	2 1	1.824	7.31	53	1.831	rt - 12	1.148		6.774	9.8	54	7.19	4 1	651	10.99	4 .44	5.301	1.43	10 C 10	1.000	1.00	1.397
	nethoxi	ne	8.4.6.64	2			554		1.			0.000	1.000	1000				400.000	a		4.000	-	1.001	- 22	
Trimethopri	m m	ne.	14.57	8 345	5.655	1273.3	19 11	74.945	120	1.848		7.358	5.7	27	8.66	1 1	1.200	13.12	7 8	1.052	7.05	1	6.145		4.836
Trimethoprin Sulfamethoo	nethoxi m kazol	ne	14.57	8 345	5.655	1273.3	19 11 53	2.495	120	1.848	2	7.358	5.7	27 28	8.66	1 1 5 10	1.200	13,12	7 8	052	7.05	13 13 13	6.145		4.836