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Abstract

The regulation of two players is modeled as an iterated game with no discounting

where first two players (two countries providing carbon emissions) also interact with

a regulator (an independent regulator responsible for controlling the carbon emission

levels by imposing punishments). In our setting, employing a zero-determinant (ZD)

strategy, the regulator gains a unilateral advantage to enforce a linear relation be-

tween the expected payoffs of players. We identify two conditions and prove that the

first guarantees the existence of a ZD strategy while the second ensures the existence

of an optimal one. Furthermore, we propose an intuitive and simple cost structure in

order to enable the regulator to employ an uncomplicated ZD strategy and attain a

maximal ZD payoff.
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1. Introduction

Repeated games, extensive form games with iterations of a given stage game in every

period, present a general structure in which strategic interactions taking place repeatedly

over time are analyzed. They are the milestone to understand how dynamic strategies

correlate with each other. Thus, they have long been analyzed in economics, evolutionary

biology, political science and in many other areas.

That players are able to condition their strategies on the past behavior in each round

in repeated games is the reason for an extensive multiplicity of equilibria. As asserted in

the Folk Theorem of repeated games by Aumann and Shapley (1994) and Fudenberg and

Maskin (1986), if players are sufficiently patient then any individually rational payoff can

be sustained as a subgame perfect equilibrium (SPE). Aumann (1981) proposes that the

reduction of a multiplicity of equilibria may be provided by imposing boundaries on the

players’ memory strategies. In contrary to that approach, Barlo et al. (2009) demonstrate

that the even if the action spaces of players is sufficiently rich, the Folk Theorem for SPE

continues to hold with 1-memory strategies.

However, it is important to point out that the recent progress shows that a different

point of view takes place in the world of game theory. The idea that whether or not to

set the co-players’s payoffs to a fixed value is investigated instead of examining the equi-

librium behavior. In the article entitled “Iterated Prisoner’s Dilemma contains strategies

that dominate any evolutionary opponent”, Press and Dyson (2012) find a new kind of

strategy which guarantees one player a higher payoff than the opponent.

Press and Dyson discover a considerable mathematical feature of the two players

iterated prisoner’s dilemma. They demonstrate the existence of Zero-Determinant (ZD)

strategies, a new class of memory-one strategies for the iterated prisoner’s dilemma. A

ZD strategy player is able to enforce a linear relation between his/her payoff and the

opponent’s payoff, regardless of the opponent’s behavior. Thus, the opponent’s expected

payoff is set to a fixed value by a ZD strategy player. In consequence of ZD strategies, a

player is claimed to have a unilateral power in games.

From a distinct approach used in Press and Dyson (2012), being able to pin the

opponent’s payoff by using memory-one strategies is also derived in Boerlijst et al. (1997)
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and Sigmund (2010). The linear relation between the payoffs is provided by Hilbe et al.

(2013) through using a different method which does not contain any determinants.

It is noteworthy that Press and Dyson come up with the results under no discounting

for the iterated prisoner’s dilemma. However, Akin (2013) extend the theory produced by

Hilbe et al. (2013) to develop a general equation for the distribution of Markov strategies

when discounting factor is 1 (δ = 1). It is a subsequent study that Hilbe et al. (2015)

follow the study of Akin to expand the approach in which expected payoffs are discounted

for the case δ < 1.

Several studies extend the theory of ZD strategies to other two players repeated

games and multi-player repeated games. Roemheld (2013) makes a generalization of

procedure and implications of ZD strategies for all symmetric two players two action

games and also for Battle of the Sexes. Pan et al. (2015) study ZD strategies for an

iterated public goods game. In this multi-player game, each player chooses whether or

not to contribute a unit of cost into a public pot in every round. The total contribution in

the pot is multiplied by a factor greater than one and less than the number of players and

then equally divided among all players. They find that ZD strategies still occur in multi-

player games. Their results show that even though a player is able to pin the expected total

payoff of all other players, the increasing number of players restrains the ability of the ZD

player to fix the total payoff. Hilbe et al. (2014) produce a theory for ZD strategies for

multi-player social dilemmas. They explore that ZD strategy players constituting alliances

can enforce a linear relation between the average payoff in the alliance and the payoffs of

all other players. The impact of a ZD strategy alliance relies on the size of the alliance,

the type of social dilemma and lastly the distinct strategies.

Press and Dyson work on the iterated prisoner’s dilemma in which there are just two

strategies for both players. Guo (2014) moves the research a step further by introducing a

theory for the two player multi-strategy games. The results mostly seem similar with the

main article. The subsequent research is done by He et al. (2016). They generalize the

framework of ZD strategies to multi-player multi-action iterated games.

Furthermore, Chen and Zinger (2014) study the robustness of ZD strategies against

evolutionary players. They show that having any knowledge about the opponent’s evolu-

tion a ZD strategy player obtains the maximum payoff provided that he employs a linear

relation. Another extension of ZD strategies is presented in the article titled “Extortion
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under Uncertainty: Zero-Determinant Strategies in Noisy Games” by Hao et al. (2014).

A comprehensive model introducing the performance of ZD strategies for noisy repeated

games is proposed. They display that in an environment with uncertainty caused by er-

rors, a ZD strategy player can still set the co-player’s payoff to a fixed value; however,

as the noise level increases the possibility of the ZD player to pin the opponent’s payoff

decreases.

ZD strategies have raised considerable attention. Even though there are still un-

touched points in the theory of ZD strategies, applications of the subject into real world

problems can be observed. Sharing wireless resources, one of the widely studied topic

in communication networks, is formulated as an iterated prisoner’s dilemma. Al Daoud

et al. (2014) present a framework for spectrum sharing problem through designing ZD

strategies for service providers. In each stage game, service providers supplying down-

link services choose transmission power levels and eventually get some downlink rates

depending on other providers’ interference. They show that service providers are able to

fix their long-run payoffs by taking actions either to transmit at the maximum level or not

to transmit. Service providers use power control strategies, i.e. ZD strategies, which per-

mit them to share spectrum and maintain average rates regardless of the other providers’

power control strategies.

In the current study, we analyze an iterated game of reputation (of carbon emissions)

with ZD strategies. The critical distinction of our analysis concerns the fact that the

regulator, the ZD player, is a social planner who derives payoffs from the payoffs of the

regulated players (countries).

The existing literature on carbon emission contains a variety of scientific analysis

on this global issue. Since it is a widespread and significant research topic, there is a

bulk of literature on this subject. It includes not only the trade of carbon emission rights

but also the design of an allocation mechanism associating carbon emissions with GDP.

In the article of MacKenzie et al. (2008), an efficient allocation mechanism is designed

for a tradable pollution market. They also find the symmetric equilibrium strategy of

each firm and the choice of the regulator’s to minimize emission levels. Another leading

article written by Tang and Song (2014) investigates a dynamic game of incomplete in-

formation where regulators and enterprises are game participants. According to the type

of production, there are two kinds of enterprises, environmental friendly, and environ-
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mental pollution. Due to the information asymmetry between regulators and enterprises,

regulators can not observe the enterprises’ type of production. Regulators choose to su-

pervise enterprises or not after observing the signals sent by enterprises. Consequently,

four kinds of refining Bias equilibrium is analyzed in this behavior selection model of

enterprise based on a signal game. They find that the regulators cannot attain the optimal

control provided that there is asymmetric information about the cost of carbon emissions

reduction.

In our context, there are two countries and a regulator/social planner that is aimed to

govern carbon emission levels for the interests of the environment. In this study, we con-

sider the repeated games approach in which the possible behavior of a regulator in reply to

countries to alleviate the global emission is modeled. We incorporate a framework of ZD

strategies into our study in order to investigate the impact of the use of such a ZD player.

Countries produce carbon emissions as long as the production and the consumption exist.

In our game, countries do not just decide about whether to mitigate or not. They also

need to determine the amount of emission. For purposes of simplification, we discretize

the amount of per capita carbon emissions into three categories: h for high emission level,

m for medium emission level and ` for low emission level.

In every state, each country decides how much pollution to emit and the regulator

announces the target aggregate level of emissions. That is to say, two countries choose

an emission level from their respective action set which includes the three discretized

emission level. The joint actions of two countries bring about the “publicly observed”

level of emission. The publicly observed level can be high, medium or low according to

the following formulation: (1) the publicly observed level is high if both countries choose

h or only one of them chooses h while the other chooses m or only one of them chooses

h while the other chooses ` (2) the publicly observed level is medium if both countries

choose m or only one of them chooses m while the other chooses `, and (3) the publicly

observed level is low if both countries choose `. Simultaneously, the regulator determines

the aggregate target level by choosing an action from his action set which is the same as

that countries. The resulting state space with which this study concentrates on comprises

of the publicly observed actions (resulting from the joint actions of the two countries) and

the regulator’s action.

As long as the gradually increasing global emission problem exists, the social wel-
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fare of a country relies on its emissions due to the production and on the emissions of the

other countries since the accumulation of emissions creates a negative effect on all coun-

tries. Thus, controlling the emission level induces the regulator to employ a punishment

system. The regulator sets the cost of emissions separately for each country. In each in-

stance, the costs of emissions are given relative to the previous round’s publicly observed

level and the regulator’s action. Therefore, the difference between the utility that coun-

tries attain by choosing an emission level and the cost due to that emission level gives the

payoff structure of countries. However, since we consider behavioral strategies involving

randomization over pure actions, the resulting utilities of countries under the behavioral

strategy profile is given by the probability weighted average of their pure strategy pay-

offs. When choosing its emission level, a country does not pay attention to the negative

externality its emission accumulation imposes on the other country. However, as a global

social planner, the regulator needs to control behavior of countries by implementing a cost

structure for them and obtains the negative of the joint utility of both countries.

We identify conditions implying the existence of ZD strategies. The regulator is able

to pin the linear combination of other players’ payoffs to a fixed value. Also, the regulator

can fix his expected payoff and ensure the highest returns. Moreover, we propose a simple

and intuitive cost structure to which the regulator can restrict attention in order to achieve

maximal ZD payoffs.

In the next chapter, we introduce our model. In Chapter 3, we present the ZD

strategies for our model and the optimal ZD payoff for the regulator. Also, we employ a

special cost structure to obtain a simple ZD strategy for the regulator. Finally, Chapter 4

provides the conclusion.

2. The Model

Our iterated game consists of three players. There are two countries and an independent

regulator. In this context, we denote player 1 and player 2 as country 1 and country 2,

respectively and player 0 as the regulator. Countries produce carbon emissions as long

as the production and the consumption exist. The carbon emission game resembles a
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prisoner’s dilemma; however, countries do not just decide about whether to mitigate or

not, they also need to determine the amount of emissions. For purposes of simplification,

we discretize the amount of per capita carbon emissions into three categories: h for high

emission level, m for medium emission level and ` for low emission level.

In every state, which is to be defined in the current paragraph, each country de-

cides how much pollution to emit and the regulator announces the target aggregate level

of emissions. That is to say, in every state, two countries take an action from their respec-

tive action set ai ∈ Ai = {h,m, `} with i = 1,2. θ : A1×A2 → A denotes the “publicly

observed” level of emissions given that player 1 and player 2 take actions in A with the

property that θ(h,h) = θ(h,m) = θ(h, `) = θ(m,h) = θ(`,h) = h, θ(m,m) = θ(m, `) =

θ(`,m) = m and θ(`,`) = `. For example, θ(h,m) = θ(m,h) = h means when player

1 chooses h and player 2 chooses m or vice versa, the publicly observed level of emis-

sion is h. Simultaneously, the regulator determines the aggregate target level by choosing

an action a0 ∈ A0 = {h,m, `}. The strategies of the regulator depends on the publicly

observed level of emission. The resulting state space with which this study concen-

trates on consists of publicly observed level of emissions and the regulator’s actions, i.e.

S = {hh,hm,h`,mh,mm,m`,`h, `m, ``}.

Carbon emissions not only have positive effects on social welfare of the countries

(since then countries are provided with production hence, welfare) but also lead to harmful

results on the environment. Thus, there is a cost of this detrimental consequence. The

regulator sets the cost of emissions. The structure of the cost function, denoted by ci(s),

depending on the state s will be discussed later. We define πai as the payoff for player i

choosing action ai while others choose a−i. It should be noted that πai is constant in a−i.

For any given s ∈ S, Gs = 〈N,(Ai,us
i ,)i∈N〉 is a normal form game (of state s ∈ S)

defined by N = {0,1,2} the set of players, ai actions of player i with Ai = {h,m, `} and

us
i : A→R where A≡ ∏

i=0,1,2
Ai the utility function of player i in state s∈ S and it is defined

as follows for i = 1,2:

us
i (a) = πai− ci(s)

and for the regulator

us
0(a) =−(αus

1(a)+(1−α)us
2(a)).

The repeated game G∞ given an initial state s0 ∈ S consists of infinite iterations of
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(Gs)s∈S which is played in discrete time: t ∈ N0 ≡ {0,1,2, . . .} without loss of generality

we let s0 = (``). The action of player i in the iterated game at any stage t is denoted as

at
i ∈ Ai. Let at = (at

0,a
t
1,a

t
2) be the action profile at round t. For any given s∈ S associated

with period t, the period t + 1 state
∼
s consists of

∼
s = (θ(at−1

1 ,at−1
2 ),at−1

0 ) where at
i ∈ A

for every i ∈ N. Note that θ(at
1,a

t
2) ∈ {h,m, `} and at

0 ∈ {h,m, `}, therefore
∼
s ∈ S.

A stage t history is a vector ht = (s0,(s0,a0),(s1,a1), ...,(st ,at)) where s0 = (``)

and s1 = (θ(a0
1,a

0
2),a

0
0) and for any given st−1, st = (θ(at

1,a
t
2),a

t
0). We symbolize the

initial history by h0 being defined as the initial state s0 = (``). The space of all the stage t

histories is Ht . The set of all histories is the union of stage t histories H =∪∞
t=0Ht where

H0 = s0. Moreover, let H∞ be defined by H∞ = {s0,(s0,a0),(s1,a1), ...,(st ,at), . . .} with

for any given st−1, st = (θ(at−1
1 ,at−1

2 ),at−1
0 ). We often refer to H∞ as the set of outcomes.

For any ω ∈ H∞, the payoff player i obtained from ω (in period 0) is given by

Ui(ω) = liminf
T→∞

1
T

(
T

∑
t=0

ust

i (a
t)

)
.

Clearly the use of no-discounting utility implies that for any t ∈ N0 history h ∈ Ht

associated with st , the continuation utility of player i at history h ∈ Ht from outcome path

ω ∈ H∞ is

V t
i (ω) = liminf

T→∞

1
T

(
t+T

∑
τ=t

usτ

i (aτ)

)
.

A pure strategy for player i is a mapping fi : H →Ai for all i ∈ N. The set of player

i’s strategies is denoted by Fi and F = ∏i∈N Fi is the joint strategy space with f ∈ F. We

denote the strategy induced at h by fi | h given a strategy fi ∈ Fi and a history h ∈H .

This strategy is defined pointwise on H : ( fi | h)(h′) = fi(h · h′) for every h′ ∈H . We

denote f | h by ( f1 | h, . . . , fn | h) for every f ∈ F and h ∈H .

Any strategy f ∈ F induces an outcome ω f ∈ H∞ as follows: ω0
f = (s0, f (s0)) and

ω t
f = (st

f , f (ω0
f ,ω

1
f ,ω

2
f , . . . ,ω

t−1
f )) for any t ∈ N0 where

s1
f = (θ( f1(ω

0
f ), f2(ω

0
f )), f0(ω

0
f )) and

st
f = (θ( f1(ω

0
f ,ω

1
f ,ω

2
f , . . . ,ω

t−1
f ), f2(ω

0
f ,ω

1
f ,ω

2
f , . . . ,ω

t−1
f )), f0(ω

0
f ,ω

1
f ,ω

2
f , . . . ,ω

t−1
f )).

Note that we will use H∞ to denote the set of outcome paths and define a function

ω : F → H∞ which gives the outcome path induced by any strategy f ∈ F. This defines

the utility of a (pure) strategy by Ui( f ) =Ui(ω f ).

As discussed in the introduction, we restrict attention to 1-memory public strate-
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gies of the form fi(ht) = gi(st), for any t and ht with ht = (s0,(s0,a0),(s1,a1), ...,(st ,at)).

Moreover, for the purposes of this paper we consider behavioral strategies allowing indi-

vidual randomization at every stage of the play. Thus, the set of (behavioral) strategies we

consider are σi(s) : S→ ∆(Ai), while the resulting (von Neumann Morgenstern) utilities

are given by the usual linear convex combination of pure strategy payoffs. Thus, for any

σ(st−1) = (σi(st−1))i∈N and for any s ∈ S,

ui(σ | s) = ∑
ai∈{h,m,`}

σi(s)(ai).(πai− ci(s)) i = 1,2.

ui(σ | s) is the expected utility of player i = 1,2 under the behavioral strategy profile σ in
the normal form game associated with state s. With a slight abuse of notation ui(σ | s) =
ui(s). Player 1’s expected utility vector constituted under different states u1(s) equals to

(u1(σ | hh),u1(σ | hm),u1(σ | h`),u1(σ | mh),u1(σ | mm),u1(σ | m`),u1(σ | `h),u1(σ | `m),u1(σ | ``))

and player 2’s expected utility vector for every state u2(s) equals to

(u2(σ | hh),u2(σ | hm),u2(σ | h`),u2(σ | mh),u2(σ | mm),u2(σ | m`),u2(σ | `h),u2(σ | `m),u2(σ | ``)).

Moreover, the expected utility of the regulator under the behavioral strategy profile

σ for any state s ∈ S is equal to

u0(σ | s) =−(αu1(σ | s)+(1−α)u2(σ | s))

Given σ(s) and s ∈ S,

σ0(s)(h) = (σ0(hh)(h),σ0(hm)(h), ...,σ0(mh)(h), ...,σ0(`h)(h), ...,σ0(``)(h))

denotes the conditional probabilities to announce at
0 = h in the current round t given the

state of the previous round s. For player 1 and player 2, the conditional probabilities are

σi(s)(ai) = (σi(hh)(ai),σi(hm)(ai), ...,σi(mh)(ai), ...,σi(``)(ai)) for i = 1,2.

The transition rule among the states is specified by the probabilistic strategies of

all players and the resulting state space structure. The Markov transition matrix of the
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repeated game which is denoted by M is figured out by computing the 81 transition prob-

abilities of players. For example, if the previous state is hh, the probability that the state

transits to a new state hm will be: σ1(hh)(h)σ2(hh)(h)+σ1(hh)(h)σ2(hh)(m)+σ1(hh)(h)σ2(hh)(`)+

σ1(hh)(m)σ2(hh)(h)+σ1(hh)(`)σ2(hh)(h)

σ0(hh)(m)

The first part of the multiplication denotes the probability of the observed state

being h. The second part of the multiplication σ0(hh)(m) indicates the probability that

the regulator announces m when the given state is hh. Notice that the publicly observed

state is h when either (1) both countries choose h or (2) only one of them chooses h while

the other chooses m or (3) only one of them chooses h while the other chooses `. The

derivation of the other transition probabilities from one state to another state is presented

in the state transition matrix of the Markov chain M.

M =


M11 M21 · · · M91

M12 M22 · · · M92
...

... · · · ...

M19 M29 · · · M99


Due to space considerations, the entries of Markov chain matrix is shown explicitly

in the Appendix.

Zero-Determinant Strategies

Let vs(t) be the probability that the outcome of round t is s∈ S. The following vector

notation is:

v(t) = (vhh(t),vhm(t),vh`(t),vmh(t),vmm(t),vh`(t),v`h(t),v`m(t),v``(t)).

We can define the limit of means distribution as

v = (vhh,vhm,vh`,vmh,vmm,vm`,v`h,v`m,v``)

where v = liminf
T→∞

1
T

T
∑

t=0
v(t).

Definition 1 Let M be the Markov transition matrix. The row vector v ∈ ∆(S) is called a

stationary probability distribution if it satisfies

vM = v.
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Let M′ ≡M-I where I9 is the 9×9 identity matrix. Then vM=v becomes vM′=0.

Remark 1 Every stochastic matrix has an eigenvalue equal to 1.1

This follows from M being a stochastic matrix, i.e for any given s ∈ S, the sum-

mation of the row items deliver 1, implying that the last column can be obtained using

the first 8. Since M has a unit eigenvalue, the matrix M′ is not invertible. That is, the

determinant of M′ must be zero.

We will employ the following Definitions and Proposition in the rest of the thesis.

Definition 2 Let A be an n×n matrix. The determinant of the submatrix (n−1)×(n−1)

obtained by eliminating the ith row and jth column of A is called the (i, j)–minor of A

and denoted by minorAi j. The scalar (−1)i+ jminorAi j is called the (i, j)–cofactor of A

and denoted by co f Ai j.

Definition 3 The adjoint Adj(A) of an n× n matrix A is the transpose of the cofactor

matrix of A,

Ad j(A) =


co f A11 co f A12 · · · co f A1n

co f A21 co f A22 · · · co f A2n
...

... · · · ...

co f An1 co f An2 · · · co f Ann



T

.

For example, let

A =


3 1 −4

2 5 6

1 4 8


be the 3×3 matrix with nine minors and nine cofactors.

The minorA12 =

∣∣∣∣∣∣2 6

1 8

∣∣∣∣∣∣= 2×8−6×1 = 10.

The minorA23 =

∣∣∣∣∣∣3 1

1 4

∣∣∣∣∣∣= 3×4−1×1 = 11.

The corresponding cofactors are

1Please see Stewart (2009)
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The co f A12 = (−1)1+2minorA12 = (−1)×10 =−10.

The co f A23 = (−1)2+3minorA23 = (−1)×11 =−11.

The adjoint matrix for A will be

Ad j(A) =


co f A11 co f A12 co f A13

co f A21 co f A22 co f A23

co f A31 co f A32 co f A33



T

=


16 −24 26

−10 28 −26

3 −11 13

.

Proposition 1 Let A be an n× n matrix and I be the n× n identity matrix. Let Adj(A)

denote the adjoint matrix of A. Then Adj(A) A = det(A)I.

The adjoint matrix of M′ which is formed by M
′
i j indicating the transpose of the

(i, j) cofactor of M′ is shown as:

Ad j(M′) =


M
′
11 M

′
21 · · · M

′
91

M
′
12 M

′
22 · · · M

′
92

...
... · · · ...

M
′
19 M

′
29 · · · M

′
99


By applying Cramer’s rule to M′ and Ad j(M′), we get

Ad j(M′)M′=det(M′)I9= 0.

As stated in Li (2014), having the unique stationary probability distribution there

is a unique solution to the vM′= 0 up to a scalar factor. Rank of M′ is 8 since the last

column can be written as a linear combination of the other columns. Thus, Ad j(M′) is

a nonzero matrix, so consider that the last row (M
′
19,M

′
29, . . . ,M

′
99) of Ad j(M′) which is

guaranteed to be nonzero vector.

Notice that every row of Ad j(M′) is proportional to the stationary distribution vec-

tor v since we have vM′= 0 and Ad j(M′)M′= 0. Hence, v = µ(M
′
19,M

′
29, . . . ,M

′
99) for

some scalar µ 6= 0.

Next, we can end up with a formula which is the dot product of an arbitrary vector

x = (x1,x2, . . . ,x9) with the stationary distribution vector v of the Markov matrix:

v ·x = µ(M
′
19x1 +M

′
29x2 + . . .+M

′
99x9).
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By some elementary column operations on matrix M′ such as adding the first and

fourth columns into the seventh column, we get matrix M′′
. The first column represents

the probability that the state transits to hh given the previous stage’s state for any s. The

fourth column shows that the probability that the state transits to mh and as well as the

seventh column gives the probability that the state moves `h given the previous round’s

state. At the end, we obtain the first column is constituted from the probabilities that the

player 0 announces h emission level in the current round given the previous round’s state.

M′′
=



σ0(hh)(h)−1 [σ1(hh)(h)+σ2(hh)(h)(1−σ2(hh)(h))]σ0(hh)(m)
... σ1(hh)(`)σ2(hh)(`)σ0(hh)(`)

σ0(hm)(h) [σ1(hm)(h)+σ2(hm)(h)(1−σ2(hm)(h))]σ0(hm)(m)−1
... σ1(hm)(`)σ2(hm)(`)σ0(hm)(`)

σ0(h`)(h) [σ1(h`)(h)+σ2(h`)(h)(1−σ2(h`)(h))]σ0(h`)(m)
... σ1(h`)(`)σ2(h`)(`)σ0(h`)(`)

σ0(mh)(h)−1
...

...
...

σ0(mm)(h)
...

...
...

σ0(m`)(h)
...

...
...

σ0(`h)(h)−1
...

...
...

σ0(`m)(h)
...

...
...

σ0(``)(h) [σ1(``)(h)+σ2(``)(h)(1−σ2(``)(h))]σ0(``)(m)
... σ1(``)(`)σ2(``))(`)σ0(``)(`)



Let M
′′
i j indicating the transpose of the (i, j) cofactor of M′′

. Since we conduct ele-

mentary column operations, the determinant of the matrix do not change. Also, notice that

M
′
i9 = M

′′
i9 for i = 1,2, ...,9 because the last column is not manipulated. If we substitute

the last column of M′′
with the transpose of an arbitrary x vector and then compute the

determinant of the corresponding matrix by extending along the ninth column, we obtain

the relation between the determinant and the value of v ·x :

det



σ0(hh)(h)−1 [σ1(hh)(h)+σ2(hh)(h)(1−σ2(hh)(h))]σ0(hh)(m)
... x1

σ0(hm)(h) [σ1(hm)(h)+σ2(hm)(h)(1−σ2(hm)(h))]σ0(hm)(m)−1
... x2

σ0(h`)(h) [σ1(h`)(h)+σ2(h`)(h)(1−σ2(h`)(h))]σ0(h`)(m)
... x3

σ0(mh)(h)−1
...

... x4

σ0(mm)(h)
...

... x5

σ0(m`)(h)
...

... x6

σ0(`h)(h)−1
...

... x7

σ0(`m)(h)
...

... x8

σ0(``)(h) [σ1(``)(h)+σ2(``)(h)(1−σ2(``)(h))]σ0(``)(m)
... x9



is equal to x1M
′′
19+x2M

′′
29+ . . .+x9M

′′
99 = x1M

′
19+x2M

′
29+ . . .+x9M

′
99 =

1
µ
(v ·x). Thus,

we get the result v · x≡D(σ0,σ1,σ2,x). The significant point in this determinant is that
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the first column
∼
σ0(s)(h) is equal to

(σ0(hh)(h)−1,σ0(hm)(h),σ0(h`)(h),σ0(mh)(h)−1,

σ0(mm)(h),σ0(m`)(h),σ0(`h)(h)−1,σ0(`m)(h),σ0(``)(h))

and is only controlled by player 0 while the last column is directly equal to x. Resulting

from the formula v ·x ≡ D(σ0,σ1,σ2,x), in the stationary state player 1’s normalized

payoff is obtained as:

P1 =
v.u1

v.1
=

D(σ1,σ2,σ0,u1)

D(σ1,σ2,σ0,1)

=
(vhh,vhm, . . . ,vmm, . . . ,v``) · (u1(hh), ...,u1(mm), ..,u1(``))

(vhh,vhm, . . . ,vmm, . . . ,v``) · (1,1, ...,1)
= vhhu1(hh)+ vhmu1(hm)+ ...+ v``u1(``)

where u1 is the player 1’s expected payoff vector and 1 is the vector having all components

1. Similarly, player 2’s normalized payoff is

P2 =
v.u2

v.1
=

D(σ1,σ2,σ0,u2)

D(σ1,σ2,σ0,1)
.

If we replace the arbitrary x vector with any linear combination of player 1’s and
player 2’s expected payoff vector αu1 +(1−α)u2 + γ1, we acquire the following matrix



σ0(hh)(h)−1 [σ1(hh)(h)+σ2(hh)(h)(1−σ2(hh)(h))]σ0(hh)(m)
... αu1(hh)+(1−α)u2(hh)+ γ

σ0(hm)(h) [σ1(hm)(h)+σ2(hm)(h)(1−σ2(hm)(h))]σ0(hm)(m)−1
... αu1(hm)+(1−α)u2(hm)+ γ

σ0(h`)(h) [σ1(h`)(h)+σ2(h`)(h)(1−σ2(h`)(h))]σ0(h`)(m)
... αu1(h`)+(1−α)u2(h`)+ γ

σ0(mh)(h)−1
...

... αu1(mh)+(1−α)u2(mh)+ γ

σ0(mm)(h)
...

... αu1(mm)+(1−α)u2(mm)+ γ

σ0(m`)(h)
...

... αu1(m`)+(1−α)u2(m`)+ γ

σ0(`h)(h)−1
...

... αu1(`h)+(1−α)u2(`h)+ γ

σ0(`m)(h)
...

... αu1(`m)+(1−α)u2(`m)+ γ

σ0(``)(h) [σ1(``)(h)+σ2(``)(h)(1−σ2(``)(h))]σ0(``)(m)
... αu1(``)+(1−α)u2(``)+ γ



Since the normalized payoffs of players’ are linearly contingent on their own ex-

pected stage payoff vectors, any linear combination of these normalized payoffs of the

14



two players with coefficients α and γ is derived as:

αP1 +(1−α)P2 + γ =
v.(αu1 +(1−α)u2 + γ1)

v.1

=
D(σ0,σ1,σ2,αu1 +(1−α)u2 + γ1)

D(σ0,σ1,σ2,1)
= ∑

s
vs [αu1(s)+(1−α)u2(s)+ γ] .

For some values of 0 < α < 1, γ and ρ if the regulator can set his strategy σ0(s)(h)

satisfying
∼
σ0(st−1)(h) = ρ(αu1 +(1−α)u2 + γ1), then regardless of the two players’

strategies, a linear relation between player 1’s and player 2’s payoff scores will be estab-

lished :

αP1 +(1−α)P2 + γ = 0.

D(σ0,σ1,σ2,(αu1+(1−α)u2+γ1)) has its first column fully controlled by player

0. When player 0 chooses a satisfying strategy
∼
σ0(st−1)(h) = ρ(αu1 +(1−α)u2 + γ1),

then the first and the last column will be proportional to constant ρ . If a matrix has two

proportional columns or rows, its determinant is zero. Thus D(σ0,σ1,σ2,(αu1 +(1−

α)u2 + γ1)) = 0, irrespective of the values of the other columns which gives that

(αP1 +(1−α)P2 + γ) =
D(σ0,σ1,σ2,(αu1 +(1−α)u2 + γ1))

D(σ0,σ1,σ2,1)
= 0.

Therefore, for any given the other players’ Markovian behavior, it is possible that

player 0 can come up with a stationary behavioral strategy (1-memory public strategy)

such that all players’ long-run payoffs are fixed to some number. Such strategies of player

0 are called Zero-Determinant (ZD) strategies.

The following construction will be used in the existence result:

Given α, ((πai)ai∈A)i∈N , ((ci(s))s∈S)i∈N and ρ < 0 define

γs
−
=

 −(αu1(s)+(1−α)u2(s)) if s ∈ {hh,mh, `h}
1
ρ
− (αu1(s)+(1−α)u2(s)) if s /∈ {hh,mh, `h}

and
−
γs =

 −1
ρ
− (αu1(s)+(1−α)u2(s)) if s ∈ {hh,mh, `h}

−(αu1(s)+(1−α)u2(s)) if s /∈ {hh,mh, `h}

15



Condition E Given α, ((πai)ai∈A)i∈N , ((ci(s))s∈S)i∈N , (σi(s))i=1,2 and ρ < 0. Condition

E holds if

1. max
s∈S

γs
−
≤min

s∈S

−
γs and

2. γ ∈
[

max
s∈S

γs
−
,min

s∈S

−
γs

]
.

Below we show an existence result for ZD strategies.

Proposition 2 Let (α,ρ,γ,((πai)ai∈A)i∈N ,((ci(s))s∈S)i∈N ,(σi(s))i=1,2) satisfy condition E.

Then player 0 possesses a ZD strategy.

Proof. Let
∼
σ0(s)(h) be the strategy that the regulator chooses such that

∼
σ0(s)(h) =

ρ(αu1 +(1−α)u2 + γ1) where ρ 6= 0 leading to the following system of linear equa-

tions:
σ0(hh)(h)−1 = ρ(αu1(hh)+(1−α)u2(hh)+ γ)

σ0(hm)(h) = ρ(αu1(hm)+(1−α)u2(hm)+ γ)

σ0(h`)(h) = ρ(αu1(h`)+(1−α)u2(h`)+ γ)

σ0(mh)(h)−1 = ρ(αu1(mh)+(1−α)u2(mh)+ γ)

σ0(mm)(h) = ρ(αu1(mm)+(1−α)u2(mm)+ γ)

σ0(m`)(h) = ρ(αu1(m`)+(1−α)u2(m`)+ γ)

σ0(`h)(h)−1 = ρ(αu1(`h)+(1−α)u2(`h)+ γ)

σ0(`m)(h) = ρ(αu1(`m)+(1−α)u2(`m)+ γ)

σ0(``)(h) = ρ(αu1(``)+(1−α)u2(``)+ γ)

(1)

It suffices to show that (σ0(s)(h))s∈S satisfies the feasibility condition; 0≤ σ0(s)(h)≤ 1

in order to be a ZD strategy given α, ((πai)ai∈A)i∈N , ((ci(s))s∈S)i∈N and (σi(s))i=1,2.

That is, we need to show that

σ0(s)(h) =

 ρ(αu1(s)+(1−α)u2(s)+ γ)+1 if s ∈ {hh,mh, `h}

ρ(αu1(s)+(1−α)u2(s)+ γ) if s /∈ {hh,mh, `h}
is in [0,1]

for all s ∈ S. This leads to
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0≤ ρ(αu1(hh)+(1−α)u2(hh)+ γ)+1≤1

0≤ ρ(αu1(hm)+(1−α)u2(hm)+ γ≤1

0≤ ρ(αu1(h`)+(1−α)u2(h`)+ γ≤1

0≤ ρ(αu1(mh)+(1−α)u2(mh)+ γ)+1≤1

0≤ ρ(αu1(mm)+(1−α)u2(mm)+ γ≤1

0≤ ρ(αu1(m`)+(1−α)u2(m`)+ γ) ≤1

0≤ ρ(αu1(`h)+(1−α)u2(`h)+ γ)+1 ≤1

0≤ ρ(αu1(`m)+(1−α)u2(`m)+ γ) ≤1

0≤ ρ(αu1(``)+(1−α)u2(``)+ γ≤1

(2)

Following from the condition E, given α, ((πai)ai∈A)i∈N , ((ci(s))s∈S)i∈N , (σi(s))i=1,2,

and ρ < 0, γ ∈
[

max
s∈S

γs
−
,min

s∈S

−
γs

]
and max

s∈S
γs
−
≤min

s∈S

−
γs where

γs
−
=

 −(αu1(s)+(1−α)u2(s)) if s ∈ {hh,mh, `h}
1
ρ
− (αu1(s)+(1−α)u2(s)) if s /∈ {hh,mh, `h}

and
−
γs =

 −1
ρ
− (αu1(s)+(1−α)u2(s)) if s ∈ {hh,mh, `h}

−(αu1(s)+(1−α)u2(s)) if s /∈ {hh,mh, `h}

all terms are led to be between 0 and 1. This follows from:

Let s∈{hh,mh, `h}. Then, ρ < 0 from Condition E and αu1(s)+(1−α)u2(s)+γ ≥

0 since otherwise ρ(αu1(s)+(1−α)u2(s)+ γ)+1 > 1 will be a contradiction.
As γ ≤

−
γs we have

ρ(αu1(s)+(1−α)u2(s)+ γ)+1 ≥ ρ(αu1(s)+(1−α)u2(s)+
−
γs)+1

= ρ[αu1(s)+(1−α)u2(s)−
1
ρ
− (αu1(s)+(1−α)u2(s))]+1

= 0

Therefore, we get ρ(αu1(s)+(1−α)u2(s)+ γ)+1≥ 0.
As γ ≥ γs

−
we have

ρ(αu1(s)+(1−α)u2(s)+ γ)+1 ≤ ρ(αu1(s)+(1−α)u2(s)+ γs
−
)+1

= ρ[αu1(s)+(1−α)u2(s)− (αu1(s)+(1−α)u2(s))]+1

= 1
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Thus, ρ(αu1(s)+(1−α)u2(s)+ γ)+1≤ 1.

Hence, 0≤ ρ(αu1(s)+(1−α)u2(s)+ γ)+1≤ 1.

Let s /∈ {hh,mh, `h} and recall that αu1(s)+(1−α)u2(s)+ γ ≥ 0.
Since γ ≤

−
γs we have

ρ(αu1(s)+(1−α)u2(s)+ γ) ≥ ρ(αu1(s)+(1−α)u2(s)+
−
γs)

= ρ[αu1(s)+(1−α)u2(s)− (αu1(s)+(1−α)u2(s))]

= 0

Therefore, ρ(αu1(s)+(1−α)u2(s)+ γ)≥ 0.
As γ ≥ γs

−
we have

ρ(αu1(s)+(1−α)u2(s)+ γ) ≤ ρ(αu1(s)+(1−α)u2(s)+ γs
−
)

= ρ[αu1(s)+(1−α)u2(s)+
1
ρ
− (αu1(s)+(1−α)u2(s))]

= 1

Thus, ρ(αu1(s)+(1−α)u2(s)+ γ)≤ 1.

Hence, we obtain 0≤ ρ(αu1(s)+(1−α)u2(s)+ γ)≤ 1.

So, σ0(s)(h) satisfying (2) will be a zero-determinant strategy.

We show that this condition is critical in the question about the existence of ZD

strategies. All components of strategy σ0(s)(h) of the regulator have to be between 0 and

1 to be feasible. Put differently, for some α,ρ and γ there is no feasible zero-determinant

strategy for the regulator. For example, for α ∈ (0,1) and γ, if we take the difference of

the first and the last equations, we get

σ0(hh)(h)−σ0(``)(h)−1 = ρ(α (u1(hh)−u1(``))+(1−α)(u2(hh)−u2(``))).

In the case that ui(hh)−ui(``)< 0 and ρ < 0 for i = 1,2 the right hand side of the

equation is positive but the left hand side can be less than and equal to 0 since the differ-

ence of σ0(hh)(h)−σ0(``)(h) can be 1 at maximum. Thus, there is no zero-determinant

strategies when ui(hh)−ui(``)< 0 and ρ < 0 for i = 1,2.

By enforcing unilaterally a linear relation between player 1 and player 2 through

its zero-determinant strategy σ0(s)(h), the regulator obtains the long run average payoff

P0 =−(αP1 +(1−α)P2) which is equal to γ.

18



The following is needed for further analysis. Define

Λ = {(σ1,σ2) ∈ R27×27
+ : ∃ γ with (α, (πai), (ci(s)), γ, σ1, σ2) sustains (2)}.

Moreover, let

Λ(γ) = {(σ1,σ2) ∈ R27×27
+ : (α, (πai), (ci(s)), γ, σ1, σ2) sustains (2)}.

Condition EE Λ 6= /0.

Notice that Condition EE implies Condition E.

2.1. The Optimal Zero-Determinant Strategy

Naturally, considering the optimal ZD payoff for player 0 emerges as a research question.

Claim 1 Λ is compact.

Proof. Clearly Λ is bounded by [0,1]54. So it suffices to prove that Λ is closed.

Suppose (σn
1 ,σ

n
2 ) is a sequence in Λ obtained with (α, (πai), (ci(s))) and ∀n ∈ N.

Therefore, for all (σn
1 , σn

2 ) ∈ Λ there exists γn such that (α, πai, ci(s),γn,σn
1 , σn

2 )

satisfies (1), which consists of 9 equalities. While (σn
1 ,σ

n
2 )→ (σ1,σ2) and γn→ γ, we

need to show (α, πai, ci(s),γ,σ1, σ2 ) satisfies (1). This holds trivially because (1) only

involves continuous linear equalities. Therefore, Λ is compact.

By solving the following maximization problem for γ∗σ1,σ2
which is the regulator’s

highest ever possible payoff under ZD strategy σ∗0 , the regulator determines the optimal

ZD strategy for himself:

Max γ∗σ1,σ2

s.t (σ1,σ2) ∈ Λ

Note that γ∗σ1,σ2
= min

s∈S

−
γs(σ1,σ2) where

−
γs =

 −1
ρ
− (αu1(s)+(1−α)u2(s)) if s ∈ {hh,mh, `h}

−(αu1(s)+(1−α)u2(s)) if s /∈ {hh,mh, `h}
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Therefore, γ∗σ1,σ2
is a continuous function on Λ and since Λ is compact, there exists

a maximizer to above problem.

In what follows we will show that Press and Dyson’s result can be extended to this

setting under a mild assumption needed to guarantee the existence of ZD strategies. By

using associated ZD strategies σ0, player 0 can fix all other players to the linear com-

bination of payoffs αP1 +(1−α)P2 and γ (for himself) no matter which strategy σ1,σ2

players 1 and 2 choose in Λ(γ). So, we have a counterpart of Press and Dyson’s result for

our setting.

Given α, (πai), and (ci(s)) there exists such σ1,σ2 and γ satisfying Condition E

and therefore, there exists a ZD strategy of player 0 for given σ1,σ2, γ and α, (πai),

(ci(s)). In other words, (σ1,σ2) ∈ Λ(γ). For this strategy, player 0’s payoff is fixed to γ

and the linear combination of other players’ payoffs αP1 +(1−α)P2 is fixed to −γ. If

just
∼
σ1,

∼
σ2 ∈ Λ(γ) changes and with same γ satisfying the (2), Condition E holds with

given
∼
σ1,

∼
σ2,γ and same α, (πai), (ci(s)). Thus, there exists a ZD strategy

∼
σ0 giving

payoff −(αP1 + (1−α)P2) and γ. Therefore, no matter what σ1,σ2 ∈ Λ(γ) is player

0 obtains γ while player 1 and player 2’s convex combination of payoffs is given by

(αP1 +(1−α)P2).

In what follows, we propose an intuitive cost structure which will bring about the

emergence of a “simple”and “intuitive” ZD strategy for the regulator.

2.2. An Intuitive Cost Structure

We now move forward to our analysis by presenting a special cost structure in order to

elaborate on a particular simple ZD strategy for the regulator. Naturally, costs (ci(s))i=1,2

for all s ∈ S are determined by the regulator.

In this section, assume that Condition EE holds and player 1 and 2 are restricted to

choose mixed 1-memory public behavior in Λ.

For any s ∈ S with s,s′ /∈ {hh,mh, `h}, we may set (ci(s))i=1,2 such that ui(s) =

ui(s′) =
∼
ui i = 1,2. This follows from

1. ui(hm) = ui(h`)⇒ ∑
a

σi(hm)(a).(πai− ci(hm)) = ∑
a

σi(h`)(a).(πai− ci(h`))
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2. ui(hm) = ui(mm)⇒ ∑
a

σi(hm)(a).(πai− ci(hm)) = ∑
a

σi(mm)(a).(πai− ci(mm))

3. ui(hm) = ui(m`)⇒ ∑
a

σi(hm)(a).(πai− ci(hm)) = ∑
a

σi(m`)(a).(πai− ci(m`))

4. ui(hm) = ui(`m)⇒ ∑
a

σi(hm)(a).(πai− ci(hm)) = ∑
a

σi(`m)(a).(πai− ci(`m))

5. ui(hm) = ui(``)⇒ ∑
a

σi(hm)(a).(πai− ci(hm)) = ∑
a

σi(``)(a).(πai− ci(``))

From these equations, it is understood that ci(hm), ci(h`), ci(mm), ci(m`), ci(`m),

and ci(`m) are unknowns for given the strategies of player i’s σi(s)(a). Now, there are six

unknowns and five equations so there can be infinitely many solutions. For simplicity, we

take ci(``) = 0 because the regulator intends to encourage the countries to produce less

emission. By putting ci(``) = 0 into equation 5,

ui(hm) = ui(``)⇒∑
a

σi(hm)(a).(πai− ci(hm)) = ∑
a

σi(``)(a).πai

Then, we find that

ci(hm) =
∑
a
[σi(hm)(a)−σi(``)(a)] .πai

∑
a

σi(hm)(a)
.

By putting ci(hm) into the other four equation one by one, we acquire the costs for

the states `m,m`,mm and h`.

ci(`m) =

∑[
a

σi(`m)(a)−σi(``)(a)].πai

∑
a

σi(`m)(a)

ci(m`) =
∑
a
[σi(m`)(a)−σi(``)(a)] .πai

∑
a

σi(m`)(a)

ci(mm) =
∑
a
[σi(mm)(a)−σi(``)(a)] .πai

∑
a

σi(mm)(a)

ci(h`) =
∑
a
[σi(h`)(a)−σi(``)(a)] .πai

∑
a

σi(h`)(a)

Therefore, ci(s)=
∑
a
[σi(s)(a)−σi(`)(a)] .πai

∑
a

σi(s)(a)
for s∈{hm,h`,mm,m`,`m} and ci(``)= 0.
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After obtaining costs we can result that ui(s) = ui(s′) =
∼
ui = ∑

a
σi(``)(a).πai for

any s,s′ /∈ {hh,mh, `h}.

Similarly, for any s,s′ ∈ {hh,mh, `h} we may fix (ci(s))i=1,2 such that ui(s) =

ui(s′) =
−
ui i = 1,2. This follows from:

1. ui(hh) = ui(mh)⇒ ∑
a

σi(hh)(a).(πai− ci(hh)) = ∑
a

σi(mh)(a).(πai− ci(mh))

2. ui(hh) = ui(lh) =⇒ ∑
a

σi(hh)(a).(πai− ci(hh)) = ∑
a

σi(mh)(a).(πai− ci(mh))

For this case, ci(hh),ci(mh) and ci(`h) are unknowns given the strategies of player

i’s σi(s)(a). Once again, infinitely many solutions can be found as there are three un-

knowns and two equations. To make the problem easily solvable, we can minimize the

cost of the state which takes place while the publicly observed level is low and the an-

nounced target level is high, ci(`h). The regulator prefers to impose lesser costs for the

countries in the case that the publicly observed level is less than the announced target

level while the states are hh, mh and `h. By decreasing the cost of this state, the regulator

aims that the countries have an incentive to release less carbon emissions. The regulator

solves the following minimization problem:

Min ci(`h)

sub ject to


σ0(s)(h)−1 = ρ [αU1(s)+(1−α)U2(s)+ γ] ∀s ∈ {hh,mh, `h}

σ0(s)(h) = ρ [αU1(s)+(1−α)U2(s)+ γ] ∀s /∈ {hh,mh, `h}

γ such that ∑
s

vs [αU1(s)+(1−α)U2(s)+ γ] = 0

With the minimum value of ci(`h), we can find the other costs, namely ci(hh) and

ci(mh). Then, we can construct the utility functions via defined cost structure.

Thus, ci(s) is identified such that

 ui(s) =
−
ui for all s ∈ {hh,mh, `h}

ui(s) =
∼
ui for all s /∈ {hh,mh, `h}

So by utilizing this cost structure (without off-setting Condition EE) we guarantee

that in the stage game player i obtains the same expected utility level
−
ui for any state s

involving the announcement of h by the regulator and separately for another utility level
∼
ui for any state s not involving the announcement of h by the regulator.

Next, we can further construct the payoff of the regulator by means of the recently

formed cost structure. Since the uniquely determined vs depends on σ0(s)(h), we can

22



write the general equation as

∑
s

vσ0
s [αu1(s)+(1−α)u2(s)+ γ] = 0

∑
s

vσ0
s (αu1(s)+(1−α)u2(s))+ γ∑

s
vσ0

s︸ ︷︷ ︸
1

= 0

∑
s

vσ0
s (αu1(s)+(1−α)u2(s)) =−γ.

Let s ∈ {hh,mh, lh} and s′ /∈ {hh,mh, lh}. Thus, we replace ui(s) and ui(s′) with
−
ui

and
∼
ui, respectively and we obtain the regulator’s long-run payoff as

∑
s∈{hh,mh,lh}

vσ0
s (α

−
u1 +(1−α)

−
u2)+ ∑

s′ /∈{hh,mh,lh}
vσ0

s (α
∼
u1 +(1−α)

∼
u2) =−γ.

3. Concluding Remarks

Press and Dyson have uncovered a significant mathematical feature of iterated prisoner’s

dilemma and given a different direction to iterated games. Even though the study of ZD

strategies brings a new perspective, there are more points waiting to be discovered.

In this thesis, we consider a repeated game of regulation of carbon emissions with

ZD strategies utilizing 1-memory strategies. By imposing existence or feasibility condi-

tions of ZD strategies, the regulator is able to unilaterally derive a linear relation between

the countries’ payoffs. Therefore, the regulator can pin down the probability weighted av-

erage of their pure strategy payoffs to a fixed value or guarantee that his long-run payoff

is negative of that fixed value. However, since the return of the regulator is bounded from

below and above due to the existence condition, the regulator cannot set his payoff to any

number.

We continue our analysis by searching the optimal ZD strategy for the regulator

which also gives the optimal ZD payoff for him. Then, we propose a method to define the

maximum of the optimal payoff. The regulator needs to solve the maximization problem

so as to derive the highest possible payoff under ZD strategies.
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As a further step, we put forward our study by providing a special and simple cost

structure which states that countries obtain the same expected utilities when the regula-

tor announces the target emission level as high and they also obtain the same expected

utilities being different from the former when the announcement is not high. Depend-

ing on that intuitive cost structure the regulator can easily employ an uncomplicated ZD

strategy and attain a maximal ZD payoff. As a final remark, we can advance the analy-

sis by determining how far the optimal payoff is the upper limit, which deserves further

researches.
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Appendices
A. Entries of the Markov Chain Matrix

The entries of the Markov Chain Matrix M are:

M11 = σ0(hh)(h)[σ1(hh)(h)σ2(hh)(h)+σ1(hh)(h)σ2(hh)(m)

+σ1(hh)(h)σ2(hh)(`)+σ1(hh)(m)σ2(hh)(h)+σ1(hh)(`)σ2(hh)(h)]

M12 = σ0(hm)(h)[σ1(hm)(h)σ2(hm)(h)+σ1(hm)(h)σ2(hm)(m)

+σ1(hm)(h)σ2(hm)(`)+σ1(hm)(m)σ2(hm)(h)+σ1(hm)(`)σ2(hm)(h)]

M13 = σ0(h`)(h)[σ1(h`)(h)σ2(h`)(h)+σ1(h`)(h)σ2(h`)(m)

+σ1(h`)(h)σ2(h`)(`)+σ1(h`)(m)σ2(h`)(h)+σ1(h`)(`)σ2(h`)(h)]

M14 = σ0(mh)(h)[σ1(mh)(h)σ2(mh)(h)+σ1(mh)(h)σ2(mh)(m)

+σ1(mh)(h)σ2(mh)(`)+σ1(mh)(m)σ2(mh)(h)+σ1(mh)(`)σ2(mh)(h)]

M15 = σ0(mm)(h)[σ1(mm)(h)σ2(mm)(h)+σ1(mm)(h)σ2(mm)(m)

+σ1(mm)(h)σ2(mm)(`)+σ1(mm)(m)σ2(mm)(h)+σ1(mm)(`)σ2(mm)(h)]

M16 = σ0(m`)(h)[σ1(m`)(h)σ2(m`)(h)+σ1(m`)(h)σ2(m`)(m)

+σ1(m`)(h)σ2(m`)(`)+σ1(m`)(m)σ2(m`)(h)+σ1(m`)(`)σ2(m`)(h)]

M17 = σ0(`h)(h)[σ1(`h)(h)σ2(`h)(h)+σ1(`h)(h)σ2(`h)(m)

+σ1(`h)(h)σ2(`h)(`)+σ1(`h)(m)σ2(`h)(h)+σ1(`h)(`)σ2(`h)(h)]

M18 = σ0(`m)(h)[σ1(`m)(h)σ2(`m)(h)+σ1(`m)(h)σ2(`m)(m)

+σ1(`m)(h)σ2(`m)(`)+σ1(`m)(m)σ2(`m)(h)+σ1(`m)(`)σ2(`m)(h)]

M19 = σ0(``)(h)[σ1(``)(h)σ2(``)(h)+σ1(``)(h)σ2(``)(m)

+σ1(``)(h)σ2(``)(`)+σ1(``)(m)σ2(``)(h)+σ1(``)(`)σ2(``)(h)]

M21 = σ0(hh)(m)[σ1(hh)(h)σ2(hh)(h)+σ1(hh)(h)σ2(hh)(m)

+σ1(hh)(h)σ2(hh)(`)+σ1(hh)(m)σ2(hh)(h)+σ1(hh)(`)σ2(hh)(h)]

M22 = σ0(hm)(m)[σ1(hm)(h)σ2(hm)(h)+σ1(hm)(h)σ2(hm)(m)

+σ1(hm)(h)σ2(hm)(`)+σ1(hm)(m)σ2(hm)(h)+σ1(hm)(`)σ2(hm)(h)]
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M23 = σ0(h`)(m)[σ1(h`)(h)σ2(h`)(h)+σ1(h`)(h)σ2(h`)(m)

+σ1(h`)(h)σ2(h`)(`)+σ1(h`)(m)σ2(h`)(h)+σ1(h`)(`)σ2(h`)(h)]

M24 = σ0(mh)(m)[σ1(mh)(h)σ2(mh)(h)+σ1(mh)(h)σ2(mh)(m)

+σ1(mh)(h)σ2(mh)(`)+σ1(mh)(m)σ2(mh)(h)+σ1(mh)(`)σ2(mh)(h)]

M25 = σ0(mm)(m)[σ1(mm)(h)σ2(mm)(h)+σ1(mm)(h)σ2(mm)(m)

+σ1(mm)(h)σ2(mm)(`)+σ1(mm)(m)σ2(mm)(h)+σ1(mm)(`)σ2(mm)(h)]

M26 = σ0(m`)(m)[σ1(m`)(h)σ2(m`)(h)+σ1(m`)(h)σ2(m`)(m)

+σ1(m`)(h)σ2(m`)(`)+σ1(m`)(m)σ2(m`)(h)+σ1(m`)(`)σ2(m`)(h)]

M27 = σ0(`h)(m)[σ1(`h)(h)σ2(`h)(h)+σ1(`h)(h)σ2(`h)(m)

+σ1(`h)(h)σ2(`h)(`)+σ1(`h)(m)σ2(`h)(h)+σ1(`h)(`)σ2(`h)(h)]

M28 = σ0(`m)(m)[σ1(`m)(h)σ2(`m)(h)+σ1(`m)(h)σ2(`m)(m)

+σ1(`m)(h)σ2(`m)(`)+σ1(`m)(m)σ2(`m)(h)+σ1(`m)(`)σ2(`m)(h)]

M29 = σ0(``)(m)[σ1(``)(h)σ2(``)(h)+σ1(``)(h)σ2(``)(m)

+σ1(``)(h)σ2(``)(`)+σ1(``)(m)σ2(``)(h)+σ1(``)(`)σ2(``)(h)]

M31 = σ0(hh)(`)[σ1(hh)(h)σ2(hh)(h)+σ1(hh)(h)σ2(hh)(m)

+σ1(hh)(h)σ2(hh)(`)+σ1(hh)(m)σ2(hh)(h)+σ1(hh)(`)σ2(hh)(h)]

M32 = σ0(hm)(`)[σ1(hm)(h)σ2(hm)(h)+σ1(hm)(h)σ2(hm)(m)

+σ1(hm)(h)σ2(hm)(`)+σ1(hm)(m)σ2(hm)(h)+σ1(hm)(`)σ2(hm)(h)]

M33 = σ0(h`)(`)[σ1(h`)(h)σ2(h`)(h)+σ1(h`)(h)σ2(h`)(m)

+σ1(h`)(h)σ2(h`)(`)+σ1(h`)(m)σ2(h`)(h)+σ1(h`)(`)σ2(h`)(h)]

M34 = σ0(mh)(`)[σ1(mh)(h)σ2(mh)(h)+σ1(mh)(h)σ2(mh)(m)

+σ1(mh)(h)σ2(mh)(`)+σ1(mh)(m)σ2(mh)(h)+σ1(mh)(`)σ2(mh)(h)]

M35 = σ0(mm)(`)[σ1(mm)(h)σ2(mm)(h)+σ1(mm)(h)σ2(mm)(m)

+σ1(mm)(h)σ2(mm)(`)+σ1(mm)(m)σ2(mm)(h)+σ1(mm)(`)σ2(mm)(h)]

M36 = σ0(m`)(`)[σ1(m`)(h)σ2(m`)(h)+σ1(m`)(h)σ2(m`)(m)

+σ1(m`)(h)σ2(m`)(`)+σ1(m`)(m)σ2(m`)(h)+σ1(m`)(`)σ2(m`)(h)]

M37 = σ0(`h)(`)[σ1(`h)(h)σ2(`h)(h)+σ1(`h)(h)σ2(`h)(m)

+σ1(`h)(h)σ2(`h)(`)+σ1(`h)(m)σ2(`h)(h)+σ1(`h)(`)σ2(`h)(h)]
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M38 = σ0(`m)(`)[σ1(`m)(h)σ2(`m)(h)+σ1(`m)(h)σ2(`m)(m)

+σ1(`m)(h)σ2(`m)(`)+σ1(`m)(m)σ2(`m)(h)+σ1(`m)(`)σ2(`m)(h)]

M39 = σ0(``)(`)[σ1(``)(h)σ2(``)(h)+σ1(``)(h)σ2(``)(m)

+σ1(``)(h)σ2(``)(`)+σ1(``)(m)σ2(``)(h)+σ1(``)(`)σ2(``)(h)]

M41 = σ0(hh)(h)[σ1(hh)(m)σ2(hh)(m)+σ1(hh)(m)σ2(hh)(`)

+σ1(hh)(`)σ2(hh)(m)]

M42 = σ0(hm)(h)[σ1(hm)(m)σ2(hm)(m)+σ1(hm)(m)σ2(hm)(`)

+σ1(hm)(`)σ2(hm)(m)]

M43 = σ0(h`)(h)[σ1(h`)(m)σ2(h`)(m)+σ1(h`)(m)σ2(h`)(`)

+σ1(h`)(`)σ2(h`)(m)]

M44 = σ0(mh)(h)[σ1(mh)(m)σ2(mh)(m)+σ1(mh)(m)σ2(mh)(`)

+σ1(mh)(`)σ2(mh)(m)]

M45 = σ0(mm)(h)[σ1(mm)(m)σ2(mm)(m)+σ1(mm)(m)σ2(mm)(`)

+σ1(mm)(`)σ2(mm)(m)]

M46 = σ0(m`)(h)[σ1(m`)(m)σ2(m`)(m)+σ1(m`)(m)σ2(m`)(`)

+σ1(m`)(`)σ2(m`)(m)]

M47 = σ0(`h)(h)[σ1(`h)(m)σ2(`h)(m)+σ1(`h)(m)σ2(`h)(`)

+σ1(`h)(`)σ2(`h)(m)]

M48 = σ0(`m)(h)[σ1(`m)(m)σ2(`m)(m)+σ1(`m)(m)σ2(`m)(`)

+σ1(`m)(`)σ2(`m)(m)]

M49 = σ0(``)(h)[σ1(``)(m)σ2(``)(m)+σ1(``)(m)σ2(``)(`)

+σ1(``)(`)σ2(``)(m)]

M51 = σ0(hh)(m)[σ1(hh)(m)σ2(hh)(m)+σ1(hh)(m)σ2(hh)(`)

+σ1(hh)(`)σ2(hh)(m)]

M52 = σ0(hm)(m)[σ1(hm)(m)σ2(hm)(m)+σ1(hm)(m)σ2(hm)(`)

+σ1(hm)(`)σ2(hm)(m)]

M53 = σ0(h`)(m)[σ1(h`)(m)σ2(h`)(m)+σ1(h`)(m)σ2(h`)(`)

+σ1(h`)(`)σ2(h`)(m)]
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M54 = σ0(mh)(m)[σ1(mh)(m)σ2(mh)(m)+σ1(mh)(m)σ2(mh)(`)

+σ1(mh)(`)σ2(mh)(m)]

M55 = σ0(mm)(m)[σ1(mm)(m)σ2(mm)(m)+σ1(mm)(m)σ2(mm)(`)

+σ1(mm)(`)σ2(mm)(m)]

M56 = σ0(m`)(m)[σ1(m`)(m)σ2(m`)(m)+σ1(m`)(m)σ2(m`)(`)

+σ1(m`)(`)σ2(m`)(m)]

M57 = σ0(`h)(m)[σ1(`h)(m)σ2(`h)(m)+σ1(`h)(m)σ2(`h)(`)

+σ1(`h)(`)σ2(`h)(m)]

M58 = σ0(`m)(m)[σ1(`m)(m)σ2(`m)(m)+σ1(`m)(m)σ2(`m)(`)

+σ1(`m)(`)σ2(`m)(m)]

M59 = σ0(``)(m)[σ1(``)(m)σ2(``)(m)+σ1(``)(m)σ2(``)(`)

+σ1(``)(`)σ2(``)(m)]

M61 = σ0(hh)(`)[σ1(hh)(m)σ2(hh)(m)+σ1(hh)(m)σ2(hh)(`)

+σ1(hh)(`)σ2(hh)(m)]

M62 = σ0(hm)(`)[σ1(hm)(m)σ2(hm)(m)+σ1(hm)(m)σ2(hm)(`)

+σ1(hm)(`)σ2(hm)(m)]

M63 = σ0(h`)(`)[σ1(h`)(m)σ2(h`)(m)+σ1(h`)(m)σ2(h`)(`)

+σ1(h`)(`)σ2(h`)(m)]

M64 = σ0(mh)(`)[σ1(mh)(m)σ2(mh)(m)+σ1(mh)(m)σ2(mh)(`)

+σ1(mh)(`)σ2(mh)(m)]

M65 = σ0(mm)(`)[σ1(mm)(m)σ2(mm)(m)+σ1(mm)(m)σ2(mm)(`)

+σ1(mm)(`)σ2(mm)(m)]

M66 = σ0(m`)(`)[σ1(m`)(m)σ2(m`)(m)+σ1(m`)(m)σ2(m`)(`)

+σ1(m`)(`)σ2(m`)(m)]

M67 = σ0(`h)(`)[σ1(`h)(m)σ2(`h)(m)+σ1(`h)(m)σ2(`h)(`)

+σ1(`h)(`)σ2(`h)(m)]

M68 = σ0(`m)(`)[σ1(`m)(m)σ2(`m)(m)+σ1(`m)(m)σ2(`m)(`)

+σ1(`m)(`)σ2(`m)(m)]
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M69 = σ0(``)(`)[σ1(``)(m)σ2(``)(m)+σ1(``)(m)σ2(``)(`)+σ1(``)(`)σ2(``)(m)]

M71 = σ0(hh)(h)[σ1(hh)(`)σ2(hh)(`)]

M72 = σ0(hm)(h)[σ1(hm)(`)σ2(hm)(`)]

M73 = σ0(h`)(h)[σ1(h`)(`)σ2(h`)(`)]

M74 = σ0(mh)(h)[σ1(mh)(`)σ2(mh)(`)]

M75 = σ0(mm)(h)[σ1(mm)(`)σ2(mm)(`)]

M76 = σ0(m`)(h)[σ1(m`)(`)σ2(m`)(`)]

M77 = σ0(`h)(h)[σ1(`h)(`)σ2(`h)(`)]

M78 = σ0(`m)(h)[σ1(`m)(`)σ2(`m)(`)]

M79 = σ0(``)(h)[σ1(``)(`)σ2(``)(`)]

M81 = σ0(hh)(m)[σ1(hh)(`)σ2(hh)(`)]

M82 = σ0(hm)(m)[σ1(hm)(`)σ2(hm)(`)]

M83 = σ0(h`)(m)[σ1(h`)(`)σ2(h`)(`)]

M84 = σ0(mh)(m)[σ1(mh)(`)σ2(mh)(`)]

M85 = σ0(mm)(m)[σ1(mm)(`)σ2(mm)(`)]

M86 = σ0(m`)(m)[σ1(m`)(`)σ2(m`)(`)]

M87 = σ0(`h)(m)[σ1(`h)(`)σ2(`h)(`)]

M88 = σ0(`m)(m)[σ1(`m)(`)σ2(`m)(`)]

M89 = σ0(``)(m)[σ1(``)(`)σ2(``)(`)]

M91 = σ0(hh)(`)[σ1(hh)(`)σ2(hh)(`)]

M92 = σ0(hm)(`)[σ1(hm)(`)σ2(hm)(`)]

M93 = σ0(h`)(`)[σ1(h`)(`)σ2(h`)(`)]

M94 = σ0(mh)(`)[σ1(mh)(`)σ2(mh)(`)]

M95 = σ0(mm)(`)[σ1(mm)(`)σ2(mm)(`)]

M96 = σ0(m`)(`)[σ1(m`)(`)σ2(m`)(`)]

M97 = σ0(`h)(`)[σ1(`h)(`)σ2(`h)(`)]

M98 = σ0(`m)(`)[σ1(`m)(`)σ2(`m)(`)]

M99 = σ0(``)(`)[σ1(``)(`)σ2(``)(`)]
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