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Abstract—It is believed that the obtention of instantaneous
intention level from electroencephalogram (EEG) signals and its
use as a control signal may increase the benefits gained from
the robotic rehabilitation process of stroke patients. This paper
investigates a method for classifying the speed of arm movements
from EEG recordings of healthy subjects under the assumption
that the intention level of a patient may be reflected in motor
task execution velocity. Experimental data were collected from
eight (four male, four female) healthy volunteers while they
were performing right arm movements at two different speeds.
We designed an experiment in which the subjects were asked
to carry a glass cup in two different environments: nail or
cotton. The task speeds for both environments were decided
individually by the volunteers; however the nail environment
had a maximum speed limit. Participants were warned by a
crashing glass audio stimulus if they exceeded the speed limit
of the nail environment. As a result, a simple daily life activity
was performed at two different speeds as an experimental task.
Based on experimental data from eight healthy subjects, we
successfully classified two different speed levels and resting state
from event related synchronization (ERS) and event related
desynchronization (ERD) patterns of EEG signals by linear
discriminant analysis (LDA) classifier. Results reveal that LDA
can discriminate different velocity levels when six frequency
bands of three EEG recording channels were used as the feature
vector.

Index Terms—BCI, EEG, intention level, robotic rehabilitation,
motor task.

I. INTRODUCTION

One of the most common reasons of long-term disability
is paralysis which may result from traumatic injury, stroke,
or amyotropic lateral sclerosis (ALS). Although the cognitive
brain activities of these patients remain intact, they lose
voluntary muscle control and suffer from communication prob-
lems. The idea of utilizing brain signals instead of muscular
activities has motivated work on brain-computer interfaces
(BCI). BCIs aim to maintain activities of daily living of
patients by creating a new channel from brain to computers
without any muscular control. BCI systems use brain signals
as input and convert these signals to meaningful outputs
in order to provide control over the external environment.
Particularly, the discovery of EEG similarities between motor
imagery and execution has given hope to stroke patients [2],
[3]. Besides the benefits on locked-in patients, recent studies
have shown that BCIs have the potential for significantly
positive effects on stroke rehabilitation protocols. The studies
in which the movement of the patients were supported by an
external device when event related synchronization (ERS) or

event related desychronization (ERD) are detected on EEG
signals suggest that BCI supported rehabilitation protocols
have a great potential of improving conventional rehabilitation
protocols [4]–[9].

Another main application domain of BCIs is external body
skeleton systems in which EEG signals of users are decoded
and converted to meaningful information to perform natural
movements and execute motor tasks, replacing the limbs of
the patient. For instance in [10], when electooculography
(EOG) signals of a subject are focused on a target, a Kinect
sensor scans the corresponding area and detects the target
object. If ERD is detected on EEG signals, the exoskeleton
grabs the target and brings it to the subject. Even though the
performance of the system is not argued to be at the desired
level yet, it is promising for many people who are suffering
from ALS.

In [11], healthy volunteers were asked to imagine wrist
extension and rotation at two different speeds (i.e., fast or
slow); where fast means as fast as possible, and slow refers to
completing the movement in 3 seconds. Movement type was
not successfully classified with EEG features in this study;
whereas, the speed level was classified with significant accu-
racy. Moreover in [12], a similar experimental procedure was
tested on four paralyzed ALS patients. Although the accuracies
in this study were lower than [11], it was claimed that healthy
subjects perform better at movement imagination because
of unharmed motor function pathways. Additionally in [13],
classification movements that require different intention levels
from EEG data were analyzed in a different way. Healthy
volunteers were asked to lift different weights while their
EEGs were being recorded, and EEG signals corresponding
to different task difficulties were classified.

We designed an experiment in which subjects performed
a one-dimensional right arm movement in two conditions:
1) as fast as permitted by their body limit, 2) as fast as
the experiment protocol permits. Eight healthy volunteers
participated in this study. A potential disruptive fatigue effect
is prevented by the horizontal design of the experimental
setup. Power spectral densities of channels are averaged at
six frequency bands and 18-dimensional feature vectors are
classified by applying linear discriminant analysis (LDA).

The main motivators of this study can be divided into two
parts. First, we aim to improve the effectiveness of BCI-
assisted exoskeletons as in [10]. In real world, we determine
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our movement speeds according to the tasks that we perform.
For instance, if we drink a cup of hot coffee, we behave more
carefully; however, we might hurry up while taking our mobile
phone before leaving home. Hence, detecting the intention to
move fast or slow can be used directly adjust the speed of
a BCI-assisted exoskeleton. Moreover, we propose a more
realistic design than those in literature. In our experiment,
movement speed is implied by the required carefulness for
the task, rather than dictating a movement at a particular
speed. Second, a new approach is presented to the detection
of intention level problem which is evaluation of intention in
response to task velocity using EEG-based BCI. Consequently,
we develop a methodology for speed estimation from EEG
signals, design an experiment which resembles the activities of
daily living and come up with an approach to detect intention
level.

In the following section, the methodology including subject
properties, data acquisition, experimental procedure, feature
extraction and classification technique are explained. The ex-
perimental results are given in Section III. Section IV provides
discussion of results and future directions; while Section V
summarizes the conclusion.

II. MATERIALS AND METHODS

A. Subjects

Eight healthy volunteers aged 26-36 years (four male and
four female; mean age: 26.68 ± 4.4 years; all right handed)
participated in the study. None of the subjects had any known
motor diseases on their right arm or psychological disorders.
Before the experiments, experimental procedure was explained
to all participants and their informed consent were taken.

B. Data Acquisition

EEG records were collected by a Biosemi ActiveTwo EEG
System located at the Sabanci University Computer Vision and
Pattern Analysis Laboratory. EEG was recorded from Ag-Cl
electrodes at C3, Cz and C4 locations of the international 10-
20 electrode placement system at a sampling rate of 512 Hz.
The upper and lower neighbor channels (Fc3, Fcz, Fc4, Cp3,
Cpz and Cp4) were recorded in order to reference channels
C3, Cz and C4. The mean value of lower and upper channels
were subtracted from the central channel, as given in (1):

x1 = xC3 −
xCp3 − xFc3

2
(1)

where x1 is the first referenced channel value and xCp3 is the
recorded value of channel C3.

C. Experimental Procedure

In this experiment, the interaction between the subject and
the virtual environment is realized through a haptic interface.
The haptic environment is rendered on a linear actuator
(ServoTube Linear Actuator, Copley Controls) endowed with a
position encoder, designed by means of an impedance control
scheme and rendered in real-time with a sample rate of 500Hz.
Subjects participate in the linear haptic interface with the aid

of a purposely designed apparatus. The apparatus is intended
to fix the subject’s arm to the haptic environment by preserving
a potential angular deviation at wrist joint in such a way
that the forearm and the hand are able to move as a whole.
During the experiment, subject’s forearm is constrained to be
perpendicular to the upper arm and kept parallel to the ground.
While executing the defined task, instantaneous position state
of the limb gathered by using the encoder, velocity state
and human effort described by the exerted force level are
transmitted to the digital environment via DAQ converter
(Quanser-Q8 usb).

Subject’s motivation to execute the task is enhanced by
means of the virtual environment. Visual and auditory feed-
backs helps subjects learn to regulate their limb speed based
on the task. Subjects are expected to concentrate on the
speed of their limb and canalize their EEG signals for one
type of challenge, that is regulating proper velocity level.
Hence, the mechanical impedance of the haptic environment is
empirically set in such a way to simulate a natural environment
such as fresh air, to avoid performing a task that is more
than desired. The haptic device is responsible for preparing
the appropriate mechanical and environmental conditions. In
particular, subjects feel how much effort they spend while
resisting against the mechanical impedance during a motion
of one point to another. The consequence of the interaction
of the limb with the nail or cotton surfaces is visually and
auditorily provided to the subject without feeling interaction
force at hand. By doing so it is hypothesized that subject needs
to focus on task more to execute it accurately, which improves
the intention level of EEG signal.

The subjects were seated on a chair wearing an EEG cap
while the left arm was at rest and the right arm was located on
a stabilizer handle. Since stronger movements are more dis-
tinguishable on EEG and wrist is more susceptible to fatigue,
the subjects pushed the handle from their right shoulder [15].
They were warned not to use any body or hand movement
during the recording, and the undesired wrist movements were
blocked by a wrist splint as shown in Figure 1. According to
the scenario, they carried a glass cup towards two different
types of wall which were made either of nail or of cotton. In
the virtual environment, there were a glass cup figure on the
right side and an environment specifier figure on the left side
which was either a bed of nails or a piece of cotton, as shown
in Figure 2. The glass cup figure on the right moved left while
the subject was sliding the handle to left. When the glass cup
reached the wall, the subjects were given 2 seconds to return
the handle to the starting point back at right end. The number
of succeeded trials was shown at the top of the screen.

At the beginning of each experiment the subjects partic-
ipated in a pre-flight session in which they heard a broken
glass sound if they carried the glass cup too fast towards the
nail wall. No data was recorded at this time. The subjects
were free to move at any speed in cotton; whereas, the limit
was 60 mm/s for nail environment. Immediately after the
pre-flight session, the experiment that involved nine sessions
started. Each session had two sub-sessions in which both of



Fig. 1: Experimental Setup.

Fig. 2: Virtual Environment.

the environments were experienced once for 30 seconds. After
each 30-second period, EEG was recorded for 10 seconds
(the resting state) in which they were not allowed to move
so that the resting states could be classified as well. There
was a relaxing session for 10 seconds in between each sub-
session, in which the subjects were free to move. Therefore,
the possible tags for a signal sample were nail, cotton, rest or
relax, and all samples were labeled by these tags throughout
the experiment. Figure 3 illustrates the flowchart of a session
that occurred 9 times throughout an experiment. The order of
the environments was assigned randomly in order to avoid any
fatigue effect.
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Fig. 3: Experimental Flow.

D. EEG Pre-Processing and Feature Extraction

The collected dataset contained samples labeled by either
environment type (i.e., nail or cotton) or the experiment
stage (i.e., rest or relax). Each session data was detrended.
Additionally, the samples in the nail environment were labeled
as unsuccessful if the speed limit was exceeded, and as
successful otherwise. For data cleansing, the unsuccessful
samples were removed from the dataset. By nature of the
experiment, the success of each trial was evaluated based
on the final velocity of the carrying process. Due to the
acceleration phase at the start of each trial, we considered only
the last 2000 (approximately 4 seconds) samples of each trial
for classification. In Table I, the numbers of successful trials

for each condition of all subjects are given. Since the speed
of each trial was determined by the subject, trial numbers of
each condition change for all subjects.

TABLE I: Number of Successful Trials of Subjects.

Conditions Successful Trials
S1 S2 S3 S4 S5 S6 S7 S8

Nail 88 79 124 81 68 150 106 116
Cotton 115 124 143 91 98 150 115 124

Frequency band powers in six main bands in the typical
EEG signal; delta (δ, 0.1 Hz-5 Hz), theta (θ, 5 Hz-8 Hz), alpha
(α, 8 Hz-12 Hz), sigma (σ, 12 Hz-16 Hz), beta1 (β1, 16 Hz-
24 Hz) and beta2 (β2, 24 Hz-30 Hz), were computed using
the short time fourier transform (STFT) for characterization of
the ERD and ERS [14]. STFT was applied to each trial with a
128-sample window. The window was shifted by 16 samples in
each step to calculate the power spectral density. This process
was repeated for all three channels and six frequency bands.
Consequently, a 18-dimensional feature vector was composed
for each evaluable trial.

E. Classification

At the classification step, 18-dimensional feature vectors
of all successful trials from all nine sessions were gathered
and separated as training (75%) and test (25%) data. This
process was repeated 300 times for cross-validation and at
each repetition a new LDA model was generated so that
the selection of training and test data was diversified. The
presented results are the mean value of 300 recurrences.
Although there are many different classification methods, LDA
is applied in this study owing to its utility in terms of speed
and stationarity [16].

III. RESULTS

Single-trial classification results of velocity of right arm
movements from EEG recordings for 8 volunteers are cal-
culated for nail vs. rest, nail vs. cotton, cotton vs. rest and
nail vs. cotton vs. rest conditions. The performance, namely
the classification accuracy values, are given in Table II for
all subjects and all classification problems. In the table, the
first column represents the nail vs. rest classification and the
mean accuracy for 8 subjects is 64%; while the second column
contains the results of a relatively harder classification problem
which is cotton vs. nail. Since both of the classes require
movement, albeit at different speeds, this more challenging
problem results in lower accuracies. The classification results
of the fastest task vs. resting task is given in the third column.

IV. DISCUSSION

In this study, the nail and cotton environments are distin-
guished with 59% accuracy; while classification performances
of these two cases from resting state are higher. In particular,
the results for some subjects show that high classification
accuracy can be achieved -especially in nail vs. rest and cotton
vs. rest conditions. For instance, nail vs. rest comparison of



TABLE II: Experiment Comparison Results.

Results Comparison Classes
Nail-Rest Cotton-Nail Cotton-Rest Cotton-Nail-Rest

Subject 1 76 63 66 53
Subject 2 59 64 73 52
Subject 3 50 64 64 66
Subject 4 65 59 63 53
Subject 5 69 56 71 51
Subject 6 70 58 69 63
Subject 7 60 54 69 44
Subject 8 63 57 60 67
Average 64 59 67 56

Subject 1 has an accuracy of 76% and cotton vs. rest of Subject
2 is 73%.

Since the fastest movements were executed in the cotton
environment, the highest accuracy levels are obtained in cotton
vs. rest comparison with 67%. Moreover, the comparison of
two active sessions with resting state (i.e., nail vs. rest and
cotton vs. rest) provide higher results than nail vs. cotton
comparison, as expected.

The average result given in the last column shows that
the comparison of all classes can be accomplished by 56%
accuracy. Particularly, the results of three subjects (Subject 3,
6 and 8) are quite satisfactory. This three-class case involves
the most worthwhile result of this study for assistive robotic
applications because it presents the precision of the robot’s
decision when the robot faces a three class problem (i.e., rest,
move fast, or move slow). Since the results are significantly
higher than chance level for a three-class comparison (33%),
one can suggest that it is possible to determine whether
the robot moves or not and the movement velocity with a
reasonable accuracy.

Despite the fact that it is possible to detect differences
of these two similar classes, the accuracy is still not very
high. One further step could be to extend the analysis using
a wider feature space, possibly with more recording channels.
Furthermore, we realized that some volunteers performed
better in terms of classification results. Although this differ-
ence might be caused by some recording problems such as
noise, electrode connection problems or concentration level,
training data amount is also significant. Since the performance
deteriorates in the nail environment and also depends on the
subject, the useful data coming from nail sub-sessions may
not be sufficient to train a comprehensive model. Therefore,
enhancing the data recording process would probably result in
higher accuracies.

Another future work direction would be to increase the
number of classes and classify three different speed levels.
The addition of an intermediate speed level would make the
problem more challenging. Thereby, intention level of patients
under rehabilitation process may be detectable at three levels
and the difficulty of their daily schedule may be updated
according to their motivation. Moreover, since the classes are
linked with executed tasks, it is possible to collect and analyze
surface Electromyogram (sEMG) data of subjects. Such data
can be used to remove any EMG artifacts in the EEG data as
well [17].

V. CONCLUSION

In the present study, classification of motor task execution
velocity from EEG data is considered and a setup is designed
to collect data for such a classification task. Distinctions of this
setup are its horizontal structure which prevents fatigue and
resemblance to real-world tasks. Eight participants performed
a right arm movement task at two speed levels, not strictly set,
but implied by the experimental scenario. Results show that
motor task execution speed level is distinguishable using EEG
signals with above chance-level accuracies.
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