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Abstract—We present an automated approach for cost model
discovery in configuration spaces. Given a configuration space,
a quality assurance (QA) task of interest, and a means of
measuring the cost of carrying out the QA task, the proposed
approach systematically sample the configuration space by using
a traditional covering array, carry out the QA task in each
of the selected configurations, measure the costs, and fit a
generalized linear regression model to the observed costs. The
resulting model is then used to estimate the cost of performing
the QA task in a possibly previously unseen configuration.
The results of our empirical studies conducted on two highly
configurable and widely used software systems, strongly support
our basic hypothesis that the proposed approach can efficiently
and effectively discover reliable cost models.

I. INTRODUCTION

Combinatorial interaction testing (CIT) approaches system-

atically sample the configuration space and test only the se-

lected configurations. These approaches take as input a config-
uration space model. The model includes a set of configuration

options, each of which can take on a number of option settings.

Given a configuration space model, the sampling is done by

computing a combinatorial object, called a covering array
(CA). Given a configuration space model, a t-way covering

array is a set of configurations, in which each combination

of option settings for every combination of t options appears

at least once [6]. Furthermore, to reduce the actual cost of

testing, covering arrays are constructed such that all t-way

combinations of option settings are covered by a minimum

number of configurations. By doing so, they implicitly assume

a simple cost model in which the cost of configuring the

system under test is the same for all configurations.

We, however, argue that this cost model is not always valid

in practice. That is, the cost of testing a configuration often

varies from one configuration to another and with variable

costs, minimizing the number of configurations is not neces-

sarily the same as minimizing the actual cost of testing [9], [8].

To overcome this, we have introduced a novel combinatorial

object, called a cost-aware covering array [9]. In a nutshell, a

t-way cost-aware covering array is a t-way covering array that

minimizes a given cost function [9], [8]. Hence, cost-aware

covering arrays will pick a subset of full configuration space

with minimum cost guided by this cost function. We have

empirically demonstrated that cost-aware covering arrays can

significantly reduce the actual cost of testing without adversely

affecting the t-way coverage property [9].

An integral part of these novel objects is the cost function,

which models the actual cost of testing at the level of option

setting combinations. Once specified, this function is used

during the construction of the covering array to estimate the

cost of possibly previously unseen configurations, so that cost-

aware decisions, such as whether to include a configuration in

the array or not, can reliably be made. Clearly, when the cost

functions are not reliable, cost-aware CIT approaches suffer.

One way to create the cost function is to do it manually.

However, this is typically a cumbersome and error-prone, thus

an impractical approach, since it is generally hard for the

developers to express the cost at the level of option setting

combinations [28]. In this work we, therefore, present an

automated approach for cost model discovery in configuration

spaces. Given a configuration space, a quality assurance (QA)

task of interest, and a means of measuring the cost of carrying

out the QA task, the proposed approach systematically sample

the configuration space by using a traditional covering array,

carry out the QA task in each of the selected configurations,

measure the costs, and fit a generalized linear regression model

to the observed costs [20], [21].

We empirically evaluated our approach on two highly con-

figurable widely used software systems, namely Apache – an

HTTP server, and MySQL – a database management system.

For the evaluations, we created three different types of cost

models for three different QA tasks. We discovered the cost

models using 4-way covering arrays and used the resulting

models to estimate the cost of previously unseen 2- and 3-

way covering arrays. The models estimated the costs with an

average R2 of 0.93, strongly supporting our basic hypothesis

that the proposed approach can efficiently and effectively

discover reliable cost models.

II. RELATED WORK

Nie et al. classify the methods for generating covering

arrays into 4 categories [24]: random search-based meth-

ods [26], heuristic search-based methods [3], [7], [12], greedy

methods [4], [6], [18], and mathematical methods [13], [27].

These existing approaches aim to minimize the number of

configurations included in a covering array, whereas cost-

aware covering arrays aim to minimize the actual testing cost

of the covering array [8].

Generalized linear regression models have been frequently

used to model response variables in many domains [16] and
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our feasibility studies suggest that they are also good candi-

dates for modeling costs in complex configuration spaces [29],

[8]. Furthermore, there is a plethora of approaches in litera-

ture, such as regression analysis [17], for discovering these

functions, further improving the practicality of our approach.

III. AUTOMATIC TESTING COST DISCOVERY

We define cost model discovery as a process that aims to

rapidly discover a reliable cost model for a given configuration

space. This process takes as input 1) a configuration space

model, which includes a set of configuration options and their

settings, 2) a QA task, e.g., building the system or running a

test case, and 3) a means of measuring the cost of carrying out

the task on a configuration, e.g., measuring the time it takes to

build a configuration or to run a test case on a configuration.

The output is a cost model, which, given a possibly previously

unseen configuration, estimates the cost of carrying out the QA

task on the configuration. Multiple independent QA tasks are

handled by discovering one cost model per task.

One obvious approach to estimate the cost is to perform the

QA task on every configuration exhaustively and measure the

costs. The observed costs can then be used as estimates in the

subsequent executions of the task. However, exhaustive testing

is generally infeasible, since the number of configurations

grows exponentially with the number of configuration options.

An alternative approach is to take an ad hoc sample from the

configuration space, measure the cost of the selected configura-

tions, and then extrapolate from these costs to the whole space.

Ad hoc sampling, however, can be quite unreliable [29], [25].

Therefore, we need an approach that economically samples

the configuration space, yet produces reasonably accurate

estimates of the cost across the whole space.

A. Proposed Approach

The proposed approach in this paper relies on generalized

linear regression models [20], [21]. A regression model defines

the distribution of a response variable (often denoted by Y )

in terms of one or more predictors (often denoted by X’s). In

our context, X’s are the configuration options and Y is the

cost of carrying out the QA task of interest. As an example,

consider a scenario in which the system under test has two

interacting options denoted by predictors X1 and X2. That is,

the cost impact of X1 depends on that of X2, or vice versa.

Then, a linear cost function can be represented as follows:

Y = β0 + β1X1 + β2X2 + β3X1 : X2

, where β’s are the regression parameters, X1 and X2 are

the predictors denoting the main effects, and X1 : X2 is the

predictor denoting the 2nd-order effect (i.e., the interaction

effect of X1 and X2). Note that this model is linear from

the perspective of statistical modeling, i.e., it is linear in the

parameters, not necessarily in the predictors.

In this work we create the cost models using only the low-

order effects, i.e., main and 2nd-order effects, rather than using

all effects – a decision based on the well-known sparsity-
of-effects principle, which states that practical systems and

processes are usually governed by single configuration options

and few low-order interactions among these options, and most

of the higher-order interactions are negligible [22]. This princi-

ple has been validated by many empirical studies conducted in

manufacturing and physical sciences [10]. Sparsity of effects is

particularly important in our problem domain for two reasons.

First, identifying the few important effects can help cost-

aware CIT approaches steer the QA process, such that the

testing resources are better utilized. Second, using only the

few important low-order effects instead of all, can significantly

reduce the number of terms in the models. The fewer the terms,

the easier it is to evaluate the model at runtime.

The proposed approach operates as follows: 1) systemat-

ically sample the given configuration space by computing

one traditional covering array, 2) carry out the QA task of

interest on each configuration selected by the covering array

and measure the costs on a per configuration basis, and 3) fit

a generalized linear regression model to the observed costs.

The resulting cost model can then be used to estimate the cost

of carrying out the QA task on a possibly previously unseen

configuration. This cost model discovery process will be done

one time and it will be used once for constructing cost-aware

covering arrays to be used as a test suite, until there is a change

in the configuration space that requires this cost model to be

redefined such as a new configuration space option or option

setting with a significant impact on the cost of testing.

In particular, we experiment with 3 types of generalized lin-

ear regression models: additive models, non-additive models,

and significant-effect models. Additive models are comprised

of only the main effects (i.e., independent effects of configu-

ration options). That is, in these models, the cost impact of a

configuration option does not depend on another option.

Non-additive models, however, take both main effects and

2nd-order effects (i.e., interaction effects of two options) into

account; the cost of impact of an option may depend on

another option. Since the number of 2nd-order effects grows

quadratically with the number of configuration options, to

avoid the curse of dimensionality [2], [1], we first perform

a feature selection process to find the configuration options,

which individually or in conjunction with another option can

profoundly affect the costs. To this end, we use a forward
sequential feature selection process [11], [23] together with

residual deviance (a generalization of the residual sum of

squares) as our feature selection criterion. In each iteration of

this process, a configuration option which reduces the selection

criterion the most, is selected and added to an initially empty

set of options until adding further options does not decrease the

criterion. The evaluation of the selection criterion is performed

using a model comprised of all the main and 2nd-order effects

of the options that have been selected so far.

Non-additive models use all main and 2nd-order effects of

the options that survived the feature selection. Significant-

effect models, on the other hand, are comprised of only the

significant effects among all effects used in the non-additive

models. The significance test is performed using the p-values

of the regression coefficients with a cutoff value of 0.001.
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One reason we experimented with 3 types of cost models

was that, in addition to having accurate cost estimates, we

also would like to reduce the number of terms in the models

as much as possible, so that they can rapidly be evaluated

at runtime. This is important especially when the models are

used to estimate the cost of a large number of configurations

at runtime, which is the case for computing cost-aware CA’s.

All the cost models included an intercept. Furthermore,

we leveraged the Statistics and Machine Learning Toolbox

of MATLAB [19] to compute the models. We then used the

resulting models to estimate the cost of 2- and 3-way covering

arrays (Section IV). For that, we sampled the configuration

spaces using a 4-way covering array. In particular, to predict

the cost of t-way covering arrays, we suggest to use a higher-

strength covering array to sample the configuration space for

cost model discovery, such as (t+1)- or (t+2)-way covering

arrays, since t-way combinations of option settings occur

multiple times in higher-strength covering arrays.

This one time cost model discovered by using a 4-way

covering array will then be used to decrease the cost of 2-

and 3-way covering arrays, which will be run several times

(e.g. daily regression runs) and hence compensating for the

cost of running the 4-way CA once. Furthermore, the first

couple of 2- and 3-way CA’s can also be constructed by using

the 1/2 or 1/3 of the 4-way CA as a seed, not wasting the

testing resources for the cost model discovery run.

B. Example

We now demonstrate generalized linear cost models using

an example model we obtained for MySQL in a study (Sec-

tion IV). In this example, the configuration space model has

35 configuration options (X1, . . . , X35). The QA task is to run

a test case τ that comes with the source code distribution of

MySQL. The cost of carrying out the task is measured as the

time (in seconds) it takes to execute the test case. For improved

readability, we present a simplified version of this model:

cost(c) = 15.14 + 237.15(X34 == 1)

+ 117.4(X33 == 2 : X35 == 3),

where c is a configuration, and the terms are the intercept, the

main effect of option X34, and the 2nd-order interaction effect

of options X33 and X35, respectively. Furthermore, consider

that a condition in the form of (X == a) evaluates to 1,

if option X assumes the setting of a in the configuration c.
Otherwise, it evaluates to 0.

Given the cost function above, one costly option (i.e., main

effect), therefore, is X34. The estimated impact of having

X34=1, on the execution time of test case τ is 237.15 seconds

on top of the intercept. Another costly effect is the 2nd-

order effect of X33 and X35. When X33=2 and X35=3, the

execution time of τ is increased by 117.4 seconds.

IV. EXPERIMENTS

To evaluate the proposed approach we conducted a series

of experiments using MySQL and Apache as our subject

applications. We first created a configuration space model

for each subject application. For MySQL, the configuration

space model had 35 configuration options: 32 options with 2
settings, 2 options with 3 settings, and 1 option with 4 settings,

implicitly defining a configuration space of 154618822656
configurations. For Apache, the model had 40 configura-

tion options: 37 options with 2 settings, 2 with 3 and 1
with 4 settings, implicitly defining a configuration space of

4947802324992 configurations. To determine these options,

we read the manuals of our subject applications and selected

the options that are likely to vary the costs. Furthermore,

the configuration spaces were kept small to carry out the

experiments in a timely manner.

We then determined three QA tasks for our subject appli-

cations: 1) building the subject application, 2) running its test

suite, and 3) running the test cases in the suite separately. For

all the tasks the cost was measured as the time (in seconds) it

took to carry out the task. For the second and third QA tasks,

we used 522 MySQL and 171 Apache test cases, which came

with the source code distribution of our subject applications.

The difference between these QA tasks is that for the former

task, we discover one cost model for all the test cases in a test

suite, whereas for latter task, we discover one cost model for

each test case in the suite. Furthermore, for the third QA task,

we report on the average values obtained from individual cost

models, each of which was created for a test case.

Given a subject application, its configuration space model,

and a QA task, we created a traditional 4-way covering array

using Jenny [15], carried out the QA task in each selected

configuration, and measured the costs. The sizes of the 2-, 3-

and 4-way CA’s were 19, 55, 166 for MySQL and 20, 61, 192
for Apache. The cost of a 4-way CA is approximately 3 times

the cost of a 3-way CA, but this will either be compensated

or can be eliminated as described at the end of Section III-A.

We then created 3 cost models per QA task as described in

Section III. MySQL runs were performed on an AMD 64

Athlon with 4 GB of RAM, running the Ubuntu 10.10, whereas

Apache runs were performed on an Intel Xeon 2.53 GHz CPU

with 32 GB of RAM, running the CentOS 6.2.

To evaluate the success of the proposed approach in pre-

dicting the costs, we first created 10 different 2- and 3-

way covering arrays for our configuration space models and

measured the actual costs of carrying out the QA tasks.

We then compared these actual costs to the costs predicted

by the cost models discovered. To this end, we used two

standard metrics: coefficient of determination (R2) and the

coefficient of variation of root-mean-square error, in short

CV (RMSE) [16]. The higher the R2, the better the model

is. An R2 value of 1 indicates that the cost model perfectly

predicts the observed costs, whereas an R2 value of 0 indicates

that the model explains none of the variability in the observed

costs. Furthermore, the lower the CV (RMSE), the better the

model is in estimating the costs.

Furthermore, to evaluate the computational complexity of

the cost models, we counted the number of terms, including

the intercept terms, in the models. The lower the number of

terms, the more efficient the model is.
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TABLE I: Evaluating the performance of the cost models created for
MySQL.

QA test cost term
task data model count R2 CV(RMSE)

task 1 3-way additive 39 0.8968 0.0433
task 1 3-way non-additive 43 0.9894 0.0137
task 1 3-way significant-effect 4 0.9662 0.0247
task 2 3-way additive 39 0.7779 0.3681
task 2 3-way non-additive 21 0.9478 0.18
task 2 3-way significant-effect 21 0.9478 0.18
task 3 3-way additive 39 0.7703 0.9221
task 3 3-way non-additive 9.5 0.8308 0.5631
task 3 3-way significant-effect 5.5 0.8289 0.5668

task 1 2-way additive 39 0.8702 0.0463
task 1 2-way non-additive 43 0.9875 0.0146
task 1 2-way significant-effect 4 0.9654 0.0246
task 2 2-way additive 39 0.7746 0.3644
task 2 2-way non-additive 21 0.9454 0.179
task 2 2-way significant-effect 21 0.9454 0.179
task 3 2-way additive 39 0.6543 0.9586
task 3 2-way non-additive 9.5 0.8296 0.5751
task 3 2-way significant-effect 5.5 0.8279 0.5773

Tables I and II summarize the results we obtained. The

columns in these tables indicate the QA task, the strength of

the traditional covering array used as a test set, the cost model

created, the number of terms in the model, and the R2 and

CV (RMSE) values computed, respectively.

We first observed that the proposed approach, while us-

ing only a tiny fraction of the whole configuration spaces

(0.0000000556%, on average), reliably estimated the costs of

the 2- and 3-way covering arrays computed for the study

with an average R2 of 0.88 for MySQL and 0.98 for

Apache, strongly supporting our basic hypothesis. The average

CV (RMSE) values were 0.3212 and 0.0394, respectively.

We then observed that taking interaction (2nd-order) effects

into account together with feature selection, improved the

performance of the cost models, compared to using only the

main effects. The average R2 value obtained from the additive

models was 0.7907 for MySQL and 0.9716 for Apache,

whereas those obtained from the non-additive models were

0.9218 and 0.9758, respectively. These results further justify

the use of covering arrays, because otherwise (i.e., in the

absence of any interaction effects) simple approaches, such as

one-option-at-a-time, could have been used for discovering the

cost model. Furthermore, we believe that the reason as to why

the additive models for MySQL performed poorly, compared

to those for Apache, was because MySQL had more 2nd-order

significant interaction effects than Apache. Note that in the

absence of any significant 2nd-order effects, the additive and

non-additive models tend to perform similarly.

Last, but not least, we observed that using only the signif-

icant main and 2nd-order effects, while greatly reducing the

number of terms in the models, produced comparable results,

compared to using all main and 2nd-order effects (of the

configuration options not eliminated by the feature selection

step). The average R2 value obtained from the significant-

effect models was 0.9136 for MySQL and 0.9793 for Apache,

whereas those obtained from the non-additive models were

TABLE II: Evaluating the performance of the cost models created
for Apache.

QA test cost term
task data model count R2 CV(RMSE)

task 1 3-way additive 45 0.9447 0.0268
task 1 3-way non-additive 10 0.9506 0.0253
task 1 3-way significant-effect 7 0.9509 0.0252
task 2 3-way additive 45 0.9980 0.0262
task 2 3-way non-additive 21 0.9996 0.0112
task 2 3-way significant-effect 14 0.9996 0.0112
task 3 3-way additive 45 0.9754 0.0761
task 3 3-way non-additive 58.7 0.9749 0.0779
task 3 3-way significant-effect 6.5 0.9857 0.0592

task 1 2-way additive 45 0.9408 0.0284
task 1 2-way non-additive 10 0.9544 0.0248
task 1 2-way significant-effect 7 0.9547 0.0247
task 2 2-way additive 45 0.9975 0.0295
task 2 2-way non-additive 21 0.9993 0.0156
task 2 2-way significant-effect 14 0.9993 0.0155
task 3 2-way additive 45 0.9730 0.0845
task 3 2-way non-additive 58.7 0.9762 0.0811
task 3 2-way significant-effect 6.5 0.9857 0.0653

0.9218 and 0.9758, respectively. However, the significant-

effect models did so, while using 64% fewer terms in the

models, on average, compared to the non-additive models,

potentially helping to improve the runtime performance of

cost-aware CIT approaches by reducing the time required to

evaluate the cost model at runtime.

V. CONCLUDING REMARKS AND FUTURE WORK

We presented an automated approach for cost model dis-

covery in configuration spaces. We also empirically evaluated

the proposed approach on two highly configurable widely used

software systems by computing three different types of cost

models for three different QA tasks.

All empirical studies suffer from threats to their internal and

external validity. For this work, we were primarily concerned

with threats to external validity since they limit our ability to

generalize the results of our experiment to industrial practice.

Most of the external threats to validity for this study solely

concern the representativeness of the subject applications,

configuration space models, the test cases, and the QA tasks

used in the experiments. Despite these limitations, we believe

our study supports our basic hypotheses that the proposed

approach can efficiently and effectively discover reliable cost

models. We reached this conclusion by observing that the

proposed approach estimated the costs of previously unseen

covering arrays with an average R2 of 0.93.

As an ongoing work, we have been working on using

the Design of Experiments Theory (DoE) [5], especially the

screening designs, to further improve the quality of the discov-

ered models. Configurations generated by screening designs

often satisfy two desirable properties of being balanced and

orthogonal, which also make orthogonal arrays [14] very

appealing for factorial experiments. However, both screening

designs and orthogonal arrays will very likely be larger in size

than covering arrays. As a future work, we plan to develop

practical processes for discovering cost models and rigorously

evaluate them by conducting large-scale experiments.
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