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Abstract

Assessment of the progression of the tumors in current clinical practice is based

on maximum diameter measurements, which are related to the volumetric changes.

With the advent of the spatially localized radiotherapy techniques (i.e. Cyberknife,

IMRT, Gammaknife, Tomotherapy) not only the volumes of the tumors but also

the geometric changes need to be considered to measure the effectiveness and to

improve the applied therapy.

In this thesis, image analysis techniques are developed for assessment of the

changes of the tumor geometry between MRI volumes acquired after and before

the therapy. Three main parts of the thesis are: Segmentation of brain tumors on

MRI; change quantification in temporal MRI series of brain tumors; and deformable

registration of brain MRI volumes with tumors.

The results obtained by the developed semi-automatic brain tumor segmentation

method, Tumor-cut, are comparable with those of state-of-the-art techniques in the

field. The quantification of tumor evolution using the invariants of the Lagrange

strain tensor provide measures that are more correlated with the clinical outcome

than the volumetric measures. The deformable registration of longitudinal data

provides a novel framework to study brain deformations, in vivo, and more accurate

assessment of the changes.
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Özet

Günümüz klinik uygulamalarında, tümörlü dokuların takibi, hacim değişimini yansıtan

çap ölçümleriyle yapılmaktadır. Ancak, IMRT, CyberKnife, GammaKnife, To-

moterapi gibi lokalize radyoterapi tekniklerinin gelişimine paralel olarak, uygulanan

terapinin başarısının değerlendirilmesi ve geliştirilmesi için lokal geometrik değişimlerin

de değerlendirilmesine ihtiyaç duyulmaktadır.

Bu tezde, terapi öncesi ve sonrasında alınan MR hacimleri arasında tumor ge-

ometrisindeki değişimlerin değerlendirilmesine yönelik görüntü analizi teknikleri geliştirilmiştir.

Tez üç ana parçadan oluşmaktadır: Beyin tümörlerinin MR görüntülerinde bölütlenmesi;

MR serilerinde tümör değişiminin kuantifikasyonu; tümörlü beyin MR görüntülerinin

çakıştırılması.

Geliştirilen yarı-otomatik beyin tümörü bölütleme yöntemi literatürdeki en başarılı

tekniklere benzer sonuçlar sağlamaktadır. Tümör değişiminin Lagrange gerilme

tensörü değişmezleri kullanılarak elde edilen ölçütlerle değerlendirmesi, hacim ölçütlerine

kıyasla, klinik sonuçlarla daha iyi örtüşen sonuçlar sağlamaktadır. Farklı zaman-

larda alınan MR görüntülerinin biçimlenebilir çakıştırması beyin deformasyonlarının

canlı dokuda incelenmesini sağlayan bir çerçeve sunmakta ve değişimlerin daha has-

sas bir şekilde değerlendirilmesini sağlamaktadır.
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Chapter 1

Introduction

1.1 Brain Tumors

Brain tumors are a set of neoplasms, which are caused by uncontrolled cell pro-

liferation, and do not necessarily arise from brain tissue (e.g., meningiomas and

lymphomas) [3, 4]. World Health Organization (WHO) classification of Central

Nervous System (CNS) tumors is based on the identification of different histopatho-

logic groups and includes a scale of malignancy, ranging from grade I benign forms

to grade IV forms with rapid growth and poor prognosis [5].

Approximately 40% of intracranial neoplasms are metastatic, which originate

most frequently from lung, breast, melanoma, renal and colon cancers, whereas

remaining are primary brain tumors. Gliomas are the most frequent primary brain

tumors in adults and account for 70% of adult malignant primary brain tumors [4].

Nearly 50% of the gliomas are WHO grade IV tumors, which are called glioblastoma

multiforme (GBM), exhibiting very rapid growth, with an average survival time of

one year. Meningiomas, which arise from meningothelial cells that form the external

membranous covering of the brain, are the most common extra-axial intracranial

neoplasms, which account for 15-20% of intracranial neoplasms [3, 4].

The symptoms of a brain tumor depend mainly on its location and its size and

consequently on the function of areas involved by the tumor, with a variety of

nonspecific symptoms typical of a mass growing inside the skull with increased in-

tracranial pressure. Common symptoms are persistent headache, nausea, vomiting

(usually morning), disorders of retina like papilledema caused by the dilatation of
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cerebral vessels, focal deficit (hemiparesis, hemianesthesia, hemianopsia, diplopia,

aphasia) and seizures due to tumor irritation effect (present up to one third of pa-

tients); moreover nonspecific neurologic symptoms such as clouding of consciousness

and personality changes [6].

Ionizing radiation is the only unequivocal risk factor that has been identified

for glial and meningeal neoplasms. Irradiation of the cranium, even at low doses,

can increase the incidence of meningiomas by a factor of 10 and the incidence of

glial tumors by a factor of 3 to 7 with a latency period of 10 years to more than 20

years after exposure. No other environmental exposure or behavior has been clearly

identified as a risk factor. The use of cellular telephones, exposure to high-tension

wires, the use of hair dyes, head trauma, and dietary exposure to N-nitro sourea

compounds or other nutritional factors have all been reported to increase the risk

of brain tumors; however, the data are conflicting and unconvincing [3].

The treatment of brain tumors is complex and depends on several factors such

as histologic type, location and extension, age and general conditions of the patient.

Brain tumors can be treated with surgery, radiation therapy (RT) and chemotherapy,

often in combination, in relation to the needs of patient [7].

1.2 MR Imaging of the Brain Tumors

Although computed tomography (CT) is also used to diagnose the brain tumors,

it can miss structural lesions such as nonenhancing tumors. Therefore, if a brain

tumor is a diagnostic consideration, MRI with gadolinium enhancement is the test

of choice [3].

MRI makes it possible to produce markedly different types of tissue contrast

by varying excitation and repetition times, which makes it a very versatile tool for

imaging different structures of interest. In current clinical routine, different MRI

sequences are employed for the diagnosis and delineation of tumor compartments

[4]. The brain tumor MR protocol, with and without contrast agent administration

should include T2-weighted and T2-weighted fluid-attenuated inversion recovery

(T2-FLAIR) sequences, best performed in 3D, generally in axial or coronal views,

and T1-weighted sequences with and without contrast enhancement [6].
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In MR imaging of glioblastoma, the solid part of the tumor shows hypointense

signal in T1-weighted sequences and hyperintense in T2, with higher signal in areas

of greater cellularity. Necrotic areas, which always appear hyperintense in T2, may

be hypo-, iso- or hyperintense in T1 due to products of protein or hemoglobin degra-

dation. Enhancement after administration of contrast medium is usually intense and

irregular at the tumor margins and identifies the cellular proliferation component of

the tumor. Punctate and serpiginous areas of no signal caused by flow associated

with neovascularization are common. These newly formed pathologic vessels are de-

void of blood-brain barrier (BBB), which explains both their marked enhancement

and perilesional vasogenic edema, due to the passage of fluid in the extracellular

space [6].

1.3 Current Medical Practice and Clinical Moti-

vation

1.3.1 Radiotherapy Treatment

Radiation therapy (RT) is a nonsurgical treatment that uses radiation to eradicate

tumor or to restrict its growth. For some cancer types particularly sensitive to

radiation, RT often in combination with chemotherapy may be the only therapeutic

approach required. In other cases, RT is used in combination with surgery to remove

any residual tumor not removed during surgery. RT can also be used in nonoperable

tumors to reduce metastatic spread or relieve symptoms.

Radiation can kill cells or block their ability to proliferate. Although, they act

both on tumor cells and normal cells, tumor cells are more sensitive to radiation

due to high proliferation rate, so it is possible to protect healthy cells by applying

the dose as fractions (i.e. Intensity Modulated Radiotherapy). On the other hand,

stereotactic radiosurgery (SRS) consists in the administration of highly collimated

beams of radiation through multiple non-coplanar arcs that intersect at a single point

(i.e. Cyber-knife, Gamma-knife etc.). This method involves the administration

of the entire dose in a single session with a rapid fall of the dose to surrounding

tissue. Stereotactic radiosurgery is feasible for small unifocal tumors (up to 4 cm),
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metastases, tumors which are unreachable by surgery or recurrence especially in

patients already receiving the maximum tolerable radiation dose.

Generally brain cells are very resistant to irradiation, while other cell types (bone

marrow cells, germinal cells, epithelium lining hollow organs) are very sensitive,

which is why the approach is to restrict the radiotherapeutic target volume as much

as possible [6]. Advanced radiotherapeutic devices allow the delivery of a high dose

to a precisely defined target volume, whereas keeping the dose on normal tissue at

minimum. Diagnostic imaging with CT and MR is essential for defining the target

volume and planning treatment. MRI is used to define the target volume, which

is the pathologic tissue irradiated with high dose, and organs at risk, which are

protected from the high dose radiation. Planning CT scan is still necessary for it

provides the attenuation coefficient map and serves as a reference for registration

during the therapy.

In planning radiotherapy treatment of brain tumors, first, the MR images ac-

quired with different sequences are registered to the contrast enhanced T1 images.

Then each MR image is transformed to CT space by applying the transformation

obtained by registering contrast enhanced T1 image to the CT image. The target

volumes and organs at risk (OAR) are contoured manually or interactively on MRI

using computer tools. In radiotherapy, the planning target volume (PTV) is defined

in 3 stages: The gross tumor volume (GTV) is defined as the surgical cavity and

any residual diseased tissue visualized with contrast enhancement in T1-weighted

images of postoperative MR; the clinical target volume (CTV) is defined as GTV

plus an expansion margin of 2 cm where there may be infiltration of tumor cells; the

PTV is represented by CTV plus an expansion margin of 1 cm [6]. The treatment

plan is determined on the CT image depending on the type of the therapy and tu-

mor; and controlled by optical tracking or registering x-ray scans acquired during

treatment. A similar procedure is applied in radiosurgery (i.e. CyberKnife), except

with a more conservative and precise definition of the target volume (PTV=GTV),

due to its less differentiation of tumor/healthy cells.
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1.3.2 Image Analysis for the Radiotherapy Treatment

As described above, advanced image analysis techniques are involved in different

stages of the radiotherapy treatment of brain tumors. Rigid/affine registration of

multi-modal MR images to CT images, having different contrast characteristics, is

performed. Rigid/affine registration using normalized cross correlation or mutual

information based algorithms are quite mature and are applied confidently to the

problem. Segmentation of the gross tumor volume (GTV), surrounding edema and

necrosis within GTV, is a widely studied problem in the literature, which aims to

reduce the intra-observer variability and workload in treatment planning.

Full-automatic tumor segmentation methods, commonly based on machine learn-

ing [8], require large training samples, and may miss “unlearned” heterogeneous

structures. They also do not use the information provided by the radiological ex-

amination, e.g. the volume of interest (VOI) and sampling from the tumor tis-

sue through line diameter measurements. Semi-automatic methods are more user-

friendly and appropriate to the clinical workflow, where the clinician wants to inter-

act with the segmentation process. The challenge in MR tumor segmentation is to

develop highly accurate and precise algorithms which are robust to highly heteroge-

neous tumor characteristics. In this thesis, the brain tumor segmentation problem,

which is a part of the planning stages of radiotherapy as well as radiosurgery, is

addressed, both in a mono-modal and a multi-modal setting.

1.3.3 Tumor Follow-up

The advent of MRI scanning protocols has allowed accurate follow-up of tumor

growth through volumetric measurements. Interpretation of the radiological evolu-

tion of the tumor appears of utmost importance for therapeutic management, es-

pecially for low-grade glioma. Indeed, patients are most of the time asymptomatic

(except in the case of epilepsy) during the low-grade phase, and the tumoral evolu-

tion is only monitored by MRI follow-up, both prior and after treatment. However,

such information about the tumor dynamics is usually not fully integrated with the

therapeutic strategy, and the assessment of the tumor evolution is still limited to

qualitative descriptions (recurrence, progression, regression, stability)[9].
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The neuroradiologic follow-up protocol in treated patients usually includes the

following MR examinations:

• within 2-3 days after surgery to evaluate the radicality of surgery;

• 30 days after surgery (often the first follow-up examination);

• 30 days after completing treatment;

• every 3 months (high-grade gliomas) and every 6 months (low-grade gliomas)

to evaluate tumor growth.

After treatment, it is necessary to wait some time before evaluating the results of

RT: during this period, in fact, tumor cells damaged during the course of treatment

undergo apoptosis. Often this process produces a degree of edema which can cause

symptoms similar to cancer and which in radiologic imaging can simulate tumor

growth [6].

In tumor follow-up studies, the most widely used criteria for assessing response

to therapy in high-grade gliomas are based on two-dimensional tumor measurements

which is the product of the maximal cross-sectional enhancing diameters (the Mac-

donald Criteria) [10, 11]. Currently, one-dimensional tumor measurements, which

were first introduced in “The Response Evaluation Criteria in Solid Tumors” (RE-

CIST), have become the standard criteria to determine response. The Response

Assessment in Neuro-Oncology Working Group (RANO), an international effort to

develop new standardized response criteria for clinical trials in brain tumors, con-

siders also the non-enhancing tumors [12].

Limitations of two dimensional measurements include the difficulty of measur-

ing irregularly shaped tumors, interobserver variability, the lack of assessment of

the nonenhancing component of the tumor, lack of guidance for the assessment of

multifocal tumors, and the difficulty in measuring enhancing lesions in the wall of

cystic or surgical cavities because the cyst/cavity itself may be included in the tu-

mor measurement. Given the limitations of two-dimensional tumor measurements,

there is significant interest in volumetric anatomic assessment. The use of volumet-

ric assessment would allow more accurate determination of the contrast-enhancing
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and nonenhancing volumes and overcome the limitations of two-dimensional mea-

surements of lesions surrounding a surgical cavity [12].

Furthermore, with the advent of the spatially localized radiotherapy techniques

(i.e. Cyberknife, IMRT, Gammaknife, Tomotherapy) not only the volumes of the

tumors but also the geometric changes need to be considered to measure the effec-

tiveness and to improve the applied therapy.

An accurate determination of the actual tumor evolution requires full 3D seg-

mentation on digital images. Manual segmentation by an expert is still consid-

ered as the reference method, but is a time consuming task with high inter and

intra-observer variability[9]. Konukoglu et. al. suggested a registration method for

monitoring slowly evolving meningiomas, which performed semiautomatic tumor

segmentation, non-rigid registration and change detection consecutively [13]. They

argued that their volume-change measurements were less user-biased than manual

measurements.

1.3.4 Image Analysis for the Tumor Follow-up

Computational methods used in tumor follow-up usually involve registration, seg-

mentation and change quantification steps. Three different image registration prob-

lems arise as: intra-patient multi-modal registration at a time; longitudinal registra-

tion of images; inter-patient spatial normalization of brain tumor images to a brain

atlas. Spatial normalization is commonly used for atlas-based segmentation [14] or

constructing statistical tumor atlases [15, 16]. Intra-patient multi-modal MR regis-

tration is a common problem and can be solved successfully by a rigid registration

algorithm using mutual information based similarity measure. However, for the lon-

gitudinal registration problem, not only the change of the appearance of the tumor

in time, but also the deformation of the surrounding healthy tissue due to the mass

effect of the tumor should be considered. This would require a deformable registra-

tion of the volumes to obtain a proper correspondence. Although, the inter-patient

spatial normalization of tumor images also requires a deformable registration to be

employed, the deformation in this case is not only due to the well defined mechanical

effects but also includes interpersonal anatomical variability. Furthermore, the pres-

ence of a tumor in images represents a challenge for atlas registration algorithms:
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the assumption of an intensity relationship between homologous structures does not

hold, as the presence of a tumor in the image changes the MR signal in invaded

areas. The initial approach to tackle this problem consisted in discarding the tu-

mor region from the similarity criteria [17]. Another more sophisticated approach

employs tumor growth simulations to generate a similar tumor on the atlas image

[15, 18].

The problem of segmentation of the tumors on multi-modal MR images is similar

to radiotherapy planning as described in 1.3.2. Another open problem in follow-up

is the quantification and visualization of the changes, locally. The challenge here is

both to understand the clinical needs and develop mathematical techniques to meet

those requirements.

1.4 Thesis contributions and Overview

In this thesis, image analysis techniques are developed for treatment planning and

assessment of the changes of the tumor geometry between MRI volumes acquired

after and before the therapy. Three main parts of the thesis are: Segmentation of

brain tumors on MRI, deformable registration of brain MRI volumes with tumors,

and change quantification in temporal MRI series of brain tumors. The outline of

the thesis is as following:

In this Introduction chapter, current medical practice of radiotherapy treatment

and follow-up of brain tumors; and related image analysis methods are summarized

in general.

In Chapter 2, a novel semi-automatic method, namely “Tumor-cut”, to seg-

ment the core of the brain tumors on contrast enhanced T1-weighted MR images by

evolving a level-set surface on a probability map obtained using cellular automata

algorithm is presented. The Cellular Automata (CA) algorithm is re-examined to

establish the connection of the CA-based segmentation to the graph-theoretic meth-

ods to show that the iterative CA framework solves the shortest path problem with

a proper choice of the transition rule. The performance is evaluated qualitatively

and quantitatively on synthetic and clinical datasets. This chapter appeared as a

journal article in IEEE Transactions on Medical Imaging, 31(3), pp.790-804, 2012.
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In Chapter 3, the ”Tumor-cut” method is extended to process multi modality

MR images. The performance of the algorithm is evaluated on BraTS multi-modal

brain tumor dataset available online. The results obtained are compared to the state-

of-the-art techniques participated in the BraTS challenge. The work presented in

this chapter appeared in Proceedings of MICCAI-BRATS 2012 October 1st, Nice,

France and is in preparation for joint paper submission.

In Chapter 4, local tumor response criteria to quantify the change of the tumor

are proposed based on the invariants of the Lagrange strain tensor. The value of

the proposed technique is evaluated on synthetically created phantoms and clinical

MR cases, compared to the volumetric changes and the radiological assessments.

The work presented in this chapter appeared in the European Society of Magnetic

Resonance in Medicine and Biology (ESMRMB) Conference, 2012.

A novel method for deformable registration of intra-patient longitudinal MR

volumes, using hyper-elastic brain deformation models, is presented in Chapter 5.

Preliminary part of this work presented in this chapter appeared in the Compu-

tational Biomechanics for Medicine, pp. 101-114, Springer, 2013 and the current

version is in preparation for submission as a journal article.

The thesis is summarized in the last chapter and the methods developed are

discussed, providing the possible future directions.
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Chapter 2

Tumor-Cut: Segmentation of

Brain Tumors on Contrast

Enhanced MR Images for

Radiosurgery Applications 1

2.1 Introduction

Segmentation of brain tissues in gray matter[19], white matter[20], and tumor[21]

on medical images is not only of high interest in serial treatment monitoring of “dis-

ease burden” in oncologic imaging, but also gaining popularity with the advance of

image guided surgical approaches. Outlining the brain tumor contour is a major

step in planning spatially localized radiotherapy (e.g. Cyberknife, iMRT) which

is usually done manually on contrast enhanced T1-weighted Magnetic Resonance

Images (MRI) in current clinical practice. On T1 MR images acquired after ad-

ministration of a contrast agent (gadolinium), blood vessels and parts of the tumor,

where the contrast can pass the blood-brain barrier are observed as hyper intense

areas. There are various attempts for brain tumor segmentation in the literature

which use a single modality, combine multi modalities and use priors obtained from

population atlases [9].

1This chapter appeared as a journal article in IEEE Transactions on Medical Imaging, 31(3),

pp.790-804, 2012.
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Modalities which give relevant information on tumor and edema/infiltration such

as Perfusion Imaging, Diffusion Imaging or Spectroscopic Imaging provide lower

resolution images compared to T1 or T2 weighted sequences, and the former are

generally not preferable for geometric measurements. One of the main reasons to

use multi-modality images such as T2 weighted MRI is to segment edema/infiltration

region which is generally not observable in T1 images. Although the glial tumors

infiltrate beyond the enhanced margin and edema/infiltration region might be of

interest to fractionated radiotherapy in general, it is not possible to distinguish

edema and infiltration, so usually this region is not included in primary target

planning of radiosurgery, particularly in Cyberknife [22, 23, 24].

On the other hand, population atlases provide an important prior to improve

segmentation by measuring the deviation from the normal brain. Deformable reg-

istration of brain images with tumor to the population atlas is an extremely chal-

lenging problem and still an active research area due to intensity variations around

the tumor mainly caused by edema/infiltration, and the tumor mass effect, which

also deforms the healthy tissue morphology [18]. In some studies, affine registration

has been used for this purpose, however misalignment issues arise, especially where

there is a large deformation of the brain structures [22, 25].

Comparison to the works in the literature that use different approaches and other

image types is difficult as that would require the use of the same datasets by different

groups with evaluation performed by similar measures. For this reason, only the

results of some studies are given, instead of a detailed comparison. Although, using

manual expert segmentations as the ground truth, different performance measures

such as Dice Overlap, Jaccard Index, False Positive and Negative Volume Fractions

(FPVF, FNVF) were used in the literature, (Dice) Overlap is used as a common

measure for a comparison to previous methods here (see Appendix A for definitions

and conversions). With their automatic, multi-modal, atlas based method, Prastawa

et.al. have reported 86.7% average overlap on a small dataset of only 3 patients

with an average 1.5 hour processing time [22]. In more recent studies, Menze et.al.

reported 60% average overlap on 25 glioma patients and Gooya et.al. reported

74.5% average overlap on 15 glioma patients with about 6-14 hours of processing

time [25, 18]. In contrast, Liu et.al. reported 95.6% average overlap on only a
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subset of well-performing 5 patients over a 10 patient dataset using fuzzy clustering

on only FLAIR images. It should be noted that the latter method needs intensive

user interaction and correction as 8.4 minutes per patient on the average [23].

The popular trend in the area, as in the aforementioned approaches, is to be

able to combine information from different sources to obtain a better segmentation.

However, attempts to develop better algorithms from the image processing perspec-

tive that work on a particular MRI protocol continue in parallel not only to obtain

proper information from each channel to be combined, but also due to the practi-

cal need to routinely quantify tumors in a clinical environment [23]. Therefore, in

this study, we focused on an efficient and robust segmentation of brain tumors on

Contrast Enhanced T1-weighted MR images with minimal user interaction.

Region-based active contour models are widely used in image segmentation [26].

In general, these region-based models have several advantages over gradient-based

techniques for segmentation, including greater robustness to noise. However, classi-

cal active contours had the problem of being “only as good as their initialization”,

even when using level-set surfaces in 3D. Because the tumor class does not have a

strong spatial prior, many small structures, mainly blood vessels, are classified as

tumor as they also enhance with contrast. Ho et.al. used fuzzy classification of pre

and post contrast T1 images to obtain a tumor probability map to evolve a level-set

surface [27]. Liu et.al. have adapted the fuzzy connectedness framework for tu-

mor segmentation by constructing a rectangular volume of interest selected through

identifying the first and last slice of the tumor and specifying a set of voxels in the

tumor region [23].

Interactive algorithms have become popular for image segmentation problem in

recent years. Graph based seeded segmentation framework has been generalized

such that Graph-cuts (GC) [28], random walker (RW) [29], shortest paths, and

power watersheds [30] have been interpreted as special cases of a general seeded

segmentation algorithm, which solves a minimization problem involving a graph’s

edge weights constrained by adjacent vertex variables or probabilities. In [31], the

connection between GC, RW, and shortest paths was shown to depend on different

norms: L1 (GC); L2 (RW); L∞ (shortest paths), in the energy that is optimized.

Geodesic distances between foreground and background seeds were also incorporated
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into other shortest path-based segmentation algorithms by [32] and [33].

Although it was reported that the shortest paths and RW produce relatively

more seed-dependent results, it can be argued that the global minimum of an image

segmentation energy is worth as good as the ability of its energy to capture under-

lying statistics of images[34], and a local minimum may produce a solution closer

to the ground truth than that of a global minimum. Hence, with good prior infor-

mation provided as in the case of a seeded image segmentation problem, efficiently

finding a good local minima becomes meaningful and worthwhile.

On the other hand, cellular automata (CA) algorithm motivated biologically

from bacteria growth and competition, is based on a discrete dynamic system de-

fined on a lattice, and iteratively propagates the system states via local transition

rules. It was first used by Vezhnevets et.al. [35] (Grow-cut) for image segmentation,

which showed the potential of the CA algorithm on generic medical image problems.

However, Grow-cut was not designed for specific structures, such as tumors, which

display heterogeneous content such as necrotic and enhancing tissue. Moreover,

anatomic structures typically have relatively smooth boundaries, however, Grow-

cut tends to produce irregular and jagged surface results, and only an ad-hoc way

of smoothing was introduced.

In this chapter, we re-examine the CA algorithm to establish the connection of

the CA-based segmentation to the graph-theoretic methods to show that the iter-

ative CA framework solves the shortest path problem with a proper choice of the

transition rule. Next, as our application is in the clinical radiosurgery planning,

where manual segmentation of tumors are carried out on contrast enhanced T1-MR

images by a radio-oncology expert, we modify the CA segmentation towards the

nature of the tumor properties undergoing radiation therapy by adapting relevant

transition rules. Finally, a smoothness constraint using level set active surfaces is

imposed over a probability map constructed from resulting CA states. Following

a brief background on seeded segmentation methods in Section 2.2, we present our

framework for brain tumor segmentation in Section 2.3, and demonstrate its per-

formance via validation studies on both synthetic, and radiation therapy planning

expert-segmented data sets in Section 2.4, followed by conclusions in Section 2.5.
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2.2 Background

2.2.1 Seeded Image Segmentation

Given an undirected graph G = (V,E) with vertices v ∈ V and edges e ∈ E, a

weighted graph assigns a value wij (typically real and non-negative) to each edge eij

between vertices vi and vj. In image segmentation problems, vertices are correspond-

ing to image pixels, while edge weights are similarity measures between neighboring

pixels based on image features (e.g. intensities). Each vertex vi has an attribute xi,

which is an indicator of the probability of a label (e.g. a foreground and a back-

ground label). With the foreground F and background B seeds supplied by the user,

the labeling problem is solved by:

xopt = argmin
x

[ ∑
eij∈E

(wij|xi − xj|)q
] 1

q

s.t. x(F ) = 1, x(B) = 0, (2.1)

In the final solution, the vertices which have the value xi > 0.5 are labeled as

foreground and xi < 0.5 are labeled as background. The solution has been shown to

converge to Graph-cuts for q = 1, random walker for q = 2, and shortest paths for

q =∞ [31]. The Eq. 2.1 represents the general optimization problem of labeling in

graph-theoretic image segmentation. We will show that this optimization problem

for q =∞ can be solved by a CA-based algorithm.

2.2.2 Cellular Automata in Image Segmentation

A cellular automata is basically a computer algorithm that is discrete in space and

time, and operates on a lattice of cells [36]. Since it was first proposed by Von

Neumann and Ulam [37], Cellular Automata has attracted researchers from various

fields in both physical and social sciences because of its simplicity, and potential in

modeling complex systems [38].

Each individual cell is in a specific state and changes synchronously depending

on the states of some neighbors as determined by a local update rule [39]. They

are parallel, local and homogeneous, since the state of any cell depends only on the
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states of the local neighbors at the previous time step and the update rules are same

for every cell.

Formally, a cellular automaton (CA) is a triple A = (S,N, δ), where S is a

nonempty set, called the state set, N is the neighborhood, and δ : SN → S is the

local transition function (rule); SN , which is the argument of δ, indicates the states

of the neighborhood cells at a given time, while S, which is its value, is the state of

the central cell at the next time step[36].

Although the usual definition for “Cellular Automata” is in favour of a finite state

set (discrete and bounded), continuous state sets in which the states are real numbers

are also used in CA literature under the name “Continuous CA” or “Coupled Map

Lattices” [40, 41, 42, 35, 43, 44]. A detailed discussion and some of the issues that

can arise while using a continuous state set on a finite machine are given in [40, 41].

There are various attempts of using CA in image processing problems including:

Image enhancement (sharpening and smoothing) [45], image filtering, edge detection

[36], and image segmentation (Grow-cut) [35].

Grow-cut method uses a continuous state cellular automata to interactively la-

bel images using user supplied seeds. The cells are corresponding to image pixels,

and the feature vector is RGB or gray scale intensities. The state set S(θ, l, ~C) for

each image pixel consists of a “strength” value θ in a continuous interval [0, 1], a

label l and an image feature vector ~C. The automata is initialized by assigning

corresponding labels at seeds with a strength value between 0 and 1 where a higher

value reflects a higher confidence in choosing the seed. Strengths for unlabeled

cells are set to 0. A pseudo code for the Grow-cut algorithm is given below [35]:
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// For each cell ...

for ∀p ∈ P

// Copy previous state

lt+1
p = ltp

θt+1
p = θtp

// Neighbors try to attack current cell

for ∀q ∈ N(p)

if g(‖~Cp − ~Cq‖2) · θtq > θtp

lt+1
p = ltq

θt+1
p = g(‖~Cp − ~Cq‖2) · θtq

end if

end for

end for

where g is a pixel similarity function bounded to [0, 1] depending on the image

features i.e.

g(x) = 1− x

max ‖~C‖2

(2.2)

where the argument x is for instance, the absolute difference between the intensities

of two neighboring pixels.

The surprising success of this simple algorithm, especially on medical images,

motivated us to further analyze the algorithm. We showed that the result of the

iterations of this algorithm converges to that of the shortest paths algorithm by mod-

ifying the similarity function used: g(x) = e−x (see Section 2.3.1). We note that, the

original similarity function used in Grow-cut (Eq. 2.2) is a first order approximation

to the one we utilized. In connecting shortest paths to cellular automata framework,

maximizing the product of the edge weight wij (defined in Eq. (2.12) in the Sec-

tion 2.3.1), was shown to be equivalent to minimizing the sum of the −logwij’s,

i.e. ||∇ij||’s, resulting in the shortest path between a seed node to any non-seed

node in the graph over the negative logarithm edge weights. These weights can be

interpreted similarly to the reciprocal weight w−1
ij defined in Sinop and Grady [31],

which was shown to infer a connection between the shortest path algorithm and the

general seeded segmentation optimization Eq. (2.1) with L∞ norm minimization.
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Simultaneously and independently from our work, it has also been shown that the

Grow-cut algorithm is equivalent to the Belman-Ford algorithm, which calculates

the shortest paths on a weighted graph [44]. However, there, the motivation and

emphasis was on fast hardware implementation of the CA algorithms, due to both

increasing availability of low cost graphical hardware (GPUs), and CA algorithm’s

suitability to run on parallel processors.

Shortest path idea was utilized in other works such as [46], where the Eikonal

equation was solved with two different boundary conditions constructed from fore-

ground and background seeds. Image-dependent speed functions were inserted into

the right handside of the Eikonal equation, whose solutions led to two distance func-

tions: shortest paths of each pixel from the foreground seeds and the background

seeds. For each pixel, the smaller distance to the foreground seeds produced the

resulting segmentation.

2.3 Method

In this section, the complete segmentation framework to segment brain tumors and

the necrotic regions enclosed is presented in detail. Shortest path calculation using

cellular automata iterations is given in Section 2.3.1. An overview of the algorithm

with the pseudo-code of the implementation is given in Section 2.3.2. Major steps of

the algorithm is explained in detail in sections 2.3.3, 2.3.4, 2.3.5 and 2.3.6 followed

by the datasets and methods used for performance evaluation in Section 2.3.7.

2.3.1 Cellular Automata: its Connection to Graph Theo-

retic Methods

A graph consists of a pair G = (V,E) with vertices (nodes) v ∈ V and edges e ∈

E ⊆ V × V . The weight of an edge, eij, is denoted by wij and is assumed here to

be nonnegative and undirected (i.e., wij = wji). We will use closed neighborhood

NG[v] where vi ∈ NG(vi). The edge weights are similarity measures calculated

using measured data (e.g. voxel intensity) for vertices: wij = f(Ii, Ij) ∈ (0, 1] and

self-similarity wii = 1. State of a vertex s(vi) = si is specified with a real value

x(vi) = xi ∈ [0, 1] and a label li ∈ {BG,FG, · · · } pair. Starting with initial states
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of vertices, in each iteration, vertices of graph G is updated by the following rule:

lt+1
i = lti∗ and xt+1

i = wi∗ix
t
i∗ where i∗ = arg max

j∈NG[vi]
wjixj (2.3)

Note that since the vertex itself is also included in its neighborhood, Eq. (2.3) also

covers the static case:

st+1
i = sti if xi ≥ wjixj for ∀vj ∈ NG[vi] \ vi (2.4)

Vertex states are initialized by user supplied seeds pi ∈ P such as:

s0(vi) = (1, l(pi)) for vi ∈ P and s0(vi) = (0, ∅) for vi /∈ P (2.5)

This map converges since
∑

i xi is upper-bounded and monotonically increasing:

lim
t→∞

st+1
i = sti for ∀vi ∈ V (2.6)

Now, let us derive some properties on the final map. Consider any vertex vi of a

graph G, and assume that a latest update occurred on this vertex at time ti. The

vertex which updates vi is vi∗ . Final state for vi is:

st≥tii = (wi∗ix
ti
i∗ , l

ti
i∗) (2.7)

If any update occurs on vi∗ at time ti∗ ≥ ti by vi∗∗ , this should satisfy the condition:

xti∗i∗ = wi∗∗i∗x
ti∗
i∗∗ > xt<ti∗i∗ that gives wi∗ix

ti∗
i∗ > wi∗ix

t<ti∗
i∗ (2.8)

However, this will also cause an update on vi at t > ti∗ > ti, which violates the

condition in (2.7). Then, at the converged map, there exists a neighbor vi∗ for each

vertex vi such that:

si = (wi∗ixi∗ , li∗) (2.9)

If we go one step further:

si∗ = (wi∗∗i∗xi∗∗ , li∗∗) and si = (wi∗iwi∗∗i∗xi∗∗ , li∗∗) (2.10)

We can follow this path for any vertex until we reach a seed which is never updated:

s(vi) = (
∏

Ω(pi→vi)

wjk, l(pi)) (2.11)
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Therefore, this algorithm cuts the graph G to independent subgraphs for each seed,

consisting of spanning trees with seeds at root nodes.

If we set edge weights depending on similarity of image (I : R3 → R) neighbor-

hoods as:

wjk = e−β||∇jkI|| (2.12)

where ||∇jkI|| denotes a Euclidean norm on the difference between intensities of two

adjacent vertices vj and vk. Maximization of the product of wjk’s along the path Ω

becomes equivalent to minimization of the summation of ||∇jkI||’s along the same

path.
∑

Ω(pi→vi) ||∇jkI|| is a discrete approximation to a geodesic or shortest path

between the seed pi to a voxel vi. Each voxel is then assigned to the foreground label

if there is a shorter path from that voxel to a foreground seed than to any background

seed, where paths are weighted by image content. With this interpretation, cellular

automata algorithm solves the shortest paths energy form formulated in [31].

The equivalence, which we showed, between CA updates by Eq. (2.3) and short-

est path algorithm is illustrated in Fig. 2.1.

The main advantage of using CA algorithm is its ability to obtain a multilabel

solution in a simultaneous iteration. Another advantage is that the local transition

rules are simple to interpret, and it is possible to impose prior knowledge, specific

to the problem, into the segmentation algorithm.
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Figure 2.2: Steps of the proposed tumor segmentation method: see text for expla-

nations.

2.3.2 Tumor-cut Algorithm

Steps of the proposed cellular automata based tumor segmentation algorithm is

shown in Fig. 2.2. First, (a) the user draws a line over the largest visible di-

ameter of the tumor; (b) using this line, a VOI is selected with foreground(red)-

background(blue) seeds; (c-d) tumor CA algorithm is run on the VOI for each two

sets of seeds (for the foreground and background) to obtain strength maps for fore-

ground (c) and background (d) at each voxel; (e) two strength maps are combined

to obtain the tumor probability map PT (Eq. (2.16)); (f) a level set surface is ini-

tialized at PT = 0.5 and the map PT is used to evolve the surface which converges

to the final segmentation map (g). Finally, (i) the necrotic regions of the tumor is

segmented using a CA-based method with the chosen enhanced and necrotic seeds

in (h).

A pseudo code of the Tumor-cut algorithm is given below:
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for ∀l ∈ {Tumor,Background}

// Initialize

for ∀p ∈ P

if p is a seed of class l, x0
l,p = 1, else x0

l,p = 0

end for

Do until convergence

// For each cell ...

for ∀p ∈ P

// Neighbors try to attack current cell

for ∀q ∈ N(p)

Find q∗: q with maximum g(p, q) · xtl,p
xt+1
l,p = g(p, q∗) · xtl,q∗

end for

// Copy previous state

xt+1
l,p = xtl,p

end for

end do

end for

// Combine strengths for tumor and background to obtain

tumor probability map

PT = ln(xBg)/(ln(xBg) + ln(xT )) Eq. (2.16)

// Evolve the tumor surface via a level set embedding

∂S
∂t

= (u− v)(u+ v − 2PT )N

// where u, v are the means inside and outside the surface,

and N is the unit normal vector to surface S.

// Segment necrotic parts within the segmented tumor

volume.
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2.3.3 Seed Selection Based on Tumor Response Measure-

ment Criteria

In “Response Evaluation Criteria In Solid Tumors” (RECIST), which is a widely

used procedure to evaluate the treatment response of the solid tumors, tumor

progress is classified by measuring the longest in plane tumor diameter in one dimen-

sion (axial, coronal, sagittal)[47]. Our seed selection algorithm employs the same

idea to follow the familiar clinical routine to which the clinicians are used to: the

volume of interest (VOI), the tumor seeds and the background seeds are determined

by using the line already drawn by the user to measure the longest diameter of the

solid tumor. Similarly, focusing on tumor segmentation problem, the seed selection

procedure starts with a single line drawn by the user along the longest visible di-

ameter of the tumor. Afterwards, the VOI and the seeds are computed as follows:

(i) The line is cropped by 15% from each end and thickened to 3 pixels wide to

obtain tumor seeds; (ii) VOI is selected as the bounding box of the sphere having a

diameter 35% longer than the line; (iii) One-voxel-wide border of this VOI is used

as background seeds(see Fig. 2.2a, 2.2b).

Since the VOI is completely bounded by the background seeds, each path con-

necting inside and outside the VOI is blocked by a seed. Then, the result of labeling

using only the data inside the region is equivalent to using the whole volume whereas

the computation time is significantly reduced.

One obvious drawback is that the user draws the line on only a single slice of

the tumor volume, hence it is not guaranteed that the depth of the tumor will also

coincide with the VOI. For determining the enlargement ratio for the bounding box

size, the percentage of the volume enclosed in the sphere to the total tumor volume

is calculated for different enlargement ratio values, and the results are plotted in

Fig. 2.3. For our data set, %100 coverage was achieved with 2.00 times enlargement.

We used 1.35, which covers %99 of all tumors with 5 different initializations, which

gave a reasonable trade-off between the 3D inclusion of the whole tumor versus the

computation time increase due to enlargement of the volume. Furthermore, the

average Dice Overlap between the sphere drawn around the longest diameter line

and the tumor is found to be 56.7 ± 16.1 percent, which confirms the sphericity

assumption on solid tumors.
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Figure 2.3: Change of average coverage with enlargement ratio.

In occasional cases of slightly concave-shaped tumors, the maximum diameter

line will not be enclosed by the tumor completely. Even in these cases, the algorithm

can perform the segmentation successfully if an input 1D line is correctly drawn

to fall inside the tumor region. The line enlargement parameter selected for VOI

formation is determined by taking such cases into account, hence, the VOI contains

the whole tumor.

2.3.4 Adapting Transition Rule to Tumor Characteristics

In the tumor segmentation application, the cells or nodes in cellular automata frame-

work correspond to the MRI volume voxels in 3D. A 26-cell cubic neighborhood is
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used in 3D. MRI intensities are used as image features. The automata is initialized

with user supplied tumor and background seeds as explained in section 2.3.3 and

iterated by the following rule:

lt+1
i = lti∗ and xt+1

i = g(i, i∗)xti∗ where i∗ = arg max
j∈Ni

g(i, j)xtj (2.13)

where g is a pixel similarity or transition function bounded to [0, 1], which is equiva-

lent to the edge weight function wij in the seeded segmentation framework. A typical

symmetric edge weight function depending on the image features, is given by the

absolute intensity difference or gradient magnitude between neighboring nodes i and

j:

g(i, j) = e−‖Ii−Ij‖ (2.14)

where Ii denotes the MR image intensity at node i.

In the seeded tumor segmentation application over contrast enhanced T1-weighted

MRI for heterogeneous tumors, which mostly consist of a ring enhancing region

around a dark necrotic core (and also irregular borders), most of the foreground

seeds fall in the necrotic region. This sometimes causes the segmentation algorithm

to get stuck at necrotic to enhancing tumor transition borders. To overcome such

problems, prior knowledge that tumor voxels are brighter in post contrast T1-MRI

can be utilized. This can be achieved by modifying the transition function g(i, j)

by inserting a spatially-varying parameter:

g(i, j) =

 e−β‖Ii−Ij‖ if Ii > Ij and lj = Tumor

e−‖Ii−Ij‖ otherwise
(2.15)

The intuition here is based on the observation that the enhancing tumor cells are

brighter than the normal tissue, and more centrally located necrotic core is darker.

Therefore, by adjusting the β parameter, the weight reduction (i.e. the strength

loss) of a tumor state while passing through a ramp up gradient is adjusted to be

lower than other cases.

The effect of β parameter on the segmentation performance in terms of Dice

overlap measure is demonstrated in Figure 2.4. Although, some of the properties we

derived for the algorithm is no more valid, as due to asymmetric edge weight values,

we can no longer interpret the algorithm in the undirected graph framework as in

25



73.9%

74.7%

75.0% 75.0%
74.8%

74.5%

74.0%

73.4%

72.7%73.0%

74.0%

75.0%

76.0%

%
 A

v
e

ra
g

e
 O

v
e

rl
a

p

72.1%

72.7%

70.0%

71.0%

72.0%

73.0%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 A

v
e

ra
g

e
 O

v
e

rl
a

p

β Value

Figure 2.4: Effect of β on the segmentation performance.

the Section 2.3.1, our experimental results revealed that the new tumor CA (tCA)

algorithm significantly improved the results obtained, especially on glioblastomas

[43].

2.3.5 Level Set Evolution on Constructed Tumor Probabil-

ity Map

Smoothing is an important prior in segmentation of brain tumors from post contrast

T1 images, because of three main reasons: First, an area surrounded by tumor tissue

is considered as a tumor region even the intensity characteristics are likely to be

healthy. Secondly, it is possible to include misclassified necrotic regions to tumor

region, which are usually surrounded by enhanced tissue. Finally, it is possible

to exclude nearby vascular structures that are enhanced by administration of the

contrast agent.

CA algorithm has the advantage of finding distance of each cell to the nearest

seed in a simultaneous iteration. However, the resulting strength map has only one-
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sided information, that is the distance to the other label classes is not available. In

order to create a probabilistic map, which can be used in an active surface (e.g. a

level set surface) evolution, the algorithm is run for each class with corresponding

class seeds (tumor and healthy) separately. Geodesic distances to the class seeds

can be calculated by D = −ln(x). Therefore, the tumor probability map is obtained

by combining the distances for tumor (DT ) and background (DB) as:

PTumor =
DB

DT +DB

(2.16)

The intuition with this probability construction, is that probability of being a tumor

is proportional to its distance normalized to the closest background seed. This

leads to choosing a higher probability of being a tumor when the distance to the

background seeds is large, and vice versa.

After obtaining the tumor probability map using the foreground and background

strength maps, an implicit 3-D level-set surface is initialized over the volume V

whose inside is given by {(X, Y, Z) : PTumor > 0.5}. The level set function whose

zero-level set represents an initial estimate of the tumor surface, S, is evolved on

PTumor with a piecewise constant region assumption of [26], however by using a local

Gaussian kernel to define inner and outer regions around the propagating surface

in order to compute regional statistics of the map, which constitute the inside and

outside sample means in this case. When the surface evolution converges, the final

tumor segmentation map is obtained.

The level-set-based smoothing over the constructed tumor probability map in

Eq. (2.16) constitutes an important part of the proposed method, as the clinical

expert segmentation, particularly in radiation oncology, mainly outlines the tumor

borders using contouring for radiotherapy planning as opposed to pixel by pixel la-

beling of the tumor carried out in some validation studies. As a result, our interactive

tumor segmentation includes an appropriate intelligent smoothing of the tumor bor-

ders based on the labeling results obtained from a graph-theoretic approach. This

is a process that is expected to simulate the expert’s manual contouring. The qual-

itative effect of adding the smoothing step over the CA result is shown in Fig. 2.5,

which exemplifies how the borders are smoothed after level set evolution over the

tumor probability map displayed in (b).

In order to determine the optimal choice for β parameter and smoothing weight-

27



(a) (b) (c)

Figure 2.5: Effect of Smoothing. Example of tumor slice with vascularization and

necrotic part (a). Tumor probability map obtained by CA algorithm (b). Segmen-

tation result before smoothing (red), after smoothing (blue) and expert (yellow)

(c).

ing pair for tumor segmentation application, the algorithm is run for each β parame-

ter value varying between 0.4 to 1.0 whereas the smoothing weighting varies from 0.0

to 0.8. Using manual expert segmentations as ground truth, average Dice overlaps

obtained by each β parameter and smoothing level pair are plotted in Fig. 2.6. It

can be observed that β = 1 with 0.2 smoothing weight, which are used for validation

studies throughout the rest of the paper, give the best overlap performance.

2.3.6 Enhancing/Necrotic Segmentation

Quantification of the necrotic regions within a whole tumor is an important problem

in assessment of the tumor progress. Delayed radiation necrosis, which typically oc-

curs 3 months or more after treatment, is the primary risk associated with stereotac-

tic radiosurgery [48]. Necrosis of the tumor can occur as a result of the radiosurgery

as well as by the tumor progress itself like in high grade gliomas. Furthermore, fol-

lowing some radiosurgery treatment sessions (i.e. CyberKnife treatment of acoustic

neuromas), increase of the necrotic regions can be observed, which accompanies the

clinical improvement, without a significant change of the tumor core.

Necrotic class naturally arises in segmentation using multi protocol (T1, CE-

T1, T2, DWI etc.) intensity classifiers due to its different intensity characteristics
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Figure 2.6: Effect of β for different smoothing levels (increasing from dark to light)

on the average dice overlap performance on our clinical data set.

in different modalities. However, our aim in this study is to quantify the necrotic

and enhanced parts of the tumor using solely contrast enhanced T1 weighted MRI

volumes. This can be achieved by a two step sequential algorithm. Firstly, tumor

volume (including both enhanced and necrotic tissues) is segmented by the method

as described in sections 2.3.3-2.3.5 and then the necrotic and enhanced classes are

separated inside the whole tumor volume.

In CE-T1 MR images, necrotic parts of the tumor are observed as hypo-intense

for there is no blood flow into these regions where enhanced parts are hyper-intense.

Without any prior information, segmentation using an intensity threshold can be

applied by assigning necrotic label to the voxels lower than the chosen threshold

and enhanced label to those that are higher. To choose the threshold, we explored

using expectation maximization [49] and Otsu’s methods [50]. However, usually the

two classes are not separable on the intensity histogram even though they could be

separated easily on the image as seen on the sample case in Fig. 2.7.
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(a) (b)

Figure 2.7: (a) Tumor contour calculated by the proposed method, overlayed on a

sample MRI slice. (b) MRI intensity histogram of the 3D tumor volume.

(a)                                                            (b)

Figure 2.8: (a) Segmentation with a single threshold. (b) Necrotic and enhanced

thresholds to determine initial seeds.

Instead of using simple tresholding, connectedness was imposed by using the CA

algorithm with two thresholds as follows: Initially the voxels lower than a necrotic

threshold are labeled as necrotic seeds and higher than an enhanced threshold are la-

beled as enhanced seeds as in Fig. 2.8. Next, the voxels at remaining mid-intensities

are labeled by assigning the label of the nearest seed using the CA algorithm.
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(a)                                                             (b)

Figure 2.9: (a) Thresholds calculated by Otsu’s method and double thresholds cal-

culated by the proposed necrotic/enhanced segmentation method. (b) Enhanced

and necrotic seeds determined by the proposed method, used as an input to the CA

segmentation algorithm (Necrotic seeds in red and enhanced seeds in blue).

An algorithm to choose the two thresholds is devised as follows: First the number

of necrotic voxels (NOTSU
nec ) and the number of enhanced voxels (NOTSU

enh ) are roughly

calculated by using Otsu’s method. Then the necrotic and enhanced thresholds are

determined such that %25 of the necrotic volume is assigned as necrotic seed and

%25 of the enhanced volume is assigned as enhanced seed (see Fig. 2.9).

Tnec∑
I=0

H(I) = 0.25 ·NOTSU
nec and

Imax∑
I=Tenh

H(I) = 0.25 ·NOTSU
enh (2.17)

where H is the volume intensity histogram, NOTSU
nec and NOTSU

enh are rough volumes

estimated with Otsu’s method and Tnec and Tenh are the necrotic and enhanced

thresholds.

2.3.7 Data and Evaluation Methods

Validation studies of the developed method is carried out over three different datasets

of all contrast enhanced T1-MR images:

1. Synthetic datasets of simulated tumors from Utah [2]

Five synthetic brain tumor datasets, available online from University of Utah
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2 are used in the first part of the validation studies. The utilized data simu-

lates contrast-enhanced T1-weighted MR images with synthetically generated

tumors. The tumor probability maps are also available with the dataset for

validation purposes. This dataset is included in the performance evaluations

since the ground truth segmentation is readily available.

2. Harvard Brain Tumor Repository [51]

A tumor repository, which includes 10 tumors with multiple manual expert

segmentations on 2D slices, from Harvard [51], was utilized in the second

set of experiments, due to its availability online and providing a common

framework to compare performances of different algorithms. The repository

includes contrast enhanced T1-weighted MR images, acquired with SPGR

sequence at 0.9375x0.9375x1.5 mm contiguous sagital slices. Recently, the data

from this repository have been evaluated by a validation framework, known

as STAPLE [19], which calculates sensitivity, specificity, and total correct

fraction criteria for evaluation of the proposed method against multiple expert

segmentations. With Harvard brain repository data, it is possible to compare

intra- and inter-rater variation vs. the algorithm’s robustness.

3. Brain Tumor datasets obtained from our clinical Radiation Oncology site (ASM)

In radiosurgery planning of brain tumors, target tumor volume, which is de-

sired to receive sufficiently high dose, is outlined on MR images by a radio-

oncology specialist. A large dataset of brain tumor patients, who received

CyberKnife radiosurgery treatment in Anadolu Medical Center (ASM), Ko-

caeli, Turkey was utilized in the third set of experiments. MR images of 19

tumors of 14 patients were obtained by 1.5T MRI scanner located at the same

hospital as high resolution (≈ 0.5x0.5x1.0 mm) contiguous axial T1 weighted

3D SPGR MRI volumes (TE/TR = 3.16s/8.17s, FA=25) acquired after IV

injection of 10cc 0.5M Multihance Gd. Figure 2.10 demonstrates axial snap-

shots of a sample central slice for each tumor in the dataset. As the ground

truth for segmentation, we used the tumor contours outlined manually by a

radio-oncologist for radiosurgery planning.

2http://www.ucnia.org/softwaredata/5-tumordata/10-simtumordb.html
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Figure 2.10: Clinical data set used for validation studies.

In assessment of the tumor segmentation performance, for each of the tumor

cases, the following similarity criteria are utilized: Dice overlap is used to quantify

the overlap between obtained segmentation maps and the “true” segmentations as

given in Eq. A.0.1 of Appendix A. In addition, tumor volume error is calculated

as: (|V ol(Algorithm) − V ol(Manual)|/|V ol(Manual)|, where V ol(.) is the tumor

volume calculated over either the algorithm segmentation map or the manual seg-

mentation map accordingly. Mean, median, and maximum of the surface distances

are calculated using the minimum distances from the sampled points on the algo-

rithm segmentation surface to the manual segmentation surface.

Interactive segmentation method outputs do usually vary with respect to initial-

izations, and this is an important performance criterion in assessment of the quality

of a segmentation method. To measure the robustness of the proposed method, for
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each tumor case, results with 5 different initialization lines are calculated and mean

and standard deviation for each criterion are reported in the tables. This is crucial

in showing the true performance of any segmentation method that requires an ini-

tialization, and it should be reported rather than result of an arbitrary initialization,

typically from a maximally performing case.

For Harvard tumor repository and our clinical dataset, measured physical tumor

volumes are compared using Bland-Altman analysis, which looks at the variation of

difference volume in mm3 between the real and estimated tumors vs. the average of

the two volume measurements. Typical evaluation with a Bland-Altman analysis,

is to check whether the results are scattered around the zero difference value within

±1.96 times standard deviation.

The result of the Tumor-cut algorithm is compared to that of the Graph-cut and

Grow-cut algorithms, on the clinical dataset. Graph-cut is included in comparison

for its popularity among graph based segmentation methods, and Grow-cut is chosen

since it is the first algorithm that uses CA for image segmentation. For each of the

tumor cases, Graph-cut, Grow-cut and Tumor-cut algorithms are run with identical

seed initializations. Average Dice overlaps and standard deviations of 5 different

initializations for three methods, are given as bar plots.

2.4 Results and Discussion

2.4.1 Validations on Synthetic Data

The performance measures, Dice overlap, mean, median, and maximum surface

distances and the volume percent error between the ground truth segmentation and

the result of the algorithm are reported in Table 2.1 for the synthetic dataset. The

standard deviations show the extent of performance for different realizations of the

initialization. The Dice overlap is on the average 83%. Due to the challenging case

5, the volume error increased, however, it was typically between 10±6 percent. The

mean ± standard deviations for the maximum surface distance is 6.8± 3.6mm, the

mean surface distance is 1.7±2.1mm, and the median surface distance is 1.5±2.3mm.

Although synthetically created, the Utah tumor dataset contains tumor scenarios

with low contrast difference between the tumor region and its background: for
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instance, the synthetic tumor labeled as case 5 is shown in Figure 2.11. The active

surface propagation over the constructed probability map aims at correction and

improvement of the segmentation by smoothing out the tumor borders, and avoiding

sharp protrusions, however, here due to the low intensity contrast between the tumor

tissue and the gray matter, the Tumor-cut performed worse than expected. This

low performance result obtained on the non-enhancing tumor case 5, reveals the

limitation of the method and its application to the tumors that are enhanced with

the contrast agent.
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(a)                                     (b)                                    (c)

Figure 2.11: Synthetic tumor case 5 in Table 2.1. (a) An MRI slice is depicted; (b)

Grow-cut result (red); (c) Tumor-cut method which includes a level set segmentation

over the constructed probability map from tCA (red). Blue: Ground truth.

2.4.2 Validations on Harvard Brain Tumor Repository

Sensitivity, specificity and total correct fraction values evaluated by STAPLE are

given in Figure 2.12 for Harvard tumor dataset. Sensitivity of the method is not

statistically different from the expert results (within ±1.96 standard deviation),

assuming an underlying Gaussian distribution of the variations around the mean.

Specificity and total correct fraction values, on the other hand, are generally higher

in the expert evaluations, however, the proposed method also performs at about

0.996±0.005 in specificity and 0.995±0.005 in total correct fraction. One can observe

that tumor Case 8 performs especially poorly, which is depicted in Figure 2.13. Here,

tumor tissue depicts intensity levels close to those of the surroundings, and high,

continuous gradients of the complex background near the right boundary leads to a

spread-out probability map as shown in the figure.
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Figure 2.12: STAPLE evaluation results on Harvard Brain Tumor Repository.
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(a)                                       (b)                                      (c)

(d)                                                   (e)

Figure 2.13: Brain tumor repository data set case 8. (a) MR image slice; (b) gradient

magnitudes; (c) the probability map constructed by Eq.(2.16); (d) Tumor-cut result

without smoothing (in red), expert segmentation (in blue); (e) Tumor-cut-smoothed

shows a spread out isosurface around value 0.5, possibly due to the tumor tissue

depicting an intensity level close to its background and complex background with

high gradients near the right boundary.
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Figure 2.14: Bland-Altman plot of real and estimated physical tumor volumes (in

mm3) over Harvard Brain Tumor Repository. The dashed lines mark±1.96 standard

deviation values of the volume difference whereas the solid line marks its mean.

Table 2.2 shows the performance criteria statistics calculated for the Tumor-

cut method over the Harvard brain tumor repository dataset. The Dice overlap

over 10 tumor cases is 89.3% on the average, however, goes up to 89.3 + 6.9 =

96.2% with better initialization scenarios. The volume percent error is 21.4± 21.7,

which is degraded by the Tumor case 8, the worst performing one. We note that

we included all the results including low performance ones rather than reporting

that the algorithm failed for some tumors and excluding them as outliers from the

statistics. Without such “outlier” cases, the overall statistics would as expected

indicate higher success rates. The mean ± standard deviations for the maximum

surface distance is 7.3± 4.7mm, the mean surface distance is 2.1± 1.8mm, and the

median surface distance is 1.5 ± 1.4mm. Particularly, the median surface distance

shows that the estimated tumor surfaces are fairly close to the expert outlined

surfaces.
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A Bland-Altmann analysis of the physical volume calculations, based on Tumor-

cut segmentation method, is shown in Figure 2.14. Other than one failed case (case

8) as discussed above, the volume differences are inside the ±1.96 standard deviation

interval as desired. However, we observed an overestimation in the measured vol-

umes in the Harvard brain dataset. We found two possible reasons for this positive

volume bias: (i) checking the tumor tissue image characteristics over the provided

contrast enhanced T1-MRI, a smooth transition from the tumor contrast region to

its surroundings could be seen (e.g. see Figures 2.13), which led to an oversmooth-

ing in the constructed probability map, hence led to a slight over estimation; (ii)

more likely reason is the clinical context and style of the manual segmentation maps.

The experts who performed the tumor outlines preferred to draw the tumor border

contours just inside the observed tumor edges. As our algorithm is motivated by

the radiation therapy clinical application, the radiation oncology experts most likely

draw the tumor border just outside the observed tumor edges rather than drawing

them inside. The reason for this obvious preference is the fact that in the radiation

therapy planning, a buffer zone is included around the tumor to ensure the inclusion

of the enhancing tumor tissue on the rim of the tumor mass. This led us in our de-

velopment of a tumor segmentation method for mainly radiation therapy planning,

to design the level set smoothing stage over the tumor probability maps. We think

this explains the volume over estimation by our method over the Harvard tumor

dataset.

2.4.3 Validations on Tumors that undergo Radiation Ther-

apy Planning

The clinical classification of tumors along with the different segmentation perfor-

mance criteria of the Tumor-cut algorithm over the clinical radio-oncology dataset

is tabulated in Table 2.3. The Dice overlap is 80.1 ± 6.9 on the average, volume

percent error is 21.9± 12.1. In order to demonstrate the difficulty level of segmen-

tation on the clinical radio-oncology dataset tumors, snapshots from a central axial

slice over the VOI are given in Figure 2.10. The heterogeneous intensity character

with both necrotic and enhancing tumor tissue content can be observed, and this

heterogeneity leads to errors in existing segmentation methods. A comparison will
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be given in Figure 2.16 later. The mean ± standard deviations for the maximum

surface distance is 5.5± 2.7mm, the mean surface distance is 1.2± 0.6mm, and the

median surface distance is 1.0± 0.4mm. Another note here is the observation that

the surface distance measures indicate an overall/major proximity of the expert-

drawn and algorithm-computed surfaces, whereas the Dice overlap criterion is not

as high as expected. In general, these two types of criteria (Dice overlap and surface

distances) are not correlated. For instance, for small tumors (e.g. volume less than

1.5cc), we observed a low overlap score even though the surface distances between

the manual delineations and the algorithm output surfaces were not relatively high.

43



T
ab

le
2.

3:
P

er
fo

rm
an

ce
cr

it
er

ia
±

st
d

d
ev

ia
ti

on
s

ov
er

5
d
iff

er
en

t
in

it
ia

l
se

ed
li
n
es

fo
r

ea
ch

tu
m

or
ov

er
th

e
cl

in
ic

al
ra

d
io

-o
n
co

lo
gy

d
at

as
et

.

D
ic

e
O

ve
rl

ap
(%

)
V

ol
u
m

e
E

rr
.(

%
)

M
ax

im
u
m

D
is

t.
(m

m
)

M
ea

n
D

is
t.

(m
m

)
M

ed
ia

n
D

is
t.

(m
m

)

T
u
m

or
1

G
li
ob

la
st

om
a

M
u
lt

if
or

m
e

70
.2
±

7.
3

24
.3
±

13
.0

5.
1
±

1.
0

1.
0
±

0.
6

0.
7
±

0.
4

T
u
m

or
2

A
co

u
st

ic
N

eu
ro

m
a

76
.2
±

1.
8

27
.6
±

8.
4

10
.2
±

0.
5

2.
3
±

0.
2

1.
2
±

0.
1

T
u
m

or
3

A
st

ro
cy

to
m

a
G

ra
d
e

2-
3

80
.3
±

5.
7

27
.1
±

10
.4

7.
7
±

1.
2

1.
8
±

0.
3

1.
6
±

0.
2

T
u
m

or
4

B
ra

in
M

et
as

ta
si

s
80
.9
±

0.
6

31
.0
±

2.
4

3.
4
±

0.
1

1.
1
±

0.
0

1.
1
±

0.
0

T
u
m

or
5

B
ra

in
M

et
as

ta
si

s
77
.6
±

0.
5

34
.6
±

0.
8

4.
7
±

0.
1

1.
1
±

0.
0

1.
1
±

0.
0

T
u
m

or
6

B
ra

in
M

et
as

ta
si

s
83
.3
±

0.
3

24
.7
±

1.
0

4.
6
±

0.
5

1.
2
±

0.
0

1.
1
±

0.
0

T
u
m

or
7

A
co

u
st

ic
N

eu
ro

m
a

68
.2
±

1.
2

46
.4
±

1.
7

3.
5
±

0.
4

1.
0
±

0.
1

1.
1
±

0.
0

T
u
m

or
8

G
li
ob

la
st

om
a

M
u
lt

if
or

m
e

88
.2
±

1.
6

8.
0
±

6.
6

7.
2
±

1.
9

1.
1
±

0.
2

0.
8
±

0.
1

T
u
m

or
9

B
ra

in
M

et
as

ta
si

s
84
.6
±

0.
6

16
.9
±

2.
0

5.
9
±

0.
5

0.
9
±

0.
1

0.
7
±

0.
0

T
u
m

or
10

A
st

ro
cy

to
m

a
G

ra
d
e

2-
3

90
.3
±

1.
1

6.
8
±

4.
4

5.
4
±

2.
1

0.
8
±

0.
2

0.
6
±

0.
0

T
u
m

or
11

M
en

in
gi

om
a

82
.4
±

1.
2

19
.5
±

2.
7

12
.1
±

0.
7

2.
1
±

0.
1

1.
2
±

0.
0

T
u
m

or
12

A
co

u
st

ic
N

eu
ro

m
a

84
.0
±

0.
4

16
.1
±

4.
8

2.
1
±

0.
2

0.
5
±

0.
0

0.
5
±

0.
0

T
u
m

or
13

B
ra

in
M

et
as

ta
si

s
65
.9
±

1.
4

44
.9
±

3.
3

5.
0
±

0.
7

1.
6
±

0.
1

1.
5
±

0.
0

T
u
m

or
14

G
li
ob

la
st

om
a

M
u
lt

if
or

m
e

77
.8
±

4.
7

16
.6
±

16
.2

9.
5
±

3.
1

2.
5
±

0.
9

1.
9
±

0.
6

T
u
m

or
15

M
en

in
gi

om
a

87
.7
±

1.
6

10
.1
±

4.
0

3.
3
±

0.
2

0.
6
±

0.
1

0.
5
±

0.
0

T
u
m

or
16

M
en

in
gi

om
a

86
.8
±

0.
7

4.
6
±

2.
6

3.
4
±

0.
6

0.
8
±

0.
0

0.
5
±

0.
0

T
u
m

or
17

M
en

in
gi

om
a

72
.4
±

1.
1

26
.8
±

18
.3

4.
9
±

0.
1

1.
2
±

0.
1

1.
0
±

0.
1

T
u
m

or
18

B
ra

in
M

et
as

ta
si

s
81
.3
±

2.
4

7.
1
±

6.
8

4.
8
±

1.
3

1.
1
±

0.
2

0.
7
±

0.
1

T
u
m

or
19

B
ra

in
M

et
as

ta
si

s
83
.1
±

0.
7

22
.1
±

2.
3

2.
3
±

1.
5

0.
5
±

0.
1

0.
5
±

0.
0

A
ve

ra
ge

80
.1
±

6.
9

21
.9
±

12
.1

5.
5
±

2.
7

1.
2
±

0.
6

1.
0
±

0.
4

44



-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

0 5000 10000 15000 20000 25000 30000

V
O

LU
M

E 
D

IF
FE

R
EN

C
E 

(M
ET

H
O

D
-M

A
N

U
A

L)
 (

m
m

3 )

AVERAGE VOLUME (mm3)

Figure 2.15: Bland-Altman plot of real and estimated tumor volumes on Clinical

Data Set. The dashed lines mark ±1.96 standard deviation values of the volume

difference whereas the solid line marks its mean.

A Bland-Altman analysis for physical tumor volume measurements is presented

in Figure 2.15 which shows that the 90% of the volume differences lie within ±1.96

standard deviations around the mean difference, which is slightly below zero. As we

noted before, slight under estimation or over estimation can be possibly due to the

expert manual segmentations having a positive or negative bias.

Figure 2.16 presents Dice overlap comparison results among the Graph-cuts,

Grow-cut, and the proposed Tumor-cut method. The results we observed with

the Graph-cuts approach exhibits similar problems reported before in [30] such as

shrinking bias due to minimum cut optimization. The shortest path algorithms,

e.g. CA-based methods, showed lack of the shrinking bias problem. The proposed

Tumor-cut algorithm exhibits a lower coefficient of variation (std/mean) on the

average compared to the other methods used in validation, where the coefficient of

variation was 0.5373 (Graph-cuts); 0.0393 (Grow-cut); 0.0238 (Tumor-cut). Paired
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Figure 2.16: Comparison of Dice overlap for Graph-cut, Grow-cut and the proposed

method on clinical radio-oncology data set, demonstrates improved overlap with the

proposed method over this relatively more challenging tumor data. Black vertical

bar indicates ± standard deviation over 5 different initializations.

t-test comparison of Grow-cut and Tumor-cut demonstrates a statistically significant

improvement in Dice overlaps (p = 9.91 × 10−21), mean surface distances (p =

5.37× 10−11) and volume errors (p = 1.60× 10−11) with the Tumor-cut method.

Qualitative Results

We present 3D qualitative segmentation results from the clinical dataset on sample

2D slices in Figure 2.17. The mixed necrotic and enhancing tumor tissue content,

as well as cluttering neighboring structures such as vessels can be observed. These

challenging scenarios exemplify the difficulty level in the segmentation problem,

for whose solution interactive algorithms are regarded by the physicians as more

feasible than fully-automated ones. The level of interaction in the proposed tumor
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Figure 2.17: Sample slices of segmentation results obtained by the proposed method

on challenging cases of the clinical data set.

segmentation algorithm is minimal given by a single line along a 2D axial major

diameter of the given tumor. A simple initialization that lasts only 1-2 seconds

for the Tumor-cut algorithm, lead to reasonably well tumor delineations, which are

of important value in quantification of the volume change, as well as necrotic and

enhancing tumor tissue content change between a baseline and follow-up study in

the clinics for assessment of radiotherapy response. We present the results of the

necrotic tissue segmentation in the next subsection.

2.4.4 Enhancing/Necrotic Core Segmentation Results

In Section 2.3.6, we presented a CA-based method for labeling of necrotic and en-

hancing tumor tissue content after whole tumor boundary segmentation. We com-

pared the proposed method against EM and Otsu thresholding methods, both of

which were based on finding a single “optimal” threshold over the intensity distri-

bution within the tumor volume. In the proposed method, two thresholds are first

selected in order to set seeds for the necrotic and enhancing tumor tissue, and af-

terwards, cellular automata algorithm is run and the results are validated against

several 2D slices, over which the necrotic pixels were labeled by the expert radiolo-

gist in our team. In order to measure the improvement by imposing connectedness
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with the proposed CA algorithm, the maximum overlaps obtained using single and

double threshold methods are also reported by evaluating the algorithms using every

possible threshold values. Even though it is important for the clinicians to have the

capacity to quantify the change in the necrotic content of the tumor after radiation

therapy, this differentiation within tumor content is not typically carried out in the

clinical routine. Table 2.4 presents Dice overlap results of necrotic tissue segmenta-

tion for the tumors for which manual labels were available. Although this is a too

small dataset to arrive at conclusions, the proposed method performs reasonably

well for this problem. Qualitative results are given in Figure 2.18. Typical patterns

of dark necrotic core in the center and bright enhancing rim can be observed in rows

2-5, and to an extent in row 1. The result in row 6 gave the lowest performance

because small islands of necrotic regions with ambiguous low contrast were missed

by all three algorithms.
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Figure 2.18: Necrotic segmentation results for 6 different tumors on each row. Left-

To-Right: Manual Expert Delineation; EM Segmentation; Otsu Thresholding; CA

Tumor Segmentation.
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2.5 Conclusion

We presented a segmentation algorithm for the problem of tumor delineation which

exhibit varying tissue characteristics. As the change in necrotic and enhancing

part of the tumor after radiation therapy becomes important, we also applied the

Tumor-cut segmentation to partition the tumor tissue further into its necrotic and

enhancing parts. We presented validation studies over a synthetic tumor database

and two real tumor databases: one from Harvard tumor repository and another

from a clinical database of tumors that underwent radiosurgery planning at Radi-

ation Oncology Department of ASM. The performance over particularly datasets

of highly heterogeneous tissue content demonstrated an overlap in the range 80%

to 90%, however, with a desired low surface distance error, average median surface

distances of 1.0mm to 1.5mm, respectively. Furthermore, performance change over

varying initial seeds were also reported as standard deviations, and shown to be

important in assessing true robustness of the proposed algorithm in real application

scenarios. The user interaction time is just a few seconds and typical computation

times vary between 1 second to 16 minutes (on a 3.17GHz dual processor worksta-

tion) depending on the volume of the tumor which ranges between 0.5cc and 32cc.

Due to inherent parallelity of the proposed algorithm, computation time can be

significantly reduced. However, in the case of multiple metastases, user interaction

time increases with the number of tumors, as the user should draw one line for each

tumor, and for instance such a problem was addressed in RECIST guideline 1.1 [52]

which limited the maximum number of tumor cases to be processed to 5.

Strengths of the proposed method include its simple interaction over a single

slice and less sensitivity to the initialization (demonstrated by lower coefficient of

variation values), its efficiency in terms of computation time, and robustness with

respect to different and heterogeneous tumor types. Choosing the contrast enhanced

T1 modality limits the application to the tumors that are enhanced with the con-

trast agent, excluding the edema/infiltration region around the tumor. For the

targeted clinical application of radiosurgery planning, using a single modality is an

advantage due to the computational efficiency and ease of use. However, in a multi-

modal scenario, it could be possible to design new transition functions adapted to a

given modality and also optimize the parameters. Later, the probability maps con-
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structed from each modality could be combined to obtain the final segmentation.

Future work includes assessment of the tumor response to therapy, built on the

given segmentation framework, which was encouraged by the clinical experts due

to reasonable and acceptable success rates of the algorithm. Attempts presented in

this paper to quantify change in necrotic and enhancing tumor tissue content is also

welcomed to be of high clinical interest, particularly in radiation oncology practice.
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Chapter 3

Multimodal Extension of the

Tumor-cut Method and

Evaluation on the BraTS Dataset1

3.1 Introduction

In Chapter 2, a novel method for segmentation of tumors from a single MRI se-

quence, the contrast enhanced T1-weighted MRI, is presented. However, incorpora-

tion of the multi-modal imaging data from different MR sequences, diffusion MRI,

and/or even Positron Emission Tomography (PET), is an emerging approach for

tumor segmentation. This would bring a wider spectrum of information with dif-

ferent intensity characteristics from various medical images of for instance different

relaxation characteristics as in T1-weighted or T2-weighted MRI. Because of their

unpredictable appearance and shape, segmenting brain tumors from multi-modal

imaging data is one of the most challenging tasks in medical image analysis. Al-

though many different segmentation strategies have been proposed in the literature,

it is hard to compare existing methods because the validation datasets that are used

differ widely in terms of input data (structural MR contrasts; perfusion or diffusion

data; ...), the type of lesion (primary or secondary tumors; solid or infiltratively

growing), and the state of the disease (pre- or post-treatment).

1The work presented in this chapter appeared in Proceedings of MICCAI-BRATS 2012 October

1st, Nice, France and is in preparation for joint paper submission.
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In order to gauge the current state-of-the-art in automated brain tumor seg-

mentation and compare between different methods, a multimodal Brain Tumor Seg-

mentation (BraTS) challenge is organized that is held in conjunction with the 15th

International Conference on Medical Image Computing and Computer Assisted In-

tervention (MICCAI 2012) on October 1st, 2012 in Nice, France. For this challenge,

a large dataset of brain tumor MR scans including low- or highgrade glioma cases

with manually labeled segmentation maps are made publicly available. Addition-

ally, realistically generated synthetic brain tumor datasets are provided for which

the ground truth segmentation is known. The details of the available MR images

and the expert labeling protocol are given in section 3.3.

Tumor-cut method, which is originally developed for segmentation on contrast

enhanced T1 weighted MR modality as described in detail in Chapter 2 and in [53],

is extended to process multi modality MR images (see Section 3.2). The BraTS

challenge served to evaluate the value of the multi modality Tumor-cut method

within the current state-of-the-art techniques.

3.2 Methods

The semi-automatic tumor segmentation method, as described in detail in the

“Tumor-cut” article [53] and in Chapter 2, specifically targets the gross tumor vol-

ume (GTV) and the necrotic regions of the brain tumors on contrast enhanced

T1-weighted MR images, requiring an initialization by drawing a line through the

maximum diameter of the tumor as in the “Response Evaluation Criteria In Solid

Tumors” (RECIST) guidelines [52]. For the BraTS challenge, the method was ex-

tended to multi-modal MRI to include also the labels for edema and non-enhanced

regions. Tumor-cut’s approach to fuse different MR modalities is to apply the orig-

inal method to each channel seperately and then combine the segmented volumes

by basic set operations based on the type of the modality. For each channel, a seg-

mentation is initialized by drawing the maximum observable diameter of the tumor

and performed independently (see Figure 3.1). For FLAIR images, whole hyper-

intense region is segmented as FLAIR volume (Vfl) and for T2 images only the core

abnormality is segmented as T2 volume (Vt2). Tumor core is segmented on contrast

54



Figure 3.1: Maximum diameter line drawn by the user to initialize the algorithm

for CE-T1 (a), T2 (b) and Flair (c) modalities and the corresponding outputs, for

a sample high grade case. Manual labels overlayed on T1 for a sample slice (d).

enhanced T1 MRI (Vt1c) followed by the application of the necrotic segmentation

method to segment the necrotic regions within the tumor core (Vnec). For the low

grade cases, Vt1c and Vnec are set to empty, because the tumors were not enhanced

by the application of the contrast agent. Non-contrast enhanced T1 MR images

were used neither for high nor low grade cases. For FLAIR segmentation, only the

weight of the regularizer in the energy term for the level-set evolution is tuned to

allow resulting tumor surfaces to have higher curvatures. Label for each class is

determined by the following operations:

Necrotic = Vnec

Enhanced = Vt1c \ Vnec

Non− enhanced = Vt2 \ Vt1c

Edema = Vfl \ (Vt2 ∪ Vt1c) (3.1)

For each case, user interaction takes about 1-2 minutes and typical run time is

around 10-30 minutes, depending on the size of the tumor, using a CPU (3.16 GHz).

However, the parallel nature of the algorithm allows GPU implementation, which

would reduce the processing time significantly.
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3.3 BraTS Dataset2

The first version of the dataset, which was used in the BraTS challenge in MICCAI,

consists of two label manual segmentation including edema and tumor core. After

a few months, the performances of the algorithms were evaluated on an improved

dataset consisting of 4-labels as described in detail in the following sections.

3.3.1 Image Types Used for Segmentation

The MR images used for tumor segmentation are given in the following list:

• T1-Weighted. T1-weighted, native image, sagittal or axial acquisitions, vari-

able slice thickness from 1 to 5 mm.

• Contrast Enhanced T1-Weighted: T1-weighted, post Gd image. Axial

3D acquisition, 1 mm isotropic voxel size.

• T2-Weighted. T2-weighted image, axial 2D acquisition, 2-4 mm slice thick-

ness.

• T2-Weighted Fluid Attenuated Inversion Recovery (FLAIR). T2-

weighted FLAIR image, axial or coronal or sagittal 2D acquisitions.

The images were taken from multiple centers and multiple scanners, therefore

image quality and acquisition parameters differ. Although the original acquisition

parameters are heterogeneous, all images are co-registered to the post-contrast T1

image and re-sampled to 1 mm.

3.3.2 Label Definitions

Although the general problem of defining tumor borders in infiltrative tumors still

exists, particular radiological criteria can be set to define such sub-domains. These

2Brain tumor image data used in this work were obtained from the MICCAI 2012 Challenge

on Multimodal Brain Tumor Segmentation (http://www.imm.dtu.dk/projects/BRATS2012) or-

ganized by B. Menze, A. Jakab, S. Bauer, M. Reyes, M. Prastawa, and K. Van Leemput. The

challenge database contains fully anonymized images from the following institutions: ETH Zurich,

University of Bern, University of Debrecen, and University of Utah.
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Figure 3.2: Tumor labels overlayed on a sample slice of a typical high grade glioma

case. Green: Non-brain, non-tumor, necrosis, cyst, hemorrhage (1). Yellow: Sur-

rounding edema (2). Brown: Non-enhancing tumor part (3). Blue: Enhancing

tumor core (4).

domains do not reflect strict biological correspondence and homogeneity but are

rather place-holders for similarly-looking regions. For instance, the definition of the

active tumor could simply be the high signal intensity regions on T1 Gd images.

However, in high grade tumors, there are non-necrotic, non-cystic regions that do not

enhance but they can be clearly separable from the surrounding edema. Another

problem is the definition of tumor center in low grades. In such cases, a certain

delimitation of the T2 hyperintense surrounding edema and the growing tumor is

sometimes possible, but they do not enhance. Therefore as shown in Figure 3.2, the

following set of labels is used to define intra tumoral sub-domains:

• Label 1. Non-brain, non-tumor, necrosis, cyst, hemorrhage

• Label 2. Surrounding edema

• Label 3. Non-enhancing tumor part

• Label 4. Enhancing tumor core

The definitions for labels 1,2 and 4, which are necrosis, edema and enhancing

tumor respectively are relatively common and easy to identify, whereas the label 3
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Figure 3.3: Definition of the label 3 for high grade glioma cases. Left: Gross tumor

and edema regions are distinguishable on T2 images with different intensity and

texture characteristics. Center: Enhancing tumor volume, which appears hyper-

intense on contrast enhanced T1 weighted MR images, do not completely overlap

with gross tumor volume on T2-weighted images. Right: Corresponding labeling

where the region that is not enhanced with the contrast agent but appears as a part

of the gross tumor in T2 is labeled as non-enhancing in brown color (label 3).

might be confusing. The non-enhancing tumor core is the only category used for

delineating tumor centers in low grade gliomas, for there occurs no enhancement in

contrast enhanced T1 images. However, in high grade glioma cases, identification of

those non-enhancing regions of the tumor core requires parallel viewing of T1 and

T2 images as shown in Figure 3.3. The region that is not enhanced with the contrast

agent but appears as a part of the gross tumor in T2 is categorized as non-enhancing

tumor core and labeled with 3.

3.4 Results

The method is implemented on Matlab environment, running on a windows 7 work-

station, using mex files for core algorithms. The dataset is downloaded from the

“Virtual Skeleton Database” web site (http://www.virtualskeleton.ch/) and the on-

line system provided is used for the evaluation.

Both of the 2-label and 4-label dataset, are divided into two parts as “Train-

ing Dataset” and “Testing Dataset”. The manual labels of the training data were
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provided offline to participants of the BraTS challenge as a ground truth to train

and tune the algorithms. The segmentation maps obtained on the MR images of

the test dataset are uploaded to the “Virtual Skeleton” server and the segmentation

performance measures are calculated by comparing with the ground truth, which is

hidden to the participants.

The results for each case of the “2-Label Training Dataset” are provided in

Section 3.4.1. The overall results, for the 2-label (Section 3.4.1) and 4-label (Sec-

tion 3.4.2) test/training datasets are given, compared to the performance of the

other techniques participated in BraTS Challenge.

3.4.1 Results on 2-Label Dataset

For each subset of the BraTS 2-Label Training Dataset, including high grade and

low grade, simulated and patient data, the Dice overlap scores obtained are given

as bar charts in Figs 3.4-3.7. For the 2-Label ”Testing Dataset”, which consists of 4

low grade and 11 high grade glioma cases, the results are given in Figs 3.8 and 3.9.

The overall Dice overlap, Jaccard scores, Sensitivity and Specificity results with

the standard deviations are reported in Table 3.1. The comparison of the Dice scores

obtained by tumor-cut method with the other techniques participated in the BraTS

challenge is given in Table 3.2.

Figure 3.4: Dice overlap results obtained on each case of the low-grade patient subset

of the 2-Label Training Dataset.
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Figure 3.5: Dice overlap results obtained on each case of the high-grade patient

subset of the 2-Label Training Dataset.

Figure 3.6: Dice overlap results obtained on each case of the simulated low-grade

subset of the 2-Label Training Dataset.

Figure 3.7: Dice overlap results obtained on each case of the simulated high-grade

subset of the 2-Label Training Dataset.
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Figure 3.8: Dice overlap results obtained on each case of the low-grade patient subset

of the 2-Label Testing Dataset.
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Figure 3.9: Dice overlap results obtained on each case of the high-grade patient

subset of the 2-Label Testing Dataset.
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Table 3.2: Tumor core and edema dice overlap percentages on 2-label testing dataset

for the participated groups of the BraTS Challenge.

Method High Grade Cases Low Grade Cases

(Tumor Core / Edema) (Tumor Core / Edema)

Hamamci et al. 69.4 / 53.9 32.4 / 3.3

Shin et al. 14.4 / 3.8 23.2 / 6.1

Bauer et al. 51.2 / 53.6 33.2 / 17.9

Zikic et al. 47.6 / 59.8 33.9 / 32.4

Subbanna et al. 13.3 / 6.9 0.1 / 0.0

Xiao et al. 33.7 / 53.9 22.4 / 27.9

Zhao et al. 5.8 / 0.3 0.0 / 0.0

3.4.2 Results on 4-Label Dataset

The 4-label patient dataset is divided into two parts as ”Training Dataset” and

”Testing Dataset”, that consist of 30 (10 low, 20 high grade) and 15 (4 low, 11

high grade) glioma cases respectively. The evaluation is done for 3 different tumor

sub-compartments, which are a combination of the 4-labels defined in Section 3.3.2,

as follows:

• Region 1: Complete Tumor (Edema + Enhancing + Non-enhancing + Necro-

sis)

• Region 2: Tumor Core (Enhancing + Non-enhancing + Necrosis)

• Region 3: Enhancing Tumor3 (Enhancing)

The average dice overlap, jaccard scores, specificity and sensitivity results with

the standard deviations for each subset of the 4-label dataset are reported in Ta-

ble 3.3. The comparison of the dice scores, positive predictive values and sensitivity

results obtained by tumor-cut method with the other techniques participated in the

BraTS challenge for testing and training datasets are given in Tables 3.4 and 3.5

respectively.

3Enhancing tumor region is not evaluated for the low grade glioma cases.
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3.5 Discussion and Conclusions

Originally we limited the scope of the “Tumor-cut” algorithm to the contrast en-

hanced gross tumor volumes, which corresponds to the tumor core of the high grade

tumors in Table 3.2. The comparison of the performance with the other partici-

pating algorithms shows that the “Tumor-cut” performs superior to others for the

segmentation of the tumor core of high grade glioma cases, whereas perform similar

for other categories, except edema segmentation of the low grade tumors, which is

usually not of interest in low grade gliomas.

For the 4-label challenge results given in 3.4, “Tumor-cut” algorithm performed

comparable to the state-of-the-art techniques participated in the challenge. Because,

the “Tumor-cut” method is not based on learning on the training dataset, the results

obtained for both training and testing datasets are similar as expected. However,

the low ranking in Table 3.5 is possibly due to the learning-based biased performance

evaluation of the other algorithms.

Disadvantages of the interactive segmentation algorithms in general can be noted

as: increased processing time and the possibility to miss some in case of multiple

tumors, difficulty in batch processing of patient databases and intra/inter operator

variability.

We observed that in one case only, we segmented an abnormal structure, which

was not labeled as tumor by the experts. Although, this resulted a zero overlap

score for the particular case, in fact, to allow user to choose what to segment is

an advantage of the semi-automatic approach. In general, the T2 results did not

provide useful information, as only a small portion of the tumors consist of the non-

enhancing region and the segmentation results were not accurate due to the low

contrast between tumor core and edema. The approach of “Tumor-cut” method

was to apply the original algorithm independently to each modality. A combined

algorithm that considers the multidimensional information from all available modal-

ities have the potential to improve the results obtained.
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Chapter 4

Potential Tumor Response

Criteria based on the Invariants of

the Finite Strain Tensor1

4.1 Tumor Follow-up

The work on developing a common language, in order to evaluate the therapy re-

sponses of the tumors in an objective and consistent manner, was accelerated after

mid 1970’s. For this purpose, the World Health Organization (WHO) criteria titled

”Reporting results of cancer treatment” which is published by World Health Orga-

nization (WHO) in 1979 [54] and by Miller et.al. in 1981 [55] were widely used as a

standard in the studies. WHO criteria proposes to calculate the total tumor load to

determine the treatment response by multiplying the maximum diameter in any of

the three orthogonal planes (axial, sagittal or coronal) and the maximum diameter

in the perpendicular plane for each tumor and summing up over measurable lesions

(2 dimensional). The measurement of the tumor load should be done at the begin-

ning of the treatment and with equal time interval follow-ups by the same method.

Whenever the accurate measurement in 2 dimensions is not possible, only the the

single longest diameter of the tumor would be reported. Treatment responses for

the measurable diseases are classified under 4 categories:

1The work presented in this chapter appeared in the European Society of Magnetic Resonance

in Medicine and Biology (ESMRMB) Conference, 2012.
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• Complete Response (CR): The disappearance of all known disease.

• Partial Response (PR): No new lesion, no progression of any lesion and at

least 50% decrease in total tumor load.

• Progressive Disease (PD): A 25% or more increase in the size of any measurable

lesions or the appearance of new lesions.

• No change (NC): No response or progression.

Complete and partial responses should be verified by a second measurement

following the observation. [47].

In 1990, after the publication of the application of WHO criteria on brain tumors

by Macdonald et.al., MacDonald criteria became a standart used on brain tumor

studies [10, 11].

However, summing up the multiplication of bidimensional measurements, needs

excessive workload and the results are error-prone and causes some problems about

the usage of the WHO criteria [56, 57, 58]:

1. The usage of the tumor size changes in response evaluation varies between

research groups.

2. The number of lesions and the minimum lesion sizes noted shows variations.

3. ”Progessive Disease (PD)” is defined on a single lesion by some groups, while

calculated on total tumor load by some other groups.

4. The technological development of the measurement devices (Computed To-

mography and Magnetic Resonance Imaging), causes confusions on how to

use 3-dimensional measurements on tumor response studies.

Addressing those problems, in the mid 1990’s, a study is initiated to develop a

new set of criteria by ”The European Organization for Research and Treatment of

Cancer (EORTC)”, ”The National Cancer Institute (NCI) of the United States”,

and ”The National Cancer Institute of Canada, Clinical Trials Group” and published

in the year 2000, under the name Response Evaluation Criteria in Solid Tumors

(RECIST) [59]. In this widely used RECIST tumor response criteria, the maximum
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diameter of the tumor measured in any plan is used for tumor follow-up. Comparison

studies revealed that the overall results obtained by unidimensional measurements

of a single maximum diameter (RECIST) are equivalent to the bidimensional WHO

criteria [56, 59, 58, 60].

In this chapter, as well as the global criteria such as diameter and volume mea-

surements, the potential of the local criteria on assessment of the tumor evolution

is studied and explained in the following section.

4.2 Deformable Registration for Tumor Follow-

up

The first step in assessment of the tumor evolution between consecutive MR im-

ages of the patient locally and accurately is the alignment of the MR volumes by

a rigid registration. One of the state-of-the-art rigid alignment techniques such

as a normalized cross correlation-based registration could be applied (e.g. using

SPM toolbox Rigid Registration). However, for an intra-patient alignment prob-

lem, which involves registration of MR volumes of the same patient at different time

points (e.g. before and after therapy) with varying degrees of tumor tissue of highly

heterogeneous characteristics, an anatomic landmark-based rigid registration was

developed by Demir et.al. [61], which could be utilized in our pre-alignment phase.

In this study, “Block Matching” algorithm of the MedINRIA software is used for

rigid registration of the reference and follow-up contrast enhanced T1 MR volumes

of the tumor patient.

After the rigid alignment of the reference and follow-up volumes of the tumor

patient, a deformable registration is proposed to be used, to create a mapping

(A (x ) : Ω → Ω where Ω ∈ R3 is the domain of the image volume) between

the binary tumor volumes on both images obtained by the Tumor-cut segmentation

algorithm. Diffeomorphic Demons algorithm, which is one of the most accurate and

robust registration algorithms in the literature is used to create a deformation map

from the reference tumor to the follow-up tumor [1]. Diffeomorphic demons algo-

rithm, which is based on Thirion’s Demons algorithm [62], can be interpreted as an

optimization procedure in the space of displacement vectors. Deformable transfor-
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mation, which is defined by the displacement vectors (u : R3 → R3) for each voxel

on the image space (A (x ) = x + u ), is calculated by using the intensity based

forces obtained from the image. Following the construction of the displacement vec-

tors for each voxel, the resulting displacement field is regularized by using Gaussian

smoothing. Demons iterations can be summarized by the following:

1. Displacement field is initialized to s .

2. By using SSD (sum of square differences) the displacement field u between F

(reference) and M (moving image) is optimized by minimizing the norm:

Ecorr(u ) =|| F −M(s + u ) ||2 + || u ||2 (4.1)

where F denotes the referrence (static) volume and M is the moving volume.

3. Vector field is updated by: c ←− s + u

4. Vector field c is regularized by Gaussian smoothing: s ←− G(c )

The iterations 1-4 above is finalized when the update of the estimated vector

field lowers below a treshold. Although the Demons algorithm works efficiently,

it has some limitations in terms of similarity measures and transformation con-

straints. One of the improvements in the literature, addressing those problems, is

the “Diffeomorphic Demons” algorithm [1]. In diffeomorphic registration, not only

the intensity differences but also the transformation properties are considered, to

obtain a topology preserving transformation.

Mathematically, a diffeomorphism; is an invertable function which maps a differ-

entiable manifold to another. Both the function and its inverse are smooth functions,

which preserves the topology of the anatomical regions. Meanwhile, a one-to-one

and invertable mapping is obtained without foldings of the function. In order to as-

sure the diffeomorphism, the vector field is calculated in Lie space in Diffeomorphic

Demons algorithm [1]. When the transformations are summed basically, as in the

summation (+) operation given in the 3rd step above, the result is not guaranteed

to belong to the same space, for they do not form a vector space. Instead of using

a basic summation, if a composition (o) is done by using Lie group structure, the
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transformation estimated by the 3rd step given below would be preserved in the

vector space.

The iterations of the Diffeomorphic Demons algorithm can be summarized as

following:

1. Displacement field is initialized to s .

2. By using SSD (sum of square differences) the displacement field u between F

(reference) and M (moving image) is optimized by minimizing the norm:

Ecorr(u ) =|| F −M(s ◦ exp(u )) ||2 + || u ||2 (4.2)

where F denotes the referrence (static) volume and M is the moving volume.

3. Vector field is updated by: c ←− s ◦ exp(u )

4. Vector field c is regularized by Gaussian smoothing: s ←− G(c )

An example comparing the classical Demons algorithm and the Diffeomorphic

Demons algorithm is given in Figure 4.1. Here, F denotes the referrence (static)

volume and M is the moving volume. It can be seen that the topology of the

reference volume is preserved better by the Diffeomorphic Demons algorithm.

Figure 4.1: Comparison of the classical Demons and the Diffeomorphic Demons

algorithms.

In Figure 4.2, the same sample slice of the reference and follow-up contrast en-

hanced T1 images of a tumor patient are shown. Here, it can be seen that the volume
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and diameter of the tumor is decreased after the treatment. First, Diffeomorphic

Demons deformable registration algorithm is applied to register the reference and

follow-up contrast enhanced T1 weighted MR images of the brain tumor patients.

However, the results were not successful. Briefly, the displacement vector field ob-

tained by using the voxel intensity values of the reference and follow-up volumes

was not able to map the tumor volume before the therapy to the tumor volume

after the therapy. One of the possible reasons for this failure is thought to be the

effect of the deformation caused by the background and surrounding structures on

the deformation of the tumor region.

Figure 4.2: Left: Tumor of a patient on the reference scan before the therapy; Right:

The same tumor on the follow-up slice.

In order to solve the encountered problem of intensity based registration, the

tumors on both reference and follow-up volumes are segmented and then the Diffeo-

morphic Demons algorithm is applied to determine the deformation field between

the tumor surfaces. To segment the tumors on both volumes, Tumor-cut algorithm

described in detail in Chapter 2 and in [43] is applied. Contours of the tumor on

both reference and follow-up images are overlayed on a sample slice of the reference

MRI in Figure 4.3.
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Figure 4.3: Red: Contour of the tumor in reference scan. Blue: Contour of the

tumor in follow-up scan, overlayed on the reference MRI.

4.3 Deformation Gradient, Lagrange Strain Ten-

sor, and its Invariants

After obtaining the segmented binary tumor maps on both MR volumes, ”Diffeo-

morphic Demons” deformable registration algorithm is applied to estimate a smooth

deformation field between the reference and follow-up binary tumor volumes [1]. The

displacement field is defined as on each voxel of the moving (follow-up) volume map-

ping to the static (reference) volume: X = A (x ), x : denote the coordinates in

moving frame where, X are the coordinates in the constant volume. Deformation

field A (x ), can be written in terms of displacement field u (x ) as:

A (x ) = x + u (x ) (4.3)

To calculate the total deformation of the tumor, which is related to the amount

of shape change, tensors used in the field of continuum mechanics are used (e.g. see

[63]). The differential relation between the static and moving coordinate frames are

given as:

dX = F dx (4.4)
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where F is known as Jacobian, or the deformation gradient:

F =
∂A

∂x
(4.5)

F can be calculated by using the estimated displacement field:

F = I +∇xu (4.6)

In equation 4.6, I is the identity tensor, ∇xu is the gradient of the displacement

field.

The binary tumor volumes obtained by the Tumor-cut segmentation algorithm

are deformably registered, and a sample 2D slice of the resultant 3D displacement

field u is visualized on a reference MR slice in Figure 4.4. Inward direction of the

vector field on the reference MR image indicates the shrinkage of the tumor.

Figure 4.4: Vector field overlayed on a sample reference MR slice.
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After obtaining a deformation field between the tumors on the reference and

follow-up scans, the estimated 3D vector field can be further interpreted to calculate

a local response criteria. As an example, the determinant of the jacobian of the

displacement vector field, det(∇xu ), is calculated and visualized as a color map in

Figure 4.5.

Figure 4.5: Determinant of the jacobian of the 3D vector field visualized as a color

map on a sample slice.

By using F , the Left Green Deformation Tensor:

C = F TF (4.7)

and Lagrange Strain Tensor:

T =
1

2
[C − I ] (4.8)

can be defined [63]. To calculate a scalar map over a 2nd order tensor, the eigenvalue

and eigenvector equation can be used:

76



T v = λv (4.9)

where v represents the eigenvector, and λ is the eigenvalue. Three eigenvalues can

be determined by solving the characteristic equation:

det(T − λI ) = −λ3 + λ2I1 − λI2 + I3 = 0 (4.10)

In the equation above, I1, I2, I3 are defined as the invariants of the tensor T and

can be calculated as:

I1(T ) = T · I = tr(T ) = T mm (4.11)

I2(T ) =
1

2
[(T · I )2 − (T · T T )] =

1

2
[(T mm)2 − T mnT nm] (4.12)

I3(T ) = det(T ) (4.13)

where det is the determinant of the tensor, tr is the trace of the tensor, and the “·”

represents the inner product of two tensors.

The first invariant I1 is a measure of local volume change (< 0 shrinkage and

> 0 expansion), the second invariant I2 is a measure of the strain magnitude, and

the third invariant I3 can be interpreted as again a sort of measure for the local

volume change.

In order to quantify the amount of deformation between the tumors on the

reference and follow-up scans, the Lagrange Strain tensor T is calculated using

equation (4.8), and the tensor invariants I1, I2, I3 are determined by using equations

(4.11),(4.12),(4.13).

The evaluation studies of the proposed tensor invariants on synthetic and real

MR volumes is described in the next section.

4.4 Evaluation of the Tumor Response Criteria

4.4.1 Evaluation of the Tensor Invariants on the Synthetic

Volumes

For further interpretation of the tensor invariants, phantom studies are performed. 3

dimensional deformation fields are estimated, as described in Section 4.2, on spher-

ical and ellipsoidal volumes generated synthetically. Followed by the calculation of

77



the Lagrange Strain tensor, tensor invariant I1, I2, I3 maps are calculated based

on this estimated 3D displacement field. The results are given below for various

phantoms:

(1) Expansion in a single dimension In order to investigate the

effect of the expansion in a single dimension, a spherical volume is mapped to an

ellipsoid which is expanded in only one dimension. A sample 2D slice is shown in

Figure 4.6, where blue ellipsoid represents the moving volume and white sphere is

the static volume. Mathematically, the generated phantoms are as following:

Static volume: {(x, y, z) : (x− 350)2 + (y − 350)2 + (z − 100)2 < 502}

Moving volume: {(x, y, z) : 0.5(x− 350)2 + (y − 350)2 + (z − 100)2 < 502}

Sample 2D slices of each tensor invariant maps are shown in Figure 4.7.

Figure 4.6: Blue contour: Ellipsoidal moving volume. White: Spherical static vol-

ume. Displacement vectors are from ellipsoid to sphere.

Figure 4.7: A sample slice of the tensor invariant I1,I2,I3 maps between the two

volumes in Figure 4.6.

(2) Spherical expansion To investigate the effect of the spherical ex-
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pansion, two co-centric spheres with different radius are used. A sample 2D slice is

shown in Figure 4.8, where the blue sphere is deformed to the white one. Mathe-

matically, the spheres are generated by:

Static volume: {(x, y, z) : (x− 350)2 + (y − 350)2 + (z − 100)2 < 802}

Moving volume: {(x, y, z) : (x− 350)2 + (y − 350)2 + (z − 100)2 < 502}

Sample 2D slices of each tensor invariant maps are shown in Figure 4.9.

Figure 4.8: Blue contour: Small spherical moving volume. White: Larger spherical

static volume. Displacement vectors are from larger to the small sphere.

Figure 4.9: A sample slice of the tensor invariant I1,I2,I3 maps between the two

volumes in Figure 4.8.

(3) Translation in a single direction To investigate the effect of the

translation in a single direction, two spheres at the same size but with translated

center points are used. A sample 2D slice is shown in Figure 4.10, where the blue

sphere is obtained by translating the white one.

Mathematically, the generated phantoms are as following:

Static volume: {(x, y, z) : (x− 350)2 + (y − 350)2 + (z − 100)2 < 502}
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Moving volume: {(x, y, z) : (x− 320)2 + (y − 350)2 + (z − 100)2 < 502}

Sample 2D slices of each tensor invariant maps are shown in Figure 4.11.

Figure 4.10: Blue contour: Original spherical static volume. White: Moving volume

generated by translating the original sphere. Displacement vectors are from white

sphere to the blue one.

Figure 4.11: A sample slice of the tensor invariant I1,I2,I3 maps between the two

volumes in Figure 4.10.

To evaluate the usage of the tensor invariants I1,I2,I3 on quantifying the shape

changes, shrinkage in a single direction and translation in a single direction are

applied with different amounts and the results are mapped seperately. Using those

tensor invariant maps, scalar measures are obtained and listed in Table 4.1. In this

table, the first three rows are the volumes of the moving and static phantoms, and

the percentage of the volume change. The integrals over the whole displacement

domain for the invariants are given in the next three rows, where the last three

rows are the coefficient of variations for each invariant given as the ratio of the

standart deviation to the average over the domain. Considering the expansion of
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the sphere to three different ellipsoids, given in the first 3 columns of the table, the

integrals and variation of coefficients of the tensor invariants are correlated with the

volume changes. At the last 2 columns, instead of changing the volume, translation

is applied by different amounts. The coefficient of variations (especially CV I3)

shows high variation, which is not observed in volume changes. Evaluation studies

done on synthetic phantoms reveal the potential usage of the tensor invariants for

assessment of the tumor changes.
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4.4.2 Evaluation of the Tensor Invariants on Clinical Cases

Evaluation studies of the tensor invariant measures, which are tested on synthetic

phantoms, are performed on radiotherapy patients. The contrast enhanced T1

weighted MR volumes of 16 patients (Glioblastoma Multiforme or Acoustic Neu-

roma patients) acquired before and after the therapy performed in Anadolu Health

Center (ASM) are included. Firstly the MRI volumes acquired after the therapy are

aligned with the volumes before the therapy using a rigid transformation (6 degrees

of freedom). For both volumes, tumor core and the necrotic regions within the tu-

mor are segmented using the Tumor-cut method described in detail in Chapter 2

and in [43]. The dense displacement field between the two tumor maps is esti-

mated by using the Diffeomorphic Demons algorithm [1]. Corresponding Lagrange

Strain tensors and the 3D map of the tensor invariants I1,I2,I3 are calculated for

the estimated displacement field. For each patient, calculated change measures are

given in Table 4.2. Furthermore, tensor invariants computed on the sample data in

Figure 4.12 are given in Figure 4.13 and 4.14.

Figure 4.12: Sample MR slices of a patient before (left) and after (right) the treat-

ment.

83



T
ab

le
4.

2:
In

te
gr

al
of

th
e

ca
lc

u
la

te
d

te
n
so

r
in

va
ri

an
ts
I 1

,I
2
,I

3
ov

er
th

e
w

h
ol

e
d
om

ai
n
,

co
effi

ci
en

t
of

va
ri

at
io

n
s,

ch
an

ge
of

th
e

vo
lu

m
es

,

d
is

p
la

ce
m

en
ts

of
th

e
ce

n
te

r
of

m
as

s
an

d
ch

an
ge

of
th

e
m

ax
im

u
m

d
ia

m
et

er
s

fo
r

ea
ch

cl
in

ic
al

ca
se

.
ID

T
y
p

e
C

li
n

ic
a
l

R
a
d

io
lo

g
ic

a
l

In
te

g
ra

l
In

te
g
ra

l
In

te
g
ra

l
C

o
ef

.o
f

C
o
ef

.o
f

C
o
ef

.o
f

V
o
lu

m
e

N
ec

ro
ti

c
D

is
p

la
ce

m
en

t
M

a
x
im

u
m

O
u

tc
o
m

e
A

ss
es

sm
en

t
I1

I2
I3

V
a
r.

V
a
r.

V
a
r.

C
h

a
n

g
e

(%
)

V
o
lu

m
e

(m
m

)
D

ia
m

et
er

I1
I2

I3
C

h
a
n

g
e

(%
)

C
h

a
n

g
e

(%
)

1
A

co
u

st
ic

N
eu

ro
m

a
0

0
2
6
0
.5

-1
6
8
.5

4
.9

2
5
1
.3

-5
8
.9

2
4
4
.1

1
0
.4

1
0
.3

6
0
.3

7
1
3
.1

3

2
A

co
u

st
ic

N
eu

ro
m

a
-1

0
2
8
0
.2

-1
9
6
.4

6
.5

2
1
3
.9

-8
5
.0

4
7
3
.3

1
.8

6
-1

4
.3

1
0
.8

2
-1

.8
8

3
A

co
u

st
ic

N
eu

ro
m

a
0

+
1

1
0
2
6
.3

-7
4
1
.1

2
8
.6

1
4
3
.9

-2
6
.8

7
7
.4

2
5
.1

2
2
4
5
.4

3
1
.0

0
6
.3

8

4
G

B
M

-1
+

1
1
9
5
.6

-1
2
4
.0

-4
.5

3
0
7
.9

-7
5
.8

-5
5
9
.4

0
.0

1
4
.4

3
0
.8

3
-2

.8
4

5
A

co
u

st
ic

N
eu

ro
m

a
-1

0
9
.8

-6
.2

0
.0

1
1
9
1
.8

-1
1
8
.1

1
3
5
2
.0

0
.9

1
-2

2
.1

5
0
.1

4
1
.0

5

6
A

co
u

st
ic

N
eu

ro
m

a
0

0
4
3
3
0
.6

-2
7
3
0
.4

1
7
5
.4

6
3
.2

-3
3
.8

1
9
6
.3

1
1
1
.3

5
2
2
6
.2

6
1
.5

7
2
8
.3

1

7
G

B
M

+
1

+
1

2
5
2
5
.4

-1
6
4
2
.7

4
2
.5

8
1
.7

-2
7
.1

1
4
2
.0

3
4
.1

3
7
.8

9
1
.2

9
1
3
.7

6

8
A

co
u

st
ic

N
eu

ro
m

a
0

0
9
5
.2

-5
6
.5

-1
.3

4
6
9
.1

-9
1
.2

-3
6
0
.8

-8
.7

3
-1

9
.0

1
0
.4

2
-1

.5
7

9
A

co
u

st
ic

N
eu

ro
m

a
-1

0
2
7
1
.7

-1
5
7
.1

-7
.0

2
9
0
.3

-1
2
6
.6

-9
0
4
.4

-8
.5

5
4
4
.2

2
1
.0

4
-0

.4
2

1
0

A
co

u
st

ic
N

eu
ro

m
a

-1
0

8
6
3
.8

-5
6
7
.3

9
.9

1
3
8
.5

-6
9
.5

1
2
5
1
.2

3
4
.3

5
5
2
.6

9
1
.2

7
3
2
.3

3

1
1

G
B

M
+

1
+

1
3
4
5
9
.8

-2
4
3
3
.8

1
2
5
.2

7
3
.2

-2
8
.0

1
5
0
.2

4
1
.1

1
3
3
.0

8
2
.3

6
4
.4

1

1
2

G
B

M
0

-1
2
5
0
2
.0

-1
6
6
6
.4

-3
8
.3

7
8
.9

-2
9
.0

-2
6
1
.1

-8
.4

5
-3

0
.1

1
1
.4

0
1
0
.1

0

1
3

A
co

u
st

ic
N

eu
ro

m
a

0
-1

4
4
.3

-2
2
.5

0
.5

6
6
9
.2

-7
8
.4

3
6
1
.0

2
7
.3

7
7
3
.4

3
0
.2

8
7
.6

0

1
4

A
co

u
st

ic
N

eu
ro

m
a

-1
0

4
7
1
9
.5

-3
0
3
5
.3

-3
7
.7

6
8
.0

-6
0
.2

-1
5
5
3
.9

6
5
.4

6
3
4
1
.3

1
3
.8

4
2
2
.0

3

1
5

A
co

u
st

ic
N

eu
ro

m
a

-1
-1

5
6
9
5
.2

-3
7
1
3
.7

-6
2
.6

6
4
.9

-4
8
.2

-1
0
0
5
.7

-8
.6

6
2
0
9
.6

8
1
.1

9
-8

.1
2

1
6

A
co

u
st

ic
N

eu
ro

m
a

-1
-1

2
1
0
.6

-1
2
1
.9

1
.1

2
9
3
.1

-6
0
.7

9
6
9
.1

5
.2

5
-2

.5
6

0
.3

6
0
.7

2

84



Figure 4.13: Tensor invariants calculated for the patient in Figure 4.12.

Figure 4.14: Visualization of the calculated tensor invariants on the MR images

acquired before (left column) and after (right column) the therapy.

4.5 Clinical Usability Experiments

Contrast enhanced T1 weighted spoiled gradient echo volumes acquired before and

after the radiosurgery treatment of 16 patients; 4 with Glioblastoma Multiforme

(GBM) and 12 with Acoustic Neuroma were included in the study, retrospectively.

In order to evaluate the potential clinical usage of the proposed method, for the
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cases given in Table 4.2 clinical and radiological assessments reported before and

after the treatment are scored by the convention defined in Table 4.3 and tabulated

in Table 4.4.

Table 4.3: Scoring convention used to quantify clinical and radiological outcomes.

Convention For Scoring Convention For Scoring

Clinical Outcome Radiological Assesment

-1 : Reduced Symptoms -1 : Reduction in size

0 : Stability 0 : Unchanged

+1 : Increased Symptoms +1 : Increased in size

The discriminative value of each of the measures: volume change, maximum di-

ameter change, integrals and coefficient of variations of tensor invariants I1,I2,I3 is

determined by Kruskal-Wallis test and the p values are given in Table 4.5. The vari-

ance analysis graphs for the most discriminative parameters coefficient of variation

of I2 and integral of I3 are given in Figure 4.15 and 4.16.

Figure 4.15: Distribution of the coefficient of variation of I2 for three clinical out-

comes (p = 0.05).

Clinical outcomes are visualized on coefficient of variation of I2 v.s. integral of I3

plot in Figure 4.17. As seen on the graph, coefficient of variation of I2 performs bet-

ter in identifying clinical improvement whereas integral of I3 is more discriminative

in disease progression. Also a possible linear classification is proposed by the red
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Table 4.4: Clinical and radiological assessments reported before and after the treat-

ment for the cases given in Table 4.2.

Patient Diagnose Clinical Radiology Radiology

Id Outcome Volume Change Necrotic Volume Change

1 Acoustic neuroma 0 0 +1

2 Acoustic neuroma -1 0 +1

3 Acoustic neuroma 0 +1 +1

4 GBM -1 +1 0

5 Acoustic neuroma -1 0 0

6 Acoustic neuroma 0 0 +1

7 GBM +1 +1 0

8 Acoustic neuroma 0 0 +1

9 Acoustic neuroma -1 0 +1

10 Acoustic neuroma -1 0 +1

11 GBM +1 +1 0

12 GBM 0 -1 0

13 Acoustic neuroma 0 -1 +1

14 Acoustic neuroma -1 0 +1

15 Acoustic neuroma -1 -1 +1

16 Acoustic neuroma -1 -1 +1

Figure 4.16: Distribution of the integral of I3 for three clinical outcomes (p = 0.10).
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Table 4.5: P values obtained by comparing the clinical outcomes to the calculated

measures and radiological assessments by Kruskal-Wallis test.

Radiological Maximum Volume C.V. C.V. C.V. Integral Integral Integral

Assessment Diameter I1 I2 I3 I1 I2 I3

p 0.12 0.34 0.33 0.54 0.05 1.00 0.44 0.54 0.10

and blue lines on the same plot, which provides the results of the proposed method

referred in Table 4.18 .

Figure 4.17: Clinical outcomes plotted on coefficient of variation of I2 v.s. integral

of I3 graph.

Clinical outcomes are compared to the results obtained by the proposed method

and the radiological assessment in Table 4.18. In disease progression and stabil-

ity cases, both the method and the radiological assessment provides similar results,

whereas it can be seen that the proposed method performs better in clinical im-

provement.
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Figure 4.18: Comparison of the clinical outcomes with the calculated measures and

radiological assessments.

4.6 Conclusions

For clinically unchanged and worsened cases, both radiological assessment and the

proposed method resulted in the same prediction performance, whereas consider-

ing the best linear classifier applicable, the method outperformed the basic global

measurements used in the radiological assessment for those cases with clinical im-

provement.

The volume change, show less importance in explaining the clinical outcome,

whereas the variation of the second invariant which is a measure of the strain mag-

nitude and the integral of the third invariant which quantifies the local volume

change of the deformation plays a more important role.

The results presented show that the analysis of the deformation fields of tumor

changes using methods of solid mechanics might provide results that are more cor-

related to the clinical outcomes of the therapy than considering only the volume or

largest diameter measurements.

The results need further validation on larger datasets and the effect of the reg-

ularization while obtaining the deformation field on the results should be consid-

ered.
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Chapter 5

Registration of Brain Tumor

Images using Hyper-elastic

Regularization1

5.1 Introduction

Registration of pre-therapy and post-therapy brain volumes with tumors is an impor-

tant task to be able to track the changes between two instances in order to assess the

progression of the tumor and the treatment response. The first step is a rigid/affine

registration between the two volumes. Although this is a challenging problem due

to the changes caused by the tumor, various approaches on the problem reported

successful results in the literature [61, 64, 65]. The total deformation caused by the

tumor growth can be taught as the combination of infiltration to the healthy tissue

and mass effect components. Our aim in this work is to separate the mass effect and

infiltration components, so that, malignancy and the reversibility of the destruction

can be determined. The healthy brain tissue in one of the images can be warped

onto the other ignoring the tumor tissue regions, as the latter may contain uncer-

tainty due to highly complex tumor growth and therapy processes. Hence, the idea

proposed in this thesis of matching only the healthy tissues in baseline and follow-up

tumor images will provide an estimation of the intracranial pressure caused by the

1Preliminary part of this work presented in this chapter appeared in the Computational Biome-

chanics for Medicine, pp. 101-114, Springer, 2013 and the current version is in preparation for

submission as a journal article.
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tumor growth plus the mass effect (see Figure 5.1).

Figure 5.1: Schematic explanation of the idea proposed in the thesis to separate the

tumor growth and the mass effect.

A similar problem arises in deformable registration of the brain with tumors to

a healthy population atlas. The main difference to the intra-subject registration

problem is that the deformation also includes inter-subject variations. Hence, a

general strategy to solve this problem is to iterate the forward model by simulating

the tumor growth on the atlas and refining the parameters of the simulation model

by comparing it to the tumor image [66]. This requires strong models, which rely

on realistic models of tumor growth and deformations due to the mass effect [66,

67, 68, 69]. The main problem with those approaches is that the growth of the

tumor is mostly affected by the uncontrolled parameters such as treatment and

requires sophisticated tumor growth models even without treatment. In ”Geometric

Metamorphosis” paper, Niethammer et.al, proposed an interesting approach to the

problem using a weak model by separating the foreground, hence the tumor growth,

and the background changes [70].

For the problem of intra-subject registration, our approach is based on the as-

sumption that the deformations except around the tumor volume are caused by the

mass effect of the tumor, hence obey the bio-mechanical rules. This is different from

the atlas matching problem, which includes also inter-subject variations between the

images. Sample baseline and follow-up MRI slices are shown in Figs. 5.2 and 5.3.

Deformation of the ventricles and sulci due to the mass effect of the growing tumor

can be clearly observed on the right hemisphere of the subject (denoted by ”R” in

the figures). Although, a mapping of the tumor tissue between the baseline and
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Figure 5.2: A sample axial slice from baseline (on the right) and follow-up (on the

left) MRI.

Figure 5.3: A sample sagittal slice from baseline (on the right) and follow-up (on

the left) MRI.

the follow-up is not well defined due to the uncertain growth pattern and therapy

effects, a mapping between the healthy tissues can be estimated. Therefore, our

aim is to find a mapping between the healthy tissues of the brains, which obeys the

nonlinear elastic finite deformation models.

The results of the experimental studies on animals suggest to model the brain

with a homogeneous hyper-viscoelastic non-isotropic material [71]. In the image
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analysis literature, simplified hyper-elastic models are used: Neo-Hookean [72], Og-

den type [73, 74], Saint-Venant Kirchhoff model [75], linear viscoelastic type [68].

In their work, comparing viscoelastic, hyper-elastic and linear elastic models on

brain simulations, Wittek et. al. reports no significant difference on the results

obtained [76]. In ”Nonlinear Elastic Registration with Unbiased Regularization in

Three Dimensions”, Saint-Venant Kirchhoff model was used as a regularizer in the

registration of serial magnetic resonance images [75].

Our novel contributions in this chapter of the thesis are: (i) Matching healthy

tissue to healthy tissue of the brain using a dedicated image data term; (ii) Using

the hyper-elastic Neo-Hookean strain energy density as a regularizer in deformable

registration framework; (iii) Derivation of displacement field update equations based

on the Neo-Hookean model using Euler-Lagrange framework.

5.2 Background

Linear theories of solid mechanics are highly developed and are in a satisfactory

state of completion. In the theory of linear elasticity, the stress and strain are

related linearly by the Hooke’s Law:

σ = c : ε (5.1)

where σ is the Cauchy stress tensor, ε is the small strain tensor and c is the

fourth-order elasticity tensor that contains the material properties. However, this

linear model is only valid for infinitesimal or small strains. One of the simplest

nonlinear theory to model huge, reversible, shape changes is Hyper-elasticity, which

is used to model rubber and foams.

The mechanical properties of a hyper-elastic material are characterized com-

pletely by a scalar strain-energy density function W. Specifying the strain energy

density W as a function of the deformation gradient F : W = W (F ) ensures that

the material is perfectly elastic. The general form of the strain energy density, W ,

is guided by experiment [63].

Let us define the displacement field from the un-deformed to deformed config-

uration as u : Ω −→ R3 where Ω ∈ R3. In addition to the strain energy density

93



W = W (x ,∇u ), let f = f(x ,u (x )) denote the external energy, then the equilib-

rium configurations can be determined as the minima of the total energy functional:

E(u ) =

∫
Ω

W (x ,∇u )dx −
∫

Ω

f(x ,u )dx (5.2)

The Euler-Lagrange system associated with the functional E, which is a necessary

condition for a minimizer of the total energy given in Eqn. 5.2, is precisely the

equilibrium equation:

div(
∂W

∂F
(x ,∇u (x ))) +

∂f

∂u
(x ,u (x )) = 0 (5.3)

where Fij = σij + ∂ui
∂xj

is the deformation gradient and ∂W

∂F
T

is called the First

Piola-Kirchhoff tensor in the mechanics literature [77].

Commonly, constitutive hyper-elastic strain energy density models are based on

principal strains λi, or invariants of the stretch tensor Ii, defined as:

I1 = λ2
1 + λ2

2 + λ2
3

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3

I3 = λ2
1λ

2
2λ

2
3 (5.4)

With the incompressibility assumption for the material, I3 is taken to be constant

and equal to 1.0 and does not contribute to the strain energy. One of the most simple

models is the Neo-Hookean model, which is given as:

WNH = C(I1 − 3) (5.5)

Another model that has been extensively utilized in studies of elastomer deformation

is the Mooney-Rivlin model, given as:

WMR = C1(I1 − 3) + C2(I2 − 3) (5.6)

A more general form in terms of principal stretches is the Ogden model, given

as:

WO =
∑
n

µn
αn

(λαn
1 + λαn

2 + λαn
3 − 3) (5.7)

where n is the degree of the model and µn and αn are the model parameters.
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Note that the Neo-Hookean model results from Eqn. 5.7 by setting n = 1 and

α1 = 2, whereas Mooney-Rivlin model can be obtained by setting n = 2, α1 = 2,

α2 = −2.

Although rubber elastic materials are generally considered to be incompress-

ible, including compressibility increases accuracy, improves models where the bulk

response is important and helps to avoid numerical problems inherent in incom-

pressibility assumption. Compressible forms of the strain energy function W are

developed in one of two ways. Both begin by removing the incompressibility restric-

tion that J = 1 where J =
√
I3. Decoupling approach assumes the strain energy

is a separable function of a deviatoric strain (distortional) energy and a hydrostatic

strain (volumetric) energy dealing with the volume change, as follows:

W = WD(Ī1, Ī2) +WH(J) (5.8)

where Ī1 and Ī2 are invariants of the deviatoric stretch tensor, Ī1 = J−2/3I1, Ī2 =

J−4/3I2. Corresponding decoupled representations for hyper-elastic models can be

reformulated by replacing λi and Ii by the modified quantities λ̄i and Īi, and adding

a suitable volumetric response function. For example, the decoupled strain-energy

function for the Mooney-Rivlin model has the form:

WMR(Ī1, Ī2, J) = C1(Ī1 − 3) + C2(Ī2 − 3) +WV OL(J) (5.9)

where WV OL can be selected as a penalty of the deviation of J from unity. Other

compressible formulations append a bulk strain energy term to an existing strain

energy form, as follows:

W = Wa(I1, I2, J) +Wb(J) (5.10)

Here, both Wa and Wb terms contain contributions due to the volume change. As an

example, the coupled form of the compressible Mooney-Rivlin model may be given

as:

WMR(I1, I2, J) = C1(I1 − 3) + C2(I2 − 3)− dlnJ + c(J − 1)2 (5.11)

where c is a material constant and d defines a parameter with certain restrictions.

Another example is the coupled form of the compressible neo-Hookean model given

by:

WNH(I1, J) =
c1

β
(J−2β − 1) + c1(I1 − 3) (5.12)
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with the constants c1 = µ/2 and β = ν/(1− 2ν). The material parameters µ and ν

denote the shear modulus and Poisson’s ratio, respectively [78, 79].

5.3 Methods

In deformable registration, the problem is to find the displacement field u from the

volume R to T, which minimizes the given functional:

u ∗ = arg min
u

∫
Ω

f(R(x ), T (x + u (x ))) + αW (x ,∇u )dx (5.13)

where f is the external energy density term calculated as a similarity measure be-

tween the reference (R) and target (T) volumes and α is the weighting parameter of

the regularizer term W . Let R(x ) and T (x ) denote the brain tissue maps (White

Matter + Gray Matter + Tumor) of reference (undeformed) and target (deformed)

volumes, respectively. The mechanical properties of white matter and gray matter

are assumed to be similar.

In this section, first, the energy forms for both image and regularizer terms that

are used in this study are introduced and corresponding Euler-Lagrange conditions

are derived. Then, details of the implementation of deformable registration is given.

5.3.1 Image Term for Matching the Boundaries of the Bod-

ies

A solution that matches the outside surfaces of the two bodies requires all the

displacements from the surface of the reference body (fixed body) to point the surface

of the target body (moving body). Therefore, an energy term, which penalizes the

distance from the surface of the reference body to the surface of the target can be

used for this purpose. Note that, displacement vectors can still move on the target

surface freely. This is ensured by the following energy term:

fB(x ,u (x )) = χ∂R(x )D∂T (x + u (x )) (5.14)

where χ∂R is the indicator function of the boundary of the reference body, having

the value of 1 for the points on the boundary and 0 elsewhere. D∂T is the distance
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to the boundary of the target body. By defining the distance function from a point

x to a set S ∈ Ω as:

d(x , S) = inf{‖x − y ‖2 : y ∈ S} (5.15)

and the signed distance function as:

φS(x ) =

 d(x , S) if x ∈ SC

−d(x , SC) if x ∈ S
(5.16)

The integrand of the total external energy functional can be written as:

fB(x ,u (x )) = δ0(φR(x )) · φT (x + u (x ))2 (5.17)

Here, squared distance is used to assure the continuity of the derivative at the

boundary while equally penalizing negative and positive distances. To derive the

Euler-Lagrange condition for this energy term, the derivative of the functional in

Eq. 5.17 is written as:

∂

∂u
fB(x ,u (x )) = δ0(φR(x )) · 2φT (x + u (x ))∇x+u(x)φT (x + u (x )). (5.18)

5.3.2 Hyper-elastic Regularizer

For simplicity, assuming a nonlinear hyper-elastic model in a decoupled Ogden form

as in [74]:

W =
2µ

α2
(λ̄1

α
+ λ̄2

α
+ λ̄3

α − 3) +
1

D1

(J − 1)2 (5.19)

where principal strains λ̄i = λi/J
1/3, λi = e

1/2
i , ei’s are eigenvalues of B = F F T , J

is the determinant of the deformation J = det(F ) and deformation gradient tensor

Fij = ∂ui
∂xj

+ δij. In [71], α parameter of the model for the brain tissue is determined

as α = −4.7. For simplicity, in this work α = 2 is used, which is known as the

Neo-Hookean model. By replacing Tr(B) = λ2
1 + λ2

2 + λ2
3, the strain energy density

function becomes:

W =
µ

2
(
Tr(B)

J2/3
− 3) +

1

D1

(J − 1)2 (5.20)

The Euler-Lagrange condition on the displacement field u for minimizing the

given strain energy functional in terms of the trace and determinant is given by:

∂W

∂ui
−

∑
j

∂

∂xj

∂W

∂(∂ui/∂xj)
= 0 (5.21)
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The first term drops, as the energy density functional W is not dependent on the

u but its derivatives. The derivative with respect to ∂ui/∂xj is identical to the

derivative with respect to Fij, therefore, rewriting Eq. 5.21 results in:∑
j

∂

∂xj

∂W

∂Fij
= 0 (5.22)

The derivative ∂W
∂Fij

, which is also known as the 1st Piola-Kirchhoff tensor in me-

chanics literature, is obtained after a set of manipulations as follows (see Appendix

B):

− µ

J2/3

∑
j

(
∂F

∂xj
)ij +

2µ

3J2/3

∑
j

FijTr(F
−1∂F

∂xj
)

−(
µTr(B )

3J2/3
− 2J(J − 1)

D1
)
∑
j

(F −1∂F

∂xj
F −1)ji

−(
2µTr(B )

9J2/3
+

2J(2J − 1)

D1
)
∑
j

(F −1)jiTr(F
−1∂F

∂xj
)

+
2µ

3J2/3

∑
j

(F −1)jiTr(
∂F

∂xj
F T ) = 0

(5.23)

In some cases, for the volumetric part of the strain energy, instead of (J − 1)2

above, the following form is used:

Wvol =
K

2
(lnJ)2 (5.24)

Similarly, the derivatives ∂W
∂Fij

, for this term can be derived (see Appendix C):

−
∑
j

∂

∂xj

∂W

∂Fij
= −K

∑
j

(F −1)jiTr[F
−1∂F

∂xj
]

−KlnJ
∑
j

(F −1∂F

∂xj
F −1)ji (5.25)

5.3.3 Log-Barrier Method

At each iteration, inverse of the deformation F is computed, which requires the

determinant of the deformation to be non-zero. Furthermore, to avoid foldings at

the final result, the determinant of the deformation is needed to be positive at each

point. To assure both, an inequality constraint J > 0 can be imposed by using the
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log-barrier method, which contributes to the energy functional as:

W = −λlnJ (5.26)

where J is the determinant of the deformation F . For J is a function of F , similar

to the incompressibility term of the hyperelastic regularizer, the corresponding term

of the Euler-Lagrange condition can be calculated as (see Appendix D):

−
∑
j

∂

∂xj

∂W

∂Fij
= λ

∑
j

(F −1∂F

∂xj
F −1)ji

5.3.4 Implementation Details

In the implementation, the δ(·) function is approximated as the derivative of a

regularized Heaviside function as in [26] as:

H(z) =
1

2
(1 +

2

π
arctan(

z

ε
))

δ0(z) =
∂

∂z
H(z) =

1

πε

1

1 + ( z
ε
)2

(5.27)

Although the squared distance given in Equation 5.17 is useful to avoid oscil-

lations around the boundary due to the zero value near the boundary, at large

distances, the derivative is increasing with the distance, which causes uncontrolled

update steps and instabilities. To overcome those problems, the Huber function is

employed in the image term, which is given in [80] as:

ρk(z) =

 z2

2
if |z| <= k

k|z| − k2

2
otherwise

(5.28)

That is this function incorporates the absolute value for farther distances, deter-

mined by a threshold “k”. A multi-resolution approach is implemented to increase

the convergence speed. Volumes are down-sampled using trilinear interpolation and

the obtained displacement field is interpolated to the higher resolution at the end

of each stage.

The update equation for the displacement field u is obtained by the steepest

descent method as:
∂u

∂t
= −(Eq.5.18 + Eq.5.23) (5.29)
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If the maximum change due to the regularizer is greater than 1, the update of the

displacement ∇uW , is normalized by dividing to the maximum update over the

image grid:

∇uW =

 ∇uW
max(∇uW )

if ∇uW > 1

∇uW otherwise
(5.30)

Scaling of the strain energy density function of the regularizer term is arbitrary.

Therefore, instead of having two independent parameters µ and D1 for the energy

functional in Eq. 5.20, the algorithm is affected mainly by the ratio µ
1/D1

= µD1.

The effect of a µD1 at a higher limit is shown on the sub-figure at the center

of Fig. 5.5, which corresponds to the first term in Eq. 5.20, whereas, the effect of

a zero µD1 is shown on the right sub-figure of Fig. 5.5, which corresponds to the

second term. In this work, our aim is to estimate the cause (tumor deformation)

by observing the result (displacement at the boundaries). Therefore, we assure the

reversibility by enforcing a highly incompressible behavior to prevent the energy to

be stored in the material, which we can not observe by MRI. This is achieved by

penalizing the local volume changes more by setting a low µD1. We also assume

that the total volume increase of the brain parenchyma is mostly caused by the

increase of the tumor volume. Therefore, by setting the tumor region as a hole

for the regularizer, which does not contribute to the external energy, and using

an incompressible strain energy density, the observed local volume changes at the

boundaries of the parenchyma are carried to the tumor area. We also note that, by

decreasing the µ, the dependence of the strain energy density to the model parameter

α in Eq. 5.19 is decreased, which strengthen our simplification approach of using

Neo-Hookean model (α = 2) instead of Ogden form with α = −4.7.

Starting with an initial time step δt for the regularizer, the value is halved if the

strain energy is not decreased by updating the displacement field.

The first derivatives are calculated by using central difference finite differencing

scheme as:

Vx(x, y, z) =
V (x+ h, y, z)− V (x− h, y, z)

2h
(5.31)
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The derivative ∂F
∂xj

is given by the following matrix:

∂F

∂xj
=


∂2u1
∂x1∂xj

∂2u1
∂x2∂xj

∂2u1
∂x3∂xj

∂2u2
∂x1∂xj

∂2u2
∂x2∂xj

∂2u2
∂x3∂xj

∂2u3
∂x1∂xj

∂2u3
∂x2∂xj

∂2u3
∂x3∂xj


Its components are calculated by second order finite difference discretization as:

Vxx(x, y, z) =
V (x− h, y, z)− 2V (x, y, z) + V (x+ h, y, z)

h2

Vxy(x, y, z)=
V (x+h, y+h, z)−V (x+h, y−h, z)−V (x−h, y+h, z)+V (x−h, y−h, z)

4h2

(5.32)

Other derivative components are calculated similarly.

At the boundaries Neumann boundary conditions, which sets a zero normal

derivative at the boundary, are used. To impose Neumann condition, the first

derivative is set to zero if any of the V (x + h, y, z) or V (x − h, y, z) in Eqn. 5.31

is missing (out of the volume). Note that, this also satisfies the normality to the

boundary. Let’s assume the value at the positive x direction is out of the volume.

By setting:

Vx(x, y, z) =
V (x+ h, y, z)− V (x− h, y, z)

2h
= 0 (5.33)

The missing value that satisfies zero normal boundary can be estimated by replicat-

ing the value inside to the outside as:

V (x+ h, y, z) = V (x− h, y, z) (5.34)

By this substitution, the second derivative at the boundary can be written as below:

Vxx(x, y, z) = 2
V (x− h, y, z)− V (x, y, z)

h2
(5.35)

Using a similar approach of substituting the missing terms is applied for calculating

the derivatives in other directions (i.e. Vy(x, y, z), Vz(x, y, z)) and the cross terms

of the second derivatives (i.e.Vxy(x, y, z)), at the boundaries.
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5.4 Experiments and Results

5.4.1 Regularizer Test

To test the regularizer initially, the algorithm is run on 10x10x10 mask on a 20x20x20

lattice with a single constant displacement vector (0.0001,0.0001,0.0) and zero bound-

ary conditions. The central xy-plane of the input and the result obtained with

µ = 0.8 and D1 = 1.0 is given in Fig. 5.4 with a closer look at Fig. 5.5. The effect

of setting the parameters of the model at the lower and higher limits is shown on

the middle and the right sub-figures of Fig. 5.5. Although, incompressibility is a

necessity for our problem as discussed in the method, setting a non-zero value to µ

helps to increase the stability of the solution.

Figure 5.4: Left: Input phantom for the regularizer test. Right: Output of the

regularizer test.

5.4.2 Experiments on FEBIO Simulations

In order to validate the proposed methodology of estimating the displacement field

inside the object, given the initial and final contours, simulation studies are per-

formed. FEBIO software, which is a nonlinear implicit finite element (FE) software,

is used for simulation studies [81]. A constant force is applied to a cubic solid object.

We used Mooney-Rivlin model, given below, with c2 = 0 to obtain an uncoupled

Neo-Hookean model.

W (λ1, λ2, λ3, J) = c1(Ī1 − 3) + c2(Ī2 − 3) +
K

2
(lnJ)2 (5.36)
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Figure 5.5: Left: A closer view of the output of the regularizer test on phantom in

Figure 5.4. Middle: The result obtained on phantom by increasing µ in the strain

energy density model in Eq. 5.20. Right: The result obtained on phantom by setting

the µ as zero in the strain energy density model in Eq. 5.20.

Other material parameters are assigned as; c1 = 0.1 and K = 1.0. The same model

is implemented and the displacement field is estimated by the method proposed in

this chapter using the known initial and final states of the object. Simulated and

estimated displacement fields are shown in Figure 5.6.

Figure 5.6: The finite element simulation result obtained for the neo-hookean box,

on the left. Estimated displacement field for the same scenario by our method, on

the right.
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5.4.3 Experiments on MRI Brain Tumor Followup Volumes

The Data

MR images of a brain tumor patient (Glioblastoma Multiforme), obtained by 1.5T

MRI scanner at high resolution (≈ 0.5x0.5x1.0 mm) contiguous axial T1 weighted

3D SPGR (TE/TR = 3.16s/8.17s, FA=25deg) sequence acquired after IV injection

of 10cc 0.5M Multihance Gd, is used for validation study. The sample slices of the

baseline and the follow-up volume, obtained 35 days after, are given in Fig. 5.2 and

5.3.

Preprocessing MRI Volumes

Statistical Parametric Mapping (SPM8) software 2, distributed by Wellcome Trust

Centre for Neuroimaging, London, which gives accurate results in brain volumes

with tumors, is used for standard operations such as: rigid registration, brain tissue

segmentation and smoothing. Specifically, the following preprocessing operations

are applied to the data before the execution of the deformable registration:

• Follow-up volume is rigidly registered to the baseline volume using ”co-register”

function of SPM8.

• White matter (WM) and gray matter (GM) segmentations (P > 0.5) are

obtained for both volumes using SPM8.

• Tumors in both volumes are segmented using the Tumor-cut algorithm [53].

• For each of the volumes, Tumor, WM and GM segmentations are combined

using: ΩTumor ∪ ΩWM ∪ ΩGM .

• Each combined binary volume is smoothed by the ”smooth” function of the

SPM8 with a Gaussian kernel having 8x8x8mm full width at half maximum.

• Finally, binary maps are converted to isotropic voxels (1× 1× 1mm).

2http://www.fil.ion.ucl.ac.uk/spm/
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Results

After executing the proposed deformable registration algorithm proposed in this the-

sis on the MRI data of the patient, sample slices showing the resulting displacement

field, obtained on tumor patient data, are shown in Fig. 5.7. Intense displacement

on the hemisphere with tumor, due to the mass effect, can be observed. At the

bottom of the sub-figure on the right, displacement of the sulci due to the increased

cerebrospinal fluid (CSF) pressure can be seen. Also, the increase in the CSF pres-

sure results in slight displacements at the ventricles of the healthy hemisphere, on

the top. Displacement field, overlayed on a sample axial slice of the reference MRI

Figure 5.7: Sample slices of the result obtained on tumor patient data in 3x3x3mm

voxel size. Binarized brain tissue of the reference volume is labeled in white color,

the blue contour indicates the boundary of the target volume, and the displacement

field is indicated with arrows in red.

in high resolution, is given in Fig. 5.8. The mass effect around the tumor is clearly

observed. A closer look to the ventricle at the hemisphere without tumor depicts the

displacement due to the expansion of the ventricle. When we focus on the displace-

ment around the tumor as in Fig. 5.9, the displacement caused by the mass-effect

(at the top) and the tumor growth (on the right) can be observed. The vectors

at the the bottom-left of the tumor explains the local shrinkage of the tumor as a

tissue displacement.

5.5 Discussion and Conclusions

A method to register the brain tissues in baseline and follow-up MRI volumes using

hyper-elastic deformation models is presented. Implementations on synthetic and
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Figure 5.8: Displacement field (in red) overlayed on a sample MRI slice of the

reference volume, with the boundary of the target volume indicated with the blue

contour. A closer look to the ventricle of the hemisphere without tumor.

patient data, with only minimal user interaction, provide promising results, which

might have relevant use in clinical problems. Publicly available state-of-the-art algo-

rithms for the rigid registration and tissue/tumor segmentation are able to provide

highly accurate outputs, which are necessary initializations in order to obtain an

accurate displacement field. Accuracy of the method could be increased by improv-

ing the data term, such as by adding vessel correspondences or manual landmarks.

Furthermore, although in this thesis, we utilized a measure based on distances be-

tween pre- and post- tumor surfaces as the data (image) term, a direct utilization of

image intensity-based measures such as SSD, would be a straightforward extension

on the data term part of our method.
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Figure 5.9: A closer look to the tumor where the baseline tumor volume is labeled

with white color, the follow-up tumor boundary is indicated with blue contour and

the displacement field is overlayed with red arrows.
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Chapter 6

Summary and Discussion

Advanced image analysis techniques are involved in different stages of both the ra-

diotherapy treatment and follow-up of the brain tumors. Computational methods

used in radiation therapy usually involve intra/inter patient registration, segmen-

tation and tumor growth modeling, whereas, tumor follow-up involves intra/inter

patient and longitudinal registration, segmentation and change quantification steps.

In this thesis, image analysis techniques are developed for planning the image

guided radiotherapy and follow-up of the treatment responses. Three main parts

of the thesis are: Segmentation of brain tumors on MRI, deformable registration of

brain MRI volumes with tumors, and change quantification in temporal MRI series

of brain tumors.

The “Tumor-cut” method, developed for segmentation of brain tumors on MR

images, performed superior for some subsets of the multimodal tumor database and

comparable to the state-of-the-art techniques for the remainders. Local response

criteria, proposed by using the invariants of the Lagrange strain tensor, resulted

in measures more consistent with the clinical outcome than volumetric measure-

ments. The deformable registration method based on a novel approach, including

regularization using hyper-elastic mechanical models and tumor exclusion, resulted

in displacement fields consistent with the finite element simulations. Application

on real tumor case reveals the potential of our method to quantify healthy tissue

deformations due to the tumor mass effect.

Although, the results on solid tumors obtained by fully or semi-automatic meth-

ods are greatly improved recently with region based and machine learning ap-

proaches, improvement of the accuracy and robustness of multi-modal brain tumor
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segmentation methods, especially in the presence of the surgical cavity, remains as a

challenge for the field. A multi-modal “Tumor-cut” idea, where the transition rules

are devised using information from different MR intensities, could be developed for

a multi-label tumor segmentation. Segmentation of organs at risk (OAR) is still a

developing field, not only by more precise definition of the current OAR but also by

addition of new structure definitions using advanced imaging modalities (i.e. sub-

cortical regions by functional magnetic resonance imaging, fiber tracks by diffusion

MR imaging) and image analysis techniques (i.e. hippocampus segmentation using

shape priors [82]).

Improvement of the irradiation dose planning, to better cure the pathology and

protect the healthy tissue, is a major research area including advanced functional

imaging and mathematical modeling of the tumor evolution. Ongoing studies on

techniques, such as tumor growth modeling/simulation [67] or advanced imaging

modalities (i.e. Positron Emission Tomography, spectroscopy, diffusion MR imaging,

perfusion MR imaging) allow a better understanding of the tumor characteristics

hence the improvement of the irradiation margins.

Both, registration of the intra-patient longitudinal images and spatial normaliza-

tion in the presence of the tumor lesion are hot research topics due to both intensity

differences in lesion area and deformation of the healthy tissue caused by the mass

effect of the tumor. An open problem which might help to segment OAR automati-

cally and more accurately is deformable registration of the brains to the population

atlases in the presence of the tumor. This also allows better understanding and

categorization of the tumors by creating tumor probability atlases. Furthermore,

target tracking during therapy is another area in which methods including optical

tracking and registration of intra-therapy x-ray images are involved depending on

the radiotherapeutic hardware [83].

Better visualization and quantification of the local changes of the tumor evo-

lution is an open problem, which requires both understanding the clinical needs

and developing mathematical techniques to meet those requirements. Local tumor

response measures based on deformation tensor invariants, proposed in this thesis,

show promise for quantification of tumor response to therapy and relation to clinical

outcome, which should be further explored over larger data sets.
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Appendix A

Definitions and Conversions of Overlap Measures

Most commonly used measures to report segmentation overlap results in brain tumor

segmentation literature are Dice Overlap (D), Jaccard Index (J), False Positive and

Negative Volume Fraction (FPVF, FNVF) pairs. Dice Overlap (D) between two

label sets A and B is defined as:

D(A,B) = 2× s(A ∩B)

s(A) + s(B)
(A.0.1)

where s(A) denotes the cardinality of a set A. Jaccard Index (J) of two sets A and

B is defined as:

J(A,B) =
s(A ∩B)

s(A ∪B)
(A.0.2)

and could be converted to Dice Overlap score by:

D(A,B) = 2× J(A,B)

1 + J(A,B)
(A.0.3)

False Positive Volume Fractions (FPVF) and False Negative Volume Fractions (FNVF)

of a segmentation (A) and a ground truth (M) are defined as:

FPV F (M,A) =
s(A−M)

s(M)
FNV F (M,A) =

s(M − A)

s(M)
(A.0.4)

and can be converted to Jaccard Index as:

J(M,A) =
1− FNV F (M,A)

1 + FPV F (M,A)
(A.0.5)

Similarly, Sensitivity and Specificity of a segmentation (A) and a ground truth (M)

are defined as:

Sensitivity(M,A) =
s(M ∩ A)

s(M)
Specificity(M,A) =

s(M { ∩ A{)

s(M {)
(A.0.6)
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Appendix B

Euler-Lagrange Condition of the Neo-Hookean Energy Function

The decoupled form of the neo-Hookean strain energy model is given as:

W =
µ

2
(
Tr(B)

J2/3
− 3) +

1

D1

(J − 1)2 (B.0.1)

where the deformation gradient tensor is Fij = ∂ui
∂xj

+ δij, B = FF T and J is the

determinant of the deformation J = det(F ).

The derivation of the corresponding Euler-Lagrange condition requires the fol-

lowing term to be evaluated:

−
∑
j

∂

∂xj

∂W

∂Fij
(B.0.2)

Starting with the chain rule:

∂W

∂Fij
=

∂W

∂Tr(B)

∂Tr(B)

∂Fij
+
∂W

∂J

∂J

∂Fij
(B.0.3)

The trace of B can be written in terms of F as:

Tr(B) =
∑
i

Bii =
∑
i

∑
j

FijFij =
∑
i

∑
j

F 2
ij (B.0.4)

The derivative ∂Tr(B)
∂Fij

’s can be calculated using Eq. B.0.4:

∂Tr(B)

∂Fij
= 2Fij (B.0.5)

The derivative ∂J
∂Fij

’s can be calculated using :

∂det(F )

∂Fij
= det(F )(F−1)ji (B.0.6)

The Euler-Lagrange term becomes:

−
∑
j

∂

∂xj

∂W

∂Fij
= −

∑
j

∂

∂xj
(
µ

J2/3
Fij −

µ

3

Tr(B)

J2/3
(F−1)ji

+
2J(J − 1)

D1
(F−1)ji) (B.0.7)
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−
∑
j

∂

∂xj

∂W

∂Fij
= −µ

∑
j

∂

∂xj
J−2/3Fij +

µ

3

∑
j

∂

∂xj
Tr(B)J−2/3(F−1)ji

− 2

D1

∑
j

∂

∂xj
J(J − 1)(F−1)ji (B.0.8)

−
∑
j

∂

∂xj

∂W

∂Fij
= −µJ−2/3

∑
j

∂

∂xj
Fij − µ

∑
j

Fij
∂

∂xj
J−2/3

+
µ

3
Tr(B)J−2/3

∑
j

∂

∂xj
(F−1)ji +

µ

3
Tr(B)

∑
j

(F−1)ji
∂

∂xj
J−2/3

+
µ

3
J−2/3

∑
j

(F−1)ji
∂

∂xj
Tr(B)

− 2

D1
J(J − 1)

∑
j

∂

∂xj
(F−1)ji −

2

D1

∑
j

(F−1)ji)
∂

∂xj
J(J − 1) (B.0.9)

−
∑
j

∂

∂xj

∂W

∂Fij
= −µJ−2/3

∑
j

∂Fij
∂xj

+
2µ

3J5/3
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µ

3
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∂
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∂
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3
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∂

∂xj
(F−1)ji −

2(2J − 1)
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∂
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J (B.0.10)

We utilize the following matrix derivatives:

∂

∂x
det(F ) = det(F )Tr[F−1∂F

∂x
] (B.0.11)

∂

∂x
F−1 = −F−1∂F

∂x
F−1 (B.0.12)

Inserting Eq. B.0.11 into Eq. B.0.10, we get:
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) (B.0.13)

Inserting Eq. B.0.12 into Eq. B.0.13, we obtain the resulting update equation in

Eq. 5.23.
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Appendix C

Euler-Lagrange Condition of the Volumetric Term

The volumetric part of the strain energy can be given as:

Wvol =
K

2
(lnJ)2 (C.0.1)

where J is the determinant of the deformation F.

The corresponding term in Euler-Lagrange condition is derived as:

−
∑
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Appendix D

Euler-Lagrange Condition of the Log Barrier

Log-barrier energy term is given as:

W = −λlnJ (D.0.1)

where J is the determinant of the deformation F.

The corresponding term in euler-lagrange condition is derived as:
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