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Abstract—Linear parameter varying (LPV) models are widely
used in control applications of the nonlinear MIMO dynamic
systems. LPV models depend on the time varying parameters.
This paper develops a polytopic quasi-LPV model for a nonlinear
pan-tilt robotic system. A Linear Quadratic Regulator (LQR)
that utilizes Linear Matrix Inequalities (LMIs) with well tuned
weighting matrices is synthesized based on the developed LPV
model. The number of time varying parameters in the developed
polytopic LPV model is 4 so the number of vertices becomes
16. The desired controller is generated by the interpolation of
LMIs at each vertex. The performance of the optimal LQR
controller is evaluated by using the designed feedback gain matrix
to stabilize the nonlinear pan-tilt system. Simulations performed
on the nonlinear model of the pan-tilt system demonstrate success
of the proposed LPV control approach.

I. INTRODUCTION

Linear parameter varying (LPV) models are linear state
space systems whose matrices depend on a time varying
external parameter vector [1]. The entries of the parameter
vector are the scheduling variables that represent the varying
operating conditions of the system. LPV models are called as
quasi-LPV when the scheduling variables contain the measur-
able system inputs, outputs or states instead of only exogenous
signals.

Linear time-invariant (LTI) models are not sufficient when
the nonlinear robotic systems are used in large workspaces [2].
Shamma and Athans [3] first developed LPV models for gain-
scheduled controllers. Since then LPV models have attracted
more researchers.

In literature, different LPV modelling approaches exist [4]-
[5]. Jacobian linearization [6] is the simplest approach to
obtain LPV models. This method is based on the first order
linear approximations with respect to a set of equilibrium
points. State transformation [7] is also a popular technique
to derive a LPV model. The goal is to eliminate all nonlinear
terms in the scheduling parameters. This method performs a
coordinate change in the nonlinear equations of the system
and provides quasi-LPV model of the system.

Marcos and Balas [8] developed a novel approach for the
derivation of quasi-LPV models. This approach is called as
function substitution because it is based on the substitution of a
decomposition function by (scheduling parameter-dependent)
functions linear in the scheduling vector. The decomposition
function is the combination of all the terms of the nonlinear
system that are not affine with respect to the nonscheduling

states and control inputs. These terms are not function of the
scheduling vector alone.

Today, well-known linear optimal controllers [9] are applied
to nonlinear systems represented by LPV models. Therefore,
the key feature of LPV models is to provide the use of linear
optimal control methods to nonlinear MIMO dynamic systems.
LPV models can be used to synthesize linear optimal robust
controllers such as the linear quadratic regulator (LQR). This
controller deals with the optimization of a cost function or
performance index [10]. The states and the control inputs are
weighted based on their importance to seek for appropriate
transient and steady state behaviours. The LQR controller
has been generally derived by solving an algebraic Riccati
equation. When a set of Lyapunov inequalities is solved, it is
difficult to find a common Lyapunov matrix analytically. This
can be solved numerically by convex programming algorithms
involving LMIs [11]. While the algebraic solution can only be
applied to one plant, the numerical procedure can take into
account multiple plants. Thus, the LQR deals with uncertain
systems at different operation points.

Different linear optimal control strategies have been also
synthesized on LPV models. Namerikawa [12] et al. and Ap-
karian [13] et al. developed Heo control of a robot manipulator
using LPV models. Wu and Packard [14] also developed
an LQG control design based on LPV plants with use of a
quadratic integral cost function for the performance objective.
Yu et al. [15] combined the gain scheduling theory with Heo
controller for the LPV model of the robotic manipulator.

Many researchers synthesize the LPV controller for the
stabilization purposes. Seghal and Tiwari [16] designed the
LQR controller to maintain the triple inverted pendulum on
a cart around its unstable equilibrium position using single
control input. Similarly, Kumar and Jerome [17] described the
method for stabilizing and trajectory tracking of Self Erecting
Single Inverted Pendulum (SESIP) using the LQR. Castiello et
al. presented a stabilization nonlinear control algorithm for a
mini rotorcraft with four rotors and compared the results with
LQR controller [18].

In this paper, a polytopic quasi-LPV model of the pan-tilt
system with 4 dimensional time varying parameter vector is
derived. The advantage of the developed LPV model is to al-
low linear optimal controllers to be used on the nonlinear pan-
tilt system. The developed LPV model is used to synthesize an
LQR controller. A robust optimization toolbox, YALMIP [19]



is utilized for the controller synthesis. Since the parameter vec-
tor is designed as 4 dimensional, the desired LQR controller
is synthesized by interpolating LMIs at 2* = 16 vertices. The
designed controller is employed for the stabilization of the
non-linear pan-tilt system.

The remainder of this paper is organized as follows: Sec-
tion II presents the nonlinear model of the pan-tilt system. In
Section III, a polytopic quasi-LPV model is derived for the
pan-tilt system. Section IV implements the LQR controller on
the developed LPV model. Section V presents the simulation
results of the LQR controller. Finally, Section VI concludes
the paper with some remarks.

II. NONLINEAR MODELING OF THE PAN-TILT PLATFORM

The 2 DOF pan-tilt platform which is given in Figure 1
is considered in this study. The nonlinear model of the pan-

Fig. 1. Pan-tilt mechanism [20]

tilt system based on the Euler-Lagrange formulation is as
follows [20]:
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where D(q) is the mass-inertia matrix, C(q,q)q defines cen-
trifugal and Coriolis terms, G(gq) is the gravity vector, 7 is the
control input vector, and ¢, ¢ and § are the vectors of joint

angles, velocities and accelerations, respectively. m; and my
are the masses of pan and tilt mechanisms, /; is the radius, I,
is the length. In the light of (2), (1) can be rewritten as:

T = [a +bcos(q2) + ccos® (qg)] g1 — [bsin(q2) + csin (2g2)] 4142

)
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where a, b, ¢ and d represent dynamic and kinematic param-
eters:

1
a= Emlllz +m2112, b=mlil,
1 1
Cc = gmzlg, d= Englz (4)

III. DERIVATION OF THE QUASI-LPV MODEL

Consider a LPV model in the state-space form
(1) = A(8(2))x(r) + B(O(1) Ju(t)
(1) = C(6(2))x(2) +D(6(¢))u(t) (5)

where x € R”, u € R™ and y € R™. The mappings A(.), B(.),
C(.) and D(.) are continuous functions of the time-varying
parameter vector 6(¢) € R!. This model can be represented as

a linear input-output map:
B(6) } ©)

D(6)

A(6)
P(0) = [ o)

The parameter vector 6(z) depends on measurable quantities
as follows:

() = f(v()) @)

where v(t) € R¥ represents scheduling signals and f : RF —
R! is a continuous mapping. A compact set can be defined
as Py C R : 0 € Py, Vr >0 [21]. If it is assumed to be a
polytope, then &y can be represented as the convex hull,

gz@ ::C0{61)176027"~76‘0L} (8)

where L = 2! are the total number of vertices. If the state space
model depends affinely on the parameters, then the LPV model
is called as parameter-affine. Thus, P(6) in (6) becomes:

l
P(6)=Y 6., =P +6,P +..+6P )
i=0

LPV system is called as a polytopic model as depicted in (10)
if the system can be represented by a linear combination of
LTI models at the vertices. This can be achieved by when (9)
holds and 6 can be expressed as a convex combination of L
vertices 0y,.

L
P(6) = Co{P(6y,),P(6y,),....P(6y,)} = Y ciP(6y,) (10)
i=1

where ):iL:1 a; =1, and o; > 0 are the convex coordinates. To
obtain the quasi-LPV model of the pan-tilt system, v(¢) is
selected as the state vector of the system:

vy =xt)=[a @ @ @] (11)



where g and ¢ represent the joint angles and velocities.
We derive the polytopic quasi-LPV model of the pan-tilt
system (1) by employing the ideas in [15]. From (3) and (4),
g1 and ¢ are calculated as:

T+ [bsin(q2) g1 +csin(292) 411 ¢
0 a+bcos (qz) + ccos? (q2)

(12)
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If we let h = a+ bcos(qz) + ccos*(q2), then the system

matrices which depend on the time varying parameters are

computed as follows:
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where the parameter vector is 8(¢) € R*, I and 0 are the identity

and zero matrices. u(t) implies the controlled input torques
and y(¢) is the vector of joint positions. Therefore, n = 4,
= ny = 2.

IV. LQR SYNTHESIS BASED ON THE DEVELOPED LPV
MODEL

The goal is to stabilize the nonlinear pan-tilt system (1)
by using Linear Quadratic Regulator (LQR) on the proposed
quasi-LPV model (14)-(15) as shown in Figure 2.

We concentrate on LMI formulation of the LQR prob-
lem [22]. This method seeks to find an optimal controller that
minimizes a cost function:

Jz/ (xTQx—i—uTRu) dt (16)
where the cost function is parameterized by Q € R"*" and
R € R™*™ matrices that weight the state vector and the
controller input, respectively. Q > 0 and R > 0 are symmetric
positive definite matrices. The selection of the weighting
matrices is critical for the controller performance. The LQR

approach minimizes the value of the cost function (16) by
constructing a linear state feedback law:

u=Kx 17)
where K € R™*" is the feedback gain matrix. The controller,

K, is designed by solving the following semidefinite program-
ming problem:

mintr(P) (18)

subject to

(A+BK)"P+P(A+BK) < —Q—K'RK (19)
where P > 0 is the Lyapunov matrix. (18)-(19) is a non-
convex optimization problem. It can be converted into a convex
problem by multiplying left and right side of (19) with P!
and applying Schur Complement [23]:

maxtr(Y) (20)
subject to
—(AY +BL)— (AY+BL)T v LT
Y o' 0 (>0 (@D
L 0 R!
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where L is introduced as L = KY and Y is the inverse of
the Lyapunov matrix, ¥ = P~!. The feedback matrix can be
recovered as:

K=Ly! (23)

We use the robust optimization toolbox YALMIP [19] to
design the feedback controller. The designed controller will be
applied to the nonlinear pan-tilt system for the stabilization.

V. SIMULATION RESULTS

The physical constraints that are applied to the joints are as
follow:

TABLE 1
PHYSICAL CONSTRAINTS

Parameter Minimum Value Maximum Value
q1 —160° 160°
q 0° 80°
g1 —120°/sec 120° /sec
) —30°/sec 30°/sec

According to Table I, scheduling trajectories are designed
as quintic polynomials in Figures 3 and 4. Since the position
trajectories are designed as Sth degree polynomials, joint
velocity trajectories are 4th degree polynomials.
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The parameter trajectories, 6;, are generated by (15) in

Figures 5-8. 6 depends on ¢, and ¢;. On the other hand, 6,, 6; ! ‘ ‘ ‘
and 6y are the function of only ¢,. Due to this dependency, the 0
parameter values have the following upper and lower bounds: =
8 1
.*E‘
=}
o2 1
TABLE II @
PHYSICAL CONSTRAINTS 3k ]
Parameter Upper Bound Lower Bound 4 - 5 | . :
6 (rad. sec*l) 0.9978 —4.63x 1071 Time(s)
6, (rad.sec*)™! —2.55 —14.7 i ]
6, (umtlew) 1.17 x 10714 _331 Fig. 7. Parameter trajectory: 63
0y (kg.m?)~! 1.19 0.71

LQR controller is synthesized based on the developed by interpolating LMIs at each vertex. The elements of the state
polytopic quasi-LPV model. The total number of vertices is feedback gain matrix, K, are determined using the weighting
L =2%*=16. The desired state feedback controller is designed matrices, Q and R. The following weighting matrices are



13- ,
1.2
Eﬁ 1.1F §
5 1 1
< 09r .
0.8- 4
0.7
0 1 ‘ 3 4 5
Time(s)
Fig. 8. Parameter trajectory: 6,
chosen:
1075 0 0 0
0 1073 0 0 9
=1 o 0 10° o R=10"lax4
0 0 0 10°°

The joint positions should be controlled more tightly than
velocities. Therefore, more weighting is added to position
states than the velocity states in Q matrix. R provides a limit
for the magnitude of the control signal. The elements of QO
matrix are designed larger than the elements of R matrix
because the main control problem is the stabilization and the
system states should converge to zero. In other words, the
controller is designed such that it is more sensitive to the states
of the system than the control input.

Using the system model (14)-(15) and the above weighting
matrices, the optimal feedback gain matrix, K € R**4, obtained
by YALMIP is:

[ -81.77

2.69
K=1 _o64

—53.56

—22.65
—0.083

—0.02
-9.59

The controller gains, K> and K4 have larger magnitudes
than K>; and K>3 because the control input that is applied to
the tilt mechanism mostly depends on g, and g;. Since the
pan mechanism does not directly depend on ¢> and ¢z, Ki»
and Kj4 have smaller magnitudes than Ky and Kj3.

The performance of the controller is tested on the nonlinear
model and the stabilization is achieved. The states are pre-
sented in Figures 9-10. While Figures 9(a) and 10(a) present
position and velocity responses of the first joint, Figures 9(b)
and 10(b) show the responses for the second joints. Joint
angles and velocities converge to zero as expected.

The initial joint positions are approximately 150° and 75°.
The joint velocities are assumed as zero. The velocity of the
first joint decreases to —120°/sec and becomes zero again to
stabilize the joint angle of the pan axis. Similarly, the velocity
of the second joint decreases to —30°/sec and becomes zero
to make the joint angle of the tilt axis zero.

The control inputs are presented in Figures 11-12. Fig-
ures 11(a) and 12(a) depict output responses for 5 seconds and
Figures 11(b) and 12(b) present the results at the beginning of
the simulation. The control inputs are high at the beginning
of the simulation because initial joint angles are multiplied by
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large controller gains, Kj; and K»;. The control input that is
applied to the pan axis converge to zero when the first joint
angle is stabilized. However, the control input which is applied
to the tilt axis does not converge to zero. Since the center of
gravity is located along the tilt axis, the effect of gravity cannot
be ignored. Therefore, the control input is needed to stabilize
the tilt axis at zero angle. The control input, u;, converge to
2.45 as depicted in Figure 12(b).
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VI. CONCLUSION AND FUTURE WORK

We have now presented a polytopic quasi-LPV model of the
nonlinear pan-tilt system. LQR controller is synthesized based
on the developed LPV model using YALMIP toolbox. Since
the dimension of the parameter vector is 4, the total number
of vertices is 16. The feedback gain matrix is designed by
interpolating LMIs at each vertex. The performance of the
feedback gain matrix is tested on the nonlinear system for

stabilization purposes. The LQR controller decreases all states
to zero with less control effort by selecting the elements of Q
matrix is higher than the ones in R matrix. Thus, the selection
of the weighting matrices is critical to solve the stabilization
problem efficiently.

As a future work, different control algorithms that utilize
acceleration feedback will be developed based on the polytopic
quasi-LPV models and compared with the performance of the
controller used in this work. Experimental verification of the
control algorithm on a physical system will be also realized.
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