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Abstract

We consider cost sharing problems with variable demands of heterogeneous goods. We study the
compatibility of two axioms imposed on cost sharing methods: ordinality and average cost pricing
for homogeneous (ACPH) goods. We generalizedtunal proportional method (OPM) for the
two-agent case, Sprumont [Journal of Economic Theory 81 (1998) 126—-162] to arbitrary number
of agents.
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1. Introduction

This paper studies the compatibility of two axioms: ordinality and average cost pricing
for homogeneous goods (ACPH), on cost sharing methods. In the two-agent cost sharing
problem,Sprumont (1998has defined a cost sharing method calbedinal proportional
method (OPM) that satisfies these two axioms. We ask if these two axioms are still com-
patible by cost sharing methods for cost sharing problems with more than two agents. To
answer this question, we generalize the OPM from the two-agent case to the case with any
finite number of agents. For this purpose, we study a spigtegral equation system. Our
generalization of OPM depends on the existence and the uniqueness of the solution of this
equation system.

We consider essentially the same cost sharing model that has been considered in the large
literature on the well-known Aumann—Shapley pricing method (AB3)gra et al., 1978
Billera and Heath, 1982Vlirman and Tauman, 198Bamet and Tauman, 1982n this
model, a cost function summarizes the minimum production cost for each demand vector,
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which is a list of quantities representing the demand for each good. Goods are perfectly
divisible. Given a demand vector, the total cost must be attributed to these goods. Examples
of such cost sharing problem are plenty (see the references in the $lowépn, 1999.

As is well-known (e.gBillera and Heath, 1982Samet and Tauman, 1982he A-S
method satisfies the axioms of additivity (w.r.t. the cost function), dummy (zero price for
the dummy good whose marginal cost is always zero), scale invariance (Sl) (invariance w.r.t.
any re-scaling of the units of the goods), and ACPH (coinciding with the average cost pricing
when goods are homogeneous). ReceMigulin (1995)and other authorg-fiedman and
Moulin, 1999 Moulin and Shenker, 1995prumont, 199Bcriticize the A—S by pointing
out that it violates Demand Monotonicity (no agent should pay less when his demand
increases), and propose alternative cost sharing metBpdgmont (1998jurther points
out that the A-S, although it is scale invariant, is aalinal. The ordinality axiom requires
that cost shares be invariant with any increasing transformations of the measurement of the
goods. Clearly, it is stronger than the scale invariance axiom.

The ordinality axiom and the ACPH are, in fact, not compatible in the realaddit
tive methods satisfying the dummy axiofarfedman and Moulin, 199%prumont, 1998
The additivity and dummy axioms, first introduced $iapley (1953)n the cooperative
game theory, have been the two fundamental axioms in the axiomatic cost sharing literature
(Billera and Heath, 1982 riedman and Moulin, 199%Haimanko, 1998Moulin, 1999
Wang, 1999. In the meantime, additivity has limited the scope of potential meaningful
methods and even become the source of many impossibility results or incompatibilities
between compelling axioms (the incompatibility between ordinality and ACPH is an ex-
ample; for more examples, seeedman and Moulin, 199%oulin, 1999. Recently, there
has been a growing interest in dropping the additivity axiom and lookingdoadditive
methods, which may reconcile the conflicts or recover the compatibilities between some
compelling axioms (e.doster et al., 1998Sprumont, 1998 This paper is in line with the
study ofnonadditive methods. Particularly, we show that ordinality and ACPH are compat-
ible through the rfonadditive) OPM for cost sharing problems with any finite number of
agents.

2. The mode€

Letn be a positive integer. Lé¥ = {1, ..., n} be the set of agents (or goods). A demand
vector g is a vector inRY. Let Cp be the set of function§ : RY — R, which are
nondecreasingr < t' = C(t) < C() forall¢,¢' € Rf) and satisfyC(0) = 0. A cost
function is an element i@iy. If the first-order partial derivative af € Co with respect to its
ith argument exists ate RY, we denote itby; C(r).> DenoteC; the set of all continuously
differentiable functions i€y andC» those that are twice continuously differentiable. Denote
C a subset of.

A problemis a pair(¢; C), whereg is a demand vector ard is a cost function. Given a
problem(g; C), a solution of the problemis a vector, .. ., x,) € R} suchthad ] x; =
C(g). A method x is a mapping that associates with each problenC) a solutionx(g; C).

1If ; = 0, itis understood tha; C(r) stands for the right-hand derivative.
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We call a cost functio©” homogeneous if there is a mapping : Ry — R4 such that
Clg) =c (Z%) ., q€RL
ieN

Call a problem(g; C) homogeneous if the cost functighis homogeneous.

3. Two axioms
3.1. Average cost pricing for homogeneous goods

We say a method satisfies the ACPH axiom if

T _c@) i=1...n
Zj:l qj
whenever the probler@y; C) is homogeneous.
We say a method is aaverage cost extension if it satisfies ACPH.
The Aumann-Shapley (A-S) pricing methd8lillera et al., 1978 Billera and Heath,
1982 Samet and Tauman, 198Pauman, 198Bis an average cost extension:

xi(q; C) =

1
xlAS(q,C)zqi/O JCcHgdr, i=1,...,n. (1)

In fact, the A-S is the unique average cost extension within the family of additive meth-
ods. More precisely, the A-S is characterized by the axioms of additivity, dummy, scale
invariance (Sl), and ACPHB(llera et al., 1978 Billera and Heath, 1982Samet and
Tauman, 1982Tauman, 1988 where additivity and dummy are the two classical axioms
of Shapley (1953)and Sl is a property of “measurement invariance” with respect to the
“linear transformations” of the measurement units. We restate them as follows.

Additivity: For everyg € RY andC1, Cz € C,

x(q; C1+ C2) = x(g; C1) +x(g; C2).

Dummy: Given(g; C). Foranyi =1,...,n,if 9;C(t) =0, Vt e Rﬁ, then
xi(q;: C) =0.

Scaleinvariance: For any(q; C) and anyr € RY, r > 0,
x(q; €) = x((r1q1, - .-, 'aqn); C")

whereC’(t) = C((1/r))t1, ..., L/rp)ty), te€ Rﬂ.
The following nonadditive method, calledproportionally adjusted marginal pricing
(PAMP) method is also an average cost extension:
0;C(q)qi
> i219;C(@)q;

and satisfies Sl.

xi(q; C) = Clg), i=1...,n
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However, the exampfebelow shows that both the A—S and the PAMP are notindependent
of the “nonlinear transformations” of the methods of measuring the goods.
Consider the cost function

C(t1,12) =t + 12 + 1112,

wherery, 1 represent thelistance from two locations, A and B, to a destination D, and
function C represents the cost (e.g. time) of travelling from these two locations to the
destination.

Consider the probler(1, 1); C) first.

(1) By the A-S method, A and B'’s cost shares are
p2((1,1):;0 =3 and x£5((L1:0) =4
(2) By the PAMP, A and B’s cost shares are
xR, 1), 0) =2 and xFMP((L,1);0) =1
Now suppose that we uieneinstead oflistance as the measurement unit of the variables
11, t2, and the cost function accordingly changes to
C(t1, 1) =11 + 12 + tat2.
Re-calculate A and B’s cost shares, we then have
(1) by the A—S method
S((1,1; 0 =3 and 1851, 1);0) =3
(2) by the PAMP
MR, 10 =3 and ML 1:0) =3
Therefore, the A—S and the PAMP are not fully independent of the measurement units of
the goods, although they both satisfy SI.

To rule out this “measurement dependence”, we impose the ordinality axiom given in the
following sections.

3.2. Ordinality

For completeness, we restate here the definition of ordinality first proposggrbynont
(1998)

Given the domairC. Let f = (f1,..., fn), Where f(t) = (f1(t1), ..., fu(ty)),t =
(t1,...,ty) € Ri’ and eachy; is a bijection fromR_. onto itself. For each cost functiaf
inC, defineC’/ : R" — Ry by

cl(t)y=c(f@) foral t e R,

2 This example is taken frofBprumont (1998)
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Call f an ordinal transformation @ is closed under it, i.e.
c/ec forall Cec.

We can easily check that whén= C; a bijectionf is an ordinal transformation if and only
if it is increasing and continuously differentiable.

Call two problems(g; C) and (¢’; C’) ordinally equivalent if there exists an ordinal
transformations such that

c'=c/ and ¢ =f(q).

We say a cost sharing methortinal if it satisfies the following axiom.

Ordinality: If (¢; C) and(q’; C") are two ordinally equivalent problems, the¢y; C) =
x(q'; C).

Note that if the ordinal transformation is linear, i.e.

f(t) = ()\._‘]_tl, ey )"l‘ltn)’ ()"17 ey )\n) >> 07

ordinality becomes SI.
As we have shown in the preceding example, both the A—S and the PAMP are not ordinal.

4. Ordinal proportional method

In this section, we assume that all cost functions are twice continuously differentiable,
i.e. we consider the domaii.
We say that a problery; C) is proportionally normalized (Sprumont, 1998if

9;Cr) =1,0<r <400, i=1...,n 2

If (¢; C)isproportionally normalized, then we apply the average cost pricing for the solution
of the problem, i.e.

Xi(CIQC)ZﬁC(q), i=1....n
ieN 1)

Definition 1. For any given problentg; C), if (¢g*; C*) is its proportionally normalized
problem, then define(q; C) by
£ *

4d; ook 4q; .
=—C'@)=="—=5C@, i=1...,n,
Z:jeN‘I;K ZjeNq7

and callx ordinal proportional method.
An immediate question is: Can any problemgoeportionally normalized? The following

example says no.

xi(q; C) =

Examplel. LetN ={1,2,3},¢9 = (1,1,1), and

C(t1,t2,13) =1+ 12, (11,12,13) € RY.
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Sinced3C (i1, 12, 13) = 0, V (i1, 12, 13) € RY, problem(q; C) cannot be proportionally
normalized.
Now we ask under what condition(s) can we guarantee that a problem always has a unique
proportional normalization? Our main theorem below provides such “sufficient conditions”.
Formally, consider the following question. Given a problemC), under what condi-
tion does there exist a unique pair ¢f and f, whereq* = (¢7,...,q;) and f(A) =
(f1(A1), ..., fu(An)) such that(g; C) is ordinally equivalent tog*; C*) by the ordinal
transformationf, and ¢*; C*) is proportionally normalized, i.e.

AC(f(s99)
9qi

f© =0,

@) =q.

Letx(s) = (x1(s), ..., x,(5)) := (f1(sq)), ..., fu(s0;)) and consider the following gen-
eralized initial value problem:

flisg) =1 se(0,+00), i=1,...,n,

o4 .

Xi(s) = —E)iC(x(s))’ s€(0,+00), i=1,...,n,

x(0) =0, ®)
x(1) =gq.

For a giverg*, the initial value problem

% C(x(s))’

{Xi(s)=q—i s€(0,+00), i=1,...,n
x(0)=0

is equivalent to the following integral equation problem:

§ 1
i) =g | ———dr, se©+00), i=1...n
xi(s) q,fo oo & S0 n

By the conditionx(1) = ¢, the question becomes the existence and uniqueness of the
solution to the following integral equation problem:

qi s 1 .
o dr, se€(0,+00), i=1....n. (4
e JoIL/8;C(x (1) dr fo ) R (0, +00), i n. (4

Without loss of generality, in the following discussion we always assumeCtinats been
extended on the whole spa®é.

Theorem 1. Givenaproblem (g; C). Assumethat g >> 0, and the cost function C istwice
continuously differentiable, and there exist positive constantsa(C), b(C), and d(C), where

1 a?(0)

d(C _—
© = 2541 50
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(where |||l = max.en|g; ) such that
a(C) <9;C() <b(C), teRY, i=1...n,
and
n
Y lsdc@l <d©), teRY, i=1....n
j=1

Then the following eguation has a unigque solution:

qi s 1 .
o dr, 0,400), i=1,....,n. (5
we fol[l/B,'C(x(t))]dt /o 3;C(x(1)) 1, sel( 00), I n (5)

In other words, the problem (¢; C) can be uniquely proportionally normalized through an
ordinal transformation.

Proof. The proof is divided into three steps.

Step 1. First, we show the existence of a vector function = (x1(s), ..., x,(s)) that
satisfiesEq. (5)on [0, M], whereM > 0.

Let

X =C([0, M]; R")
={x(s) = (x2(s), ..., X, () |x;(s)@ =1, ...,n) : [0, M] — R continuous.

Define norm||x || = maxi<;<nMaX<s<m|x; (s)|. ThenX is a Banach space with respect
to this norm.
Define the mappin@ : X — X by

(M)(s) = | — ai /S 1 dr, ..., — an
S mc e de Jo 01C& @) JAIL/8,CCe(0))] it

X'/S;dt . selo, M.
0 9, C(x(?))

It is obvious thatT is continuous and by the Arzela—Ascoli theorekaiftorovich and
Akilov, 1964), it is also compact (we omit the detail).

Denote
r= max{l, @ann} .
a(C)
Since
ITX]| = ml@fz Lnsax [(TX); ()] < %Mllqll <

all the solutions oEq. (5)(on [0, M]) satisfy

x|l < r.
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Consider the balB(0, r) = {x € X|||x|| < r} of X. ThenT B(0,r) < B(0, r). SinceT
is a continuous compact mapping, by the Schauder fixed-point thebrieas at least one
fixed-pointx in B(0, r), and a fixed-point is a solution ofEq. (5)

Step 2. Now we show that any solution®f]. (5)on the finite interval [OM] (M > 1)
can be uniquely extended on, [Boo).

Suppose that(s) is a solution oEq. (5)on [0, 1] (its existence is from Step 1), consider
the following revised initial value problem.

qi 1 .
T acGey Tt
o[1/9;C(x(#))]dt % (6)

x(so) =&, so > 0.

Xi(s)

Itis standard that whefi is twice continuously differentiable, for any givénthe solution
to the above problem is locally unique (S8erduneanu, 19%70n the other hand, by the
same argument as in Step 1, we can show that for arbitdary 1, the relatively simpler
problem

gi 1 .
" amc acGey Tt
0 i C(x(2))]dt 9 (7)

%(0) =0

Xi(s)

has at least one solutiondefined on [Q M].
Thus, by combining the above two facts, we can deducdahafr)has a unique solution
x defined on [0+o00) and it is obvious that

x(s) =x(s), se]0,1].

Step 3. Now we show the uniqueness of the solutioBaf(5) From Steps 1 and 2, we
only need to consider the uniqueness of the solutidapf(5)on [0, 1].

Let spaceX and operatof” be the same space and operator as defined in Step ().
It is easy to check that now the solutionkd]. (5)satisfies

lxll < ligll-

For anyg, h € X, consider Gteaux differential of” atg as follows:

d
(T'(®h)(s) = g L8 +0m)(s)

0=0

g ooy

6=0

d q1 s 1
“\de | /2 / dr
(d9 |:fo [1/0:C(g + 6h)]dr Jo 01C(g +6h) ]

X i qn /l 1
do fol[l/anc(g—l—eh)]dt 0o ,C(g+0h)dr

s 1
x / 5.Cerom Y '
0o onC(g 0-0
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Compute the first component only, i.e.

i & /s ! dr
d0 | [I[1/0,C(g +om)]de Jo 01C(g+0h) ||
d 7 ; 1
"\l |\ 1 / [— dti|
([de (fo [1/38:C(g + 0h)] dt)} o L01C(g+6h)

+ e [i /Y —l dti|
Jo11/1C (g + 0m)]dr LAO Jo 31C (g +0h) o

a1 31 92,C@h, [ C (@) de / 1
- [/1/81C () dr]2 o 91C(g)

dr =

B / > i_103,C()h;
e dlJo  (B1C(9)?

By definition

IT"(g)hll = max max|(T'(g)h);(s)|.
1<i<n0<s<1

And foreach =1, ..., n

I(T" ()i ()] <

gil fo1Y1_y B3C(9)h;/[8:C ()] di f .
[fo(1/3:C(g)) df]? 0 9C(g)
/S Z] =1 ”C(g)h d['

(3;C(8))?

T
fo [1/0:C(g)]dt

<242 2 sup Za CO|lIR]l (s < D).
(C> :
Since
sup ZE}”C(t) <dC), i=1,..., n,
teR" j= -1
and
a?(C)
d(C _— .
© = 2141 50
Therefore,
b(C)

=20l 5 4@ <1

223



224 Y.-T. Wang, D. Zhu/ Journal of Mathematical Economics 37 (2002) 215-230

thenforeach =1,...,n
b(C)
220 VP Za.,ap) kil < 2lgl 2 2 sup Za C(p)| Ikl < yllAll.
©) perr |24 (C>
So,
1Tkl < yllkll,
i.e.

IT"(9ll <y, YgeX.
SinceT is also Fréchet-differentiable, by the mean-value theorem on Banach space we have

1Tg1 — Tzl < OSUplllT/(tgl + A -0gallllgr — g2ll < ¥llgr— gl
<t<

henceT is a contraction.

Now consider the closed ba(0, ||¢||) ¢ X. SinceT B(0, |i¢|) < B(O, |i¢|)) andT is a
contraction, by the contraction mapping theorem it has a unique fixed=par® (0, |¢|)).
The unique fixed-point is the unique solution oEq. (5)on [0, 1] and by Step 2y can
be uniquely extended to [G-c0). Finally, check that each;(s),i = 1,..., n is a strictly
increasing function. This is obvious since;¢)/ds > 0,i = 1,...,n. The theorem is
proved. a

The next questionis: Are these conditions also “necessary”? Unfortunately, the answer is no.
The following example demonstrates that a problem may have a proportional normalization
but not satisfy the conditions required in the theorem.

Example2. LetN ={1,2},q = (1, 1).
Cn,t)=t2+13, 0<t, 12 <+o0.
Let
n=fA0) =V = faty) =t
Then, the proportional normalization is
C*(q1,92) = 1+ q2,
with
=11, f =1 f2).

Note that the first-order partial derivatives@are not bounded away from zero and infinity.
Knowing that not all problems can be proportionally normalized, as sho&@rample 1
we ask: Are the problems that can be uniquely proportionally normalized “derisahe

3 The worddense is referred to the standard topology on the space of cost functions. For simplicity, we fix the
demand vector. Se®ection 6or the detail.
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set of all problems? In other words, for any given problem, is there another problem in the
“neighborhood” of the given problem that can be uniqumlyportionally normalized? The
following example suggests a positive answer.

Example 3 (Contrary of Example 1). LeV = {1, 2,3},¢ = (1,1, 1), and

C(t1,t2,13) =1+ 12, (11,12, 13) € RY.
We have known that the probleqg; C) cannot be proportionally normalized. Now we
consider an approximation &§; C) by (¢’; C) wheree > 0,4’ = (1,1, 1), and

Clt, ta, t3) =1+ 12+ €t3, (11,12, 13) € RY.

Clearly,(¢’; C) can be proportionally normalized t61, 1, €); C/), where

1
fit) =11, fo(t2) =12, f3(3) = 213,
and
Cly, thth) =t +th+ 15

In Section § we propose a conjecture that any problem has an “approximation” that
can be proportionally normalized. We also show that the conjecture is equivalent to the
feasibility problem of a system of differential inequalities. However, we do not pursue this
question further since it is beyond the scope of this paper.

The next example shows thHEtteorem lindeed identifies a nontrivial family of problems
that can be proportionally normalized.

Example 4. For any givery > 0,* consider the cost function
Clg)=)_ *igi.
ieN
wherer; > 0,i =1,...,n.
Leta(C) = min;eyA; andb(C) = maxeyAri, and
11 430

MO 2l w0y

Then,
a(C) <d;C(t) <b(C), teRY, i=1..n,
and

S e2cmnl<d©). reRY, i=1...n
jeN

Therefore(q; C) can be uniquely proportionally normalized.

41f ¢ =0,i € N, definex; (¢; C) = 0 and replaceV by A(q) = {j € Nlg; > 0}.
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Obviously, for the problem given previously, the ordinal transformation that proportion-
ally normalizes itis

1
ﬁ(ti)zk_iti’ i=1...,n,

and

g =gy, qy) = (A1q1, ..., Anqn).
Therefore,
xi(q; C)y=MXigi, i=1...,n.

Finally, we check that the OPM given iefinition 1 indeed satisfies ordinality and
ACPH.
For ordinality, it is enough to check that any two problems that are ordinally equivalent
to each other must have the same proportionally normalized problem (if either has one).
This is easily seen from the following diagram.
@0 TEY ey
fert fof*¢ ftofr
(q/; C/) f*gque (q/*’ C/*)

which implies(g*; C*) = (¢'*; C™).

Now we check ACPH. Consider a homogeneous prollentC) and assume that it is
proportionally normalized to probleiig*; C*). Since

gr = a
Y /8 C (o] di

(seeEq. (5) and

i=1...,n,

JCt) =9;,Ct), teRY, i,j=1..,n

therefore,

I = =g =1
ZieNq;f DieNdj

Remark. In the two-agent cas&prumont (1998yoes not use the boundary condition
on the second-order derivatives Tiheorem 1 But he does assume that the first-order
derivatives are bounded away from zero and infinity, which is necesdarguarantee a
proportional normalization. In fact, he provides an entirely different but much simpler proof
for the unique existence of a proportional normalization for any given problem satisfying
the boundary conditions for the first-order derivatives. However, the techni@mimont
(1998)is not applicable in the general case here. Sgeimont (1998jor the detail.

xi(q; C) =

5 Butitis not a necessary condition for a problem to have a proportional normalization, as sHewamiple 2
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5. Ordinal prices

A price mechanisnmp(-, -) is a rule that associates with each problgmcC) a vector of
prices:

p(q; C) = (p1(g; C), ..., pa(q; C)).

The A-S pricing method is a price mechanism, and so is the PAMPSgseiton 3. But
these two mechanisms are not ordinal, as we have sho®adtion 3

The OPM is an ordinal price mechanism.

In fact, for any given problenig; C), assume thaty; C) is proportionally normalized
to (¢*; C*) through ordinal transformatiofi. Let

x(s) = (x2(s), ..., xa($)) = (f2(SYD. - .-, fu(sGy)). s € [0, 1].

Define
p*(q; C) = (pi(q; O), ..., pp(q; C)),
where
Pt o — Ci=1...m
JoT11/8;C(x(r))] dr
Then

> piq: O)qi = C(q).
1

Actually,

1 n n
Clg) = /O Do aCEE)H () ds =) q" (fromEg(3)
1 1

-1
n 1 1 n
:E i ——dt fromEq(4)) = “(q: C)qi.
I 1 [/o 3 C(x(1)) } ( a@) El pi(q; C)q
Clearly, the price vector

P (q; C) = (p1(q; O), ..., pi(g; O)),

is ordinal, namely foreach= 1, ..., n, p/(g; C)g; is invariant with any increasing trans-
formations of the measurement units of the goods.

6. Discussion

We conjecture that the problems that canpbeportionally normalizedare dense ir€;.
Meanwhile, we raise a general question about the existence of solutions or the feasibility
of a system oflifferential inequalities that relates to the conjecture.
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For convenience, assume that all demand vectors are bounddd-b), namelyg; <
M,i =1,...,n. Consider a given problery; C) with the constants & a(C) < b(C)
such that

a(C) <9C@t) <b(C), teRY, i=1...,n
If (¢; C) can be uniquely proportionally normalized(g*; C*), then it must have
qi
JoT/3:Cx (o] dr

wherex(s) is the function inEq. (5)that corresponds to the ordinal transformatipn
Thereforeg* is also bounded (the bound may depend®n

Note that we do not have the so-callediependence of irrelevant costs (11IC) property
as we do in the case of additive methods, where IIC is a corollary of additivity axiom (see
Lemma 1 inFriedman and Moulin, 1999This implies that for a given problerty; C),
where the demand vectgiis bounded by > 0, in its proportionally normalized problem
(g*; C*) (if there is), the demand vectqr* is also bounded but may be well beyond the
previous bouna/. That is why we define the proportional normalization conditton (2)
on the domaiRY.

<b(OM, i=1,...,n

lg/'| =

Conjecture. For any given problenig; C) ande > 0, where|g|| < M and the constants
0 < a(C) < b(C) satisfy

€ <a(C) <3;C(t) <b(C), teRY, i=1..n,
there exists another cost functiéhon RY such that
1. the functionC is in thee-neighborhood of® with respect to the norm:

IC]l = max C(t) + max maxo;C(t)|,
te[0,Me] te[0,Me]ieN

wheree = (1...1), i.e.
IC(t) —C(1)] <€, tel0, Me]
10;C(1) —8;C(1)] <€, te[0,Me], i=1,...,n,
and outside [DMe]
a(C)—e <3;C() <b(C)+e, teRY, i=1..,n,
2. the second-order derivatives Gfsatisfy

~ 1 43
Zlaijc(f)lié(—%, t e RY
= 2| Mellb(C)

,i=1...,n,

wherea(C) = a(C) — e andb(C) = b(C) + e.
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In other words, the problery; C) satisfies the conditions ifiheorem land thus can be
proportionally normalized.

More generally, we ask the following question: Given- 0,5 > 0, M > 0 and a
functionC e C3[0, Me], does the following system of differential inequalities always have
a feasible solutiort:

—e<C(t—-C@t)<e, teRY,
—€<9;,C(t)—3Ct)<e, teRY, i=1...,n
and

Sl <s, 1erY, i=1....n
JeN

We do not know the answer yet. Traditionally, to “smoothly” approximate a given function
with two variables, one sometimes uses Bézisurfaces and B-spline surface3erald

and Wheatley, 1999However, the construction of such an approximation is very complex
(Gerald and Wheatley, 1999or the function with three or more variables as in our case,
we do not know how to generalize the Bezier (and B-spline) curves or surfaces.

If we can show that the set of all problems that can be proportionally normalized is a
dense set in the set of all problems, under certain continuity conditions we may extend the
OPM to any problem. Again, this is beyond the scope of this paper.

In conclusion, we show that the ordinality and the ACPH axioms are compatible in the
realm ofnonadditive methods for a fairly rich family of interesting problems with arbitrary
finite number of agents.
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