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ABSTRACT 

Explanations regarding human consciousness have existed for a very long time. 

Theory of Mind (ToM) is one of the contemporary explanations for counciousness. This 

theory states that humans have functionalized brain parts for understanding beliefs and 

intentions of others. Humans have an inherent ability for making inferences on visual data 

once an acition is observed. Understanding/anticipating human actions based on visual data 

can be explained in context of ToM. 

It is proposed that a functionalized brain part is used for estimating intentions of others 

from observed movements of an actor. This functionalized part posses a Forward Model (FM) 

which simulates consequences of intentions. Simulated intentions are compared with observed 

movements to estimate the action of the actor. This thesis is based on implementation of such 

an action estimation model on a humanoid robot platform.  

A computational model for the part of the human brain which estimates intentions is 

needed to implement the model on a robotic platform. There is a proposed computational 

model in the literature for the part of the brain which estimates intentions. Model explains 

how a FM can be used along with a loop for action estimation by providing an algorithm.  

Motivation for such an implementation has two main reasons: To program a humanoid 

robot platform in such a way that it anticipates movements of the human actor to assist 

him/her, and a platform which can test ToM related to action estimation. In thesis the 
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implementation is made on SURALP (Sabanci University ReseArch Labaratory Platform). 

Kinect is used for visual data input device. Various tests, which observe capabilities and 

limitations of the computational model, are completed with success.  
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ÖZET 

 

Đnsanın bilincine dair açıklamalar uzun zamandır yapılmaktadır. Zihin Teorisi bilincin 

ne olduğunu açıklamaya çalışan çağdaş teorilerden biri olup, insanların zihinlerinin 

başkalarının inanışlarını ve niyetlerini anlamakta uzmanlaşmış parçalardan oluştuğunu öne 

sürer. Đnsanlar, hareketleri görsel olarak fark ettiklerinde bilinçli/bilinçsiz çıkarımlar yapmaya 

başlarlar. Đnsan hareketlerinin görsel etkileri üzerinden haretin niyetini anlamaya çalışmak 

veya hareketin sonuçlarını önceden fark etmek, Zihin Teorisi kapsamında açıklanabilecek 

davranışlardır.  

Gözlemlenen insan hareketlerinin bilgisi üzerinden, hareketi yapmakta olan kişinin 

niyetine ilişkin çıkarımların yapıldığı fonksiyonlaşmış bir beyin kısmının varolduğu 

önerilmektedir. Beynin bu kısmında bulunan bir Đleri Model sayesinde insan zihnindeki 

niyetlerin sonuçlarının simülasyonu yapıldığı da ileri sürülmektedir. Simülasyonlardan elde 

edilen bilgi ile gözlem sonucu elde edilen bilginin karşılaştırılması sonucunda insan zihni 

karşıdaki aktörün niyetini tahmin edebilir. Bu tezin amacı önerilen zihinsel niyet tahmini 

modelinin, bir robot platformu üzerinde denenmesidir. 

Niyet tahmini fikrinin robot platformuna aktarılabilmesi için hesaplanabilir bir model 

gerekmekte olup böyle bir model literatürde mevcuttur. Bu model Đleri Model’in nasıl 

hesaplanabileceğini ve niyet tamini yapan bir algoritma ile birlikte nasıl çalışacağını 

açıklamaktadır. 
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Modelin robot platformu üzerinde uygulanması fikrinin iki ana sebebi var: Đnsansı bir 

robotu insanların davranışlarını önceden tahmin edebileceği bir şekilde programlayarak 

insanlara yardımcı olmasını sağlamak ve Zihin Teorisi dahilinde önerilmiş fikirlerin test 

edilebileceği bir platform oluşturmak. Tezdeki uygulama için kullanılan robot SURALP 

(Sabancı Üniversitesi Robot Araştırmaları Laboratuvar Platformu). Hareket gözlemi 

esnasında veri toplamak için kullanılan kamera da Kinect’dir. Önerilen niyet tahmin 

modelinin becerilerini ve sınırlarını analiz etmek için yapılmış olan testlerden başarılı 

sonuçlar alınmıştır. 
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Chapter 1 

 

1. INTRODUCTION 

 

Fundamental questions regarding human consciousness have existed through ages and 

humans tried to answer these questions using the best set of explanations that was available at 

the time they lived. Contemporary explanations for consciousness both exist in philosophical 

branches such as philosophy of mind and in scientific branches such as computational theory 

of mind (CToM). Philosophy of mind is well outside the topic this thesis. On the other hand 

CToM is a branch in science where computer science and neuroscience intersects, and this 

thesis is based on certain findings on CToM on understanding actions of others. 

Understanding actions of others is a subject that is being discussed in the 

neuroscience literature [1, 2, 3]. Although until early 1990s there was no empirical evidence 

in literature to connect action understanding to any part in human brain within the knowledge 

of the author. Thanks to his work on Macaque monkeys in 1980s and early 1990s G. 

Rizzolatti identified a certain set of cells called mirror neurons [4, 5]. 

After discovery of mirror neurons researchers such as V.S. Ramachandran tried to 

connect these neurons to action undertstanding mechanisms inside human brain [6]. 

Ramachandran even suggested that mirror neurons will advance the scientific work on brain 

in a way that discovery of DNA advanced the work on biology. There are also researches 

other than Ramachadan in literature that connects action understanding to mirror neurons [7, 

8, 9]. Due to the recently discovered connection, researchers in the field of CToM were able 

to propose computational algorithms regarding action understanding based on mirror 

neurons.  

Further on, researchers in the field of computer science are trying to explain results in 

brain research through computational models. Subtopic of finding computational models for 

brain parts is called CToM. [10, 11, 12] report computational models that can be used to 

understand human actions. [10] also proposes a computational model for understanding 

human actions. Moreover [10] connects its findings to mirror neurons. Most important quality 
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of [10] for the context of this thesis is that proposed computational model is tested on robotic 

simulations. Therefore this work establishes a common ground for robotics and neuroscience. 

Independently from developments in the field of neuroscience, the field of robotics 

has improved due to advancements in computer science. Contemporary robots have the 

possibility of electronically controlling its joints and visually processing data at the same time 

due to increased processing speed, and parallel computation. Considering these advancements 

it is possible to verify findings of CToM in a multidisciplinary framework through robotics. 

To this end [13] tries to define a framework which can be used to model robots which have as 

much agility as humans. Robotic actuation, sensing, and control mechanisms are described 

with respect to human muscles and human-like sensing and control terms. 

Main motivation of the implementation in this thesis is to create a humanoid robot 

system which can estimate and even anticipate human actions. Although [10] proposes a 

computational algorithm, which has neurological basis, for estimating actions of others, the 

algorithm is not implemented on a robotic platform. The work in this thesis is on application 

of the proposed computational model on an actual humanoid robot platform. Another 

motivation is to show that robotic platforms can be used to simulate actual brain functions in 

humans to verify neurological findings. The implementation is also expected to make 

contributions to human machine interaction research by testing an algorithm which has the 

potential of being utilized in settings where humans and machines could work together. 

Thesis is organized as follows. A survey on Human Robot Interaction (HRI) is given 

in the next chapter. Chapter three explains the neurological and technical ideas behind 

implementation of a computer mode in detail. A mental state inference/intention estimation 

loop based a forward model (FM) which was developed in [10] is explained along with its 

neurological basis. Chapter four explains the hardware used in implementation. Kinematic 

arrangement of arms of humanoid robot SURALP is presented along with Kinect, the visual 

input device used in the implementation. In chapter five details of the implementation of FM 

on SURALP are given. Moreover the test settings and results are given. All tests are made 

with FM proposed by [10]. Eventually chapter six concludes the thesis by discussing results 

of tests and limitations of the computational model, and by presenting the future work. 
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Chapter 2 

 

2. A Survey on Human Robot Interaction 

 

HRI is a new topic that emerged in the late 20�� century. It is a multidisciplinary topic 
which combines artificial intelligence with robotics to create robots which can respond to 

humans. HRI is a vast topic that has applications on different kinds of robots. Although fully 

autonomous industrial robots have some sort of interaction with their human 

operators/programmer, HRI research is based on more complicated interaction scenarios. 

These scenarios between robots and humans are possible due to utilization of low level robot 

control algorithms to create goal oriented physical actions which have sophisticated 

meanings.  

Earliest research in the field can be traced backed to beginning of 1990s [14, 15]. [16] 

tries to explain intelligence in terms of combination of low and high level sensory feedback 

loops. [16] also makes comments on possible applications of its explanations on robotic 

platforms. [17] is one of the earliest works that explains action anticipating capabilities of 

robotic systems. It also proposes that these capabilities can already be observed in nature. 

Some important domains in human life for HRI are rescue operations, developing 

robots with medical applications for children with autism, and possible applications of brain 

research on robotic platforms to create human-like robots [18, 19, 20, 21, 22, 23]. [24] 

proposes a computational model for robot that allow them to follow humans. Such an 

application can be utilized in both in medical setting where patients require assistance of 

robot and in rescue scenarios. 



Figure 2.1: Kismet, a robot which is capable of interacting with humans through 

understanding and mimicking emotions

Over the last 20 years many robots with capabilities which allow them to in

humans have emerged. Kismet, shown in 

Massachusetts Institute of Technology which can mimic human emotions. SONY’s AIBO is 

a commercial pet robot in the shape of a dog [25

mainly for entertainment. Figure 2.2

interact with humans to monitor their health status [26

Figure 2.2
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a robot which is capable of interacting with humans through 

understanding and mimicking emotions 

Over the last 20 years many robots with capabilities which allow them to in

, shown in Figure 2.1., is a robot that was developed in 

Institute of Technology which can mimic human emotions. SONY’s AIBO is 

robot in the shape of a dog [25], it has the ability to interact with kids 

Figure 2.2 shows SONY’s AIBO. Philos is another example, it can 

itor their health status [26]. Philos is shown in Figure 2.3

 

Figure 2.2: SONY AIBO ERS7A 

a robot which is capable of interacting with humans through 

Over the last 20 years many robots with capabilities which allow them to interact with 

is a robot that was developed in 

Institute of Technology which can mimic human emotions. SONY’s AIBO is 

interact with kids 

. Philos is another example, it can 

Figure 2.3. 
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Figure 2.3: Philos, a social robot developed at Case Western Reserve University 

Boston Dynamics is one of the robotic design companies which leads the research on 

robotics. Although founded in company was founded in 1992, they are best known for Big 

Dog, a quadruped designed for operating in unstable terrains [27]. Atlas is very new robot 

which was developed by Boston Dynamics, introduced in July 11, 2013. It is distributed to 

research institutions for developing artificial intelligence systems which will be capable of 

making decisions in environments which are dangerous for humans to work. It is also 

planned that Atlas will be working with humans on rescue operations. Atlas is shown in 

Figure 2.4. 
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Figure 2.4: Atlas, designed and produced by Boston Dynamics 

Research based on robotic exoskeletons is another topic related to HMI. An 

exoskeleton must have stable dynamics, and it should be able to remove excessive forces 

which can injure human operators. Exoskeleton is in constant interaction with the human 

operator in order to track his/her movements. BLEEX is an exoskeleton system developed by 

H. Kazerooni. It can be seen in Figure 2.5. BLEEX has functions which can increase human 

operators’ physical capacities. [28] is another research based on an exoskeleton which 

increases physical capacity during walking. There are ongoing researches on medical 

applications of robotic exoskeletons [29, 30, 31, 32]. 
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Figure 2.5: BLEEX was developed by Berkeley Robotics and Human Engineering 

Laboratory 

Anticipating actions of humans and moving in a way which can assist them is also 

one of the domains of HRI. This is also the part of HRI research that is in the scope of this 

thesis. Though, not much research is made in the context of action anticipation, a very recent 

study reports a method for action anticipation which calculates costs of reaching certain 

objects [33]. Unlikely path scenarios are eliminated after costs are calculated, and robot 

executes movement after anticipating the actor’s action. Another study reports training of 

robots from human movements for inferring intentions [34]. 
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Chapter 3 

 

3. Basis of Thesis 

 

First section of this chapter explains the neurological ideas behind a technical 

realization of a computational model which estimates human intentions. The neurological 

topics in the first section are Theory of Mind (ToM), Mirror Neurons and brain research 

literature which reports findings on how humans and animals understand actions of others. 

In the second section, reasons of a technical realization are discussed. The 

computational model behind such realization is briefly explained, a more detailed explanation 

is given in Chapter 4. Eventually the setting in which a robot could estimate human intentions 

is described. 

3.1. Neurological Basis of Intention Estimation 

 

Humans and animals automatically detect movement and come to conclusions which 

are going to help them survive. Moreover humans detect movements and make inferences on 

others mental states from these movements for social interaction. Therefore understanding 

intentions of others from observed data can be regarded a subtopic of ToM. According to [35] 

a ToM is the ability to realize that others have beliefs and intentions other than us, and the 

ability to come to conclusions on their behavior with respect to their beliefs and intentions.  

Human brain is capable of processing various inputs. Visual sensory system in the 

brain is one of these processing capabilities. Visual data obtained from sensory system that 

can be visual patterns such as face motions, and change of visual patterns with respect to time 

or body limb positions and their change with respect to time. There is evidence in literature 

that humans utilize obtained visual data in ToM models inside the brain to simulate beliefs on 

others intentions [36, 37, 38]. 

It is also argued that ToM is not only applicable to humans. [39] states that both 

humans and chimpanzees’ have some sort of ToM. Both species have mechanism that 

understands observed goals of other humans, but chimpanzees’ lack a mechanism which 

detects false beliefs. A false belief is the information that a trusted agent has the wrong 
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answer to a question and it is a critical point in determining the complexity of ToM models 

inside brains of different species. A test on false beliefs is conducted in [40]. Results show 

that ToM of chimpanzees’ is not able to detect false beliefs while infants of age 4-5 are 

successful in detecting them. These results point out that ToM system is much simpler even 

in animals which are closely related to humans, yet it is able to produce meaningful results 

regarding others intentions. 

Another research area that builds the neurological basis is the computational ToM. 

This was proposed by Hilary Putnam in 1961. It basically states that human brain is an 

information processing device and its activities can be explained by computational models. 

Steven Pinker proposes that intentions are stored in mind as information and information is 

then used to create sophisticated decisions [41]. If computational theory mind is taken 

seriously it can be concluded that our physical actions are result of layers of computation 

made by brain. 

Mirror neurons are a recent finding in the field of neuroscience. They are believed to 

be related to activities that are attributed to imitation and learning in the brain. In 1980s and 

early 1990s Giacomo Rizzolatti and his research team came upon the evidence of mirror 

neurons while experimenting on Macaque monkeys. According to [4] a mirror neuron is a 

cell which can fire both when an action is observed and when an action is performed. 

Neuroscientists are working on mirror neurons to show that these neurons play an important 

role in producing intentions by simulating observed actions of an actor [42, 43, 44, 45]. 

Researchers have empirical data from humans and animals that an internal ToM is actually 

existent in brains. Mirror neurons can provide consistent ways for computationally modeling 

and verifying findings of research based on ToM, especially in the field of action 

understanding [46, 47]. 

 [48] reports an experiment in which motions of the bodies of human subjects were 

represented with light sources in a dark room. Observing humans were able to gather efficient 

knowledge from light sources when the number was 10-12, and observers were able detect 

walking patterns when number of sources were as low as 5. If research based on ToM is 

assumed to be accurate, it could be concluded that there is a model in the brain which can 

work with very small amount of visual data to infer the action conducted by the actor. 

Oztop, Wolpert and Kawato discusses in their work that humans have a FM which 

helps them to estimate/understand observed actions [10]. They also argue that the intention 
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estimation loop in the brain and the proposed FM are consistent with the finding on mirror 

neurons and findings on action estimation theories based on ToM. Their proposed FM 

simulates an actor’s movement and then an intention estimation loop compares results with 

the actual observed data. More neurological and computational details on the FM and the 

action estimation loop are given in the next section. Chapter 5 explains the FM and action 

estimation algorithm in full detail.  
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3.2. Technical Realization of Intention Estimation 

 

A technical realization of a model which can estimate/understand human intentions 

have practical applications. It can be utilized to test findings of brain research, the findings of 

action understanding. At some point in the future technical realization can be used to pave the 

ground for more complex models which can be used to treat people with mental difficulties. 

It can also have practical applications in human-machine interactions. Robots who think like 

humans can also work with humans in different settings [49, 50, 51]. 

[10] provides a computational algorithm to estimate human intentions which is also 

consistent with findings in brain research literature. It is stated that a FM, which is composed 

of mirror neurons, is inherited in human brain. It is also stated that this model has two 

purposes: (1) Anticipating visual consequences of execution of a goal oriented action in order 

to compensate for visual feedback delay (2) simulating mental states of others using the 

observed visual data and sending it to an intention estimation loop in order to come to 

conclusions on their actions. Although both of these purposes can be implemented on robotic 

platforms, scope of the thesis covers application of second purpose on a robotic platform. A 

robot platform which has access to such a FM and intention estimation loop would be able to 

detect human motivations. 

In the most basic setting, a robot arm, a visual sensor and a computer which process 

the visual data and passes it to the FM algorithm are required for such a technical realization. 

The computer and the robot should also be able to communicate with each other. Robot arm 

must have a similar workspace to that of human arm. Therefore kinematic arrangement of the 

robot arm should be anthropomorphic. Its parameters should be clearly defined, so that visual 

data obtained from humans can be matched with robot control parameters. 

A discussion can be made on the location of the FM in a technical realization can be 

made at this point. [10] states that exact location of FM is uncertain. It could either be located 

in the part of premotor cortex of humans, which is believed to have an effect on planning of 

movement that contains mirror neurons, or it could be located as a combination of models 

distributed over cerebellum, part of brain which plays an important role in motor control, and 

premotor cortex. Since exact location of the FM is ambiguous, in the technical setting it can 

be regarded as an executable running in the computer which receives visual data. Same 

executable is also capable of running an intention estimation loop. 



Figure 3.2.1 shows the mentioned brain parts of the last pa

Figure 3.2.1: Cerebral cortex of human brain is shown. It is the outermost layer of neurons in 

the brain. Premotor cortex is located in frontal lobe. Cerebellum can be seen in the bottom.
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Chapter 4 

 

4. Hardware Used in Thesis 

 

This chapter explains the details of hardware that were used in research. These 

hardware choices are consistent with the proposed technical realization in the previous 

section. 

First section describes the visual input sensor and explains why it was chosen. Second 

section explains physical and kinematic properties of the humanoid robot platform. 

Terminologies regarding modern robotics are also emitted in this section. 

4.1. Kinect 

 

Kinect is a visual input device developed by Microsoft, which has motion sensing 

capabilities. For the scope of the work in the thesis, it is used to recover transformation 

matrices related to hand, wrist, elbow and shoulder. Camera frame convention for Kinect is 

shown in Figure 4.1.1. Camera frame is denoted as �� in this work. All transformation 
matrices obtained from Kinect are represented with respect the coordinate system in the 

figure. 

 

Figure 4.1.1: In the coordinate system: z represents the direction which camera is looking at, 

x is the direction to the left of the device, and y is perpendicular to x and z.  
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Figure 4.1.2 shows the human skeleton can be captured by Kinect. It is possible to get 

Cartesian position information of certain body parts. Moreover Kinect has the option to 

compute locations of body parts in the shoulder frame of the actor. Shoulder frame 

coordinates for Kinect are given in Figure 4.1.3. . Shoulder frame for Kinect skeleton is 

denoted as ����	
�������� in this thesis. 

 

Figure 4.1.2: Two different skeletons captured by kinect are shown. Left is the skeleton of a 

standing person, right is the seated version. 
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Figure 4.1.3: Coordinate axis assignments of Kinect Shoulder frame is given along with neck 

and elbow.  

One particular task that Kinect is able to do is to compute the transformation matrix of 

human shoulder. This problem is determining 3D transformation of an object/a body part 

from a 2D image. In the modern 3D vision literature the problem is addressed as the pose 

estimation problem. One of the most common pose estimation algorithms is POSIT [52]. It 

uses a known 3D model of an object to compute the 3D transformation matrix from image 

coordinates. Other solutions to pose estimation problem are also discussed in the literature 

[53, 54]. Details on how Kinect solves this problem are explained in [55]. The most important 

reason to use Kinect to gather visual inputs is that Kinect has a built in library that solves 

pose estimation problem.  
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4.2. SURALP: A Full Body Humanoid Robot 

 

SURALP is a humanoid robot at Sabanci University. The project was funded by 

TUBITAK, and it was originally developed to conduct walking experiments. It can track 

circular trajectories and enter sloped surfaces [56, 57]. Figure 4.2.1 shows SURALP’s current 

physical appearance. 

 

Figure 4.2.1:SURALP 

SURALP’s kinematic arrangement consists of 29 Degrees of Freedom (DoF). They 

are distributed as follows: 2 at neck, 1 at hip, 6 at each leg, 6 at each arm, 1 at each hand. The 

DoF at hand is a gripper which produces linear motion for grasping objects. SURALP is 

166cm long and weighs 114 kg. Dimensions of SURALP are given in Figure 4.2.2. SURALP 

has CCD cameras for visual data, but those cameras are not used in this work. Instead a 

Kinect camera is used as explained in the previous section. 
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Figure 4.2.2: Dimensions of SURALP in milimeters 

4.2.1. Kinematic Arrengement of Arms 

 

Design of SURALP’s arm is anthropomorphic. It is composed of 3 rigid bodies: upper 

arm, lower arm and a hand. It has a total of 6 DoF: 3 DoF at shoulder, 2 DoF at elbow, 1 DoF 

at wrist. A human arm is considered to have 2 DoF at wrist therefore making a total of 7 DoF. 

This distinction does not create inconveniences for the scope of the research because 6 DoF 

are enough to control all physical DoF, 3 positions and 3 orientations. DoF in arms can be 

seen in Figure 4.2.1.1. 
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Figure 4.2.1.1: Kinematic Arrengement 

One of the main problems while working with multi DoF robots is to map motor joint 

angles to Cartesian coordinates and orientation of robot end effectors. This is called the 

forward kinematics problem. Obtaining joint angles from Cartesian position and orientations 

is called inverse kinematics problem. This section explains how forward kinematics problem 

is solved while working on SURALP. 

SURALP has a coordinate system at the center of its trunk, ��	�� . x-axis of the 
coordinate system is along the walking direction, z is up and y is pointing left. SURALP has 

another coordinate system at the base of its arm. The second coordinate system will be 

denoted as base shoulder frame, ����	
��. It differs from the coordinate system at the center 
of its trunk by a 15 degree rotation along x-axis of ��	��. 

Denavit-Hartenberg parameterization is used in order to compute the transformation 

matrices which relate ����	
��  to frame that is located at the hand, ����� . Denavit-
Hartenberg parameters for each arm are shown in Table 4.2.1.1, and axis assignment are 

shown in Figure 4.2.1.2. The transformation matrix which relates ����	
�� to ����� contains 
information regarding Cartesian position and orientation of hand with respect , ����	
��. A 
content of such transformation matrix is shown in (4.2.1.1). 



������
���������   3"3 #$%&'()(%#'0

 

In equation .. 3"3 #$%&'()(%#'
����	
��  and 3"1 +#,%(%#' -&.(#$
����	
��. ������

��������� is obtained by multiplying transformation matrix of each joint obtained 
from Denavit-Hartenberg convention. Forward kinematics problem is solved by computing 

the ������
��������� . Solution to inverse kinematics problem is explained in the next 

Figure 4.2.1.2: Denavit

arrows denote y axes, red x axes and blue z axes.
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#$%&'()(%#' /)($%" 3"1 +#,%(%#' -&.(#$0 1 0 

#$%&'()(%#' /)($%" defines orientation of �����  with respect to 
-&.(#$  defines Cartesian position of the origin of 

is obtained by multiplying transformation matrix of each joint obtained 

Hartenberg convention. Forward kinematics problem is solved by computing 

. Solution to inverse kinematics problem is explained in the next sub

 

: Denavit-Hartenberg based axis assignment for 6-DoF arm

arrows denote y axes, red x axes and blue z axes. 

(4.2.1.1) 

with respect to 

defines Cartesian position of the origin of �����  in 
is obtained by multiplying transformation matrix of each joint obtained 

Hartenberg convention. Forward kinematics problem is solved by computing 

subsection. 

arm. Green 
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Table 4.2.1.1: Denavit Hartenberg Parameters 

 

4.2.2. Inverse Kinematics Based on Visual Data Obtained from Kinect 

 

As briefly explained in the previous subsection inverse kinematics is the problem of 

obtaining joint angles of a multi-dimensional system from Cartesian positions and orientation 

information of the end effector. Usages of inverse trigonometric functions make the inverse 

kinematic problem a highly non-linear one. 

Inverse kinematics solutions of SURALP based on hand positions and orientations are 

well defined, but these solutions are omitted in this thesis. This is due to the fact that hand 

orientation data obtained from Kinect is too noisy to be worked with. Instead of using hand 

positions and orientations to solve inverse kinematics; shoulder orientation, elbow, wrist and 

hand positions are used. 

When Denavit-Hartenberg parameters shown in Table 4.2.1.1 and axis configuration 

in Figure 4.2.1.2 are used with a 6-DoF robot arm, 6 joint angles can be obtained from elbow, 

wrist and hand positions with the formulation shown in equations (4.2.2.1) through (4.2.2.6). 

In equations superscripts denote the frame in which "  and 1  positions are expressed. 

Transformation matrices are used to define positions in different frames.  

23 = )()'251�
6�78 , "�
6�78 : (4.2.2.1) 

2; = )()'251�
6�73 , "�
6�73 : + =% 2>  (4.2.2.2) 
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2? = )()'2517@��; , "7@��; : − =% 2>  (4.2.2.3) 

2B = )()'2 C−D1 − E;, EF (4.2.2.4) 

2G = )()'251����B , "����B : +  =% (4.2.2.5) 

2H = )()'2I1����G , "����G J (4.2.2.6) 

In (4.2.2.7) E is cosine of 2B. (4.2.2.7) is obtained from cosine theorem between two 
links of the arm, upper arm and lower arm and it shows computation of E  along with 
(4.2.2.8). Upper arm is the link between shoulder and elbow, and lower arm is the link 

between elbow and wrist. These links can be observed in Figures 4.2.2, 4.2.1.1 and 4.2.1.2. 

. =  K5"7@��8 :; + 517@��8 :; + 5L7@��8 :; 
 

(4.2.2.7) 

E =  .; −  ); − M;
2)M  

 

(4.2.2.8) 

In (4.2.2.8), ) denotes length of upper arm, and M denotes length of lower arm. 
It should be noted that 0��  frame of the arm is regarded as base shoulder frame, 

����	
��. On the other hand visual data obtained from Kinect uses ���N��. The formulation 
in (4.2.2.9) must be used to convert a point +  expressed in ���N��  to ����	
��  using a 
constant orientation matrix O�������

���������. 

+��������� =  O�������
���������+������� 

 

(4.2.2.9) 

 

Where; 

O�������
��������� = P−0.7071 0  0.70710 1 0−0.7071 0  0.7071S 

 

(4.2.2.10) 

Equation .. indicates that ���N�� and ����	
�� can be aligned by a rotation of =% 4> radians in 

y-axis of ���N��. ���N�� and ����	
�� can be seen in Figures 4.1.2 and 4.1.3 respectively. 
Visual data obtained from Kinect are in the following form: 
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����������������
������� = UO���������������

������� 3"1 +#,%(%#' -&.(#$
0 1 V 

 

(4.2.2.11) 

 

+�������������������  = U"1LV (4.2.2.12) 

+7@�����������������  = U"1LV (4.2.2.13) 

+�
6�7��������������� 
= U"1LV (4.2.2.14) 

From equations (4.2.2.11) through (4.2.2.14) positions of hand, wrist and elbow are 

obtained, but these positions are in ����	
�������� . From the trasnformation matrix in 
(4.2.2.11) O���������������

������� can be obtained. Now if (4.2.2.15) is combined with the rotation 

matrix in (4.2.2.11). each position vector defined in (4.2.2.12), (4.2.2.13), (4.2.2.14) can be 

expressed in ����	
�� using the following equation.  

+������������� = O�������
���������O���������������

������� +�������������������  
 

(4.2.2.15) 

 

Only the formulation for hand position is shown in (4.2.2.15), formulation of wrist 

and elbow are similar. Results of (4.2.2.15) can be used in the proposed inverse kinematics 

formulation since positions are expressed in the 0�� frame, i.e. ����	
��. 
4.2.3. Actuation of Arms 

 

There is a DC motor at each joint of arm. Joints are able to track position references 

which are either obtained from inverse kinematics or directly applied by users. The electronic 

hardware which controls the joints is the dSpace control desk. Central control board is DS-

1005. A DS 3001 board is connected to encoders which are located at each motor drive that 

read current position references and use PID controllers to drive them to reference positions. 

DS 2002 board is used to convert analog data obtained from force/torque sensors to digital, 

and a DS2103 board is used to convert digital reference signal data to analog data which is to 

be sent to actuators. Figure 4.2.3.1 shows the mentioned electronic control boards in an 

hierarchical setting. Table 4.2.3.1 shows motor powers, and ranges of arms. 
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Figure 4.2.3.1: Hardware Architecture of SURALP 

 

 

Table 4.2.3.1: Joint actuator specifications of arms 

Joint 
Motor 

Power 
Motor Range 

Shoulder Roll 1 150W 
-180 to 180 

deg 

Shoulder Pitch 150W -23 to 135 deg 

Shoulder Roll 2 90W 
-180 to 180 

deg 

Elbow 150W -49 to 110 deg 

Wrist Roll 70W 
-180 to 180 

deg 

Wrist Pitch 90W -16 to 90 deg 

Gripper 4W 0 to 80 mm 
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Chapter 5 

 

5. A Humanoid Robot Platform Capable of Understanding Intentions of Others 

 

First section of this chapter explains the dual function of the proposed FM in human 

brain. It also explains how FM could work in the actual human brain. Computational details 

of the FM are in the second section. The FM used in [10] and the FM in this thesis have 

differences. These differences are pointed out in Section 3. 

Section 4 explains the settin in which all tests are made. Section 5 presents details on 

experiments conducted with the FM and their results. 

5.1. Neurological Details of FM 

 

As [10] states there is enough evidence in literature to safely assume that humans 

have models that make estimation on actions on others [37, 48, 58, 59]. [10] proposes a 

computational FM to explain the estimation process. The FM gets activated whenever one of 

two goal directed events is observed: (1) When a goal directed event is executed (2) When a 

goal directed event is observed from others. In both cases primary objective of the FM is to 

predict future intentions. It is stated that this model has dual advantages of reducing sensory 

delays while executing an action and estimating actions while observing others. The FM will 

be used in observation mode in for the scope of the thesis. Structure of model for the 

observation mode can be observed in Figure 5.1.1. (//) in the figure indicates the disconnected 

paths in the brain while FM is used for intention estimation. (//) are switched in movement 

execution scenario, therefore they become connected to brain parts which actually creates 

movements in muscles. 
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Figure 5.1.1: Block representation of the proposed FM for action estimation in human 

brain. Image is obtained from [008].  

Intention estimation/mental state inference loop uses data obtained from two different 

parts of brain to make decisions. These parts are Parietal Cortex and the proposed FM. 

Parietal Cortex of human brain is believed to be responsible for gathering processing visual 

reaching data [60, 61, 62]. Visual data is then sent to intention estimation loop. The data is 

named as observed control vector W�6��X�� . On the other hand the FM creates simulated 

control vector WY��@���� . [63] states that Premotor Cortex is activated while human brain is 
selecting a movement from a set. The FM receives parameters of a movement from the 

Premotor Cortex. This data is used to create WY��@����. Eventually WY��@���� is also sent to 
intention estimation loop to come to a decision regarding movement of the actor.. 

ToM states that humans understand other human’s beliefs and actions by simulating 

them inside their brains. From context of ToM the proposed intention estimation mechanism 

along with the FM is able to simulate other people intentions to understand/estimate their 

actions. 

According to [10] there are unconscious brain activities during action observation of 

actions in the parts that are believed to contain large amounts of mirror neurons. It is 

proposed that simulation of the proposed FM during action observation can explain the 

activity. Therefore one neurological explanation for such a mental simulation scenario is 

activation of mirror neurons during observation. 
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5.2. Computational Details of FM 

 

Two similar computational models are proposed in [10]. One of these models makes 

search in a finite set which is composed of different intentions/mental states. A discrete set of 

actions, such as reaching an object with elbow down or elbow up configurations, can be 

searched using the first model. The other model is capable of making decision in sets with 

infinite elements. Estimating intention of an actor while s/he is reaching a certain point in a 

plane can be given as an example to applications of second model. The sets of points on the 

plane can be regarded as a set with infinite points. Only the computational algorithm for the 

first model is implemented in the robotic arm. 

In the last section W�6��X��and WY��@����  were defined while explaining the intention 
estimation mechanism inside human brain. In this section W�6��X��  is denoted as W�  and 
WY��@���� is denoted as W�. The reason for the change of expression is that first notation is 
adapted by [10] and details of the FM in [10] are slightly different than the FM used in the 

thesis. These differences are explained in detail in Section 5.3. 

The computational algorithm for such a FM is proposed in [10] but it is not 

implemented in an actual robotic platform. In order to implement the model, W� and W� are 
defined as 5"1 column vectors which respectively represent joint angles of the actor with 
respect to kinematic arrangement of robot and estimated joint angles of the robot. 

Computation of W� and W� are explained in the following paragraphs. 
Although the robot arm used in experiments have 6 joints, control vectors are 

composed of 5 joint positions. Arctangent function inside inverse kinematics formulation 

occasionally produces answers outside {−2=%, 2=%} range for 5�� joint angle of the robotic 
arm from observed Cartesian arm positions, resulting in discrete jumps in data. Another 

problem with 5��joint even in cases with no discrete jumps, it is still too noisy to be worked 
with. In order to obtain non-noisy differences between control vectors, 5�� joint angle is 
omitted. Time trajectory of 5��joint angle can be observed in Figure 5.2.1. 



Figure 5.2.1: Three different trajectories for the intention of moving hand above head 

level is shown. Each joint trajectory is represented by a color. 
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Three different trajectories for the intention of moving hand above head 

level is shown. Each joint trajectory is represented by a color. Color representations are given 

in Table 5.2.1. 

Three different trajectories for the intention of moving hand above head 

Color representations are given 
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Table 5.2.1: This table gives the color representation of joint angle trajectories for all 

plots in the thesis.  

Joint Number Color 

1 Blue 

2 Red 

3 Black 

4 Cyan 

5 Yellow 

6 Green 

 

Trajectories of all joint angles have similar patterns for the same intention. The 

intention is to move the hand above head level. In Figure 5.2.1 three shoulder joints are 

activated in the beginning of the movement. These shoulder joints angle trajectories are 

shown in blue, red and black. Physical results of activation of these joints are discussed in 

Table 4.2.3.1. This certain behavior marks the intention of moving hand over head level in 

terms of SURALP’s kinematic arrangement. On the other hand 5��joint angle trajectories, 
shown in yellow in Figure 5.2.1 vary with unexpected behavior. 

After explaining contents of W� and W�, details of the intention estimation algorithm 
used in the robotic arm can be given as follows: 

1- Detect the beginning of goal oriented action  

2- Initialize �� and �� to empty matrices  
3- Compute the following at each cycle until a decision is made: 

a) Observe W� and store it in �� 
b) Simulate W� until length of �� for all possible intentions and store in �� 
c) Calculate the difference ] between each �� and �� from (5.2.1) 
d) Find the smallest ] among all intentions 

4- Stop the algorithm if a decision cycle is reached  

5- If ]is larger than a certain threshold do not make a decision 
iN
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In (5.2.1) ��5%:  and ��5%:  denote %�� indices of �� and ��  matrices. These matrices 

initially have unknown length and are filled with control vectors until the end of simulation. 

Their terminal sizes are 5"_, where _denotes the last cycle of the simulation. ` is a constant 
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real number which allows equation to put more weight on latter entries in �� and �� . ` was 

picked as 0.9 in all simulations. W is a diagonal 5"5 matrix. Diagonal entries are picked as 

0.2 in all simulations. 

Detecting beginning of an observed movement is crucial in a real time application of 

FM algorithm. Difference between current and previous W�  are computed at each cycle. 

Entries of difference vector are stored in a moving matrix of length 20. The term “moving” is 

used because the matrix stores the difference vector from current cycle to 19 cycles before. 

Entries of resulting moving matrix are summed, if result is higher than 0.05, FM infers that a 

movement by the actor is initiated. The 0.05 threshold is determined prior to execution of FM 

model algorithm from differentiated W� values. In Figure 5.2.2 time differentiation of W� 

values are shown. These plots played an important role while choosing an appropriate 

threshold value for detecting movement.  



Figure 5.2.2: These plots show time differentitaion of joint angle trajectories of three 

different moves from Figure 5.2.1

5��joint angle trajectories are omitted in time 
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These plots show time differentitaion of joint angle trajectories of three 

Figure 5.2.1. Color representations are in Table 5.2.1. Notice that 

joint angle trajectories are omitted in time differentiations. 

These plots show time differentitaion of joint angle trajectories of three 

Notice that 
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In order to compute the difference between movements of an actor and robot, a 

common framework must be established. In the thesis this framework is the joint space of the 

robot. Each visual data regarding positions of actor’s arm are collected at each cycle and 

converted to joint angles of SURALP. The form of visual data and its conversion to joint 

angles of SURALP are explained in Chapter 4. These angles are then matched with 

SURALP’s own time trajectory of joint angles using (5.2.1). SURALP’s own time 

trajectories regarding different intentions are computed off-line. Computational details of 

time trajectories of different intentions are given in the next section. 

  



33 

 

5.3. Modifications of Thesis to Proposed FM 

 

There are three modifications that are made in computational FM algorithm to utilize 

robot platform to estimate the intention of observed actor. The first modification is related to 

movement detection of FM. Latter is related to the decision cycle. Last one is related to W�, 

the estimated control vectors. 

At this point it should be noted that the method used in previous section to detect 

movements, detects all kinds of arm movements, whether or not a movement is goal oriented. 

Therefore ]  values are compared with a threshold at the decision cycle to eliminate 

movements which are not goal oriented. It should also be noted that this elimination is not 

based on [10] and it does not have a neurological basis. 

Decision cycle, which was defined in the algorithm in the previous section, is the 

cycle in which FM in robot comes to a conclusion on actor’s intention and starts to assist the 

actor. This decision cycle is the second modification to the proposed FM. In the [10] version 

of the FM algorithm there is no particular decision cycle and simulated robot do not move to 

assist the actor. Although it is proposed that observer/robot will have an accurate estimate on 

intention of actor until halfway through the movement. Decision values in experiments are 

picked with respect to this acknowledgment. 

In modified FM algorithm W�  are computed from previously observed hand, wrist, 

elbow and shoulder coordinates. These coordinates are then converted to joint angles and 

stored in matrices to be used to calculate the difference between �� and ��. Therefore they do 

not have dynamics of their own; they do not have different values for different tests. In [10] 

the distance between index finger and thumb is computed for a grasping scenario. Then this 

distance is combined with actor’s current position to compute a W� during execution of each 

cycle FM algorithm. There are some limitations of using offline computation for W� values. 

These limitations are discussed in Chapter 6. 

Representation of the modified FM along with action estimation loop is shown in 

Figure 5.3.1 with block diagrams. Differences between the FM in [10] and the one in the 

thesis can be seen by comparing Figure 5.3.1 and Figure 5.2.1.1.  
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Figure 5.3.1: Block Diagram Representation of the Proposed Intention Estimation Loop. // 

Denotes that SURALP’s Control Computer is not utilized until a decision is made. 

There are some important differences between Figure 5.3.1 and Figure 5.2.1.1. In 

Figure 5.2.1.1 there is a feedback mechanism inside the FM, this model is simplified in 

Figure 5.3.1. There is no connection between Mental State box and Control Variable 

Computation box in Figure 5.3.1, though this is not the case in Figure 5.2.1.1. Since inverse 

kinematics is enough for control variable computation in the simplified model and inverse 

kinematics can be solved using visual data, Control Variable Computation box do not require 

inputs from Mental State box.  

The differences to the proposed model in [10] significantly simplifies the original 

model. This simplification can find basis in the fact that animals also posses certain inputs 

and come to conclusion on intentions of others [39]. It is stated in [40] that animals have 

simpler models for action estimation than humans. 
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5.4. Setting 

 

In experiments it is assumed that intentions of an actor are a finite set, so that the FM 

can make an exhaustive search in the set. In the experimental setting it is accepted that an 

actor can have three different intentions. These intentions are: (1) approaching robot with an 

elbow up configuration (2) approaching robot with an elbow down configuration (3) moving 

hand above the head level. Robot responds to these intentions in order to assist the actor. 

Robot’s respond to intention (1) is to reach with an elbow down configuration, and respond to 

intention (2) is to reach with an elbow up configuration. If intention (3) is estimated by the 

FM of robot, it also moves its hand above head level. Figures 5.4.1, 5.4.2 and 5.4.3 show 

joint angle trajectories of estimated vector of control variables �� for each intention. Color 

representations of joint angles trajectories are given in Table 5.2.1. 

 

Figure 5.4.1: Joint angle trajectories for intention of reaching with an elbow down 

configuration, intention (1) 
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Figure 5.4.2: Joint angle trajectories for intention of reaching with an elbow up 

configuration, intention (2) 

 

Figure 5.4.3: Joint angle trajectories for intention of moving hand above head level, 

intention (3) 

There are two computers in the technical setting. One of them is the Control 

Computer of SURALP and the other one is the Action Estimation Computer. Signals which 

control DC motors connected to each joint are created in the Control Computer. Action 

Estimation Computer is responsible for processing visual information, storing W� values and 

running the intention estimation loop. Once a decision is made it is sent to Control Computer 
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for physical execution. The reason to use two different computers is related to real time 

computation concerns. 

The connection between Control Computer and Action Estimation Computer is 

established by an Ethernet cable and a communication system composed of a host and client. 

In the setting host is the Action Estimation Computer and client is the Control Computer. 

Windows Socket API is used to code host and client applications. An integer number is sent 

to SURALP control computer at the decision cycle. When this number is received by the 

control computer, SURALP starts to execute the response to the estimated action. SURALP’s 

responses to different intentions are pre-computed, fixed actions.  

A primitive analogy between the technical setting and the biological counterpart can 

be made at this point. Control computer can be regarded as the primary motor cortex, the part 

of human brain which executes movements. The Action Estimation Computer be seen as a 

combination of premotor cortex and parietal cortex of human brain. 

One last comment on setting can be made between experimental setup of the proposed 

technical realization and real time application. In the experimental setup �� values were also 

computed offline. Afterwards �� and �� values were normalized to a length of 800. In the 

real time setting Kinect is able to compute an average 20 frames per second and an overall 

physical execution time of an action is around 3 seconds. Therefore in the real time setting �� 

and �� lengths are around 60 (# 80. �� plots Figures 5.4.1, 5.4.2 and 5.4.3 are obtained from 

real time application.  

Experimental setup was created to gather fast test results from ��  values. Control 

Computer was not used, so SURALP was not executing the response to the estimated action. 

Real time application was implemented after producing satisfactory results in experimental 

setup. Video capture from real time setting for each intention are shown in Figures 5.4.4, 

5.4.5 and 5.4.6. 
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Figure 5.4.4: Elbow down intention in a real time application of estimation intention loop 

 

Figure 5.4.5: Elbow up intention in a real time application of estimation intention loop 
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Figure 5.4.6: Intention of moving hand over head level in a real time application of 

estimation intention loop 
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5.5. Experiments & Results 

 

Two sets of tests were conducted to test the action estimation loop with the setting 

proposed in the previous section. There are 24 tests in each one. Each set has 8 movements 

of each intention. Difference between tests in two sets is the cycle in which a decision is 

made regarding intentions of actors. In the first set a decision is made in the 250�� cycle. In 

the second set a decision is made in the 100�� cycle. It can be observed from Figures 5.5.1, 

5.5.2 and 5.5.3 that making a decision at 250�� cycle results in robot waiting for nearly the 

end of execution before executing the estimated intention. On the other hand making a 

decision in the 100�� cycle result in robot to anticipate the actor’s intention and execute the 

proper response to assist the actor. 

Table 5.5.1 and Table 5.5.2. show results of these tests. These results indicate that 

trying to anticipate actor’s intention by making a decision at an early cycle increases false 

decisions. According to these tables making estimation at 250��  results in 19 correct 

estimations, and making estimation at 100�� cycle results in 17 correct estimations.  

It is proposed by this work to disregard potentially wrong decisions at the cost of 

some correct decisions. As a result SURALP should be able to make less estimation with less 

error. From a HMI perspective this can be regarded as a safer working mode. To avoid false 

results, mean of error between vector of observed and simulated control variables was 

computed for each test. Mean of error was observed to be higher in false estimations than 

correct estimations. A threshold value of 0.07 radians was chosen to detect false estimates 

and classify them as not goal oriented actions.  

Table 5.5.1: Results of Action Estimation Tests, Decision Cycle: 250 

Intention Estimation Mean of Difference 

Elbow Down 1 Correct 0.0394 

Elbow Down 2 Correct 0.0125 

Elbow Down 3 Correct 0.0148 

Elbow Down 4 Correct 0.0486 

Elbow Down 5 Correct 0.0260 

Elbow Down 6 Correct 0.0239 

Elbow Down 7 Correct 0.0092 
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Elbow Down 8 Correct 0.0263 

Elbow Up 1 Correct 0.0266 

Elbow Up 2 False (Intention 3 estimated) 0.0327 

Elbow Up 3 Correct 0.0266 

Elbow Up 4 Correct 0.1215 

Elbow Up 5 Correct 0.2374 

Elbow Up 6 Correct 0.0520 

Elbow Up 7 Correct 0.0596 

Elbow Up 8 False (Intention 3 estimated) 0.1016 

Moving Hand Above Head 1 Correct 0.0663 

Moving Hand Above Head 2 Correct 0.0427 

Moving Hand Above Head 3 False (Intention 2 estimated) 0.1222 

Moving Hand Above Head 4 False (Intention 2 estimated) 0.0858 

Moving Hand Above Head 5 Correct 0.0284 

Moving Hand Above Head 6 Correct 0.0571 

Moving Hand Above Head 7 False (Intention 2 estimated) 0.0842 

Moving Hand Above Head 8 Correct 0.0233 

 

Table 5.5.2: Results of Action Estimation Tests, Decision Cycle: 100 

Intention Estimation Mean of Difference 

Elbow Down 1 Correct 0.0310 

Elbow Down 2 Correct 0.0163 

Elbow Down 3 Correct 0.0046 

Elbow Down 4 Correct 0.0240 

Elbow Down 5 Correct 0.0196 

Elbow Down 6 Correct 0.0468 

Elbow Down 7 Correct 0.0179 

Elbow Down 8 Correct 0.0227 

Elbow Up 1 Correct 0.0089 

Elbow Up 2 False (Intention 3 estimated) 0.0133 

Elbow Up 3 Correct 0.0089 
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Elbow Up 4 False (Intention 3 estimated) 0.0287 

Elbow Up 5 Correct 0.1585 

Elbow Up 6 Correct 0.0318 

Elbow Up 7 False (Intention 3 estimated) 0.0475 

Elbow Up 8 False (Intention 3 estimated) 0.0812 

Moving Hand Above Head 1 False (Intention 2 estimated) 0.0215 

Moving Hand Above Head 2 Correct 0.0361 

Moving Hand Above Head 3 Correct 0.0113 

Moving Hand Above Head 4 False (Intention 2 estimated) 0.0789 

Moving Hand Above Head 5 Correct 0.0108 

Moving Hand Above Head 6 Correct 0.0253 

Moving Hand Above Head 7 False (Intention 2 estimated) 0.0928 

Moving Hand Above Head 8 Correct 0.0220 

 

An additional set of 8  tests were conducted to test the threshold of 0.07  radians. 

These tests were not goal oriented actions, i.e. they were not one of three intentions. It can be 

seen from Table 5.5.3 that all of these tests were decided as not being one of original three 

intentions. 

Table 5.5.3: Results of Tests which were not goal oriented, Decision Cycle: 100 

Intention Estimation Mean of Difference 

Not a goal oriented action 1 No Estimation 0.3945 

Not a goal oriented action 2 No Estimation 0.7523 

Not a goal oriented action 3 No Estimation 0.1361 

Not a goal oriented action 4 No Estimation 0.1157 

Not a goal oriented action 5 No Estimation 0.1431 

Not a goal oriented action 6 No Estimation 0.2165 

Not a goal oriented action 7 No Estimation 0.3055 

Not a goal oriented action 8 No Estimation 0.1522 

 

In both sets no false decisions were observed in intention (1), reaching with an elbow 

down configuration. Figures 5.5.1, 5.5.2 and 5.5.3 show �� graphs with respect time for each 
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intention. Intention (2) and intention (3) have similar beginnings. Both actions start their 

execution by activating shoulder angles. Difference between intentions become more 

apparent through end of execution when 3 shoulder angles settle on their terminal values. It 

can be concluded that observer needs to wait until final cycles of mental simulation to make a 

better distinction between these two intentions. It can also be proposed that intention (2) and 

(3) are closer to each other in the joint space of SURALP than intention (1). 

 

Figure 5.5.1:Joint angle trajectories for Elbow Down 1 test from first set.  

 

Figure 5.5.2: Joint angle trajectories for Elbow Up 1 test from first set. 
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Figure 5.5.3: Joint angle trajectories for Moving Hand Above Head 1 test from first 

set. 

In Figures 5.5.4, 5.5.5 and 5.5.6 probabilities of each intention throughout the 

simulation are shown. In Figure 5.5.4 and Figure 5.5.5 probability trajectories settle in correct 

estimation as early as 50��  cycle. It can be seen that intention estimation loop is able to 

distinguish elbow down and elbow up movements in these tests. 
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Figure 5.5.4: Probabilities of each intention for Elbow Down 1 test from first set. Blue 

trajectory is intention (1), red is intention (2), cyan is intention (3). 

 

Figure 5.5.5: Probabilities of each intention for Elbow Up 1 test from first set. Blue trajectory 

is intention (1), red is intention (2), cyan is intention (3). 



46 

 

 

Figure 5.5.6: Probabilities of each intention for Moving Hand Above Head 1 test from first 

set. Blue trajectory is intention (1), red is intention (2), cyan is intention (3). 

Probability plots in Figure 5.5.6 are especially interesting due to the fact that 

SURALP’s estimation keep on changing throughout the simulation. An explanation to this 

change of belief can be attributed to different frequencies in actions. In other words an action 

can be performed faster than the stored action in SURALP’s FM. In such a scenario SURALP 

may have unusual estimations regarding the actor’s movement. This unusual estimation due 

to different frequency of actions can explain the oscillation in Figure 5.5.6. Solutions to this 

limitation are discussed in the next chapter. 
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Chapter 6 

 

6. Conclusions 

 

A computational FM which was in parallel with findings of contemporary 

neuroscience literature on action understanding was implemented with success on a robotic 

platform. There are two key points in this success. The first point is that this work was able to 

show findings of neuroscience can be applied in robotics, so it can be discussed that robots 

with better decision making capabilities can be designed by inspiration from human brain 

models. Robotic researchers can find solutions to problems in the field of HRI from 

computational theories of human mind. As for the second key point, a robot platform which 

can anticipate an actor’s intentions was realized. Such a robot platform can be used in a 

setting where humans and robot are required to work together.  

Experiment in [48] was explained in Chapter 3. Researchers placed 5 to 12 light 

sources on human actors in a dark room. Observers were able to estimate human actions from 

lights sources as low as 5. In this thesis arm actions of humans were estimated from 5 joint 

angles. It can be concluded that findings of thesis are in parallel with [48]. 

 

6.1. Limitations of the FM in the Thesis 

 

Implementation of the computational FM algorithm was successful, but it has 

limitations. One of the limitations is related to computation of  W�, vector of simulated control 

variables. Another limitation is the speed of movements. As explained in the last chapter 

current FM have no method for anticipating an action unless observed and simulated actions 

have same speeds. The last limitation is based on neurological motivation of the FM. 

Computing W�, vectors of control variables, is a key issue. In this work W�is computed 

by solving inverse kinematics problem offline, meaning that values of W� are same for all 

action estimation tests. It can be put forward that a dynamic W�  generator, which creates 

different �� matrices for each run of action estimation algorithm can lead to higher success 
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rates. In such a scenario FM should not contain the time trajectory of an action but some 

clues about the action. For reaching tasks with elbow down and elbow up configurations 

these clues can be the height difference between hand and elbow of the actor, and the 

distance between end effector and actor’s hand. Then FM can create a W�for the current cycle 

by combining clue with current positions of the actor. It should be pointed out that a dynamic 

computation for W� is proposed in the simulations of [10], but details of computing W�from 

current observer position and clues regarding the intentions are omitted. 

One of the problems of using pre computed W� is that two same sequences of actions 

might have different lengths. For example, when an elbow down action is executed slowly it 

produces a longer �� vector. The FM in this thesis would not be able to detect such actions 

due to pre computation of ��. A dynamic FM as explained in the last paragraph can also solve 

this issue. Moreover a solution to this problem can also be implemented by using Dynamic 

Time Warping algorithm [66], a method for measuring similarities between two vectors of 

different lengths. 

Last limitation is related to mirror neurons. The computational FM proposed in [10] 

extensively gives references to mirror neurons, but mirror neurons itself is a very new topic in 

neuroscience and there are critiques [64, 65, 67]. These critiques argue on questions 

regarding origins of mirror neurons and applications of mirror neurons to action estimating 

models. [68] argues against simulation capabilities of mirror neurons in a philosophical 

context. If these critiques are proved to be right in the future, computational model for 

estimating actions would lose its neurological basis. Nevertheless model is capable of 

estimating, even anticipating, an actor’s intentions from a discrete set within reasonable time 

without its neurological basis. 

6.2. Possible Improvement on the FM 

 

It was reported in Chapter 5 that SURALP was using pre-computed trajectories for 

responding to actors. Dynamic trajectories for SURALP’s response can be computed using 

the distance information between SURALP’s end effector and actor’s hand. It was also 

reported that the computational FM has dual function. During action observation it is used to 

make estimations and during action execution it is used to reduce sensory delays by 

anticipating visual results of actions. It is not verified in [008] whether such a FM can reduce 

delays. To improve the computational FM implemented in this thesis, same computational 
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FM in the vision computer can be used to simulate the action of the actor until the decision 

cycle. After the decision cycle same FM can be triggered to anticipate visual consequences of 

reaching the actor’s hand and uses the data to reduce delays. These trajectories can be 

compared with the dynamic responses obtained without FM to observe if delays are actually 

reduced as proposed in [008].  

6.3. Future Work 

 

In the thesis a lot of attention is given to mirror based learning mechanisms of human 

mind. On the other hand proposed solution to action estimation in the thesis does not use a 

mirror based learning approach. Most of the parameters are tuned offline: A decision cycle, 

creation of estimated actions, differentiation threshold for action detection. This learning 

mechanism is especially required during creation of different sets of actions. A clustering 

analysis can be made to organize joint angle trajectories into different sets. Such a clustering 

analysis can be made without supervision from human operations. After clustering of data is 

complete proposed FM and intention estimation loop can be run. 

Not overlapping joint angle trajectories are a serious problem in decision making 

process. This problem can be solved in three ways. Same intentions with different lengths can 

be added to the estimated intentions set in robot’s mind. Therefore intention estimation loop 

can detect slower and faster versions of the same intention. Another method way of solving 

the problem can be implementation of an algorithm called Dynamic Time Warping. This 

algorithm dynamically normalizes two sequences and computes the similarity between them. 

A dynamic FM can be implemented. This model can produce estimated control vectors with 

respect to current observed visual data. Such a dynamic FM could also be a solution this 

problem. 

Detection of certain action sets depend more on certain joints. For example sets in this 

thesis depend on shoulder and elbow angle joint trajectories. A reaching action with a certain 

hand orientation on the other hand is expected to depend also on joints which directly rotate 

the end effector. If more important joints in an action set are determined from the sets in 

robot’s mind, action joint trajectories can be stored in with fewer joint angles. A way to 

detect parameters which have less effect on decision making is Principle Component 

Analysis (PCA). It can be used after estimated joint angle trajectories in robot’s mind are 

computed and organized with a clustering algorithm.  
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After improving the intention estimation loop with proposed methods, its success with 

larger intention sets needs to be observed. An action intention set with more than 3 elements 

can be organized and larger test data can be used to determine the success of the intention 

estimation loop. 
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