
Energy Harvesting Wireless Networks with
Correlated Energy Sources

Mehdi Salehi Heydar Abad
Faculty of Engineering

and Natural Sciences

Sabanci University, Istanbul, Turkey

mehdis@sabanciuniv.edu

Deniz Gunduz
Department of Electrical

and Electronic Engineering,

Imperial College London, U.K.

d.gunduz@imperial.ac.uk

Ozgur Ercetin
Faculty of Engineering

and Natural Sciences

Sabanci University, Istanbul, Turkey

oercetin@sabanciuniv.edu

Abstract—This work considers a system with two energy
harvesting (EH) nodes transmitting to a common destination
over a random access channel. The amount of harvested energy
is assumed to be random and independent over time, but
correlated among the nodes possibly with respect to their relative
position. A threshold-based transmission policy is developed for
the maximization of the expected aggregate network throughput.
Assuming that there is no a priori channel state or EH informa-
tion available to the nodes, the aggregate network throughput
is obtained. The optimal thresholds are determined for two
practically important special cases: i) at any time only one of the
sensors harvests energy due to, for example, physical separation
of the nodes; ii) the nodes are spatially close, and at any time,
either both nodes or none of them harvests energy.

I. INTRODUCTION

Due to the tremendous increase in the number of battery-

powered wireless communication devices over the past decade,

harvesting of energy from natural resources has become an

important research area as a mean of prolonging life time of

such devices [1], [2]. The various sources for energy harvest-

ing (EH) are wind turbines, photovoltaic cells, thermoelectric

generators and mechanical vibration devices such as piezo-

electric devices, electromagnetic devices [3]. EH technology

is considered as a promising solution especially for large scale

wireless sensor networks (WSNs), where the replacement of

batteries is often difficult or cost-prohibitive [4]. However, due

to the random nature of the harvested energy from ambient

sources, the design of the system requires a careful analysis.

In particular, depending on the spatial distribution of EH

devices, the amount of energy harvested by different devices

is typically correlated. For example, consider EH devices

harvesting energy from tidal motion [5]. The locations of two

EH devices may be such that one is located at the tidal crest,

while the other one is located in a tidal trough. In such a

case, there may be a time delay equal to the speed of one

wavelength between the generation of energy at each device.

In this paper, we aim to investigate the effects of the

correlation between the EH processes at different EH devices

in a wireless network. To this end, we consider a network with
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Fig. 1. System Model

two EH nodes transmitting data to a common base station

over a random access channel as shown in Fig. 1. Random

channel access is a frequently used technique preferred for its

distributed and stateless implementation, which is particularly

suitable for low power and low duty-cycle sensor networks.

In random channel access, the nodes transmit probabilistically

over time resulting in occasional packet collisions. However,

packet collisions are especially harmful in EH networks due to

scarce resources, and should be avoided as much as possible.

In this work, we develop and analyze a simple threshold-

based transmission policy which grants access to an EH node

only when its battery state exceeds a given threshold value.

Threshold values are selected based on the battery capacities

and the correlation among EH processes of the nodes to

maximize the long-term throughput of the system.

To illustrate the importance of choosing these threshold

values intelligently, consider the following example. Let both

EH nodes have a battery capacity of two energy units. Suppose

that the EH nodes are spatially close, so they harvest energy

simultaneously when energy is available. If the transmission

thresholds are such that both nodes transmit a packet whenever

they have one unit of energy, transmissions always result in a

collision, and thus, the total network throughput is essentially

zero. Meanwhile, if the thresholds are selected such that one

EH node transmits a packet whenever it has one unit of

energy, and the other node transmits a packet whenever it

has two units of energy, there will be a collision once every

two transmissions. Hence, with the latter choice of thresholds

throughput increases to 0.5 packets.

We first derive the average throughput of the network by

modeling the system as a discrete time Markov chain (DTMC)
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and obtaining its steady-state distribution. We then investigate

two important special cases to obtain further insights into the

selection of optimal transmission thresholds. In the first special

case, only one node harvests energy at any time, while in the

second case the nodes always harvest energy simultaneously.

These two cases demonstrate completely different optimal

threshold characteristics.

Early research in the design of optimal energy management

policies for EH networks consider an offline optimization

framework [6], [7], in which non-causal information on the

exact realization of the EH processes are assumed to be avail-

able. In the online optimization framework [8], [9], [10], the

statistics governing the random processes are assumed to be

available at the transmitter, while their realizations are known

only causally. The EH communication system is modeled as

a Markov decision process [8], and dynamic programming

can be used to optimize the throughput numerically. In the

learning optimization framework, knowledge about the system

behavior is further relaxed and even the statistical knowledge

about the random processes governing the system is not

assumed, and the optimal policy scheduling is learned over

time [11]. In this paper we assume that EH nodes have no

knowledge about the EH processes, and can only observe

the amount of harvested energy in their own battery. Optimal

threshold policies for an EH network is considered in [12]

based on a game theoretic approach. In [13], authors optimize

the throughput of a heterogeneous ad hoc EH network by

formulating it as an optimal stopping problem. In [14] multiple

energy harvesting sensor nodes are scheduled by an access

point which does not know the energy harvesting process and

battery states of the nodes. However, in these works the EH

processes at different devices are assumed to be independent.

II. SYSTEM MODEL

We adopt an interference model, where the simultaneous

transmissions of two EH nodes result in a collision, and

eventual loss of transmitted packets at the base station. Each

node is capable of harvesting energy from an ambient resource

(solar, wind, vibration, RF, etc.), and storing it in a finite

capacity rechargeable battery. EH nodes have no additional

power supplies. The nodes are data backlogged, and once

they access the channel, they transmit until their battery is

completely depleted. Note that assuming that the nodes are

always backlogged allows us to obtain the saturated system

throughput. In the following, we neglect the energy consump-

tion due to generation of data to better illustrate the effects of

correlated EH processes1.

Time is slotted into intervals of unit length. In each time

slot, the energy is harvested in units of δ joules. Let En(t)
be the energy harvested in time slot t by node n = 1,2. We

assume that En(t) is an independent and identically distributed

1For example, data may be generated by a sensor continuously monitoring
the environment. Then, the energy consumption of a sensor may be included as
a continuous drain in the energy process, but due to possible energy outages,
the data queues may no longer be backlogged. We leave the analysis of this
case as a future work.

(i.i.d.) Bernoulli process with respect to time t. However, at

a given time slot t, E1(t) and E2(t) may not be independent.

The EH rates are defined as follows:

Pr (E1(t) = δ ,E2(t) = δ ) = p11,

Pr (E1(t) = δ ,E2(t) = 0) = p10,

Pr (E1(t) = 0,E2(t) = δ ) = p01,

Pr (E1(t) = 0,E2(t) = 0) = p00, (1)

where p00 + p10 + p01 + p11 = 12.

We assume that the transmission time ε is much shorter

than the time needed to harvest a unit of energy, i.e., ε �
1, and the nodes cannot simultaneously transmit and harvest

energy. Transmissions take place at the beginning of time slots,

and the energy harvested during time slot t can be used for

transmission in time slot t+1. The channel is non-fading, and

has unit gain. Given transmission power P, the transmission

rate, rn(t), n = 1,2 is given by the Shannon rate, i.e., rn(t) =
log(1+P/N) (nats/sec/Hz), where N is the noise power.

We consider a deterministic transmission policy which only

depends on the state of the battery of an EH node. Each EH

node independently monitors its own battery level, and when it

exceeds a pre-defined threshold, the node accesses the channel.

If more than one node accesses the channel, a collision occurs

and both packets are lost. Note that, by considering such an

easy-to-implement and stateless policy, we aim to achieve low-

computational power at EH devices.

The battery of each EH node has a finite capacity of B̄n, n=
1,2. Let Bn(t) be the state of the battery of EH node n = 1,2
at time t. Node n transmits whenever its battery state reaches

γn ≤ B̄n joules, n = 1,2. When node n accesses the channel, it

transmits at power
Bn(t)

ε , i.e., the battery is completely depleted

at every transmission. Hence, the time evolution of the battery

states is governed by the following equation.

Bn(t +1) =min{B̄n,

Bn(t)+En(t)1{Bn(t)<γi} −1{Bn(t)≥γi}Bn(t)
}
, (2)

where 1a<b =

{
1 if a < b
0 if a ≥ b

is the indicator function.

Let Rn(t) be the rate of successful transmissions, i.e.,

R1(t) = log

(
1+

B1(t)/ε
N

)
1{B1(t)≥γ1,B2(t)<γ2}, (3)

R2(t) = log

(
1+

B2(t)/ε
N

)
1{B1(t)<γ1,B2(t)≥γ2}. (4)

III. MAXIMIZING THE THROUGHPUT

We aim at maximizing the long-term average total through-

put by choosing the transmission thresholds intelligently,

taking into account the possible correlation between the EH

processes. Let R̄n(γ1,γ2) be the long-term average throughput

2Note that if p00 = p10 = p01 = p11 = 1/4, then EH nodes generate energy
independently from each other.
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Fig. 2. Associated DTMC with joint battery states

of EH node n when the thresholds are selected as γ1,γ2, i.e.,

R̄n(γ1,γ2) = lim
T→∞

1

T

T

∑
t=1

Rn(t), n = 1,2. (5)

Then, the optimization problem of interest can be stated as

max
γ1,γ2

∑
n

R̄n(γ1,γ2), (6)

s.t. 1 ≤ γn ≤ B̄n n = 1,2. (7)

In order to solve the optimization problem (6)-(7), we first

need to determine the long term average total throughput in

terms of the thresholds. Note that for given γ1,γ2, the battery

states of EH nodes, i.e., (B1(t), B2(t)) ∈ {0, . . . ,γ1 −1} ×
{0, . . . ,γ2 −1} constitute a finite two dimensional discrete-

time Markov chain (DTMC), depicted in Fig. 2. Let π (i, j) =
Pr (B1(t) = i, B2(t) = j) be the steady-state distribution of the

Markov chain for i = 0, . . . ,γ1 −1 and j = 0, . . . ,γ2 −1.

Theorem 1. The steady state distribution of DTMC associated
with the joint battery state of EH nodes is π (i, j) = 1

γ1γ2
, for

i = 0, . . . ,γ1 −1 and j = 0, . . . ,γ2 −1.

Proof. The detailed balance equations for i = 1, . . . ,γ1−1 and

j = 1, · · · ,γ2 −1 are:

π (i, j)(1− p00) =π (i−1, j−1) p11

+π (i−1, j) p10 +π (i, j−1) p01. (8)

Whenever the battery state of node n reaches γn − 1, in the

next state transition, given that it harvests energy, there is

a transmission. Since the transmission time is much shorter

than a time slot, i.e., ε � 1, after reaching state γn, node n
immediately transmits and transitions back to state 0. Thus,

the detailed balance equations for state 0 are given as:

π (i, 0)(1− p00) =π (i−1, 0) p10 +π (i, γ2 −1) p01

+π (i−1, γ2 −1) p11, 1 ≤ i ≤ γ1 −1, (9)

π (0, j)(1− p00) =π (0, j−1) p01 +π (γ1 −1, j) p10

+π (γ1 −1, j−1) p11, 1 ≤ j ≤ γ2 −1,
(10)

π (0, 0)(1− p00) = π (γ1 −1, γ2 −1) p11

+π (γ1 −1, 0) p10 +π (0, γ2 −1) p01.
(11)

From (8), it is clear that if p01, p10 �= 0 then π (i, j) �= 0 for all

i = 1, . . . ,γ1 −1 and j = 1, . . . ,γ2 −1. Then, it can be verified

that π (i, j) = π (l, k) satisfies (8)-(11) for all i, j,k, and l.
Hence, the theorem is proven since ∑γ2−1

j=0 ∑γ1−1
i=0 π (i, j) = 1.

Once the steady state distribution of DTMC is available, we

can obtain the average throughput values. Let δ ′ = δ/ε
N .

Lemma 1. The average throughput of EH nodes 1 and 2 for
p01, p10 �= 0 are given as

R̄1 (γ1,γ2) = log(1+ γ1δ ′)

×
(
(p10 + p11)

γ2−2

∑
j=0

π (γ1 −1, j)+ p10π (γ1 −1, γ2 −1)

)

=
log(1+ γ1δ ′) [(γ2 −1)(p10 + p11)+ p10]

γ1γ2
, (12)

R̄2 (γ1,γ2) = log(1+ γ2δ ′)

×
(
(p01 + p11)

γ1−2

∑
i=0

π (i, γ2 −1)+ p01π (γ1 −1, γ2 −1)

)

=
log(1+ γ2δ ′) [(γ1 −1)(p01 + p11)+ p01]

γ1γ2
. (13)

Proof. Consider node 1. Note that whenever the batteries are

in one of the states (γ1 −1, j) for j = 0, . . . ,γ2 −2, a unit of

energy (of δ joules) is harvested at node 1 with probability of

p10+ p11, and it transmits in the subsequent transition. Mean-

while, whenever the batteries are in state (γ1 −1, γ2 −1), both

nodes harvest a unit energy with probability p11, and transmit

in the subsequent transition resulting in a collision. Thus, in

state (γ1 −1, γ2 −1), EH node 1 successfully transmits with

probability p10. Similar arguments apply for node 2.

The following optimization problem is equivalent to (6)-(7).

max
γ1,γ2

z(γ1,γ2)�
log(1+ γ1δ ′) [(γ2 −1)(p10 + p11)+ p10]

γ1γ2

+
log(1+ γ2δ ′) [(γ1 −1)(p01 + p11)+ p01]

γ1γ2
, (14)

s.t. 1 ≤ γn ≤ B̄n, n = 1,2. (15)

Note that (14)-(15) is an integer program. Since our main

motivation is to investigate the effects of the correlated energy

arrivals on the operation of EH networks, rather than to

obtain exact optimal thresholds, we may relax the optimization

problem by omitting the integrality constraints. Nevertheless,

the resulting relaxed optimization problem is still difficult to

solve since the objective function is non-convex. Hence, in the

following, we obtain the optimal solution for two important

special cases.



1 2 3

1

2

3

4

5

Fig. 3. Transitions of joint battery states for high positive correlation case.

IV. SPECIAL CASES

Depending on the energy source and relative locations of the

nodes, correlation among their EH processes may significantly

vary. For example, if mechanical vibration is harvested, and

the nodes are located far from each other, e.g., one EH device

on one side of the road whereas the other one on the other side

of a two-lane road, only the EH device on the side of the road

where a car passes may generate energy from its vibration.

This is a case of high negative correlation. Meanwhile, if solar

cells are used as an energy source, EH processes at nearby

nodes will have high positive correlation.

A. The Case of High Negative Correlation

We first analyze the case of high negative correlation. In

particular, we have p00 = p11 = 0, p10 = p and p01 = 1− p
with 0< p< 1. Note that only one EH device generates energy

at a given time. Let z(−) (γ1,γ2) be the total throughput of EH

network when the thresholds are γ1,γ2, obtained by inserting

the values of p00, p11, p10, p01 in (14). We have

z(−) (γ1,γ2) =
log(1+ γ1δ ′)p

γ1
+

log(1+ γ2δ ′)(1− p)
γ2

. (16)

The following lemma establishes that an EH device trans-

mits whenever it harvests a single unit of energy. Interestingly,

the optimal thresholds prevent any collisions between trans-

missions of EH devices, since at a particular time slot only

one EH device has sufficient energy to transmit.

Lemma 2. The optimal solution of (14)-(15) when p00 = p11 =
0, p10 = p and p01 = 1− p with 0 < p < 1, is γ∗1 = 0, γ∗2 = 0.

Proof. Assume that γ1 and γ2 are non-negative continuous

variables. Then, the gradient of z(−) (γ1,γ2) is:

∇z(−) (γ1,γ2) =

[
p(δ ′γ1 − (1+δ ′γ1) log(1+ γ1δ ′))

γ1
2 (1+δ ′γ1)

,

(1− p)(δ ′γ2 − (1+δ ′γ2) log(1+ γ2δ ′))
γ2

2 (1+δ ′γ2)

]
. (17)

Note that ∇z(−) (γ1,γ2)< 0 for all γ1 ≥ 0, γ2 ≥ 0 and p. Since

∇z(−) < 0, we have z(−) (γ1,γ2)> z(−) (γ̂1, γ̂2) for every γ1 < γ̂1

and γ2 < γ̂2. Then, the lemma follows.

B. The Case of High Positive Correlation

Now, we consider the case of high positive correlation.

In particular, we investigate the optimal solution when EH

process parameters are p01 = p10 = 0, p11 = p and p00 = 1− p
with 0< p< 1; that is, either both EH devices generate energy

or neither of them does. Note that in Theorem 1 the steady

state distribution of DTMC is derived assuming that all of

the states are visited. However, in the case of high positive

correlation, only a part of the state space is visited.

In order to better illustrate this case, consider an EH network

with thresholds γ1 = 4 and γ2 = 6. The state space of the

corresponding DTMC is given in Fig. 3. Large solid and

empty circles represent visited and unvisited battery states,

respectively. The solid lines represent the transitions of battery

states when thresholds are not yet reached, and the dotted lines

represent transitions when at least one of the nodes transmits.

Also, arrows show the direction of transitions between the

states. Since only a subset of the state space is visited infinitely

often, the average throughputs given in Lemma 1 are no longer

valid. We establish the average throughput of EH network with

high positive correlation by the following lemma.

Lemma 3. The average throughput R̄(+)
n (γ1, γ2) of node n =

1,2 for p01 = p10 = 0, p11 = p and p00 = 1− p is given as

R̄(+)
n (γ1, γ2) =p ·

[
LCM(γ1, γ2)

γn
−1
]

LCM(γ1, γ2)
· log(1+ γnδ ′), n = 1,2

(18)

where LCM(γ1,γ2) is the least common multiple of γ1 and γ2.

Proof. Due to our transmission policy, EH node n transmits

whenever its battery level reaches γn, n = 1,2. Note that both

nodes reach their respective thresholds simultaneously every

LCM(γ1, γ2) instances of EH events. Since they transmit

simultaneously, a collision occurs, and they both exhaust their

batteries, i.e., the joint battery state transitions into state (0,0).
The process repeats afterwards. Hence, the renewal period of

this random process is LCM(γ1, γ2). In every renewal period,

EH node n = 1,2 makes
LCM(γ1, γ2)

γn
−1 number of successful

transmissions. Hence, by using renewal reward theory, and

noting that on the average a unit of energy is harvested in

p < 1 proportion of time slots, we obtain (18).

Let z(+)(γ1, γ2) = R̄(+)
1 (γ1, γ2)+ R̄(+)

2 (γ1, γ2) be the total

throughput of a system with high positive correlation. Note

that z(+)(γ1, γ2) is a non-convex function with respect to γ1,

and γ2. Hence, in the following, we analyze the system in two

limiting cases, i.e., when unit of energy harvested per slot, i.e.,

δ ′, is either very small or very large.

1) Small Values of δ ′: For small values of δ ′, log(1+γnδ ′)
can be approximated by γnδ ′. Let GCD(γ1,γ2) be the greatest
common divisor of γ1 and γ2. By substituting LCM(γ1, γ2) =

γ1γ2
GCD(γ1, γ2)

we obtain

z(+) (γ1,γ2) = 2δ ′p−GCD(γ1, γ2)

(
1

γ1
+

1

γ2

)
δ ′p. (19)

Note that maximizing (19) is equivalent to minimizing

GCD(γ1, γ2)
(

1
γ1
+ 1

γ2

)
. Lemma 4 establishes that it is optimal

to choose the thresholds as large as possible as long as the



greatest common divisor of the two thresholds is equal to 1.

This is due to the fact that the objective function in (19) is

linear, and the optimum thresholds minimize the number of

collisions.

Lemma 4. The optimal thresholds for the case of high positive
correlation for small values of δ ′, and for B̄2 > B̄1 are γ∗1 = B̄1,
γ∗2 = argmax j B̄2 − j for j = 1, . . . , B̄2, s.t., GCD(B̄1, j) = 1.

Proof. Note that 0 < 1
γ1
+ 1

γ2
≤ 2, for 1 ≤ γn ≤ B̄n, n = 1,2. Let

Γ = {(γ1,γ2) : GCD(γ1,γ2) = 1}. Note that if (γ1,γ2) /∈ Γ, then

GCD(γ1,γ2) ≥ 2. Hence, it can be shown that z(+) (γ1,γ2) ≥
z(+) (γ ′1,γ

′
2), for all (γ1,γ2) ∈ Γ, and (γ ′1,γ

′
2) /∈ Γ. Among

(γ1,γ2) ∈ Γ, we choose the one that minimizes 1
γ1
+ 1

γ2
, and

thus, proving the lemma.

2) Large Values of δ ′: For large values of δ ′, log(1 +
γnδ ′) can be approximated by log(γnδ ′). Also by substituting

LCM(γ1, γ2) =
γ1γ2

GCD(γ1, γ2)
in z(+)(γ1, γ2) we have:

z(+) (γ1,γ2) =
(γ2 −GCD(γ1, γ2)) log(γ1δ ′)p

γ1γ2

+
(γ1 −GCD(γ1, γ2)) log(γ2δ ′)p

γ1γ2
. (20)

The optimal thresholds for this case is established in Lemma

5. Since the objective function in (20) has the property of

diminishing returns, i.e., the rate of increase in the function

decreases for higher values of its parameters, each device

will choose transmitting more often, equivalently short mes-

sages, using less energy. However, transmissions are scheduled

every time each node exceeds a threshold, which dictates

small thresholds. When both EH devices transmit with small

thresholds, there will be a large number of collisions, so the

following lemma suggests that the aggregate throughput is

maximized when one EH device transmits short messages,

whereas the other transmits long messages.

Lemma 5. The optimal thresholds for the case of high positive
correlation for large values of δ ′ are γ∗1 = B1, γ∗2 = 1 for
B̄1 > B̄2, and they are γ∗1 = 1, γ∗2 = B2 for B̄2 > B̄1.

Proof. Let ẑ be an upper envelope function for z(+), obtained

by substituting GCD(γ1, γ2) = 1 in (20):

ẑ(γ1,γ2) =
(γ2 −1) log(γ1δ ′)p

γ1γ2
+

(γ1 −1) log(γ2δ ′)p
γ1γ2

. (21)

Note that since GCD(γ1, γ2)≥ 1, for every value of γ1 and

γ2, we have ẑ(γ1,γ2) ≥ z(+) (γ1,γ2). First, we maximize ẑ for

a given γ2 by obtaining the corresponding optimal γ1. Taking

the partial derivative of ẑ with respect to γ1, we obtain:

∂ ẑ
∂γ1

=
p

γ2
1 γ2

[log(γ1δ )+ log(γ2δ )− γ2 (log(γ1δ )−1)−1] .

(22)

Note that γ2 ∈ {1, . . . , B̄2}. If γ2 = 1, (22) reduces to

∂ ẑ(γ1,1)

∂γ1
=

p
γ2

1 γ2

logδ > 0. (23)

Since
∂ ẑ(γ1,1)

∂γ1
> 0, the maximum value of ẑ is attained when

γ1 = B1. For γ2 = 2, (22) reduces to

∂ ẑ(γ1,2)

∂γ1
=

p
γ2

1 γ2

(− log(γ1δ )+ log(2δ )+1)

=

{
< 0 if γ1 > 2e,
≥ 0 if γ1 ≤ 2e, (24)

where e is the Euler’s constant. Since
∂ 2 ẑ(2e,2)

∂γ1
2 = − 1

16e3 < 0,

the maximum value of ẑ is attained when γ1 = 2e. Finally, if

γ2 ≥ 3, it can be shown that (22) is always negative as long

as δ > 3e2. Hence, the maximum value of ẑ is attained for

γ1 = 1, if γ2 ≥ 3. By comparing the optimal values of ẑ for

all γ2 ∈ {1, . . . , B̄2}, one can show that ẑ is maximized for

(γ1,γ2) = (B1, 1) when B1 > B2 and (γ1,γ2) = (1, B2) when

B2 > B1. Since GCD(1, B2) = GCD(B1, 1) = 1, and ẑ = z(+)

when GCD(γ1,γ2) = 1, it follows that optimal points for ẑ are

also the optimal for z(+).

V. NUMERICAL RESULTS

We first verify (14) and (18) by Monte Carlo simulations.

In the simulation, we model the battery states using equation

(2). At each time slot t, we generate the joint EH process

(E1(t),E2(t)) randomly. We run the simulation for 104 time

slots and calculate the expected throughput by evaluating time

average of the instantaneous rates as in (5).

Fig. 4 depicts the reliability of our analytical derivations. In

particular, we measure both the percent relative error (%RE),

which is defined as %RE = Analytical value−Simulation value
Analytical value ×100,

and the absolute error (%AE), which is defined as %AE =

(Analytical value−Simulation value)×100, for γ2 = 9 versus

γ1. The results show a good match between the analytical and

simulation results.
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Fig. 4. %AE and %RE versus γ1 with γ2 = 9 and δ ′ = 30.

Next, we verify the optimal thresholds by numerically

evaluating (14) and (18) for the cases of high negative and high

positive correlation. We assume that B̄1 = B̄1 = 10 and p= 0.5.

The aggregate throughput of the network with respect to the

thresholds γ1 and γ2 for the case of high negative correlation

is depicted in Fig. 5. It can be seen that the optimal thresholds

are γ∗1 = 1, γ∗2 = 1, which is in accordance with Lemma 2.

Fig. 6 illustrates the aggregate throughput of the network for

the case of high positive correlation with respect to γ1 and γ2

for δ ′ = 0.04. The abrupt drops in the value of the aggregate
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Fig. 5. Expected total throughput for high negative correlation with δ ′ = 5.

throughput are due to the fact that GCD(γ1, γ2) varies at least

by a factor of two, which shows consistency with Lemma 4.
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Fig. 6. Expected total throughput for high positive correlation with δ ′ = 0.04.

In Fig. 7, the aggregate throughput is depicted for the case

of high positive correlation with respect to γ1 and γ2 for δ ′ =
30. As expected from the results established in Lemma 5, the

optimal thresholds are either (γ∗1 , γ∗2 ) = (1, 10) or (γ∗1 , γ∗2 ) =
(10, 1).
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Fig. 7. Expected total throughput for high positive correlation with δ ′ = 30.

VI. CONCLUSION

We have investigated the effects of correlation among the

EH processes of different EH nodes as encountered in many

practical scenarios. We have developed a simple threshold

based transmission policy to coordinate EH nodes’ transmis-

sions in such a way to maximize the long-term aggregate

throughput of the network. In the threshold policy, nodes

have no knowledge about each other, and at any given time

they can only monitor their own battery levels. Considering

various assumptions regarding the EH statistics and the amount

of the harvested energy, the performance of the proposed

threshold policy is studied. The established lemmas in Section

III show that different assumptions about the underlying EH

processes and the amount of the harvested energy demonstrate

completely different optimal threshold characteristics. As our

future work, we will investigate the cases when data queues

are not infinitely backlogged and when the channels exhibit

fading properties.

REFERENCES

[1] J.A. Paradiso and T. Starner. Energy scavenging for mobile and wireless
electronics. Pervasive Computing, IEEE, 4(1):18–27, Jan 2005.

[2] D. Niyato, E. Hossain, M.M. Rashid, and V.K. Bhargava. Wireless
sensor networks with energy harvesting technologies: a game-theoretic
approach to optimal energy management. Wireless Communications,
IEEE, 14(4):90–96, August 2007.

[3] Energy harvesting for structural health monitoring sensor networks.
Journal of Infrastructure Systems, 14(1):64–79, 2008.

[4] D. Anthony, W.P. Bennett, M.C. Vuran, M.B. Dwyer, S. Elbaum,
A. Lacy, M. Engels, and W. Wehtje. Sensing through the continent:
Towards monitoring migratory birds using cellular sensor networks. In
Information Processing in Sensor Networks (IPSN), 2012 ACM/IEEE
11th International Conference on, pages 329–340, April 2012.

[5] Judy Trinnaman and Alan Clarke. 2004 Survey of energy resources.
Elsevier, 2004.

[6] M.A. Antepli, E. Uysal-Biyikoglu, and H. Erkal. Optimal packet
scheduling on an energy harvesting broadcast link. Selected Areas in
Communications, IEEE Journal on, 29(8):1721–1731, September 2011.

[7] Bertrand Devillers and Deniz Gündüz. A general framework for the
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