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Abstract: The plethora of research on NP-hard parallel machine scheduling problems is focused on heuristics due to

the theoretically and practically challenging nature of these problems. Only a handful of exact approaches are available

in the literature, and most of these suffer from scalability issues. Moreover, the majority of the papers on the subject

are restricted to the identical parallel machine scheduling environment. In this context, the main contribution of this

work is to recognize and prove that a particular preemptive relaxation for the problem of minimizing the total weighted

completion time (TWCT) on a set of unrelated parallel machines naturally admits a non-preemptive optimal solution

and gives rise to an exact mixed integer linear programming formulation of the problem. Furthermore, we exploit the

structural properties of TWCT and attain a very fast and scalable exact Benders decomposition-based algorithm for

solving this formulation. Computationally, our approach holds great promise and may even be embedded into iterative

algorithms for more complex shop scheduling problems as instances with up to 1000 jobs and 8 machines are solved to

optimality within a few seconds.

Keywords: unrelated parallel machines; weighted completion time; Benders decomposition; cut strengthening; exact

method; preemptive relaxation; transportation problem.

1. Introduction The promise of this paper is to deliver a simple and computationally very effective ex-

act algorithm for minimizing the weighted completion time on a bank of unrelated parallel machines. The

objective is one of the most frequently studied fundamental scheduling objectives as it tends to minimize the

cycle time of the tasks on the shop floor, and the parallel machine environment is of fundamental practical

and theoretical significance. On the one hand, many real manufacturing settings are naturally formulated as

parallel machine scheduling problems. Examples discussed in the literature span a variety of industries from

semiconductor manufacturing (Shim and Kim, 2007; Detienne et al., 2011) to beverage, printing, and phar-

maceutical industries (Biskup et al., 2008). On the other hand, parallel machine scheduling is the immediate

generalization of single-machine scheduling from a theoretical point of view, and parallel machine schedul-

ing subproblems are the building blocks of decomposition procedures for multi-stage systems (Pinedo, 2008,

p.111). Subproblem solution approaches that deliver high-quality solutions in short computational times are

essential to the success of these decomposition methods. Our specific interest in unrelated parallel machines

is prompted by a simple observation – capacity expansions over time naturally result in production steps

performed on a set of unrelated parallel machines as equipment technology evolves. Shim and Kim (2007),

for instance, discuss this issue in the context of semiconductor manufacturing. Thus, there is a clear need

for good algorithms tailored to the unrelated parallel machine environment. However, the review of the

literature reveals that the research on unrelated parallel machines is scarce compared to a rich literature on

identical parallel machine scheduling.
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Bülbül, Şen: Exact Extended Formulation for Rm-TWCT
Sabancı University, c©March 9, 2016

2

Motivated by the practical and theoretical considerations above, our primary objective in this paper is to

devise a scalable effective exact method for solving the problem of minimizing the weighted completion time

on a bank of unrelated parallel machines – referred to as Rm-TWCT in the rest of the paper. In our problem

Rm-TWCT, a set of n jobs are ready at time zero to be processed on m unrelated parallel machines. Each job is

required to receive service from exactly one machine. All machines are available continuously from time zero

onward, and a machine can execute at most one job at a time. Without loss of generality, any machine can

process any job, and if job j is performed on machine k, then it stays on the machine for an integer duration

of p jk time units without interruption – preemption is not allowed. The objective is to minimize
∑

j w jC j,

where w j and C j indicate the unit completion time penalty and the completion time associated with job j,

respectively. Following the three field notation of Graham et al. (1979) in classifying scheduling problems,

Rm-TWCT is characterized as Rm//
∑

j w jC j. The notation Rm in the first field stands for a bank of m unrelated

machines. Bruno et al. (1974) prove that minimizing the weighted completion time on two identical parallel

machines isNP-hard which also renders Rm-TWCT NP-hard.

Any algorithm for a parallel machine scheduling problem has two major components: the jobs are assigned

to the machines, and an optimal schedule is determined for each of the machines given the objective function

and the job-to-machine assignments. In other words, we may think of a parallel machine scheduling problem

as a set partitioning problem where computing the cost of a partition requires solving m independent single-

machine scheduling problems. Based on the NP−hardness of the classical set partitioning problem – where

each assignment decision is explicitly associated with a fixed cost –, we are already aware that determining

the optimal job-to-machine assignments is a challenging task. However, for a parallel machine scheduling

problem there may be a second layer of difficulty if the underlying single-machine scheduling problem is not

polynomially solvable. This – for instance – is the setting for the problems of minimizing the total weighted

tardiness (TWT) and total weighted earliness/tardiness (TWET) on m unrelated parallel machines studied

in (Şen and Bülbül, 2015), where the corresponding single-machine problems are strongly NP−hard. These

two problems are referred to as Rm-TWT and Rm-TWET in the sequel, respectively. In contrast, in this

paper the cost of a given partition is calculated in polynomial time by applying the well-known weighted

shortest processing time (WSPT) rule (Smith, 1956) to each of the m machines separately. This really is the

key difference that allows us to turn a mixed integer linear programming (MILP) formulation that only yields

lower bounds for Rm-TWT and Rm-TWET into an exact formulation for Rm-TWCT.

The work in (Şen and Bülbül, 2015) was motivated by the lack of strong lower bounds for parallel machine

scheduling problems with additive objectives (van den Akker et al., 1999) and focused on the due date related

objectives TWT and TWET. Given the two-stage structure inherent in parallel machine scheduling discussed

above, the key idea in (Şen and Bülbül, 2015) is to replace the non-preemptive scheduling decisions on a

machine by a tight preemptive relaxation solved as a linear program (LP) in an extended variable space.

This in turn allows the authors to propose a preemptive relaxation for the original problems Rm-TWT and

Rm-TWET, where the preemptive relaxation is formulated as an MILP amenable to a solution approach

that relies on Benders decomposition (Benders, 1962). The job-to-machine assignment decisions are kept in

the master problem, and the cost of these decisions is approximated by Benders cuts, generated by solving

a separate LP for each machine. In this paper, we prove that the same MILP is an exact formulation for

Rm-TWCT. This in essence requires that the single-machine weighted completion time problem is solved to

optimality as an LP – see Corollary 2.1. Moreover, by exploiting the structure of the TWCT objective we

demonstrate that the Benders cuts are generated analytically without the need to invoke any LP algorithm.
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These results collectively provide us with a scalable and very effective exact algorithm for Rm-TWCT. To

put it into perspective, we note that the best performing heuristic for Rm-TWCT to date (Rodriguez et al.,

2013) runs with a time limit of n seconds, where n is the number of jobs, on instances with up to 1000 jobs

and 50 machines. None of the previous studies on heuristics, e.g., (Vredeveld and Hurkens, 2002; Lin et al.,

2011; Rodriguez et al., 2012), report results with more than 200 jobs. The computational results in Section 4

illustrate that our exact method solves instances with up to 8 machines and 1000 jobs to optimality within

less than 12 seconds on average for any combination of n and m in the indicated range. Instances with 16 and

30 machines are more time consuming, but we impose a time limit of 300 seconds, and instances not solved

to optimality within the allotted time almost always terminate with incumbents within 1% of optimality.

We conclude the introduction with a review of the related literature to position our work. The early

focus of the parallel machine scheduling literature is on the makespan and total (weighted) completion time

objectives with an emphasis on the polynomially solvable problems and approximation algorithms for the

makespan (Cheng and Sin, 1990). Pinedo (2008) provides an in-depth discussion of the polynomially solvable

cases and the associated structural results of interest. More recent surveys on parallel machine scheduling

include (Mokotoff, 2001) and (Blazewicz et al., 2007, Chapter 5). A detailed discussion of the parallel machine

scheduling literature on additive due date related performance measures is presented by Şen and Bülbül

(2015).

The literature on Rm-TWCT can be categorized into three streams: (meta-)heuristics, approximation al-

gorithms, and exact approaches. A good overview of the (meta-)heuristics is provided in (Li and Yang,

2009; Rodriguez et al., 2013). Approximation algorithms for Rm-TWCT rely on rounding the optimal solution

of a linear or convex quadratic programming relaxation of the problem. We refer the interested reader to

(Chekuri and Khanna, 2004), where the authors survey the approximation algorithms for minimizing the

total weighted completion time in different machine environments, and to (Li and Yang, 2009). The literature

on exact methods for TWCT in the parallel machine environment creates the context for our study, and we

restrict our attention to these in the sequel. Interestingly, all exact algorithms for TWCT in the parallel machine

environment are limited to identical machines up until 1999. These include the branch-and-bound (B&B) al-

gorithms of Elmaghraby and Park (1974), Barnes and Brennan (1977), Sarin et al. (1988), Belouadah and Potts

(1994), and the dynamic programming techniques of Lawler and Moore (1969), Lee and Uzsoy (1992). Unsur-

prisingly, these papers have very limited success in solving instances of any meaningful size – clearly partly

due to the lack of powerful computers back then. The first two B&B procedures for the non-identical parallel

machine environment are due to Azizoglu and Kirca (1999a) and Azizoglu and Kirca (1999b). In their earlier

work, the authors tackle the problems Pm//
∑

w jC j and Qm//
∑

w jC j, where Pm stands for the identical

parallel machine environment and Qm denotes the presence of m uniform parallel machines. In either case,

their B&B algorithm does not scale beyond 3 machines and 25 jobs in 10 and 15 minutes of CPU time for

Pm//
∑

w jC j and Qm//
∑

w jC j, respectively. The first exact solution procedure for our problem Rm-TWCT

appears in (Azizoglu and Kirca, 1999b). The B&B method of the authors incorporates structural dominance

properties to exclude unpromising nodes from consideration. The lower bounding mechanism is based on

solving an assignment problem and requires calculating a lower bound on the completion time of each job at

each position on each machine. The computational results demonstrate that instances larger than 2 machines

and 25 jobs or 3 machines and 20 jobs are beyond the approach with a 15 minute time limit. In two more

recent B&B implementations, non-identical job release dates are also taken into account. The B&B method of

Yalaoui and Chu (2006) for Pm/r j/
∑

j C j, where r j in the second field indicates that jobs may have different
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release times, handles at most 45 jobs for 5 and 10 machines and 120 jobs for 2 machines only with a 30 minute

time limit. Another B&B algorithm is devised by Nessah et al. (2008) for Pm/r j/
∑

j w jC j and solves instances

with up to 60 jobs and 5 machines in one hour of CPU time. In assessing these last two studies, the reader

should be aware that the presence of release dates does substantially complicate a scheduling problem in

general.

From the discussion above, it is evident that the scalability of B&B methods for parallel machine (weighted)

completion time problems is highly doubtful. It turns out that compared to custom B&B procedures, exact

solution methods that rely on mathematical programming based decomposition techniques are far more

promising for parallel machine scheduling problems with additive objective functions. This is true for both the

total (weighted) completion time and the due date related performance measures (Şen and Bülbül, 2015). The

underlying reason for this phenomenon is rooted in the tight lower bounds attained by good mathematical

programming formulations of parallel machine scheduling problems. Two prime examples, developed

contemporaneously to the custom B&B algorithms of Azizoglu and Kirca (1999a) and Azizoglu and Kirca

(1999b), are due to Chen and Powell (1999) and van den Akker et al. (1999). In both of these papers, a general

parallel machine scheduling problem with an additive objective function of the job completion times is

formulated as a set partitioning problem with exponentially many variables. Each variable (column) in the

formulation corresponds to a feasible machine schedule. The branch-and-price algorithms of both sets of

authors apply column generation to the node LPs due to the huge number of feasible machine schedules,

and they mainly differ in their branching schemes. The root relaxation often yields an integer optimal

solution, and even if this property does not hold for a particular instance, in a vast majority of cases only

a few nodes of the search tree need to be explored until the integer optimal solution is identified. Thus,

both studies attribute their relative computational success to the quality of the LP relaxation of their set

partitioning formulations. Another common trait of both branch-and-price algorithms is that decreasing the

number of machines for a fixed number of jobs has a detrimental effect on the computational performance.

Chen and Powell (1999) apply their solution method to Rm-TWCT among others and report results with up to

100 jobs and 20 machines. Their average CPU time for instances with 100 jobs degrades from 363 seconds with

20 machines to 2051 seconds with 8 machines. van den Akker et al. (1999) report computational experience

only with Pm//
∑

j w jC j, and their results are similar. Aggregated over all three instance classes the authors

consider, the average solution time for instances with 100 jobs and 10 machines is 1512 seconds. Various

other exact mathematical programming formulations for Rm-TWCT exist, and overviews and comparisons of

these are provided in (Vredeveld and Hurkens, 2002; Li and Yang, 2009; Unlu and Mason, 2010). From these

discussions, we can infer that the variants of the time-indexed formulation – initially introduced in a seminal

paper by Dyer and Wolsey (1990) in the single-machine context – stand out amongst the monolithic MILP

formulations. However, the best contender in the literature as an exact solution method for Rm-TWCT turns

out to be solving the convex quadratic integer programming formulation of Skutella (2001):

(CQ) minimize

n
∑

j=1

m
∑

k=1

















1

2
w jp jk

(

y jk + y2
jk

)

+
∑

i≺k j

w jpikyiky jk

















(1)

subject to

m
∑

k=1

y jk = 1, j = 1, . . . ,n, (2)

y jk ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m. (3)

In (CQ), setting the value of the binary variable y jk to one implies that job j is to be processed on machine k.

Each job is assigned to exactly one machine by the job partitioning constraints (2). The notation i ≺k j implies
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that either wi

pik
>

w j

p jk
or wi

pik
=

w j

p jk
and i < j following the WSPT order on machine k. (CQ) relies on the basic

observation C j =
∑m

k=1 y jk

(

p jk +
∑

i≺k j pikyik

)

and a convexification of the resulting objective function. Skutella

(2001) proposes this formulation as a means of developing an approximation algorithm for Rm-TWCT with

a performance guarantee of 3/2. Later, Plateau and Rios-Solis (2010) perform an experimental study on this

formulation and find out that it attains the best computational results for Rm-TWCT to date. We benchmark

the performance of our new MILP formulation solved by Benders decomposition against that of (CQ) in

Section 4.

The review of the related literature reveals that developing a scalable exact algorithm for Rm-TWCT is

still an open research question – in particular if the ratio of the number of jobs to the number of machines

is not small. This observation and the success of the mathematical programming based solution methods

for parallel machine scheduling problems detailed above motivates the work in this paper. In this sense we

follow suit with Chen and Powell (1999); van den Akker et al. (1999) and apply a decomposition approach

to a mathematical programming formulation that is demonstrated to provide tight lower bounds for the

TWT and TWET objectives in the unrelated parallel machine environment (Şen and Bülbül, 2015). In the

next section, we present our own formulation for Rm-TWCT and prove its correctness before introducing

the solution algorithm based on Benders decomposition in Section 3. The computational results in Section 4

attest to the efficacy of our approach, and we conclude in Section 5.

2. An Exact Formulation for Rm-TWCT The foundation of our exact formulation for Rm-TWCT resides in

a class of tight lower bounds initially developed for the single- (Sourd and Kedad-Sidhoum, 2003; Bülbül et al.,

2007; Pan and Shi, 2007; Şen and Bülbül, 2012) and identical parallel machine (Kedad-Sidhoum et al., 2008)

weighted tardiness and weighted earliness/tardiness scheduling problems. The fundamental idea in this

body of work is to allow jobs to be preempted at integer points in time and to penalize the completion time

of each unit-length job. The problem of determining the best schedule with this preemptive scheme is then

formulated as an assignment or a transportation problem, in which a job j with an integer processing time

p j is allocated a total of p j unit-length intervals in the planning horizon and no machine executes more than

a single unit-length job at a time. Building upon and extending this body of work, Şen and Bülbül (2015)

propose the preemptive formulation (TR −A) below for the unrelated parallel machine environment:

(TR −A) minimize

n
∑

j=1

m
∑

k=1

H
∑

t=1

c jktx jkt (4)

subject to

H
∑

t=1

x jkt = p jky jk, j = 1, . . . ,n, k = 1, . . . ,m, (5)

n
∑

j=1

x jkt ≤ 1, k = 1, . . . ,m, t = 1, . . . ,H, (6)

m
∑

k=1

y jk = 1, j = 1, . . . ,n, (7)

x jkt ≥ 0, j = 1, . . . ,n, k = 1, . . . ,m, t = 1, . . . ,H, (8)

y jk ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m. (9)

In the model (TR −A), the time period t represents the time interval (t − 1, t], and the variable x jkt is set

to one at a cost of c jkt if a unit-length job of job j is performed on machine k in time period t. The machine

capacity constraints (6) prescribe that no more than one unit-length job is in process in period t on machine k.

The constraints (5) ensure that all unit-length jobs of job j are carried out on the same machine because exactly
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one of the binary job-to-machine assignment variables y jk, k = 1, . . .m, is set to one due to the job partitioning

constraints (7). The end of the planning horizon H =
⌈

∑n
j=1 maxk

(

p jk

)

/m
⌉

+ pmax, where pmax = max j,k

(

p jk

)

, is

valid because there exists an optimal solution of the non-preemptive problem Rm-TWCT so that all jobs are

brought to completion at or before H. See (Şen and Bülbül, 2015, p. 139) for the details of determining the

appropriate value of H.

The fundamental difference of (TR −A) compared to the earlier work in the domain of preemptive re-

laxations discussed above lies in the constraints (5). As discussed in-depth by Şen and Bülbül (2015), these

constraints remove the drawback of the preemptive formulation in (Kedad-Sidhoum et al., 2008) stemming

from having the unit-length jobs of a given job distributed over multiple machines; however, they also de-

stroy the desirable polyhedral structure, and we no longer have a transportation problem on our hands. It

turns out that (TR −A) is an MILP formulation of pseudo-polynomial size, which grows very quickly with

increasing m, n, and long processing times. The key to solving this formulation effectively is to recognize that

(TR −A) decomposes into into m independent transportation problems for any fixed assignment of the jobs

to the machines. This observation renders any integrality restrictions on the variables x jkt redundant – see

(8) – and suggests a Benders decomposition algorithm (Benders, 1962) for tackling (TR −A). The existence

of powerful LP engines that can solve very large transportation problem instances in very short times and

a fast custom procedure to strengthen the Benders cuts enables Şen and Bülbül (2015) to obtain tight lower

bounds for Rm-TWT and Rm-TWET by solving (TR −A) to (near-)optimality. Our main contribution over

(Şen and Bülbül, 2015) in this paper is to prove that (TR −A) with the objective coefficients to be discussed

next yields an exact formulation for TWCT. Moreover, we characterize the analytic closed form of the optimal

solutions of the Benders subproblems and generate cuts without the need of invoking an LP solver as was

the case in (Şen and Bülbül, 2015). Coupling this with further enhancements attained in the Benders cut

strengthening procedure of Şen and Bülbül (2015) by exploiting the special structure of the optimal solutions

of the Benders subproblems results in a scalable and very fast optimal solution technique for Rm-TWCT.

2.1 Exactness of (TR − A) One issue that deserves special attention is the choice of the objective coeffi-

cients in (TR −A). In the context of the preemptive relaxations developed previously for earliness/tardiness

scheduling problems, the particular choice determines the strength of the lower bound and the empirical

performance, and the existing papers in the literature differ from each other in this respect. For an in-depth

discussion on this subject and the properties of alternate cost coefficients, the reader is referred to (Pan and Shi,

2007; Şen and Bülbül, 2015). In this paper, we directly employ the cost coefficients of Şen and Bülbül (2015)

for Rm-TWT and Rm-TWET by setting all due dates equal to zero – both problems reduce to Rm-TWCT with

zero due dates:

c jkt =
w j

p jk

(

t +
p jk

2
−

1

2

)

, j = 1, . . . ,n, k = 1, . . . ,m, t = 1, . . . ,H. (10)

Consequently, Proposition 2.1 presented next follows as a direct corollary of Şen and Bülbül (2015, Proposition

3.1).

Proposition 2.1 The optimal objective function value of (TR −A) with the cost coefficients given in (10) is a lower

bound on the optimal objective function value of the original non-preemptive problem Rm-TWCT.

In the rest of the paper, any reference to (TR −A) employs the set of cost coefficients (10). Two further

intermediate results proven next and Proposition 2.1 collectively yield our main result formalized in Theorem

2.1. In the sequel, a non-preemptive feasible solution of (TR −A) refers to a feasible solution of (TR −A) in

which all unit-length jobs of any job are processed in consecutive periods.
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Lemma 2.1 The cost charged against any non-preemptive feasible solution of (TR −A) is identical to the cost incurred

by this schedule in the original non-preemptive problem Rm-TWCT.

Proof. The proof follows from a more general argument in (Bülbül et al., 2007, Theorem 2.2). The

relationship below, where job j is assigned to p jk consecutive time periods from C j − p jk + 1 to C j on machine

k holds for all jobs. This completes the proof.

C j
∑

t=C j−p jk+1

c jkt =
w j

p jk

C j
∑

t=C j−p jk+1

(

t +
p jk

2
−

1

2

)

=
w j

p jk

(

p jk(C j − p jk) +
p jk(p jk + 1)

2
+

p jk(p jk − 1)

2

)

= w jC j.

�

Proposition 2.2 There exists a non-preemptive optimal solution of (TR −A). Furthermore, in this optimal solution

the jobs assigned to each machine are sequenced in the WSPT order.

Proof. For any given fixed job partition y, (TR −A) decomposes into m independent single-machine

transportation problems. Therefore, the key to this proof is to show that the individual machine schedules

constructed by (TR −A) are non-preemptive and follow the WSPT order. To this end, it is sufficient to restrict

our attention to one arbitrary machine k. Without loss of generality, we assume that a subset of jobs Jk with

| Jk | = nk are assigned to machine k in an optimal solution of (TR −A) and that these jobs are re-indexed

in the WSPT order; that is, w1

p1k
≥

w2

p2k
≥ . . . ≥

wnk

pnkk
. The total processing time on machine k is represented by

Pk =
∑

j∈Jk
p jk. In the following, we prove that in the optimal schedule of machine k, the first p1k positions are

occupied by the unit-length jobs of job 1, and these are followed by p2k unit-length jobs of job 2, etc.

We first restate the problem of finding the optimal (possibly preemptive) schedule of the set of jobs Jk on

machine k as an assignment problem (AP) – a special case of the transportation problem:

(AP) minimize

Pk
∑

i=1

Pk
∑

t=1

c
′

it δit (11)

Pk
∑

t=1

δit = 1, i = 1, . . . ,Pk, (12)

Pk
∑

i=1

δit = 1, t = 1, . . . ,Pk, (13)

δit ∈ {0, 1}, i = 1, . . . ,Pk, t = 1, . . . ,Pk. (14)

The formulation (AP) decouples the unit-length jobs of a given job and regards them as independent tasks.

The first p1k tasks belong to job 1, the next p2k tasks are associated with job 2, and so on. The original job

associated with task i is denoted by j(i). The binary variable δit takes on the value one at a cost of c
′

it
= c j(i)kt

– as defined in (10) – if task i is processed in period t. The constraints (12)-(13) mandate that each task is

assigned to one period and vice versa, respectively.

The cost coefficient matrix C
′

=
(

c
′

it

)

of (AP) turns out to be a Monge matrix – it fulfills a very special

property known as the Monge property (Burkard et al., 2009, Definition 5.5):

c
′

i1t1
+ c

′

i2t2
≤ c

′

i1t2
+ c

′

i2t1
, 1 ≤ i1 < i2 ≤ Pk, 1 ≤ t1 < t2 ≤ Pk. (15)

To recognize this, we note that c
′

it
= c j(i)kt =

w j(i)

p j(i)k

(

t +
p j(i)k

2 −
1
2

)

and verify (15) for any i1 < i2 and t1 < t2:

w j(i1)

p j(i1)k

(

t1 +
p j(i1)k

2
−

1

2

)

+
w j(i2)

p j(i2)k

(

t2 +
p j(i2)k

2
−

1

2

)

≤
w j(i1)

p j(i1)k

(

t2 +
p j(i1)k

2
−

1

2

)

+
w j(i2)

p j(i2)k

(

t1 +
p j(i2)k

2
−

1

2

)



Bülbül, Şen: Exact Extended Formulation for Rm-TWCT
Sabancı University, c©March 9, 2016

8

⇐⇒
w j(i1)

p j(i1)k
t1 +

w j(i2)

p j(i2)k
t2 ≤

w j(i1)

p j(i1)k
t2 +

w j(i2)

p j(i2)k
t1

⇐⇒

(

w j(i1)

p j(i1)k
−

w j(i2)

p j(i2)k

)

t1 ≤

(

w j(i1)

p j(i1)k
−

w j(i2)

p j(i2)k

)

t2. (16)

The final inequality (16) holds because t1 < t2 and i1 < i2 implies
w j(i1)

p j(i1)k
≥

w j(i2)

p j(i2)k
.

Assignment problems with Monge cost coefficient matrices exhibit a very simple optimal solution: they

are solved by the identical permutation (Burkard et al., 2009, Proposition 5.7). Stated in the context of our

problem, executing task i in period i solves (AP) optimally. This optimal solution clearly corresponds to a

non-preemptive WSPT schedule on machine k and delivers the desired result for (TR −A). �

Theorem 2.1 (TR −A) is an exact formulation for Rm-TWCT.

Proof. By Proposition 2.2, we can identify a non-preemptive optimal solution S∗ of (TR −A). The

associated objective value is a lower bound on the optimal objective value of Rm-TWCT based on Proposition

2.1. Moreover, S∗ is also feasible for Rm-TWCT, and Lemma 2.1 assures that the cost it incurs with respect to

Rm-TWCT is identical to the optimal objective value of (TR −A). Therefore, S∗ must be an optimal schedule

for Rm-TWCT. �

(TR −A) is thus an exact extended formulation for Rm-TWCT obtained through variable splitting because

the completion time C j of job j is the minimum value such that C j ≥ tx jkt, k = 1, . . . ,m, t = 1, . . . ,H.

The corollary below follows from Theorem 2.1 and suggests an LP-based alternative for solving the non-

preemptive single-machine TWCT problem.

Corollary 2.1 The non-preemptive single-machine total weighted completion time problem is equivalent to a trans-

portation problem of pseudo-polynomial size.

Proof. Theorem 2.1 assures that we can solve the single-machine TWCT problem to optimality by

setting m = 1 in (TR −A). However, in this case, the formulation is simplified by setting H =
∑

j p j1 and

dropping the binary variables y jk from the formulation along with the constraints (7). The resulting model

is a transportation problem with n source nodes and
∑

j p j1 sink nodes, where the objective coefficients are

defined by (10). The size of the transportation problem is pseudo-polynomial because the number of sink

nodes depends on the magnitude of the processing times. �

The primal solution of the transportation problem entails assigning the values of the variables x j1t, j =

1, . . . ,n, t = 1, . . . ,H, as prescribed by the WSPT order of the jobs, and the closed form of the dual solution

is specified in the next section as part of our Benders decomposition scheme – see (27). In either case,

the solution procedure is very fast in practice; however, there is no way of getting around the theoretical

pseudo-polynomial complexity because of the number of value assignments required.

The result in Corollary 2.1 was actually discovered previously in the context of the relaxations of the single-

machine TWCT problem with release dates – the problem 1/r j/
∑

j w jC j. Dyer and Wolsey (1990) explore and

compare the strengths of various relaxations of 1/r j/
∑

j w jC j. Their weaker time-indexed formulation (D)

(Dyer and Wolsey, 1990, Section 5) boils down to (TR −A) with m = 1 after some simple manipulation.

The authors point out that the optimal objective value of this preemptive time-indexed formulation can be

computed in O(n log n) time based on a lower bounding algorithm proposed in (Posner, 1985) for the single-

machine TWCT problem with deadlines. A discussion of the same transportation problem as a relaxation

for 1/r j/
∑

j w jC j is also presented by Goemans et al. (2002) who design approximation algorithms for this

problem. Thus, in a sense Corollary 2.1 is a unifying result. It is obtained by studying a special case
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of the preemptive time-indexed formulations of earliness/tardiness scheduling problems and offers a new

perspective on an already known result in different contexts. However, from our point of view the primary

significance of being able to solve the single-machine TWCT problem as a transportation problem derives

from the valuable dual information extracted from the optimal LP solution. In decomposition algorithms

for complex scheduling problems with a single-machine TWCT component, one may opt for solving the

subproblems as an LP in pseudo-polynomial time for the sake of this dual information – as is the case in this

paper. We are not aware of any other paper in the literature which adopts a similar approach.

3. Solving (TR − A) via Benders Decomposition (TR −A) decomposes into m independent transporta-

tion problems for any fixed partition of the jobs to the machines as specified by the values of the binary

variables y jk, j = 1, . . . ,n, k = 1, . . . ,m. Thus, for any given fixed y satisfying (7), (TR −A) is reformulated via

the Benders decomposition principle by replacing the right hand side of the set of constraints (5) by p jky jk and

removing the set of constraints (7) and (9) from the model. The resulting LP is referred to as
(

TR −A(y)
)

, and

the dual variables associated with the set of constraints (5) and (6) are denoted by u jk, j = 1, . . . ,n, k = 1, . . . ,m,

and vkt, k = 1, . . . ,m, t = 1, . . . ,H, respectively. The formulation below is then the dual of
(

TR −A(y)
)

and

exposes the decomposition into m independent transportation problems:

z(y) =

m
∑

k=1

zk(y), (17)

where

(DSk) zk(y) = maximize

n
∑

j=1

p jky jku jk +

H
∑

t=1

vkt (18)

subject to u jk + vkt ≤ c jkt, j = 1, . . . ,n, t = 1, . . . ,H, (19)

vkt ≤ 0, t = 1, . . . ,H, (20)

is the dual of the transportation problem (TRk) for machine k. Adopting the common terminology for Benders

decomposition, (TRk) and (DSk) are also referred to as the cut generation subproblem and the dual slave problem

for machine k, respectively, in the following discussion.

We denote the feasible region (19)-(20) of (DSk) by Qk. Then, for each fixed job partition y, (DSk),

k = 1, . . . ,m, provide extreme point optimal solutions (uk, vk) ∈ Qk, k = 1, . . . ,m, so that the sum of the optimal

objective function values of (DSk), k = 1, . . . ,m, is equal to the cost of the best solution of (TR −A) that can be

attained from the job partition y. Consequently, a Benders optimality cut of the form

η ≥

m
∑

k=1

















n
∑

j=1

p jku jky jk +

H
∑

t=1

vkt

















(21)

removes y from further consideration, where η represents a lower bound on the optimal objective value of

(TR −A). Moreover, note that
(

TR −A(y)
)

is always feasible and only optimality cuts need to be generated.

In the resulting relaxed Benders master problem (RMP) presented below, the cuts (21) appear in the disag-

gregated form (24) because this so-called multi-cut version proved superior in our preliminary computational

experiments.

(RMP) minimize

m
∑

k=1

ηk (22)

subject to

m
∑

k=1

y jk = 1, j = 1, . . . ,n, (23)
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ηk ≥

n
∑

j=1

p jkuc
jky jk +

H
∑

t=1

vc
kt, k = 1, . . . ,m, c = 1, . . . ,C, (24)

y jk ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m. (25)

In (RMP), the number of times the dual slave problems (DSk), k = 1, . . . ,m, have been solved so far is

designated by C, and the superscript c in uc
jk

and vc
kt

indicates that these parameters are the components

of the extreme point optimal solution (uc
k
, vc

k
) ∈ Qk of (DSk) obtained in iteration c of the cut generation.

The auxiliary variable ηk approximates the total cost charged against the jobs performed on machine k from

below, and the objective function value
∑m

k=1 ηk of (RMP) is therefore a lower bound on the optimal objective

value of (TR −A). We also remark that Rm-TWCT does always possess an optimal solution that fulfills

the load balancing constraints (26). Otherwise, the final job on machine k may be appended to the end

of the schedule on another machine without increasing the total cost (Azizoglu and Kirca, 1999b, Theorem

1). These m constraints, which are slightly stronger compared to the trivial load balancing constraints
∑n

j=1 p jky jk ≤ H, k = 1, . . . ,m, are incorporated into the initial (RMP).

n
∑

j=1

p jky jk ≤
1

m

















∑

j

max
l

{

p jl

}

+
∑

l,k

max
j

{

p jl

}

















, k = 1, . . . ,m. (26)

The classical textbook application of Benders decomposition iterates between generating Benders cuts

based on the optimal solution of the current relaxed master problem and re-optimizing the relaxed master

problem with the additional cuts starting from a brand-new search tree. Consequently, the same nodes may be

re-visited several times during the course of the Benders decomposition algorithm resulting in an inefficient

implementation. With the recent advances in solver technology, a Benders type algorithm may be executed on

a single search tree by exploiting the lazy constraint feature (IBM ILOG CPLEX, 2012) that allows generating

a Benders cut for each candidate incumbent solution. Thus, no integer solution is evaluated more than once,

and this generally leads to very substantial computational savings. In-depth discussions are offered in (Rubin,

2011; Şen and Bülbül, 2015). The use of the lazy constraint callback routine is also reflected in the pseudo-code

of our optimal algorithm for (TR −A) stated in Algorithm 1 in the appendix.

Next, we turn our attention to the efficient generation of the Benders optimality cuts (24) by providing

a closed form optimal solution to (DSk) without having to resort to a generic LP or transportation problem

solver as was the case in (Şen and Bülbül, 2015). Note that (DSk) is defined over the entire set of jobs and

the full length of the planning horizon H. However, a job j′ with y j′k = 0 is not performed on machine k and

may be excluded from consideration while optimizing (DSk). Therefore, we define Jk = { j | y jk = 1} as the

set of jobs to be processed on machine k and Hk =
∑

j∈Jk
p jk as the associated planning horizon, respectively,

and solve a restricted version of (DSk) – referred to as (DSk − R) – over these jobs and time periods only. The

optimal solution of (DSk − R) is then trivially augmented to an optimal solution of (DSk) by setting u jk = 0

for j < Jk and vkt = 0 for t = Hk+1, . . . ,H. The validity of this augmentation derives easily from the discussion

in (Şen and Bülbül, 2015, Section 4.1). The primal problem associated with (DSk − R) is the restricted cut

generation subproblem (TRk − R). Based on Corollary 2.1, (TRk − R) is equivalent to the non-preemptive

single-machine TWCT problem solved over the jobs in Jk by scheduling all unit jobs of a given job contiguously

by following the WSPT order. In the presentation below, the jobs assigned to machine k are re-labeled in the

WSPT order; that is, i < j implies wi

pik
≥

w j

p jk
for two jobs i, j ∈ Jk. Then, we claim that

u jk =
w j

p jk

(

∑

i≤ j pik +
p jk

2 −
1
2

)

+
∑

i> j wi, j ∈ Jk,

vkt =
wl(t)

pl(t)k

(

t −
∑

i≤l(t) pik

)

−
∑

i>l(t) wi, t = 1, . . . ,Hk,
(27)
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is an optimal solution for (DSk − R), where l(t) is defined such that
∑

i<l(t) pik < t ≤
∑

i≤l(t) pik and denotes the

job processed on machine k in period t in the optimal solution of (TRk − R). Note that attaching intuitive

meanings to the values in (27) is relatively simple by taking a sensitivity analysis viewpoint and interpreting

u jk and vkt as the shadow prices associated with the corresponding constraints in (5) and (6), respectively.

In particular, assume that the capacity of the “resource” time period t is increased by one unit and two

unit-length jobs are carried out simultaneously in this period. Consequently, the unit-length jobs of job l(t)

currently processed in periods t + 1, . . . ,
∑

i≤l(t) pik are completed one time unit earlier at a cost savings of
wl(t)

pl(t)k

(

∑

i≤l(t) pik − t
)

. Similarly, all unit-length jobs of the jobs following job l(t) are shifted one period to the left

leading to a decrease of
∑

i>l(t)
wi

pik
pik =

∑

i>l(t) wi in the total cost. Putting these two cost savings figures together

provides us with the value of vkt. Assuming that the processing time of job j is reduced by a single time unit

and following a similar analysis we can arrive at the value given for u jk in (27). To this end, observe that the

first term on the right hand side of the expression for u jk is the cost incurred by the final unit-length job of job

j performed in period
∑

i≤ j pik. The optimality of (uk,vk) presented in (27) for (DSk − R) is formalized in the

next proposition. The proof follows a standard recipe from linear programming duality and is relegated to

the appendix.

Proposition 3.1 (uk,vk) specified in (27) is an optimal solution for (DSk − R) with the cost coefficients given in (10).

The general consensus of the literature (Magnanti and Wong, 1981; Fischetti et al., 2010) is that algorithms

based on Benders decomposition rarely deliver a good computational performance unless the Benders cuts

are strengthened. The essence of the matter is to choose a “good” optimal solution of the dual slave problem

to generate cuts if primal degeneracy is present in the cut generation subproblem. In the context of this study,

the transportation problem is renowned for it is primal degeneracy and an optimal solution of (DSk) obtained

by extending the optimal solution (uk,vk) of (DSk − R) given in (27) by setting u jk = 0 for j < Jk and vkt = 0

for t = Hk + 1, . . . ,H, results in weak cuts and uncompetitive computational performance. To alleviate this

issue, we apply the cut strengthening procedure of Şen and Bülbül (2015) which yields an alternate optimal

solution (u′
k
,v′

k
) of (DSk) (Şen and Bülbül, 2015, Proposition 4.1):

u′
jk
= u jk, j ∈ Jk, u′

jk
= mint=1,...,Hk

(c jkt − vkt), j < Jk,

v′
kt
= vkt, t = 1, . . . ,Hk, v′

kt
= 0, t = Hk+1, . . . ,H.

(28)

The benefit is that y jk, j < Jk, are now added to the right hand side of (24) with strictly positive coefficients

p jku′
jk
, j < Jk. Note that u′

jk
> 0 for all j < Jk because c jkt > 0 in the entire planning horizon for all jobs and

maxt=1,...,Hk
vkt = vkHk

= 0. The naive calculation of u′
jk

for all j < Jk requires O(nH) operations; however,

by investigating and exploiting the structure of (uk,vk) we can carry out this calculation in O(n) time based

on Lemma 3.1 and the ensuing discussion. Consequently, the pseudo-polynomial complexity O(mnH) for

strengthening all m cuts in one iteration of the Benders decomposition algorithm in (Şen and Bülbül, 2015) is

reduced to the polynomial complexity O(mn) for Rm-TWCT in this paper. This enhancement stems from the

following result:

Lemma 3.1 For a given job j < Jk, the function f jk(t) = c jkt − vkt defined over t = 1, . . . ,Hk is discrete convex.

Proof. Similar to the convention in the proof of Proposition 3.1, assume that the jobs in Jk are re-labeled

in the WSPT order and define l(t) such that
∑

i<l(t) pik < t ≤
∑

i≤l(t) pik. Recall that l(t) is the job processed on

machine k in period t in the optimal solution of (TRk − R). Furthermore,
(

t −
∑

i≤l(t) pik

)

= −(phk − 1) in the

first period t assigned to a job h = l(t), and this difference is increased by one in each following period job h
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is processed until it becomes zero upon the completion of job h. Consequently, for two consecutive periods

t, t + 1 assigned to job h such that l(t + 1) = l(t) = h, we have vk,t+1 − vkt =
wh

phk
. Otherwise, if job h completes

processing in period t and job h + 1 is started in period t + 1, then l(t) = h, l(t + 1) = h + 1 and we obtain

vk,t+1 − vkt =
(

−
wh+1

ph+1,k

(

ph+1,k − 1
)

−
∑

i>h+1 wi

)

− (−
∑

i>h wi) =
wh+1

ph+1,k
. We conclude that

vk,t+1 − vkt =
wl(t+1)

pl(t+1)k
> 0, t = 1, . . . ,Hk − 1.

Re-arranging the terms, f jk(t) =
(

w j

2 −
w j

2p jk

)

+

(

w j

p jk
t − vkt

)

, and the difference

∆ jk(t) = f jk(t + 1) − f jk(t) =

(

w j

p jk
(t + 1) − vk,t+1

)

−

(

w j

p jk
t − vkt

)

=
w j

p jk
− (vk,t+1 − vkt) =

w j

p jk
−

wl(t+1)

pl(t+1)k
(29)

is non-decreasing over the interval 1, . . . ,Hk − 1 because
w j

p jk
is a constant and

wl(t+1)

pl(t+1)k
is non-increasing over the

interval 1, . . . ,Hk−1 based on the WSPT ordering of the jobs in Jk. This completes the proof because a function

f : Z+ 7→ R is discrete convex if and only if the differences t 7→ f (t + 1) − f (t) are non-decreasing. �

The discrete convexity of f jk(t) for j < Jk implies that u′
jk
= mint=1,...,Hk

(c jkt − vkt) = c jkt∗
jk
− vkt∗

jk
, where

t∗
jk
= min

{

t = 1, . . . ,Hk | ∆ jk(t) ≥ 0
}

with the understanding that ∆ jk(Hk) ≥ 0. A further key observation allows

us to conduct the search for t∗
jk

over the set of jobs in Jk instead of the set of time periods 1, . . . ,Hk. Recall

that the optimal solution of (TRk − R) is non-preemptive, and l(t) = h from period
∑

i<h pik + 1 until period
∑

i≤h pik. Consequently, (29) assures that ∆ jk(t) =
w j

p jk
−

wh

phk
from period Ch−1 =

∑

i<h pik until period Ch−1 + ph − 1,

and the period in which ∆ jk(t) changes sign must coincide with the completion time of a job in Jk – except

when
w j

p jk
≥ maxi∈Jk

wi

pik
and t∗

jk
= 1. Moreover, from (29) we can also infer that t∗

j1k
≤ t∗

j2k
is satisfied for two

jobs j1, j2 < Jk so that
w j1

p j1k
≥

w j2

p j2k
. Putting these ideas together, all u′

jk
, j < Jk, can be computed in O(n) time by

traversing both these jobs and the jobs in Jk in the WSPT order – see Algorithm 3 in the appendix.

The pseudo-code of our complete Benders decomposition scheme with the cut strengthening feature for

solving (TR −A) is stated in Algorithms 1-3 in Appendix G. The finiteness of the algorithm is argued through

the finite number of job partitions.

4. Computational Study The overall goal of our computational study is to demonstrate that the proposed

Benders decomposition algorithm – referred to as (TR −A) - BDS in the rest of the paper – has a great

computational performance both in absolute and relative terms. We solve instances across a broad range

of (n,m) combinations with both short and long processing times and investigate the effectiveness of our

algorithm in order to establish its absolute performance. It turns out that (TR −A) - BDS scales very well

as instances with up to 1000 jobs and 30 machines are either solved to optimality with a time limit of five

minutes or very high-quality incumbents are obtained at termination. For m ≤ 8, the optimal solution is

attained within 10 seconds for a great majority of the instances for any n, and we conclude that (TR −A) -

BDS is even fast enough to be employed as a subroutine in decomposition algorithms designed for the more

general flexible flow- and job shop scheduling problems. Furthermore, to argue that (TR −A) - BDS is the

best exact algorithm for Rm-TWCT developed to date, we benchmark it against the convex quadratic integer

programming formulation (CQ) presented in Section 1 and solved by an off-the-shelf engine. This approach

is referred to as (CQ) - CPLEX in the sequel. As pointed out in Section 1, (CQ) - CPLEX represents the current

state-of-the-art for the exact methods designed for Rm-TWCT. The results reveal that compared to (CQ) -

CPLEX, (TR −A) - BDS either determines the optimal solution in considerably shorter time or it identifies an

incumbent of substantially higher quality at the time limit. The details of our analyses are presented in the

following.
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To facilitate a direct comparison, our instance generation follows suit with that of Plateau and Rios-Solis

(2010) who evaluated (CQ) empirically. For each job j ∈ {1, . . . ,n}, the processing time p jk on machine

k ∈ {1, . . . ,m} and the unit completion time penalty w j are drawn from the discrete uniform distribution

U [1, 20]. We create 10 instances for each combination of n ∈ {30, 100, 400, 1000} and m ∈ {2, 4, 6, 8, 16, 30},

except for n = 30 and m = 16, 30, where the average number of jobs per machine is too few. In this setup,

the ratio n
m varies between 3.33 and 500 which allows us to explore the sensitivity of (TR −A) - BDS to this

parameter. Note that the branch-and-price algorithms of Chen and Powell (1999) and van den Akker et al.

(1999) mentioned in Section 1 run into trouble for n
m > 10. Furthermore, recall that the size of (TR −A) is

pseudo-polynomial and depends on the length of the processing times. Therefore, in an effort to verify the

robustness of (TR −A) - BDS with respect to the range of the processing times, we repeat the same generation

scheme with pmax = 100 which brings the total number of instances solved in this study to 440.

The computational results are obtained on a personal computer with a 2.33 GHz Intel R© CoreTM2 Quad

processor Q8200 and 8 GB of memory running on Windows 7. (TR −A) - BDS is implemented in C++

using the Concert Technology component library of IBM R© ILOG R© CPLEX R© 12.5. Under the default pa-

rameter settings, the implementation of a control callback – such as the lazy constraint callback – leads

CPLEX to turn off its dynamic search feature and apply a traditional branch-and-cut strategy with a single

thread (IBM ILOG CPLEX, 2012). Therefore, to exploit parallelism and promote simultaneous cut genera-

tion, CPLEX is allowed to use up to four parallel threads – as specified by the Threads parameter – with

the ParallelMode switch set to Opportunistic. Moreover, based on the positive previous experience of the

authors in (Şen and Bülbül, 2015) the MIPEmphasis switch, which “controls the trade-offs between speed,

feasibility, optimality, and moving bounds in MIP,” takes on the value four in order to emphasize finding

high-quality hidden feasible solutions. (CQ) - CPLEX calls CPLEX to solve (CQ) with the default parameter

settings, except that Threads=4, ParallelMode=Opportunistic, and MIPEmphasis=4 for a fair comparison

with (TR −A) - BDS. In both methods, CPLEX terminates the optimization if the relative optimality gap

drops below EpGap=10−3=0.1%, or the working memory exceeds WorkMem=5,120=5 GB, or the time expended

reaches TiLim=300 seconds. More details on these parameters are available in (IBM ILOG CPLEX, 2012).

Table 1 consists of 22 rows, one for each possible combination of n and m listed in the first two columns.

Each figure in the table represents a statistic over 10 instances. The number of instances solved to optimality

within the time limit appears in the columns labeled with “#”, and the columns under “%Gap” and “Time” (in

seconds) present the average optimality gaps retrieved from CPLEX at termination and the average solution

times, respectively. Note that CPLEX uses the formula
|best bound−best integer|

10−10+|best integer|
for computing the optimality gap of

an instance (IBM ILOG CPLEX, 2012), where best bound is the largest available lower bound and best integer

is the objective value of the incumbent at termination. A color formatting scheme is applied separately to

each of the three performance measures “%Gap”, “Time”, and “#,” so that the values ranging from better to

worse are indicated with colors changing from green towards red. The results for instances with relatively

short processing times are reported in the left half of the table in Columns 3-8 under the heading “pmax = 20.”

The remaining columns depict the performance measures for the corresponding instances with pmax = 100.

The results in Table 1 underline that (TR −A) - BDS provides provably optimal solutions for the majority

of the instances well within the time limit of 300 seconds. More specifically, (TR −A) - BDS solves 343 out

of a total of 440 instances to optimality in 3.73 seconds on average with a maximum solution time of 162.48

seconds. In contrast, (CQ) - CPLEX attains only 270 optimal solutions in 13.95 seconds on average with a

maximum of 241.51 seconds. The average and maximum gaps of (TR −A) - BDS for those 97 instances that
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Table 1 Average optimality gap and solution time (in seconds) results for Rm-TWCT.

pmax = 20 pmax = 100

(TR −A) - BDS (CQ) - CPLEX (TR −A) - BDS (CQ) - CPLEX

n m %Gap Time # %Gap Time # %Gap Time # %Gap Time #

30

2 0.00 0.06 10 0.00 0.05 10 0.00 0.06 10 0.00 0.04 10

4 0.00 0.11 10 0.00 0.15 10 0.00 0.14 10 0.00 0.14 10

6 0.00 0.22 10 0.00 0.54 10 0.00 0.30 10 0.00 0.71 10

8 0.00 0.60 10 0.00 3.91 10 0.00 0.67 10 0.00 1.06 10

100

2 0.00 0.13 10 0.00 0.14 10 0.00 0.13 10 0.00 0.11 10

4 0.00 1.00 10 0.00 1.60 10 0.00 1.07 10 0.00 1.78 10

6 0.00 1.62 10 0.26 70.08 8 0.00 1.61 10 0.40 123.54 6

8 0.00 15.21 10 0.71 153.28 5 0.00 9.15 10 1.13 219.34 3

16 0.67 273.19 1 5.91 182.04 4 0.84 260.67 2 7.30 300.00 0

30 2.12 300.00 0 16.13 300.00 0 3.80 300.00 0 30.49 300.00 0

400

2 0.00 0.05 10 0.00 1.16 10 0.00 0.05 10 0.00 1.47 10

4 0.00 0.56 10 0.00 3.28 10 0.00 0.41 10 0.00 5.79 10

6 0.00 0.82 10 0.22 240.67 2 0.00 0.70 10 0.16 191.02 4

8 0.00 1.03 10 0.30 151.50 5 0.00 1.72 10 0.28 239.19 3

16 0.13 300.00 0 1.86 248.95 3 0.22 300.00 0 1.86 300.00 0

30 0.39 300.00 0 3.75 300.00 0 0.66 300.00 0 6.00 300.00 0

1000

2 0.00 0.10 10 0.00 13.22 10 0.00 0.10 10 0.00 19.21 10

4 0.00 0.87 10 0.00 27.43 10 0.00 0.79 10 0.00 34.66 10

6 0.00 1.72 10 0.09 109.50 8 0.00 1.46 10 0.00 49.49 10

8 0.00 2.67 10 0.14 247.60 2 0.00 1.97 10 0.11 203.59 4

16 0.00 51.00 10 0.83 257.90 2 0.00 5.93 10 0.63 281.08 1

30 0.30 300.00 0 - - - 0.17 300.00 0 - - -

could not be solved to optimality within the specified time limit are just 0.96% and 5.51%, respectively. The

corresponding figures for (CQ) - CPLEX are 5.21% and 75.45% over 150 instances. (CQ) - CPLEX cannot handle

the remaining 20 largest instances with n = 1000, m = 30 and terminates due to an out-of-memory error. The

differences between (TR −A) - BDS and (CQ) - CPLEX become more apparent if we separate out the groups

of instances solved to optimality by both methods and those not solved to optimality by either method within

the time limit. On 198 of the 263 instances in the earlier group, (TR −A) - BDS outpaces (CQ) - CPLEX by

an average (& maximum) factor of 32.48 (& 228.63) computed from the ratios of the solution times of (CQ) -

CPLEX to those of (TR −A) - BDS. On six instances the solution times are identical, and on the remaining 59

instances (CQ) - CPLEX is on average 2.44 times faster, where the corresponding maximum is 10.90. In the

second group of 70 instances, (TR −A) - BDS attains a smaller optimality gap at termination for 67 instances.

The difference in the optimality gaps is on average 9.37% and reaches a maximum of 70.93%. (CQ) - CPLEX

yields a smaller terminal gap on just three instances and the difference does not exceed 1.81%. In addition,
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note that there are only 7 instances for which (TR −A) - BDS is only able to provide an incumbent at the time

limit while (CQ) - CPLEX solves these instances optimally. In comparison, (TR −A) - BDS supplies optimal

solutions for 80 instances that remain unsolved at the time limit by (CQ) - CPLEX and obtains incumbents

very close to optimality with an average gap of 0.24% for the 20 instances with n = 1000, m = 30, while these

instances are completely beyond the reach of (CQ) - CPLEX due to insufficient memory. To conclude, we stress

that (TR −A) - BDS is clearly the exact algorithm of choice for Rm-TWCT because it either delivers an optimal

solution substantially faster or provides an incumbent with a much smaller optimality gap at termination.

Table 1 attests to the solid performance of (TR −A) - BDS regardless of the range of the processing times.

The performance indicators related to (TR −A) - BDS for both pmax = 20 and pmax = 100 are similar. We

reckon that two factors are at play here. First, the magnitude of the processing times has no effect on the

size of (RMP) and the number of job-to-machine assignments, and the pseudo-polynomial size of (TR −A) is

therefore completely relegated to the dual slave problems. Second, the analytic solution of (DSk) offsets the

pseudo-polynomial size issue in practice.

Next, we investigate how (TR −A) - BDS and (CQ) - CPLEX scale with the number of jobs and machines.

For a fixed n, the solution times of (TR −A) - BDS and (CQ) - CPLEX increase with m. That is, both methods

favor larger n
m ratios. This may be regarded as a significant advantage over the branch-and-price algorithms

of Chen and Powell (1999) and van den Akker et al. (1999) which perform better for n
m ≤ 10. Clearly, the

more likely practical scenario is that n is significantly larger than m. Furthermore, observe that the solution

times of (TR −A) - BDS do not necessarily degrade with increasing n for a fixed m. Loosely speaking, the

computational performance of (TR −A) - BDS is determined by the number of machines. In contrast, the

performance of (CQ) - CPLEX suffers from both higher n and m values.

Figures 1-2 further substantiate the robustness and scalability of (TR −A) - BDS as an exact approach for

Rm-TWCT. The empirical distributions of the solution times and the optimality gaps associated with both

methods are depicted in these figures, where each curve is based on 20 instances. The horizontal axes are

in logarithmic scale to increase the readability of the graph. The median solution times and optimality gaps

are associated with the 50% mark on the vertical axis, and the average gaps are explicitly indicated. Note

that the shape of the optimality gap curves to the left of the 10−1% mark do not bear any meaning because

the relative optimality gap parameter of CPLEX is set to EpGap = 10−3 = 10−1%. The relative insensitivity of

(TR −A) - BDS to n for a fixed m is also evident from Figure 1, where the curves for a fixed m are stacked

on top of each other from Figure 1a toward Figure 1c. As stated previously, the number of machines is the

main determinant of the solution time of (TR −A) - BDS; the curves for a fixed n shift from left to right as m

increases. Furthermore, we can also claim that (TR −A) - BDS demonstrates a very consistent performance

for these instances because the solution time curve for a given (n,m) combination rises sharply and exhibits

little variability across instances. Figure 1 confirms that the solution time performance of (TR −A) - BDS

is superior to that of (CQ) - CPLEX because the curves for (TR −A) - BDS generally lie to the left of the

corresponding curves for (CQ) - CPLEX. Figure 2 is less informative with respect to the solution times because

both methods often hit the time limit for these instances. However, the optimality gap curves of (TR −A) -

BDS clearly dominate those of (CQ) - CPLEX. Overall, we may draw the conclusion that (TR −A) - BDS is

a scalable exact algorithm for Rm-TWCT and does either find the optimal solution faster than the current

state-of-the-art in the literature or it identifies better incumbents at termination.

5. Conclusions and Future Research In this paper, we tackled the fundamental parallel machine schedul-

ing problem Rm-TWCT which has been attacked by a variety of methodologies since the early 1970s. In a
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Figure 1 The empirical distributions of the solution times (on the left) and the optimality gaps (on the right)

of (TR −A) - BDS (—) and (CQ) - CPLEX (– –) for Rm-TWCT instances with 2, 4, and 6 machines.
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Figure 2 The empirical distributions of the solution times (on the left) and the optimality gaps (on the right)

of (TR −A) - BDS (—) and (CQ) - CPLEX (– –) for Rm-TWCT instances with 8, 16, and 30 machines.
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field dominated by custom B&B methods, approximation algorithms, and (meta-)heuristics, our approach

makes elegant use of generic mathematical programming techniques. We refrain from a traditional and

compact modeling approach based on the job completion time variables and provide a new exact formula-

tion of pseudo-polynomial size. Our formulation for Rm-TWCT is amenable to Benders decomposition, and

we devise a computationally very effective algorithm that incorporates analytic solutions for the dual slave

problems and a speedy cut strengthening procedure. The end product is a fast and scalable exact algorithm

for Rm-TWCT which may even be employed as a subroutine in iterative decomposition-based algorithms

developed for more complex shop scheduling problems.

Along with the more traditional time-indexed formulations, this study demonstrates that moving away

from the natural space of variables to an extended variable space may help attain better formulations and

algorithms for machine scheduling problems. A research question worth investigating in the future is to

explore scheduling problems in other domains that may benefit from similar techniques.
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Appendix F. Proof of Proposition 3.1 Proof. The proof consists of two main steps. First, we show that

(uk,vk) is a feasible solution for (DSk − R), i.e., vkt ≤ 0 for all t = 1, . . . ,Hk and u jk + vkt ≤ c jkt for all j ∈ Jk and

t = 1, . . . ,Hk. Then, we demonstrate that the objective function value associated with this feasible solution

of the dual slave problem is equal to that of the optimal solution of the corresponding primal problem. Our

focus in this proof is entirely on (DSk − R) for a given machine k, and therefore, every specific job or set of

jobs referred to in the following belongs to Jk.

The non-positivity of vkt for all t = 1, . . . ,Hk follows from

vkt =
wl(t)
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and the weights and the processing times are strictly positive.

To show that u jk + vkt ≤ c jkt is satisfied for all j ∈ Jk and t = 1, . . . ,Hk, we substitute the values of u jk and vkt

from (27) and c jkt from (10). The constraint u jk + vkt ≤ c jkt then reduces to
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







+
∑

i> j

wi −
wl(t)

pl(t)k
r(t) −

∑

i>l(t)

wi ≤
w j

p jk

















∑

i≤l(t)

pik − r(t) +
p jk

2
−

1

2

















(31)

by replacing t −
∑

i≤l(t) pik by −r(t) and t by
∑

i≤l(t) pik − r(t) based on (30). In order to establish the validity of

(31), we consider the cases j ≤ l(t) and j > l(t) separately.

If j ≤ l(t), (31) simplifies to

w j

p jk

















−
∑

j<i≤l(t)

pik

















+
∑

j<i≤l(t)

wi ≤ r(t)

(

wl(t)

pl(t)k
−

w j

p jk

)

. (32)

Note that j ≤ l(t) implies
w j

p jk
≥

wl(t)

pl(t)k
and leads to

(

pl(t)k − 1
)

(

wl(t)

pl(t)k
−

w j

p jk

)

≤ r(t)
(

wl(t)

pl(t)k
−

w j

p jk

)

based on (30). Therefore,
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(32) holds if

−
∑

j<i≤l(t)

pik

w j

p jk
+

∑

j<i≤l(t)

pik
wi

pik
≤

(

pl(t)k − 1
)

(

wl(t)

pl(t)k
−

w j

p jk

)

(33)

⇐⇒
∑

j<i<l(t)

pik

(

wi

pik
−

w j

p jk

)

≤
w j

p jk
−

wl(t)

pl(t)k
(34)

is satisfied, where the transition from (33) to (34) requires adding pl(t)k
w j

p jk
− wl(t) to both sides of (33). The

inequality (34) is clearly correct since
(

wi

pik
−

w j

p jk

)

≤ 0 for i ≥ j and
(

w j

p jk
−

wl(t)

pl(t)k

)

≥ 0, and this completes the

argument for the first case with j ≤ l(t).

If j > l(t), re-arranging the terms of (31) leads to

w j

p jk

















∑

l(t)<i≤ j

pik

















−
∑

l(t)<i≤ j

wi ≤ r(t)

(

wl(t)

pl(t)k
−

w j

p jk

)

. (35)

The inequality
w j

p jk
≤

wl(t)

pl(t)k
follows from j > l(t), and we conclude that the right hand side of (35) is non-negative.

Therefore, in order to prove that (35) is satisfied it is sufficient to demonstrate the correctness of this relation:

∑

l(t)<i≤ j

pik

w j

p jk
−

∑

l(t)<i≤ j

pik
wi

pik
=

∑

l(t)<i≤ j

pik

(

w j

p jk
−

wi

pik

)

≤ 0. (36)

The validity of inequality (36) derives from
(

w j

p jk
−

wi

pik

)

≤ 0 for i ≤ j. This yields the correctness of (31) for the

second case with j > l(t), and (uk,vk) is certified as a feasible solution of (DSk − R).

As noted before, the optimal schedule of the restricted cut generation subproblem (TRk − R) – the primal

problem associated with (DSk − R) – follows the WSPT order for the jobs in Jk. Therefore, the associated

optimal objective function value is calculated as
∑

j∈Jk
w j

(

∑

i≤ j pik

)

, where the completion time of job j in the

non-preemptive WSPT schedule is equal to the sum of the processing times of the jobs placed earlier in

the WSPT sequence. Thus, in order to complete the proof, we must argue that the objective function value

associated with (uk,vk) in (DSk − R) is equal to
∑

j∈Jk
w j

(

∑

i≤ j pik

)

.

∑

j∈Jk

p jku jk +

Hk
∑

t=1

vkt =
∑

j∈Jk

p jk

















w j

p jk

















∑

i≤ j

pik +
p jk

2
−

1

2

















+
∑

i> j

wi

















+

Hk
∑

t=1

















wl(t)

pl(t)k

















t −
∑

i≤l(t)

pik

















−
∑

i>l(t)

wi

















(37)

=
∑

j∈Jk

p jk

















w j

p jk

















∑

i≤ j

pik +
p jk

2
−

1

2

















+
∑

i> j

wi

















+
∑

j∈Jk

















w j

p jk

















−

p jk−1
∑

i=0

i

















− p jk

∑

i> j

wi

















(38)

=
∑

j∈Jk

p jk

















w j

p jk

















∑

i≤ j

pik +
p jk

2
−

1

2

















+
∑

i> j

wi

















−
∑

j∈Jk

p jk

















w j

p jk

(p jk − 1)

2
+

∑

i> j

wi

















=
∑

j∈Jk

p jk

















w j

p jk

















∑

i≤ j

pik +
p jk

2
−

1

2
−

p jk − 1

2

































=
∑

j∈Jk

w j

















∑

i≤ j

pik

















.

For the transition from (37) to (38), observe that each job j ∈ Jk becomes the job l(t) for p jk consecutive time peri-

ods, and the difference
(

t −
∑

i≤l(t) pik

)

runs from−(p jk−1) to zero during these time periods. Therefore, we have
∑Hk

t=1

wl(t)

pl(t)k

(

t −
∑

i≤l(t) pik

)

=
∑

j∈Jk

w j

p jk

(

−
∑p jk−1

i=0
i
)

. A similar argument yields −
∑Hk

t=1

∑

i>l(t) wi = −
∑

j∈Jk
p jk

∑

i> j wi.

�
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Appendix G. Benders Decomposition Algorithm with Cut Strengthening for (TR − A)

Algorithm 1: Solving (TR −A) by Benders decomposition and lazy constraint generation.

1 Create (RMP) with (22), (23), (25), and the load balancing constraints (26); // Initialization.

2 Invoke CPLEX on (RMP); // Main loop.

3 repeat

4 Identify a new candidate incumbent solution y with an objective value of
∑m

k=1 ηk;

5 accept candidate = true;

6 [cuts, z1(y), . . . , zm(y)] = generate cuts(y) ; // cuts is a collection of m cuts.

7 for k = 1 to m do

8 if ηk < zk(y) then // y violates a missing Benders cut.

9 Add cutsk to (RMP) as a lazy constraint, accept candidate = false;

10 end

11 until CPLEX determines that the relative optimality gap of the current incumbent is less than some threshold;

12 The best available job partition y∗ for (TR −A) is retrieved from CPLEX. The optimal solution for

Rm-TWCT is obtained by applying the WSPT rule independently to the set of jobs on each machine;

Algorithm 2: Procedure generate cuts.

input : A feasible partition y of the jobs to the machines.

output: Returns zk(y) and a strengthened Benders cut for all machines k = 1, . . . ,m.

1 for k = 1 to m do

2 Compute the optimal solution (uk,vk) of (DSk − R) as given in (27) and calculate zk(y);

3 Retrieve the job completion times C j, j ∈ Jk, in the associated optimal solution of (TRk − R);

4 [(u′
k
,v′

k
)] = strengthen cut(Jk, (C j, j ∈ Jk), (uk,vk)) is an optimal solution of (DSk);

5 Generate a strengthened Benders cut of the form (24) from (u′
k
,v′

k
) and add to cuts;

6 end

Algorithm 3: Procedure strengthen cut.

input : Jk – Jobs assigned to machine k, re-labeled in WSPT order,

C j, j ∈ Jk – Job completion times in the optimal solution of (TRk − R),

(uk,vk) – Optimal solution of (DSk − R) as specified in (27).

output: (u′
k
,v′

k
).

1 v′
kt
= vkt, t = 1, . . . ,Hk, v

′
kt
= 0, t = Hk+1, . . . ,H,u

′
jk
= u jk, j ∈ Jk; // no need in actual implementation.

2 i∗ = 0, q = maxi∈Jk

wi

pik
=

w1

p1k
; // Job 1 refers to the first job in Jk.

3 for j < Jk do // Traverse in WSPT order. The entire loop runs in O(n) time.

4 if q >
w j

p jk
then i∗ = max

{

i ∈ Jk | i ≥ i∗, wi

pik
>

w j

p jk

}

;

// The search condition i ≥ i∗ is justified by t∗
j1k
≤ t∗

j2k
for j1, j2 < Jk with

w j1

p j1k
≥

w j2

p j2k
.

5 if i∗ = 0 then t∗ = 1 else t∗ = Ci∗ ;

6 u′
jk
= c jkt∗ − vkt∗ ;

7 end
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