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Abstract

We consider cost sharing problems with variable demands of heterogeneous goods. We study the
compatibility of two axioms imposed on cost sharing methods: ordinality and average cost pricing
for homogeneous (ACPH) goods. We generalize theordinal proportional method (OPM) for the
two-agent case, Sprumont [Journal of Economic Theory 81 (1998) 126–162] to arbitrary number
of agents.
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1. Introduction

This paper studies the compatibility of two axioms: ordinality and average cost pricing
for homogeneous goods (ACPH), on cost sharing methods. In the two-agent cost sharing
problem,Sprumont (1998)has defined a cost sharing method calledordinal proportional
method (OPM) that satisfies these two axioms. We ask if these two axioms are still com-
patible by cost sharing methods for cost sharing problems with more than two agents. To
answer this question, we generalize the OPM from the two-agent case to the case with any
finite number of agents. For this purpose, we study a specialintegral equation system. Our
generalization of OPM depends on the existence and the uniqueness of the solution of this
equation system.

We consider essentially the same cost sharing model that has been considered in the large
literature on the well-known Aumann–Shapley pricing method (A–S) (Billera et al., 1978;
Billera and Heath, 1982; Mirman and Tauman, 1982; Samet and Tauman, 1982). In this
model, a cost function summarizes the minimum production cost for each demand vector,
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which is a list of quantities representing the demand for each good. Goods are perfectly
divisible. Given a demand vector, the total cost must be attributed to these goods. Examples
of such cost sharing problem are plenty (see the references in the surveyMoulin, 1999).

As is well-known (e.g.Billera and Heath, 1982; Samet and Tauman, 1982), the A–S
method satisfies the axioms of additivity (w.r.t. the cost function), dummy (zero price for
the dummy good whose marginal cost is always zero), scale invariance (SI) (invariance w.r.t.
any re-scaling of the units of the goods), and ACPH (coinciding with the average cost pricing
when goods are homogeneous). Recently,Moulin (1995)and other authors (Friedman and
Moulin, 1999; Moulin and Shenker, 1992; Sprumont, 1998) criticize the A–S by pointing
out that it violates Demand Monotonicity (no agent should pay less when his demand
increases), and propose alternative cost sharing methods.Sprumont (1998)further points
out that the A–S, although it is scale invariant, is notordinal. The ordinality axiom requires
that cost shares be invariant with any increasing transformations of the measurement of the
goods. Clearly, it is stronger than the scale invariance axiom.

The ordinality axiom and the ACPH are, in fact, not compatible in the realm ofaddi-
tive methods satisfying the dummy axiom (Friedman and Moulin, 1999; Sprumont, 1998).
The additivity and dummy axioms, first introduced byShapley (1953)in the cooperative
game theory, have been the two fundamental axioms in the axiomatic cost sharing literature
(Billera and Heath, 1982; Friedman and Moulin, 1999; Haimanko, 1998; Moulin, 1999;
Wang, 1999). In the meantime, additivity has limited the scope of potential meaningful
methods and even become the source of many impossibility results or incompatibilities
between compelling axioms (the incompatibility between ordinality and ACPH is an ex-
ample; for more examples, seeFriedman and Moulin, 1999; Moulin, 1999). Recently, there
has been a growing interest in dropping the additivity axiom and looking fornonadditive
methods, which may reconcile the conflicts or recover the compatibilities between some
compelling axioms (e.g.Koster et al., 1998; Sprumont, 1998). This paper is in line with the
study ofnonadditive methods. Particularly, we show that ordinality and ACPH are compat-
ible through the (nonadditive) OPM for cost sharing problems with any finite number of
agents.

2. The model

Letn be a positive integer. LetN = {1, . . . , n} be the set of agents (or goods). A demand
vector q is a vector inRN+ . Let C0 be the set of functionsC : RN+ → R+ which are
nondecreasing(t ≤ t ′ ⇒ C(t) ≤ C(t ′) for all t, t ′ ∈ RN+ ) and satisfyC(0) = 0. A cost
function is an element inC0. If the first-order partial derivative ofC ∈ C0 with respect to its
ith argument exists att ∈ RN+ , we denote it by∂iC(t).1 DenoteC1 the set of all continuously
differentiable functions inC0 andC2 those that are twice continuously differentiable. Denote
C a subset ofC0.

A problem is a pair(q;C), whereq is a demand vector andC is a cost function. Given a
problem(q;C), a solution of the problem is a vector(x1, . . . , xn) ∈ RN+ such that

∑n
1 xi =

C(q). A method x is a mapping that associates with each problem(q;C) a solutionx(q;C).
1 If ti = 0, it is understood that∂iC(t) stands for the right-hand derivative.
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We call a cost functionC homogeneous if there is a mappingc : R+ → R+ such that

C(q) = c

(∑
i∈N

qi

)
, q ∈ Rn

+.

Call a problem(q;C) homogeneous if the cost functionC is homogeneous.

3. Two axioms

3.1. Average cost pricing for homogeneous goods

We say a methodx satisfies the ACPH axiom if

xi(q;C) = qi∑n
j=1 qj

C(q), i = 1, . . . , n

whenever the problem(q;C) is homogeneous.
We say a method is anaverage cost extension if it satisfies ACPH.
The Aumann–Shapley (A–S) pricing method (Billera et al., 1978; Billera and Heath,

1982; Samet and Tauman, 1982; Tauman, 1988) is an average cost extension:

xAS
i (q, C) = qi

∫ 1

0
∂iC(tq)dt, i = 1, . . . , n. (1)

In fact, the A–S is the unique average cost extension within the family of additive meth-
ods. More precisely, the A–S is characterized by the axioms of additivity, dummy, scale
invariance (SI), and ACPH (Billera et al., 1978; Billera and Heath, 1982; Samet and
Tauman, 1982; Tauman, 1988), where additivity and dummy are the two classical axioms
of Shapley (1953), and SI is a property of “measurement invariance” with respect to the
“linear transformations” of the measurement units. We restate them as follows.

Additivity: For everyq ∈ RN+ andC1, C2 ∈ C,
x(q;C1 + C2) = x(q;C1)+ x(q;C2).

Dummy: Given(q;C). For anyi = 1, . . . , n, if ∂iC(t) = 0, ∀ t ∈ RN+ , then

xi(q;C) = 0.

Scale invariance: For any(q;C) and anyr ∈ RN+ , r 
 0,

x(q;C) = x((r1q1, . . . , rnqn);Cr)

whereCr(t) = C((1/r1)t1, . . . , (1/rn)tn), t ∈ RN+ .
The following nonadditive method, calledproportionally adjusted marginal pricing

(PAMP) method is also an average cost extension:

xi(q;C) = ∂iC(q)qi∑n
j=1 ∂jC(q)qj

C(q), i = 1, . . . , n

and satisfies SI.
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However, the example2 below shows that both the A–S and the PAMP are not independent
of the “nonlinear transformations” of the methods of measuring the goods.

Consider the cost function

C(t1, t2) = t1 + √
t2 + t1

√
t2,

wheret1, t2 represent thedistance from two locations, A and B, to a destination D, and
function C represents the cost (e.g. time) of travelling from these two locations to the
destination.

Consider the problem((1,1);C) first.

(1) By the A–S method, A and B’s cost shares are

xAS
A ((1,1);C) = 5

3 and xAS
B ((1,1);C) = 4

3.

(2) By the PAMP, A and B’s cost shares are

xPAMP
A ((1,1);C) = 2 and xPAMP

B ((1,1);C) = 1.

Now suppose that we usetime instead ofdistance as the measurement unit of the variables
t1, t2, and the cost function accordingly changes to

C̃(t1, t2) = t1 + t2 + t1t2.

Re-calculate A and B’s cost shares, we then have

(1′) by the A–S method

xAS
A ((1,1); C̃) = 3

2 and xAS
B ((1,1); C̃) = 3

2.

(2′) by the PAMP

xPAMP
A ((1,1); C̃) = 3

2 and xPAMP
B ((1,1); C̃) = 3

2.

Therefore, the A–S and the PAMP are not fully independent of the measurement units of
the goods, although they both satisfy SI.

To rule out this “measurement dependence”, we impose the ordinality axiom given in the
following sections.

3.2. Ordinality

For completeness, we restate here the definition of ordinality first proposed bySprumont
(1998).

Given the domainC. Let f = (f1, . . . , fn), wheref (t) = (f1(t1), . . . , fn(tn)), t =
(t1, . . . , tn) ∈ RN+ and eachfi is a bijection fromR+ onto itself. For each cost functionC
in C, defineCf : Rn+ → R+ by

Cf (t) = C(f (t)) for all t ∈ Rn
+.

2 This example is taken fromSprumont (1998).
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Call f an ordinal transformation ifC is closed under it, i.e.

Cf ∈ C for all C ∈ C.
We can easily check that whenC = C1 a bijectionf is an ordinal transformation if and only
if it is increasing and continuously differentiable.

Call two problems(q;C) and (q ′;C′) ordinally equivalent if there exists an ordinal
transformationf such that

C′ = Cf and q = f (q ′).

We say a cost sharing methodordinal if it satisfies the following axiom.
Ordinality: If (q;C) and(q ′;C′) are two ordinally equivalent problems, thenx(q;C) =

x(q ′;C′).
Note that if the ordinal transformation is linear, i.e.

f (t) = (λ1t1, . . . , λntn), (λ1, . . . , λn) 
 0,

ordinality becomes SI.
As we have shown in the preceding example, both the A–S and the PAMP are not ordinal.

4. Ordinal proportional method

In this section, we assume that all cost functions are twice continuously differentiable,
i.e. we consider the domainC2.

We say that a problem(q;C) is proportionally normalized (Sprumont, 1998) if

∂iC(rq) = 1,0 ≤ r ≤ +∞, i = 1, . . . , n. (2)

If (q;C) isproportionally normalized, then we apply the average cost pricing for the solution
of the problem, i.e.

xi(q;C) = qi∑
i∈N qj

C(q), i = 1, . . . , n.

Definition 1. For any given problem(q;C), if (q∗;C∗) is its proportionally normalized
problem, then definex(q;C) by

xi(q;C) = q∗
i∑

j∈N q∗
j

C∗(q∗) = q∗
i∑

j∈N q∗
j

C(q), i = 1, . . . , n,

and callx ordinal proportional method.
An immediate question is: Can any problem beproportionally normalized? The following
example says no.

Example 1. LetN = {1,2,3}, q = (1,1,1), and

C(t1, t2, t3) = t1 + t2, (t1, t2, t3) ∈ RN
+ .
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Since∂3C(t1, t2, t3) = 0, ∀ (t1, t2, t3) ∈ RN+ , problem(q;C) cannot be proportionally
normalized.

Now we ask under what condition(s) can we guarantee that a problem always has a unique
proportional normalization? Our main theorem below provides such “sufficient conditions”.

Formally, consider the following question. Given a problem(q;C), under what condi-
tion does there exist a unique pair ofq∗ andf , whereq∗ = (q∗

1, . . . , q
∗
n) andf (λ) =

(f1(λ1), . . . , fn(λn)) such that(q;C) is ordinally equivalent to (q∗; C∗) by the ordinal
transformationf , and (q∗; C∗) is proportionally normalized, i.e.



∂C(f (sq∗))
∂qi

f ′
i (sq∗

i ) = 1, s ∈ (0,+∞), i = 1, . . . , n,

f (0) = 0,

f (q∗) = q.

Let x(s) = (x1(s), . . . , xn(s)) := (f1(sq∗
1), . . . , fn(sq∗

n)) and consider the following gen-
eralized initial value problem:


ẋi (s) = q∗

i

∂iC(x(s))
, s ∈ (0,+∞), i = 1, . . . , n,

x(0) = 0,

x(1) = q.

(3)

For a givenq∗, the initial value problem
 ẋi (s) = q∗

i

∂iC(x(s))
, s ∈ (0,+∞), i = 1, . . . , n

x(0) = 0

is equivalent to the following integral equation problem:

xi(s) = q∗
i

∫ s

0

1

∂iC(x(t))
dt, s ∈ (0,+∞), i = 1, . . . , n.

By the conditionx(1) = q, the question becomes the existence and uniqueness of the
solution to the following integral equation problem:

xi(s) = qi∫ 1
0 [1/∂iC(x(t))] dt

∫ s

0

1

∂iC(x(t))
dt, s ∈ (0,+∞), i = 1, . . . , n. (4)

Without loss of generality, in the following discussion we always assume thatC has been
extended on the whole spaceRn.

Theorem 1. Given a problem (q;C). Assume that q 
 0, and the cost function C is twice
continuously differentiable, and there exist positive constants a(C), b(C), and d(C), where

d(C) <
1

2‖q‖
a2(C)

b(C)



Y.-T. Wang, D. Zhu / Journal of Mathematical Economics 37 (2002) 215–230 221

(where ‖q‖ = maxi∈N |qi |) such that

a(C) ≤ ∂iC(t) ≤ b(C), t ∈ RN
+ , i = 1, . . . , n,

and
n∑

j=1

|∂2
ijC(t)| ≤ d(C), t ∈ RN

+ , i = 1, . . . , n.

Then the following equation has a unique solution:

xi(s) = qi∫ 1
0 [1/∂iC(x(t))] dt

∫ s

0

1

∂iC(x(t))
dt, s ∈ (0,+∞), i = 1, . . . , n. (5)

In other words, the problem (q;C) can be uniquely proportionally normalized through an
ordinal transformation.

Proof. The proof is divided into three steps.
Step 1. First, we show the existence of a vector functionx(s) = (x1(s), . . . , xn(s)) that

satisfiesEq. (5)on [0,M], whereM > 0.
Let

X =C([0,M];Rn)

= {x(s) = (x1(s), . . . , xn(s))|xi(s)(i = 1, . . . , n) : [0,M] → R continuous}.
Define norm‖x‖ = max1≤i≤nmax0≤s≤M |xi(s)|. ThenX is a Banach space with respect

to this norm.
Define the mappingT : X → X by

(Tx)(s) :=
(

qi∫ 1
0 [1/∂1C(x(t))] dt

∫ s

0

1

∂1C(x(t))
dt, . . . ,

qn∫ 1
0 [1/∂nC(x(t))] dt

×
∫ s

0

1

∂nC(x(t))
dt

)
, s ∈ [0,M].

It is obvious thatT is continuous and by the Arzelá–Ascoli theorem (Kantorovich and
Akilov, 1964), it is also compact (we omit the detail).

Denote

r = max

{
1,

b(C)

a(C)
M‖q‖

}
.

Since

‖Tx‖ = max
1≤i≤n

max
0≤s≤M

|(Tx)i(s)| ≤ b(C)

a(C)
M‖q‖ ≤ r,

all the solutions ofEq. (5)(on [0,M]) satisfy

‖x‖ ≤ r.
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Consider the ball̄B(0, r) = {x ∈ X|‖x‖ ≤ r} of X. ThenT B̄(0, r) ⊆ B̄(0, r). SinceT
is a continuous compact mapping, by the Schauder fixed-point theoremT has at least one
fixed-pointx in B̄(0, r), and a fixed-pointx is a solution ofEq. (5).

Step 2. Now we show that any solution ofEq. (5)on the finite interval [0,M] (M ≥ 1)
can be uniquely extended on [0,+∞).

Suppose thatx(s) is a solution ofEq. (5)on [0,1] (its existence is from Step 1), consider
the following revised initial value problem.


˙̄xi(s) = qi∫ 1

0 [1/∂iC(x(t))] dt

1

∂iC(x̄(s))
, i = 1, . . . , n

x̄(s0) = ξ, s0 ≥ 0.

(6)

It is standard that whenC is twice continuously differentiable, for any givenξ , the solution
to the above problem is locally unique (seeCorduneanu, 1977). On the other hand, by the
same argument as in Step 1, we can show that for arbitraryM ≥ 1, the relatively simpler
problem


˙̄xi(s) = qi∫ 1

0 [1/∂iC(x(t))] dt

1

∂iC(x̄(s))
, i = 1, . . . , n

x̄(0) = 0

(7)

has at least one solution̄x defined on [0,M].
Thus, by combining the above two facts, we can deduce thatEq. (7)has a unique solution

x̄ defined on [0,+∞) and it is obvious that

x̄(s) = x(s), s ∈ [0,1].

Step 3. Now we show the uniqueness of the solution ofEq. (5). From Steps 1 and 2, we
only need to consider the uniqueness of the solution ofEq. (5)on [0,1].

Let spaceX and operatorT be the same space and operator as defined in Step 1 (M = 1).
It is easy to check that now the solution ofEq. (5)satisfies

‖x‖ ≤ ‖q‖.
For anyg, h ∈ X, consider Ĝateaux differential ofT atg as follows:

(T ′(g)h)(s)= d

dθ
T (g + θh)(s)

∣∣∣∣
θ=0

=
(

d

dθ

[
q1∫ 1

0 [1/∂1C(g + θh)] dt

∫ s

0

1

∂1C(g + θh)
dt

]∣∣∣∣∣
θ=0

, . . . ,

× d

dθ

[
qn∫ 1

0 [1/∂nC(g + θh)] dt

∫ 1

0

1

∂nC(g + θh)dt

×
∫ s

0

1

∂nC(g + θh)
dt

]∣∣∣∣∣
θ=0

)
.
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Compute the first component only, i.e.

d

dθ

[
q1∫ 1

0 [1/∂1C(g + θh)] dt

∫ s

0

1

∂1C(g + θh)
dt

]∣∣∣∣∣
θ=0

=
([

d

dθ

(
q1∫ 1

0 [1/∂1C(g + θh)] dt

)]∫ s

0

[
1

∂1C(g + θh)
dt

]

+ q1∫ 1
0 [1/∂1C(g + θh)] dt

[
d

dθ

∫ s

0

1

∂1C(g + θh)
dt

])∣∣∣∣∣
θ=0

=
q1
∫ 1

0 [
∑n

j=1 ∂
2
1jC(g)hj /[∂1C(g)]2] dt

[
∫ 1

0 (1/∂1C(g)dt ]2

∫ s

0

1

∂1C(g)
dt =

− q1∫ 1
0 [1/∂1C(g)dt ]

∫ s

0

∑n
j=1 ∂

2
1jC(g)hj

(∂1C(g))2
dt.

By definition

‖T ′(g)h‖ = max
1≤i≤n

max
0≤s≤1

|(T ′(g)h)i(s)|.

And for eachi = 1, . . . , n

|(T ′(g)h)i(s)| ≤
qi |
∫ 1

0 [
∑n

j=1 ∂
2
ijC(g)hj /[∂iC(g)]

2] dt

[
∫ 1

0 (1/∂iC(g))dt ]2

∫ s

0

1

∂iC(g)
dt

+ qi∫ 1
0 [1/∂iC(g)] dt

∣∣∣∣∣
∫ s

0

∑n
j=1 ∂

2
ijC(g)hj

(∂iC(g))2
dt

∣∣∣∣∣
≤ 2qi

b(C)

a2(C)
sup
t∈Rn

∣∣∣∣∣∣
n∑

j=1

∂2
ijC(t)

∣∣∣∣∣∣ ‖h‖ (s ≤ 1).

Since

sup
t∈Rn

∣∣∣∣∣∣
n∑

j=1

∂2
ijC(t)

∣∣∣∣∣∣ ≤ d(C), i = 1, . . . , n,

and

d(C) <
1

2‖q‖
a2(C)

b(C)
.

Therefore,

γ := 2‖q‖ b(C)

a2(C)
d(C) < 1,
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then for eachi = 1, . . . , n

2qi
b(C)

a2(C)
sup
p∈Rn

∣∣∣∣∣∣
n∑

j=1

∂2
ijC(p)

∣∣∣∣∣∣ ‖h‖ ≤ 2‖q‖ b(C)

a2(C)
sup
p∈Rn

∣∣∣∣∣∣
n∑

j=1

∂2
ijC(p)

∣∣∣∣∣∣ ‖h‖ ≤ γ ‖h‖.

So,

‖T ′(g)h‖ ≤ γ ‖h‖,
i.e.

‖T ′(g)‖ ≤ γ, ∀ g ∈ X.

SinceT is also Fréchet-differentiable, by the mean-value theorem on Banach space we have

‖Tg1 − Tg2‖ ≤ sup
0≤t≤1

‖T ′(tg1 + (1 − t)g2)‖‖g1 − g2‖ ≤ γ ‖g1 − g2‖,

hence,T is a contraction.
Now consider the closed ballB̄(0, ‖q‖) ⊂ X. SinceT B̄(0, ‖q‖) ⊆ B̄(0, ‖q‖) andT is a

contraction, by the contraction mapping theorem it has a unique fixed-pointx ∈ B̄(0, ‖q‖).
The unique fixed-pointx is the unique solution ofEq. (5)on [0,1] and by Step 2,x can
be uniquely extended to [0,+∞). Finally, check that eachxi(s), i = 1, . . . , n is a strictly
increasing function. This is obvious since dxi(s)/ds > 0, i = 1, . . . , n. The theorem is
proved. �
The next question is: Are these conditions also “necessary”? Unfortunately, the answer is no.
The following example demonstrates that a problem may have a proportional normalization
but not satisfy the conditions required in the theorem.

Example 2. LetN = {1,2}, q = (1,1).

C(t1, t2) = t21 + t32, 0 ≤ t1, t2 < +∞.

Let

t1 = f1(t
′
1) = √

t
′
1, t2 = f2(t

′
2) = 3

√
t
′
2.

Then, the proportional normalization is

C∗(q1, q2) = q1 + q2,

with

q∗ = (1,1), f = (f1, f2).

Note that the first-order partial derivatives ofC are not bounded away from zero and infinity.
Knowing that not all problems can be proportionally normalized, as shown inExample 1,

we ask: Are the problems that can be uniquely proportionally normalized “dense”3 in the

3 The worddense is referred to the standard topology on the space of cost functions. For simplicity, we fix the
demand vector. SeeSection 6for the detail.
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set of all problems? In other words, for any given problem, is there another problem in the
“neighborhood” of the given problem that can be uniquelyproportionally normalized? The
following example suggests a positive answer.

Example 3 (Contrary of Example 1). LetN = {1,2,3}, q = (1,1,1), and

C(t1, t2, t3) = t1 + t2, (t1, t2, t3) ∈ RN
+ .

We have known that the problem(q;C) cannot be proportionally normalized. Now we
consider an approximation of(q;C) by (q ′; C̃) whereε > 0, q ′ = (1,1,1), and

C̃(t1, t2, t3) = t1 + t2 + εt3, (t1, t2, t3) ∈ RN
+ .

Clearly,(q ′; C̃) can be proportionally normalized to((1,1, ε);Cf ), where

f1(t1) = t1, f2(t2) = t2, f3(t3) = 1

ε
t3,

and

Cf (t ′1, t
′
2, t

′
3) = t ′1 + t ′2 + t ′3.

In Section 6, we propose a conjecture that any problem has an “approximation” that
can be proportionally normalized. We also show that the conjecture is equivalent to the
feasibility problem of a system of differential inequalities. However, we do not pursue this
question further since it is beyond the scope of this paper.

The next example shows thatTheorem 1indeed identifies a nontrivial family of problems
that can be proportionally normalized.

Example 4. For any givenq 
 0,4 consider the cost function

C(q) =
∑
i∈N

λiqi,

whereλi > 0, i = 1, . . . , n.
Let a(C) = mini∈Nλi andb(C) = maxi∈Nλi , and

d(C) = 1

2

1

‖q‖
a2(C)

b(C)
.

Then,

a(C) ≤ ∂iC(t) ≤ b(C), t ∈ RN
+ , i = 1, . . . , n,

and ∑
j∈N

|∂2
ijC(t)| ≤ d(C), t ∈ RN

+ , i = 1, . . . , n.

Therefore,(q;C) can be uniquely proportionally normalized.

4 If qi = 0, i ∈ N , definexi(q;C) = 0 and replaceN byA(q) = {j ∈ N |qj > 0}.
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Obviously, for the problem given previously, the ordinal transformation that proportion-
ally normalizes it is

fi(ti) = 1

λi
ti , i = 1, . . . , n,

and

q∗ = (q∗
1, . . . , q

∗
n) = (λ1q1, . . . , λnqn).

Therefore,

xi(q;C) = λiqi, i = 1, . . . , n.

Finally, we check that the OPM given inDefinition 1 indeed satisfies ordinality and
ACPH.

For ordinality, it is enough to check that any two problems that are ordinally equivalent
to each other must have the same proportionally normalized problem (if either has one).
This is easily seen from the following diagram.

(q;C) f ∗unique⇔ (q∗;C∗)
f � f−1 f ◦ f ′∗ � f−1 ◦ f ∗

(q ′;C′) f ′∗unique⇔ (q ′∗;C′∗)

which implies(q∗;C∗) = (q ′∗;C′∗).
Now we check ACPH. Consider a homogeneous problem(q;C) and assume that it is

proportionally normalized to problem(q∗;C∗). Since

q∗
i = qi∫ 1

0 [1/∂iC(x(t)] dt
, i = 1, . . . , n,

(seeEq. (5)) and

∂iC(t) = ∂jC(t), t ∈ RN
+ , i, j = 1, . . . , n,

therefore,

xi(q;C) = q∗
i∑

i∈N q∗
j

C∗(q∗) = qi∑
i∈N qj

C(q), i = 1, . . . , n.

Remark. In the two-agent case,Sprumont (1998)does not use the boundary condition
on the second-order derivatives inTheorem 1. But he does assume that the first-order
derivatives are bounded away from zero and infinity, which is necessary5 to guarantee a
proportional normalization. In fact, he provides an entirely different but much simpler proof
for the unique existence of a proportional normalization for any given problem satisfying
the boundary conditions for the first-order derivatives. However, the technique inSprumont
(1998)is not applicable in the general case here. SeeSprumont (1998)for the detail.

5 But it is not a necessary condition for a problem to have a proportional normalization, as shown inExample 2.
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5. Ordinal prices

A price mechanismp(·, ·) is a rule that associates with each problem(q;C) a vector of
prices:

p(q;C) = (p1(q;C), . . . , pn(q;C)).
The A–S pricing method is a price mechanism, and so is the PAMP (seeSection 3). But
these two mechanisms are not ordinal, as we have shown inSection 3.

The OPM is an ordinal price mechanism.
In fact, for any given problem(q;C), assume that(q;C) is proportionally normalized

to (q∗;C∗) through ordinal transformationf . Let

x(s) = (x1(s), . . . , xn(s)) = (f1(sq∗
1), . . . , fn(sq∗

n)), s ∈ [0,1].

Define

p∗(q;C) = (p∗
1(q;C), . . . , p∗

n(q;C)),
where

p∗
i (q;C) = 1∫ 1

0 [1/∂iC(x(t))] dt
, i = 1, . . . , n.

Then
n∑
1

p∗
i (q;C)qi = C(q).

Actually,

C(q)=
∫ 1

0

n∑
1

∂iC(x(s))ẋi(s)ds =
n∑
1

q∗ (from Eq.(3))

=
n∑
1

qi

[∫ 1

0

1

∂iC(x(t))
dt

]−1

(from Eq.(4)) =
n∑
1

p∗
i (q;C)qi.

Clearly, the price vector

p∗(q;C) = (p∗
1(q;C), . . . , p∗

n(q;C)),
is ordinal, namely for eachi = 1, . . . , n, p∗

i (q;C)qi is invariant with any increasing trans-
formations of the measurement units of the goods.

6. Discussion

We conjecture that the problems that can beproportionally normalizedare dense inC1.
Meanwhile, we raise a general question about the existence of solutions or the feasibility
of a system ofdifferential inequalities that relates to the conjecture.
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For convenience, assume that all demand vectors are bounded byM > 0, namelyqi ≤
M, i = 1, . . . , n. Consider a given problem(q;C) with the constants 0< a(C) < b(C)

such that

a(C) ≤ ∂iC(t) ≤ b(C), t ∈ RN
+ , i = 1, . . . , n.

If (q;C) can be uniquely proportionally normalized to(q∗;C∗), then it must have

|q∗
i | = qi∫ 1

0 [1/∂iC(x(t))] dt
≤ b(C)M, i = 1, . . . , n

wherex(s) is the function inEq. (5) that corresponds to the ordinal transformationf .
Therefore,q∗ is also bounded (the bound may depend onC).

Note that we do not have the so-calledindependence of irrelevant costs (IIC) property
as we do in the case of additive methods, where IIC is a corollary of additivity axiom (see
Lemma 1 inFriedman and Moulin, 1999). This implies that for a given problem(q;C),
where the demand vectorq is bounded byM > 0, in its proportionally normalized problem
(q∗;C∗) (if there is), the demand vectorq∗ is also bounded but may be well beyond the
previous boundM. That is why we define the proportional normalization conditionEq. (2)
on the domainRN+ .

Conjecture. For any given problem(q;C) andε > 0, where‖q‖ ≤ M and the constants
0 < a(C) < b(C) satisfy

ε < a(C) ≤ ∂iC(t) ≤ b(C), t ∈ RN
+ , i = 1, . . . , n,

there exists another cost functionC̃ onRN+ such that

1. the functionC̃ is in theε-neighborhood ofC with respect to the norm:

‖C‖ = max
t∈[0,Me]

C(t)+ max
t∈[0,Me]

max
i∈N

|∂iC(t)|,

wheree = (1 . . .1), i.e.

|C̃(t)− C(t)| ≤ ε, t ∈ [0,Me]

|∂iC̃(t)− ∂iC(t)| < ε, t ∈ [0,Me], i = 1, . . . , n,

and outside [0,Me]

a(C)− ε ≤ ∂iC̃(t) ≤ b(C)+ ε, t ∈ RN
+ , i = 1, . . . , n,

2. the second-order derivatives ofC̃ satisfy

∑
j∈N

|∂ijC̃(t)| ≤ 1

2

a2(C̃)

2‖Me‖b(C̃) , t ∈ RN
+ , i = 1, . . . , n,

wherea(C̃) = a(C)− ε andb(C̃) = b(C)+ ε.
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In other words, the problem(q; C̃) satisfies the conditions inTheorem 1and thus can be
proportionally normalized.

More generally, we ask the following question: Givenε > 0, δ > 0, M > 0 and a
functionC ∈ C2[0,Me], does the following system of differential inequalities always have
a feasible solutioñC:

−ε < C̃(t)− C(t) < ε, t ∈ RN
+ ,

−ε < ∂iC̃(t)− ∂iC(t) < ε, t ∈ RN
+ , i = 1, . . . , n

and ∑
j∈N

|∂ijC̃(t)| ≤ δ, t ∈ RN
+ , i = 1, . . . , n.

We do not know the answer yet. Traditionally, to “smoothly” approximate a given function
with two variables, one sometimes uses Bezier6 surfaces and B-spline surfaces (Gerald
and Wheatley, 1999). However, the construction of such an approximation is very complex
(Gerald and Wheatley, 1999). For the function with three or more variables as in our case,
we do not know how to generalize the Bezier (and B-spline) curves or surfaces.

If we can show that the set of all problems that can be proportionally normalized is a
dense set in the set of all problems, under certain continuity conditions we may extend the
OPM to any problem. Again, this is beyond the scope of this paper.

In conclusion, we show that the ordinality and the ACPH axioms are compatible in the
realm ofnonadditive methods for a fairly rich family of interesting problems with arbitrary
finite number of agents.
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