
HOUSEKEEPING WITH
MULTIPLE AUTONOMOUS ROBOTS:

REPRESENTATION, REASONING, AND EXECUTION

by

Erdi Aker

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of
Master of Science

Sabanci University
August 2013

HOUSEKEEPING WITH
MULTIPLE AUTONOMOUS ROBOTS:

REPRESENTATION, REASONING, AND EXECUTION

Approved by:

Assoc. Prof. Dr. Esra Erdem
(Thesis Co-Advisor)

Assoc. Prof. Dr. Volkan Patoğlu
(Thesis Co-Advisor)

Assoc. Prof Dr. Berrin Yanıkoğlu

Asst. Prof. Dr. Hüsnü Yenigün

Prof. Dr. Ali Rana Atılgan

Date of approval: August 13, 2013

c© Erdi Aker 2013

All Rights Reserved

HOUSEKEEPING WITH
MULTIPLE AUTONOMOUS ROBOTS:

REPRESENTATION, REASONING, AND EXECUTION

Erdi Aker

Computer Science and Engineering, Master of Science, 2013

Thesis Supervisors: Esra Erdem, Volkan Patoğlu

Keywords: domestic service robot, answer set programming, commonsense knowledge

Abstract

We consider a housekeeping domain with static or movable objects, where the goal
is for multiple autonomous robots to tidy a house collaboratively in a given amount of
time. This domain is challenging in the following ways: commonsense knowledge (e.g.,
expected locations of objects in the house) is required for intelligent behavior of robots;
geometric constraints are required to find feasible plans (e.g., to avoid collisions); in case
of plan failure while execution (e.g., due to a collision with movable objects whose pres-
ence and location are not known in advance or due to heavy objects that cannot be lifted by
a single robot), recovery is required depending on the cause of failure; and collaboration
of robots is required to complete some tasks (e.g., carrying heavy objects). We introduce
a formal planning, execution and monitoring framework to address the challenges of this
domain, by embedding knowledge representation and automated reasoning in each level
of decision-making (that consists of discrete task planning, continuous motion planning,
and plan execution), in such a way as to tightly integrate these levels. At the high-level,
we represent not only actions and change but also commonsense knowledge in a logic-
based formalism. Geometric reasoning is lifted to the high-level by embedding motion
planning in the domain description. Then a discrete plan is computed for each robot using
an automated reasoner. At the mid-level, if a continuous trajectory cannot be computed
by a motion planner because the discrete plan is not feasible at the continuous-level, then
a different plan is computed by the automated reasoner subject to some (temporal) con-
ditions represented as formulas. At the low-level, if the plan execution fails, then a new
continuous trajectory is computed by a motion planner at the mid-level or a new discrete
plan is computed using an automated reasoner at the high-level. We illustrate the applica-
bility of this formal framework with a simulation of a housekeeping domain.

iv

ÇOKLU OTONOM ROBOTLARLA EV İDARESİ:
GÖSTERİM, AKIL YÜRÜTME, İCRA TAKİBİ

Erdi Aker

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans, 2013

Tez Danışmanları: Esra Erdem, Volkan Patoğlu

Anahtar Kelimeler: ev içi hizmet robotu, çözüm kümesi programlama, sağduyusal bilgi

Özet

Sabit ve hareket edebilir eşyaların yer aldığı bir evi, belirli bir süre içerisinde, bir-
den fazla robotun işbirliğiyle derli toplu hale getirmenin hedeflendiği bir ev idaresi or-
tamını ele alıyoruz. Söz konusu ortam şu zorlukları barındırmaktadır: robotların akıllıca
davranabilmesi için sağduyusal bilgiye (örn. ev içindeki eşyaların bulunmaları gereken
yerler) sahip olmaları gerekmektedir; uygulanabilir planların elde edilebilmesi için (örn.
çarpışmalardan sakınmak amacıyla) geometrik kısıtlar kullanılmalıdır; plan icrası sırasın-
da hataların gerçekleşmesi durumunda (örn. varlığı ya da yeri bilinmeyen bir eşya ile çar-
pışılması, ya da ağır bir eşyanın tek bir robot tarafından kaldırılamaması sonucu) sorunun
turu göz önüne alınarak hata telafi edimelidir; bazı görevlerin yerine getirilebilmesi için
(örn. ağır bir eşyanın taşınması) robotların işbirliğinde bulunması gerekmektedir. Bu zor-
lukların üstesinden gelmek amacıyla, karar verme sürecinin her seviyesine (kesikli görev
planlama, sürekli hareket planlama ve plan icrası dahil olmak üzere) bu seviyeleri sıkıca
bütünleştirecek bir şekilde bilgi gösterimi ve otomatik akıl yürütmenin gömüldüğü bir
biçimsel planlama, icra ve denetleme sistemini öne sürüyoruz. Üst seviyede, eylemler
ve değişimlerin yanı sıra, sağduyusal bilgiyi de mantık tabanlı biçimselcilikler yoluyla
betimliyoruz. Geometrik akıl yürütmeyi, hareket planlamayı ortam gösterimine gömerek
üst seviyeye çekiyoruz. Sonrasında otomatik akıl yürütücüler yardımıyla her bir robot için
kesikli planlar hesaplıyoruz. Orta seviyede, kesikli planın sürekli seviyede uygulanabilir
olmamasından dolayı hareket planlayıcının sürekli bir gezinge bulamaması durumunda,
bazı (zamansal) koşulları otomatik akıl yürütücülere formüller vasıtasıyla sunarak farklı
planlar hesaplıyoruz. Alt seviyede, plan icrasında hata olması durumda, orta seviyedeki
hareket planlayıcıya yeni bir sürekli gezinge hesaplatıyor, ya da üst seviyedeki otomatik
akıl yürütücüyü kullanarak yeni bir kesikli plan buluyoruz. Bu biçimsel sistemin uygula-
nabilirliğini simülasyon aracılığıyla gösteriyoruz.

v

ACKNOWLEDGEMENTS

I would like to thank my thesis advisors, Esra Erdem and Volkan Patoğlu, for their
guidance throughout my research.

I also thank the members of my thesis jury, Berrin Yanıkoğlu, Hüsnü Yenigün, and
Ali Rana Atılgan, for their comments and suggestions.

I would like to thank Ahmetcan Erdoğan for his participation in this work, his
friendship, and for buying me lunch last week when I did not have enough credit in my
SU card. Without him, this work would not have been as good, and I would be hungry.

During the period of this work, I have been a member of a research group, among
many good people. I would like to thank Umut Öztok and Süha Mutluergil for their help,
and making late nights in the office more bearable with their friendship and humor. I
also thank Zeynep Doğmuş, Halit Erdoğan, Kadir Haspalamutgil, Giray Havur, Zeynep
Sarıbatur, Peter Schüller, Fırat Tahaoğlu, and Tansel Uras, for their help, and being good
company.

Inarguably, I am indebted to my parents Erman and Gülfer, and my little brother
Gökhan, for their unconditional love and support. I am also grateful to all my friends,
near me or far away, for being a part of my life. All this work would be meaningless
without family and friends.

This work has been partially supported by TUBITAK Grants 111e116 and 113M422,
and Sabanci University IRP Grant IACF09-00643.

vi

TABLE OF CONTENTS

1 Introduction 1
1.1 Challenges . 1
1.2 Our Approach . 2
1.3 Contributions . 3
1.4 Thesis Outline . 4

2 Representing Action Domains 5
2.1 Brief Summary of Existing Logic-Based Formalisms 5
2.2 Causal Logic . 6
2.3 Action Language C+ . 9
2.4 Answer Set Programming . 12
2.5 A Transformation from C+ to ASP . 15
2.6 Automated Reasoners . 19

2.6.1 CCALC . 19
2.6.2 iclingo . 19
2.6.3 dlvhex . 22

3 Representing the Housekeeping Domain 25
3.1 Housekeeping Domain . 25
3.2 Representation of the Housekeeping Domain in C+ 25
3.3 Embedding Commonsense Knowledge into the Domain Description . . . 30
3.4 Embedding Geometric Reasoning into Causal Planning 33
3.5 Representing Durative Actions . 33
3.6 Representation of the Housekeeping Domain in ASP 35

3.6.1 Presenting the Housekeeping Domain to iclingo 35
3.6.2 Presenting the Housekeeping Domain to dlvhex 38

3.7 Further Use of Commonsense Knowledge 39
3.8 Heterogenous Robots . 40

vii

4 Reasoning about the Housekeeping Domain 42
4.1 Planning with CCALC and iclingo in the Housekeeping Domain 42
4.2 Planning with Complex Goals . 43
4.3 Hybrid Planning . 45
4.4 Experimental Evaluation . 49
4.5 Plan Optimization . 56

5 Monitoring the Plan Execution 57
5.1 Execution and Monitoring of Hybrid Plans 57
5.2 Experimental Evaluation: Hybrid Plans 72

6 Related Work 75
6.1 Domestic Service Robots . 75
6.2 Execution Monitoring . 77
6.3 Integration of Symbolic and Geometric Reasoning 77

7 Conclusion 79

A CCALC Formulation 81

B iclingo Formulation 85

C iclingo Formulation (Simplified) 90

D dlvhex Formulation 94

Bibliography 101

viii

LIST OF TABLES

4.1 Plans for Scenario 2 . 48
4.2 Collaborative Plan for Scenario 3 . 49
4.3 Planning Experiment Problem Details 50
4.4 Planning Time . 52
4.5 Memory Usage . 55

5.1 Execution of the Plans . 71
5.2 Monitoring Experiment Problem Details 72
5.3 Finding A Feasible Plan with and without path exists Predicate 73
5.4 Finding A Feasible Plan with and without time estimate Function . . . 74
5.5 Finding A Feasible Plan w/ and w/o both path exists and time estimate 74

ix

LIST OF FIGURES

2.1 Transition diagram of Bomb Disposal domain 11
2.2 Bomb Disposal domain in C+ (BD) . 12
2.3 Presenting Bomb Disposal domain to CCALC 20
2.4 Presenting a Bomb Disposal problem to CCALC 20
2.5 A Bomb Disposal plan obtained from CCALC 20
2.6 Presenting Bomb Disposal domain to iclingo 21
2.7 Presenting a Bomb Disposal problem to iclingo 22
2.8 A Bomb Disposal plan obtained from iclingo 22
2.9 Presenting Bomb Disposal domain to dlvhex 23
2.10 Presenting a Bomb Disposal problem to dlvhex 24
2.11 A Bomb Disposal plan obtained from dlvhex 24

3.1 Housekeeping domain . 26
3.2 Commonsense knowledge about bedroom objects 32

4.1 A CCALC query for a housekeeping problem 42
4.2 An iclingo query for a housekeeping problem 43
4.3 CCALC and iclingo queries with deadlines 44
4.4 CCALC and iclingo queries with temporal constraints 45
4.5 Housekeeping domain for Scenario 1 . 46
4.6 Planning problem for Scenario 1 . 46
4.7 An infeasible plan for Scenario 1 . 47
4.8 Planning problem for Scenario 2 . 48
4.9 Planning Time . 54
4.10 Memory Usage . 55

5.1 Flowchart of an execution and monitoring algorithm for the housekeeping
domain . 58

5.2 Flowchart of help offer routine in the housekeeping domain 58

x

LIST OF ALGORITHMS

1 monitor . 62
2 caseUnknownObject . 63
3 caseObjectNotFound . 63
4 caseHeavyObject . 63
5 caseCallRobot . 64
6 caseHelpRequested . 64
7 caseHelpOffered . 65
8 execute . 66
9 executeAction . 66
10 sendAction . 67
11 askForHelp . 68
12 offerHelp . 69
13 help . 69
14 listen . 70

xi

Chapter 1

Introduction

Robots being a part of our daily lives inside our homes is not a dream of distant
future. It is estimated that 2.5 million personal and domestic robots are sold in 2011 [73].
Still, we lack robots capable of fullfilling complex household tasks. While autonomous
vacuum cleaners which specialize on floor coverage are becoming ubiquitous, a similar
success has not been achieved for a robot that can accomplish a complicated task such as
“tidying up a house”. In this thesis, we focus on autonomous housekeeping robots whose
task is to tidy up the house, from the perspective of cognitive robotics. In other words, our
goal is to endow housekeeping robots with high-level cognitive capabilities so that they
can operate in a smart and effective manner.

1.1 Challenges

Consider a house with several rooms. In each room, there is a number of objects.
Some of them are stationary obstacles (e.g. sofa, table), while others are movable ob-
jects of different sorts (e.g. books, pillows). The movable objects can be misplaced, and
we want autonomous robots to relocate any misplaced object to an appropriate location.
Some of the challenges in such an environment can be listed as follows:

• Representation and reasoning with commonsense knowledge The task of tidying
a house requires extensive knowledge about objects and their expected locations.
For instance, a book found in the kitchen should be put on a bookshelf, or a dirty
dish found on a table in the living room should be inserted into the dishwasher in
the kitchen. This type of knowledge is trivial for human beings, and referred as
“commonsense knowledge”.

By definition, every human is assumed to have commonsense knowledge. As a
result, we do not explicitly mention any knowledge that falls into this category
when we communicate with other human beings. For instance, parents ask their

1

children to tidy their rooms, and the children automatically deduce that their parents
want the clothes lying on the floor to be relocated inside their wardrobes, without
any need for further explanation. Unfortunately, robots do not have commonsense
knowledge. To render them capable of housekeeping without any need of extensive
human instruction or supervision, commonsense knowledge should be represented
and made accessible to them.

• Integration of high-level symbolic reasoning and low-level geometric reasoning
In order to tidy up a house, robots need to devise some plans. At the task level, these
plans consist of a sequence of discrete actions. For instance, a high-level task plan
may contain an action such as “going from bedroom to kitchen”. Since a house-
keeping robot operates in a physical environment, these high-level plans should also
respect some low-level geometric constraints to be applicable. For instance, to be
able to move from bedroom to kitchen, “a collision-free trajectory should exists”.
Therefore, an integration between high-level task planning and low-level geometric
reasoning should be established for housekeeping robots to operate.

• Planning with complex constraints It goes without saying that robots need to
behave as smart as possible to be considered successful in a task mostly performed
by humans such as housekeeping. We should be able to request from a cleaning
robot that it should finish its job by a certain deadline. Or a cleaning robot in need
for help from another robot should arrange its plan to distract the other robot at
little as possible. A human can handle these temporal constraints, therefore our
housekeeping robots should also be able to plan accordingly.

• Recovery from possible plan failures When a plan execution fails, depending on
the cause of the failure, a recovery should be made. If a robot collides with a
movable object whose presence and location is not known earlier (e.g., a human
may bring the movable object into the room while the robot is executing the plan),
then the robot may ask the motion planner to find a different trajectory to reach
the next state, and continue with the plan. If the robot cannot find a trajectory,
then a new plan can be computed to tidy the room. Monitoring executions of plans
by multiple cleaning robots, taking into decisions for recovery from failures, is
challenging.

1.2 Our Approach

We address these challenges by utilizing the knowledge representation and reason-
ing formalisms, action language C+ [41] and Answer Set Programming (ASP) [36, 62, 7],
and relevant automated reasoners, such as SAT solver MINISAT [19] and ASP solvers

2

iclingo [34] and dlvhex [21] for high-level reasoning. These formalisms allow us
to express some useful concepts in our representation such as concurrent actions and
defaults. Also their respective reasoners provide effective mechanisms such as exter-
nal predicates/functions to integrate external computational sources into the reasoning
process. We also utilize probabilistic motion planning techniques for geometric reason-
ing such as Rapidly-exploring Random Trees (RRT) [59], and commonsense knowledge
bases such as CONCEPTNET [64]. Our approach to the housekeeping problem can be
summarized in three parts:

• Representation We represent the housekeeping domain using action language C+.
Using external predicates/functions, we embed geometric reasoning into our high-
level representations. Also, we automatically extract knowledge about the expected
locations of objects from commonsense knowledge base CONCEPTNET, and embed
this knowledge into our representation using external predicates as well. Then,
we reformulate the representation in C+ in terms of Answer Set Programming.
During this transformation, we apply some further simplifications while keeping
the soundness of the formulation intact.

• Reasoning Once geometric reasoning is embedded using external predicates and
functions, we compute hybrid plans using reasoners such as CCALC, iclingo, and
dlvhex. To come up with plans that satisfy complex temporal goals, we provide
queries with temporal formula to the reasoners.

• Execution In order to let the robots recover from possible plan failures, such as un-
known objects blocking the path of a robot, disappearance of objects due to human
intervention, or other failures caused by discrepancy between robots’ knowledge
of the world and the truth, we introduce an execution monitoring algorithm, and
integrate it with our hybrid planning approach.

1.3 Contributions

Our contributions can be summarized as follows:

• We have represented the housekeeping domain in the action language C+. We have
investigated transformations from C+ to other formalisms, and identified possible
simplifications. Using these transformations and simplifications, we have obtained
a description of the housekeeping domain in ASP. By this way, various automated
reasoners can be used to find plans to tidy a house.

• We have introduced a method for housekeeping robots to extract relevant common-
sense knowledge from an existing knowledge base and integrate this knowledge

3

with a logic-based domain description, using external predicates in the action de-
scription language C+ and in ASP.

• We have embedded geometric reasoning in high-level domain description using
external predicates. By this way, we have obtained feasible hybrid plans. Using
different reasoners with varying capabilities, we have investigated different extents
of this integration.

• We have introduced a novel execution monitoring algorithm for recovering from
possible failures in housekeeping environment. Unlike the existing approaches in
the literature, after identification of the failure, the algorithm does not simply replan,
but tries to avoid a costly replan by utilizing other means of recovery whenever it is
possible.

• We have obtained some experimental results regarding the performance of reason-
ers CCALC, iclingo, and dlvhex that can be used as a benchmark for similar
robotic applications.

• We have implemented a housekeeping robot framework that utilizes the planning
and monitoring approach we have described, using Robot Operating System (ROS)
[78] tools and libraries. We have showed the applicability of our approach by doing
dynamic simulations using Gazebo1.

1.4 Thesis Outline

We continue with some preliminaries on logic-based domain representation, specif-
ically action language C+, and ASP in Chapter 2. In Chapter 3, we show how we apply
the techniques mentioned in the previous chapter for the representation of housekeeping
domain. We provide some details about reasoning on housekeeping domain, and show
some benchmarks comparing different reasoners in Chapter 4. Chapter 5 describes our
execution monitoring approach, and demostrates its applicability. Related work is briefly
summarized in Chapter 6. We conclude in Chapter 7 by summarizing our results, and
emphasizing possible future work.

1http://gazebosim.org/

4

Chapter 2

Representing Action Domains

For representing dynamic systems and planning, there exist many solutions in the
literature. Some of them are graph or net based approaches, while others depend on logic-
based formalisms. In this thesis, we mainly focus on logic-based formalisms, specifically
the action description language C+ [41] and Answer Set Programming [36, 62, 7].

2.1 Brief Summary of Existing Logic-Based Formalisms

An abundance of logical formalisms aim the representation of dynamic domains
and reasoning about them. Here, some notable examples of these formalisms are briefly
mentioned.

One of the first instances of a special purpose formalism for representing dynamic
systems is situation calculus introduced by McCarthy [69], and further detailed by Mc-
Carthy et al. [71]. It is a first-order language (some variations may include second-order
features) in which the dynamic world is modeled using action histories called situations

[63]. A large body of studies have been made on this formalism, not only in theoretical
sense but also from the practical point of view. One notable example of such application-
oriented studies is GOLOG, a situation calculus based high-level robot programming lan-
guage [60][61].

Fluent calculus is an extension to situation calculus that aim to solve the frame
problem [71] [83]. It provides a special construct for the representations of states which
helps with the state update axiomatization.

Event calculus is another formalism, introduced by Kowalski et al. [56]. The ontol-
ogy of the formalism consists of events, fluents, and time points. There exist many dialects
of the original formalism, and most of them make use of circumscription [70] for the pur-
pose of dealing with frame problem. An action language called E is closely related to this
formalism, and event calculus is used as the underlying logic in many implementations of
this action language [54].

5

Temporal action logics (TAL) is a class of logics that originated from Sandewall
et al.’s work [79]. It is a quite expressive framework that can handle non-deterministic,
context-dependent, concurrent and durational actions [15]. It also has an award-winning
reasoner called TALPLANNER [57].

Description logics (DL) is another class of logics that aims to represent application
domain knowledge in a structured way, and to overcome the lack of formal semantics in
other solutions suchs a frames and semantic networks [2]. Besides its original purpose,
there also exist many studies that make use of this class of formalisms to solve planning
problems [40].

Nonmonotonic causal logic is a formalism that represents actions and change in
the environment in terms of causal rules [67]. It allows the representation of indirect
effects of actions, implied action preconditions, concurrent interacting effects of actions,
and spontaneous changes in the environment [87]. It is also the underlying logic of action
language C+ [41]. More detail will be provided regarding the syntax and semantics of
causal logic and C+ in Section 2.2 and 2.3.

Answer set programming (ASP) [36, 62, 7] is a logic programming paradigm based
on stable model semantics [35]. Just like causal logic it is nonmonotonic, and this renders
the formalism capable of representing defaults. Syntax and semantics of this language
will be elaborated in Section 2.4.

In this thesis we use the nonmonotonic formalisms of C+ and ASP for representing
the dynamic domain of housekeeping.

2.2 Causal Logic

Causal logic [67] is the underlying formalism of the action language C+ [41]. Here
we provide a simple description of its syntax and semantics.

Syntax We start with a signature σ of symbols called constants. Every constant c has
a nonempty set called domain denoted by Dom(c) that identifies its possible values. An
atom of σ is an expression of the form c = v (“the value of c is v”) where c ∈ σ and
v ∈ Dom(c). A formula is a collection of atoms connected with logical connectives. A
theory is a set of formulas. A causal rule is an expression of the form

ψ ⇐ φ

where ψ and φ are formulas of the underlying signature σ. It reads as “if φ holds, then
there is a cause for ψ to hold”. A causal theory is a set of causal rules.

6

Semantics An interpretation is a function mapping each constant c of σ to a value in
Dom(c). An interpretation I satisfies an atom c = v if and only if I(c) = v. The
satisfaction relation for an arbitrary formula is defined through the standard truth tables of
logical connectives. A model of a theory is an interpretation that satisfies every formula
in that theory. For a causal theory T and an interpretation I , T I is defined as follows:

T I = {ψ | (ψ ⇐ φ) ∈ T, I |= φ}.

An interpretation I is a model of a causal theory T if I is the only model of theory T I . In
other words, “if φ is true, then ψ is caused to be true”.

For instance, let σ = {c}, Dom(c) = {v1, v2}, and T = {c = v1 ⇐ c = v1}. In
this instance, the only possible interpretations are I1(c) = v1 and I2(c) = v2. Notice that
I1 is a model of T (I1 |= T), since T I1 = {c = v1} and I1 is the only interpretation that
satisfies T I1 . On the other hand, I2 is not a model (I2 6|= T) because T I2 = {} and both
I1 and I2 satisfy T I2 .

This example shows the nonmonotonicity of causal logic as well. Note that c =

v1 ⇐ c = v2 is different from c = v2 ⊃ c = v1 (“c = v1 if c = v2”) in classical logic,
which has two models. Essentially, c = v1 ⇐ c = v1 expresses a default: “c normally has
value v1”.

According to the semantics of causal theories: 1) every fact that obtains is caused,
and 2) every fact that is caused obtains. The first commitment is called the “principle
of universal causation” [86]. There are two cases, while describing a dynamic system,
where this principle is “disabled”: 1) when describing an initial state, 2) when describing
actions. In other words, initial value of fluents and occurences of actions are considered
“exogenous”. We will see an example in the following.

When we represent a dynamic system, we are usually interested in reasoning about
a sequence of states and actions over “time stamps” 0 to n. Then the constants in the
signature are copied n + 1 times. For simplicity, we denote a copy of a constant c by
putting time stamp i in front, like i : c.

Example (Bomb Disposal domain) We can represent dynamic systems using causal
theories. Let us represent the simple yet highly dangerous Bomb Disposal domain as an
example.

In this domain, there is a bomb with two latches, “left” and “right”. These latches
can be facing either “up” or “down”. If both of the latches are facing upwards, then the
bomb is “defused”.

First, we decide on the signature. Directions of the two latches and the bomb being
defused or not defused constitute the state of world. The only action available is flipping

7

a latch. Therefore, the signature should consist of the following constants:

σBD = {0 : up(left), 0 : up(right), 0 : defused, 0 : flip(left),

0 : flip(right), 1 : up(left), 1 : up(right), 1 : defused}.

For simplicity, we only consider “histories” of length 1. Domain of every constant in the
signature is defined as follows:

Dom(c) = {True, False} (∀c ∈ σBD).

Under this signature, the following causal theory is a representation of Bomb Disposal
domain.

First, we state that latches can be facing up or down, and the bomb can be defused
or not defused in the initial state (i.e. initial values of fluents are exogenous), as follows:

0 : up(left)⇐ 0 : up(left)

0 : ¬up(left)⇐ 0 : ¬up(left)
0 : up(right)⇐ 0 : up(right)

0 : ¬up(right)⇐ 0 : ¬up(right)
0 : defused⇐ 0 : defused

0 : ¬defused⇐ 0 : ¬defused

(2.1)

Similarly, actions can be executed or not executed at any time step, i.e they are exogenous:

0 : flip(left)⇐ 0 : flip(left)

0 : ¬flip(left)⇐ 0 : ¬flip(left)
0 : flip(right)⇐ 0 : flip(right)

0 : ¬flip(right)⇐ 0 : ¬flip(right)

(2.2)

Then, we represent the “commonsense law of inertia” to handle the “frame problem” by
the following causal rules:

1 : up(left)⇐ 1 : up(left) ∧ 0 : up(left)

1 : ¬up(left)⇐ 1 : ¬up(left) ∧ 0 : ¬up(left)
1 : up(right)⇐ 1 : up(right) ∧ 0 : up(right)

1 : ¬up(right)⇐ 1 : ¬up(right) ∧ 0 : ¬up(right)
1 : defused⇐ 1 : defused ∧ 0 : defused

1 : ¬defused⇐ 1 : ¬defused ∧ 0 : ¬defused

(2.3)

According to these rules, the positions of the latches and the state of the bomb is pre-
served unless there is a cause for them to change. Direct effects of flipping switches are

8

represented as follows:

1 : up(left)⇐ 0 : flip(left) ∧ 0 : ¬up(left)
1 : ¬up(left)⇐ 0 : flip(left) ∧ 0 : up(left)

1 : up(right)⇐ 0 : flip(right) ∧ 0 : ¬up(right)
1 : ¬up(right)⇐ 0 : flip(left) ∧ 0 : up(right)

(2.4)

Finally, we can represent the condition in which the bomb is defused by the following
causal rules:

0 : defused⇐ 0 : up(left), 0 : up(right)

1 : defused⇐ 1 : up(left), 1 : up(right)
(2.5)

Note that these causal rules express the “ramification” of flipping action.

2.3 Action Language C+

Action language are formal models of parts of natural language that are used for
describing dynamic systems [38]. There are various action languages, such as A [37],
B [85], C [43], and K [20]. We use the action language C+ [41] to describe the house-
keeping domain.

Syntax Similar to causal logic, we start with a (multi-valued propositional) signature

that consists of a set σ of constants of two sorts, along with a nonempty finite set Dom(c)

of value names, disjoint from σ, assigned to each constant c. An atom of σ is an expression
of the form c = v (“the value of c is v”) where c ∈ σ and v ∈ Dom(c). A formula of σ is
a propositional combination of atoms. If c is a Boolean constant, we will use c (resp. ¬c)
as shorthand for the atom c = True (resp. c = False).

A signature consists of two sorts of constants: fluent constants and action constants.
Intuitively, fluent constants denote “fluents” characterizing a state; action constants denote
“actions” characterizing an event leading from one state to another. A fluent formula is a
formula such that all constants occurring in it are fluent constants. An action formula is a
formula that contains at least one action constant and no fluent constants.

An action description is a set of causal laws of three sorts. Static laws are of the
form

caused F if G (2.6)

where F and G are fluent formulas. Action dynamic laws are of the form

caused A if G (2.7)

9

where A is an action formula and G is a formula. Fluent dynamic laws are of the form

caused F if G after H (2.8)

where F and G are as above, and H is a fluent formula. In (2.6), (2.7) and (2.8) the part
if G can be dropped if G is True.

Semantics The meaning of an action description can be represented by reducing it to
causal theories described in Section 2.2. For a C+ action descriptionD and a natural num-
ber n, there exists a causal theory T (D,n). To obtain such a causal theory, we transform
every static causal law in D of the form (2.6) as

i : F ⇐ i : G (0 ≤ i ≤ n) (2.9)

every action dynamic causal law of the form (2.7) as

i : A⇐ i : G (0 ≤ i ≤ n− 1) (2.10)

and every fluent dynamic causal law of the form (2.8) as

(i+ 1) : F ⇐ (i+ 1) : G ∧ i : H (0 ≤ i ≤ n− 1). (2.11)

Furthermore, action description D constitutes a “transition system”, and paths of
length n in this transition system correspond to models of T (D,n). This transition sys-
tem can be thought of as a labeled directed graph whose nodes correspond to states of
the world and edges to transitions between states. Every state is represented by a vertex
labeled with a function from fluent constants to their values. Every transition is a triple
〈s, A, s′〉 that characterizes change from state s to state s′ by execution of a setA of primi-
tive actions. The transition system corresponding to Bomb Disposal domain in Figure 2.2
is provided in Figure 2.1.

Abbreviations While describing action domains, we can use some abbreviations. For
instance, we can describe the (conditional) direct effects of an action using expressions of
the form

a causes F if G (2.12)

which abbreviates the fluent dynamic law

caused F if True after a ∧G

10

¬defused
¬up(left)

¬up(right)

¬defused
up(left)

¬up(right)

¬defused
¬up(left)

up(right)

defused

up(left)

up(right)

defused

¬up(left)

up(right)

defused

up(left)

¬up(right)

defused

¬up(left)

¬up(right)

{flip(left)}

{flip(right)}

{flip(right)}

{flip(left)}

{flip(left)} {flip(right)}

{flip(right)} {flip(left)}

{flip(left)}

{flip(right)}

{flip(left)}

{flip(right)}

{flip(right)}

{flip(left)}

∅ ∅

∅

∅

∅

∅

∅
{flip(left), flip(right)} {flip(left), flip(right)}

Figure 2.1: Transition diagram of Bomb Disposal domain

expressing that “executing action a at a state whereG holds, causes F .” We can formalize
that F is a precondition of a by the expression

nonexecutable a if ¬F (2.13)

which stands for the fluent dynamic law

caused False if True after a ∧ ¬F .

Similarly, we can express that F holds by default by the abbreviation

default F

that abbreviates the static laws:
caused F if F .

We can represent that the value of a fluent f remains the same unless there is a cause for
its change, by the abbreviation

inertial f

that stands for the fluent dynamic causal law

caused f = v if f = v after f = v (∀v ∈ Dom(f)).

In almost all the action domains, we express that there is no cause for the occurrence of
an action a, by the abbreviation

exogenous a

11

Sorts
latch

Objects
left, right of latch

Variables
L of latch

Simple fluent constants
up(latch), defused with Boolean domains

Action constants
flip(latch) with a Boolean domain

inertial up(L)
inertial defused (2.14)

exogenous flip(L) (2.15)

flip(L) causes up(L) if ¬up(L)
flip(L) causes ¬up(L) if up(L)

(2.16)

caused defused if up(left) ∧ up(right) (2.17)

Figure 2.2: Bomb Disposal domain in C+ (BD)

that abbreviates the following action dynamic laws:

caused a if a
caused ¬a if ¬a.

Example An action description BD of Bomb Disposal domain is provided in Fig-
ure 2.2. Note that BD directly corresponds to the transition diagram in Figure 2.1. Also,
the causal theory in Section 2.2 can be described as T (BD, 1).

2.4 Answer Set Programming

Answer Set Programming (ASP) [36, 62, 7] is a logic programming paradigm based
on stable model semantics. Here briefly mention its syntax and semantics.

The idea of ASP is to represent knowledge (e.g., actions of multiple robots) as
a “program” and to reason about the knowledge (e.g., find a plan of robots’ actions)
by computing models, called “answer sets”, of the program using “ASP solvers” like
iclingo [34].

12

Syntax An ASP program Π over signature σ is a finite set of rules of the form

l0 or . . . or lk ← lk+1, . . . , lm, not lm+1, . . . , not ln (2.18)

where n ≥ m ≥ k ≥ 0. Each li is a literal (a propositional atom p ∈ σ or its negation
¬p).

In such a rule, l0 or . . . or lk is called the head, and lk+1, . . . , lm, not lm+1, . . . ,

not ln is called the body of the rule. If head of a rule is empty, then the rule is called a
constraint. A rule with an empty body is described as a fact, and we generally omit the
← sign in this case. Note the two sorts of negation: classical negation ¬ as in classical
logic, and default negation not. A literal with or without a default negation is called an
extended literal. 2-place connective or is called epistemic disjunction.

Semantics A consistent set of literals of an ASP program is called a partial interpreta-

tion. With respect to a partial interpretation I ,

• a literal l is true if l ∈ I , false if l ∈ I , and unknown otherwise

• an extended literal not l is true if l 6∈ I , false otherwise

• body of a rule (conjunction) is true if each element is true, false if at least one
element is false, unknown otherwise

• head of a rule (disjunction) is true if at least one of the elements is true, false if all
the elements are false, unknown otherwise.

A partial interpretation I satisfies a rule if the head of the rule is true whenever
the body of the same rule is true with respect to I . If a partial interpretation satisfies all
the rules of a program, it is called a model of the program. An answer set is a model
of a program which is “minimal” in the sense of set-theoretic inclusion, among the other
models of the program.

First, let us consider a normal program (a program that does not contain default
negation) such as

p← p

where the signature of program contains a single atom, namely p. Note that this simple
program has two partial interpretations: I1 = {p}, and I2 = {}. Both of these interpre-
tations are models, since they both satisfy the only rule of the program. But I1 is not a
minimal model, because a strict subset of it, namely I2, is also a model of the program.
Therefore, I1 cannot be an answer set. On the other hand, I2 is a model, and minimal,
thus an answer set of the program.

While considering answer sets of arbitrary programs which may contain rules with
default negation, we make use of a construct called “reduct”. The reduct ΠI of a program

13

Π with respect to a partial interpretation I is the set of rules of the form

l0 or . . . or lk ← lk+1, . . . , lm

for each rule of Π of the form (2.18) where {lm+1, . . . , ln} ∩ I = ∅. Thus, ΠI turns out to
be a normal program. A partial interpretation I is an answer set of a program Π, if it is an
answer set of the reduct ΠI of the said program.

Now, let us consider another program Π with rules that contain default negation
such as

p← not q

q ← not p

where the signature of the program σΠ = {p, q}. One of the possible partial interpre-
tations of Π is and I = {p}. If we take the reduct of Π with respect to I , the result
is

p←

and we see that ΠI is satisfied by I . If we look at the strict subsets of I , which is only
I ′ = {}, we see that they do not satisfy ΠI . Thus, I is a minimal model, i.e. an answer set
of ΠI . That means I is also an answer set of Π. Similarly, {q} is another answer set of Π.

Consider another program Π with the single rule

p or ¬p←

which contains a disjunction. The only rule of this program has an empty body, so for
an interpretation I to satisfy this rule, the head of the rule (p or ¬p) should be true with
respect to I . For a disjunction to be true with respect to I , at least one of the disjuncts
should be an element of I . Partial interpretation I1 = {p} makes the head of the rule true
since I1 ∩ {p,¬p} 6= ∅, and satisfies this rule as a result. Since this is the only rule, I1 is
also a model of the program. The only strict subset of I1 is {}, and it is not a model of the
program Π. Therefore, I1 = {p} is an answer set of the program. Similarly, {¬p} is also
another answer set of the program Π.

When we represent a problem in ASP, we use special constructs of the form

m {l1, . . . , lk} n

(called cardinality expressions) where each li is a literal and m and n are nonnegative
integers denoting the “lower bound” and the “upper bound” [81]. Programs using these
constructs can be viewed as abbreviations for normal programs [26]. Such an expres-
sion describes the subsets of the set {l1, . . . , lk} whose cardinalities are at least m and at
most n. Such expressions when used in heads of rules generate many answer sets whose

14

cardinality is at least m and at most n, and when used in constraints eliminate some an-
swer sets. Rules with cardinality expressions in the head are called “choice rules”.

A group of rules that follow a pattern can be often described in a compact way using
“schematic variables”. For instance, we can write the program

pi ← not pi+1 (1 ≤ i ≤ 7)

as follows
index(1). index(2). ... index(7).

p(i)← not p(i+ 1), index(i).

The auxiliary predicate index(i) is introduced to describe the ranges of variables. ASP
solvers compute an answer set for a given program that contains variables, after “ground-
ing” the program. The “definitions” of such auxiliary predicates tell the ASP solver how
to substitute specific values for variables in schematic expressions. Variables can be also
used “locally” to describe the list of formulas. For instance, the rule

1 {p1, . . . , p7} 1

can be represented as follows:

1 {p(i) : index(i)} 1.

Note that the semantics of ASP programs are defined above for ground programs.

2.5 A Transformation from C+ to ASP

There are various transformations between causal logic, C+, and ASP, such as [67]
and [25]. There also exist some automated tools for this purpose, such as [33] and [3].
Unfortunately, these tools are not robust, and fail to transform some C+ formulations,
especially formulations that include causal laws with external predicates. Therefore, we
choose to do the transformation manually. Let us consider the transformation as in [67].

Multi-valued signature to Boolean signature In C+, we are allowed to use multi-
valued signatures, but the signature is Boolean in our ASP definition. Fortunately, we
can transform a C+ domain with a multi-valued signature into an analogous C+ domain
with a Boolean signature [42], and then continue forward with the transformation towards
ASP.

For every multi-valued constant c with a domain Dom(c) = {v1, . . . , vn}, we can
replace c with |Dom(c)| newly introduced constants c′(v1), . . . , c′(vn) such that c′(vi)
corresponds to c = vi. We also introduce some causal laws to make sure the new constants

15

behave like the old one. To ensure that no more than a single c′(vi) constant is true at any
time, we say the following:

caused ¬c′(vi) if c′(vj) (∀vi, vj ∈ Dom(c) st. vi 6= vj)

The following constraint makes sure that at least one of the c′(vi) constants is true at any
time:

caused False if ¬c′(v1) ∧ . . . ∧ ¬c′(vn)

After changing the signature accordingly and making sure the functional behavior is pre-
served by the causal laws above, we can use c′(vi) instead of c = vi whenever needed in
the Boolean representation.

C+ to causal logic While defining the semantics of C+ in Section 2.3, we said that we
could reduce a domain description in C+ to a causal theory. To be precise, causal laws
of the form (2.6), (2.7), and (2.8) can be transformed into causal rules of the form (2.9),
(2.10), and (2.11) respectively.

In the resulting causal theory, some changes would help us further in the transfor-
mation to ASP. We can eliminiate any conjunctions in the head of causal rule such as

F ∧G⇐ H

by rewriting the rule as the following causal rules:

F ⇐ H

G⇐ H

Similarly, any rule with disjunction in the body such as

F ⇐ G ∨H

can be eliminated by replacing it with following causal rules:

F ⇐ G

F ⇐ H

Using these changes, we can obtain a causal theory where the head of every rule is a
literal, and the body of a rule does not contain any disjunctions. The resulting causal
theory would be equivalent to the previous one, as described in [41, Proposition 4].

Causal logic to ASP Once we obtain a causal theory as described above where the
head of every rule is a literal and body is a conjunction, we can translate it into an ASP

16

program. Every causal rule of the form

l0 ⇐ l1, . . . , ln (2.19)

can be translated into an ASP rule of the form

l0 ← not l1, . . . , not ln (2.20)

where li denotes the contrary literal of li, and the complete answer sets of the resulting
ASP program would be identical to the models of the initial causal theory, as described in
[68, Proposition 6.7].

Simplifications in ASP After obtaining a raw ASP formulation, we can apply some fur-
ther simplifications using some special constructs mentioned above. For instance, instead
of defining the exogeneity of a fluent f initially, as follows

f(0)← not ¬f(0)

¬f(0)← not f(0)

we can make use of a choice rule as the following:

0 {f(0),¬f(0)} 1.

An even further simplification can be done for fluent atoms that are non-Boolean
“implied functions” as described in [4, Corollary 2]. Some atoms may “act like a func-
tion” due to the rules and constraints effecting their value. For instance, a fluent atom
loc(obj, pos, t) denoting positions of objects effectively behaves like a function loc :

Obj × Time → Pos in a correct representation, since every object must have exactly
one position any given time.

Let f(v, t) be an implied function, and val(v) denote the range of this implied
function. We can represent the initial exogeneity of such a fluent by the following rule:

1 {f(v, 0) : val(v)} 1.

Also, if we directly apply the transformation from C+ to ASP as described above, the
commonsense law of inertia for this fluent would be represented as follows:

f(v, t+ 1)← not ¬f(v, t+ 1), not ¬f(v, t)

¬f(v, t+ 1)← not f(v, t+ 1), not f(v, t)

17

However, we can simplify this formulation by using the following rules instead:

{f(v, t+ 1)} ← f(v, t)

← {f(v, t) : val(v)} 0

← 2 {f(v, t) : val(v)}

In this way, we can drop the classically negated literals of this sort of fluents in our for-
mulations, and reduce the program size (i.e., number of ground atoms and rules).

For atoms denoting actions, we can also apply some simplifications to omit the
classically negated literals. For instance, instead of defining the exogenity of an action a
as follows

a(t)← not ¬a(t)

¬a(t)← not a(t)

we can write the following choice rule:

0 {a(t)} 1.

Example Let us transform Bomb Disposal domain in Figure 2.2 into an ASP formu-
lation as described above. In the following, assume that the schematic variable l ranges
over {left, right}, and t ranges over {0, 1}.

As explained above, the C+ description of Figure 2.2 can be transformed into causal
rules (2.1)-(2.5). Then we can express the exogeneity of initial values of fluents, (2.1),
with the simplifications described above:

1 {up(l, 0),¬up(l, 0)} 1

1 {defused(0),¬defused(0)} 1

Declaration of action exogeneity in (2.2) is transformed into the following choice rule:

0 {flip(l, t)} 1 (2.21)

We transform the causal rules about commonsense law of inertia in (2.3) as follows:

up(l, t+ 1)← not ¬up(l, t+ 1), not ¬up(l, t)
¬up(l, t+ 1)← not up(l, t+ 1), not up(l, t)

defused(t+ 1)← not ¬defused(t+ 1), not ¬defused(t)

¬defused(t+ 1)← not defused(t+ 1), not defused(t)

(2.22)

The causal laws describing the direct effects of the flipping action in (2.4) are transformed

18

into ASP as follows:
up(l, t+ 1)← flip(l, t), ¬up(l, t)
¬up(l, t+ 1)← flip(l, t), up(l, t)

(2.23)

Finally, the ramifications described in (2.5) are transformed into ASP as follows:

defused(t)← up(left, t), up(right, t). (2.24)

2.6 Automated Reasoners

2.6.1 CCALC

CCALC [41] is a reasoner of the action language C+. It makes use of available
transformations from C+ to propositional logic, and then utilizes SAT solvers in the back-
ground, such as MINISAT [19]. To describe the input language of CCALC, we present
C+ description of Bomb Disposal in Figure 2.2 to CCALC, as shown in Figure 2.3.

When we present formulas to CCALC, conjunctions ∧, disjunctions ∨, implications
⊃, negations ¬, universal quantifiers ∀, and existential quantifiers ∃ are replaced with the
symbols &, ++, ->>, -, /\, and \/ respectively. If we do not explicitly specify the domain
of a constant, it is assumed to be Boolean by CCALC.

We can present planning problems in form of queries to CCALC. Figure 2.4 shows
a simple planning problem in Bomb Disposal domain. In the initial state, bomb is not
defused and the latches are facing downwards. We want to find the shortest plan that will
defuse the bomb.

After presenting the domain description and planning problem to CCALC, the out-
put shown in Figure 2.5 is obtained. It says that if we concurrently flip both latches at step
0, the bomb will be defused at step 1.

2.6.2 iclingo

iclingo [34] is an “incremental” ASP solver. Here, incremental means that the
solver computes answer sets of a problem by gradually increasing the search space bound-
aries with respect to a predetermined variable. We present the ASP encoding of Bomb
Disposal domain to iclingo, as shown in Figure 2.6.

Here, #domain is a solver directive that denotes the domain of a variable. Another
directive, #base, is preceded before the rules that should be evaluated only in the initial
step of incremental reasoning. On the other hand, directive #cumulative t denotes that
the following rules should be evaluated for increasing values of t until an answer set is
found.

We present iclingo the same planning problem that we have presented CCALC be-
fore, as shown in Figure 2.7. Here, rules succeeding #volatile t directive are evaluated

19

1 :- sorts

2 latch.

3

4 :- objects

5 left, right :: latch.

6

7 :- variables

8 L :: latch.

9

10 :- constants

11 flip(latch) :: exogenousAction;

12 up(latch) :: inertialFluent;

13 defused :: inertialFluent.

14

15 %% direct effects of flip action

16 flip(L) causes up(L) if -up(L).

17 flip(L) causes -up(L) if up(L).

18

19 %% ramification of flip action

20 caused defused if up(left) & up(right).

Figure 2.3: Presenting Bomb Disposal domain to CCALC

1 :- query

2 label :: 0;

3 maxstep :: 0..1;

4 0: -up(left), -up(right), -defused;

5 maxstep: defused.

Figure 2.4: Presenting a Bomb Disposal problem to CCALC

1 0:

2 ACTIONS: flip(left) flip(right)

3 1: up(left) up(right) defused

Figure 2.5: A Bomb Disposal plan obtained from CCALC

20

1 #base.

2 %% objects

3 latch(left;right).

4

5 #cumulative t.

6 timea(0..t-1).

7 timef(0..t).

8

9 %% variables

10 #domain latch(L).

11 #domain timea(Ta).

12 #domain timef(Tf).

13

14 %% flip(latch), exogenous action

15 0 { flip(L,Ta) } 1.

16

17 %% up(latch), inertial fluent

18 1 { up(L,0), -up(L,0) } 1.

19 up(L,Ta+1) :- not -up(L,Ta+1), not -up(L,Ta).

20 -up(L,Ta+1) :- not up(L,Ta+1), not up(L,Ta).

21

22 %% defused, inertial fluent

23 1 { defused(0), -defused(0) } 1.

24 defused(Ta+1) :- not -defused(Ta+1), not -defused(Ta).

25 -defused(Ta+1) :- not defused(Ta+1), not defused(Ta).

26

27 %% direct effects of flip action

28 up(L,Ta+1) :- flip(L,Ta), -up(L,Ta).

29 -up(L,Ta+1) :- flip(L,Ta), up(L,Ta).

30

31 %% ramification of flip action

32 defused(Tf) :- up(left,Tf), up(right,Tf).

Figure 2.6: Presenting Bomb Disposal domain to iclingo

21

1 #base.

2 :- not -up(left,0).

3 :- not -up(right,0).

4 :- not -defused(0).

5

6 #volatile t.

7 :- not defused(t).

Figure 2.7: Presenting a Bomb Disposal problem to iclingo

1 Answer: 1

2 latch(left) latch(right) timea(0) timef(0) timef(1) flip(right,0)

3 flip(left,0) -up(right,0) -up(left,0) up(right,1) up(left,1) defused(1)

4 -defused(0)

5 SATISFIABLE

Figure 2.8: A Bomb Disposal plan obtained from iclingo

for increasing t values, and then the evaluations are discarded in the following reasoning
steps.

The result obtained from iclingo is shown in Figure 2.8.

2.6.3 dlvhex

dlvhex[21] is an answer set solver that specializes on integration of external com-
putational sources. Its input language is slightly different than iclingo’s. We present
Bomb Disposal domain to dlvhex in Figure 2.9.

dlvhex does not provide directives for declaring dedicated variables, so we need
to specify the domain of each variable in every single rule. #int is a special atom for
representing nonnegative integers. The symbol v denotes or, the epistemic disjunction.

We present the same Bomb Disposal planning problem to dlvhex, as shown in
Figure 2.10. Here, #maxint guides #int directive by mandating an upper limit. We look
for plans of length 1, and we specify it by declaring an auxiliary atom, const(t,1).

The result obtained from dlvhex is shown in Figure 2.11.

22

1 %% objects

2 latch(left).

3 latch(right).

4

5 timef(I) :- #int(I), const(t,C), I<=C.

6 timea(I) :- #int(I), const(t,C), I<C.

7

8 %% flip(latch), exogenous action

9 flip(L,Ta) v -flip(L,Ta) :-

10 latch(L), timea(Ta).

11

12 %% up(latch), inertial fluent

13 up(L,0) v -up(L,0) :-

14 latch(L).

15 up(L,Ti) :- not -up(L,Ti), not -up(L,Ta),

16 latch(L), timea(Ta), Ti=Ta+1.

17 -up(L,Ti) :- not up(L,Ti), not up(L,Ta),

18 latch(L), timea(Ta), Ti=Ta+1.

19

20 %% defused, inertial fluent

21 defused(0) v -defused(0).

22 defused(Ti) :- not -defused(Ti), not -defused(Ta),

23 timea(Ta), Ti=Ta+1.

24 -defused(Ti) :- not defused(Ti), not defused(Ta),

25 timea(Ta), Ti=Ta+1.

26

27 %% direct effects of flip action

28 up(L,Ti) :- flip(L,Ta), -up(L,Ta),

29 latch(L), timea(Ta), Ti=Ta+1.

30 -up(L,Ti) :- flip(L,Ta), up(L,Ta),

31 latch(L), timea(Ta), Ti=Ta+1.

32

33 %% ramification of flip action

34 defused(Tf) :- up(left,Tf), up(right,Tf),

35 timef(Tf).

Figure 2.9: Presenting Bomb Disposal domain to dlvhex

23

1 #maxint=1.

2 const(t,1).

3

4 :- not -up(left,0).

5 :- not -up(right,0).

6 :- not -defused(0).

7

8 :- not defused(C), const(t,C).

Figure 2.10: Presenting a Bomb Disposal problem to dlvhex

1 {latch(left),latch(right),-defused(0),const(t,1),-up(left,0),

2 -up(right,0),flip(right,0),flip(left,0),up(right,1),up(left,1),

3 timef(1),timef(0),timea(0),defused(1)}

Figure 2.11: A Bomb Disposal plan obtained from dlvhex

24

Chapter 3

Representing the Housekeeping Domain

In this chapter, we describe the housekeeping domain, and provide a detailed de-
scription of its representation in C+. Then, we demonstrate how we make use of transfor-
mation techniques described in Section 2.5 to obtain a corresponding ASP formulation of
the same domain.

3.1 Housekeeping Domain

Consider a house consisting of several rooms (e.g., bedroom, living room, kitchen).
In each room there are some stationary obstacles (e.g., bed, sofa, wardrobe, table, book-
shelf, tv stand), some movable objects (e.g., book, pillow, dish), and several autonomous
robots in the house. Each room is assigned a group of robots; no robot is assigned to
two different rooms. The goal is for the robots to relocate the movable objects so that the
house becomes “tidy”, i.e., every object is located where it should be.

The housekeeping robots are intelligent, autonomous, and rational in the sense that
1) they know where the movable objects belong to. For instance, a book should be placed
on a bookshelf, or a dirty dish should be put in a dishwasher. 2) They can decide for
optimal feasible plans to tidy a house by a given time, without colliding with objects.
3) They help each other when needed. Since some of the movable objects are heavier
than the others, a single robot cannot carry such objects and require the assistance of
another robot. In such cases, a robot may have to leave its current room, and travel to
another place in the house to help others.

3.2 Representation of the Housekeeping Domain in C+

We represent actions and change in the housekeeping domain in the action descrip-
tion language C+, and compute optimal plans using reasoner CCALC. Let us first describe
the representation as presented to CCALC. Full formulation can be found at Appendix A.

25

�

����

������

����

��������
����

Figure 3.1: Housekeeping domain

26

Fluents and actions We view the house as a grid. We assume that robots and the end-
points of objects are located at grid-points. We consider the fluents

• at(TH,X,Y) (“thing TH is at (X,Y)”)

• connected(R,EP) (“robot R is connected to endpoint EP”)

and the actions

• goto(R,X,Y) (“robot R goes to (X,Y)”),

• detach(R) (“robot R detaches from the object it is connected to”), and

• attach(R) (“robot R attaches to an object”).

We add the commonsense law of inertia for every fluent (i.e., fluents are inertial), and ex-
press that the actions are exogenous while declaring fluent constants and action constants
at the very beginning of the action description, as follows:

:- constants

at(thing, x_coord, y_coord),

connected(robot, endpoint) :: inertialFluent;

goto(robot, x_coord, y_coord),

detach(robot),

attach(robot) :: exogenousAction.

Direct effects of actions We describe the direct effects of the actions above by causal
laws of the form (2.12). For instance, the following causal law expresses the direct effect
of the action of a robot R going to location (X,Y):

goto(R,X,Y) causes at(R,X,Y).

Similarly, we can describe the direct effects of the action of a robot R detaching
from the endpoints of an object it is connected to:

detach(R) causes -connected(R,EP) if connected(R,EP).

To describe the direct effects of the action of a robot R attaching to an endpoint of an
object, we introduce an “attribute” attach point of this action to show at which endpoint
the robot is attaching.

:- constants

attach_point(robot) :: attribute(endpoint) of attach(robot).

An attribute of an action is a useful feature of CCALC that allows us to talk about various
special cases of actions without having to modify the definitions of more general actions.
We can formalize the direct effect of attaching a payload (“robot R is connected to the
endpoint EP of an object”):

attach(R) causes connected(R,EP) if attach_point(R)=EP.

27

Preconditions of actions We describe effects of actions by causal laws of the form (2.13).
For instance, we can describe that a robot R cannot go to a location (X,Y) if the robot is
already at (X,Y), by the causal laws:

nonexecutable goto(R,X,Y) if at(R,X,Y).

To describe that a robot R cannot go to a location (X,Y) if that location is already
occupied by a stationary object, we need to know in advance the locations of stationary
objects in the house. Such knowledge is represented as the “background knowledge” in
Prolog. CCALC allows to use the predicates defined as part of background knowledge, in
causal laws, as follows:

nonexecutable goto(R,X,Y) where occupied(X,Y).

where occupied(X,Y) describe the locations (X,Y) occupied by stationary objects.
In general, the where parts in causal laws presented to CCALC include formulas

that consist of “external predicates/functions”. We will describe this term in more detail
while elaborating on embedding commonsense knowledge and geometric reasoning into
our domain.

Now let us present the preconditions of two other sorts of actions. Consider the
action of a robot R attaching to an endpoint of an object. This action is not possible if the
robot is connected to some endpoint EP of an object:

nonexecutable attach(R) if connected(R,EP).

Note that here we do not refer to the special case of the action of attaching via attributes.
Also this action is not possible if the robot and the endpoint are not at the same location
(X,Y):

nonexecutable attach(R) & attach_point(R)=EP

if -[\/X \/Y | at(R,X,Y) & at(EP,X,Y)].

In the last line above, the negated expression stands for a disjunction of conjunctions
at(R,X,Y) & at(EP,X,Y) over locations (X,Y).

Finally, we can describe that a robot R cannot detach from an object if it is not
connected to any endpoint:

nonexecutable detach(R)

if [/\EP | -connected(R,EP)].

the expression in the last line above stands for a conjunction of -connected(R,EP) over
endpoints EP.

28

Ramifications We describe two ramifications of the action of a robot R going to a loca-
tion (X,Y). If the robot is connected to an endpoint of an object, then the location of the
object changes as well:

caused at(EP,X,Y) if connected(R,EP) & at(R,X,Y).

Furthermore, neither the robot nor the endpoint are at their previous locations any-
more:

caused -at(TH,X,Y) if at(TH,X1,Y1) where X\=X1 ++ Y\=Y1.

Here TH denotes a “thing” which can be either a robot or an endpoint.

Constraints We ensure that two objects do not reside at the same location by the con-
straint

caused false if at(EP,X,Y) & at(EP1,X,Y) where EP \= EP1.

and that a robot is not connected to two endpoints by the constraint

caused false

if connected(R,EP1) & connected(R,EP)

where EP \= EP1.

Some objects OBJ are large and have two endpoints EP and EP1 one unit from each
other. To be able to pick these objects, we ensure that the endpoints of the objects are
located horizontally or vertically, and one unit apart from each other by the constraint:

caused false if at(EP1,X1,Y1) & at(EP2,X2,Y2)

where belongs(EP1,OBJ) & belongs(EP2,OBJ)

& Dist is sqrt((X1-X2)^2 + (Y1-Y2)^2)

& EP1 \= EP2 & Dist \= 1.

Here belongs(EP, OBJ) is defined externally in predicate.
Finally, we need to express that a robot cannot move to a location and attach to or

detach from an endpoint of an object at the same time.

nonexecutable goto(R,X,Y) & attach(R).

nonexecutable goto(R,X,Y) & detach(R).

29

3.3 Embedding Commonsense Knowledge into the
Domain Description

In the housekeeping domain, the robots need to know that books are expected to be
in the bookcase, dirty dishes in the dishwasher, and pillows in the closet. Moreover, a
bookcase is expected to be in the living-room, dishwasher in the kitchen, and the closet
in the bedroom. In addition, the robots should have an understanding of a tidy house
to be able to clean a house autonomously: tidying a house means that the objects are at
their desired locations. Also, while cleaning a house, robots should pay more attention
while carrying fragile objects; for that they should have an understanding of what a fragile
object is. Such commonsense knowledge is formally represented already in commonsense
knowledge bases, such as CONCEPTNET.

CCALC allows us to extract and embed commonsense knowledge from these knowl-
edge bases by means of “external predicates.” External predicates are not part of the sig-
nature of the domain description (i.e., they are not declared as fluents or actions). They
are implemented as functions in some programming language of the user’s choice, such
as C++ or Prolog. External predicates take as input not only some parameters from the
domain description (e.g., the locations of robots) but also detailed information that is not
a part of the action domain description (e.g., commonsense knowledge). They are used to
externally check some conditions.

Expected locations of objects We represent the expected locations of objects by a new
fluent at desired location(EP) describing that an object EP is at its expected position in
the house. Unlike the fluents above, we can define at desired location(EP) in terms of
other fluents. This type of fluents are called “statically determined fluents”. We declare
this at desired location(EP) fluent as follows:

:- constants

at_desired_location(endpoint) :: sdFluent.

After the declaration, the definition of the fluent is formalized as the following two causal
law:

caused at_desired_location(EP) if at(EP,X,Y)

where in_place(EP,X,Y).

default -at_desired_location(EP).

The second causal law expresses that normally the movable objects in an untidy house
are not at their desired locations. The first causal law formalizes that the object EP is at
its desired location if it is at some “appropriate” position (X,Y) in the right room. So,

30

the robots need to know that books are expected to be in the bookcase, dirty dishes in
the dishwasher, and pillows in the closet. Moreover, a bookcase is expected to be in
the living-room, dishwasher in the kitchen, and the closet in the bedroom. We describe
such background knowledge externally as a Prolog program. For instance, the external
predicate in place(EP,X,Y) is defined as follows:

in_place(EP,X,Y) :- belongs(EP,Obj),

type_of(Obj,Type), el(Type,Room),

area(Room,Xmin,Xmax,Ymin,Ymax),

X>=Xmin, X<=Xmax, Y>=Ymin, Y>=Ymax.

Here belongs(EP,OBJ), type of(OBJ,Type) describe the type Type of an object Obj that
the endpoint EP belongs to, and el(Type,Room) describes the expected room of an object
of type Type. The rest of the body of the rule above checks that the endpoint’s location
(X,Y) is a desired part of the room Room.

After defining at desired location(EP), we can introduce a “macro” to define a
tidy house:

:- macros

tidy -> [/\EP | at_desired_location(EP)].

The second rule above expresses that the house is normally tidy. The first rule
above describes the exceptions: when an object is not at its expected location, the house
is untidy.

Acquiring commonsense knowledge In order to acquire the knowledge of expected
rooms of objects, which is represented by el(Type,Room), we make use of existing com-
monsense knowledge bases. Specifically, we use CONCEPTNET.

CONCEPTNET [64] is a semantic network in which the nodes correspond to con-
cepts (e.g., “human”, “walking”, etc.), and the edges denote relations (e.g. “capable of”,
“located near”) between these concepts. Most of its data is obtained through Open Mind
Common Sense Project [82] where thousands of volunteers manually enter trivial facts re-
garding the world, i.e., commonsense knowledge. The semantic network can be queried
using reasoning techniques such as spreading action.

Using Python API of CONCEPTNET 4.0, we can easily query which objects are
likely to be located at a specific room. The network provides a well-suited relation for our
purpose, called “At Location”. As the name itself suggests, it is a relation denoting the
locations of objects.

For instance, we query the objects which are likely to be located in the bedroom,
and automatically generate a list of facts as follows:

31

el(dresser, bedroom).

el(mirror, bedroom).

el(bed, bedroom).

el(pillow, bedroom).

el(closet, bedroom).

el(person, bedroom).

el(blanket, bedroom).

el(pillowcase, bedroom).

el(wardrobe, bedroom).

Figure 3.2: Commonsense knowledge about bedroom objects

result = Assertion.objects.filter(\

relation=atLocation, concept2=bedroom, \

score__gte=threshold)

for assertion in result:

print ’el(%s, bedroom).’ \

% assertion.concept1.text

Here atLocation represents the “At Location” relation, and bedroom is representing the
“Bedroom” concept. The query outcome denoted by result is a set of assertions. An
assertion in CONCEPTNET is simply an object which includes two related concepts, and
a relation connecting these two concepts. Assertions also have some intrinsic properties
like the language of the assertion, and the frequency in which the given two concepts are
related to each other by the given relation. “Score” is one of these intrinsic values which
denotes the reliability of an assertion. In order to eliminate unreliable assertions, we filter
out the ones with a score less than the value of threshold. The value of threshold is
determined empirically, and is equal to 5 for this case.

After obtaining the query result, we simply represent it in Prolog using atoms of the
form el(Type,Room). Some assertions about what is expected in the bedroom are shown
in Figure 3.2. We could have obtained a much longer list of facts if the threshold had
been set to a lower value; but then we would have jeopardized the integrity of the facts.
CONCEPTNET is generated automatically using the data gathered collaboratively by Open
Mind Common Sense Project, and as a result, contains some unreliable knowledge. Still,
eliminating the unreliability is possible as described above, with the help of the easy-to-
use API of CONCEPTNET.

Note that the expected location of an object depends on where it is: for instance,
the expected location of a book on the floor of the kitchen is the exchange area be-
tween the kitchen and the living room (so that the robot whose goal is to tidy the living

32

room can pick it up and put it in the bookcase); on the other hand, the expected loca-
tion of a plate on the floor of the kitchen is the dishwasher. Therefore, the predicate
area(Room,Xmin,Xmax,Ymin,Ymax) describes either an exchange area (if the object does
not belong to the room where it is at) or a deposit area (if the object belongs to the room
where it is at). Note also that knowledge about specific objects in a room as well as spe-
cific deposit and exchange areas are not common knowledge to all robots; each robot has
a different knowledge of objects in their room.

3.4 Embedding Geometric Reasoning into Causal
Planning

We can embed geometric reasoning in causal reasoning by making use of external
predicates as well. For instance, suppose that the external predicate path exists(X,Y,

X1,Y1) is implemented in C++ utilizing Rapidly exploring Random Trees (RRTs) [59];
so it returns 1 if there is a collision-free path between (X,Y) and (X1,Y1), and it returns 0
if there is no collision-free path between (X,Y) and (X1,X1). Then, we can express that
the robot R cannot go from (X1,Y1) to (X,Y) where path exists(X,Y,X1,X1) does not
hold, by the following action precondition:

nonexecutable goto(R,X,Y) if at(R,X1,Y1)

where -path_exists(R,X1,Y1,X,Y).

Note that the parameters of the path exists(X,Y,X1,Y1) external predicate are
only the initial position (X,Y) and the goal position (X1,Y1). In other words, we do not
pass the positions of the movable objects, due to the limitations of CCALC. Therefore,
this external predicate considers a relaxed version of the problem of finding a continous
collision-free trajectory by considering only the stationary obstacles in the environment.
Fortunately, we can overcome this limitation in our ASP encoding of housekeeping do-
main using the reasoner dlvhex which specializes on integration of external computation.

3.5 Representing Durative Actions

For multiple autonomous robots to complete cleaning a house by a given time, du-
rations of actions should also be taken into account. Since the robots can help each other,
when a help request is received, the robot should be able to autonomously decide whether
she has enough time to complete her tasks and help the other robot by the given deadline.
Since changing locations to be able to help each other takes some time, transportation
delay (depending on the length of the continuous trajectory) should also be taken into
account.

33

To represent duration of actions, we introduce another fluent robot time(R) as fol-
lows:

:- constants

robot_time(robot) :: simpleFluent(duration).

This fluent keeps the knowledge of “duration of a single action performed by the robot
R”. When a new action is performed by robot R, this value changes, and if no action is
performed then the value of the fluent is not propagated to the next state. In other words,
inertia is not a property of this fluent. Therefore, we declare this fluent not as an inertial
fluent, but as a “simple fluent”.

We define effects of actions on these fluents accordingly. For instance, the rule
below expresses that the action of a robot R attaching to an object takes 1 unit of time:

attach(R) causes robot_time(R)=1.

Every attach performed by the robots is nearly identical; therefore, it is reliable to
assign a constant value for the duration of this action. But the idea may not be applicable
to other actions, such as changing the location of a robot. Since the path traveled by the
robot is the main factor contributing to the duration of a movement of the robot, we tried
to obtain an estimate by taking the length of the path into account using the following
rule:

goto(R,X,Y) causes robot_time(R)=D if at(R,X1,Y1)

where time_estimate(X1,Y1,X,Y,D).

Here time estimate(X1,Y1,X2,Y2) is an external predicate implemented in C++. It calls
a motion planner to find a trajectory from an initial position (X1,Y1) to a final position
(X2,Y2), and then returns true if the duration estimate between 1 and 4 based on the total
length of this trajectory is equal to D. Therefore, the rule expresses that if the robot R goes
from one point to another, the execution time is proportional to the length of the path it
follows.

There is no obligation that every robot should perform an action at every state.
Therefore, we define the default value for the duration of an action to be 0:

default robot_time(R)=0.

While robot time(R,D) estimates the duration of a single action, we also need a
fluent to keep track of the total amount of time starting from the initial state. For that we
introduce a fluent elapsed time(D) as follows:

:- constants

elapsed_time :: inertialFluent(duration).

34

This fluent keeps track of the time to reach a specific step of the plan, and we define it
essentially by accumulating the durations of each action by the following causal law:

caused elapsed_time=(T+D)

if D=robot_time(R), [/\R1 /\D1 | D1=robot_time(R1) ->> (D>=D1)]

after T=elapsed_time

where T+D =< timeLimit.

Since there can be multiple robots in the planning environment, more than one action can
be performed concurrently. This causal law ensures that if concurrent actions happen, the
elapsed time is incremented by the duration of the most time consuming action.

3.6 Representation of the Housekeeping Domain in ASP

We transform the C+ representation of housekeeping domain at Appendix A into
an ASP program as described in Section 2.5.

3.6.1 Presenting the Housekeeping Domain to iclingo

We represent the ASP encoding of the housekeeping domain in the input language
of iclingo [34]. Full formulation translated from C+ description without any simpli-
fication can be found at Appendix B. A further simplified formulation can be found at
Appendix C. Below, we go over the simplified version.

Fluents and actions The signature is similar to the C+ representation, but this time
we need to explicitly denote state and transition identifiers in atoms corresponding to
fluents and actions respectively. Therefore, a CCALC fluent such as connected(R,EP)

is transformed into connected(R,EP,T) where “T” denotes the state. Similarly, an action
constant such as detach(R) is now in the form of detach(R,T), and this time “T” identifies
a transition.

While we were able to define fluents as inertial in CCALC during the initial decla-
ration, we need to explicitly specify the inertia property in ASP. For instance, inertia and
initial exogeneity of connected(R,EP,T) fluent is defined as follows:

1 { connected(R,EP,0), -connected(R,EP,0) } 1.

connected(R,EP,Ta+1) :- not -connected(R,EP,Ta+1), connected(R,EP,Ta).

-connected(R,EP,Ta+1) :- not connected(R,EP,Ta+1), -connected(R,EP,Ta).

When we are transforming a functional fluent of CCALC formulation, we can apply
further simplifications. For instance, we describe the inertia and initial exogeneity of
elapsed time(D,T) as follows:

35

0 { elapsed_time(D,0) } 1.

{ elapsed_time(D,Ta+1) } :- elapsed_time(D,Ta).

:- { elapsed_time(I,Tf) : duration(I) } 0.

:- 2 { elapsed_time(I,Tf) : duration(I) }.

Here, we save the formulation from some unnecessary atoms, specifically the negated
literals -elapsed time(D,T).

When we describe exogeneous actions, we again make use of cardinality expres-
sions. For instance, we define the exogenity of goto(R,X,Y,T) as follows:

0 { goto(R,X,Y,Ta) } 1.

In this way, the simplified representation allow us to omit the negated literals.

Direct effects of actions We describe the direct effect of the action of robot R going to
(X,Y) at step Ta as the following rule:

at(R,X,Y,Ta+1) :- goto(R,X,Y,Ta).

Similarly, the direct effect of detaching from an object can be represented as

-connected(R,EP,Ta+1) :- detach(R,Ta), connected(R,EP,Ta).

while the effect of attaching to an object can be described as the following:

connected(R,EP,Ta+1) :- attach(R,Ta), attach_point(R,EP,Ta).

Here, attach point(R,EP,Ta) corresponds to an attribute of attach action in C+ formal-
ism. It is defined as follows:

1 { attach_point(R,Var,Ta) : endpoint(Var) } 1 :- attach(R,Ta).

Preconditions of actions Preconditions are represented using constraint rules of ASP.
For instance, we say that “for a robot the to move, the destination should be different than
its current position”, using the following constraint rule:

:- goto(R,X,Y,Ta), at(R,X,Y,Ta).

Ramifications If the robot is holding an object, then the location of the object changes
as the location of the robot changes. In that sense, the change of the location of the object
is a ramification of the robot’s action. ASP allows us to represent this ramification as
follows:

at(EP,X,Y,Tf) :- connected(R,EP,Tf), at(R,X,Y,Tf).

36

Constraints We have showed that we use constraints rules to represent action precon-
ditions which can also be described as transition constraints. Similarly, the solution for
representing state constraints is constraint rules of ASP. For instance, we say that two dif-
ferent objects cannot be present at the same grid point at the same time using the following
constraint rule:

:- at(EP1,X,Y,Tf), at(EP2,X,Y,Tf), EP1!=EP2.

Embedding commonsense knowledge Similar to our C+ representation, we make use
of some external predicates. In order to describe if an object is at a desired location, we
say the following:

at_desired_location(EP,Tf) :- at(EP,X,Y,Tf), in_place(EP,X,Y).

Here, in place(EP,X,Y) is an external predicate that shares the same functionality with
the predicate of the same name in our C+ formulation, i.e., the predicate checks if an ob-
ject is located in an appropriate location based on the commonsense knowledge extracted
from CONCEPTNET. Using at desired location(EP,T) atom, we define tidiness as fol-
lows:

tidy(Tf) :- at_desired_location(I,Tf) : endpoint(I).

Embedding geometric reasoning Here is another example of an external predicate that
decides existence of a collision-free trajectory which is used while describing an action
precondition:

:- goto(R,X2,Y2,Ta), at(R,X1,Y1,Ta),

@path_exists(X1,Y1,X2,Y2)==0.

In this way, geometric reasoning is embedded into ASP reasoning.

Representing durative actions We represent the duration of an attach(R,T) action as
follows:

robot_time(R,1,Ta+1) :- attach(R,Ta).

In order to describe the duration of a goto(R,X,Y,T) action, which varies with respect to
the distance traveled by the robot, we use an external function similar to our C+ repre-
sentation, as follows:

robot_time(R,Da,Ta+1) :- goto(R,X2,Y2,Ta), at(R,X1,Y1,Ta),

Da:=@time_estimate(X1,Y1,X2,Y2).

37

3.6.2 Presenting the Housekeeping Domain to dlvhex

dlvhex is an ASP solver that specializes on integration of external computation into
the reasoning process [21]. Here we provide some details regarding our housekeeping
domain in the input language of dlvhex, and the integration of high-level task planning
and low-level geometric reasoning. Full formulation can be found at Appendix D.

Integration of task planning and geometric reasoning As we have mentioned earlier
while describing our CCALC and iclingo formulations, we use some external predicates
to represent several low-level constraints. For instance, one of the external predicates in
iclingo formulation is in the form of @path exists(X1,Y1,X2,Y2), and it checks the
existence of a collision-free trajectory from the grid point (X1,Y1) to (X2,Y2). As you
can see, the only parameters taken into consideration by this predicate are the initial and
goal position of the robot. The positions of movable objects denoted by the at(EP,X,Y,T)
atoms are not given to the external predicate. This is due to the limitations of external
computation interface of iclingo, and is not much of a choice. Unfortunately, CCALC

suffers from the same limitations as well. Therefore, this external predicate in iclingo

formulation and corresponding one in CCALC formulation solve a relax version of the
motion planning problem where the stationary obstacles are considered, but the movable
objects are omitted.

One might suggest changing the predicate to some other form such as

path exists(rx1, ry1, . . . , rxm, rym, x1, y1, . . . , xn, yn)

where (xi, yi) corresponds to the position of ith object and (rxj, ryj) denotes the posi-
tion of the jth robot, so that we can pass movable object positions to the predicate as
well. Unfortunately, this trivial approach suffers from some serious problems. First of
all, it requires fixing the number of movable objects and robots in the domain, or at least
mandating an upper limit. This damages the elaboration tolerance of the logical repre-
sentation. Secondly, even if we make some sacrifices in the representation and move
accordingly, now the reasoners would have a hard time grounding such a predicate with
so many parameters. It would require the reasoner to ground the predicate and the associ-
ated rules for nearly every possible combination of object and robot positions. Even with
a modest upper limit to the number of objects and a small grid, the grounding mechanisms
these solver employ make it impossible for a regular computer or a workstation in today’s
standards to deliver a result in a feasible time.

Fortunately, dlvhex provides a more versatile interface and reasoning mechanism
for external computations that does not include the short-comings of iclingo and CCALC.
In dlvhex, we can pass a set of atoms as a parameter to the an external predicate. This
second-order property of dlvhex predicates allows us to integrate the actual motion plan-

38

ning problem with all the movable objects instead of the relaxed version. The following
is the corresponding rule that describes a precondition of goto(R,X,Y,T) action:

:- goto(R,X2,Y2,Ta), at(R,X1,Y1,Ta),

not &path_exists[X1,Y1,X2,Y2,at,Ta](),

robot(R), xcoord(X1), xcoord(X2),

ycoord(Y1), ycoord(Y2), timea(Ta).

Here, the external predicate &path exists[X1,Y1,X2,Y2,at,Ta]() has a parameter named
at which corresponds to the set of at(TH,X,Y,T) atoms. In this way, the predicate is able
to include the movable object positions into its geometric reasoning process.

Note that dlvhex also does not suffer from the performance penalties of computing
the external predicate for unnecessary instantiations. There is an interleaving between the
grounding (which includes computation of external predicates) and solving. Therefore,
the costly computations of external predicates are omitted as much as possible.

3.7 Further Use of Commonsense Knowledge

Besides the knowledge about expected locations of objects, we can integrate other
sorts of commonsense knowledge to render the robots more informed about their sur-
roundings. After all, our method of embedding commonsense knowledge is general
enough to embed all sorts of commonsense knowledge. With new sorts of knowledge,
reasoning capabilities of the robots can be improved.

For instance, we can extract from the commonsense knowledge base CONCEPTNET

the types of objects has property of being fragile as follows:

result = Assertion.objects.filter(relation=hasProperty, \

concept2=fragile, score__gte=threshold)

for assertion in result:

print ’has_property(%s, fragile)’ % assertion.concept1.text

and obtain a list of object sorts that are likely to be fragile. Afterwards, we can define an
external predicate to specify the endpoints of fragile objects:

fragile(EP) :- belongs(EP,Obj),

type_of(Obj,Sort),

has_property(Sort,fragile).

and then describe that fragile objects should be handled more carefully by adding an
“attribute” to the action of attaching to an object:

handle with care(r, t)←
attach(r, t), attach point(r, ep, t), fragile(ep).

39

Exceptions to commonsense knowledge There may be some exceptions to the com-
monsense knowledge extracted from the commonsense knowledge bases. For instance,
books normally are expected to be in the living room; however, cookbooks are exceptions
(since they are expected to be in the kitchen). Such exceptions can be represented in
C+and ASP in a natural way, since the formalisms allow representation of “defaults”. To
be able to handle such exceptions about the locations of objects, we need to replace the
rule

at desired location(ep, t)←
at(ep, x, y, t), in place(ep, x, y)

with the rule

at desired location(ep, t)←
at(ep, x, y, t), in place(ep, x, y), not exception(ep)

and say that cookbooks are exceptions:

exception(ep)← belongs(ep, obj),

type of(obj, cookbook)

3.8 Heterogenous Robots

In our description of housekeeping domain, all robots are homogenous, i.e. they
share the same capabilities, perform the same set of actions. But this situation may not
be the case in another scenario. For instance, some of the robots may be able to pick
up objects from the table, but not from the floor due to their short robotic arms. Or
another type of robot may not be able to carry heavy objects even with the help of another
robot. To represent such a domain which includes different types of robots, we can define
detailed action preconditions in ASP or C+. For instance, the following is an example of
preventing short-armed robots from picking up objects not located on the table:

← attach(r, t), attach point(r, ep, t),

not coarse location(ep, table, t), has property(r, “short arm′′)

Similarly, we can prevent weak robots from carrying heavy objects as follows:

← attach(r, t), attach point(r, ep, t),

heavy(ep), has property(r, ”light weight”)

While concluding this chapter, we would like to emphasize one more time that by
representing the domain in C+ and in ASP, we could utilize 1) the expressivity of these
formalisms (e.g., defaults, choice rules), and 2) the relevant computational methods (i.e.,

40

external predicates) to handle the following two challenges of the housekeeping domain:
i) embedding commonsense knowledge, ii) embedding geometric reasoning.

41

Chapter 4

Reasoning about the Housekeeping
Domain

The goal behind logic-based representation of the housekeeping domain is to be
able to reason on the resulting formulation via various solvers. The specific reasoning
task that we are interested in is mainly planning. Here we describe how we formulate
planning problems in these logical formalisms, and provide some experimental results on
solver performances.

4.1 Planning with CCALC and iclingo in the
Housekeeping Domain

CCALC We describe planning problems in CCALC in terms of queries. Figure 4.1 is an
example query in the input language of CCALC.

In this query, maxstep is a variable denoting the last step of the plan. It can be
assigned to a single non-negative integer or a range of non-negative integers. When it is
the latter, the value of maxstep is initialized with the lower limit, and incremented unless
a plan is found with the current value or the upper limit is reached. In this way, it can be
ensured that the resulting plan is of minimum length by setting the lower limit to 0.

1 :- query

2 label :: 0;

3 maxstep :: 0..20;

4 0: at(r1,4,6), at(ep1,3,5), elapsed_time=0, free;

5 maxstep: tidy, free.

Figure 4.1: A CCALC query for a housekeeping problem

42

%% initial state

#base.

:- not at(r1,4,6,0).

:- not free(0).

:- not at(ep1,3,5,0).

:- not elapsed_time(0, 0).

%% goal condition

#volatile t.

:- not tidy(t).

:- not free(t).

Figure 4.2: An iclingo query for a housekeeping problem

A planning problem consists of an initial state and a goal condition. In Figure 4.1,
the initial state is described by the fluents in fourth line. It is the complete description
of the initial state that consists of positions of the robots, positions of the objects, initial
time, and availability of robot end effectors. The fifth line describes the goal condition of
the plan. We say that, at the end of the plan the room should be tidy, and the robot end
effectors should be free.

iclingo Similar to CCALC, planning problems are represented in the form of queries
in ASP. In this case, a query is basicly a set of constraints. The ASP query corresponding
to the planning problem in Figure 4.1 is given in Figure 4.2 in the input language of
iclingo.

In Figure 4.2, #base and #volatile are solver directives. When we want to evaluate
a group of rules only once in the base step of incremental reasoning, we precede them with
#base. That is the case with the constraint rules which represent the initial state of the
planning problem, therefore we use this directive.

The constraint rules following the initial state description represent the goal con-
dition of the planning problem. We want the goal condition to be checked at each step
of the incremental reasoning, but we do not want to propagate any unsatisfiable instan-
tionations of the these rules into to the later steps. Therefore, we precede them with
the #volatile t directive. In this way, the goal condition is evaluated for each t value
incrementally without minding the satisfiability for prior t values.

4.2 Planning with Complex Goals

One of the advantages of having a logical representation of the planning domain is
to be able to represent some complex goals using logical formulas. Here we provide some

43

:- query

label :: 0;

maxstep :: 0..20;

%% initial state

0: at(r1,4,6);

0: at(ep1,3,5);

0: elapsed_time=0:

0: free;

%% goal condition

maxstep: tidy;

maxstep: free;

maxstep: elapsed_time=<30.

%% initial state

#base.

:- not at(r1,4,6,0).

:- not free(0).

:- not at(ep1,3,5,0).

:- not elapsed_time(0, 0).

%% goal condition

#volatile t.

:- not tidy(t).

:- not free(t).

:- elapsed_time(D,t), D>30.

Figure 4.3: CCALC and iclingo queries with deadlines

examples of these complex goals used in housekeeping planning.
As we have said earlier, incremental plan search ensures that the resulting plan

would be of minimum length in CCALC and iclingo. But minimum plan length does
not neccessarily mean the least possible plan duration. Plans with the minimum length
may differentiate between each other in terms of duration. Also, a plan with fewer steps
may take more time than another plan more steps. While length of a plan is an abstract
term, duration of a plan is more meaningful from the practical point of view. People would
care about giving a deadline to a robot to tidy a room, but the number of steps taken to
complete the task is mostly irrelevant. Here we show how we can apply a deadline in a
query in Figure 4.3.

Consider a scenario with a robot, a small object, and a heavy object which require
collaboration between two robots to be carried around. Since a single robot cannot carry
the heavy object, the robot need to find a new plan that involves two robots, and call an-
other robot for help to execute it. But that robot is likely to be busy working on another
room. It would not be wise if the resulting plan involves some collaborative actions in the
beginning, handling of the small object which does not require another robot in the mid-
dle, and then another sequence of collaborative actions in the end. A good practice would
be postponing the handling of the heavy object as much as possible. Fortunately, we can
write down such a complex query to obtain a desired plan quite easily. For instance, we
force the plan to not have any actions involving the helper robot r2 before the last 4 steps
of the plan using the queries provided in Figure 4.4. In this way, concurrent actions are
postponed as well as the handling of the heavy object.

We can also prevent existence of some actions under specific circumstances from
the desired steps of the plan in our queries. This kind of constraints are especially useful
in case of replanning after encountering plan failures. For instance, assume that we have

44

:- query

label :: 0;

maxstep :: 4..20;

%% initial state

0: at(r1,3,5);

0: at(r2,4,5);

0: at(ep1,3,5);

0: at(ep2,2,5);

0: at(ep3,3,6);

0: elapsed_time=0;

0: free;

%% goal condition

maxstep: tidy;

maxstep: free;

%% temporal constraint

(S @< (maxstep - 4)) ->>

(S: [/\X /\Y | -goto(r2,X,Y),

-attach(r2), -detach(r2)]).

%% initial state

#base.

:- not at(r1,3,5,0).

:- not at(r2,4,5,0).

:- not free(0).

:- not at(ep1,3,5,0).

:- not at(ep2,2,5,0).

:- not at(ep3,3,6,0).

:- not elapsed_time(0,0).

%% goal condition

#volatile t.

:- not tidy(t).

:- not free(t).

%% temporal constraint

:- 1 { goto(r2,I,J,0..(t-4))

: xcoordinate(I)

: ycoordinate(J) }.

:- 1 { attach(r2,0..(t-4)) }.

:- 1 { detach(r2,0..(t-4)) }.

Figure 4.4: CCALC and iclingo queries with temporal constraints

a plan in which the execution fails unexpectedly when robot r1 tries to go to (3,6) point
from (2,5) in the grid. This may be due to human interference, or some unknown object
blocking the path, etc. Since we do not know the exact reason, one of the things we can
do is to put a constraint that prevents existence of this action in the plan, so that we may
work around the problem. We can do this by adding the following constraint into a query
in iclingo:

:- goto(r1,2,5,T), at(r1,3,6,T).

We can also append similar constraints to our query for other failures encountered during
the execution cumulatively. In this way, the robot would learn from its mistakes, and the
resulting plan would be more likely to succeed.

4.3 Hybrid Planning

Since geometric reasoning and temporal reasoning (via a motion planner) are em-
bedded in the computation, the calculated plans are essentially hybrid plans, integrating
discrete planning and continuous motion planning. Hybrid plans help computation of
plans that are geometrically feasible as well as temporally feasible. Let us show these two
advantages of hybrid planning with examples.

45

Figure 4.5: Housekeeping domain for Scenario 1

Consider Scenario 1, depicted in Figure 4.5, in which one of the nightstands together
with the bed forms a narrow passage possibly blocking the robot to reach the north part of
the bedroom where the red pillow is located. Note that this kind of geometric feasibility
checks can only be performed using full geometric models of the robot and the room at a
continuous level, and cannot be abstracted at the grid level without loosing completeness.
Therefore, without geometric reasoning, naive task planning may lead to infeasible plans.

Indeed, at the grid-level, preconditions prohibit the robot to go to the locations
occupied by the robot itself and occupied by the stationary objects; so, in Scenario 1, the
robot can go to where the red pillow is, and given the planning problem in Figure 4.6,
naive task planning using iclingo without geometric feasibility checks computes the
geometrically infeasible plan in Figure 4.7.

However, our hybrid planning approach identifies that such a planning problem is

%% initial state

% Robot 1 is at (4,6) in bedroom

:- not at(r1,4,6,0).

% Robot 1 is free

:- not free(0).

% red pillow is (1,2) in bedroom

:- not at(redpillow1,1,2,0).

% initially elapsed time is 0

:- not elapsed_time(0,0).

%% goal

:- not tidy(t). % the bedroom is tidy

:- not free(t). % Robot1 finished cleaning

Figure 4.6: Planning problem for Scenario 1

46

% go to where the red pillow is

0. goto(r1,1,2,0)

% pick the red pillow

1. attach(r1,1)

% go to where pillow is expected to be

2. goto(r1,5,1,2)

% put the red pillow

3. detach(r1,3)

Figure 4.7: An infeasible plan for Scenario 1

infeasible (i.e., iclingo returns that no solution exists) thanks to the geometric reasoning
embedded into high-level representation.

The second example shows the usefulness of embedding temporal reasoning in
planning, by means of estimating the durations of actions based on the length of paths
(computed by motion planners), to identify infeasible plans due to temporal constraints.
Consider Scenario 2, described by the planning problem in Figure 4.8. We compute two
shortest plans (of length 16) for this problem using iclingo: one without any tempo-
ral constraints, and one with the temporal constraint where the total duration of the plan
is limited to 25 units of time. For the latter problem we add the following line to the
planning problem description above:

% total elapsed time is <= 25 units

:- elapsed_time(D,t), D>25.

Table 4.1 presents these two plans. Note that, even though both plans last 16 time steps
at the discrete level, the plan computed with the duration estimation obeys the temporal
constraint of 25 time units, while the plan computed without duration estimation lasts
for 26 time units, violating the temporal constraint. Indeed, according to the continuous
trajectories computed for each “go” action, the total length of the trajectory for the plan
computed without temporal constraints is 55 units, whereas the total length of the tra-
jectory for the plan computed with temporal constraints is 51 units; assuming a constant
velocity of 3 units leads to duration estimates of 26 and 25 units respectively.

Note that the hybrid planning approach can also be extended to allow for collab-
orative actions of multiple housekeeping robots. In particular, consider Scenario 3, a
variation of Scenario 2 where there exists a second robot that is available to help Robot
2 in the kitchen. A collaborative plan for these two robots calculated by iclingo is pre-
sented in Table 4.2. Note that the collaboration of robots decrease the total plan duration
to 14 time units.

47

%% initial state

% Robot 2 is at (2,2) in kitchen

:- not at(r1,2,2,0).

% Robot 2 is free

:- not free(0).

% location of plate1 is (5,5) in kitchen

:- not at(plate1,5,5,0).

% location of fork1 is (1,5) in kitchen

:- not at(fork1,1,5,0).

% location of spoon1 is (7,6) in kitchen

:- not at(spoon1,7,6,0).

% location of mug1 is (7,5) in kitchen

:- not at(mug1,7,5,0).

% initially elapsed time is 0

:- not elapsed_time(0,0).

%% goal

:- not tidy(t). % the kitchen is tidy

:- not free(t). % Robot1 finished cleaning

Figure 4.8: Planning problem for Scenario 2

Table 4.1: Plans for Scenario 2

Time Plan with Elapsed Plan without Elapsed
Step duration estimation Time duration estimation Time

0 goto(r2,1,5,0) 1 goto(r2,7,6,0) 2
1 attach(r2,1) 2 attach(r2,1) 3
2 goto(r2,0,3,2) 3 goto(r2,2,3,2) 5
3 detach(r2,3) 4 detach(r2,3) 6
4 goto(r2,5,5,4) 6 goto(r2,7,5,4) 9
5 attach(r2,5) 7 attach(r2,5) 10
6 goto(r2,1,3,6) 9 goto(r2,0,0,6) 13
7 detach(r2,7) 10 detach(r2,7) 14
8 goto(r2,7,5,8) 13 goto(r2,5,5,8) 17
9 attach(r2,9) 14 attach(r2,9) 18
10 goto(r2,0,0,10) 17 goto(r2,1,2,10) 20
11 detach(r2,11) 18 detach(r2,11) 21
12 goto(r2,7,6,12) 21 goto(r2,1,5,12) 22
13 attach(r2,13) 22 attach(r2,13) 23
14 goto(r2,2,3,14) 24 goto(r2,1,0,14) 25
15 detach(r2,15) 25 detach(r2,15) 26

48

Table 4.2: Collaborative Plan for Scenario 3

Time Plan with Elapsed
Step two robots Time

0 goto(r2,7,5,0) goto(r1,7,6,0) 3
1 attach(r2,1) attach(r1,1) 4
2 goto(r2,1,0,2) goto(r1,0,3,2) 7
3 detach(r2,3) detach(r1,3) 8
4 goto(r2,5,5,4) goto(r1,1,5,4) 10
5 attach(r2,5) attach(r1,5) 11
6 goto(r2,1,3,6) 13
7 detach(r2,7) detach(r1,7) 14

4.4 Experimental Evaluation

We have represented the housekeeping domain using different formalisms, C+ and
ASP. Also, for each ASP reasoner that we use, we have provided slightly different ASP
formulations that make use of the differents aggregates or interfaces available. To bench-
mark the performance of these different approaches, we run some tests with respect to a
set of planning problems. Here we provide these experimental results.

In these experiments, we use the domain representation in C+ provided in Ap-
pendix A, and the representations in ASP provided in Appendix B, C and D. For the
experiments on C+ representation, we use CCALC 2.0 with SWI-PROLOG 5.10.4 and
MINISAT 2.0. As for the ASP solvers, we use iclingo 3.0.3 and a development release
of dlvhex 2.1.0. The experiments are done on a workstation with quad core Intel(R)
Xeon(R) CPU E5310 @ 1.60GHz CPU and 6GB RAM. During the experiments, rele-
vant measurements are made for each instance only once, since the high-level reasoning
is deterministic, and the embedded external computation of geometric reasoning is also
deterministic in practice due to the precomputation and caching techniques we have em-
ployed. Therefore, multiple runs of the same instance cannot be subject to significant
differences.

In the following tables and figures, iclingo* denotes the results of simplified ASP
formulation in Appendix C. In the meantime, iclingo** denotes the results obtained by
applying a simple, equivalence preserving transformation to the iclingo* formulation.
This transformation is a very simple yet highly effective workaround for reducing the
grounding time of external predicates/functions that do not change their value with respect
to plan steps. The following rules describe this transformation:

#base.

path_exists_base(X1,Y1,X2,Y2) :- @path_exists(X1,Y1,X2,Y2)==1.

time_estimate_base(X1,Y1,X2,Y2,D) :- D:=@time_estimate(X1,Y1,X2,Y2).

After adding these rules, we replace every occurence of external predicates/functions with

49

Table 4.3: Planning Experiment Problem Details

(R:Robots, O:Objects, L:Plan Length)
Properties Program Size

CCALC iclingo iclingo* iclingo** dlvhex

No R O L (Atoms/Clauses) (Atoms/Rules) (Atoms/Rules) (Atoms/Rules) (Atoms/Rules)

37450 8231 3983 8821 -
1 1 2 8 287390 300890 156468 188154 -

58300 13780 7402 12240 -
2 1 3 12 490819 539308 326850 371960 -

18308 3400 1489 6327 39411
3 1 1 4 127031 117588 48029 66291 74578

37389 5791 2735 7573 -
4 2 2 4 260721 230786 154365 186051 -

66929 10646 5452 10290 -
5 2 3 7 485297 442333 374325 426147 -

79391 14191 7175 12013 -
6 2 4 8 606447 592562 548117 606651 -

111717 20759 11120 15960 -
7 2 5 11 890051 893773 920388 999084 -

124805 24369 13191 16846 -
8 2 6 12 1041313 1077892 1187415 1167253 -

125068 19755 10223 15065 -
9 3 6 8 951336 894034 1176233 1261655 -

166723 22761 11941 15292 -
10 4 6 8 1203111 1046796 1560487 1464664 -

105198 13995 7147 11989 -
11 5 6 4 756694 648750 974601 1046583 -

182583 22824 11971 11989 -
12 5 6 7 1285138 1061856 1702116 1046583 -

229921 28136 14894 19730 -
13 6 8 7 1640663 1344063 2803970 2808806 -

170800 24152 12672 17508 -
14 4 7 8 1263400 1126025 1907820 1912656 -

174877 25537 13397 18233 -
15 4 8 8 1324877 1206500 2148943 2153779 -

187087 24107 12649 17485 -
16 5 7 7 1342416 1133597 2080506 2085342 -

218598 28647 15173 20009 -
17 5 8 8 1591766 1362278 2676229 2681065 -

50

the newly created atoms to obtain iclingo** formulation. In this way, the costly compu-
tation of these external predicates/functions are restricted to the base step of incremental
reasoning.

The experiment consists of 17 different planning problems of various size. In each
problem, there are some movable object of different sorts in an untidy condition, and a
varying number of robots are present in the same room. The goal condition of each plan
is to obtain a tidy room with unoccupied robots, and meet a reasonable deadline in the
meantime. All instances are satisfiable. More detail about the number of robots, number
of movable objects, and the minimum plan length is provided in Table 4.3.

Program size At first, we provide some measurements for the size of each problem.
In Table 4.3, program size is given in terms of atom count and rule count for iclingo
and dlvhex formulations. For CCALC formulation, we give the count of atoms and
clauses. In case of iclingo, these values quantifiy the whole process due the incremental
reasoning. For the other formulations, these counts correspond to the last and therefore
the largest step of each planning problem.

When we examine Table 4.3, we see that iclingo internally produces significantly
less number of atoms than CCALC or dlvhex does. Also, the simplifications we have
applied on the iclingo formulation contributed towards descreasing the size of the prob-
lem.

Computation time In Table 4.4 and Figure 4.9, we show the computation time it takes
to find a plan for each problem using different reasoner-formulation combinations. The
first thing that strikes is that dlvhex timeouts in every problem instance except the small-
est one which is Problem 3 that includes a single robot and a single movable object. The
computation time given to dlvhex processes before forcing them to terminate is 6000
seconds.

Despite the poor performance in general, dlvhex outperforms all the other reason-
ers with a great margin in the only planning problem it can solve. When we look at
this Problem 3 more closely, we see that all the reasoners except dlvhex spend nearly
all of their time grounding this problem. This is due to the fact that these reasoners
unnecessarily compute every possible external predicate ground atom. Even worse, the
external predicates that we use in CCALC and iclingo formulations are responsible for
a relaxed version of the problems which do not include the movable objects. Therefore,
their values are actually time independent. Unfortunately, CCALC and iclingo com-
pute the ground atoms of these predicates at each incremental step unnecessarily except
iclingo** formulation thanks to the workaround, and this situtation results in a huge per-
formance penalty. Thus, we can say that the inverleaving between grounding and solving
employed by dlvhex saves a lot of time in this instance. Note that the external predicates

51

in dlvhex formulation solve a harder problems by considering the movable objects, and
still there exists a huge performance difference in favor of dlvhex.

Nevertheless, it is certain that dlvhex suffers from some serious scalability prob-
lems since it can solve only the smallest instance in a reasonable time. This may be related
with the fact that dlvhex reasoning process takes into account significantly more atoms
and rules than iclingo does. The huge difference can be seen in Table 4.3 for Problem 3.

Table 4.4: Planning Time

(G:Grounding, C:Completion, Sh:Shifting, Pr:Preprocessing, S:Solving)

No CCALC (s) iclingo (s) iclingo* (s) iclingo** (s) dlvhex (s)

G:66.74 G:96.95 G:92.11 G:14.08

C:18.78 Sh:0 Pr:0.29 Pr:0.52 Pr:0.40

S:3.63 S:0.25 S:0.36 S:0.28

1 98.64 97.49 93.04 14.80 t/o
G:68.53 G:140.98 G:142.50 G:15.05

C:16.55 Sh:.02 Pr:0.59 Pr:1.17 Pr:1.05

S:11.93 S:2.63 S:2.38 S:1.55

2 110.82 144.22 146.15 17.81 t/o
G:58.59 G:47.56 G:46.65 G:13.29

C:14.38 Sh:0 Pr:0.12 Pr:0.14 Pr:0.11 G:1.23

S:1.17 S:0.00 S:0.01 S:0.01 S:0.75

3 78.60 47.68 46.80 13.41 4.76
G:121.07 G:94.32 G:91.93 G:14.60

C:27.20 Sh:.01 Pr:0.26 Pr:0.53 Pr:0.42

S:2.75 S:0.04 S:0.06 S:0.03

4 158.35 94.63 92.53 15.05 t/o
G:127.19 G:166.92 G:162.76 G:15.47

C:38.44 Sh:0 Pr:0.56 Pr:1.45 Pr:1.24

S:5.97 S:2.21 S:2.37 S:0.73

5 182.30 169.71 166.72 17.55 t/o
G:151.37 G:190.13 G:186.00 G:16.18

C:44.31 Sh:.03 Pr:0.72 Pr:2.22 Pr:1.86

S:25.34 S:12.38 S:5.43 S:2.90

6 242.85 203.29 193.89 21.29 t/o
G:169.31 G:263.53 G:256.18 G:18.64

C:46.65 Sh:.02 Pr:1.26 Pr:4.03 Pr:3.45

S:50.41 S:270.49 S:44.89 S:28.90

7 294.06 535.70 305.78 52.23 t/o
G:165.71 G:272.25 G:279.21 G:19.97

C:48.56 Sh:.04 Pr:1.45 Pr:5.49 Pr:4.27

To be continued on next page

52

Continued from previous page

S:93.51 S:492.58 S:125.28 S:46.78

8 347.98 767.53 410.94 72.39 t/o
G:260.35 G:274.59 G:279.46 G:20.27

C:73.63 Sh:.04 Pr:1.09 Pr:5.20 Pr:4.40

S:108.74 S:95.60 S:73.39 S:15.18

9 489.18 371.58 358.79 40.92 t/o
G:331.88 G:370.77 G:377.35 G:21.61

C:79.15 Sh:.05 Pr:1.67 Pr:6.98 Pr:5.17

S:346.47 S:263.94 S:87.42 S:22.44

10 810.14 637.33 472.98 50.32 t/o
G:385.14 G:261.33 G:236.23 G:19.07

C:112.95 Sh:.02 Pr:1.18 Pr:4.65 Pr:3.77

S:11.55 S:3.88 S:1.72 S:0.64

11 542.97 266.42 243.02 23.66 t/o
G:423.68 G:435.16 G:422.49 G:18.75

C:124.07 Sh:.02 Pr:2.11 Pr:8.67 Pr:3.69

S:57.24 S:1597.62 S:122.21 S:1.11

12 669.76 2035.60 554.90 24.09 t/o
G:508.35 G:488.17 G:580.83 G:30.61

C:144.98 Sh:.03 Pr:2.77 Pr:18.33 Pr:11.09

S:111.78 S:13918.09 S:1285.87 S:1419.93

13 848.59 14416.59 1892.42 1467.08 t/o
G:362.57 G:372.78 G:391.71 G:24.47

C:114.09 Sh:.04 Pr:2.12 Pr:9.91 Pr:7.32

S:798.89 S:1007.70 S:783.39 S:277.33

14 1343.93 1383.91 1190.25 312.72 t/o
G:374.01 G:420.87 G:396.28 G:25.81

C:108.89 Sh:.06 Pr:2.82 Pr:11.98 Pr:8.40

S:412.48 S:991.48 S:1226.33 S:406.60

15 983.37 1416.27 1641.77 444.45 t/o
G:392.92 G:416.59 G:484.35 G:25.43

C:108.06 Sh:.03 Pr:2.06 Pr:10.72 Pr:7.70

S:35.37 S:535.82 S:379.48 S:311.19

16 583.60 955.92 878.54 347.71 t/o
G:410.74 G:463.94 G:594.57 G:29.42

C:116.36 Sh:.08 Pr:2.97 Pr:16.62 Pr:12.49

S:2297.97 S:4642.81 S:3388.03 S:3554.15

17 2937.33 5112.80 4013.86 3623.74 t/o

53

11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 1717

500500

10001000

CCalcCCalc iclingoiclingo iclingo*iclingo* iclingo**iclingo** dlvhexdlvhex

Problem

Ti
m

e
(s

)

11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 1717

500500

10001000

CCalcCCalc iclingoiclingo iclingo*iclingo* iclingo**iclingo** dlvhexdlvhex

Figure 4.9: Planning Time

In general, we can say that iclingo shows a good performance in small instances,
especially when the task is to find a plan with a short lengh. In moderate-sized instances,
iclingo falls back a little in comparison to CCALC, mostly because of the inefficiencies
in grounding. In case of large instances, CCALC shows the best performance. This is
mostly because of the underlying state-of-the-art SAT solver MINISAT used by CCALC.
It is fair since satisfiability solving has been an active research topic for a much longer
time than ASP, and SAT solvers come from a long tradition of competitions in which
solvers are tested against difficult and enormously large problems. Therefore, it is not a
suprise that ASP solvers are outperformed by SAT solvers in large instances. To further
exploit the advantages of SAT solvers, we have also run some tests using a parallel SAT
solver called MANYSAT [47], but the difference in terms of computation time compared
to MINISAT is insignificant, thus we simply omit those results here.

The simplifications we have made in iclingo formulation has contributed towards
a better timing as well. This is expected since the program size has been largely decreased
due to these simplifications made using the available aggregates. Unfortunately, dlvhex
does not support some of these useful aggregates such as choice and cardinality expres-
sions natively, therefore we cannot provide a simplified version of dlvhex domain, and
test it against iclingo.

Memory usage In Table 4.5 and Figure 4.10, we see the memory usage of different
reasoner-formulation combinations. It is seen that even in the small instances CCALC

uses massive amount of memory. In comparison, iclingo can be identified as memory

54

Table 4.5: Memory Usage

No CCALC (MB) iclingo (MB) iclingo* (MB) iclingo** (MB) dlvhex (MB)

1 2703.28 73.35 139.54 117.92 -
2 2707.04 119.93 281.00 222.70 -
3 2678.73 41.01 53.93 53.54 647.9
4 3462.54 69.62 143.07 124.48 -
5 3762.84 131.07 335.62 251.78 -
6 3789.32 156.93 413.65 326.68 -
7 3810.51 438.71 836.81 594.01 -
8 3832.42 814.89 986.85 707.67 -
9 3881.95 381.25 818.21 674.42 -
10 3933.12 866.42 1109.39 785.04 -
11 3996.43 176.89 738.70 600.25 -
12 3996.46 1336.40 1434.10 601.29 -
13 4102.37 6180.03 3498.68 4578.51 -
14 3969.23 1049.56 2250.25 1775.90 -
15 3993.76 868.79 2793.25 2014.56 -
16 4022.31 1112.26 1739.28 1991.09 -
17 4048.07 2761.21 5079.98 7593.35 -

Problem

M
e
m

o
ry

 (
M

B
)

11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 1717

20002000

40004000

CCalcCCalc iclingoiclingo iclingo*iclingo* iclingo**iclingo** dlvhexdlvhex

Figure 4.10: Memory Usage

55

efficient especially in the small instances. This is mostly because of the incremantal rea-
soning approach of iclingo. In large instances, the difference begins to fade. We suspect
that this situation is due to the memory efficiency of MINISAT utilized by CCALC, rather
than the grounding mechanism of CCALC which is written in Prolog and known to scale
not-so-well.

4.5 Plan Optimization

As we have said earlier, our incremental reasoning approach allows us to find the
shortest possible plans in terms of plan length. But we have also made it clear that a short
plan do not necessarily mean a plan with the minimum duration. Fortunately, reasoners
like clingo (non-incremental version of iclingo) and dlvhex allow some optimization
directives as input while searching for an answer set. Using these directives, we can
achieve an optimal plan with respect to total duration. The optimization directive that can
be inserted in any desired plan query for clingo, would be as follows:

#minimize [elapsed_time(I,t):duration(I)=I@1].

Other optimization examples can be easily generated. For instance, we can opti-
mize the number of occurence of a specific action in the plan. The following optization
statement would maximize the number of attach(R,T) actions in the plan:

#maximize [attach(I,J) @ 1].

At the end of this chapter, we would like to summarize our contributions from the
perspective of reasoning by saying that 1) we utilize different logic-based reasoners to find
optimal hybrid plans, 2) our planning approach allows us to represent planning problems
with complex temporal goals and find the corresponding plans in an efficient way, 3) we
provide experimental evaluation of CCALC with SAT solver MINISAT, and ASP solvers
iclingo and dlvhex.

56

Chapter 5

Monitoring the Plan Execution

Having plans to tidy a house does not necessarily mean the execution will always
be flawless. In a real world scenario such as housekeeping, we should consider possible
plan failures, and monitor the execution of the plans to make sure they succeed. Thus,
we developed an execution monitoring algorithm for the housekeeping robots. Here, we
provide some details about this algorithm, and show its applicability.

5.1 Execution and Monitoring of Hybrid Plans

Suppose that, once each robot obtains the current state of the world from the sensor
information, she autonomously finds a hybrid plan to achieve her tasks in a given time,
using the hybrid planning approach as presented in Section 4.3. Then, each robot starts
executing her plan. However, a plan execution may fail, for instance, due to the unpre-
dictable interference of a human. A human may relocate an object which is to be carried
by robot, or bring a new movable object to the room. Since the robots are unaware of
these dynamic changes, they may collide with these obstacles. Furthermore, while most
of the moveable objects are carried with only one robot, some of these objects are heavy
and their manipulation requires two robots. The robots do not know in advance which
objects are heavy, but discover a heavy object only when they attempt to move it. Also, a
failure may cause a delay and put the time constraint at stake. In such a case, a robot may
need assistance of another robot to meet its deadline. When such incidents occur, robots
can identify the cause of the failure and act accordingly, e.g., according to the planning
and monitoring algorithm illustrated by the flowcharts in Figure 5.1 and 5.2.

In particular, for each group of cleaning robots in a single room, a plan is computed
and executed according to Algorithm 1 (monitor). First, each monitoring instance obtains
the current state s of the world from the sensor information. After that, a plan P of length
less than or equal to a given nonnegative integer k is computed, from the observed state
s0 to a goal state (that satisfies the given goal g which includes a time constraint tc) in

57

Obtain state information.

Execute the plan.

Goal satisfied? Done.

Find a plan.

Failure?

Find a new plan
using the updated
state information.

Find a trajectory to
the next

configuration, or
find a new plan.

Object
Not

Found

Unknown
Object

?

Heavy
Object

Yes

No

Figure 5.1: Flowchart of an execution and monitoring algorithm for the housekeeping
domain

Find a plan involving 2
robots.

Request help. Indicate how
long helping will take.

Request
accepted?

Offer help.

Help the robot in the
other room.

Offer
accepted?

Heavy Object
Failure

Execute the plan.

Yes No

Yes No

At least
2 robots in the

room?

Yes No

Figure 5.2: Flowchart of help offer routine in the housekeeping domain

58

a world described by a given action domain description D. Plans are computed using
CCALC, iclingo or dlvhex as described in Chapter 4, by the function findP. Once a
plan P is computed, each monitoring instance starts executing it according to Algorithm 8
(execute). If a plan execution fails or is interrupted, the relevant instance can identify the
cause of the failure/interrupt and act accordingly.

• When a robot collides with an unknown movable object while following its planned
trajectory for a transition 〈s, A, s′〉 (i.e., the cause of the failure is UNKNOWN-

OBJECT), Algorithm 2 (caseUnknownObject) is invoked. In particular, the moni-
toring instance tries to calculate a new, collision-free trajectory π to reach the next
state s′ from its current configuration. Such a trajectory π is computed by the func-
tion findT, which implements a motion planner based on RRTs. If no such trajec-
tory is calculated by the motion planer, the robot goes to a safe state s (possibly
the previous state) and the monitoring instance asks the reasoner to find a new plan
P to reach the goal from s taking into account the recently discovered moveable
objects.

• When a plan fails because a robot attempts to carry an object which is relocated
by another agent (i.e., the cause of the failure is OBJECT-NOT-FOUND), then fol-
lowing Algorithm 3 (caseObjectNotFound), the monitoring instance observes the
world and asks the reasoner to find a new plan P to reach the goal from the current
state s taking into account the recently relocated moveable objects.

• When a plan fails because a robot attempts to manipulate a heavy object (i.e., the
cause of the failure is HEAVY-OBJECT), there are two possible courses. If there are
multiple robots in the room, then a new plan is found with respect to the updated
world information, and executed by the robots which are already in the room. Oth-
erwise, the robot has to ask for assistance from other robots so that the heavy object
can be carried to its destination (see Algorithm 4 (caseHeavyObject)). However, in
order not to disturb the other robots while they are occupied with their own respon-
sibilities, the call for help is delayed as much as possible. With the observation that
the manipulation of the heavy object takes 4 steps (get to the heavy object, attach
to it, carry it, detach from it), this is accomplished by asking the reasoner to find a
new plan P that manipulates the heavy object within the last i = 4, 5, 6, ... steps of
the plan only. Once such a plan is computed, the robot single-handedly follows the
first part of the plan without asking for any help.

• As the execution continues, the monitoring instance eventually encounters a con-
current action involving multiple robots (i.e., the cause of the interrupt is CALL-

ROBOT). At this point, the execution is paused and the monitoring instance notifies
the other groups of robots that it needs help (see Algorithm 5 (caseCallRobot)), and

59

gives them a time estimate for how long the helping process will take by looking at
the plan P .

• Once the other monitoring instances’ plan execution is interrupted by such a re-
quest (i.e., the cause of the interrupt is HELP-REQUESTED), they accept or reject
the request of help-seeking robot by taking their own deadlines into account, and
their possible behaviors can be described as follows (see Algorithms 6 (caseHel-
pRequested) and 7 (caseHelpOffered)):

– If one of the monitoring instances decides that it can spare a robot to assist
the help-seeking robot without violating its own time constraint by, it replies
back to the help request affirmatively, pauses the execution of its own plan,
send a robot to the entrance of the other room, and waits for the commands
of the help-seeking monitoring instance. After they execute the collaborative
part of the plan, the helper robot goes back its room, exactly to the location
where it was interrupted in the first place, and the execution of the original
plan resumes.

– If all of the monitoring instances reject the help request due to the fact that they
cannot meet their deadlines otherwise, then help-seeking robot offers help to
the other monitoring instances. The idea is that, by offering help, the help-
seeking robot may save some time in another room. Then, the help-seeking
robot can ask for help one more time, and this second attempt is much more
likely to be successful.

• If a monitoring instance’s plan execution is interrupted by such a help offer (i.e., the
cause of the interrupt is HELP-OFFERED), then the instance accepts the offered
help if that would save the robot some time.

Message passing for asking for help, offering help, helping other robots and listen-
ing to messages are detailed in Algorithms 11 (askForHelp) –14 (listen).

Note that if a human brings some objects into the room, and these objects are not
in collision course with the robots, they cannot be discovered until the robot observes
the world. Therefore, in Algorithm 1 (monitor), after the execution of the plans, a final
observation instance is triggered comparing current state of the room with its goal state.
If there are any discrepancies, then the robots ask for new plans to reach the goal.

Plans are executed according to Algorithm 8 (execute) as follows. For each transi-
tion 〈s, A, s′〉 of the history of the plan:

• If the action A can be performed by the robots in the room then the monitoring
instance executes it according to Algorithm 9 (executeAction).

60

• Otherwise, A is a concurrent action requiring more robots, the monitoring instance
finds a helper to collaborate with and then the robots execute the concurrent action
according to Algorithm 9 (executeAction).

Given the current state s and the next state s′, an action A is executed at s according
to Algorithm 9 (executeAction) and 10 (sendAction) as follows.

• If A is a primitive action of the form goto(R,X,Y,T), then a trajectory is computed
from the current configuration (at s) to the next configuration (at s′) and the relevant
robot follows that trajectory.

• If A is a primitive action of some other form (e.g., attach(R,T) or detach(R,T)),
then the action is performed by the relevant robot.

• If A is a concurrent action of the form {A1, . . . , An} to be executed by multiple
robots independently, then the actions are executed in parallel by recursively invok-
ing Algorithm 9 (executeAction) and 10 (sendAction).

• IfA contains a concurrent action of the form {A1, A2} to be executed by two robots
collaboratively (i.e., each Ai is of the form goto(R,X,Y,T) and both robots are at-
tached to the same object according to s), then a trajectory for each robot is com-
puted from the current configuration (at s) to the next configuration (at s′) and the
robots follow these trajectories.

61

Algorithm 1: monitor

Input: Action description D, goal g, maximum plan length k, identifier of the
location room, agents in the room robots

/* Get the current state s0 and configuration c from sensor

information */

s0, c← observe();
while s0 does not satisfy g do

F := true;
tc← extract global time constraint from g;
/* Find a plan P = 〈s0, a0, s1, ..., an, sn+1〉 to reach the goal g

from s0 under constraints F */

plan,P ← findP(D, s0, g, F, k);
if plan then

/* Execute the plan P starting at state s0 and, if it

fails, return the cause of failure (result) and the

current state (si) */

result, si,msg ← execute(P , s0, robots);
while result 6= NO-INTERRUPT do

if result == UNKNOWN-OBJECT then
result, si,msg,P ←
caseUnknownObject(si,D, g, F, k,P , robots);

else if result == OBJECT-NOT-FOUND then
result, si,msg,P ←
caseObjectNotFound(D, g, F, k,P , robots);

else if result == HEAVY-OBJECT then
result, si,msg,P , F ←
caseHeavyObject(D, g, F, k,P , robots);

else if result == CALL-ROBOT then
result, si,msg, robots←
caseCallRobot(si,P , robots, room);

else if result == HELP-REQUESTED then
result, si,msg ←
caseHelpRequested(si, tc,P , robots, room,msg);

else // result == HELP-OFFERED
result, si,msg, F,P , robots←
caseHelpOffered(si,D, g, F,P , tc, room,msg);

else
/* Check if a plan is possible with more robots, i.e.,

the reason of the failure is missing the deadline */

s0 ← add a helper robot to s0;
plan,P ← findP(D, s0, g, F, k);
if plan then

result, si,msg, robots← caseCallRobot(s0,P , robots, room);
s0, c← observe();

62

Algorithm 2: caseUnknownObject

Input : si,D, g, F, k,P , robots
Output: result, si,msg,P
s0, c← observe();
// Find a trajectory π from the current configuration c to the next state
si+1 ← extract from P;
cnext ← extract next configuration from si+1;
traj, π ← findT(c, cnext);
if traj then

result← send the new trajectory π to the failed robot, wait for response;
if result == NO-INTERRUPT then

result, si,msg ← execute(P , si+1, robots);
else

plan := false;
while ¬plan do

s0 ← Find a safe state closeby;
plan,P ← findP(D, s0, g, F, k);

result, si,msg ← execute(P , s0, robots);
return result, si,msg,P;

Algorithm 3: caseObjectNotFound

Input : D, g, F, k,P , robots
Output: result, si,msg,P
si, c← observe();
plan,P ← findP(D, si, g, F, k);
result, si,msg ← execute(P , si, robots);
return result, si,msg,P;

Algorithm 4: caseHeavyObject

Input : D, g, F, k,P , robots
Output: result, si,msg,P , F
s0, c← observe();
if |robots| < 2 then

s0 ← add a helper robot to s0;
i := 4; // help requested at the last i steps
plan := false;

while ¬plan do
F ← “the second robot should not move before the last ith step”;
plan,P ← findP(P , s0, g, F, k);
i := i+ 1;

else
plan,P ← findP(D, s0, g, F, k);

result, si,msg ← execute(P , s0, robots);
return result, si,msg,P , F ;

63

Algorithm 5: caseCallRobot

Input : si,P , room, robots
Output: result, si,msg, robots
expectedDuration← calculate using elapsed time fluents in si and sgoal;
helpFound, helper ← askForHelp(room, expectedDuration);
if ¬helpFound then

helpeeFound, helpee← offerHelp(room, expectedDuration);
if helpeeFound then

robot← Select from robots;
help(robot, helpee, room, helpeeRoom, si);

else
robots← add helper to available robots temporarily;
result, si,msg ← execute(P , si, robots);
robots← remove helper from robots;

return result, si,msg, robots;

Algorithm 6: caseHelpRequested

Input : si, tc,P , robots, room,msg
Output: result, si,msg
confirmed := false;
if not receiving help then

helpee, helpeeRoom, expectedDuration← msg[1],msg[2],msg[3];
finishT ime← extract from final state sg in P;
if tc− finishT ime ≥ expectedDuration then

confirmed := true;
send(helpee, 〈“ANS”, “affirmative”〉);
acknowledgement← receive(helpee, “ACK”);
if acknowledgement == “affirmative” then

// Send a robot there to help
robot← Select from robots;
clast ← extract the configuration robot from si;
cexchange ← getExchangePtConf(room, helpeeRoom);
traj, π ← findT(clast, cexchange);
timeInfo← getTimeInfo(π);
send(robot, 〈“ACT”, 〈“GOTO”, π, timeInfo〉〉);

help(robot, helpee, room, helpeeRoom, si);

// After help, robot comes back following the reverse of π
timeInfo← getTimeInfo(πr);
send(robot, 〈“ACT”, 〈“GOTO”, πreverse, timeInfo〉〉);

if ¬confirmed then
send(helpee, 〈“ANS”, “negative”〉);

result, si,msg ← execute(P , si, robots);
return result, si,msg;

64

Algorithm 7: caseHelpOffered

Input : si,D, g, F, k,P , robots, tc, room,msg
Output: result, si,msg,P , robots
confirmed := false;
s0, c← observe();
salt ← add a helper robot to s0;

/* Compansate the travel time of the helper robot by starting

the plan before its arrival */

Falt ← “The helper robot should not move during the first t steps”;

planalt,Palt ← findP(D, salt, g, Falt, k);
if planalt then

tf ← extract the finishing time from goal state sg in Palt;
tr := tc− tf ;
helper, helperRoom, expectedDuration← msg[1],msg[2],msg[3];
if tr > expectedDuration then

confirmed := true;
send(helper, 〈“ANS”, “affirmative”, room〉);
acknowledgement← receive(helper, “ACK”);
if acknowledgement == “affirmative” then

robots← add helper to available robots temporarily;

//preparing helper robot to come nearby the requester
cexchange ← getExchangePtConf(room, helperRoom);
csafe ← getSafePtConf(room);
traj, π ← findT(cexchange, csafe);
timeInfo← getTimeInfo(π);
send(helper, 〈“ACT”, 〈“GOTO”, π, timeInfo〉〉);

P := Palt;
result, si,msg ← execute(P , s0, robots);

clast ← extract the conf. of helper from snext;
traj, π ← findT(clast, cexchange);
timeInfo← getTimeInfo(π);
send(helper, 〈“ACT”, 〈“GOTO”, π, timeInfo〉〉);
send(helper, 〈“ACT”, 〈“DONE”〉〉);
robots← remove helper from available robots;

else
result, snext,msg ← execute(P , s0, robots);

if ¬confirmed then
send(id, 〈ANS, “negative”,−1〉);
result, snext,msg ← execute(P , s0, robots);

return result, si,msg,P , robots;

65

Algorithm 8: execute

Input : A plan P (with a history H = 〈s0, a0, ..., sn, an, sgoal〉), current state of
plan si, agents in the room robots

Output: result of last action result, current state si, message tuple msg
result := NO-INTERRUPT;
msg := 〈〉;
while si 6= sgoal do

ai, snext ← Extract from P the action ai to be executed, and next state si+1;
if ai is a concurrent action with n primitives ∧ |robots| < n then

result := CALL-ROBOT;
return result, si,msg;

result← executeAction(si, ai, snext, robots);

if result 6= NO-INTERRUPT then
return result, si,msg;

else
si := snext;

result,msg ← listen();
if result 6= NO-INTERRUPT then

return result, si,msg;
return result, sgoal,msg;

Algorithm 9: executeAction

Input : current state si, action ai, next state snext, agents in room robots
Output: result of action

result := NO-INTERRUPT;
sendAction(si, ai, snext, robots);
foreach robot in robots participating in ai do

result← receive(robot, RESULT);
if result 6= NO-INTERRUPT then

break;
return result;

66

Algorithm 10: sendAction

Input : current state si, action ai, next state snext, agents in room robots

if ai is a primitive action then
robot← extract from ai and robots;
timeInfo← extract from si and snext;
if ai is a “goto” action then

ci ← extract from si;
cnext ← extract from snext;
traj, π ← findT(ci, cnext);
send(robot, 〈“ACT”, 〈“GOTO”, π, timeInfo〉〉);

else
send(robot, 〈“ACT”, 〈ai, timeInfo〉〉);

else if ai contains collaborating “goto” actions carrying a single object then
ai1, ai2 ← extract from ai;
robot1, robot2 ← extract from ai1, ai2, and robots;
timeInfo← extract from si and snext;
cobj ← extract configuration of the object from si;
cnext ← extract next configuration of the object from snext;
traj, π ← findT(cobj, cnext);
π1, π2 ← add offset to π for each robot;
send(robot1, 〈“ACT”, 〈“GOTO”, π1, timeInfo〉〉);
send(robot2, 〈“ACT”, 〈“GOTO”, π2, timeInfo〉〉);
sendAction(si, ai − {ai1, ai2}, snext, robots);

else
foreach primitive action aij in ai do

sendAction(si, aij, snext, robots)

67

Algorithm 11: askForHelp

Input : room, estimatedDuration
Output: helpFound, helper, helperRoom

helpFound := false;
helper := null;

foreach group i do
send(i, 〈“HELPREQ”, room, estimatedDuration〉);

waiting := true;

while ¬helpFound ∧ waiting do
foreach group i that has a message do

answer ← receive(i, “ANS”);
if answer = “affirmative” then

helpFound := true;
helper := i;
break;

if All groups have responded then
waiting := false;

foreach group i, such that i 6= helper do
send(i, 〈“ACK”, “negative”〉);

if helpFound then
send(helper, 〈“ACK”, “affirmative”〉);

return helpFound, helper, helperRoom;

68

Algorithm 12: offerHelp

Input : room, estimatedDuration
Output: helpeeFound, helpee, helpeeRoom

helpeeFound := false;
helpee := null;

foreach group i do
send(i, 〈“HELPOFFER”, room, estimatedDuration〉);

waiting := true;

while ¬helpeeFound ∧ waiting do
foreach group i that has a message do

answer, helpeeRoom← receive(i, “ANS”);
if answer = “affirmative” then

helpeeFound := true;
helpee := i;
break;

if All groups have responded then
waiting := false;

foreach group i, such that i 6= helpee do
send(i, 〈“ACK”, “negative”〉);

if helpeeFound then
send(helpee, 〈“ACK”, “affirmative”〉);

return helpeeFound, helpee, helpeeRoom;

Algorithm 13: help

Input: robot, helpee, room1, room2, si

conf1← extract configuration of robot from si;
conf2← getExchangePointConf(room1, room2);
traj, π ← findT(conf1, conf2);
timeInfo← getTimeInfo(π);
send(robot, 〈“ACT”, 〈“GOTO”, π, timeInfo, 〉〉);

while true do
message← receive(helpee, ACT);
if message[0] == “DONE” then

break;
else

action← message[1];
send(robot, 〈“ACT”, action〉);

//Follow trajectory πr, reverse of π
timeInfo← getTimeInfo(π);
send(robot, 〈“ACT”, 〈“GOTO”, πr, timeInfo, 〉〉);

69

Algorithm 14: listen

Input :
Output: type,msg

foreach group i do
if group i has a help request message then

helpeeRoom, expectedDuration← receive(i, “REQ”);
return HELP-REQUESTED, 〈i, helpeeRoom, expectedDuration〉;

else if group i has a help offer message then
helperRoomId, expectedDuration← receive(i, “OFF”);
return HELP-OFFERED, 〈i, helperRoom, expectedDuration〉;

return NO-INTERRUPT, 〈〉;

70

Table 5.1 shows the execution of plans calculated in Section 4.3 by Robots 1 and
2. In particular, Robot 1 starts executing its plan in the Bedroom, but at time step 1, it
encounters a heavy object. Then, Robot 1 asks Robot 2 for help by giving it the duration
of help process, which is estimated to be 9. Considering the help duration and the cost
of a round trip travel between the bedroom and the kitchen (which is 2 × 2 = 4), Robot

Table 5.1: Execution of the Plans

(The symbol ‘-’ denotes “doing nothing” whereas the symbol ‘· · ·’ denotes
the “continuation of the execution of the previous action”.)

Time Bedroom Kitchen
0 goto(r1,3,5) goto(r2,3,6)

1 attach(r1,redpillow1) r2: · · ·
Heavy object failure occurred.

2 r1: Re-plan. Request help. attach(r2,mug1)

3 r1: Receive acknowledgement. r2: Decline request due to time limit.

Offer help. goto(r2,2,1)

4 - r2: · · ·
5 r1: Receive acknowledgement. r2: Re-plan. Accept offer.

Go to the kitchen door at (7,3). Get ready to receive help.

6 r1: · · · -

7 - r1: Go to the rendezvous point at (2,4).

8 - r1: · · ·
9 - goto(r1,3,1) goto(r2,4,5)

10 - attach(r1,plate1) attach(r2,spoon1)

11 - goto(r1,1,1) goto(r2,2,3)

12 - detach(r1) detach(r2)

13 - r1: Go to the bedroom door at (0,3).

14 - r1: · · ·
15 r1: Go back to the original position at (3,5). -

16 r1: · · · -

17 r1: Request help. r2: Accept request.

r2: Go to the bedroom door at (0,3)

18 - r2: · · ·
19 r2: Go to the rendezvous point at (4,5). -

20 r2: · · · -

21 goto(r1,3,6) goto(r2,3,5) -

22 attach(r1,redpillow2) attach(r2,redpillow1) -

23 goto(r1,6,3) goto(r2,6,2) -

24 r1: · · · r2: · · · -

25 detach(r1) detach(r2) -

26 r2: Go to the kitchen door at (7,3). -

27 r2: · · · -

28 - r2: Go back to the original position at (2,3).

29 - r2: · · ·

71

2 declines Robot 1’s request, since otherwise it will miss its own deadline. Then, Robot
1 asks Robot 2 “If I help you in the kitchen, will you be able to help me back?”. Robot
2 evaluates this help offer and verifies that after receiving help from Robot 1, it can, not
only complete its own task on time, but also offer help to Robot 1 to complete its task.
Hence, it accepts Robot 1’s help offer. They tidy the kitchen together, then Robot 1 goes
back to the bedroom and asks for help one more time. This time Robot 2 is unoccupied
and willing to help Robot 1. The help request is accepted and the heavy object in the
bedroom is carried collaboratively. Both robots successfully complete their tasks without
violating their deadlines.

We have shown the applicability of the our approach to hybrid planning, in such a
planning and monitoring framework with a simulation of a housekeeping domain. The
implementation is done in C++, Java, and Python using Robot Operating System (ROS)
tools and libraries. Plan execution is simulated using Gazebo. A video clip illustrating
this simulation can be found at the following address: http://youtu.be/YNFFuVg2tEM

5.2 Experimental Evaluation: Hybrid Plans

To investigate the advantages and disadvantages of our hybrid planning approach,
we run a series of monitoring experiments. The experiments are done using iclingo 3.0.3
with the simplified ASP encoding of the housekeeping domain in Appendix C, on a work-
station with quad core Intel(R) Xeon(R) CPU E5310 @ 1.60GHz CPU and 6GB RAM.
These experiments include 5 different planning problems of varying size in housekeeping
domain. More details regarding the size of these problems are provided in Table 5.2. In
these experiments, we measure the performance of monitoring algorithm under different
settings, in terms of replanning count, time efficiency, and memory usage.

1) In the first experiment, we run the monitoring algorithm under two different
settings: one with a domain description that includes the path exists(X1,Y1,X2,Y2)

external predicate (which checks the existence of a collision-free trajectory and is used
in the description of goto(R,X,Y,T) action), and one without the external predicate. In
other words, we compare the performance of our hybrid planning approach against a
control group. In both of these settings, after finding plans we validate them with respect

Table 5.2: Monitoring Experiment Problem Details

Problem Robots Objects Plan Length
1 2 2 4
2 2 3 8
3 2 3 8
4 2 4 8
5 2 6 12

72

Table 5.3: Finding A Feasible Plan with and without path exists Predicate

(P:Problem, PT:Planning Time, TT:Total Time, TM:Total Memory)

w/o External Predicate w/ External Predicate
P Replans PT(s) TT(s) TM(MB) Replans PT(s) TT(s) TM(MB)
1 5 7.23 320.40 186.85 0 54.23 57.74 141.85
2 192 913.42 t/o 304.71 0 109.85 118.60 251.56
3 58 275.35 3909.40 288.35 0 111.93 118.73 249.54
4 88 559.51 5344.51 348.18 0 113.26 120.20 308.54
5 94 4926.79 t/o 845.17 0 182.78 193.52 668.56

to low-level geometric constraints, i.e. we check if it is possible for the robots to perform
high-level goto(R,X,Y,T) actions through collision free paths. If the validation process
points out that the plan is not feasible, we force replanning with an updated query that
restricts the last infeasible action. All instances are satisfiable.

Table 5.3 shows the results of the first experiment. We see that when we disable
the path exists external predicate, number of replannings due to plan failures increase,
time efficiency of both the planner and the overall process decrease, and memory usage
increases as well. Nearly every single measurement gets worse regardless of the prob-
lem size, but the most affected instances are the larger ones. Two of the five instances
timeout before finding a feasible plan. The only positive thing in table when we disable
path exists predicate is that the planning time decreases in the smallest instance. But
even in this case, due to costly feasibility checks, the total time elapsed before finding a
feasible plan is much more compared to the setting with the external predicate. On the
other hand, when we enable the external predicate, not a single replan occurs due to an
infeasibility.

2) In the second experiment, there are again two different settings that we compare.
We disable the time estimate(X1,Y1,X2,Y2)=D external function (which estimates the
duration D of going from (X1,Y1) to (X2,Y2)) in the first setting. In the second setting,
this predicate is present. In every instance, we enforce a duration limit for the robots to
accomplish the given task. The plans are validated with respect to this duration limit in
the low-level. If a high-level plan does not respect this limit, it is discarded, the query is
updated to disallow the previously found plan, and a new plan is searched. All instances
are satisfiable, and the duration limits are managable with appropriate plans.

Table 5.4 shows the results of the second experiment. As you can see, without the
time estimate function, only the smallest instance can be solved within a reasonable
time. Even in this case, a significant amount of replans are needed, and the total time
elapsed is orders of magnitude longer compared to the setting with the external function
enabled. In general, it is clear that the external function reduces the need for replanning
while contributing towards time and memory monitoring.

3) Third and the final experiment is about identifying the cumulative effect of

73

Table 5.4: Finding A Feasible Plan with and without time estimate Function

(P:Problem, D:Duration Limit, PT:Planning Time, TT:Total Time, TM:Total Memory)

w/o External Function w/ External Function
P D Replans PT(s) TT(s) TM(MB) Replans PT(s) TT(s) TM(MB)
1 4 92 115.39 8894.73 186.89 0 56.1 59.45 141.84
2 10 39 176.33 t/o 284.62 1 223.89 639.69 284.09
3 10 24 108.43 t/o 283.51 0 111.01 119.41 285.28
4 10 26 165.02 t/o 343.64 0 112.41 119.25 347.04
5 17 18 860.44 t/o 696.75 0 206.84 219.08 695.15

Table 5.5: Finding A Feasible Plan with and without both path exists and
time estimate

(P:Problem, D:Duration Limit, PT:Planning Time, TT:Total Time, TM:Total Memory)

w/o External Computation w/ External Computation
P D Replans PT(s) TT(s) TM(MB) Replans PT(s) TT(s) TM(MB)
1 4 5 7.22 321.82 186.82 0 108.8 115.59 141.85
2 10 192 914.44 t/o 304.71 1 434.16 455.68 258.57
3 10 140 656.10 9002.57 297.43 0 244.09 257.78 254.15
4 10 104 662.24 6434.32 351.15 3 871.88 942.58 319.54
5 17 106 3932.28 t/o 766.62 1 695.51 727.52 617.82

both external predicates/functions. In one setting, we disable both path exists and
time estimate at the same time, and the external computation is available in the other
setting. In both settings, every plan is checked for feasibility with respect to both geomet-
ric constraints and temporal constraints.

In Table 5.5, we can see the results of the final experiment. The results are parallel
to the previous two experiments, i.e. regardless of the problem size, reasoning process
without the external computation produces a lot of infeasible plans which cost a lot in
terms of time and memory during the validation and replanning steps. Thus, we can say
that our hybrid approach improves the reasoning performance, and quality of the plans.

To conclude this chapter, we want to summarize our results in terms of execution
monitoring by saying that 1) we develop a modular monitoring algorithm that can be
easily extended or applied in another domain, 2) the main difference of our approach
from the existing solutions to monitoring is that, rather than simply replanning in case of
a failure, we identify the failure and take action accordingly by avoiding a costly replan
as much as possible, 3) we embed our hybrid planning approach into our monitoring
algorithm, 4) we provide experimental evaluation of our monitoring approach.

74

Chapter 6

Related Work

In our approach to housekeeping problem, we address a variety of challenges from
execution monitoring to the integeration of low-level and high-level reasoning. Hence, it
would be a good idea to examine the related studies in literature under several subtopics.

6.1 Domestic Service Robots

It is not a suprise that domestic service robotics attracts a fair amount of researchers,
considering highly practical possible outcomes of the research. CAESAR, a domestic
service robot capable of object manipulation that has participated in RoboCup@Home
competitions for many years, is the outcome of a series of studies in this field [80, 28]. At
the high-level, the CAESAR uses robot programming and planning language READYLOG

[27], a GOLOG dialect that allows prioritization of parallel actions, guarded execution,
and interrupts. At the low-level, it employes an A* based incremental approach for path
planning that initially omits the kinematic constraints to find a coarse path and then fine-
tunes it into a feasible path. The claim is that this approach improves the timing and
increases the responsiveness of the robot.

Beetz et al. [5] present a robot capable of doing basic household chores. The
behavior of the robot is specified in CRAM-PL [6], a robot programming and plan-
ning language, in a hierarchially structured way so that the problem specific action plans
can be composed of robot’s library of default plans. The plans are semantically anno-
tated to make interpretions and runtime adjustments possible. Different reasoning mecha-
nisms (e.g. reasoning about reachability through inverse kinematics) are incorporated into
queries phrasing control decisions. Also, an external probabilistic inference mechanism
is utilized for determining expected locations of objects.

Pecora et al. [76] propose a reasoning service architecture for the use of different
types of human assistance robots/actuators in the house. The architecture grounds the
behavior of the human agent into meaningful tasks using constraint-based and temporal

75

reasoning techniques on sensory data. Concurrently, plans are found to assist the human
agent in that specific task via available actuators/robots in the environment.

Dornhege et al. [17] present their study on a robot capable of tidying up a house by
manipulating objects, which is similar to our work to some extend. For monitoring and
high-level planning, symbolic task planner Temporal Fast Downward/Modules (TFD/M)
[16] is used. Geometric reasoners are integrated into the high-level planning process us-
ing semantic attachments, a concept similar to external predicates. The interface between
planner and the semantic attachment modules allows the exchange of complete state infor-
mation, similar to dlvhex. Contrary to our study, interactions between multiple robotic
agents are not taken into account.

Galindo et al. [32] show that a domestic service robot can self-assign goals using
semantic knowledge about the environment. The normative knowledge of the world (e.g.,
“Milk is kept in the refrigerator.”) is represented using description logics, specifically
OWL-DL [72]. Then, any violations of the norm (e.g. “A milk bottle is on the counter-
top.”) are detected and isolated using a DL reasoner, and a goal condition that will resolve
the inconsisteny in the knowledge base is automatically obtained and feeded to a Hierar-
chical Task Networks (HTN) based planner. To some extend, we can call it similar to
automatic inference of expected location of objects using commonsense knowledge bases
in our work.

[44] is a study describing a humanoid cooking robot. High-level description of
cooking recipes are modeled in terms of a Hierarchial Task Network (HTN), while RRT-
Connect Planner is used for generating collision-free, dynamically stable motion plans
from full-body posture goals.

Kaneko et al. [55] propose a planning strategy for the task of putting away laundry.
The study focuses on recognition and handling of non-solid objects, i.e clothes. It does
not specify a task or motion planning method particularly, but outlines general framework
for isolation, unfolding, and folding of a cloth.

An important aspect of domestic service robotics research is the interaction with
the environment and human beings. As a result, there exist a fair amount of studies in the
literature focusing on the low-level control and human interaction of the domestic robots.
[66] is one of them, introducing a hybrid force/position controller for a robot that can
perform table cleaning, and path teaching/learning. Palacin et al. [74] propose a control
mechanism with low-cost components for a mobile robot capable of floor cleaning. Forl-
izzi et al. [31] provide an in-depth study on well-known Roomba vacuum cleaner robots
in terms of human-robot interaction and ethnographic design.

76

6.2 Execution Monitoring

It is argued that execution monitoring is not seen as an independent research topic by
robotics community [77]. Pettersson also claims that, despite the lack of interest towards
execution monitoring in robotics community, the topic is covered in great detail by con-
trol theorists under the name of fault detection and isolation (FDI). By control theorists,
execution monitoring solutions are labeled as one or more of three approaches, namely,
analytical, data-driven, and knowledge driven [10]. Our approach can be identified as a
knowledge-driven expert system.

Another study that can be classified under knowledge-driven methods is [1] in
which an expert system is used for FDI purposes in flexible assembly system. One of
the drawbacks of this monitoring approach is relative sensitivity to uncertainties due to
the use of logic terms which are either true or false. This issue is addressed in [91] by
using a fuzzy logic based decision mechanism for monitoring in a automated robotic as-
sembly line.

Besides these similar approaches, there exist a whole variety of different solutions to
the execution monitoring problem. [51], [14] are examples of analytical methods applied
on robotic arms. Parsons et al. [75] propose a data-driven approach for mobile robots.

6.3 Integration of Symbolic and Geometric Reasoning

Integration of high-level symbolic reasoning and low-level geometric reasoning is a
well-known challenge of mobile robotics, and addressed in many studies including early
examples like [65], and more recent ones such as [45].

Fainekos et al. [24] target this integration by combining temporal logic and motion
planning. First, the workspace of robot is discretized into several cells, then a plan is con-
structed on this discrete domain using temporal logic model checking tools. Afterwards,
the discrete plan is detailed at low-level while the temporal constraints are preserved.
However, this approach does not include an interleaving between symbolic and motion
plan, thus plan failures require a complete replan.

Erdem et al. [22] follow a similar method to our approach, by using external pred-
icates to represent low-level geometric constraints in a logic formalism. In this way,
they prevent collisions between the robots in the domain at symbolic planning level. The
shortcoming of this method lies in the restrictions of action language C+, and its reasoner
CCALC which does not allow the use of second-order variables. As a result, constraints
about objects that may change quantity over different problem instances (e.g. “All pay-
loads should be in non-colliding positions with respect to each other.”), cannot be repre-
sented in an elegant way.

Cambon et al. [8] implement a hybrid planner called aSyMov. Besides the symbolic

77

and geometric data, a relation between these two are given to the planner. While extending
the state space by applying symbolic actions, the low-level validity of the state is also
checked with respect to the previously given relation.

Hauser et al. [48] consider the search space as a graph in which the nodes corre-
spond to subtasks, and the edges denote precedence constraints. Starting from an initial
node, they incrementally construct this graph. In each incremental step, configuration
space of each newly expanded node is sampled, and the new milestones are connected to
prior ones using Probabilistic Road Map (PRM) [49] planners. Therefore, an interweav-
ing between the task planning and motion planning is achieved.

Kaelbling et al. [53] present their top-down hierarchial planning approach in which
a goal-regression planner is used. The low-level details of each predecessor state is sug-
gested by geometric reasoners during the high-level regression process, thus the obtained
plan is hybrid.

Eyerich et al. [23] propose the use of semantic attachments which is just another
name for external predicates/functions, to integrate low-level reasoning into classical
planning systems.

Several studies on assembly planning also focus on combining geometric reasoning
with higher-level elements, since the nature of the problem has requirements beyond the
capabilities of motion planners. Halperin et. al. [46] use constraints to represent the set
of object configurations, while Hutchinson et al. [50], Cao et al. [9], Tung et al. [84] use
graphs for the same purpose.

78

Chapter 7

Conclusion

We have shown the usefulness of action language C+, and the knowledge represen-
tation and reasoning paradigm Answer Set Programming (ASP), in housekeeping robotics
from the point of view of three perspectives: formal representation of the domain, auto-
mated reasoning and planning over this domain, execution and monitoring of computed
plans.

In particular, we have formalized a housekeeping domain that involves multiple
autonomous robots, in C+ and ASP. We have illustrated how to embed three sorts of
semantic knowledge into high-level representation of housekeeping domain for intelligent
reasoning: 1) commonsense knowledge automatically extracted from the commonsense
knowledge base CONCEPTNET, 2) feasibility check of plans via (continuous) geometric
reasoning (e.g., RRT-based motion planning), 3) estimated durations of actions computed
also by means of motion planning algorithms.

We have shown how hybrid plans can be computed using the C+ reasoner CCALC,
and ASP solvers iclingo and dlvhex over this domain, taking into account temporal
constraints. We have also performed some experiments that illustrated the advantage of
using ASP and iclingo over the action language C+ and the reasoner CCALC, in terms
of computation time and memory consumption.

We have also introduced a planning and monitoring framework so that robots can
recover from failures during execution of the hybrid plans. In particular, we have con-
sidered execution failures due to (i) collisions with movable objects whose presence and
location are not known in advance and (ii) heavy objects that cannot be lifted alone, and
introduced algorithms so that robots can identify the cause of failures and act/collaborate
accordingly to recover from these failures.

Our approach to planning actions of multiple housekeeping robots can be viewed
as a kind of multi-agent planning: tasks need to be allocated among these robots, robots
need to collaborate with each other to complete the given tasks, and the robots need to
communicate with each other for collaboration. Since our focus is more oriented towards

79

embedding of background/commonsense knowledge and geometric/temporal reasoning
in high-level representation and reasoning, these three aspects of multi-agent planning
are kept as simple as possible: we assume that tasks are already allocated among the
robots, the robots collaborate with each other only when they cannot complete their tasks
due to a failure (for instance, when one robot cannot carry a heavy object), we assume
that the robots communicate with each other by means of requesting/offering help. How-
ever, thanks to the modular structure of our planning and monitoring framework and the
generality of the methods used for hybrid planning, these three aspects of housekeeping
robotics domain can be extended with the existing approaches in multi-agent planning (as
described in the survey paper [12]. For instance, tasks can be allocated among the robots
using a method for deciding for compatible agents, using protocols or auction based meth-
ods, such as [58], [39], [88], [89], [90], coordination of robots can be allowed at the stage
of hybrid planning even when failures do not occur by following the approaches as in
[18], [13], [52], [11], and the communication between robots can be extended possibly
via an Agent Communication Language, such as KQML [29] or FIPA ACL [30].

80

Appendix A

CCALC Formulation

1 :- macros

2 durationLimit -> 40;

3 xLimit -> 7;

4 yLimit -> 7;

5 actionDurationLimit -> 4.

6

7 :- sorts

8 time;

9 action_time;

10 thing >> (robot;endpoint);

11 x_coord;

12 y_coord.

13

14 :- objects

15 0..20 :: step;

16 0..durationLimit :: duration;

17 0..actionDurationLimit :: action_duration;

18 0..xLimit :: x_coord;

19 0..yLimit :: y_coord;

20 r1 :: robot;

21 ep1 :: endpoint.

22

23 :- variables

24 S :: step;

25 T, T1, T2 :: duration;

26 A, A1, A2 :: action_duration;

27 ROBO, ROBO1, ROBO2 :: robot;

28 EP,EP1,EP2 :: endpoint;

29 TH, TH1 :: thing;

81

30 X, X1, X2 :: x_coord;

31 Y, Y1, Y2 :: y_coord.

32

33 :- constants

34 at(thing, x_coord, y_coord),

35 connected(robot, endpoint) :: inertialFluent;

36 at_desired_location(endpoint) :: sdFluent;

37 robot_time(robot) :: simpleFluent(action_duration);

38 elapsed_time :: inertialFluent(duration);

39 goto(robot, x_coord, y_coord) :: exogenousAction;

40 attach(robot) :: exogenousAction;

41 detach(robot) :: exogenousAction;

42 attach_point(robot) :: attribute(endpoint) of attach(robot).

43

44 :- macros

45 tidy -> [/\EP | at_desired_location(EP)];

46 free -> [/\ROBO /\EP | -connected(ROBO,EP)].

47

48 %% goto - direct effects and preconditions

49 goto(ROBO, X, Y) causes at(ROBO, X, Y).

50 goto(ROBO, X, Y) causes robot_time(ROBO)=A if at(ROBO,X1,Y1)

51 where time_estimate(X1,Y1,X,Y,A).

52 nonexecutable goto(ROBO, X, Y)

53 where occupied(X, Y).

54 nonexecutable goto(ROBO, X, Y) if at(ROBO, X, Y).

55 nonexecutable goto(ROBO, X, Y) if at(ROBO, X1, Y1)

56 where -path_exists(X1, Y1, X, Y).

57

58 %% attach - direct effects and preconditions

59 attach(ROBO) causes connected(ROBO, EP)

60 if attach_point(ROBO)=EP.

61 attach(ROBO) causes robot_time(ROBO)=1.

62 nonexecutable attach(ROBO) if connected(ROBO, EP).

63 nonexecutable attach(ROBO) & attach_point(ROBO)=EP

64 if -[\/X \/Y | at(ROBO, X, Y) & at(EP, X, Y)].

65

66 %% detach - direct effects and preconditions

67 detach(ROBO) causes -connected(ROBO, EP)

68 if connected(ROBO, EP).

69 detach(ROBO) causes robot_time(ROBO)=1.

70 nonexecutable detach(ROBO) if [/\EP | -connected(ROBO, EP)].

82

71

72 %% things can be located at a single grid point.

73 caused -at(TH, X, Y) if at(TH, X1, Y1)

74 where X \= X1 ++ Y \= Y1.

75

76 %% two objects cannot share the same grid point.

77 caused false if at(EP, X, Y) & at(EP1, X, Y)

78 where EP \= EP1.

79

80 %% if a robot is attached to an endpoint

81 %% then the endpoint is wherever the robot is

82 caused at(EP, X, Y) if connected(ROBO, EP) & at(ROBO, X, Y).

83 caused false if connected(ROBO, EP1) & connected(ROBO, EP)

84 where EP \= EP1.

85

86 %% an object is at a desired location

87 %% if its endpoints are at that location

88 caused at_desired_location(EP)

89 if at(EP, X, Y)

90 where in_place(EP, X, Y).

91 default -at_desired_location(EP).

92

93 %% objects with 2 endpoints are located

94 %% horizontally or vertically

95 caused false if at(EP1, X1, Y1) & at(EP2, X2, Y2)

96 where diagonal(EP1,X1,Y1,EP2,X2,Y2).

97

98 %% at each step, elapsed_time is incremented

99 %% by the maximum robot_time

100 default robot_time(ROBO)=0.

101 caused elapsed_time=(T+A)

102 if A=robot_time(ROBO),

103 [/\ROBO1 /\A1 | A1=robot_time(ROBO1) ->> (A>=A1)]

104 after T=elapsed_time

105 where T+A =< timeLimit.

106

107 %% a robot can perform only a single action at each step.

108 nonexecutable goto(ROBO, X, Y) & attach(ROBO).

109 nonexecutable goto(ROBO, X, Y) & detach(ROBO).

110

111 %% a planning problem query

83

112 :- query

113 label :: 0;

114 maxstep :: 0..20;

115 0: at(r1,3,5), at(ep1,3,5), elapsed_time=0, free;

116 maxstep: tidy, free, elapsed_time=<30.

84

Appendix B

iclingo Formulation

1 #base.

2 #const xLimit=7.

3 #const yLimit=7.

4 #const durationLimit=40.

5 #const actionDurationLimit=4.

6

7 %% sorts

8 endpointplusnone(I) :- endpoint(I).

9 thing(I) :- robot(I).

10 thing(I) :- endpoint(I).

11

12 %% variables

13 #domain time(T).

14 #domain atime(Ta).

15 #domain robot(R;R1;R2).

16 #domain endpoint(EP;EP1;EP2).

17 #domain endpointplusnone(EPN;EPN1;EPN2).

18 #domain thing(TH;TH1;TH2).

19 #domain xcoordinate(X;X1;X2).

20 #domain ycoordinate(Y;Y1;Y2).

21 #domain duration(D;D1;D2;D3;D4).

22 #domain action_duration(Da;Da1;Da2;Da3;Da4).

23

24 %% objects

25 endpointplusnone(none).

26 xcoordinate(0..xLimit).

27 ycoordinate(0..yLimit).

28 robot(r1).

29 endpoint(ep1;ep2).

85

30 duration(0..durationLimit).

31 action_duration(0..actionDurationLimit).

32

33 #cumulative t.

34 time(0..t).

35 atime(0..t-1).

36

37 %% auxiliary atoms

38 -tidy(T) :- -at_desired_location(EP,T).

39 tidy(T) :- not -tidy(T).

40 -free(T) :- connected(R,EP,T).

41 free(T) :- not -free(T).

42 -free_robot(R,T) :- connected(R,EP,T).

43 free_robot(R,T) :- not -free_robot(R,T).

44 -different_loc(R,EP,T) :- at(R,X,Y,T), at(EP,X,Y,T).

45 different_loc(R,EP,T) :- not -different_loc(R,EP,T).

46

47 %% at(thing,x,y) - inertial fluent

48 at(TH,X,Y,0) :- not -at(TH,X,Y,0).

49 -at(TH,X,Y,0) :- not at(TH,X,Y,0).

50 at(TH,X,Y,Ta+1) :- not -at(TH,X,Y,Ta+1), not -at(TH,X,Y,Ta).

51 -at(TH,X,Y,Ta+1) :- not at(TH,X,Y,Ta+1), not at(TH,X,Y,Ta).

52

53 %% connected(robot,ep) - inertial fluent

54 connected(R,EP,0) :- not -connected(R,EP,0).

55 -connected(R,EP,0) :- not connected(R,EP,0).

56 connected(R,EP,Ta+1) :- not -connected(R,EP,Ta+1),

57 not -connected(R,EP,Ta).

58 -connected(R,EP,Ta+1) :- not connected(R,EP,Ta+1),

59 not connected(R,EP,Ta).

60

61 %% robot_time(robot) - simple fluent

62 robot_time(R,Da,0) :- not -robot_time(R,Da,0).

63 -robot_time(R,Da,0) :- not robot_time(R,Da,0).

64

65 %% elapsed_time - inertial fluent

66 elapsed_time(D,0) :- not -elapsed_time(D,0).

67 -elapsed_time(D,0) :- not elapsed_time(D,0).

68 elapsed_time(D,Ta+1) :- not -elapsed_time(D,Ta+1),

69 not -elapsed_time(D,Ta).

70 -elapsed_time(D,Ta+1) :- not elapsed_time(D,Ta+1),

86

71 not elapsed_time(D,Ta).

72

73 %% goto - exogenous action

74 goto(R,X,Y,Ta) :- not -goto(R,X,Y,Ta).

75 -goto(R,X,Y,Ta) :- not goto(R,X,Y,Ta).

76

77 %% attach - exogenous action

78 attach(R,Ta) :- not -attach(R,Ta).

79 -attach(R,Ta) :- not attach(R,Ta).

80

81 %% attach_point(robot, endpoint+none) - attribute of attach(robot)

82 attach_point(R,EPN,Ta) :- not -attach_point(R,EPN,Ta).

83 -attach_point(R,EPN,Ta) :- not attach_point(R,EPN,Ta).

84 :- not -attach(R,Ta), not -attach_point(R,none,Ta).

85 :- not attach(R,Ta), not attach_point(R,none,Ta).

86

87 %% conversion from non-boolean function

88 -attach_point(R,EPN1,Ta) :- not -attach_point(R,EPN2,Ta),

89 EPN1!=EPN2.

90 :- not attach_point(R,I,Ta) : endpointplusnone(I).

91

92 %% detach - exogenous action

93 detach(R,Ta) :- not -detach(R,Ta).

94 -detach(R,Ta) :- not detach(R,Ta).

95

96 %% goto - direct effect & precondition

97 at(R,X,Y,Ta+1) :- not -goto(R,X,Y,Ta).

98 robot_time(R,Da,Ta+1) :- not -goto(R,X1,Y1,Ta), not -at(R,X2,Y2,Ta),

99 Da:= @time_estimate(X1,Y1,X2,Y2).

100 :- not -goto(R,X,Y,Ta), occupied(X,Y).

101 :- not -goto(R,X,Y,Ta), not -at(R,X,Y,Ta).

102 :- not -goto(R,X2,Y2,Ta), not -at(R,X1,Y1,Ta),

103 @path_exists(X1,Y1,X2,Y2)==0.

104

105 %% attach - direct effect & precondition

106 connected(R,EP,Ta+1) :- not -attach(R,Ta), not -attach_point(R,EP,Ta).

107 robot_time(R,1,Ta+1) :- not -attach(R,Ta).

108 :- not -attach(R,Ta), not -connected(R,EP,Ta).

109 :- not -attach(R,Ta), not -attach_point(R,EP,Ta),

110 not -different_loc(R,EP,Ta).

111

87

112 %% detach - direct effect & precondition

113 -connected(R,EP,Ta+1) :- not -detach(R,Ta), not -connected(R,EP,Ta).

114 robot_time(R,1,Ta+1) :- not -detach(R,Ta).

115 :- not -detach(R,Ta), not -free_robot(R,Ta).

116

117 % an object can be present at a single grid point

118 -at(TH,X,Y,T) :- not -at(TH,X1,Y1,T), X!=X1.

119 -at(TH,X,Y,T) :- not -at(TH,X1,Y1,T), Y!=Y1.

120

121 % two object cannot be present at the same grid point

122 :- not -at(EP1,X,Y,T), not -at(EP2,X,Y,T), EP1!=EP2.

123

124 %% conversion from non-boolean function

125 -robot_time(R,Da1,T) :- not -robot_time(R,Da2,T), Da1!=Da2.

126 :- not robot_time(R,I,T) : action_duration(I).

127

128 -elapsed_time(D1,T) :- not -elapsed_time(D2,T), D1!=D2.

129 :- not elapsed_time(I,T) : duration(I).

130

131 % if a robot is attached to an endpoint

132 % then the endpoint is wherever the robot is

133 at(EP,X,Y,T) :- not -connected(R,EP,T), not -at(R,X,Y,T).

134 :- not -connected(R,EP1,T), not -connected(R,EP2,T), EP1!=EP2.

135

136 % an object is at a desired location

137 % if its endpoints are at that location

138 at_desired_location(EP,T) :- not -at(EP,X,Y,T), in_place(EP,X,Y).

139 -at_desired_location(EP,T) :- not at_desired_location(EP,T).

140

141 % objects with 2 endpoints are located horizontally or vertically

142 :- not -at(EP1,X1,Y1,T), not -at(EP2,X2,Y2,T),

143 diagonal(EP1,X1,Y1,EP2,X2,Y2).

144

145 % at each step, elapsed_time is incremented

146 % by the maximum robot_time

147 longer_time_exists(Da1,Tf) :- robot_time(R1,Da1,Tf),

148 robot_time(R2,Da2,Tf), Da1 < Da2.

149

150 elapsed_time(Da1+D2,Ta+1) :- robot_time(R1,Da1,Ta+1),

151 not longer_time_exists(Da1,Ta+1), elapsed_time(D2,Ta).

152

88

153 % default robot_time is 0.

154 robot_time(R,0,T) :- not -robot_time(R,0,T).

155

156 %% concurrency restrictions

157 :- not -goto(R,X,Y,Ta), not -attach(R,Ta).

158 :- not -goto(R,X,Y,Ta), not -detach(R,Ta).

159

160 %% a planning problem instance

161 %% initial state

162 #base.

163 :- not at(r1,4,6,0).

164 :- not free(0).

165 :- not at(ep1,3,5,0).

166 :- not at(ep2,3,6,0).

167 :- not elapsed_time(0, 0).

168

169 %% goal condition

170 #volatile t.

171 :- not tidy(t).

172 :- not free(t).

173 :- elapsed_time(D, t), D>=30.

89

Appendix C

iclingo Formulation (Simplified)

1 #base.

2 #const xLimit=7.

3 #const yLimit=7.

4 #const durationLimit=40.

5 #const actionDurationLimit=4.

6

7 %% sorts

8 thing(I) :- robot(I).

9 thing(I) :- endpoint(I).

10

11 %% objects

12 xcoordinate(0..xLimit).

13 ycoordinate(0..yLimit).

14 robot(r1).

15 endpoint(ep1;ep2).

16 duration(0..durationLimit).

17 action_duration(0..actionDurationLimit).

18

19 %% variables

20 #domain timef(Tf).

21 #domain timea(Ta).

22 #domain robot(R;R1;R2).

23 #domain endpoint(EP;EP1;EP2).

24 #domain thing(TH;TH1;TH2).

25 #domain xcoordinate(X;X1;X2).

26 #domain ycoordinate(Y;Y1;Y2).

27 #domain duration(D;D1;D2;D3;D4).

28 #domain action_duration(Da;Da1;Da2;Da3;Da4).

29

90

30 #cumulative t.

31 timef(0..t).

32 timea(0..t-1).

33

34 %% auxiliary atoms

35 tidy(Tf) :- at_desired_location(I,Tf) : endpoint(I).

36 free(Tf) :- not connected(I,J,Tf) : robot(I) : endpoint(J).

37

38 %% at(thing,x,y) - inertial fluent

39 0 { at(TH,X,Y,0) } 1.

40 { at(TH,X,Y,Ta+1) } :- at(TH,X,Y,Ta).

41 :- { at(TH,I,J,Tf) : xcoordinate(I) : ycoordinate(J) } 0.

42 :- 2 { at(TH,I,J,Tf) : xcoordinate(I) : ycoordinate(J) }.

43

44 %% connected(robot,ep) - inertial fluent

45 1 { connected(R,EP,0), -connected(R,EP,0) } 1.

46 connected(R,EP,Ta+1) :- not -connected(R,EP,Ta+1), connected(R,EP,Ta).

47 -connected(R,EP,Ta+1) :- not connected(R,EP,Ta+1), -connected(R,EP,Ta).

48

49 %% robot_time(robot) - simple fluent

50 0 { robot_time(R,Da,0) } 1.

51 :- { robot_time(R,I,Tf) : action_duration(I) } 0.

52 :- 2 { robot_time(R,I,Tf) : action_duration(I) }.

53

54 %% elapsed_time - inertial fluent

55 0 { elapsed_time(D,0) } 1.

56 { elapsed_time(D,Ta+1) } :- elapsed_time(D,Ta).

57 :- { elapsed_time(I,Tf) : duration(I) } 0.

58 :- 2 { elapsed_time(I,Tf) : duration(I) }.

59

60 %% goto - exogenous action

61 0 { goto(R,X,Y,Ta) } 1.

62

63 %% attach - exogenous action

64 0 { attach(R,Ta) } 1.

65

66 %% attach_point(robot, endpoint+none) - attribute of attach(robot)

67 1 { attach_point(R,Var,Ta) : endpoint(Var) } 1 :- attach(R,Ta).

68

69 %% detach - exogenous action

70 0 { detach(R,Ta) } 1.

91

71

72 %% goto - direct effect & precondition

73 at(R,X,Y,Ta+1) :- goto(R,X,Y,Ta).

74 robot_time(R,Da,Ta+1) :- goto(R,X2,Y2,Ta), at(R,X1,Y1,Ta),

75 Da:=@time_estimate(X1,Y1,X2,Y2).

76 :- goto(R,X,Y,Ta), occupied(X,Y).

77 :- goto(R,X,Y,Ta), at(R,X,Y,Ta).

78 :- goto(R,X2,Y2,Ta), at(R,X1,Y1,Ta),

79 not @path_exists(X1,Y1,X2,Y2).

80

81 %% attach - direct effect & precondition

82 connected(R,EP,Ta+1) :- attach(R,Ta), attach_point(R,EP,Ta).

83 robot_time(R,1,Ta+1) :- attach(R,Ta).

84 :- attach(R,Ta), connected(R,EP,Ta).

85 :- attach(R,Ta), attach_point(R,EP,Ta), at(R,X1,Y1,Ta),

86 at(EP,X2,Y2,Ta), X1!=X2.

87 :- attach(R,Ta), attach_point(R,EP,Ta), at(R,X1,Y1,Ta),

88 at(EP,X2,Y2,Ta), Y1!=Y2.

89

90 %% detach - direct effect & precondition

91 -connected(R,EP,Ta+1) :- detach(R,Ta), connected(R,EP,Ta).

92 robot_time(R,1,Ta+1) :- detach(R,Ta).

93 :- detach(R,Ta), not connected(R,I,Ta) : endpoint(I).

94

95 % two objects cannot occupy the same grid point

96 :- at(EP1,X,Y,Tf), at(EP2,X,Y,Tf), EP1!=EP2.

97

98 % if a robot is attached to an endpoint

99 % then the endpoint is wherever the robot is

100 at(EP,X,Y,Tf) :- connected(R,EP,Tf), at(R,X,Y,Tf).

101

102 % a robot cannot be connected to two different

103 % objects at the same time

104 :- connected(R,EP1,Tf), connected(R,EP2,Tf), EP1!=EP2.

105

106 % an object is at a desired location

107 % if its endpoints are at that location

108 at_desired_location(EP,Tf) :- at(EP,X,Y,Tf), in_place(EP,X,Y).

109

110 % objects with 2 endpoints are located horizontally or vertically

111 :- at(EP1,X1,Y1,Tf), at(EP2,X2,Y2,Tf),

92

112 EP1!=EP2, belongs(EP1,Obj), belongs(EP2,Obj),

113 ((X1-X2)**2 + (Y1-Y2)**2) != 1.

114

115 % at each step, elapsed_time is incremented

116 % by the maximum robot_time

117 elapsed_time(D1+Da2,Ta+1) :-

118 Da2=#max[robot_time(RX,J,Ta+1):robot(RX)=J],

119 elapsed_time(D1,Ta), D1+Da2<durationLimit.

120

121 % default robot_time is 0.

122 robot_time(R,0,Tf) :- { robot_time(R,I,Tf) : duration(I) } 0.

123

124 %% concurrency restrictions

125 :- goto(R,X,Y,Ta), attach(R,Ta).

126 :- goto(R,X,Y,Ta), detach(R,Ta).

127

128 %% a planning problem instance

129 %% initial state

130 #base.

131 :- not at(r1,4,6,0).

132 :- not free(0).

133 :- not at(ep1,3,5,0).

134 :- not at(ep2,3,6,0).

135 :- not elapsed_time(0, 0).

136

137 %% goal condition

138 #volatile t.

139 :- not tidy(t).

140 :- not free(t).

141 :- elapsed_time(D, t), D>=30.

93

Appendix D

dlvhex Formulation

1 %% constants

2 #maxint=40.

3 const(xLimit, 7).

4 const(yLimit, 7).

5 const(durationLimit, 40).

6 const(actionDurationLimit, 4).

7

8 %% sorts

9 thing(I) :- robot(I).

10 thing(I) :- endpoint(I).

11

12 %% objects

13 robot(r1).

14 endpoint(ep1).

15 timef(I) :- #int(I), const(t,C), I<=C.

16 timea(I) :- #int(I), const(t,C), I<C.

17 xcoord(I) :- #int(I), const(xLimit,C), I<=C.

18 ycoord(I) :- #int(I), const(yLimit,C), I<=C.

19 duration(I) :- #int(I), const(durationLimit, C), I<=C.

20 action_duration(I) :- #int(I), const(actionDurationLimit,C), I<=C.

21

22 %% auxiliary atoms

23 -tidy(Tf) :- -at_desired_location(EP,Tf),

24 endpoint(EP), timef(Tf).

25

26 tidy(Tf) :- not -tidy(Tf),

27 timef(Tf).

28

29 -free(Tf) :- connected(R,EP,Tf),

94

30 robot(R), endpoint(EP), timef(Tf).

31

32 free(Tf) :- not -free(Tf),

33 timef(Tf).

34

35 -free_robot(R,Tf) :- connected(R,EP,Tf),

36 robot(R), endpoint(EP), timef(TF).

37

38 free_robot(R,Tf) :- not -free_robot(R,Tf),

39 robot(R), timef(Tf).

40

41 -different_loc(R,EP,Tf) :- at(R,X,Y,Tf), at(EP,X,Y,Tf),

42 robot(R), endpoint(EP), xcoord(X), ycoord(Y), timef(Tf).

43

44 different_loc(R,EP,Tf) :- not -different_loc(R,EP,Tf),

45 robot(R), endpoint(EP), timef(Tf).

46

47 %% at(thing,x,y) - inertial fluent

48 at(TH,X,Y,0) v -at(TH,X,Y,0) :-

49 thing(TH), xcoord(X), ycoord(Y), timea(Ta).

50

51 at(TH,X,Y,Ti) :- not -at(TH,X,Y,Ti), at(TH,X,Y,Ta), Ti=Ta+1,

52 thing(TH), xcoord(X), ycoord(Y), timea(Ta).

53

54 -at(TH,X,Y,Ti) :- not at(TH,X,Y,Ti), -at(TH,X,Y,Ta), Ti=Ta+1,

55 thing(TH), xcoord(X), ycoord(Y), timea(Ta).

56

57 %% connected(robot,ep) - inertial fluent

58 connected(R,EP,0) v -connected(R,EP,0) :-

59 robot(R), endpoint(EP).

60

61 connected(R,EP,Ti) :- not -connected(R,EP,Ti), connected(R,EP,Ta),

62 Ti=Ta+1, robot(R), endpoint(EP), timea(Ta).

63

64 -connected(R,EP,Ti) :- not connected(R,EP,Ti), -connected(R,EP,Ta),

65 Ti=Ta+1, robot(R), endpoint(EP), timea(Ta).

66

67 %% robot_time(robot) - simple fluent

68 robot_time(R,Da,0) v -robot_time(R,Da,0) :-

69 robot(R), action_duration(Da).

70

95

71 %% elapsed_time - inertial fluent

72 elapsed_time(D,0) v -elapsed_time(D,0) :-

73 duration(D).

74

75 elapsed_time(D,Ti) :- not -elapsed_time(D,Ti), elapsed_time(D,Ta),

76 Ti=Ta+1, duration(D), timea(Ta).

77

78 -elapsed_time(D,Ti) :- not elapsed_time(D,Ti), -elapsed_time(D,Ta),

79 Ti=Ta+1, duration(D), timea(Ta).

80

81 %% goto - exogenous action

82 goto(R,X,Y,Ta) v -goto(R,X,Y,Ta) :-

83 robot(R), xcoord(X), ycoord(Y), timea(Ta).

84

85 %% attach - exogenous action

86 attach(R,Ta) v -attach(R,Ta) :-

87 robot(R), timea(Ta).

88

89 %% attach_point(robot, endpoint) - attribute of attach(robot)

90 attach_point(R,EP,Ta) v -attach_point(R,EP,Ta) :- attach(R,Ta),

91 robot(R), endpoint(EP), timea(Ta).

92

93 attach_point_exists(R,Ta) :- attach_point(R,EP,Ta),

94 robot(R), endpoint(EP), timea(Ta).

95

96 :- attach(R,Ta), not attach_point_exists(R,Ta),

97 robot(R), timea(Ta).

98

99 :- attach_point(R,EP1,Ta), attach_point(R,EP2,Ta), EP1<EP2,

100 robot(R), endpoint(EP1), endpoint(EP2), timea(Ta).

101

102 %% detach - exogenous action

103 detach(R,Ta) v -detach(R,Ta) :-

104 robot(R), timea(Ta).

105

106 %% goto - direct effect & precondition

107 at(R,X,Y,Ti) :- goto(R,X,Y,Ta),

108 Ti=Ta+1, robot(R), xcoord(X), ycoord(Y), timea(Ta).

109

110 robot_time(R,Da,Ti) :- goto(R,X2,Y2,Ta), at(R,X1,Y1,Ta),

111 &time_estimate[X1,Y1,X2,Y2,at,Ta](Da)

96

112 Ti=Ta+1, robot(R), xcoord(X1), xcoord(X2),

113 ycoord(Y1), ycoord(Y2), action_duration(Da), timea(Ta).

114

115 :- goto(R,X,Y,Ta), occupied(X,Y),

116 robot(R), xcoord(X), ycoord(Y), timea(Ta).

117

118 :- goto(R,X,Y,Ta), at(R,X,Y,Ta),

119 robot(R), xcoord(X), ycoord(Y), timea(Ta).

120

121 :- goto(R,X2,Y2,Ta), at(R,X1,Y1,Ta),

122 not &path_exists[X1,Y1,X2,Y2,at,Ta](),

123 robot(R), xcoord(X1), xcoord(X2),

124 ycoord(Y1), ycoord(Y2), timea(Ta).

125

126 %% attach - direct effect & precondition

127 connected(R,EP,Ti) :- attach(R,Ta), attach_point(R,EP,Ta),

128 Ti=Ta+1, robot(R), endpoint(EP), timea(Ta).

129

130 robot_time(R,1,Ti) :- attach(R,Ta),

131 Ti=Ta+1, robot(R), timea(Ta).

132

133 :- attach(R,Ta), connected(R,EP,Ta),

134 robot(R), endpoint(EP), timea(Ta).

135

136 :- attach(R,Ta), attach_point(R,EP,Ta), different_loc(R,EP,Ta),

137 robot(R), endpoint(EP), timea(Ta).

138

139 %% detach - direct effect & precondition

140 -connected(R,EP,Ti) :- detach(R,Ta), connected(R,EP,Ta),

141 Ti=Ta+1, robot(R), endpoint(EP), timea(Ta).

142

143 robot_time(R,1,Ti) :- detach(R,Ta),

144 Ti=Ta+1, robot(R), timea(Ta).

145

146 :- detach(R,Ta), free_robot(R,Ta),

147 robot(R), timea(Ta).

148

149 %% conversion from multi-valued constants

150 -robot_time(R,Da1,Tf) :- robot_time(R,Da2,Tf), Da1!=Da2,

151 robot(R), action_duration(Da1), action_duration(Da2),

152 timef(Tf).

97

153

154 robot_time_exists(R,Tf) :- robot_time(R,Da,Tf),

155 robot(R), action_duration(Da), timef(Tf).

156

157 :- not robot_time_exists(R,Tf),

158 robot(R), timef(Tf).

159

160 -elapsed_time(D1,Tf) :- elapsed_time(D2,Tf), D1!=D2,

161 duration(D1), duration(D2), timef(Tf).

162

163 elapsed_time_exists(Tf) :- elapsed_time(D,Tf),

164 duration(D), timef(Tf).

165

166 :- not elapsed_time_exists(Tf),

167 timef(Tf).

168

169 % things can be present only at a single

170 % grid point at a specific time

171 -at(TH,X,Y,Tf) :- at(TH,X1,Y1,Tf), X!=X1,

172 thing(TH), xcoord(X), xcoord(X1),

173 ycoord(Y), ycoord(Y1), timef(Tf).

174

175 -at(TH,X,Y,Tf) :- at(TH,X1,Y1,Tf), Y!=Y1,

176 thing(TH), xcoord(X), xcoord(X1),

177 ycoord(Y), ycoord(Y1), timef(Tf).

178

179 % two objects cannot occupy the same grid point

180 :- at(EP1,X,Y,Tf), at(EP2,X,Y,Tf), EP1<EP2,

181 endpoint(EP1), endpoint(EP2), xcoord(X), ycoord(Y), timef(Tf).

182

183 % if a robot is attached to an endpoint

184 % then the endpoint is wherever the robot is

185 at(EP,X,Y,Tf) :- connected(R,EP,Tf), at(R,X,Y,Tf),

186 robot(R), endpoint(EP), xcoord(X), ycoord(Y), timef(Tf).

187

188 % robot cannot be connected to multiple objects

189 :- connected(R,EP1,Tf), connected(R,EP2,Tf), EP1<EP2,

190 robot(R), endpoint(EP1), endpoint(EP2), timef(Tf).

191

192 % an object is at a desired location if its endpoints are at that location

193 at_desired_location(EP,Tf) :- at(EP,X,Y,Tf), in_place(EP,X,Y),

98

194 endpoint(EP), xcoord(X), ycoord(Y), timef(Tf).

195

196 -at_desired_location(EP,Tf) :- not at_desired_location(EP,Tf),

197 endpoint(EP), timef(Tf).

198

199 % objects with 2 endpoints are located horizontally or vertically

200 :- at(EP1,X1,Y1,Tf), at(EP2,X2,Y2,Tf), diagonal(EP1,X1,Y1,EP2,X2,Y2),

201 endpoint(EP1), endpoint(EP2), xcoord(X1), xcoord(X2),

202 ycoord(Y1), ycoord(Y2), timef(Tf).

203

204 % at each step, elapsed_time is incremented by the maximum robot_time

205 lesser_time_exists(D1,Tf) :- robot_time(R1,Da1,Tf),

206 robot_time(R2,Da2,Tf), Da1 < Da2,

207 robot(R1), robot(R2), action_duration(D1),

208 action_duration(D2), timef(Tf).

209

210 elapsed_time(DTotal, Ti) :- robot_time(R1,Da1,Ti),

211 not lesser_time_exists(Da1,Ti),

212 elapsed_time(D2,Ta), DTotal=Da1+D2, Ti=Ta+1,

213 robot(R1), action_duration(D1), duration(D2), timea(Ta).

214

215 % default robot_time is 0.

216 robot_time(R,0,Tf) :- not -robot_time(R,0,Tf),

217 robot(R), timef(Tf).

218

219 %% concurrency restrictions

220 :- goto(R,X,Y,Ta), attach(R,Ta),

221 robot(R), xcoord(X), ycoord(Y), timea(Ta).

222

223 :- goto(R,X,Y,Ta), detach(R,Ta),

224 robot(R), xcoord(X), ycoord(Y), timea(Ta).

225

226 %% a planning problem instance

227 %% initial state

228 :- not at(r1,4,6,0).

229 :- not free(0).

230 :- not at(ep1,3,5,0).

231 :- not elapsed_time(0,0).

232

233 %% goal condition

234 :- not tidy(C), const(t,C).

99

235 :- not free(C), const(t,C).

236 :- elapsed_time(D,C), D>=30, duration(D), const(C,T).

100

Bibliography

[1] MG Abu-Hamdan and A.S. El-Gizawy. Computer-aided monitoring system for flex-
ible assembly operations. Computers in Industry, 34(1):1–10, 1997.

[2] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics. Foundations of

Artificial Intelligence, 3:135–179, 2008.

[3] Joseph Babb and Joohyung Lee. Cplus2asp: Computing action language c+ in an-
swer set programming. In Proceedings of International Conference on Logic Pro-

gramming and Nonmonotonic Reasoning (LPNMR), 2013.

[4] Michael Bartholomew and Joohyung Lee. Stable models of formulas with inten-
sional functions. In KR, 2012.

[5] Michael Beetz, Dominik Jain, L Mosenlechner, Moritz Tenorth, Lars Kunze, Nico
Blodow, and Dejan Pangercic. Cognition-enabled autonomous robot control for the
realization of home chore task intelligence. Proceedings of the IEEE, 100(8):2454–
2471, 2012.

[6] Michael Beetz, Lorenz Mosenlechner, and Moritz Tenorth. Cram—a cognitive robot
abstract machine for everyday manipulation in human environments. In Intelligent

Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages
1012–1017. IEEE, 2010.

[7] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set program-
ming at a glance. Communications of the ACM, 54(12):92–103, 2011.

[8] S. Cambon, R. Alami, and F. Gravot. A hybrid approach to intricate motion,
manipulation and task planning. The International Journal of Robotics Research,
28(1):104–126, 2009.

[9] T. Cao and AC Sanderson. Task decomposition and analysis of robotic assembly task
plans using petri nets. Industrial Electronics, IEEE Transactions on, 41(6):620–630,
1994.

101

[10] L.H. Chiang, E. Russell, and R.D. Braatz. Fault detection and diagnosis in industrial

systems. Springer Verlag, 2001.

[11] M. De Weerdt, A. Bos, H. Tonino, and C. Witteveen. A resource logic for multi-
agent plan merging. Annals of Mathematics and Artificial Intelligence, 37(1):93–
130, 2003.

[12] Mathijs de Weerdt and Brad Clement. Introduction to planning in multiagent sys-
tems. Multiagent and Grid Systems, 5(4):345–355, 2009.

[13] K. Decker and V.R. Lesser. Generalizing the partial global planning algorithm. Int.

J. Cooperative Inf. Syst., 2(2):319–346, 1992.

[14] W.E. Dixon, I.D. Walker, D.M. Dawson, and J.P. Hartranft. Fault detection for
robot manipulators with parametric uncertainty: a prediction-error-based approach.
Robotics and Automation, IEEE Transactions on, 16(6):689–699, 2000.

[15] Patrick Doherty and Jonas Kvarnström. Temporal action logics. Foundations of

Artificial Intelligence, 3:709–757, 2008.

[16] Christian Dornhege, Patrick Eyerich, Thomas Keller, Sebastian Trüg, Michael Bren-
ner, and Bernhard Nebel. Semantic attachments for domain-independent planning
systems. In Towards Service Robots for Everyday Environments, pages 99–115.
Springer, 2012.

[17] Christian Dornhege and Andreas Hertle. Integrated symbolic planning in the tidyup-
robot project. In 2013 AAAI Spring Symposium Series, 2013.

[18] E.H. Durfee and V.R. Lesser. Planning coordinated actions in dynamic domains.
1987.

[19] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Theory and applica-

tions of satisfiability testing, pages 502–518. Springer, 2004.

[20] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres.
A logic programming approach to knowledge-state planning, ii: The dlvk system.
Artificial Intelligence, 144(1):157–211, 2003.

[21] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. Effec-
tive integration of declarative rules with external evaluations for semantic-web rea-
soning. In The Semantic Web: Research and Applications, pages 273–287. Springer,
2006.

102

[22] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras. Combining high-
level causal reasoning with low-level geometric reasoning and motion planning for
robotic manipulation. In Robotics and Automation (ICRA), 2011 IEEE International

Conference on, pages 4575–4581. IEEE, 2011.

[23] Patrick Eyerich, Thomas Keller, Bernhard Nebel, et al. Combining action and mo-
tion planning via semantic attachments. In Proc. of Workshop on Combining Action

and Motion Planning at ICAPS. Citeseer, 2010.

[24] G.E. Fainekos, H. Kress-Gazit, and G.J. Pappas. Temporal logic motion planning
for mobile robots. In Robotics and Automation, 2005. ICRA 2005. Proceedings of

the 2005 IEEE International Conference on, pages 2020–2025. IEEE, 2005.

[25] Paolo Ferraris, Joohyung Lee, Yuliya Lierler, Vladimir Lifschitz, and Fangkai Yang.
Representing first-order causal theories by logic programs. Theory and Practice of

Logic Programming, 12(3):383–412, 2012.

[26] Paolo Ferraris and Vladimir Lifschitz. Mathematical foundations of answer set pro-
gramming. We will show them, 1:615–664, 2005.

[27] Alexander Ferrein and Gerhard Lakemeyer. Logic-based robot control in highly
dynamic domains. Robotics and Autonomous Systems, 56(11):980–991, 2008.

[28] Alexander Ferrein, Tim Niemueller, Stefan Schiffer, and Gerhard Lakemeyer.
Lessons learnt from developing the embodied ai platform caesar for domestic ser-
vice robotics. In Proc. of AAAI Spring Symposium, 2013.

[29] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. Kqml as an agent
communication language. In Proceedings of the third international conference on

Information and knowledge management, pages 456–463. ACM, 1994.

[30] ACL Fipa. Fipa acl message structure specification. Foundation for Intelligent Phys-

ical Agents, http://www. fipa. org/specs/fipa00061/SC00061G. html (30.6. 2004),
2002.

[31] J. Forlizzi and C. DiSalvo. Service robots in the domestic environment: a study of
the roomba vacuum in the home. In Proceedings of the 1st ACM SIGCHI/SIGART

conference on Human-robot interaction, pages 258–265. ACM, 2006.

[32] Cipriano Galindo and Alessandro Saffiotti. Inferring robot goals from violations of
semantic knowledge. Robotics and Autonomous Systems, 2013.

[33] Martin Gebser, Torsten Grote, and Torsten Schaub. Coala: a compiler from action
languages to asp. In Logics in Artificial Intelligence, pages 360–364. Springer, 2010.

103

[34] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten
Schaub, and Sven Thiele. Engineering an incremental asp solver. In Logic Pro-

gramming, pages 190–205. Springer, 2008.

[35] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. In ICLP/SLP, volume 88, pages 1070–1080, 1988.

[36] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New generation computing, 9(3-4):365–385, 1991.

[37] Michael Gelfond and Vladimir Lifschitz. Representing actions in extended logic
programming. In JICSLP, volume 92, page 560, 1992.

[38] Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transactions

on AI, 3(16), 1998.

[39] B.P. Gerkey and M.J. Mataric. Sold!: Auction methods for multirobot coordination.
Robotics and Automation, IEEE Transactions on, 18(5):758–768, 2002.

[40] Yolanda Gil. Description logics and planning. AI Magazine, 26(2):73, 2005.

[41] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hud-
son Turner. Nonmonotonic causal theories. Artificial Intelligence, 153(1):49–104,
2004.

[42] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, and Hudson Turner. Causal
laws and multi-valued fluents. In Proceedings of Workshop on Nonmonotonic Rea-

soning, Action and Change (NRAC). Citeseer, 2001.

[43] Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causal
explanation: Preliminary report. In AAAI/IAAI, pages 623–630. Citeseer, 1998.

[44] F. Gravot, A. Haneda, K. Okada, and M. Inaba. Cooking for humanoid robot, a task
that needs symbolic and geometric reasonings. In Robotics and Automation, 2006.

ICRA 2006. Proceedings 2006 IEEE International Conference on, pages 462–467.
IEEE, 2006.

[45] J. Guitton and J. Farges. Geometric and symbolic reasoning for mobile robotics. In
3rd National Conf. on Control Architecture of Robots, pages 76–97, 2008.

[46] D. Halperin, J.C. Latombe, and R.H. Wilson. A general framework for assembly
planning: The motion space approach. Algorithmica, 26(3):577–601, 2000.

[47] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Manysat: a parallel sat solver.
JSAT, 6(4):245–262, 2009.

104

[48] Kris Hauser and Jean-Claude Latombe. Integrating task and prm motion planning:
Dealing with many infeasible motion planning queries. In Workshop on Bridging

the Gap between Task and Motion Planning at ICAPS, 2009.

[49] David Hsu, J-C Latombe, and Rajeev Motwani. Path planning in expansive con-
figuration spaces. In Robotics and Automation, 1997. Proceedings., 1997 IEEE

International Conference on, volume 3, pages 2719–2726. IEEE, 1997.

[50] S.A. Hutchinson and A.C. Kak. Spar: A planner that satisfies operational and geo-
metric goals in uncertain environments. AI magazine, 11(1):30, 1990.

[51] R. Isermann. Estimation of physical parameters for dynamic processes with appli-
cation to an industrial robot. In American Control Conference, 1990, pages 1396–
1401. IEEE, 1990.

[52] N.R. Jennings. Specification and implementation of a belief-desire-joint-intention
architecture for collaborative problem solving. Int. Journal of Intelligent and Coop-

erative Information Systems, 2(3):289–318, 1993.

[53] Leslie Pack Kaelbling and Tomas Lozano-Perez. Hierarchical planning in the now.
In Workshops at the Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

[54] Antonios Kakas and Rob Miller. A simple declarative language for describing nar-
ratives with actions. The Journal of Logic Programming, 31(1):157–200, 1997.

[55] M. Kaneko and M. Kakikura. Planning strategy for putting away laundry-isolating
and unfolding task. In Assembly and Task Planning, 2001, Proceedings of the IEEE

International Symposium on, pages 429–434. IEEE, 2001.

[56] Robert Kowalski and Marek Sergot. A logic-based calculus of events. In Founda-

tions of knowledge base management, pages 23–55. Springer, 1989.

[57] Jonas Kvarnström. Talplanner and other extensions to temporal action logic. In
Linköping Studies in Science and Technology, Dissertation. Citeseer, 2005.

[58] M.G. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak, and A.J. Kleywegt. Sim-
ple auctions with performance guarantees for multi-robot task allocation. In Intelli-

gent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ Interna-

tional Conference on, volume 1, pages 698–705. IEEE, 2004.

[59] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning.
1998.

105

[60] Yves Lespérance, Hector J Levesque, Fangzhen Lin, Daniel Marcu, Raymond Re-
iter, and Richard B Scherl. A logical approach to high-level robot programming–a
progress report. In Control of the physical world by intelligent systems: papers from

the 1994 AAAI fall symposium, pages 79–85, 1994.

[61] Hector J Levesque, Raymond Reiter, Yves Lesperance, Fangzhen Lin, and
Richard B Scherl. Golog: A logic programming language for dynamic domains.
The Journal of Logic Programming, 31(1):59–83, 1997.

[62] Vladimir Lifschitz. What is answer set programming?. In AAAI, volume 8, pages
1594–1597, 2008.

[63] Fangzhen Lin. Situation calculus. Foundations of Artificial Intelligence, 3:649–669,
2008.

[64] Hugo Liu and Push Singh. Conceptnet—a practical commonsense reasoning tool-
kit. BT technology journal, 22(4):211–226, 2004.

[65] T. Lozano-Perez, J. Jones, E. Mazer, P. O’Donnell, W. Grimson, P. Tournassoud,
and A. Lanusse. Handey: A robot system that recognizes, plans, and manipulates.
In Robotics and Automation. Proceedings. 1987 IEEE International Conference on,
volume 4, pages 843–849. IEEE, 1987.

[66] F. Marrone, FM Raimondi, M. Strobel, et al. Compliant interaction of a domestic
service robot with a human and the environment. In Proceedings of the 33rd ISR

(International Symposium on Robotics) October, volume 7, page 11. Citeseer, 2002.

[67] Norman McCain and Hudson Turner. Causal theories of action and change. In
Proceedings of the National Conference on Artificial Intelligence, pages 460–465.
John Wiley & Sons ltd, 1997.

[68] Norman Clayton McCain. Causality in commonsense reasoning about actions. PhD
thesis, University of Texas at Austin, 1997.

[69] John McCarthy. Situations, actions, and causal laws. Technical report, DTIC Doc-
ument, 1963.

[70] John McCarthy. Circumscription—a form of non-monotonic reasoning. Artificial

intelligence, 13(1):27–39, 1980.

[71] John McCarthy and Patrick Hayes. Some philosophical problems from the stand-

point of artificial intelligence. Stanford University, 1968.

[72] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology language
overview. W3C recommendation, 10(2004-03):10, 2004.

106

[73] International Federation of Robotics. World robotics - service robots. Technical
report, 2012.

[74] J. Palacin, J.A. Salse, I. Valganon, and X. Clua. Building a mobile robot for a floor-
cleaning operation in domestic environments. Instrumentation and Measurement,

IEEE Transactions on, 53(5):1418–1424, 2004.

[75] S. Parsons, O. Pettersson, A. Saffiotti, and M. Wooldridge. Robots with the best of
intentions. Artificial Intelligence Today, pages 329–338, 1999.

[76] Federico Pecora, Marcello Cirillo, Francesca Dell’Osa, Jonas Ullberg, and Alessan-
dro Saffiotti. A constraint-based approach for proactive, context-aware human sup-
port. Journal of Ambient Intelligence and Smart Environments, 4(4):347–367, 2012.

[77] O. Pettersson. Execution monitoring in robotics: A survey. Robotics and Au-

tonomous Systems, 53(2):73–88, 2005.

[78] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3, 2009.

[79] Erick Sandewall. Features and fluents: A systematic approach to the representation

of knowledge about dynamical systems. Linköping University, 1992.

[80] Stefan Schiffer, Alexander Ferrein, and Gerhard Lakemeyer. Caesar: an intelligent
domestic service robot. Intelligent Service Robotics, 5(4):259–273, 2012.

[81] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence, 138(1):181–234, 2002.

[82] Push Singh, Thomas Lin, Erik T Mueller, Grace Lim, Travell Perkins, and Wan Li
Zhu. Open mind common sense: Knowledge acquisition from the general public.
In On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE,
pages 1223–1237. Springer, 2002.

[83] Michael Thielscher. Introduction to the fluent calculus. Electronic Transactions on

Artificial Intelligence (http://www. etaij. org), 3, 1998.

[84] C.P. Tung and A.C. Kak. Integrating sensing, task planning, and execution for
robotic assembly. Robotics and Automation, IEEE Transactions on, 12(2):187–201,
1996.

[85] Hudson Turner. Representing actions in logic programs and default theories a situ-
ation calculus approach. The journal of logic programming, 31(1):245–298, 1997.

107

[86] Hudson Turner. A logic of universal causation. Artificial Intelligence, 113(1):87–
123, 1999.

[87] Hudson Turner. Nonmonotonic causal logic. In Handbook of knowledge represen-

tation, volume 1, pages 759–776. Elsevier Science, 2008.

[88] W.E. Walsh and M.P. Wellman. A market protocol for decentralized task alloca-
tion. In Multi Agent Systems, 1998. Proceedings. International Conference on, pages
325–332. IEEE, 1998.

[89] M.P. Wellman. A market-oriented programming environment and its application to
distributed multicommodity flow problems. arXiv preprint cs/9308102, 1993.

[90] M.P. Wellman, W.E. Walsh, P.R. Wurman, and J.K. MacKie-Mason. Auction proto-
cols for decentralized scheduling. Games and Economic Behavior, 35(1):271–303,
2001.

[91] B. Yan, T. Zhang, and C. Xie. Fuzzy expert system for fault diagnosis of robotic
assembly. In Intelligent Control and Automation, 2002. Proceedings of the 4th World

Congress on, volume 1, pages 445–449. IEEE, 2002.

108

