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A Custom Accelerator for Homomorphic
Encryption Applications

Erding Oztiirk, Yarkin Dordz, Erkay Savas and Berk Sunar

Abstract—After the introduction of first fully homomorphic encryption
scheme in 2009, numerous research work has been published aiming
at making fully homomorphic encryption practical for daily use. The first
fully functional scheme and a few others that have been introduced
has been proven difficult to be utilized in practical applications, due
to efficiency reasons. Here, we propose a custom hardware acceler-
ator, which is optimized for a class of reconfigurable logic, for Lépez-
Alt, Tromer and Vaikuntanathan’s somewhat homomorphic encryption
based schemes. Our design is working as a co-processor which enables
the operating system to offload the most compute—heavy operations
to this specialized hardware. The core of our design is an efficient
hardware implementation of a polynomial multiplier as it is the most
compute—heavy operation of our target scheme. The presented archi-
tecture can compute the product of very—large polynomials in under
6.25 ms which is 102 times faster than its software implementation.
In case of accelerating homomorphic applications; we estimate the per
block homomorphic AES as 442 ms which is 28.5 and 17 times faster
than the CPU and GPU implementations, respectively. In evaluation of
Prince block cipher homomorphically, we estimate the performance as
52 ms which is 66 times faster than the CPU implementation.

Index Terms—Somewhat homomorphic encryption, NTT multiplication,
FPGA, Accelerator for homomaorphic encryption

1 INTRODUCTION

Fully homomorphic encryption (FHE) schemes are in-
troduced to enable blinded server-side computations.
Although the idea was proposed in 1978 [1], first work-
ing FHE scheme was constructed by Gentry in 2009 [2],
[3]. Despite heavy efforts to develop practical imple-
mentations of this scheme since its construction, such as
rendering expensive bootstrapping evaluations obsolete
[4] and parallel processing through batching of multiple
data bits into a ciphertext [5], [6], [7], it was not possible
to realize an efficient hardware or software implemen-
tation. For instance, an implementation by Gentry et al.
[8] homomorphically evaluates the AES circuit in about
36 hours resulting in an amortized per block evaluation
time of 5 minutes. In [9] and later in [10] Dor6z et al.
present an architecture for ASIC that implements a full
set of FHE primitives including bootstrapping. Another
implementation by Dor6z et al. [11] manages to evaluate
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AES roughly an order of magnitude faster than [8].
Doroz et al. implemented Prince encryption algorithm
which is more suitable for homomorphic encryption
with low depth circuit and less computation complexity
in [12] with a runtime of 57 minutes. Cousins et al.
report the first reconfigurable logic implementations in
[13], [14], in which Matlab Simulink was used to design
the FHE primitives. This was followed by further FPGA
implementations [15], [16], [17], [18]. Cao et al. [16]
proposed a number theoretical transform (NTT)-based
large integer multiplier combined with Barrett reduction
to alleviate the multiplication and modular reduction
bottlenecks required in many FHE schemes. Parallel to
these efforts on Gentry scheme, new FHE schemes, suchs
as lattice-based [19], [20], [21], integer-based [22], [23],
[24] and learning-with-errors (LWE) or (ring) learning
with errors ((R)LWE) based encryption [25], [26], [27]
schemes, were introduced. The encryption step in the
proposed integer based FHE schemes by Coron et al.
[23], [24] were designed and implemented on a Xilinx
Virtex-7 FPGA. The synthesis results show speed up
factors of over 40 over existing software implementations
of this encryption step [16].

It is clear that these implementations are not prac-
tical FHE solutions. Exhausting efforts targeting soft-
ware and hardware implementations, researchers began
to investigate GPUS as alternative platforms for FHE
applications. Using GPUs, Wang et al. [28] managed to
accelerate the recryption primitive of Gentry and Halevi
[26] by roughly an order of magnitude. In [18], Wang
et al. present an optimized version of their result [17],
which achieves speed-up factors of 174, 7.6 and 13.5 for
encryption, decryption and the recryption operations on
an NVIDIA GTX 690, respectively, when compared to
results of the implementation of Gentry and Halevi’s
FHE scheme [19] that runs on an Intel Core i7 3770K
machine. A more recent work by Dai et al. [29], [30] re-
ports GPU acceleration for NTRU based FHE evaluating
Prince and AES block ciphers, with 103 times and 7.6
times speedup values, respectively, over an Intel Xeon
software implementation.

In Table 1, we summarize previous FHE implementa-
tions. As can be seen from Table 1, FPGA and ASIC im-
plementations are promising for significant performance
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TABLE 1

Overview of specialized FHE Implementations. GH-FHE: Gentry & Halevi’s FHE scheme; CMNT-FHE: Coron et al.s
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FHE schemes [23], [24] [19]; NTRU based FHE, e.g. [31], [32]

[ DESIGN [ SCHEME | PLATFORM | PERFORMANCE
CPU
AES [8] BGV-FHE 2.0 GHz Intel Xeon 5 min / AES block
AES [11] NTRU-FHE | 2.9 GHz Intel Xeon 55 s / AES block
Full FHE [33] NTRU-FHE | 2.1 GHz Intel Xeon 275 s / per bootst.
Prince [12] NTRU-FHE | 3.5 GHz Intel i7 3.3 s / Prince Block
GPU
NTT mul / reduction [28] | GH-FHE NVIDIA C250 GPU 0.765 ms
NTT mul [28] GH-FHE NVIDIA GTX 690 0.583 ms
AES [29] NTRU-FHE | NVIDIA GTX 690 7 s / AES block
Prince [29] NTRU-FHE | NVIDIA GTX 690 1.28 s / Prince block
Prince [30] NTRU-FHE | NVIDIA GTX 690 32 ms / Prince block
FPGA
NTT transform [17] GH-FHE Stratix V FPGA 0.125 ms
NTT modmul / enc. [16] CMNT-FHE | Xilinx Virtex7 FPGA | 13 ms / enc.
ASIC
NTT modmul [9] GH-FHE 90nm TSMC 2.09 s
Full FHE [10] GH-FHE 90nm TSMC 3.1's / recrypt

gains. Much of the development so far has focused on
the Gentry-Halevi FHE [19], which intrinsically works
with very large integers. Therefore, a good number of
research work focused on developing FFT/NTT based
large integer multipliers [9], [28], [28], [10]. Currently,
the only full-fledged (with bootstrapping) FHE hardware
implementation is the one reported by Doroz et al. [10],
which also implements the Gentry-Halevi FHE. At this
time, there is a lack of hardware implementations of the
more recently proposed FHE schemes, i.e. Coron et al.’s
FHE schemes [23], [24], BGV-style FHE schemes [4], [19]
and NTRU based FHE, e.g. [31], [32]. We, therefore, focus
on providing hardware acceleration support for one
particular family of FHE’s: NTRU-based FHE schemes,
where arithmetic with very large polynomials (both in
degree and coefficient size) is crucial for performance.

Our Contribution. In this work, we present an FPGA ar-
chitecture to accelerate NTRU based FHE schemes. Our
architecture may be considered as a proof-of-concept
implementation of an external FHE accelerator that will
speed up homomorphic evaluations taking place on a
CPU. Specifically, the architecture we present manages to
evaluate a full polynomial multiplication efficiently, for
large degrees 2! and 2'5, by utilizing a number theoret-
ical transform based approach. Using this FPGA core we
can evaluate multiplication of 2!* degree polynomial 72
times faster than a CPU and 25.7 times faster than a GPU
implementations. In case of 2!° degree polynomials,
it can evaluate the multiplications 102 and 36.5 times
faster than a CPU and a GPU, respectively. Furthermore,
by facilitating efficient exchange using a PCI Express
connection, we evaluate the overhead incurred in a
sustained homomorphic computations of deep circuits.
For instance, by including data transfer clock cycles, our
hardware can evaluate a full 10 round AES circuit in
under 440 ms per block. In case of Prince, our hardware
achieves amortized run time of 52 ms per block.

2 BACKGROUND

In this section we briefly outline the primitives of the
Lopez-Alt, Tromer and Vaikuntanathan’s fully homo-
morphic encryption based schemes, and later discuss
the arithmetic operations that will be necessary in its
hardware realization.

2.1

While the arithmetic and homomorphic properties of
NTRU have been long known by the research commu-
nity, a full-fledged fully homomorphic version was pro-
posed only very recently in 2012 by Lépez-Alt, Tromer
and Vaikuntanathan (LTV) [31]. The LTV scheme is based
on a variant of NTRU introduced earlier by Stehlé and
Steinfeld [32]. The LTV scheme uses a new operation
called relinearization and existing technique modulus
switching for noise control. While the LTV scheme can
support homomorphic evaluation in a multi-key setting
where each participant is issued their own keys, here we
focus only on the single user case for brevity.

The primitives of the LTV scheme operate on poly-
nomials in R, = Z,[z]/(z¥ + 1), i.e. with degree N,
where the coefficients are processed using a prime mod-
ulus ¢. In the scheme an error distribution function y
— a truncated discrete Gaussian distribution - is used
to sample random, small B-bounded polynomials. The
scheme consists of four primitive functions:

LTV-Based Fully Homomorphic Encryption

KeyGen. We select decreasing sequence of primes gy >
@1 > --- > qq for each level. We sample g( and u(")
from x, compute secret keys () = 2u() + 1 and public
keys h() = 2g()(f@))~1 for each level. Later we create
evaluation keys for each level: ¢ (v) = DD 1 9el) |
27(£=1)2, where {s{” ("} € y and 7 = [0, [log ¢; ).

Encrypt. To encrypt a bit b for the i*" level we compute:
¢ = h(s 4 2¢ + b where {s,e} € x.
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Decrypt. In order to compute the decryption of a value
for specific level i we compute: m = ¢ f( (mod 2).

Evaluate. The multiplication and addition of ciphertexts
correspond to XOR and AND operations, respectively.
The multiplication operation creates a significant noise,
which is handled with using relinearization and mod-
ulus switching. The relinearization computes & (z) =
>or ¢t (x)é(f_l)(x), where 69_1)(@ are 1-bounded poly-
nomials that are equal to &V (z) = Y27 V().
In case of modulus switching, we do the computa-
tion & (z) = [ 2-&%(z)], to cut the noise level by
log (gi/qi—1) bits. The operation |-]2 is matching the
parity bits.

2.2 Arithmetic Operations

To implement the costly large polynomial multiplication
and relinearization operations we follow the strategy of
Dai et al. [29]. For instance, in the case of polynomial
multiplication we first convert the input polynomials
using the Chinese Remainder Theorem (CRT) into a
series of polynomials of the same degree, but with much
smaller word-sized coefficients. Then, pairwise prod-
uct of these polynomials is computed efficiently using
Number Theoretical Transform (NTT)-based multiplier
as explained in subsequent sections. Finally, the resulting
polynomial is recovered from the partial products by the
application of the inverse CRT (ICRT) operation.

2.2.1 CRT Conversion

As an initial optimization we convert all operand
polynomials with large coefficients into many
polynomials with small coefficients by a direct
application of the Chinese Remainder Theorem
(CRT) on the coefficients of the polynomials:
CRT : A; — {A,; mod po,A; mod py,--- ,A; mod p;_1},

where p;’s are selected small primes, [ is the number of
these small primes, and A; is a coefficient of the original
polynomial. Through CRT conversion we obtain a set
of polynomials {A©)(z), AM)(z),--- AU=D(x)} where
AW (z) € R,, = Z,,[z]/®(x). These small coefficient
polynomials provide us the advantage of performing
arithmetic operations on polynomials in a faster and
efficient manner. Any arithmetic operation is performed
between the reduced polynomials with the same
superscripts, e.g. the product of A(x)-B(x) is going to be
{AO) () - BO (), AD (z) - BW(x),---, A= (z) . BE-D},
A side benefit of using the CRT is that it allows us
to accommodate the change in the coefficient size
during the levels of evaluation, thereby yielding more
flexibility. When the circuit evaluation level increases,
since ¢; gets smaller, we can simply decrease the
number of primes [. Therefore, both multiplication and
relinearization become faster as we proceed through
the levels of evaluation. After the operations are
completed, a coefficient of the resulting polynomial,

C(z) is computed by the Inverse CRT (ICRT):

-1 —1
ICRT(C;) = Z <§) . ((;) ~CJ@ mod pi> mod g,

=0

i=l—

where ¢ = [[., " pi. Note that we will drop the super-
script notation used for the reduced polynomials by the
CRT for clarity of writing since we will deal with mostly
the reduced polynomials henceforth in this paper.

2.2.2 Polynomial Multiplication

The fundamental operation in the LTV scheme, during
which the majority of execution time is spent, is the
multiplication of two polynomials of very large de-
grees. More specifically, we need to multiply two poly-
nomials, A(z) and B(x) over the ring of polynomials
Zp[z]/(®(z)), where p is an odd integer and degree of
®(x)is N = 2". Namely, we have A(z) = YN ! 4,27 and
B(x) Zf\gl B;z®. The classical multiplication tech-
niques such as the schoolbook algorithm have quadratic
complexity in the asymptotic case, namely O(N?). In
general, the polynomial multiplication requires about N2
multiplications and additions and subtractions of similar
numbers in Z,. Other classical techniques such as Karat-
suba algorithm [34] can be utilized to reduce the com-
plexity of the polynomial multiplication to O(N'©823).
Nevertheless, the classical techniques do not yield feasi-
ble solutions for large N.The NTT-based multiplication
achieves a quasi-linear complexity O(Nlog Nloglog N)
for polynomial multiplication, which is especially ben-
eficial for large values of N.

The NTT can essentially be considered as a Discrete
Fourier Transform defined over the ring of polynomials
Zy[z]/(®(z)). Simply speaking, the forward NTT takes
a polynomial A(z) of degree N — 1 over Z,[x]/(®(z))
and yields another polynomial of the form A(x)
vagol A;z'. The coefficients A; € Z, are defined as
Ai = Y0 Ay - w' mod p, where w € Z, is referred
as the twiddle factor. For the twiddle factor we have
w = mod p and Vi < N w’ # 1 mod p. The inverse
transform can be computed in a similar manner A; =
N-L. Z?’;OI A; - w™% mod p. Once the NTT is applied
to two polynomials, A(z) and B(z), their multiplication
can be performed using coefficient-wise multiplication
over A; and B; in Z,; namely we compute A; x B; mod p
for i = 0,1,...N — 1. Then, the inverse NTT (INTT)
is used to retrieve the resulting polynomial C(z) =
INTT(NTT(A(z)) © NTT(B(x))), where the symbol ®
denotes the coefficient-wise multiplication of A(z) and
B(z) in Z,. Note that the polynomial multiplication
yields a polynomial C(z) of degree 2N — 1. Therefore,
before applying the forward NTT, A(z) and B(z) should
be padded with N zeros to have exactly 2N coefficients.
Consequently, for the twiddle factor we should have
w?N =1mod p and Vi < 2N w' # 1 mod p.

Cooley-Tukey algorithm [35], described in Algo-
rithm 1, is a very efficient method of computing forward
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and inverse NTT. The permutation in Step 2 of Algo-
rithm 1 is implemented by simply reversing the indexes
of the coefficients of A;. The new position of the coef-
ficient A; where i = (iy,ip—1,...,%1,%) is determined
by reversing the bits of i, namely (ig,i1,...,%—1,%n). 1
For example, the new position of A; when N = 16
is 3. The inverse NTT can also be computed with ?
3

ALGORITHM 1: Iterative Version of Number Theoretic Trans- 4
formation 5
input : A(z) = Ao + Avz + ...+ Ax_12™ L, N =27, and w
output: A(x) = Ao+ A1z + ...+ Ay_12V 1
fori =N to 2N — 1 do

‘ Al =0 ;
end

., Aan—1) « Permutation(Ao, A1, ..
for M =2 to 2N do
for j =0to 2N — 1 do

M
forz':Oto?—ldo

-,AzN—l);

T 41X W

M/
Ij+¢i;

M

j(*j+i+7,‘
A[Z] + A[Z] + w® ™% 2N x A[J] mod p ;
AlT] + A[Z] — w® ™4 2N . A[F] mod p ;
11+ 1;

end
Jj<Jj+M;
end
M+ M x 2;

end

Algorithm 1, using the inverse of the twiddle factor,
i.e. w™! mod p. Therefore, we can use the same circuit
for both forward and inverse NTT. Note that the NTT-
based multiplication technique returns a polynomial of
degree 2N —1, which should be reduced to a polynomial
of degree N — 1 by diving it by ®(x) and keeping the
remainder of the division operation. When the reduction
polynomial ®(x) is of a special form such as %V + 1, the
NTT is known as Fermat Theoretic Transform (FTT) [36]
and the polynomial reduction can be performed easily
as described in [37] and [38].

2.2.3 Relinearization

Relinearization takes a ciphertext and set of evalua-
tion keys (EK; ;) as inputs, where i € [0,l — 1] and
j € [0, [log(q)/r] — 1], I is the number of small prime
numbers and r is the level index. Algorithm 2 describes
relinearization as implemented in this work. We pre-
compute the CRT and NTT of the evaluations keys (since
they are fixed) and in the computations we perform
the multiplications and additions in the NTT domain.
The result is evaluated by taking [ INTT and one
ICRT at the end. An r-bit windowed relinearization
involves [log(q)/r] polynomial multiplications and ad-
ditions, which are performed again in the NTT domain.

ALGORITHM 2: Relinearization with r bit windows
input : Polynomial ¢ with (n,log(q))
output: Polynomial d with (2n,log(nqlog(q)))
{é:} =CRT(c) ;
{C-} =NTT({c}) ;
fori=0tol—1do
load EK»L‘,(), EKiyl, s 7EKi,(log(q)/ﬂ71 ;
{Di} ={Z[8 01" Cr - BK 1}
end
{di} = INTT({D:}) ;
d=I1CRT({d:}) ;

Since operand coefficients are kept in residue form,
before relinearization we need to compute the inverse
CRT of ¢,.

3 ARCHITECTURE OVERVIEW
3.1 Software/Hardware Interface

The performance of the NTRU based FHE scheme heav-
ily depends on the speed of the large degree polynomial
multiplication and relinearization operations. Since the
relinearization operation is reduced to the computation
of many polynomial multiplications, a fast large degree
polynomial multiplication is the key to achieve a high
performance in the NTRU-FHE scheme. Having a large
degree N increases the computation requirements signif-
icantly, therefore a standalone software implementation
on a general-purpose computing platform fails to pro-
vide a sufficient performance level for polynomial mul-
tiplications. The NTT-based polynomial multiplication
algorithm is highly suitable for parallelization, which
can lead to performance boost when implemented in
hardware. On the other hand, the overall scheme is a
complex design demanding prohibitively huge memory
requirements (e.g., in LTV-AES [11] key requirements
exceed 64-GB of memory). Therefore, a standalone ar-
chitecture for SWHE fully implemented in hardware is
not feasible to meet the requirements of the scheme.

In order to cope with the performance issues we de-
signed the core NTT-based polynomial multiplication in
hardware, where the polynomials have relatively small
coefficients (i.e., 32-bit integers) to use it in more com-
plicated polynomial multiplications and relinearization
evaluations. The designed hardware is implemented in
an FPGA device, which is connected to a PC with a high
speed interface, e.g. PCI Express (PCle). The PC handles
simple and non-costly computations such as memory
transactions, polynomial additions and etc. In case of a
large polynomial multiplication or NTT conversion (in
case of relinearization), the PC using the CRT technique,
computes an array of polynomials whose coefficients
are 32-bit integers from the input polynomials of much
larger coefficients. The array of polynomials with small
coefficients are sent in chucks to the FPGA via the
high-speed PCle bus. The FPGA computes the desired
operation: polynomial multiplications or only NTT con-
version. Later, the PC receives the resulting polynomials
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from the FPGA and if necessary, i.e. before modulus
switching or relinearization, evaluates the inverse-CRT
to compute the result.

3.2 PCle Interface

The PCle is a serial bus standard used for high speed
communication between devices which in our case are
PC and the FPGA board. As the target FPGA board,
we use Virtex-7 FPGA VC709 Connectivity Kit and can
operate at 8 GT/s, per lane, per direction with each
board having 8 lanes. The system is capable of sending
the data packets in bursts. This allows us to achieve real
time data transaction rate close to the given theoretical
transaction rate as the packet sizes become larger.

3.3 Arithmetic Core Units

In order to achieve multiplication of two large degree
polynomials, we designed hardware implementations
for basic arithmetic building blocks to perform opera-
tions on the polynomial coefficients such as modular ad-
dition, modular subtraction and modular multiplication.

For compute-heavy operations using a large number
of multiplication operations such as modular exponen-
tiation and polynomial multiplication, it is a common
practice, especially on word-oriented architectures, to
perform partial reduction for the intermediate oper-
ations [39]. For example, when multiplying two 32-
bit numbers with respect to a 32-bit modulus p, it is
sufficient to achieve a result that is 32 bits in length,
which can still be larger than the modulus p. This
increases complexity of modular addition and modular
subtraction operations because of the massive number of
operations realized in a single clock cycle for multiplica-
tion of two polynomials of degree 2! and 2'°. Therefore,
we conclude that the most efficient method for the these
modular operations is to achieve full modular reduction,
and we design our building blocks to work with only
fully reduced integers. Also, we base our design on an
architecture to perform modular arithmetic operations
for 32-bit numbers.

3.3.1 32-bit Modular Addition

The modular addition circuit, which is illustrated in
Figure 1b, takes one clock cycle to perform one mod-
ular addition operation where operands A, B and the
modulus p are all 32-bit integers and A, B < p. As noted
before, it is guaranteed that the result will be less than
the modulus p. Since the largest values of A and B are
p — 1, and thus the largest value of A + B is 2p — 2, at
most one final subtraction of the modulus p from A+ B
will be sufficient to achieve full modular reduction after
addition operation.

3.3.2 32-bit Modular Subtraction

The modular subtraction circuit, which is designed in a
similar manner to modular addition circuit, is illustrated

in Figure 1a. Similarly the subtraction unit is optimized
to take one clock cycle to finish one modular subtraction
operation on a target device. Since the largest values
of A and B are p — 1, and the smallest values of A
and B are 0, the largest value of their subtraction can
be p — 1, and the smallest value can be —p + 1, which
indicates that one final addition of the modulus p will
be sufficient to achieve full modular reduction after
subtraction operation.

B A p
32 32 32
2's comp. p A B
logic
32 32 32
2's comp. +
logic
+
i’ 32 32
carry 32
+
1 + 1 32
carry
32 1 0
MUX
1 0
MUX
A+Bmodp
A-Bmodp

(a) Modular Subtracter (b) Modular Adder
Fig. 1. Modular Adder/Subtracter Circuits.

3.3.3 Integer Multiplication

The target FPGA device features many DSP units that are
capable of performing very fast multiply and accumulate
operations. A DSP unit takes three inputs A, B and C,
which are 18 bits, 25 bits and 48 bits, respectively. A
and B are multiplicand inputs, and C' is the accumulate
input. The output is a 48-bit integer, which can be
defined as D = A x B + C. Therefore, we can accu-
mulate the results of many 18 x 25-bit multiplications
without overflow. Since our operands are 32 bits in
length, first we need to perform a full multiplication
operation of 32-bit numbers. The operand lengths of
the DSP units dictate that we need to perform four
16 x 16-bit multiplication operations to achieve a 32—
bit multiplication operation. Utilizing four separate DSP
slices, we could perform a 32-bit multiplication with 1
clock cycle throughput. However, this brings additional
complexity to the hardware and because of the overall
structure of the polynomial multiplication algorithm, 1-
cycle throughput is not crucial for our design. Therefore,
we decided to utilize a single DSP unit and perform
the required multiplication operations to achieve a 32—
bit multiplication operation on the same DSP unit. This
results in a 4—cycle throughput as explained below.

In our design, however, we use Barrett’s algorithm [40]
for modular reduction, which requires 33 x 33-bit mul-
tiplication operations, for which the utilized method
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ALGORITHM 3: 33 x 33-bit integer multiplication

input : A= {A,, Ao}, B={B1,Bo}, where A;, By are
high 17 bits and Ao, Bo are low 16 bits of A and
B, respectively

output: C = A x B

Rl + Ag x By + 0;

R2 + Ap x B +R1H(R1H = Rl >> 16) ;
R3 + A; x Bo + R2;

R4 <« A1 x Bo + R31(R3; = R3 >> 16) ;

C + {R4,R31, Rl }(Rl, = R1&0zFFFF, R3] =
R3&0xFFFF);

g ok W N =

1
shift .
enable

R i et
Ao o DSPUnn:

'
17 1
MUX :
Ay —1 ' a4
! X

By ——0

34

.

By —1
34

S1 Sp
mod-4
counter

Fig. 2. Multiplier Circuit.

is described in Algorithm 3. Therefore, we use DSP
slices to perform 17 x 17-bit integer multiplications at
a time as illustrated in Figure 2, instead of 16 x 16-bit
multiplications, where both operations have exactly the
same complexity. To minimize critical path delays, we
utilize the optional registers for the multiplicand inputs
and the accumulate output ports of the DSP unit as
shown in Figure 2. These registers increase the latency
of a single 33 x 33-bit multiplication to 6 clock cycles.
On the other hand, the throughput is still four clock
cycles, which allows the multiplier unit to start a new
multiplication every four clock cycles.

We use classical multiplication algorithm and accumu-
late the result of the previous multiplication immediately
after a 17 x 17-bit multiplication operation. The result
will be in the registers 17, Ty, 71, T—>. Note that the wire
widths in Figure 2 indicate the sizes of the operands and
the intermediate values in our application, not the actual
widths of the corresponding wires in the DSP units.

3.3.4 32-bit Modular Multiplication

We use Barrett’'s modular reduction algorithm [40] to
perform modular multiplication operations. The Mont-
gomery reduction algorithm [41], which is a plausible
alternative to the Barrett reduction, can also be used
for modular multiplication of 32-bit integers. However,
the Montgomery arithmetic requires transformations to
and from the residue domain, which can lead to com-
plications in the design. Therefore, we prefer using the

Barrett’s algorithm in our implementation to alleviate the
mentioned complications in the design.

We use the algorithm adapted for 32-bit modular
multiplication operations as illustrated in Algorithm 4.
The comparison operation (and associated addition with
23%) in Step 9 is not needed in hardware implementa-
tion, as it is equivalent to checking the carry output of
addition of U and 2’s complement of V after Step 8.
More specifically, when the operation U — V results in
a negative number, the actual operation in hardware,
where two’s complement arithmetic is used, produces
no carry. Consequently, if we use exactly the 33 bits of
the result ignoring whether there is a carry or not, we
will always obtain the correct result.

ALGORITHM 4: Barrett Modular Multiplication Algo-
rithm for 32-bit Modulus
input : A, B, p, and T, where A, B < p < 2%? and
964
r=1]
output: C' = A x B mod p

X+ Ax B;

Q<+ X >>31;

R+~ QxT;

S+ R>> 33

Y+ Sxp;

U + X mod 2%3;

V < Y mod 2%3;

W<+U-V;

if W < 0 then

| W« W +2%;

end

10 if W —2p > 0 then
‘ C <+ W —2p;
end

11 else if W — p > 0 then
| C+«W-—p;

12 else

| C«+«W;

end

© ® N U R W N R

The subtraction W <+ U — V in Step 8 can be at
most a 33-bit number, more precisely 3p—1 as explained
in [42]. Therefore, two subtractions in Steps 10-11 can
be necessary to obtain the final complete result at the
end. As we want to finish Steps 10-11 in a single clock
cycle, we perform both subtractions in the hardware
implementations simultaneously, namely W — 2p and
W — p, and select the correct result using the carry bits
of the subtraction results and a multiplexer as illustrated
in Figure 3. If W — 2p is positive, it is guaranteed that it
is a number in the range 0 < W < p, and we select this
result as the output. However, if W — 2p is a negative
number and W —p is a positive number, we select W —p
as the correct output. If both subtractions yield negative
results, we select W as the output.

Our implementation of the Barrett algorithm, which is
illustrated in Figure 3 takes 19 clock cycles to complete
one modular multiplication of 32-bit integers whereas
its throughput is four clock cycles. We will refer the first
four clock cycles as the warm up cycles of the multiplier
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Fig. 3. Architecture for 32-bit Modular Multiplier.

and the last 15 clock cycles as the tail cycles. These
periods of clock cycles are important for the first and
last multiplication operations performed in the pipeline
architecture in Figure 3. We will need these pieces of
information to accurately estimate the number of clock
cycles needed in our computations in subsequent sec-
tions.

4 2" x 2" POLYNOMIAL MULTIPLIER

We implemented a 2" x 2" polynomial multiplier, with
32-bit coefficients. Throughout the paper, we will use the
term 2" to denote the 2" x 2" polynomial multiplier. We
do not utilize any special modulus, to achieve a generic
and robust polynomial multiplier as we use Barrett’s
reduction algorithm for coefficient arithmetic. Instead of
the classical schoolbook method for polynomial mul-
tiplication, we utilized the NTT-based multiplication
algorithm, as explained in Section 2.2 and described in
Algorithm 5. It should be noted that Step 5 of Algorithm
5 is implemented by coefficient-wise 32-bit modular
multiplications.

ALGORITHM 5: NTT-based 2" polynomial multipli-
cation

input : A(z) = Ao+ Arz + -+ Agn 122" 71,

B(l‘) =Bo+Bix+---+ BQn71:L‘2n71, P
output: C(z) = A(z) x B(z)
1 NTTa(z) < NTT of polynomial A(z);

NTTg(z) < NTT of polynomial B(z);
3 NTTc(x) < Inner products of polynomials NTT4(z)
and NTTg(x);
T(x) < Inverse NTT of polynomial NTT¢ (x);
C(x) « T(z) x ((2")"" mod p);

—~

4.1 NTT Operation
4.1.1 NTT Algorithm

We apply the NTT operation on a polynomial A(x)
of degree 2™ — 1 over Z,[z]/(®(x)). Since the result of
the NTT-based multiplication will be of degree 2("*+1),
we need to zero—-pad the polynomial A(x) to make it
also a polynomial of degree 2("*1) as follows A(x)

32
L =TT
33 Lcomp. 32 -
=+ -P — 1 —>—
32 |[MUX|AB mod P
2
carry
bitsr
|_| priority
|_| logic >
2("+1) 1

23:61 Aj @) + 375 00 027, When we apply the
NTT transform on A(z), the resulting polynomial is

(n+1) _ . O
A(x) Z?:o Y A; - 2, where the coefficients A; € Zy
o(n+1) _q

are defined as A; = >/~ A;-w" mod p, and w € Z,
is referred as the twiddle factor. Since the size of the NTT
operation is actually 2("*1), we need to choose a twiddle
factor w which satisfies the property W™ = 1mod p
and Vi < 2001 4 £ 1 mod p.

To achieve fast NTT operations, we utilize the Cooley—
Tukey approach, as explained in Section 2.2. Cooley—
Tukey approach works by splitting up the NTT-
transform into two parts, performing the NTT operation
on the smaller parts, and performing a final reconstruc-
tion to combine the results of the two half-size NTT
transform results into a full-sized NTT operation. If the
NTT operation is defined as:

2("+1),1
A; = E Aj - w* mod p,

=0

we can split up this operation as follows

2" —1 2" -1
A = Z Ag; - w'®) mod p+ Z Agj1 - w1 mod p,
§=0 j=0

which can also be expressed as A; = E; + w'O;, where
E; and O; represent the i'" coefficients of the 2" NTT
operation on the even and odd coefficients of the poly-
nomial A(x), respectively. It is important to note that if
the twiddle factor of the 2("+1) NTT operation is w, the
twiddle factor of the smaller 2" operation will be w?. Be-
cause of the periodicity of the NTT operation, we know
that F; on = FE; and O;y9n» = O;. Therefore, we have
A; = El—HzﬂOl for0<i<2"and A; = F;_on +wi0i,2n
for 2" < i < 2+t For the twiddle factor, it holds
that w'™?" = w' - w? = —w’. Consequently, we can
achieve a full 2("*1) NTT operation with two small 2"
NTT operations utilizing the following reconstruction
operation

Ai
Aitan

E; + ini,
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The reconstruction operation is performed iteratively
over very large number of coefficients. To better explain
the iterative Cooley-Tukey approach, we would like to
give a toy example of the NTT operation. First, we
show the smallest NTT-transform circuit used in our
design, which is shown in Figure 4a. Here, the NTT
operation is applied over a polynomial of degree 1, with
w? = 1 mod p. Therefore, the two outputs of the circuit
are A+ B and A+wB = A— B mod p. Utilizing the 2 x 2

T
Ag 0 - To+T2
2x2 T415
A1 — ! '%H - T1+T3
25
? L
@ =
>< T2[§©
A2 — 28 HToT2
2x2 T T
A — A« A3 el - T1-T3
2x2
B — L AB w

(a) 2 x 2 NTT circuit (b) 4 x 4 NTT circuit

Fig. 4. Construction of the 4 x 4 NTT circuit from 2 x 2
circuits

NTT circuit, we can perform a 4 x 4 NTT operation as
shown in Figure 4b. Here, since we are constructing a
4 x 4 NTT circuit, we have w* = 1 mod p.

In a similar fashion, we can achieve an 8 x 8 NTT
operation utilizing two 4 x 4 NTT operations, as shown
in Figure 5. Here, since we are constructing an 8 x 8 NTT
circuit, we have w® = 1 mod p. Also in Figure 5, we can

To

Ao — To+T4
2x2 <
As 2 T L L T4+Ts
23
>< 53
5O T
As 5] 2 T To+Te
2x2 «
As T3 I T3+T7
w2 :

Reconstruction
Circuit

A1 LL —rTo-Ta
2x2 <
o
A3 = Ts | LT
> C 8 e S B SRR
@ L
3 2
56
A 3 Te
° 2x2 < wa— © T TeTe
T7
WS_]_ T

.
w2

Fig. 5. Construction of the 8 x 8 NTT circuit iteratively.

see that if the twiddle factor of the 8 x 8 NTT operation
is w, the twiddle factor of the 4 x 4 NTT operation is
w?. The overall architecture for iterative computation of
NTT is shown in Figure 6. Note that, in a full 2(**V

2x2 -
_ L INTT S —
©
2
k7
- - S I
2x2 4
o
— LI NTT w, 5 -
— ©
— s
— - 9 -
2x2 - S
4 HM— i -
o
=4
4 4 2l w2 W L
@l f :
4 H¥HWH AW -
L L S
@
] ] s
— - S -
2x2 - &
| LI NTT S A —
B 4
= 2
= =
— o H < - w2 - —
51122 8 ¢
3
__>_NTT_|T|_E sHw H
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— 5 @ | w4 | |
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5] 5
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o
=4
@
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Fig. 6. NTT Circuit

NTT circuit, the twiddle factor w!'%*%* is used in 8 x 8
NTT circuits.

4.1.2 Coefficient Multiplication and Accumulation

In order to parallelize multiplication and accumulation
operations we utilize 3- K DSP units to achieve K modu-
lar multiplications in parallel, with a 4-cycle throughput,
where K is a design parameter that depends on the
number of available DSP units in the target architecture.
In our design, K is chosen as a power of 2.

To be able to feed the DSP units with correct polyno-
mial coefficients during multiplication cycles, we utilize
K separate Block RAMs (BRAM) to store the polynomial
coefficients as shown in Figure 7 (e.g. K = 128). The
algorithm used to access the polynomial coefficients in
parallel is described in Algorithm 6. The algorithm takes
the BRAM content (i.e., the coefficients of A(x)), the
degree N = 2", the current level m, and the number
of modular multipliers K = 2" as input, and generates
the indexes in a parallel manner. Every four clock cycles,
we try to feed modular multipliers the number of coef-
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ficients which is as close to K as possible. Ideally, it is
desirable to perform exactly KX modular multiplications
in parallel, which is not possible due to the access pattern
to the powers of w. Algorithm 6, on the other hand,
achieves a good utilization of modular multiplication
units.

w generation
circuit

1 1
At2g
A B Modular | _to recc_)nstruction
= Mult. circuit
BRAM, MUX )
AoN-127 J
1
A129
A e Modular to reconstruction
BRAM: - Mult circuit
MUX :
AoN-126 J
Atz7
A -
AiZi Modular | !0 reconstruction
BRAM;57 MUt
MUX
AoN-1

Fig. 7. The architecture for NTT transformation of a poly-
nomial of degree N over F,, where [log, p| = 32.

For level m, we use the 2™ x 2™ NTT circuit. The
coefficients are arranged in 2™ x 2™ blocks. For example
when K = 256, for the first level of the NTT operation,
where m = 2, we need to multiply every 4th coefficient
of the polynomial with wy, = w381, Since the coefficients
are perfectly dispersed, we can read 256 coefficients to
feed the 256 multipliers in four clock cycles. This is
perfect as the throughput of our multipliers are also four
cycles. When the multiplication operations are complete,
with an offset of 19 cycles (four clock cycles are for the
warm up of the pipeline whereas 15 clock cycles are the
tail cycles necessary in a pipelined design to finish the
last operation), the results are written back to the same
address of the RAM block as the one the coefficients are
read from.

We provide formulae for the number of multiplica-
tions in each level and an estimate of the number of clock
cycles needed for their computation in our architecture.
Suppose N = 2" and K = 2% (n > k) are the number
of coefficients in our polynomial and the number of
modulo multipliers in our target device, respectively. The
coefficients are stored in BRAMSs, with a word size of 32
bits and an address length of 10 bits (1024 coefficients
per BRAM). For ideal case, the number of modular
multipliers should be 4 times the number of BRAMS

ALGORITHM 6: Parallel access to polynomial coefficients

input : A(z) = Ao+ Az + ...+ Aon_12*¥ 7Y, n, m, and
k<n
output: B;[j]

1 mCnt < 2™ ' —1; /+ number of multiplications
in a block =*/
2 bSize + 2™ ;
3 BRAMCnt + 2"72 ;
4 if bSize < 2572 then
for t =0 to 1024 do
for i = 0 to BRAMCnt do in parallel
for j =i+ bSize — mCnt to i + bSize do
for k=0 to 3 do
5 Access BRAM;[t + 2k] ;
6 Access BRAM;[t + 2k +1] ;
k+—k+1;
end
J<i+L
end
i 41+ bSize;

/* size of a block =/
/* number of BRAMs */

end
t+—t+8;

end
end
7 else
for i =0 to BRAMCnt do in parallel
for j =0 to 1024 do
for k = 2m "t o 2m"1+2 do
8 Access BRAM;[k + j] ;
k+—k+1;
end
]<_] +27n71€+2;
end
T 1+ 1;

end
end

required to store a single polynomial. The formula for
the number of multiplications for the level m > 1 can be
given as M = 2nt1=m . (2m~1 1) Also, using K = 2~
multipliers, the number of clock cycles to compute all
multiplications in a given level 1 < m < n+ 1 can be
formulated as

444 {MJ +15

o LK/a] nzm

Ccm =
444 (£ +1)- 21" 115 Kk <m,

where @ = 2°7™ . (2m~1 — 1) and g = 2™~ — 2% In the
formula, the first (4) and the last terms (15) account for
the warm up and the tail cycles.

As an example, Table 3 shows the number of multipli-
cation operations required for each stage of the iterative
Cooley-Tukey NTT operation, for a 32768—coefficient
(64K-point) NTT operation, when the number of modu-
lar multipliers is 256. (i.e.,, N = 21° and K = 256).

As mentioned before, the modulo multipliers are not
always fully utilized during the NTT computation. For
example when K = 2% and N = 25, for m = 2, we have
to read every 4" coefficient from the BRAMs. Because
the coefficients are perfectly dispersed throughout the 64
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TABLE 2
Powers of w needed in different levels of NTT circuit

Level (m) Block size powers of w
2 4x4 w?™
3 8 % 8 w2137w2‘2137w3'213
4 16 x 16 w2127w2'2127...7w(2371)‘212
5 32 % 32 w211’w2‘2117'..7w(2471)‘211
6 64 x 64 w2107w2'2107...’w(2571)‘210
7 128 x 128 w2 w22 w212
8 256 x 256 w2 w22 @128
9 512 x 512 w2 w2 w127
10 1024 x 1024 w2’ w22’ @120
11 2048 x 2048 | w?’ w2’ .. @12
12 4096 x 4096 | w?' w2?' . w12t
13 8192 x 8192 | w?’ w?? . »@7-D2
14 16384 x 16384 | w2’ w??* .. w(?7-1-2°
15 32768 x 32786 w2 w??, w2
16 65536 x 65536 ww?, . w? L

BRAMS, we can only read 16 - 2 = 32 coefficients every
clock cycle, which yields a number of 128 concurrent
multiplications every four clock cycles. Consequently, we
can finish all the modular multiplications in the first level
in 44128 -4 4 15 = 531 clock cycles. Since we can use
half the modular multipliers, we achieve half utilization
in the first level. However, when m = 3, we have to read
every 6!, 7" and 8! out of every 8 coefficients. We can
read 24 - 2 = 48 coefficients every clock cycle from the
BRAMSs. This means we can only utilize 192 out of 25
modular multipliers since the irregularity of the access
to the polynomial coefficients. This, naturally, results in
a slightly low utilization. However, since we can read 2
coefficients from each BRAM every clock cycle, we are at
almost perfect utilization, resulting in 4+128-4+15 = 531
clock cycles for this and the rest of the stages.

Since the operands of the both operations are accessed
in a regular manner, the number of clock cycles spent
on +1‘{1)odu1ar additions and subtractions are calculated as
%, when there are 27 modular adders and 27
subtractors.

4.1.3 w Generation
Theoretically, we need an N-th root of unity in F), for
NTT of polynomials of degree N. Due to the polynomial
padding in our case, we need an 2N-th root of unity
w € F, such that w2 = 1modp and Vi < 2(nD),
w' # 1 mod p.

In every level of the NTT circuit, we use different
powers of w. For the level m, where we use the 2™ x 2™
butterfly circuit and the coefficients are arranged in 2™ x

m—1
2m161310cks, we need w},ﬂwfn, w7 where w, =
w? . For instance, w?  is used in every multiplication

13 13
22" 532" are

in the 4 x 4 butterfly circuit while w2, w
used in the multiplications in 8 x 8 butterfly circuit.
For the powers of w that are used in different levels of

computation for a 2'~point NTT operation, see Table 2.

10

TABLE 3
Details of NTT computation in our architecture for 32768
coefficients and and 256 multiplier units.

number of number of
NTT blocks number of modular clock
blocks multiplications cycles
4 x4 16384 16384 275
8 X8 8192 24576
16 x 16 4096 28672
32 X 32 2048 30720
64 x 64 1024 31744
128 x 128 512 32256
256 X 256 256 32512 531
512 x 512 128 32640
1024 x 1024 64 32704
2048 x 2048 32 32736
4096 x 4096 16 32752
8192 x 8192 8 32760
16384 x 16384 4 32764
32768 X 32768 2 32766
65536 X 65536 1 32767
[ Total clock cycles [ 7709 |

In summary, for the 2'°~point NTT we need 2!° — 1 =
32767 powers of w; namely w, w? w3, ..., w3?7%7. In case
of 2! polynomial multiplier we require up to 2'5-point
NTT arithmetic which we only need 2! —1 = 16383 coef-
ficients for powers of w, e.g. w? w??2 w3 ... w?16383,
We precompute and store these powers of w in block
RAMs in a distributed fashion similar to the coefficients
of the polynomials as illustrated in Figure 7. Alterna-
tively, the powers of w can be computed on-the-fly for
area efficiency. However, since we have sufficient num-
ber of block RAMs in the target reconfigurable device,

we prefer the precomputation approach.

4.1.4 Reconstruction

Once we are done with the multiplications, we utilize 64
modular adders and 64 modular subtracters to realize
the addition and subtraction operations as shown in
Equation 1.

4.2

Inner multiplication of two 2" polynomials is trivial for
our hardware design. We can load 256 coefficients from
each polynomial every 4 cycles and feed the multipliers,
without increasing the 4—cycle throughput. For a 2" poly-
nomial inner multiplication we spend 2("+1).4/256 + 15
clock cycles.

Inner Multiplication

4.3

The Inverse NTT operation is identical to the NTT opera-
tion, except that instead of the twiddle factor w, we use
the twiddle factor w; = w~! mod p. The precomputed
twiddle factors of the inverse NTT are stored in the
same block RAMs as the forward NTT twiddle factors,
with an address offset. Therefore, the same control block
can be utilized with a simple address change for the w
coefficients for the inverse NTT operation.

Inverse NTT
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4.4 Final Scaling

Final scaling is similar to the inner multiplication phase.
We load each coefficient of the resulting polynomial,
and multiply them with the precomputed scaling factor.
Similar to the inner multiplication phase, we can load
256 coefficients from the resulting polynomial in 4 cycles
cycle and feed the multipliers, without increasing the
4-cycle throughput. For a 2" polynomial final scaling
operation, we spend 2("*1) . 4/256 + 15 clock cycles.

5 IMPLEMENTATION RESULTS

We developed the architecture described in the previous
section into Verilog modules and synthesized it using
Xilinx Vivado tool for the Virtex 7 XC7VX690T FPGA
family. The synthesis results are summarized in Table 4.
We synthesized the design and achieved an operating
frequency of 250 MHz for multiplication of polynomials
of degrees N = 16,384 for Prince and N = 32,768 for
AES with a small word size of logp = 32 bit 1. In Table 5
we summarize the timing results of the synthesized
small word size polynomial multiplier.

Although we can scale our architecture for larger
parameters, it becomes hard to synthesize, since we are
using 50 percent of the LUTs already. Another problem is
that with larger hardware it is harder to do the routing
because of the butterfly circuit mapping at each level.
Also, it becomes harder to fit all the necessary compo-
nents, i.e. polynomials, powers of w and resulted poly-
nomial in the FPGA. Therefore, it becomes impossible to
process a multiplication without extra I/O transactions
when computing the NTT conversions.

TABLE 4
Virtex-7 XC7VX690T device utilization of the multiplier

N = (16,384/32, 768) Total Used Used (%)

Slice LUTs 433,200 219,192 50.59

Slice Registers 866,400 90,789 10.47

RAMB36E1 1470 193 13.12

DSP48E1 3600 768 21.33
TABLE 5

Timing results for 32-bit coefficient polynomial multiplier
for various degree N sizes

N NTT Mult PCle Total
16,384 | 24.5 us T34 ps 26 us  99.4 us
32,768 | 509 us 152 us 79 us 231 us

The FPGA multiplier is used to process each com-
ponent of the CRT representation of our large coeffi-
cient ciphertexts with logg = 500 bits for Prince and

1. We use the same hardware architecture for both applications. The
only difference is that compared to N = 16, 384 case, the architecture
is used almost twice many times in N = 32, 768.

11

log ¢ = 1271 bits for AES implementation. In fact we keep
all ciphertexts in CRT representation and only compute
the polynomial form when absolutely necessary, e.g. for
parity correction during modulus switching and before
relinearization. We assume any data sent from the PC
through the PCle interface to the FPGA is stored in
onboard BRAM units.

CRT Computation Cost. To facilitate efficient computa-
tion of multiplication and relinearization operations we
use a series of equal sized prime numbers to construct a
CRT conversion. In fact, we chose the primes p;’s such
that ¢ = Hi:o p;. During the levels of homomorphic
evaluation, this representation allows us to easily switch
modulus by simply dropping the last p; following by
a parity correction. Also, since we have an RNS rep-
resentation on the coefficients we no longer need to
reduce by ¢. This also eliminates the need to consider
any overflow conditions. Thus, [ = log(q)/log(p;) is 25
and 41 for Prince and AES implementations, respectively.
We efficiently compute the CRT residue in software on
the CPU for each polynomial coefficient as follows:

« Precompute and store t;, = 264% (mod p;) where k €
[0, [log(q/64) — 11].
e Given a coefficient of ¢, we divide it into 64-bit
blocks as ¢ = {...,wg,...,wp}.
e We compute the CRT result by evaluating
>t - wg (mod p;) iteratively.
The CRT computation cost for 41 primes p; per ciphertext
polynomial is in the order of 89 ms and for 25 primes
p; per ciphertext polynomial is in the order of 14.5 ms
on the CPU. The CRT inverse is similarly computed
(with the addition of a word carry) before each modulus
switching operation at essentially the same cost.

Communication Cost. The PCle bus is only used for
transactions of input/output values, NTT constants and
transport of evaluation keys to the FPGA board. With 8
lanes each capable of supporting 8 GT/s transport speed
the PCle is capable to transmit a 1 MB ciphertext in about
0.13 ms. Note that the NTT parameters used during
multiplication also need to be transported since we do
not have enough room in the BRAM components to keep
them permanently. We have two cases to consider:
o Multiplication: We transport two polynomials of
5 MB / 1 MB each along with the NTT parameters
of 5 MB / 1 MB and receive a polynomial of 10 MB
/ 2 MB, which costs about 3.25 ms / 0.65 ms per
multiplication for AES/Prince implementation.
o Relinearization: We need to transport the ciphertext
we want to relinearize, the NTT parameters and a
set of % ~ 80 / % ~ 32 evaluation keys
(ciphertexts), where a window size of 16-bit is used,
resulting in a 52 ms / 10 ms delay for AES/Prince
implementation.

Multiplication Cost. We compute the product of two
polynomials with coefficients of size log(p) = 32 bits
using 256 modular multipliers in 12720/6120 cycles,
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which translates to 152 us / 73.4 us for AES/Prince
implementation. This figure is comprised of two NTT
and one inverse NTT operations and one inner product
computation. The addition of I/O transactions increase
the timing by 79 us / 26 us for AES/Prince implemen-
tations. The latency of large polynomial multiplication
may be broken down as follows:

o Cost of small coefficient polynomial multiplications
is 41 - 152 ps = 6.25 ms for AES and 25 - 73.4 us
= 1.84 ms for Prince.

o The PCle transaction of the two input polynomials,
the NTT coefficients and the double sized output
polynomial is 3.25 ms / 0.64 ms for AES/Prince
implementation.

Thus, the total latency for large polynomial multiplica-
tion in the CRT representation is computed in 9.51 ms
and 2.48 ms for AES and Prince implementations respec-
tively.

Polynomial Modular Reduction. Since all operations
are computed in a polynomial ring with a characteris-
tic polynomial as modulus without any special struc-
ture, we use Barrett’s reduction technique to perform
the reductions. Note that precomputing the constant
polynomial z2V /®(z) (truncated division) in the CRT
representation we do not need to compute any CRT
or inverse CRT operations during modular reduction.
Thus we can compute the reduction using two product
operations in about 19 ms and 4.9 ms for AES and Prince
implementations respectively.

Modulus Switching. We realize the modulus switching
operation by dropping the last CRT coefficient followed
by parity correction. To compute the parity of the cut
polynomial we need to compute an inverse CRT op-
eration. The following parity matching and correction
step takes negligible time. Therefore, modulus switching
can be realized using one inverse CRT computation in
89 ms and 14.5 ms for AES and Prince implementations
respectively.

Relinearization Cost. To realinearize a ciphertext poly-
nomial

o We need to convert the ciphertext polynomial coeffi-
cients into integer representation using one inverse
CRT operation, which takes 89 ms / 14.5 ms for
AES/Prince implementation.

o The evaluation keys are kept in NTT representation,
therefore we only need to compute two NTT op-
erations for one operand and the result. For | =
41/25 primes and % ~ 80/32 products the NTT
operations take 331 ms / 38 ms for AES/Prince
implementation.

o We need to transport the ciphertext, the NTT pa-
rameters and 80/32 evaluation keys (ciphertexts)
resulting in a 52 ms / 4 ms delay for AES/Prince
implementation.

o The summation of the partial products takes negli-
gible time compared to the multiplications and the
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TABLE 6
Primitive operation timings including 1/O transactions.
AES Prince
Timings | Timings
(ms) (ms)
CRT 89 14.5
Multiplication 9.51 2.48
NTT conversions 6.25 1.8
PCle cost 3.26 0.64
Modular Reduction 19 4.95
Modulus Switch 89 14.5
Relinearization 526 61.2
CRT conversions 89 14.5
NTT conversions 331 38.2
PCle cost 52 4

PCle communication cost.

Then, the total relinearization operation takes 526 ms
and 61.2 ms for AES and Prince implementation respec-
tively. With the current implementation, the actual NTT
computations still dominate over the other sources of
latency such as PCle communication latency and the
CRT computations. However, if the design is further
optimized, e.g. by increasing the number of processing
units on the FPGA or by building custom support for
CRT operations on the FPGA, then the PCle communi-
cation overhead will become more dominant. The timing
results are summarized in Table 6.

6 COMPARISON

To understand the improvement gained by adding cus-
tom hardware support in leveled homomorphic evalu-
ation of a deep circuit, we estimate the homomorphic
evaluation time for the AES and Prince circuits and
compare it with a similar software implementations by
Doroz et al [11], [12] and by Wei et al [29], [30].

Homomorphic AES evaluation. Using the NTRU prim-
itives we implemented the depth 40 AES circuit follow-
ing the approach in [11]. The tower field based AES
SBox evaluation is completed using 18 Relinearization
operations and thus 2,880 Relinearizations are needed
for the full AES. The AES circuit evaluation requires
5760 modular multiplications. During the evaluation we
also compute 6080 modulus switching operations. This
results in a total AES evaluation time of 15 minutes.
Note that during the homomorphic evaluation with each
new level the operands shrink linearly with the levels
thereby increasing the speed. We conservatively account
for this effect by dividing the evaluation time by half.
With 2048 message slots, the amortized AES evaluation
time becomes 439 ms.

We have also modified Doroz et al.’s homomorphic
AES evaluation code to compute relinearization with 16-
bits windows (originally single bit). This simple opti-
mization dramatically reduces the evaluation key size
and speeds up the relinearization. The results are given
in Table 7. We also included the GPU optimized imple-
mentation by Dai et al. [29] on an NVIDIA GeForce GTX
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TABLE 7
Comparison of multiplication, relinearization times and
AES estimate

Mul Speedup | Relin Speedup | AES Speedup
(ms) (s) (©)
CPU [11] 970 1x 103 1x 55 1x
GPU [29] 340 2.8% 8.97 11.5% 7.3 7.5%
CPU (16-bit) | 970 1x 6.5 16x | 12.6 4.4x
Ours 9.5 102x 0.53 195x | 0.44 125x

680. With custom hardware assistance we obtain a signif-
icant speedups in both multiplication and relinearization
operations. The estimated AES block evaluation is also
improved significantly where some of the efficiency is
lost to the PC to FPGA communication and CRT com-
putation latencies.

Homomorphic Prince evaluation. Using the NTRU
primitives we implemented the depth 24 Prince circuit
following the approach in [12]. The algorithm is com-
pleted using 1152 relinearizations, 1920 multiplications,
3072 modular reductions and 2688 modular switch op-
erations. An important thing to note that as we did in
AES implementation, we divide the evaluation time by
half. The reason is that since during the homomorphic
evaluation with each new level, the operands shrink
linearly so the evaluation speed increases linearly. These
results in a total time of 53 seconds and an amortized
time of 52 ms with batching 1024 messages. Here in

TABLE 8
Comparison of multiplication, relinearization times and
Prince estimate

Mul Speedup | Relin Speedup | Prince Speedup
(ms) (©) (s)
CPU [12] | 180 Ix | 10.9 Ix 3.3 Ix
GPU [29] 63 2.85x% 0.89 12.3x 1.28 2.58%
GPU [30] | n/a n/a n/a n/a 0.032 103 x
Ours 2.5 72X 0.06 181x 0.05 66X

Table 8, we compare the results of homomorphic Prince
implementation of Dordz et al. [12] which is imple-
mented using a CPU. Also, we include the homomorphic
Prince implementations of Dai et al. [29], [30] on GPUs
which are significantly faster compared to the CPU
implementation.

7 CONCLUSIONS

We presented a custom hardware design to address the
performance bottleneck in leveled somewhat homomor-
phic encryption evaluations. For this, we design a large
NTT based multiplier, which is able to compute large de-
gree polynomial multiplications using the Cooley-Tukey
FTT technique. We extend the support of the custom core
to be capable of multiplying large degree polynomials
with large coefficients by using CRT representation on
the coefficients. Using numerous techniques the design
is highly optimized to speedup the NTT computations,
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and to reduce the burden on the PC/FPGA interface.
Our design achieves remarkable improvements in speed
of modular multiplication and relinearization of the
LTV SWHE scheme compared to the previous software
implementations. In order to show the acceleration that
our architecture may provide, we estimated the ho-
momorphic AES and Prince evaluation performances
and determined a speedup of about 28 and 66 times
respectively. Finally, we would like to note that these
estimates are only to get a sense of the improvement
that our architecture brings in. This custom accelerator
architecture can be more useful in many other practical
homomorphic evaluation applications in practice.
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