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Abstract 
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Hyperosmotic stress is the increase in whole extracellular solute concentration in cell causing 

many disruption that may lead to the physiological disease conditions such as diabetes and 

hypertension. In order to protect itself cells generated an osmotic stress adaptive mechanism 

in which intracellular inorganic ion homeostasis is restored by mainly activating NFAT5 

(TonEBP) and in return it transactivates the target genes or interact with specific regulatory 

proteins. NFAT5 and p65 have been previously shown to interact at IκB α promoter for 

regulation of NFκB pathway. In addition to the interaction between NFAT5 and p65, it has 

been also shown that SIRT1 deacetylates p65 and inhibits its nuclear translocation. However, 

there is no such study that examines the expression profile of SIRT1, NFAT5 and p65 all 

together under hyperosmotic stress in U937 cells. Therefore, the aim of this study is to 

investigate the role of SIRT1 activity on NFAT5 and p65 expression profile under 100mM 

NaCl induced hyperosmotic stress in U937 monocyte cells. In addition, the aim concerns to 

understand the scale of contribution of NFAT5 and p65 on NFκB pathway regulation for the 

cell survival/death under hyperosmotic stress through examining IκB α expression profile.  

100mM NaCl induced hyperosmotic stress in U937 monocyte cells indicated high expression 

levels of NFAT5 and SIRT1 overlapping with the activation of NFκB pathway. It is shown 

that in U937 cells under 100mM NaCl induced hyperosmotic stress, the activation of NFκB 

pathway and its regulation may be independent of NFAT5 but highly dependent on 

translocated p65, and SIRT1 activity may control p65 nuclear translocation, hence NFκB 

pathway activation.  
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Abstract - TÜRKÇE 

Hiperosmotik stres hücredışı tüm çözünen konsantrasyonunun artışı ile hücrede birçok 

bozulmaya neden olarak fizyolojik hastalıklardan diyabet ve hipertansiyon ile 

ilişkilendirilebilir. Hücreler kendini koruma amacı ile hücredışı inorganik iyon dengesini 

düzeltmek için ozmotik stres adaptasyon mekanizması geliştirmiştir. Bu mekanizmada başlıca 

aktif olan protein NFAT5 (TonEBP) iken, bu proteinin aktivasyonu hedef genlerin 

transaktivayonunu sağlar veya NFAT5 çeşitli düzenleyici proteinler ile ilişki kurar. Daha 

önceki araştırmalarda NFκB yolağını düzenlemek için NFAT5 ve p65 proteinlerinin IκB α 

promotöründe etkileştiği gösterilmiştir.  NFAT5 ve p65 etkileşimine ek olarak SIRT1 

proteinin p65 proteini ile etkileşip, deacetile edip nükleer translokasyonunu engellediği 

gösterilmiştir. Fakat, şu ana kadar hiçbir araştırma SIRT1, NFAT5 ve p65 proteinlerinin 

ekspresyon profillerini birlikte U937 hücrelerinde hiperosmotik stres durumunda 

incelememiştir. Dolayısıyla, bu araştırmada SIRT1 aktivitesinin NFAT5 ve p65 ekspresyon 

profilleri üzerindeki rolünün 100mM NaCl ile oluşturulmuş hiperosmotik stres durumda U937 

monosit hücrelerinde incelenmesi amaçlanmıştır. Buna ek olarak NFAT5 proteinin 

hiperosmotik stress durumunda hücre yaşam/ölümünü destekleyici NFκB yolağını 

düzenlemekte rol oynayan p65 proteinini ne ölçüde desteklediğini IκB α ekspresyon profilini 

inceleyerek araştırmak da amaçlanmıştır. U937 monosit hücrelerinde 100mM NaCl ile 

oluşturulmuş hiperosmotik stres yüksek oranda NFAT5 ve SIRT1 protein ekspresyonunu 

işaret etmekle beraber NFκB yolağının aktivasyonunun da eş zamanlı gerçekleştiğini 

göstermiştir. Bu araştırmada U937 hücrelerinde 100mM NaCl ile oluşturulmuş hiperosmotik 

stres durumunda NFκB yolağının aktivasyonunun ve düzenlenmesinin NFAT5 proteininden 

bağımsız olabileceği ama nükleer translokasyonu gerçekleşmiş p65 proteinine önemli 

derecede bağlı olduğu ve p65 proteinin nükleer translokasyonunu dolayısıyla NFκB yolağının 

aktivasyonunu SIRT1 aktivitesinin control edebileceği gösterilmiştir.  
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Preface 

 

In this study the aim is to investigate the role of SIRT1 activity on NFAT5 an osmoprotective 

protein and p65 expression profile under 100mM NaCl induced hyperosmotic stress in U937 

monocyte cells. In addition, the aim concerns to understand the scale of contribution of 

NFAT5 and p65 on NFκB pathway regulation for the survival of cell under hyperosmotic 

stress through examining IκB α expression profile. 
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1. INTRODUCTION 

 

 

1.1 Hyperosmotic Stress and Osmotic Stress Adaptive Mechanism 

 

 

Hyperosmotic stress is the increase in whole extracellular solute concentration, osmolarity, 

which may cause many disruptions in cell. In addition to osmotic stress, the increase in 

extracellular osmolality, hypertonicity, that is caused by increase in only plasma membrane-

impermeable solutes such as NaCl may lead to problems in the cellular system [1]. This 

change in the balance of extracellular osmolality may result in increased DNA strand breaks 

or DNA damage, cell cycle arrest, increased formation of reactive oxygen species and 

mitochondrial depolarization leading to apoptosis [2]. Therefore, the balance of extracellular 

osmolality is highly crucial and cells generated an osmotic stress adaptive mechanism in order 

to protect itself from such risks. In osmotic stress adaptive mechanism the intracellular 

inorganic ion homeostasis is restored. First NFAT5 (TonEBP) is activated by osmotic stress 

and in return it transactivates the target genes for the synthesis of organic osmolytes such as 

sorbitol, myo-inositol, betaine and taurine [1, 2]. The organic osmolytes may restore the 

osmotic homeostasis. The physiological condition of hyperosmotic stress can be seen in 

diabetes and hypertension [3]. However, accumulation of organic osmolytes resulted from the 

response of adaptive mechanism, may lead to several secondary diseases such as 

atherosclerosis, a chronic inflammatory disease. In atherosclerosis the high expression of 

NFAT5 can be seen which transactivates aldose reductase (AR) expression for the sorbitol 

synthesis leads to the organic osmolyte accumulation. Increased amount of organic osmolytes 

formed by osmotic stress adaptive mechanism may induce the accumulation of monocytes 

and lymphocytes in vessels [4]. Therefore, prime molecular members linking to hyperosmotic 

stress clarifies the reason for related disease condition. In this case, NFAT5 plays a key role in 

hyperosmotic stress and its downstream actions can be illuminated by further look on 

molecular link between the structure and function of NFAT5. 
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1.2 NFAT5, The linking protein of NFAT and NFκB Family 

 

 

NFAT5 is a member of both NFAT and NFκB family of proteins which play crucial role in 

variety of biological functions especially immune response and development. NFAT5 is the 

most ancient member of NFAT family and its DNA binding domain (DBD) shares 43% 

sequence identity with NFAT family members [5]. When NFAT5 is activated in osmotic 

stress it translocates from cytoplasm to nucleus and binds to and transactivates target genes 

involved in the synthesis of transporters and enzymes for the generation of organic osmolytes 

and heat shock proteins [6]. The dimerization of NFAT5 with itself is essential for its DNA 

binding and transcriptional activity. By forming homo dimer NFAT5 forms a complete circle 

around the DNA and it generates an unusual high kinetic stability for the DNA binding and 

transactivation [5]. On the other hand, NFAT5 is the sole member of the Rel/ family (NFκB 

family) to be activated by osmotic stress [7]. The C terminal of dimer interface NFAT5 is 

highly similar with NFκB proteins and it shares similar DNA binding mechanism. The shared 

features of NFAT5 and NFκB family members proposes that they may form mixed dimers or 

complexes in cells for crossregulation of gene expression in stress conditions such as 

hyperosmotic stress [5]. 

 

1.3 NFκB Pathway and The Regulatory p65 Protein  

 

 

NFκB pathway is a fundamental pathway that links many pathway with each other in 

response to a cellular stimuli and regulates many genes involved in inflammation, immune 

response, cell survival and cell death [8]. Any dysregulation and unusual activation may result 

in serious problems leading to a disease. For instance in a chronic inflammatory disease 

atherosclerosis that stems from organic osmolyte accumulation due to hyperosmotic stress, 

NFκB pathway is found to be highly active [8, 9]. Besides, this indicates the close relationship 

and a possible interaction between NFAT5 and NFκB under hyperosmotic conditions. The 

important members of mammalian NF-κB family are p65 (RelA), RelB, c-Rel, p50/p105 (NF-

κB1), and p52/p100 (NF-κB2). The members have highly conserved Rel homology (RH) 

domain responsible from dimerization, interaction with IκBs, and binding to DNA [10]. The 

central member p50/p65 complex localized in cytoplasm with its inhibitor IκB. Activation of 

NFκB pathway begin with the phosphorylation of inhibitor IκB which releases p50/p65 
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complex and the free NF-κB dimers translocate to the nucleus. The nuclear NF-κB dimers 

bind to specific sequences in the promoter or enhancer regions of target genes in order to 

regulate gene synthesis [10]. The NF-κB pathway can be down-regulated through feedback 

pathway in which newly synthesized IκBα proteins limits the nuclear translocation of NF-κB 

dimers. p65 itself may downregulate the NF-κB pathway by binding to IκBα promoter region. 

Thereby, the transitory activation of NF-κB may decrease due to transcriptional increase of 

IκBα [8, 11]. 

 

 

 

 

 

Diagram 1: Simple Representation of The Activation of NF-κB Pathway 

(Adapted from the Nature) 
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1.4 Sirtuin 1  

 

 

Another important protein that is activated in response to a stress condition and regulates its 

target genes is Sirtuin 1. It belongs to the family of silent information regulator 2 (Sir2) which 

is a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase. It involves in 

the cleavage of NAD+ and deacetylates the protein substrates in order to form the deacetylated 

product nicotinamide and 2′-O-acetyl-ADP-ribose (OAADPr) metabolite [12]. The function 

Sir2 is the regulation of chromatin silencing in Saccharomycescerevisiae. The activation of 

Sir2 gene depends on several stress signals such as osmotic stress, heat shock and starvation 

results in regulation of target genes expression in order to regulate cellular homeostasis and 

survival [13, 14].  Its family member and its mammalian homolog that plays role in 

transcriptional regulation in accordance with intracellular energetics is Sirtuin 1 (SIRT1), a 

NAD(+) - dependent protein deacetylase and a metabolic sensor of NAD+/NADH. SIRT1 can 

be seen active in cell cycle, response to DNA damage, metabolism, apoptosis and autophagy. 

It mainly plays role in the transcriptional repression, modulation of chromatin function, 

deacetylation of histones, and alterations in the methylation of histones and DNA. It functions 

in cell type-specific manner depending on the disease condition such as cancer, obesity, 

inflammation and neurodegenerative diseases [13]. The central regulatory mechanism of 

Sirtuin 1 is deacetylating transcription factors or coregulators of the target genes. It is shown 

that SIRT1 regulates glucose homeostasis by deacetylating and activating the transcription 

factor peroxisome proliferator-activated receptor-γ coactivator 1-α [13]. Moreover, SIRT1 is 

shown to be active in the regulation and deacetylation of the tumor suppressor protein p53 and 

RELA/NF-kappa-B p65 [15]. The activity of SIRT1 can be increased by resveratrol (3,5,4'-

trihydroxy-trans-stilbene) which binds to SIRT1 and induces conformational changes in the 

deacetylase enzyme allowing tighter binding of the fluorophore required for the covalent 

attachment on the peptide in activation [12]. The activity of SIRT1 can be inhibited by 

nicotinamide or Ex-527. Ex-527 which is 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-

carboxamide fills the nicotinamide site and a neighboring pocket, and disrupts the NAD+ 

dependent deacetylation mechanism [16]. In addition to the important relation between p65 

and SIRT1, p65 is also shown to be interacting with NFAT5 [8].     
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1.5 NFAT5 and p65 Interaction 

 

 

As a member of both NFAT and NF-κB, NFAT5 is shown to be active under hyperosmotic 

stress for transactivation of target genes [8]. p65, the essential member of NF-κB, shares 

similar DNA binding mechanism with NFAT5. The study of Roth and colleagues examines 

the binding of p65 to IKBα promoter in order to downregulate NFκB pathway [8]. The 

relation of NFAT5 to this binding is examined in duct principal cells and macrophages under 

hypertonic conditions. It is shown that increased p65 nuclear translocation is followed by a 

complex formation with NFAT5. The ChIP analysis of the study revealed that as a complex, 

p65 and NFAT5 bind to κB elements of NFκB responsive genes. Thus, under hypertonic 

conditions NFAT5 can be an additional intracellular component mediating NF-κB activation. 

This proposes that under hypertonic/hyperosmotic stress NFAT5 may help binding of p65 to 

IκBα promoter to increase the transcriptional activity of IκBα and downregulate NF-κB 

activation.  

 

1.6 Objectives and Outcomes 

 

The model of this study based on 100mM NaCl induced hyperosmotic stress condition which 

mimics the physiological disease states of diabetes and hypertension. The induction of 

hyperosmotic stress in U937 cells by the 100mM NaCl treatment is parallel with the former 

studies in literature. The model focuses on the expression profiles of NFAT5, SIRT1 and p65 

in accordance for observing the NF-κB pathway regulation for the inflammation/cell survival 

or death under 100mM NaCl induced hyperosmotic stress. The model is implemented on 

U937 human leukemic monocyte lymphoma cell line which is perfectly suitable for 

hyperosmotic stress induction. The objectives of this study seek to examine the role of SIRT1 

activity on NFAT5 and p65 crosstalk on IκB α synthesis under 100mM NaCl hyperosmotic 

stress in U937 monocyte cells. Since there is no such study that examines the expression 

profile of SIRT1, NFAT5 and p65 together under hyperosmotic stress in U937 cells, our 

secondary goal is to examine them with one accord. Our tertiary goal is to understand the 

scale of the contribution of NFAT5 on the activity of p65 on the regulation of IκBα synthesis 

in U937 cells under hyperosmotic stress.  
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We showed that in U937 cells under hyperosmotic stress the activation of NFκB pathway and 

its regulation is independent of NFAT5 but highly dependent on translocated p65 and SIRT1 

activity may control p65 nuclear translocation, hence NFκB pathway activation. 
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2. EXPERIMENTAL 

 

 

2.1 Cell Culture and Treatments 

 

U937, human leukemic monocyte lymphoma cells were cultured in RPMI-1640 supplemented 

with 10% HI FBS, 2mM glutamine [5Mm Glucose, 100 IU/ml penicillin/streptomycin]. 

Cultures were maintained at 37oC in a humidified 5% CO2 atmosphere. Cells were collected, 

quantified in SFM and seeded (~1,500,000 cells/ml) in 12-well, 100mm or 60mm culture 

plates depending on the experiment. Except the negative control groups the seeded cells were 

treated with 100mM NaCl to mimic hyperosmotic stress condition. In SIRT1 activity 

inhibiting and increasing treatment cells were seeded on 100mm well plates and before the 

addition of 100mM NaCl one group of cells were pretreated with the Ex-527 and the other 

with resveratrol for 1 hr. The cells collected for analysis at indicated specific time points at 

each treatment. 

 

2.2 Chemicals 

 

SIRT1 activity inhibiting chemicals are nicotinamide or Ex-527. Ex-527 which is 6-chloro-

2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide fills the nicotinamide site and a neighboring 

pocket, and disrupts the NAD+ dependent deacetylation mechanism [16]. The activity of 

SIRT1 was increased by resveratrol (3,5,4'-trihydroxy-trans-stilbene) which binds to SIRT1 

and induces conformational changes in the deacetylase enzyme allowing tighter binding of the 

fluorophore required for the covalent attachment on the peptide in activation [12]. In this 

study 15µM resveratrol and 10µM Ex-527 were used in treatments. 

 

2.3 Cell death and viability assays 

 

Cell death response was evaluated by FITC conjugated Annexin-V (Alexis). Manufacturer's 

protocols were applied during FITC-Annexin-V staining. Briefly, U937 cells grown in 5mM 

Glucose seeded in 12-well plates. One group leaved as control group, one well left without 

dye and the other group treated with 100mM NaCl. Groups that completes indicated treatment 

duration transferred to flow cytometry tubes and cells were harvested by centrifugation at 300 

g for 5minutes. Then the cells were resuspended in 1 ml of cold PBS and centrifuged again at 
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300 g for 5 minutes. The supernatant was removed and the cells were incubated in Annexin V 

buffer (140 mM HEPES, 10 mM NaCl, 2,5 mM CaCl2, pH:7.4) containing 1% (v/v) Annexin 

V (FITC) for 15 minutes in the dark. Cells were analyzed by FACS (FACSCanto, Becton 

Dickinson) on FlowJo software. 

 

Cell viability or cell proliferation was detected by WST-1 assay (Roche) according to 

manufacturer’s instructions. 5mM Glucose and 100mM NaCl treated group of cells were 

seeded in 96-well plate. Results are expressed as percentage of cell viability. The absorbance 

was measured with a microtiter plate reader (Bio-Rad, CA, USA) at a test wavelength of 550 

nm and a reference wavelength of 650 nm.  

 

2.4 Protein Extraction and Immunoblotting 

 

Cells were treated as indicated and collected at specific time points with 1-2ml PBS, 

centrifuged at 300 g for 5 minutes. Following resuspension in 1 ml of ice-cold PBS and 

transfer to 1.5-ml microfuge tubes, cells were centrifuged at 13200 rpm for 30 seconds. For 

total protein extraction the pellet was lysed by incubation for 30 minutes in 75-150µl 

(depending on pellet size) of cold cell lysis buffer containing 50 mM Tris-HCl (pH:8.0), 150 

mM NaCl, 1 mM phenylmethanesulfonyl fluoride (PMSF), protease and phosphatase 

inhibitor cocktails (all 20X). After centrifugation at 13200 rpm for 10 minutes, supernatant 

containing the total protein extract was removed and stored at -80oC. For cytoplasmic-nuclear 

protein extraction pellet was resuspended in cytoplasmic lysis buffer mix contains 20X 

protease inhibitor, phosphatase inhibitor, 100mM PMSF, 100mM Dithiothreitol (DTT) and  

T1 buffer containing 10mM HEPES-KOH, 2mM M ZgCl2-6H2O, 0.1mM KCl and Nonidet P-

40 1% (v/v), and incubated on ice for exactly 15 minutes. After brief vortexing, the cells 

centrifuged at 13200 rpm for 1 minute. The collected supernatant stored as cytoplasmic 

protein extract. The remaining pellet was washed with PBS without touching it and 

centrifuged again. The pellet resuspended in nuclear protein extraction buffer mix contains 

20X protease inhibitor, phosphatase inhibitor, 100mM PMSF, 100mM Dithiothreitol (DTT) 

and T2 buffer containing 50mM HEPES-KOH, 2mM MgCl2-6H2O, 0.1mm EDTA, 50mM 

KCl, 400Mm NaCl and %10 Glycerol, and incubated at least 20 minutes on ice (or overnight 

at -80oC). After vortexing briefly cells centrifuged at 13200 rpm for 20 minutes. Collected 

supernatants stored as nuclear proteins at -80oC. Protein concentrations were determined by 

Quick-Start Bradford protein assay and the absorbance was measured with a microtiter plate 



22 

 

reader at a test wavelength of 595 nm. Proteins (40 µg) were mixed with loading buffer (4% 

SDS, 20% glycerol, 10% 2-mercaptoethanol, 0,004% bromophenol blue, 0,125 M Tris-HCl 

pH:6,8) and separated on 6% SDS-PAGE (only for NFAT5)-12% SDS-PAGE  and blotted 

onto PVDF membranes. The membranes were blocked with 5% blocking reagent (non-fat 

milk) in PBS-Tween20 and incubated with appropriate primary and HRP-conjugated 

secondary antibodies (Cell Signaling and Santa Cruz-NFAT5) in 5% blocking reagent. After 

three times washes with PBS-Tween20, proteins were analyzed using an enhanced 

chemiluminescence detection system (ECL Advance, Amersham Pharmacia Biotech, 

Freiburg, Germany) and exposed to Hyperfilm- ECL (Amersham Pharmacia Biotech, 

Freiburg, Germany).  

 

2.5 Statistical Analysis 

 

All the illustrated results represent one of at least three independent experiments with similar 

outcomes. Statistical significance of responsive differences among differentially treated 

populations were assessed with unpaired or paired student’s t-test, respectively. Values lower 

than P,0.05 are marked as *. 
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RESULTS  

 

Under 100mM NaCl induced hyperosmotic stress the effect of SIRT1 expression on NFκB 

pathway and NFAT5 activity in U937 cell line is examined. Time dependent examination 

focused on hours 0, 1, 4, 16 and 48 in order to follow the changes in molecular level in 

response to increasing stress experience. The novel findings in this work revealed that 

independent of nuclear NFAT5 activity, translocated p65 is essential for regulation of NFκB 

pathway activity under 100Mm NaCl induced hyperosmotic stress in U937 cells. 

 

3.1 Confirmation of Osmotic Stress by Osmometer 

 

Figure 1: Confirmation of Osmotic Stress 

In the preparation of 100mM NaCl treated cell culture the expected osmolarity of solution is 

shown based on volume, the number of miliosmoles per liter (mOsm/L) of solution. The 

stress measurement values are given as osmolality, the number of miliosmoles per kg 

(mOsm/kg) of the solvent which indicates the concentration of particles dissolved in solution. 

In  figure 1 the expected osmolarity and the measured osmolality by osmometer are highly 

close to each other indicating that 100mM NaCl induced hyperosmotic stress  is confirmed by 

the measurements of osmometer. 

 

3.2 WST-1 Time Dependent Assay 

 

100mM NaCl induced hyperosmotic stress mimics physiological conditions such as diabetes 

or hypertension. The effect of hyperosmotic stress on U937 cell viability is observed among 

samples taken at 0, 1,4,16 and 48 hour respectively (Figure 2). WST-1 Time dependent 
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viability assay is done for U937 cells cultured in 5mM Glucose and 100mM NaCl containing 

RPMI-SFM medium. The viability of stressed group significantly decreasing compared to 

control group starting from first hour. The difference of viability between control and stress 

group is highest at hour 4. Therefore, 100mM NaCl significantly affects the viability of cells. 

Thereby generation of a hyperosmotic stress condition by 100mM NaCl is confirmed.  

 

3.3 Annexin V-FITC FACS 

 

Alongside, Annexin V-FITC FACS results indicated that compared to control group apoptotic 

cell portion is significantly higher at hour 16 and 48 (Figure 3). In other words, 

hyperosmotically stressed cells tend to undergo apoptosis earlier than control group in a 

higher fraction. Viability and Annexin V assay results coincide with each other and indicate 

the negative effect of 100mM NaCl on U937 cells especially starting from hour 4. 

 

Figure 2: Time Dependent Effect of 100mM NaCl on U937 Cell Viability 

WST-1 Time dependent Assay is done for U937 cells in 5mM Glucose and 100mM 

NaCl. Data is collected from 0, 1, 4, 16, 48 hour  cell samples and measured at 

450nm-ref655nm OD.  

* 

* 

* 
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Figure 3: 100mM NaCl  Annexin V-FITC FACS 

100mM NaCl  Annexin V-FITC apoptotic cell portion within U937 cell populaion 

in 5mM Glucose and 100mM NaCl . Data is collected from 0,1,4,16,48 hour  stress 

cell samples 

* 

 

* 

 

* 
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* 
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3.4 100mM NaCl treatment 1 

 

First the protein expression is examined by western blotting on total protein extraction 

samples. The treatments were done on 60mm well plates and results are obtained (Figure 4). 

Although with low amount of protein concentration the expression level of SIRT1 and 

NFAT5 is visualized. Since the NFκB pathway is also concerned, p65, phospho IκB α and 

IκB α expression levels are observed first and foremost. The results indicated that NFAT5 

expression is significantly increased at 4th hour due to hyperosmotic stress. Alongside, SIRT1 

expression is also starting to increase at 4th hour of hyperosmotic stress compared to initial 

times. Concurrent with NFAT5 and SIRT1 overexpression, NFκB pathway is active at 16th 

hour. Since the protein samples are from total protein extraction, p65 result does not indicate a 

significant point until nuclear portion is analyzed. However, the clear phosphorylation of IκB 

α and decreased expression of IκB α at 16th hour clearly indicates an activation of NFκB 

pathway. Therefore, hyperosmotic stress increases NFAT5 and SIRT1 synthesis starting from 

4th hour in U937 cells and at 16th hour NFκB pathway become active due to certain cellular 

responses. 

 

Figure 4: 100mM NaCl treatment 1 

 

Western Blotting of  samples obtained by total protein extraction from U937 

cell culture in 100mM NaCl containing medium in 60mm cell culture plates.  

Samples are taken at 0, 1,4,16, 48 hours respectively. (Duplicate result) 
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         0                1                  4               16              48            

Figure 5: 100mM NaCl treatment 2 

Western Blotting of  samples obtained by total protein extraction from 

U937 cell culture in 100mM NaCl containing medium in 100mm cell culture 

plates.  Samples  are taken at 0, 1,4,16, 48 hours respectively. (Duplicate 

result) 
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SIRT1 (82kDa 
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3.5 100mM NaCl treatment 2 

 

In order to obtain a higher protein concentration, 100mM NaCl treatment is repeated in 

100mm well plates. The second treatment scans more NFκB family member for a better 

understanding of the response of NFκB pathway due to hyperosmotic stress (Figure 5). First, 

the NFAT5 result revealed that the expression of NFAT5 increases significantly at 16th hour 

which is correlated with the activation of NFκB pathway at 16th hour. SIRT1 and IκB results 

are parallel with the first treatment. The phosphorylation pattern become clearer with the 

second treatment in 100mm cell culture plates with higher concentration of proteins. The 

phosphorylation is starting at 4th hour but highest phosphorylation present at 16th hour. The 

upstream of the IκB protein is also examined. IKK α and IKK β expression levels are 

decreased at 16th hour which is overlapping with the IκB α phosphorylation time. In 

accordance with IKK α/β, the phosphorylated IKK α/β is higher at 16th hour compared to 4th 

hour. The p65 result again cannot indicate a significant result until a nuclear form is 

visualized. Therefore, larger scanning of NFκB family members clearly indicated an 

activation at 16th hour. 

 



28 

 

Figure 6: 100mM NaCl treatment, Cytoplasmic/ Nuclear proteins WB result 

 
Western Blotting of  samples obtained by both cytoplasmic and nuclear protein 

extraction from U937 cell culture in 100mM NaCl containing medium in 100mm cell 

culture plates.  Samples  are taken at 1, 4, 16, 48 hours respectively. (Duplicate result) 

  1              4             16       48                 1              4              16         48 

NFAT5 (170kDa) 
 

 SIRT1 (120kDa) 
SIRT1 (82kDa) 

  

 
IκBα (39 kDa) 

 
p65 (65 kDa)  

  

 

 

Lamin A (70 kDa) 

 

 

Beta Actin (45 kDa) 
 

  

 

3.6 100mM NaCl treatment, Cytoplasmic/ Nuclear proteins WB result 

 

Total protein extraction results do not show a significant outcome on p65 expression and 

nuclear translocation level. Therefore, nuclear/cytoplasmic protein extraction is performed 

and results are examined (Figure 6). At 16th hour both cytoplasmic and nuclear NFAT5 

protein level is increased compared to initial hours. The nuclear translocation of NFAT5 

significantly occurs at 16th hour. At 48th hour the protein level of cytoplasmic and nuclear 

NFAT5 decreases. The SIRT1 and IκB α results correlate with the total protein extraction 

results. SIRT1 cytoplasmic protein expression increases at 16th hour and IκB α cytoplasmic 

protein expression displays an oscillating pattern and decreases at 16th hour. The nuclear 

translocation of p65 is visible at 4th hour and significantly increased at 16th hour. At 48th hour 

p65 nuclear portion is decreased and the cytoplasmic protein increases. Therefore the nuclear 

translocation peaks at 16th hour but slows at 48th hour. The Lamin A result is used as nuclear 

fraction control and β actin result is used as protein loading control. 
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3.7 15uM Resveratrol and 10uM Ex527 Pretreated, and 100mM treated Cytoplasmic/ Nuclear 

proteins WB result 

 

In order to examine the effect of SIRT1 on NFAT5 and p65 expression and nuclear 

translocation, the activator and inhibitor of SIRT1 is used in the pretreatment of the U937 

cells (Figure 7). The results indicated that in presence of resveratrol, the activator of SIRT1, 

SIRT1 expression is decreased. In presence of EX-527, inhibitor of SIRT1, SIRT1 expression 

is increased.  The effect of increased SIRT1 activity on NFAT5 is positive. 15uM resveratrol 

pretreated U937 cells expressed increased NFAT5 and the nuclear translocation of NFAT5 is 

increased compared to positive control. Whereas, when cells pretreated with 10mM EX-527 

NFAT5 expression and nuclear translocation is quite decreased. The resveratrol effect on IκB 

α is turned out to be negative. The results indicated that when SIRT1 activity increases IκB α 

expression decreases compared to positive control and when SIRT1 activity decreases IκB α 

expression increases. Moreover, the effect of SIRT1 activator on p65 nuclear translocation is 

revealed as quite negative. In cells pretreated with resveratrol nuclear translocation of p65 is 

lower compared to positive control. When SIRT1 activity is decreased almost all cytoplasmic 

p65 translocated to nuclei.  
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Figure 7: 15uM Resveratrol and 10uM Ex527  Pretreated , and 100mM treated 

Cytoplasmic/ Nuclear proteins WB result  

Western Blotting of  samples obtained by both cytoplasmic and nuclear protein 

extraction from U937 cell culture  treated with 100mM NaCl containing medium 

in 100mm cell culture plates.  Cells are pretreated with Sirtuin 1 inhibitor Ex-

527 and activator resveratrol.  Samples are taken at 16 th hour.  (Duplicate 

result) 
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3. DISCUSSION 

 

Hyperosmotic stress disrupts cell in many ways leading to changes in signaling. In this study 

the molecular response of the cell monitored by scanning the NFκB pathway and tonicity-

responsive enhancer binding protein (TonEBP/NFAT5) expression level. In addition, the role 

of SIRT1 on NFκB pathway activation and NFAT5 expression is observed since it regulates 

target gene expression in response to metabolic changes and stress. The results indicated that 

at 16th hour of hyperosmotic stress NFAT5 and SIRT1 is overexpressed and NFκB pathway 

is activated. At the key 16th hour the nuclear translocation of p65 and NFAT5 are seen. The 

presence of NFAT5 and p65 in the nuclear at the same time points raises a probability of 

complex formation at target gene IκB α promoter for the NFκB pathway regulation under 

hyperosmotic stress. When the activity of SIRT1 is increased and decreased by resveratrol 

and Ex-527 respectively, the effect of SIRT1 on the expression and translocation of p65 and 

NFAT5 is observed. It is revealed that p65 is essential for the regulation of IκB α synthesis 

and NFAT5 may only have a role in tuning of the effect of p65. 

 

In this study first of all, hyperosmotic stress for U937 cells is generated by 100mM NaCl 

treatment. The purpose is to mimic the physiological disease conditions stem from 

hyperosmotic stress. As the decrease of viability and increase of apoptotic cell portion are 

seen, results confirmed the generation of hyperosmotic stress by 100mM NaCl treatment in 

U937 monocyte cells (Figure 2, 3). In a molecular aspect, as it was expected hyperosmotic 

stress increased NFAT5 synthesis starting from 4th hour in U937 cells and the overexpression 

is highest at 16th hour (Figure 4, 5). Therefore, the hyperosmotic stress condition affects cells 

highest at 16th hour and cells activated osmotic stress adaptive mechanism to recover the 

cellular homeostasis through NFAT5 activation. If SIRT1 expression is monitored, the highest 

expression is also present at 16th hour as it is for NFAT5. The mutual activation of both 

proteins proposes a probability common regulatory function under 100mM NaCl induced 

hyperosmotic stress. However, in order to prove that further research should be conducted on 

their direct or indirect interaction. On the other hand, expression levels of NFκB family 

members points out a possible activation at 16th hour. These results indicated a significance of 

16th hour for NFAT5, SIRT1 and NFκB proteins.  

 

Remaining research in this study focused on 16th hour in order to understand the details of 

NFκB pathway signaling under hyperosmotic stress. Once nuclear protein level is examined, 
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increased nuclear p65 confirmed the activation of NFκB pathway at 16th hour due to 

hyperosmotic stress (Figure 6). Stressed cells may have activated the osmotic stress adaptive 

mechanisms through NFAT5, and NFκB pathway is activated by p65 nuclear translocation 

which in return may control the NFκB pathway negatively or positively at nuclei which leads 

to the survival or death of the cell depending on the severity of hyperosmotic stress condition. 

In addition, at 16th hour the presence of NFAT5 at nuclei is suggesting an interaction with 

p65 on a target gene for regulation of the activity of NFκB pathway.  

 

In this study SIRT1 activator and inhibitor are used in order to enlighten the possible 

interaction between NFAT5 and p65  at nuclei, and give an insight on the role of SIRT1 on 

p65 and NFAT5 nuclear translocation and expression. The results of the treatment with 

resveratrol and Ex-527 showed in figure 7 revealed that in presence of Resveratrol or Ex-527, 

SIRT1 regulates its synthesis depending on its protein level by negative feedback loop in 

order to manage its activity. The increased activity of SIRT1 increases expression of both 

nuclear and cytoplasmic NFAT5 whereas decreases p65 translocation. In other words, 

increased activity of SIRT1 has a positive effect on NFAT5 expression which may indicate a 

regulatory relation between NFAT5 and SIRT1 once SIRT1 activity increase enough. The 

studies that have conducted in different cell lines and stress conditions indicated that p65 can 

be deacetylated and inhibited by SIRT1 [15]. Thus, the decreased p65 nuclear translocation 

may be due to p65 deacetylation by SIRT1 which may inhibit its activity at U937 cells under 

100mM NaCl hyperosmotic stress. On the other hand, p65 nuclear translocation increases and 

IκB α expression increases when SIRT1 activity decreased by Ex-527 (Diagram 2). In other 

Diagram 2:  

Expression profiles when U937 cells pretreated with EX-527 under hyperosmotic stress 
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words, p65 nuclear translocation is strongly correlated with IκB α gene expression increase. 

As it has been shown in several studies with different cell lines and stress conditions [8, 11], 

this result proposes that p65 may also have an autoregulatory function on NFκB pathway 

through IκB α in U937 cells under hyperosmotic stress. Therefore, acetylated and translocated 

p65 is essential for regulation of IκB α synthesis, thereby NFκB pathway activity. In addition, 

since presence of resveratrol decreased p65 translocation, SIRT1 activity may control the 

nuclear translocation of p65, hence NFκB pathway activity through deacetylation (Diagram 

3). Moreover, while p65 nuclear translocation is low during increased SIRT1 activity, 

increased nuclear NFAT5 expression cannot significantly affect IκB α expression alone. On 

the contrary of the outcomes of the study of Roth and colleagues [8] this result proposes that 

NFAT5 may not have a major role but a tuning role on IκB α synthesis regulation and it may 

support nuclear p65 activity on IκB α. However, decreased NFAT5 expression via SIRT1 

inhibitor alone may not rule out its binding to IκB α promoter with p65 because the NFAT5 

protein population remaning after SIRT1 inhibition may still act on the IκB α promoter. This 

may be confirmed in future electromobility shift assay or ChIP analysis.  

 

Diagram 3: Expression profiles when U937 cells pretreated with resveratrol under 

hyperosmotic stress  
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These results may propose that IκB α is the target in NFκB pathway regulation under 

hyperosmotic stress and p65 is the key regulator in stressed U937 cells. The time dependent 

expression profiles of proteins of interest and viability assays revealed that this regulation 

under hyperosmotic stress may result in either inflammation or cell death in a time depending 

manner due to the level of severity of hyperosmotic stress (Diagram 4).  

 

 

 

In future this study can be broadened by repeating it in other cell lines and comparing the 

expression profiles of p65, NFAT5, SIRT1 all together and examine their effect on IκB α 

regulation. Repeating this study in other cell lines under 100mM NaCl induced hyperosmotic 

stress may indicate similar results as in Roth and collegues study and in contrast to this 

current study in U937 cells, NFAT5 may be more influential on IκB α regulation when p65 is 

downregulated with SIRT1 upon resveratrol pretreatment or with another regulator. In 

addition, although former studies indicating an earlier activation of NFκB pathway, in this 

study the focused time is 16th hour of hyperosmotic stress. Since the expression of NFAT5 

and SIRT1 comes into picture starting from 4th hour, examining earliear timepoints in which 

NFκB pathway is active was not beneficial in U937 cells. Therefore, maybe other cell lines 

Diagram 4: Time dependent NFκB activation and its relation with inflammation and 

apoptosis 
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can be searched in which both NFAT5 and SIRT1 is active at earlier time points when NFκB 

pathway is starting to be active. This search may enlighten their effect on NFκB pathway 

regulation at the initial hours upon hyperosmotic stress. Thus, it can be plainer whether their 

role on NFκB pathway regulation is typical or time dependent upon hyperosmotic stress. 

 

Moreoever, this research can be broadened by focusing on the interaction studies. As it is 

mentioned before due to their parallel expression profiles under hyperosmotic stress and EX-

527/Resveratrol pretreatments SIRT1 and NFAT5 may have an interaction or a common 

regulatory purpose. This possible interaction can be examined in future whether they have an 

indirect or direct interaction under hyperosmotic stress for a regulatory purpose. The other 

option for the future search of interaction can focus on p65 and NFAT5 interaction at nuclear 

on target gene site such as IκB α promoter by implementing CoIP, ChIP and EMSA in U937 

cells and in other possible cell lines under hyperosmotic stress. Therefore, the possible 

interaction can be elaborated on and whether NFAT5 has a tuning role on p65 or a major role 

on the target gene regulation can be clearer. In addition, SIRT1 and p65 interaction may be 

examined in future studies. A deacetylating fuction of SIRT1 is estimated to inhibit p65 

nuclear translocation and its regulatory function. This possible inhibiting mechanisim can be 

searched in molecular level through CoIP implementation for acetylated p65 and SIRT1. 

 

All in all, this study indicated that modulation of SIRT1 via a chemical inhibitor or an 

activator, regulates p65 and its transcriptional target, IκB α under hyperosmotic stress. Under 

this SIRT1 modulation model of hyperosmotic stress, p65 dependent IκB α transcription may 

be independent of NFAT5 because physical abundance of NFAT5 is not parallel to p65. 
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5. Appendix 

 

 

6.1 U937 Cell Line Specification Sheet and Cell Culture Protocol 

 

A. U937 Cell Line Specification
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B. U937 Cell Culture Protocol 

 

Note: Below is the suggested cell culture protocol for U937 cell line. For this research 

the treatments of U937 cells are done in serum free RPMI not a complete medium.   
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6.2 Specification Sheets of Chemicals 

 

A. EX-527 
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B. Resveratrol 
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6.3 Annexin V FITC-FACS Protocol 

 

 

 Centrifuge cells (500.000cells/ul / 250.000 cells/ul) with 300 g in FACS tubes. 

 Wash pellets with 1ml-500ul cold PBS. 

 Vortex slowly 

 Centrifuge again. 

 Add cold annexin binding buffer cocktail (98ul buffer + 2ul annexin) and resuspend. 

 Note: If there is a no dye group for negative control, do not add annexin. 

 Incubate for 15-20 minutes in dark. 

 Add 300 ul annexin binding buffer for dilution and unbounding. 

 Adjust FACS voltages to : FAC 132 V, SSC 418V, FITC 260V 

 Run and analysis on flow cytometry, follow strictly the FACS-CANTO manual.  
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6.4 Annexin V Allexis Data Sheet 
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6.5 WST-1 ROCHE Data Sheet  
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6.6 Antibody Data Sheets and Immunoblotting
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Section 1
General Information

1.1 Introduction
The Mini-PROTEAN 3 cell runs both hand cast gels and Ready Gel precast gels

interchangeably. The Mini-PROTEAN 3 system includes a casting stand and glass plates with
permanently bonded gel spacers that simplify hand casting and eliminate leaking during
casting. The cell can run one or two gels, and the mini tank is compatible with other Bio-Rad
electrode modules for tank blotting, 2-D electrophoresis, and electro-elution.

Fig. 1. Mini-PROTEAN 3 system components.
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1.2 Components
To get the best performance from your Mini-PROTEAN 3 cell, familiarize yourself with

the components by assembling and disassembling the cell before using it (refer to
Figures 1 and 2).

Spacer Plate The Spacer Plate is the taller glass plate with gel spacers
permanently bonded. Spacer Plates are available in 0.5 mm, 0.75 mm,
1.0 mm, and 1.5 mm thicknesses, which are marked directly on
each Spacer Plate.

Short Plate The Short Plate is the shorter, flat glass plate that combines with the
Spacer Plate to form the gel cassette sandwich.

Casting Frame The Casting Frame, when placed on the benchtop, evenly aligns
and secures the Spacer Plate and the Short Plate together to form the
gel cassette sandwich prior to casting.

Gel Cassette Assembly One Casting Frame, a Spacer Plate, and a Short Plate form one Gel
Cassette Assembly.

Casting Stand The Casting Stand secures the Gel Cassette Assembly during gel
casting. It contains pressure levers that seal the Gel Cassette
Assembly against the casting gaskets.

Gel Cassette Sandwich A Spacer Plate and Short Plate with polymerized gel form a Gel
Cassette Sandwich after casting.

Combs A selection of molded combs is available.
Buffer Dam The molded, one-piece buffer dam is used when running only one

gel.
Electrode Assembly The Electrode Assembly holds the Gel Cassette Sandwich. It houses

the sealing gasket, the upper and lower electrodes and the
connecting banana plugs. The anode (lower electrode) banana plug
is identified with a red marker and the cathode (upper electrode)
banana plug with a black marker.

Clamping Frame The Clamping Frame holds the Electrode Assembly and Gel
Cassette Sandwich in place. Its pressure plates and closure cams
seal the Gel Cassette Sandwich against U-shaped gaskets on the
Electrode Assembly to form the inner buffer chamber.

Inner Chamber The Electrode Assembly, two Gel Cassette Sandwiches or one gel
cassette sandwich and a buffer dam, and the Clamping Frame form
the Inner Chamber.

Mini Tank and Lid The Mini Tank and Lid combine to fully enclose the inner chamber
during electrophoresis. The lid cannot be removed without
disrupting the electrical circuit. The Mini Tank and Lid are also
compatible with other Bio-Rad electrode modules for blotting, first
dimension 2-D, and electro-elution.



Fig. 2. Assembling the Mini-PROTEAN 3 cell.

Fig. 3. Assembling the Mini-PROTEAN 3 Casting Frame and Casting Stand.

3

Lid

Electrode
Assembly

Clamping
Frame

Mini Tank

Spring loaded levers

Casting Stand without
gaskets. Gaskets must be
used for proper seal.

Casting
Frame

Pressure cam
pivot point

Pressure cams in
"open position"

Inner
Chamber
Assembly

Cams

Pressure Plate

Gel Cassette
Sandwich

Notch
on U-Shaped Gasket

Banana Plugs

Anode banana plug
(red)

Cathode banana plug
(black)



1.3 Specifications
Casting Stand* Polycarbonate

Pin, Retaining Ring, and Spring Stainless Steel

Casting Frames* Polysulfone

Gray Gaskets Silicone Rubber (gray)

Clamping Frame** Glass-filled liquid crystal polymer (Vectra™)

Pressure Plate and Cams Polycarbonate

Electrode Assembly Glass-filled liquid crystal polymer

Electrodes Platinum wire, 0.010 inches diameter

Gasket, electrode inner core Silicone Rubber (green)

Mini Tank and Lid Molded Polycarbonate

Sample Loading Guides† Delrin™

Combs* Polycarbonate

Maximum Sample Volume Per Well

# wells Well width 0.5 mm 0.75 mm 1.0 mm 1.5 mm
5 12.7 mm — 70 µl 105 µl 160 µl

9 5.08 mm — 33 µl 44 µl 66 µl

10 5.08 mm 22 µl 33 µl 44 µl 66 µl

15 3.35 mm 13 µl 20 µl 26 µl 40 µl

IPG 76.2 mm — — 420 µl 730 µl

Prep/2-D
Reference well 3.1 mm — 13 µl 17 µl 30 µl
Sample well 71.7 mm — 310 µl 400 µl 680 µl

Overall Size of cell 16 cm (L) x 12 cm (W) x 18 cm (H)

Gel Size 8 cm (W) x 7.3 cm (H)

Inner Plate 10.1 cm (W) x 7.3 cm (H)

Outer Plater 10.1 cm (W) x 8.3 cm (H)

Precast Gel Compatibility Ready Gels

Voltage Limit 600 VDC and 15 watts

Shipping Weight 2.0 kg

1.4 Chemical Compatibility
Mini-PROTEAN 3 components are not compatible with acetone, ethanol, or butanol. Use of

organic solvents voids all warranties. Call 1-800-4-BIORAD or your local Bio-Rad
representative for technical information regarding additional chemical compatibility of the
Mini-PROTEAN 3 cell with various laboratory reagents.

The Mini-PROTEAN 3 combs are not compatible with repeated exposure to 100%
TEMED. Rubbing the combs with TEMED prior to casting will destroy the structural
integrity of the combs over time.

* US patent No. 6,162,342

** US patent No. 5,632,877
† US patent No. 5,656,145

4



1.5 Safety
Power to the Mini-PROTEAN 3 cell is supplied by an external DC voltage power supply

(not included). The output of this power supply must be isolated from external ground to
insure that the DC voltage output floats with respect to ground. All Bio-Rad power supplies
meet this important safety requirement. Regardless of the power supply used, the maximum
specified operating parameters for the Mini-PROTEAN 3 cell are as follows:

• 600 VDC maximum voltage limit
• 15 watts maximum power limit
• 50 °C maximum ambient temperature limit

The current to the cell enters the unit through the lid assembly which provides a safety
interlock to the user. The current to the cell is broken when the lid is removed. Always turn
off the power supply before removing the lid. Do not attempt to use the cell without the
safety lid.

Important: This Bio-Rad product is designed and certified to meet *EN61010-1 safety
standards. Certified products are safe to use when operated in accordance with the instruction
manual. This instrument should not be modified or altered in any way. Alteration of this
instrument will

• Void the warranty
• Void the EN61010-1 certification, and
• Create a potential safety hazard.

Bio-Rad is not responsible for any injury or damage caused by use of this instrument for
purposes other than those for which it is intended or by modifications of the instrument not
performed by Bio-Rad or an authorized agent.
* EN61010-1 is an internationally accepted electrical safety standard for laboratory instruments.

Section 2
Set Up and Basic Operation

2.1 Gel Cassette Sandwich Preparation
Hand Cast Gels

1. Glass Cassette and Casting Stand Assembly

Note: Ensure the casting stand, casting frames, and glass plates are clean and dry before
setting up the casting stand assembly. During regular use, a powder residue may build
up behind the pressure cams of the casting frame at the pivot point. This powder should
be removed before each use.
a. Place the Casting Frame upright with the pressure cams in the open position and

facing forward on a flat surface.
b. Select a Spacer Plate of the desired gel thickness and place a Short Plate on top of

it (see Figure 4a).
c. Orient the Spacer Plate so that the labeling is "up". Slide the two glass plates into the

Casting Frame, keeping the Short Plate facing the front of the frame (side with
pressure cams) (see Figure 4b).

Note: Ensure both plates are flush on a level surface and labeling on the Spacer Plate is
oriented correctly. Leaking may occur if the plates are misaligned or oriented incorrectly.

d. When the glass plates are in place, engage the pressure cams to secure the glass
cassette sandwich in the Casting Frame (see Figure 4c). Check that both plates are
flush at the bottom.
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e. Engage the spring loaded lever and place the gel cassette assembly on the gray cast-
ing stand gasket. Insure the horizontal ribs on the back of the Casting Frame are
flush against the face of the Casting Stand and the glass plates are perpendicular to
the level surface. The lever pushes the Spacer Place down against the gray rubber
gasket (see Figure 4d).

f. Repeat steps a–e for a second gel.

4a. Place a Short Plate on top of the 4b. Slide the two plates into the Casting
Spacer Plate. Frame keeping the Short Plate facing front.

4c. Lock the pressure cams to secure 4d. Secure the Casting Frame in the Casting
the glass plates. Stand by engaging the spring loaded lever.

Fig. 4. Assembling the Mini-PROTEAN 3 casting stand and frame.

2. Gel Casting
a. Discontinuous Polyacrylamide Gels

i. Place a comb completely into the assembled gel cassette. Mark the glass plate
1 cm below the comb teeth. This is the level to which the resolving gel is
poured. Remove the comb.

ii. Prepare the resolving gel monomer solution by combining all reagents except
APS and TEMED. (Refer to Section 4 for gel formulations.) Degas the
solution under vacuum for at least 15 minutes. Do not use a sink water aspirator.

iii. Add APS and TEMED to the degassed monomer solution and pour to the mark
using a glass or disposable plastic pipette. Pour the solution smoothly to
prevent it from mixing with air.

iv. Immediately overlay the monomer solution with water or t-amyl alcohol.
Note: If water is used, add it slowly and evenly to prevent mixing. Do not overlay
w/butanol or isobutanol.

v. Allow the gel to polymerize for 45 minutes to 1 hour. Rinse the gel surface
completely with distilled water. Do not leave the alcohol overlay on the gel
for more than 1 hour because it will dehydrate the top of the gel.
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Note: At this point the resolving gel can be stored at room temperature overnight. Add 5 ml
of a 1:4 dilution of 1.5 M Tris-HCl, pH 8.8 buffer (for Laemmli System) to the resolving
gel to keep it hydrated. If using another buffer system, add 5 ml 1x resolving gel buffer
to the resolving gel surface for storage.

vi. Prepare the stacking gel monomer solution. Combine all reagents except APS
and TEMED. Degas under vacuum for at least 15 minutes.

vii. Before casting the stacking gel, insert a piece of filter paper to dry the area in
between the glass plates above the resolving gel. Take care not to touch the
surface of the gel.

viii. Add APS and TEMED to the degassed stacking gel monomer solution and pour
the solution between the glass plates. Continue to pour until the top of the short
plate is reached.

ix. Insert the desired comb between the spacers starting at the top of the Spacer
Plate, making sure that the tabs at the ends of each comb are guided between the
spacers. It is easiest to insert the combs starting at an angle and insert well 1
first, then 2, 3, and so on until the combs is completely inserted. Seat the comb
in the gel cassette by aligning the comb ridge with the top of the Short Plate.

x. Allow the stacking gel to polymerize for 30–45 minutes.

xi. Gently remove the comb and rinse the wells thoroughly with distilled water or
running buffer.

xii. Rinse the Casting Frame(s) and Stand with distilled, deionized water after use.

b. Continuous Polyacrylamide Gels
i. Prepare the monomer solution by combining all reagents except the APS and

the TEMED. Degas under vacuum for 15 minutes (Refer to Section 4 for gel
formulations).

ii. Add APS and TEMED to the degassed monomer solution and pour the solution
between the glass plates. Continue to pour until the top of the Short Plate is reached.

iii. Insert the desired comb between the spacers starting at the top of the Spacer
Plate, making sure that the tabs at the ends of each comb are guided between the
spacers. It is easiest to insert the combs starting at an angle and insert well 1
first, then 2, 3, and so on until the combs is completely inserted. Seat the comb
in the gel cassette by aligning the comb ridge with the top of the Short Plate.

iv. Allow the gel to polymerize for 45 minutes to 1 hour.

v. Gently remove the comb and rinse the wells thoroughly with distilled water or
running buffer.

vi. Rinse the Casting Frame(s) and Stand with distilled, deionized water after use.

Ready Gel Precast Gels

1. Ready Gel Cassette Preparation

Note: The Mini-PROTEAN 3 cell is guaranteed for use only with Bio-Rad's Ready Gel
precast gels.

a. Remove the Ready Gel from the storage pouch.

b. Gently remove the comb and rinse the wells thoroughly with distilled water or
running buffer.

c. Cut along the dotted line at the bottom of the Ready Gel Cassette with a razor blade.

d. Pull the clear tape at the bottom of the Ready Gel Cassette to expose the bottom
edge of the gel.

e. Repeat for second Ready Gel.

Note: If only one gel is to be run, use the mini cell buffer dam.
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2.2 Mini-PROTEAN 3 Electrophoresis Module Assembly and
Sample Loading
Mini-PROTEAN 3 Electrophoresis Module Assembly

1. Remove the Gel Cassette Assemblies from the Casting Stand. Rotate the cams of the
Casting Frames inward to release the Gel Cassette Sandwich (see Figure 5a).

2. Place a Gel Cassette Sandwich into the slots at the bottom of each side of the Electrode
Assembly. Be sure the Short Plate of the Gel Cassette Sandwich faces inward toward the
notches of the U-shaped gaskets (see Figure 5b).

3. Lift the Gel Cassette Sandwich into place against the green gaskets and slide into the
Clamping Frame (see Figure 5c).

4. Press down on the Electrode Assembly while closing the two cam levers of the Clamping
Frame to form the Inner Chamber and to insure a proper seal of the short plate against the
notch on the U-shaped gasket. (see Figure 5d). Short plate must align with notch in gasket.

5a. Remove the Gel Cassette Sandwich 5b. Place Gel Cassette Sandwich into the Electrode
from the Casting Frame. Assembly with the Short Plate facing inward.

5c. Slide Gel Cassette Sandwiches and 5d. Press down on the Electrode Assembly
Electrode Assembly into the clamping while closing the two cam levers of the
frame. Clamping Frame.

5e. Lower the Inner Chamber into the Mini Tank.

Fig. 5. Mini-PROTEAN 3 assembly.

8



Note: Gently pressing the top of the Electrode Assembly while closing the Clamping
Frame cams forces the top of the Short Plate on each Gel Cassette Sandwich to seat against
the rubber gasket properly and prevents leaking.

5. Lower the Inner Chamber Assembly into the Mini Tank. Fill the inner chamber with ~125 ml
of running buffer until the level reaches halfway between the tops of the taller and shorter
glass plates of the Gel Cassettes.

Note: Do not overfill the Inner Chamber Assembly. Excess buffer will cause the siphoning
of buffer into the lower chamber which can result in buffer loss and interruption of
electrophoresis.

6. Add ~200 ml of running buffer to the Mini Tank (lower buffer chamber).

Sample Loading

1. Load the samples into the wells with a Hamilton syringe or a pipette using gel loading tips.

2. If using Bio-Rad's patented sample loading guide, place it between the two gels in the
Electrode Assembly. Sample loading guides are available for 9, 10, 12, and 15 well formats.

Fig. 6. Using the Sample Loading Guide (patent #5,656,145).

3. Use the Sample Loading Guide to locate the sample wells. Insert the Hamilton syringe or
pipette tip into the slots of the guide and fill the corresponding wells.

Note: Load samples slowly to allow them to settle evenly on the bottom of the well. Be
careful not to puncture the bottom of the well with the syringe needle or pipette tip.

2.3 Gel Electrophoresis

Mini Tank Assembly

1. Place the Lid on the Mini Tank. Make sure to align the color coded banana plugs and
jacks. The correct orientation is made by matching the jacks on the lid with the banana
plugs on the electrode assembly. A stop on the lid prevents incorrect orientation.

Sample
Loading
Guide

Pipet Tip
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Power Conditions

1. Insert the electrical leads into a suitable power supply with the proper polarity.

2. Apply power to the Mini-PROTEAN 3 cell and begin electrophoresis; 200 volts constant
is recommended for SDS-PAGE and most native gel applications. Run time is approxi-
mately 35 minutes at 200 volts for SDS-PAGE.

Gel Removal

1. After electrophoresis is complete, turn off the power supply and disconnect the electrical leads.

2. Remove the tank lid and carefully lift out the Inner Chamber Assembly. Pour off and
discard the running buffer.

Note: Always pour off the buffer before opening the cams to avoid spilling the buffer.

3. Open the cams of the Clamping Frame. Pull the Electrode Assembly out of the Clamping
Frame and remove the Gel Cassette Sandwiches.

4. Remove the gels from the Gel Cassette Sandwich by gently separating the two plates of the
gel cassette. The green, wedgeshaped, plastic Gel Releaser may be used to help pry the glass
plates apart.

Note: To remove the gel from a Ready Gel Cassette, first slice the tape along the sides
of the Ready Gel Cassette where the inner glass plate meets the outer plastic plate.

5. Run the sharp edge of the Gel Releaser or a razor blade along each spacer to separate the
gel from the spacer. Remove the gel by floating it off the glass plate by inverting the gel
and plate under fixative or transfer solution, agitating gently until the gel separates from
the plate.

6. Rinse the Mini-PROTEAN 3 cell electrode assembly, Clamping Frame and Mini Tank
with distilled, deionized water after use.

Section 3
Separation Theory and Optimization

3.1 Introduction
Polyacrylamide gel electrophoresis separates molecules in complex mixtures according

to size and charge. During electrophoresis there is an intricate interaction of samples, gel
matrix buffers, and electric current resulting in separate bands of individual molecules. Hence
the variables that must be considered in electrophoresis are gel pore size, gel buffer systems,
and the properties of the molecule of interest.

Gel Pore Size

Gel pores are created by the crosslinking of polyacrylamide with bis-acrylamide (bis) to
create a network of pores. This structure allows the molecular sieving of molecules through
the gel matrix. Gel pore size is a function of the acrylamide monomer concentration used
(%T). By convention, polyacrylamide gels are characterized by %T which is the weight
percentage of the total monomer including the crosslinker. The %T gives an indication of the
relative pore size of the gel. In general, pore size decreases with increasing %T.

%T is calculated using the following equation.

%T = g acrylamide + g crosslinker x 100%
total volume (ml)
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%C is the crosslinker:acrylamide monomer ratio of the monomer solution. %C is calcu-
lated using the following equation.

%C = g crosslinker x 100%
g acrylamide + g crosslinker

2.67% C is traditionally used for most analytical gels.

Gels can be made as a single continuous percentage throughout the gel, or can be cast as
a gradient %T through the gel. Typical compositions are from 7.5% up to 20% for single
percentage gels, or gradients ranging from 4–15% to 10–20%.

The total monomer concentration for optimal separation is referred to as optimal %T.
Optimal %T will vary depending on the molecular weight of the molecule of interest.
Empirically the pore size providing optimum resolution for proteins is that which results in a
relative mobility (Rf) value between 0.55–0.6. Rf values for specific proteins are
calculated as follows.

Rf = Distance migrated by the protein of interest
Distance migrated by the ion front

Gel Buffer System

The buffer system determines the power requirements and affects separation. The buffer
system is composed of the buffer used in the gel and the running buffer. There are
continuous and discontinuous buffer systems.

Continuous Buffer Systems

In continuous buffer systems the same buffer ions are present, at constant pH and
concentration throughout the system. The gel is typically made of one continuous %T and the
sample is loaded directly into the part of the gel where separation will occur. The band width
is determined in part by the height of the sample load in the well, so samples should be
concentrated and volumes small for best results.

Discontinuous Buffer Systems

In discontinuous buffer systems different buffer ions are present in the gel and electrode
reservoirs. By using different buffers in the gel and in the electrode solutions and adding a
stacking gel to the resolving gel, samples are compressed into a thin starting band and
individual proteins are finely resolved and separated. Discontinuous buffer systems were
devised initially for use with undenatured, or native proteins; however the most popular
discontinuous system employed is the SDS-PAGE buffer system by Laemmli.l Formulations
for this system are included in Section 4.1.

3.2 SDS-PAGE (Laemmli) Buffer System
The Laemmli buffer system is a discontinuous buffer system that incorporates SDS in

the buffer. In this system, proteins are denatured by heating them in buffer containing
sodium dodecyl sulfate (SDS) and a thiol reducing agent such as 2-mercaptoethanol (βME.)
The resultant polypeptides take on a rod-like shape and a uniform charge-to-mass ratio
proportional to their molecular weights. Proteins separate according to their molecular weight,
making this system extremely useful for calculating molecular weights.
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3.3 Native PAGE
Native PAGE is a technique for separating biologically active proteins. In contrast to

SDS-PAGE, the mobilities of proteins in a Native PAGE system depend on both size and
charge. There is no single electrophoresis buffer system that will optimally separate all
proteins in a native gel. Key parameters for separating proteins in a Native PAGE system are
pI of the protein of interest and the pH of the electrophoresis buffer

pH and pI

The pH of the electrophoresis buffer must be within the pH range over which the protein
of interest is stable and retains biological activity. In addition, the pH of the buffer must impart
sufficient charge to the protein for it to move through the gel. Changes in pH will affect both
the charge and size (hydrodynamic volume) of the protein of interest and will affect
migration rates. For example, a buffer with a pH greater than the pI of the protein will impart
a negative charge on the protein and it will migrate toward the positive electrode (anode).
Conversely, a buffer with a pH lower than the pI of the protein will impart a positive charge
and the protein will migrate to the negative electrode (cathode). A pH equal to the pI will
result in no net charge in the protein and it will not migrate in an electric field.

Protein mobilities are best modified by the buffer's pH. Buffers with a pH closer to the pI
will provide the best resolution. However run times may be lengthy. Conversely, buffers with
a pH further from the pI will allow faster migration but resolution may be compromised. The
choice of pH becomes a tradeoff between separation and speed.

How to Choose a Native PAGE system

1. Discontinuous Buffer Systems (Ornstein-Davis2)

A discontinuous buffer system should be the first non-denaturing gel system tried.
Detailed protocols are provided in Section 4.2. The advantage of a discontinuous system
is the use of a stacking gel to concentrate dilute protein samples. However, the stacking
phenomena can also cause aggregation of some proteins and interfere with resolution. If
protein aggregation occurs, a continuous buffer system should be used.

Note: The pH attained in the resolving gel of the Ornstein-Davis system approaches
pH 9.5, which may be outside the range of stability for some proteins, causing denaturation.
Additionally, the pI of the protein of interest may be too close to or above the Ornstein-
Davis buffer pH (9.5), which may result in a very low net charge or a positive net charge
that may significantly reduce or even prohibit migration to the anode. Alternative
discontinuous systems can be found in an article by Chrambach and Jovin.3

Note: It is very desirable to know the pI of the protein of interest before selecting a buffer
system.

2. Continuous Buffer Systems

A continuous buffer system will be required if discontinuous systems cannot be used due
to stacking-induced protein aggregation. In a continuous system the same buffer is used
in the upper and lower electrode chambers as in the gel. Since stacking does not occur,
proteins migrate in bands at least as wide as the height of the applied sample in the well.
Consequently, sample volumes should be minimized. The mobility of proteins in a
continuous system is dictated by pH rather than by sieving through the polyacrylamide
gel. For this reason, 6% polyacrylamide gels are recommended for most applications.
For very large proteins, 4% or 5% gels may be used. McLellan describes various continuous
buffer systems from pH 3.8–10.2.4 Detailed protocols are provided in Section 4.3.
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Section 4
Reagent Preparation and Stock Solutions

4.1 Volumes Required Per Gel
The volumes listed are required to completely fill a gel cassette. Amounts may be adjusted

depending on the application (with or without comb, with or without stacking gel, etc.).

Gel Thickness (mm) Volume (ml)
0.5 2.8
0.75 4.2
1.0 5.6
1.5 8.4

Note: 10 ml of monomer solution is sufficient for two stacking gels of any thickness.

4.2 SDS-PAGE (Laemmli)1 Buffer System

Stock Solutions and Buffers

1. Acrylamide/Bis (30% T, 2.67% C)

87.6 g acrylamide (29.2 g/100 ml)
2.4 g N'N'-bis-methylene-acrylamide (0.8 g/100 ml)

Make to 300 ml with deionized water. Filter and store at 4 °C in the dark (30 days
maximum.)

or, use:

Preweighed Acrylamide/Bis, 37.5:1 mixture (30%T, 2.67% C)
(Bio-Rad catalog number 161-0125, 150 g)

30% Acrylamide/Bis Solutions, 37.5:1 mixture (30%T, 2.67% C)
(Bio-Rad catalog number 161-0158, 500 ml)
(Bio-Rad catalog number 161-0159, 2 x 500 ml)

2. 10% (w/v) SDS

Dissolve 10 g SDS in 90 ml water with gentle stirring and bring to 100 ml with deionized
water. Alternatively 10% SDS solution (250 ml) can be used (Bio-Rad catalog number
161-0416).

3. 1.5 M Tris-HCl, pH 8.8

27.23 g Tris base (18.15 g/100 ml)
80 ml deionized water

Adjust to pH 8.8 with 6 N HCl. Bring total volume to 150 ml with deionized water and
store at 4 °C. Alternatively 1.5 M Tris-HCl, pH 8.8 (1 L) premixed buffer can be used
(Bio-Rad catalog number 161-0798).

4. 0.5 M Tris-HCl, pH 6.8

6 g Tris base
60 ml deionized water

Adjust to pH 6.8 with 6 N HCl. Bring total volume to 100 ml with deionized water and
store at 4 °C. Alternatively 0.5 M Tris-HCl, pH 6.8 (1 L) premixed buffer can be used
(Bio-Rad catalog number 161-0799).
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5. Sample Buffer (SDS Reducing Buffer)

3.55 ml deionized water
1.25 ml 0.5 M Tris-HCl, pH 6.8
2.5 ml glycerol
2.0 ml 10% (w/v) SDS
0.2 ml 0.5%(w/v) bromophenol blue
9.5 ml Total Volume

Store at room temperature.
Use: Add 50 µl β-Mercaptoethanol to 950 µl sample buffer prior to use. Dilute the
sample at least 1:2 with sample buffer and heat at 95 °C for 4 minutes.

6. 10x Electrode (Running) Buffer, pH 8.3 (makes 1 L)

30.3 g Tris base
144.0 g Glycine
10.0 g SDS

Dissolve and bring total volume up to 1,000 ml with deionized water. Do not adjust pH
with acid or base. Store at 4 °C. If precipitation occurs, warm to room temperature before
use. Alternatively, electrophoresis running buffer 10x Tris/Glycine/SDS, 5 L cube
(Bio-Rad catalog number 161-0772) can be used.
Use: Dilute 50 ml of 10x stock with 450 ml deionized water for each electrophoresis
run. Mix thoroughly before use.

7. 10% APS (fresh daily)

100 mg ammonium persulfate
Dissolved in 1 ml of deionized water.

Gel Formulations (10 ml)

1. Prepare the monomer solution by mixing all reagents except the TEMED and 10% APS.
Degas the mixture for 15 minutes.

30% Degassed
DDI H2O Acrylamide/Bis *Gel Buffer 10% w/v SDS

Percent Gel (ml) (ml) (ml) (ml)
4% 6.1 1.3 2.5 0.1
5% 5.7 1.7 2.5 0.1
6% 5.4 2.0 2.5 0.1
7% 5.1 2.3 2.5 0.1
8% 4.7 2.7 2.5 0.1
9% 4.4 3.0 2.5 0.1
10% 4.1 3.3 2.5 0.1
11% 3.7 3.7 2.5 0.1
12% 3.4 4.0 2.5 0.1
13% 3.1 4.3 2.5 0.1
14% 2.7 4.7 2.5 0.1
15% 2.4 5.0 2.5 0.1
16% 2.1 5.3 2.5 0.1
17% 1.7 5.7 2.5 0.1

* Resolving Gel Buffer - 1.5 M Tris-HCl, pH 8.8
* Stacking Gel Buffer - 0.5 M Tris-HCl, pH 6.8
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2. Immediately prior to pouring the gel, add:

For 10 ml monomer solution:
Resolving Gel: 50 µl 10% APS and

5 µl TEMED
Stacking Gel: 50 µl 10% APS and

10 µl TEMED
Swirl gently to initiate polymerization.

Note: Prepare any desired volume of monomer solution by using multiples of the 10 ml
recipe. The volumes of APS and TEMED must be adjusted accordingly.

Warning: The catalyst concentration is very important! Webbing and incomplete well
formation can result from inaccurate catalyst concentration.

4.3 Discontinuous Native PAGE (Ornstein-Davis)2

Stock Solutions and Buffers

1. Acrylamide/Bis (30% T, 2.67% C)

87.6 g acrylamide (29.2 g/100 ml)
2.4 g N'N'-bis-methylene-acrylamide (0.8 g/100 ml)

Make to 300 ml with deionized water. Filter and store at 4 °C in the dark (30 days
maximum).

or, use:

Preweighed Acrylamide/Bis, 37.5:1 mixture
(Bio-Rad catalog number 161-0125, 150 g)

30% Acrylamide/Bis Solutions, 37.5:1 mixture
(Bio-Rad catalog number 161-0158, 500 ml)
(Bio-Rad catalog number 161-0159, 2 x 500 ml)

2. 1.5 M Tris-HCl, pH 8.8

27.23 g Tris base (18.15 g/100 ml)
80 ml deionized water

Adjust to pH 8.8 with 6 N HCl. Bring total volume up to 150 ml with deionized water and
store at 4 °C. Alternatively 1.5 M Tris-HCl, pH 8.8 (1 L) premixed buffer can be used
(Bio-Rad catalog number 161-0798).

3. 0.5 M Tris-HCl, pH 6.8

6 g Tris base
60 ml deionized water

Adjust to pH 6.8 with 6 N HCl. Bring total volume up to 100 ml with deionized water and
store at 4 °C. Alternatively 0.5 M Tris-HCl, pH 6.8 (1 L) premixed buffer can be used
(Bio-Rad catalog number 161-0799).

4. Sample Buffer

5.55 ml deionized water
1.25 ml 0.5 M Tris-HCl, pH 6.8
3.0 ml glycerol
0.2 ml 0.5% (w/v) bromophenol blue

10.0 ml Total Volume
Store at room temperature.
Use: Dilute the sample at least 1:2 with sample buffer and heat at 95 °C for 4 minutes.
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5. 10x Electrode (Running) Buffer, pH 8.3

30.3 g Tris base (15 g/l)
144.0 g Glycine (72 g/l)

Bring total volume up to 1,000 ml with deionized water. Do not adjust pH. Alternatively
electrophoresis running buffer 10x Tris/Glycine, 1 L (Bio-Rad catalog number 161-0734)
can be used.
Usage: Dilute 50 ml of 10x stock with 450 ml deionized water for each electrophoresis run.

Gel Formulations (10 ml)

1. Prepare the monomer solution by mixing all reagents except the TEMED and 10% APS.
Degas the mixture for 15 minutes.

30% Degassed
Percent DDI H2O Acrylamide/Bis *Gel Buffer

Gel (ml) (ml) (ml)
4% 6.2 1.3 2.5
5% 5.8 1.7 2.5
6% 5.5 2.0 2.5
7% 5.2 2.3 2.5
8% 4.8 2.7 2.5
9% 4.5 3.0 2.5
10% 4.2 3.3 2.5

* Resolving Gel Buffer - 1.5 M Tris-HCl, pH 8.8
* Stacking Gel Buffer - 0.5 M Tris-HCl, pH 6.8

2. Immediately prior to pouring the gel, add:

50 ml APS and
TEMED (5 µl for Resolving Gels; 10 µl TEMED for stacking gels)
Swirl gently to initiate polymerization.

Note: Prepare any desired volume of monomer solution by using multiples of the 10 ml
recipe. The volumes of APS and TEMED must be adjusted accordingly.

4.4 Continuous Native PAGE

Stock Solutions and Buffers

1. Acrylamide/Bis (30% T, 2.67% C)

87.6 g acrylamide (29.2 g/100 ml)
2.4 g N'N'-bis-methylene-acrylamide (0.8 g/100 ml)

Make to 300 ml with deionized water. Filter and store at 4 °C in the dark (30 days
maximum.)

or, use:

Preweighed Acrylamide/Bis, 37.5:1 mixture
(Bio-Rad catalog number 161-0125, 150 g)

30% Acrylamide/Bis Solutions, 37.5:1 mixture
(Bio-Rad catalog number 161-0158, 500 ml)
(Bio-Rad catalog number 161-0159, 2 x 500 ml)
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2. Sample Buffer

1.0 ml Electrophoresis Buffer
3.0 ml Glycerol
0.2 ml 0.5% Bromophenol Blue
5.8 ml Deionized water

10.0 ml Total Volume

3. Continuous Buffers (McLellan)4

McLellan describes various continuous buffer systems from pH 3.8 to pH 10.2. Use the
table below to prepare 5x continuous non-denaturing PAGE electrophoresis buffers. Add
both the acidic and basic component to 1 liter of water. Do not adjust the pH. If the final pH
is outside the listed range discard the buffer and remake.

Basic Acidic
pH Component 5x Solution Component 5x Solution
3.8 Beta-Alanine 13.36 g/L Lactic Acid 7.45 ml/L

(89.09 MW) 85% Solution
4.4 Beta-Alanine 35.64 g/L Acetic Acid 11.5 ml/L

(89.09 MW) 17.4 M
4.8 GABA 41.24 g/L Acetic Acid 5.75 ml/L

(103.1 MW) 17.4 M
6.1 Histidine 23.28 g/L MES 29.5 g/L

(155.2 MW) (195.2 MW)
6.6 Histidine 19.4 g/L MOPS 31.4 g/L

(155.2 MW) (209.3 MW)
7.4 Imidazole 14.64 g/L HEPES 41.7 g/L

(68.08 MW) (238.33 MW)
8.1 Tris 19.38 g/L EPPS 37.85 g/L

(121.14 MW) (252.2 MW)
8.7 Tris 30.29 g/L Boric Acid 7.73 g/L

(121.14 MW) (61.83 MW)
9.4 Tris 36.34 g/L CAPS 44.26 g/L

(121.14 MW) (221.3 MW)
10.2 Ammonia 12.5 ml/L CAPS 22.13 g/L

(14.8 M) (221.3 MW)

Dilute 200 ml of 5x buffer with 800 ml deionized water to prepare 1x electrophoresis
buffer. The final concentrations of buffer components will be.

pH Basic Component Acidic Component
3.8 30 mM Beta-Alanine 20 mM Lactic Acid
4.4 80 mM Beta-Alanine 40 mM Acetic Acid
4.8 80 mM GABA 20 mM Acetic Acid
6.1 30 mM Histidine 30 mM MES
6.6 25 mM Histidine 30 mM MOPS
7.4 43 mM Imidazole 35 mM HEPES
8.1 32 mM Tris 30 mM EPPS
8.7 50 mM Tris 25 mM Boric Acid
9.4 60 mM Tris 40 mM CAPS
10.2 37 mM Ammonia 20 mM CAPS
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Gel Formulations (10 ml)

1. Prepare the monomer solution by mixing all reagents except the TEMED and 10% APS.
Degas the mixture for 15 minutes.

30% Degassed Continuous
Percent DDI H2O Acrylamide/Bis Buffer

Gel (ml) (ml) (ml)
4% 6.7 1.3 2.0
5% 6.3 1.7 2.0
6% 6.05 2.0 2.0

Note: Prepare any desired volume of monomer solution by using multiples of the 10 ml
recipe.

2. Immediately prior to pouring the gel, add:

For 10 ml monomer solution:
50 µl 10% APS
10 µl TEMED
Swirl gently to initiate polymerization.

Note: Below pH 6, TEMED becomes a less effective catalyst. Increase the concentration
of TEMED 5-fold to polymerize gels with a pH range between 4 and 6.

Section 5
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Section 6
Maintenance

Mini-PROTEAN 3 tank and lid, Rinse thoroughly with distilled water after
electrode assembly, clamping frame every use.

Casting stand and frame Rinse thoroughly with distilled water after
every use.

Glass plates and combs Wash with a laboratory detergent, then rinse
thoroughly with distilled water.
Limit submersion of Spacer Plates in strongly
basic solutions, such as >100 mM NaOH, to
less than 24 hours. Limit submersion in
chromic-sulfuric acid glass cleaning solution
to 2–3 hours. Prolonged submersion
compromises the integrity of the adhesive.
To preserve the longevity of the adhesive
bond, avoid extended submersion (>5 days) in
cleaning solutions made from Bio-Rad
cleaning concentrate (161-0722) or other
strongly basic detergents.

18



Section 7
Troubleshooting Guide

Problem Cause Solution
1. "Smile effect" - band pattern a. Center of the gel running a. Buffer not mixed well or buffer

curves upward at both sides hotter than either end. in upper chamber too
of the gel. concentrated. Remake buffer,

insuring thorough mixing,
especially when diluting 5x or
10x stock.

b. Power conditions excessive. b. Decrease power setting from
200 V to 150 V or fill lower
chamber to within 1 cm of top
of Short Plate.

2. Vertical streaking of protein. a. Sample overload. a. Dilute sample, selectively
remove predominant protein
in the sample, or reduce
voltage by about 25% to
minimize streaking.

b. Sample precipitation. b. Centrifuge sample before
addition of SDS sample
buffers, or decrease % T of
resolving gel.*

c. The ratio of SDS to protein
should be enough to coat
each protein molecule with
SDS, generally 1.4:1. It may
require more SDS for some
membrane protein samples.
For example, SDS in sample
can be increased to 4% and/or
in running buffer increased to
0.4%.

3. Lateral band spreading. a. Diffusion out of the wells a. Minimize the time between
prior to turning on the sample application and
current power start up.

b. Ionic strength of sample b. Use same buffer in sample as
lower than that of gel. in gel or stacking gel.

4. Skewed or distorted bands. a. Poor polymerization around a. Degas stacking gel solution
sample wells. thoroughly prior to casting;

increase ammonium persul-
fate and TEMED concentra-
tions by 25%; for stacking gel
or low%T, leave APS the
same and double the TEMED
concentration.

b. Salts in sample. b. Remove salts by dialysis,
desalting column, Micro Bio-
Spin columns, etc.

c. Uneven gel interface. c. Decrease the polymerization
rate. Overlay gels very
carefully.

5. Lanes constricted at bottom a. Ionic strength of sample a. Desalt sample and neighboring
of gel. higher than that of samples.

surrounding gel.

6. Run taking unusually long a. Running buffer too a. Check buffer protocol, dilute
time. concentrated. if necessary.

b. Excessive salt in sample. b. Desalt sample.
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Problem Cause Solution
7. Run too fast, poor resolution. a. Running or reservoir a. Check buffer protocol,

buffer too dilute. concentrate if necessary.

b. Voltage too high. b. Decrease voltage by
25–50%.

8. Doublets observed where a. A portion of the protein a. Prepare fresh sample buffer
a single protein species may have been solutions if over 30 days old;
is expected (SDS-PAGE) reoxidized during the run or increase 2-mercaptoethanol

may not have been fully concentration in the sample
reduced prior to run. buffer; substitute DTT for BME.

9. Observe fewer bands than a. Protein(s) migrating at the a. Increase % T of resolving
expected and one heavy dye front. gel.*
band at dye front.

b. Protein degradation. b. Use protease inhibitors, e.g.
PMSF, etc.

10. Upper buffer chamber leaks. a. Upper buffer chamber over a Keep level of buffer below
filled. the top of the Spacer Plates.

b. Improper assembly. b. Be sure u-shaped electrode
core gasket is clean, free of
cuts, and lubricated with buffer.
Be sure Short Plate is under the
notch on the gasket, not on top
of it and press down on elec-
trode assembly when closing
cams of the frame.

11. Leaking during gel casting. a. Chipped glass plates. a. Insure glass plates are free of
flaws.

b. Spacer Plate and Short b. Insure cassette is aligned
Plate not level. correctly.

c. Casting Stand gasket is c. Replace casting stand gaskets.
flawed or worn out.

12. Poor end well formation. a. Incorrect catalyst a. Prepare fresh catalyst solution,
concentration. or increase catalyst concentra-

tion of stacking gel to
0.06% APS and 0.12% TEMED.

b. Monomer solution not b. Degas monomer solution
degassed. Oxygen inhibits immediately prior to casting the
polymerization. stacking gel.

13. Webbing/excess acrylamide a. Incorrect catalyst a. Prepare fresh catalyst solution,
behind the comb. concentration. or increase catalyst concentra-

tion of stacking gel to
0.06% APS and 0.12% TEMED.

14. The pressure cams on the a. A build up of a powder a. Rinse or wipe off the powder
casting frame are difficult residue at the pivot point residue before each use.
to close or make a noise of the pressure cams.
when closed.

*Polyacrylamide gels are described by reference to two characteristics:

1) The total monomer concentration, (%T) and

2) The crosslinking monomer concentration (%C).

g acrylamide + g bis-acrylamide
Total Volume

g bis-acrylamide
g acrylamide + g bis-acrylamide
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Section 8
Product Information and Accessories

Catalog
Number Description

Mini PROTEAN 3 Systems

165-3301 Mini-PROTEAN 3 Electrophoresis System, 10 well, 0.75 thick-
ness, complete system includes 2 combs, 5 sets of glass plates,
casting stand, 2 casting frames, sample loading guide, 2 gel
releasers, and Electrophoresis Module

165-3302 Mini-PROTEAN 3 Electrophoresis Module, for Ready Gel precast
gel applications, includes electrode assembly, clamping frame,
tank, lid with power cables, mini cell buffer dam, 2 gel releasers

165-3375 Mini-PROTEAN II Upgrade Kit, includes Mini-PROTEAN 3
Clamping Frame and Electrode Assembly

165-3314 Mini-PROTEAN 3 Cell/PowerPac 300 System, 100/120 V

165-3315 Mini-PROTEAN 3 Cell/PowerPac 300 System, 220/240 V

165-3316 Mini-PROTEAN 3 Cell/PowerPac Junior System, 100–240 V

165-3317 Mini-PROTEAN 3 Cell and Mini Trans-Blot® module

Casting Modules

Each casting module includes 2 combs, 5 sets of glass plates, casting stand,
2 casting frames, and the appropriate Sample Loading Guide.

0.5 mm spacer 0.75 mm spacer 1.0 mm spacer 1.5 mm spacer

5 well comb NA 165-3327 165-3332 165-3338

9 well comb NA 165-3328 165-3333 165-3339

10 well comb 165-3325 165-3329 165-3334 165-3340

15 well comb 165-3326 165-3330 165-3335 165-3341

Prep/2D comb NA 165-3331 165-3336 165-3342

IPG comb NA NA 165-3337 165-3343

Hand Cast Gel Accessories and Replacement Parts

165-3303 Mini-PROTEAN 3 Casting Stand, 1

165-3304 Mini-PROTEAN 3 Casting Frame, 1

165-3305 Mini-PROTEAN 3 Casting Stand Gaskets (replacement), 2

165-3308 Mini-PROTEAN 3 Short Plates, 5

165-3309 Mini-PROTEAN 3 Spacer Plates with 0.5 mm spacers, 5

165-3310 Mini-PROTEAN 3 Spacer Plates with 0.75 mm spacers, 5

165-3311 Mini-PROTEAN 3 Spacer Plates with 1.0 mm spacers, 5

165-3312 Mini-PROTEAN 3 Spacer Plates with 1.5 mm spacers, 5
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Catalog
Number Description

Other Replacement Parts

165-3306 Mini-PROTEAN 3 Clamping Frame, 1

165-3307 Mini-PROTEAN 3 Electrode Assembly, 1

165-3201 Sample Loading Guide, 9 well (red), 1

165-3146 Sample Loading Guide, 10 well (yellow), 1

165-3203 Sample Loading Guide, 12 well (green), 1

165-3132 Sample Loading Guide, 15 well (blue), 1

165-3130 Buffer Dam, 2

165-3320 Mini PROTEAN 3 Gel Releaser, 5

165-3149 Replacement Electrode Assembly Gaskets, 2

165-3157 Gaskets, for precast carbohydrate gels, 2

161-0990 Empty Cassettes, 1.0 mm Ready Gel, 10

165-2975 Buffer Tank and Lid, replacement

165-2948 Replacement Power Cables

165-2949 Cell Lid with Power Cables

900-7680-8 Replacement Platinum Wire, cathode, 8 inches

900-7680-13 Replacement Platinum Wire, anode, 13 inches

Combs

0.5 mm spacer 0.75 mm spacer 1.0 mm spacer 1.5 mm spacer

5 well comb NA 165-3352 165-3357 165-3363

9 well comb NA 165-3353 165-3358 165-3364

10 well comb 165-3350 165-3354 165-3359 165-3365

15 well comb 165-3351 165-3355 165-3360 165-3366

Prep/2D comb NA 165-3356 165-3361 165-3367

IPG comb NA NA 165-3362 165-3368
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Section 9
Warranty Information

The Mini-PROTEAN 3 cell is warranted for 1 year against defects in materials and
workmanship. If any defects should occur during this warranty period, Bio-Rad Laboratories
will replace the defective parts without charge. However the following defects are specifi-
cally excluded.

1. Defects caused by improper operation.

2. Repairs or modifications done by anyone other than Bio-Rad Laboratories or their
authorized agent.

3. Damaged caused by accidental misuse.

4. Damage caused by disaster.

5. Common consumable replacement parts including platinum wire, the rubber gaskets, and
glass plates.

6. Damage caused by the use of organic solvents.

For inquiry or request for repair service, contact your local Bio-Rad office.

Warranty Information
Model

Catalog Number

Date of Delivery

Serial Number

Invoice Number

Purchase Order No
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Note

Assembly and Disassembly

To insure best performance from the Mini Trans-Blot® electrophoretic transfer cell,

become fully acquainted with these operating instructions before using the cell to transfer

samples. Bio-Rad recommends that you first read these instructions carefully. Then 

assemble and disassemble the cell completely. After these preliminary steps, you should

be ready to transfer a sample.

Wash Cell Before Use

Bio-Rad also recommends that all Mini Trans-Blot electrophoretic transfer cell components

and accessories be cleaned with a suitable laboratory cleaner (such as Bio-Rad Cleaning

Concentrate, catalog number 161-0722) and rinsed thoroughly with distilled water before

use.

Warranty

Bio-Rad Laboratories warrants the Mini Trans-Blot electrophoretic transfer cell against

defects in materials and workmanship for 1 year. If any defects occur in the instrument dur-

ing this warranty period, Bio-Rad Laboratories will repair or replace the defective parts free.

The following defects, however, are specifically excluded:

1. Defects caused by improper operation.

2. Repair or modification done by anyone other than Bio-Rad Laboratories or an authorized

agent.

3. Use of fittings or other spare parts supplied by anyone other than Bio-Rad Laboratories.

4. Damage caused by accident or misuse.

5. Damage caused by disaster.

6. Corrosion due to use of improper solvent or sample.

For any inquiry or request for repair service, contact Bio-Rad Laboratories after 

confirming the model and serial number of your instrument.

Model

Catalog Number

Date of Delivery

Warranty Period

Serial Number

Invoice Number

Purchase Order Number
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Section 1
Introduction

Blotting was first performed by Southern in 1975 with the transfer of DNA from

agarose gels to nitrocellulose membranes.1 Since that time, blotting has been applied to

RNA2-4 and proteins5, 6 in both agarose and polyacrylamide gels. To circumvent the 

inefficiencies observed in various capillary transfers, electric current has been adopted for

eluting proteins from polyacrylamide gels, as first described by Towbin et al. in 1979.7 The

use of electrophoretic transfer has also been applied to DNA and RNA blotting.8-13, 30

Numerous publications have dealt with the topic of protein electrophoretic transfer 

techniques.14-25 There have also been reviews summarizing the expanding literature being

generated on electrophoretic blotting methodology.26, 27, 31

The Mini Trans-Blot® tank is part of Bio-Rad's modular Mini-PROTEAN® Tetra system.

The unique feature of this electrophoresis system is that the electrode modules are 

interchangeable. After finishing gel electrophoresis, remove the electrode module from the

buffer tank, insert a new electrode module, add new buffer, and the next electrophoresis

application can be performed. 

The Mini Trans-Blot module accommodates two cassettes for electrophoretic transfer.

The Mini Trans-Blot module is useful for blotting either protein or nucleic acid from both

agarose and acrylamide gels. It is also capable of blotting isoelectric focusing gels from

horizontal electrophoresis cells, or DNA and RNA gels from the Mini-Sub® submarine 

electrophoresis cell. For applications where the gel is larger than 7.5 x 10 cm, or when

there are more than two mini gels to be transferred, the larger standard Trans-Blot® cell 

(catalog #170-3910 or 170-3946), Criterion™ Blotter (catalog #170-4070, 170-4071) or the

Trans-Blot® SD semi-dry cell (catalog #170-3940) should be used. 

The heart of the Mini Trans-Blot cell is its electrode module. This module has the

capacity to hold two gel cassettes between parallel electrodes only 4 cm apart. The driving

force for blotting applications is the voltage applied over the distance between the electrodes.

This short 4 cm electrode distance allows generation of higher driving forces to produce

efficient protein transfers. A second feature of the electrode module is that it is offset to

accommodate a blue cooling unit. The cooling unit, which is completely contained within

the Mini Trans-Blot cell, absorbs the Joule heat generated during rapid electrophoretic

transfers. The advantages of having an internal cooling unit include elimination of an

expensive external cooling bath and avoidance of cumbersome cooling tubing. Other features

of the Mini Trans-Blot cell include gel holder cassette latches for easy handling, color 

coordinated cassettes and electrodes to insure proper orientation of the gel during transfer,

and an efficient design which simplifies insertion and removal of the cassettes from the 

electrode assembly. These features result in an electrophoretic transfer system which is

easy to use and produces excellent blotting results.
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1.1  Specifications

Construction

Electrode module Molded polysulfone

Gel holder cassettes Molded polycarbonate

Electrodes Platinum wire 0.254 mm diameter

Buffer chamber and lid Molded polycarbonate

Cooling unit Polyethylene

Overall dimensions

Mini Trans-Blot cell 16 (L) x 12 (W) x 18 (H) cm

Gel holder dimensions 10 x 11 cm

Maximum gel size 7.5 x 10 cm

Buffer capacity

With cooling unit 950 ml

Without cooling unit 1,150 ml

Cleaning Use mild soap and warm water to clean the
electrodes, cassettes, and buffer tank. Use special
care when cleaning the electrode cards. Avoid
stretching or breaking the platinum wires. Do not
use abrasives or strong detergents. Rinse the
fiber pads under hot water and then in distilled,
deionized water.

Chemical compatibility The Mini Trans-Blot cell components are not 
compatible with chlorinated hydrocarbons
(e.g., chloroform), aromatic hydrocarbons
(e.g., toluene, benzene), or acetone. Use of
organic solvents voids all warranties.
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1.2  Safety Instructions

Power to the Mini Trans-Blot cell is supplied by an external DC voltage power supply.

This power supply must be ground isolated in such a way that the DC voltage output floats

with respect to ground. All of Bio-Rad’s power supplies meet this important safety requirement.

Regardless of which power supply is used, the maximum specified operating parameters

for the cell are:

150 VDC Maximum voltage limit

40 Watts Maximum power limit

50°C Maximum ambient temperature limit

Current to the cell, provided from the external power supply, enters the unit through the

lid assembly, providing a safety interlock to the user. Current to the cell is broken when the

lid is removed. Do not attempt to circumvent this safety interlock, and always turn the

power supply off before removing the lid, or when working with the cell in any way.

Important: This Bio-Rad instrument is designed and certified to meet IEC1010-1* safety

standards. Certified products are safe to use when operated in accordance with the instruction

manual. This instrument should not be modified or altered in any way. Alteration of this

instrument will:

• Void the manufacturer's warranty

• Void the IEC1010-1 safety certification

• Create a potential safety hazard

Bio-Rad is not responsible for any injury or damage caused by the use of this instrument for

purposes other than for which it is intended or by modifications of the instrument not 

performed by Bio-Rad or an authorized agent.

* IEC1010-1 is an internationally accepted electrical safety standard for laboratory instruments.

!
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Section 2
Mini Trans-Blot® Cell Assembly
and Preparation for Transfer

2.1  Mini Trans-Blot Cell Description and Assembly of Parts

4

Lid

Fiber pad

Filter paper

Membrane

Gel
Filter paper
Fiber pad

Gel holder
cassette

Blue cooling
unit (keep
frozen at –20°C)

Buffer tank

Electrode
module
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2.2  Preparation for Blotting

Store the blue cooling unit in your laboratory freezer at –20°C until ready to use. After use,

rinse the outside container with water and return the cooling unit to the freezer for storage.

1. Prepare the transfer buffer. (See Section 3.3 for buffer formulation. Using buffer chilled

to 4°C will improve heat dissipation.)

2. Cut the membrane and the filter paper to the dimensions of the gel or use precut 

membranes and filter paper. Always wear gloves when handling membranes to prevent

contamination. Equilibrate the gel and soak the membrane, filter paper, and fiber pads

in transfer buffer (15–20 min depending on gel thickness).

3. Prepare the gel sandwich.

Place the cassette, with the gray side down, on a clean surface.

Place one pre-wetted fiber pad on the gray side of the cassette.

Place a sheet of filter paper on the fiber pad.

Place the equilibrated gel on the filter paper.*

Place the pre-wetted membrane on the gel.*

Complete the sandwich by placing a piece of filter paper on the membrane.*

Add the last fiber pad.

* Removing any air bubbles which may have formed is very important for good results. Use a glass

tube or roller to gently roll out air bubbles.

Fiber pad

Filter paper

Membrane

Fiber pad

Filter paper
Gel



4. Close the cassette firmly, being careful not to move the gel and filter paper sandwich.

Lock the cassette closed with the white latch.

5. Place the cassette in module. Repeat for the other cassette. 

6. Add the frozen blue cooling unit. Place in tank and fill to the "blotting" mark on the tank.
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7. Add a standard stir bar to help maintain even buffer temperature and ion distribution in

the tank. Set the speed as fast as possible to keep ion distribution even.

8. Put on the lid, plug the cables into the power supply, and run the blot. Refer to Section

3 for run times and voltage settings with various buffers.

9. Upon completion of the run, disassemble the blotting sandwich and remove the membrane

for development. Clean the cell, fiber pads, and cassettes with laboratory detergent and

rinse well with deionized water.
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2.3  Acidic Transfers

If transferring under acidic conditions, switch the gel and membrane in the set up

instructions. This will place the membrane on the cathode side of the gel. Under acidic 

conditions, proteins will transfer in the opposite direction going toward the negative cathode.

Section 3
Transfer Conditions

3.1  General Guide to Transfer Buffers and Running Conditions

Table 3.1 provide guidelines for power conditions using different buffers. Power conditions

are provided for various run times. Where multiple conditions are displayed, the higher the

voltage, the less time required for the run. Always use the blue cooling unit.

Table 3.1.  Guide to Buffers and Running Conditions

Standard Field High Intensity Field

Buffer Overnight Transfer 1 Hour Transfer

SDS-PAGE Gels Buffer A or B or C Buffer A or B or C

A: 25 mM Tris, pH 8.3, 192 mM 30 V, constant 100 V, constant
glycine, with or without 90 mA 350 mA
20% MeOH and .025%–0.1% SDS

B: 48 mM Tris, pH 9.2, 39 mM glycine,
with or without 20% MeOH and
.025%–0.1% SDS

C: 10 mM NaHCO
3
, 3 mM NaCO

3
,

pH 9.9, with or without 20% MeOH
and .025%–0.1% SDS

DNA and RNA

TAE: 20 mM Tris, pH 7.8, 10 mM 30 V, constant 80 V, constant
sodium acetate, 0.5 mM EDTA. 100 mA 500 mA

TBE: 50 mM Tris, pH 8.3,
50 mM sodium borate, 1.0 mM EDTA.

Native Gels

25 mM Tris, pH 8.3, 30 V, constant 100 V, constant
192 mM glycine. No methanol. 90 mA 350 mA

Isoelectric Focusing, Native Gels,
Basic Proteins, Acid Urea Gels*

0.7% acetic acid. 30 V, constant 100 V, constant
100 mA 350 mA

*Please refer to Section 2.3 before transfering.
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3.2  Notes on Electrophoretic Transfer Conditions

These variables will change total resistance and thus the current readings:

• Alterations in buffer make-up, i.e., addition of SDS, or changes in ion concentration

due to addition of acid or base to adjust the pH of the buffers

• Gel pH, ionic strength, and percentage of acrylamide, especially if the gel has not

been properly equilibrated

• Number of gels; current increases slightly as the number of gels increases

• Volume of buffer; current increases when volume increases

• Platinum mass; current increases when mass increases

• Transfer temperature; current increases when temperature increases

• Time in transfer at which reading was taken; current normally increases as the

buffering capacity diminishes with progress of the run

Pre-equilibration of gels (15–20 min) 

All electrophoresis gels should be pre-equilibrated in transfer buffer prior to electrophoretic

transfer. Pre-equilibration will facilitate the removal of contaminating electrophoresis buffer

salts and neutralization salts (salts resulting from the denaturation of nucleic acids prior to

transfer). If the salts are not removed, they will increase the conductivity of the transfer

buffer and the amount of heat generated during the transfer. Also, low percentage gels will

shrink in methanol buffers. Equilibration allows the gel to adjust to its final size prior to 

electrophoretic transfer.

Current limits 

The PowerPac® Basic power supply is capable of a 75-watt output. Unless a current

limit is set, uncontrolled conductivity changes may result in full power being delivered to the

Mini Trans-Blot® cell. The gel holders may warp, and the transfer buffer may boil and 

evaporate (further increasing conductivity). This would result in a potential safety hazard.

Refer to the PowerPac Basic power supply instruction manual for setting current limits and

run times. The Mini Trans-Blot cell is also compatible with the PowerPac HC power supply.

Use of a stir bar during transfer

For all blotting applications a stir bar must be placed inside the Mini Trans-Blot cell and

the entire unit be placed on a stir bar mixer, so that the transfer buffer is stirred during the

course of the experiment. This will help to maintain uniform conductivity and temperature

during electrophoretic transfer. Failure to properly control transfer buffer temperature

results in poor transfer of macromolecules and poses a potential safety hazard.

Transfer buffer pH

Do not adjust the pH of transfer buffers unless specifically indicated. Adjustments of the

transfer buffers pH, when not indicated, will result in increased buffer conductivity. This is

manifested by a higher than expected initial current output and a decreased resistance. It is

recommended that the buffer conductivity and resistance be checked with the PowerPac

Basic power supply before starting each transfer.
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Transfer buffer recommendations

Use only high quality, reagent grade methanol. Contaminated methanol can result in

increased transfer buffer conductivity, as well as poor transfer of macromolecules. Do not

reuse transfer buffers or dilute transfer buffers below recommended levels. Reuse of transfer

buffers is not advised, since these buffers have most likely lost their ability to maintain a

stable solution pH during transfer. Dilution of transfer buffers below their recommended 

levels is also not advised, since this will decrease buffering capacity.

Voltage limits

Do not increase voltage settings beyond those indicated in Table 3.1. If overnight 

transfers at low voltages are ineffective for your application, and higher voltages are 

necessary, transfer times must also be decreased. Failure to do so may result in a potential

safety hazard.

3.3  Buffer Formulation

All formulas provided below are for a total volume of 1 L of buffer. Approximately 950 ml

of buffer are required for the Mini Trans-Blot cell with cooling unit. Ethanol can be used in

place of methanol in all buffer formulations.

Do not add acid or base to adjust pH of the following buffers. Methanol should be 

analytical reagent grade, as metallic contaminants in low grade methanol will plate on the

electrodes.

Note: Some pH electrodes will not perform a proper measurement for the pH of Tris

buffers. If the pH of the buffer is off, check to make sure the electrode is designed to work

with Tris buffers. If the pH electrode functions properly for Tris buffers and the pH is below

8.0, remake the buffer.

25 mM Tris, 192 mM glycine, 20% v/v methanol, pH 8.3

Mix 3.03 g Tris, 14.4 g glycine, and 200 ml of methanol; add distilled deionized water

(dd H
2
O) to 1 L.

25 mM Tris, 192 mM glycine, pH 8.3

Mix 3.03 g Tris and 14.4 g glycine; add dd H
2
O to 1 L.

48 mM Tris, 39 mM glycine, 20% v/v methanol, pH 9.2

Mix 5.82 g Tris and 2.93 g glycine in ddH
2
O, add 200 ml methanol.

Add to 1 L with ddH
2
O.

48 mM Tris, 39 mM glycine, pH 9.2

Mix 5.82 g Tris and 2.93 g glycine.

Add ddH
2
O to 1 L.

10 mM NaHCO
3
, 3 mM NaCO

3
, 20% methanol, pH 9.9

Mix 0.84 g NaHCO
3

and 0.318 g NaCO
3

in ddH
2
O, add 200 ml methanol.

Add to 1 L with ddH
2
O.
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1.0x TBE (Tris-Borate EDTA), pH 8.3

90 mM Tris-Borate, 1 mM EDTA

5x stock solution

54 g Tris base

27.5 boric acid

20 ml 0.5 M EDTA (pH 8.0)

Add 200 ml 5x stock solution to 800 ml ddH2O to make 1x working solution.

1x TAE (Tris-Acetate EDTA)

40 mM Tris-Acetate, 1 mM EDTA

50x stock solution

242 g Tris base

57.1 ml glacial acetic acid

100 ml 0.5 M EDTA (pH 8.0)

Add 20 ml 50x stock solution to 980 ml ddH
2
O to make 1x working solution.

Section 4
Strategies for Optimizing Electrophoretic Transfer

4.1  Optimizing Protein Transfer

Generally, quantitative elution of denatured high molecular weight proteins is difficult.

The following tactics, alone or in combination, will increase transfer efficiency.

Vary gel composition

Gradient gels are often more effective than single gel concentrations for elution of a

wide range of molecular weight proteins.

Lower the total monomer to create a more porous gel.

Increase or decrease the percentage of crosslinker. A 5.26% C gel will contain the

smallest pore size of all gels no matter what the concentration of acrylamide. Decrease

in %C will make gels more porous with little loss in resolution.

grams bis

grams bis + grams acrylamide

Increase transfer time

An initial control should be performed to determine the time required for complete

transfer.17, 24 Times may vary from as little as 30 minutes to as long as overnight.

Remember all overnight applications should be performed at 30 volts to minimize heating

problems. 

Increase the power

Initial controls should be performed to evaluate the efficiency of increasing the V/cm as

well as its effects on the temperature of transfer. The temperature increase may change

buffer resistance and subsequent power delivered, as well as the state of protein denaturation,

thus affecting transfer efficiency.

11
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Reduce buffer strength

Dilution of transfer buffer results in lower current at any given voltage. This will allow the

use of higher voltages without excessive heating. However, be aware not to dilute the

buffer below its buffering capacity.

Vary buffer type and pH

Maximize charge-to-mass ratio. It appears that alcohols present in SDS transfer buffer

strip SDS from proteins. Basic proteins in Tris, glycine, methanol buffer at pH 8.3 may

assume a state near isoelectric neutrality and thus transfer poorly. For example, lysozyme

exhibits this behavior. Buffers with pH of 9.5 to 10.0 have shown much better elution and

binding characteristics for basic proteins such as lysozyme and histones.41

Different buffer types at similar V/cm may yield different efficiencies. Generally, Tris

buffers allow more efficient transfer than acetate or phosphate buffers.

Add detergent

Addition of 0.1% SDS detergent to Tris, glycine, methanol buffer has been reported to

increase transfer efficiency.24 SDS, however, increases relative current, power, and heating.

Also, temperatures below 10°C may precipitate the SDS so the starting buffer temperature

will be higher. SDS may also affect the antigenicity of some proteins. SDS will aid in eluting

the proteins from the gel, but it may reduce the binding efficiency of those proteins to the

membrane.42

Eliminate alcohol from the transfer buffer

Alcohol in the transfer buffer improves binding of proteins to nitrocellulose only.

Elimination of alcohol results in increased transfer efficiency but diminishes binding to 

nitrocellulose. Transfer efficiency is increased because alcohol causes gel pores to contract

resulting in capture of large molecular weight proteins within the gel matrix. Use of PVDF

membrane for protein transfers eliminates the alcohol requirement, and constitutes a logical

strategy for analysis of high molecular weight or difficult-to-transfer proteins.26, 27 PVDF

must be wetted in 100% methanol but may then be used in buffer without methanol.

Limited protease treatment

A protocol for protease digestion of protein during transfer has been published.22

Efficient transfer without loss of immunological reactivity was reported.

Alter membrane type

Both nitrocellulose and PVDF can be used for protein transfer.

Alter gel system

If possible, use nondenaturing gradient pore gels for separation of proteins. Isoelectric

focusing gels, or native gels, may be considered if separation by molecular weight is not

mandatory.



Enhance gel-membrane contact

Failure of molecules to bind efficiently to the membrane, caused by poor gel-membrane

contact, is often confused with inefficient elution. Poor contact is usually due to excess

moisture in the gel-membrane interface. Proper technique and the use of a test tube or

glass pipet as a “rolling pin” should assure good contact. Proper selection of filter paper

spacers will help assure good compression. Gel and membrane equilibration in transfer

buffer for 15–20 min prior to transfer will help prevent shrinking of either component during

transfer, and will eliminate reactants such as urea or SDS from the gel.

4.2  Optimizing DNA and RNA Transfer

Problems with elution of nucleic acids can be solved by altering the gel percentage. It

may be somewhat more difficult to quantitatively transfer large amounts of DNA used in

genomic blots. Agarose gels over 6 mm thick are not compatible with the Mini Trans-Blot.

The following tactics should be considered for optimizing elution in such transfers.

Alter gel composition

Lower % total monomer or % crosslinker for polyacrylamide gels.

Lower % agarose. This allows better elution of high molecular weight DNA.

Alter DNA denaturants

It has been found that glyoxal denaturation allows more efficient elution of DNA than

NaOH. Boiling polyacrylamide gels to denature DNA has also been found to give excellent

results.11 Base denaturation often causes polyacrylamide gels to weaken and stick to blotting

membranes.

Section 5 
Choice of Blotting Membranes

5.1  Protein Blotting Membranes

Nitrocellulose Membrane

Nitrocellulose membranes have been used extensively for protein binding and

detection.7, 20, 23, 24, 27 They can be easily stained for total protein by a dye stain (Amido

Black, Coomassie Blue, Ponceau S, Fast Green FCF, etc.),27 or the more sensitive

Colloidal Gold Total Protein Stain, and also allow either RIA, FIA, or EIA.7 Nitrocellulose

has a high binding capacity of 80–100 µg/cm2. Nonspecific protein binding sites are easily

and rapidly blocked, avoiding subsequent background problems. No pre-activation is

required. Low molecular weight proteins (especially <15,000 daltons) may be lost during

post transfer washes, thus limiting detection sensitivity.19 Smaller pore size nitrocellulose

membrane 

(0.2 µm), has been shown to be effective in eliminating this loss.37 Large proteins

(>100,000 daltons) denatured by SDS may transfer poorly due to the addition of alcohol to

the transfer buffer. Alcohol increases binding of SDS-proteins to nitrocellulose, but decreases

pore sizes in the gel. Elimination of alcohol from SDS-protein transfers results in considerably

diminished binding. Adding SDS (up to 0.1%) to the transfer buffer increases the transfer

efficiency of proteins, but reduces the amount of binding to the membrane.17 Also, SDS

increases the conductivity of the buffer and the heat generated during transfer.
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PVDF Membrane

Polyvinylidene difluoride (PVDF) membrane is an ideal support for amino-terminal

sequencing, amino acid analysis and immunoassays of blotted proteins. PVDF retains 

proteins under extreme conditions of exposure to acidic or basic conditions, and in the

presence of organic solvents. Greater retention during sequencing manipulations enhances

the likelihood of obtaining information from rare, low abundance proteins, by increased initial

coupling and higher repetitive yields. In addition, PVDF membrane exhibits better binding

efficiency of blotted material in the presence of SDS in the transfer buffer. PVDF must first

be wetted in 100% MeOH but can then be used in buffer, which does not contain MeOH.

5.2  DNA and RNA Blotting Membranes

Zeta-Probe® Nylon Membrane

Nitrocellulose is not a suitable medium for electrophoretic transfer of nucleic acids, as

high concentrations of salt (>10x SSC) are required for efficient binding.13 Molecules 

£500 bp are not bound at all, even at high salt. Low resistance results when an electric 

current is passed through a solution of high salt. This causes potentially damaging high 

currents (and power) even at very low voltages. Since V/cm is the eluting force, inefficient

transfer occurs under conditions required for proper binding. Zeta-Probe membrane allows

efficient binding of all sizes of single stranded DNA and RNA in the presence of low ionic

strength buffers.13 Zeta-Probe membrane is an ideal alternative to nitrocellulose for the

transfer of nucleic acids. Binding is more stable through post transfer washes, and 

reprobing may be performed as many as 10 times.
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Table 5.1  Guide to Protein Blotting Membranes

A variety of blotting membranes is available for immunoblotting, each with particular

advantages depending on the needs of the experiment. The physical properties and 

performance characteristics of a membrane should be evaluated when selecting the 

appropriate transfer conditions.

Binding
Capacity

Membrane Pore Size (µg/cm2) Notes

Nitrocellulose 0.45 µm 80–100 General purpose protein blotting membrane
0.2 µm

Supported 0.45 µm 80–100 Pure nitrocellulose cast on an inert synthetic support;
Nitrocellulose 0.2 µm increased strength for easier handling and for reprobing

PVDF 0.2 µm 170–200 High mechanical strength and chemical stability, used for
protein sequencing and western blotting; enhanced 
binding in the presence of SDS. Must be wet in alcohol
before equilibration in buffer

Nylon 0.2 µm 170 Recommended for nucleic acids

Note: Nucleic acids cannot be transferred to nitrocellulose by electrophoretic blotting. Use Zeta-Probe membrane.

Section 6
Troubleshooting Guide

6.1  Electrophoretic Transfer

Poor electrophoretic transfer (as detected by staining the gel)—proteins

1. Transfer time is too short.

• Increase the transfer time

2. Power is too low.

• Always check the current at the beginning of the run. The current may be too low

for a particular voltage setting. If the buffer is prepared improperly, the conductivity

may be too low, and not enough power will be delivered to the cell. See the power

guidelines for specific applications in Section 3

• Remake the buffer or increase the voltage

• Try the high intensity blotting option

3. Power supply circuit is inoperative, or an inappropriate power supply was used.

• Check the fuse. Be sure the voltage and current output of the power supply match

the needs of the blotting instrument

4. Transfer apparatus is assembled incorrectly, and the proteins are moving in the wrong

direction.

• The gel/membrane sandwich may be assembled in the wrong order or the cassette

is inserted in the tank facing the opposite orientation. Check the polarity of the 

connections to the power supply

• Use a pre-stained protein standard to assess transfer efficiency after blotting
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5. Charge-to-mass ratio is incorrect.

• Try a more basic or acidic transfer buffer to increase protein mobility. Proteins near

their isoelectric point at the pH of the buffer will transfer poorly. (It has been suggested

that buffer pH should be 2 pH units higher or lower than the pI of the protein of

interest for optimal transfer efficiency.)

6. Protein is precipitating in the gel.

• Try using SDS in the transfer buffer. SDS can increase transfer efficiency, but can

also reduce binding efficiency to nitrocellulose and affect reactivity of some proteins

with antibodies

• An excess of methanol will lead to protein precipitation. Try decreasing methanol

content

7. Methanol in the transfer buffer is restricting elution.

• Reduction of methanol results in increased transfer efficiency of proteins from the

gel, but it also diminishes binding to nitrocellulose

8. Gel percentage too high.

• Reduce %T (total monomer) or %C (crosslinker). A 5.26% C (with bis as the

crosslinker) will produce the smallest pore size gel. Decreasing from this concen-

tration will increase the pore size and increase transfer efficiency

Poor transfer—nucleic acid

1. Gel percentage is too high.

• Reduce the %T or %C in the acrylamide gel or reduce % agarose in an agarose

gel

• Prior to transfer, cleave DNA in 0.25 M HCl or RNA in dilute NaOH

2. Transfer time is too short or power conditions are too low.

• Increase the transfer time, or try high intensity transfer

3. DNA or RNA cannot be transferred electrophoretically to nitrocellulose, since high salt

concentrations are required for efficient binding.

• Use Zeta-Probe membrane instead of nitrocellulose

Swirls or missing bands; diffuse transfers

1. Poor contact between the membrane and the gel. Air bubbles or excess buffer remain

between the blot and gel.

• Use a test tube or pipet as a rolling pin, and roll over the membrane carefully in

both directions until air bubbles and excess buffer are removed from between gel

and membrane, and complete contact is established

• Use thicker filter paper in the gel/membrane sandwich

• Replace the fiber pads. Pads will compress with time, and will not hold the membrane

to the gel

2. Power conditions are too high.

• Always check the current at the beginning of the run. The current may be too high

for a particular voltage setting. If the buffer is prepared improperly, the conductivity

may be too high, resulting in excessive power delivered to the cell. See the power

guidelines for specific applications in Section 3
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3. The membrane is not properly wet or has dried out.

• White spots on the nitrocellulose membrane indicate dry areas where protein will

not bind. If wetting does not occur immediately by immersion of the sheet in transfer

buffer, heat distilled water until just under the boiling point, and soak the membrane

until completely wet. Equilibrate in transfer buffer until ready for use

• Because of the hydrophobic nature of PVDF, the membrane must be prewet in

methanol prior to equilibration in aqueous transfer buffer. Do not let membrane dry

after wetting. Rewet in methanol if necessary

4. The gel electrophoresis may be at fault.

• Artifacts of electrophoresis may be produced by poor polymerization, inappropriate

running conditions, contaminated buffers, sample overload, etc

Gel cassette pattern transferred to blot

1. Contaminated or thin fiber pads are used.

• Replace the fiber pads, or thoroughly clean the contaminated pads

2. Excessive amounts of protein were loaded on the gel, or too much SDS was used in

the transfer buffer. Proteins can pass through the membrane without binding, and 

recirculate through the tank blotting system. 

• Reduce the amount of protein on the gel, and SDS in the transfer buffer. Reduce

transfer duration or add a second sheet of membrane to bind excess protein

3. The transfer buffer is contaminated.

• Make fresh solutions. Transfer buffer solution cannot be reused

Poor binding to the membrane—nitrocellulose

1. Nitrocellulose requires 20% methanol in the transfer buffer for optimal protein binding.

• Make sure the buffer contains the proper amount of methanol

2. Proteins may be transferring through the nitrocellulose.

• Use PVDF (higher binding capacities) or 0.2 µm nitrocellulose (smaller pore size).

Decrease the voltage if using the high intensity option

3. Mixed ester celluloses bind proteins poorly.

• Use pure nitrocellulose

4. Proteins <15,000 daltons may show diminished binding to 0.45 µm nitrocellulose, or

may be washed from the membrane during assays.

• To increase stability of binding, proteins can be crosslinked to nitrocellulose with

glutaraldehyde

• Use PVDF membrane, which has higher binding capacities

• Use Tween-20 detergent in the wash and antibody incubation steps. Reduce or

eliminate the more stringent washing conditions

5. SDS in the transfer buffer will reduce binding efficiency of proteins.

• Reduce or eliminate the SDS from the transfer buffer
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6. The membrane may not be completely wet.

• White spots on the membrane indicate dry areas where protein will not bind. If 

wetting does not occur immediately by immersion of the sheet in transfer buffer,

heat distilled water until just under the boiling point, and soak the membrane until

completely wet. Equilibrate in transfer buffer until ready for use

Poor binding to the membrane—PVDF

1. The membrane may not be completely wet. 

• Because of the hydrophobic nature of PVDF, the membrane must be prewet in

alcohol prior to equilibration in aqueous transfer buffer. Follow the directions in the

product insert

2. The membrane may have been allowed to dry during handling.

• A completely wet membrane has a gray, translucent appearance. White spots will

form on the surface of the membrane, indicating that it has been allowed to dry.

Since proteins will not bind to the dry spots, rewet the membrane with methanol

and re-equilibrate in transfer buffer
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Section 7
Product Information

Catalog
Number Product Description

Mini Trans-Blot® Cell 

170-3930 Mini Trans-Blot Electrophoretic Transfer Cell, includes 2 gel holder 

cassettes, 4 fiber pads, modular electrode assembly, blue cooling unit,

lower buffer chamber, and lid with cables

170-3935 Mini Trans-Blot Module, same as 170-3930 without lower buffer chamber
and lid

170-3989 Mini Trans-Blot Cell and PowerPac Basic Power Supply

170-3836 Mini Trans-Blot Cell and PowerPac HC Power Supply

Mini Trans-Blot Cell Accessories

170-3931 Mini Gel Holder Cassette

170-3932 Filter Paper, 7.5 x 10.5 cm, 50

170-3933 Fiber Pads, 8 x 11 cm, 4

170-3934 Blue Cooling Unit
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