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Privacy-Preserving Learning Analytics:
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Abstract—Educational data contains valuable information that can be harvested through learning analytics to provide new insights for
a better education system. However, sharing or analysis of this data introduce privacy risks for the data subjects, mostly students.
Existing work in the learning analytics literature identifies the need for privacy and pose interesting research directions, but fails to
apply state of the art privacy protection methods with quantifiable and mathematically rigorous privacy guarantees. This work aims to
employ and evaluate such methods on learning analytics by approaching the problem from two perspectives: (1) the data is
anonymized and then shared with a learning analytics expert, and (2) the learning analytics expert is given a privacy-preserving
interface that governs her access to the data. We develop proof-of-concept implementations of privacy preserving learning analytics
tasks using both perspectives and run them on real and synthetic datasets. We also present an experimental study on the trade-off
between individuals’ privacy and the accuracy of the learning analytics tasks.

Index Terms—Data mining, data privacy, learning analytics, learning management systems, protection.
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1 INTRODUCTION

The low cost of handling data along with the technolog-
ical advances in data mining and big data have led service
providers to collect, process, and analyze huge amounts
of data in the hope of discovering the great value within.
Educational data is no exception. There is nowadays a
wide variety of digital information available to educational
institutions about learners, including performance records,
educational resources, attendance to course activities, feed-
back on course materials, course evaluations and social
network data of students and educators. New educational
environments, technologies and regulations are being de-
signed to further enrich the types of information made
available to institutions [40]. With all the diverse set of data
types and sources of information, we face loosely-structured
and complex data in educational systems [24].

Rich educational data sources, the need for a better
understanding of how students learn, and the goal of en-
hancing learning and teaching have led to the new field
of Learning Analytics (LA). In [44], LA was defined as
“the measurement, collection, analysis and reporting of data
about learners and their contexts, for purposes of under-
standing and optimizing learning and the environments
in which it occurs”. Surely, educational data and LA have
great potential value. Analytics performed on past data
can benefit future teaching practices [37]. Predictive models
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that characterize the current performance of a student can
help forecast performance in the future (possibly to prevent
failures and/or promote success). The more data available
about learners, the better the learning process can be an-
alyzed, and the more effective the cooperative and collab-
orative learning groups will become [23]. Visualization of
learners’ data can lead to better and more timely feedback.

While there are clear benefits in collecting, utilizing and
sharing educational data, the sensitive nature of the data
raises legitimate privacy concerns. Many initiatives and
regulations protect personal data privacy in domains such
as health, commerce, communications and education [11],
[18], [51], [55]. Most regulations do not enforce absolute
confidentiality which would cause more harm than good
[5], [33], but rather protect ’individually identifiable data’
that can be traced back to an individual with or without
external knowledge. This gave rise to a wide range of
studies primarily focusing on de-identifying private data
with as little harm to its information content as possible,
in an attempt to preserve both the privacy and usefulness of
the data.

It is difficult to give a broad definition of data privacy
without a specific context [33]. Privacy in the context of
education should be considered with respect to various
scenarios. Research on data privacy has formally defined
and enforced privacy primarily in two scenarios: (1) Sharing
data with third parties without violating the privacy of those
individuals whose (potentially) sensitive information is in
the data. This is often called privacy-preserving data publish-
ing. Research in this area can also enrich the open data
initiatives for learning analytics, e.g., [7]. (2) Mining data
without abusing the individually identifiable and sensitive
information within. This is often called privacy-preserving
data mining or disclosure control.

In this paper, we study appropriate methods for both
scenarios, bearing in mind the requirements of educational
data and learning analytics. Our contributions, in this paper,
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can be summarized as follows:

• We show how the aforementioned, semi-structured
and complex educational data can be modelled with
a hierarchical data structure.

• We assess the applicability of existing data privacy
methods to educational data and learning analytics.
This requires a critical study on the pros and cons
of various methods, due to the unique nature and
characteristics of educational data.

• We present the problem of privacy-preserving learn-
ing analytics (PPLA), and extend some of the well-
known privacy methods to educational data to offer
solutions to the PPLA problem. We present technical
detail regarding how these privacy methods can be
enforced in practice.

• We provide proof-of-concept implementations of in-
teresting learning analytics tasks to experimentally
demonstrate the trade-off between privacy and util-
ity.

2 RELATED WORK

Data analytics is about examining data in order to draw
conclusions for better decision making or to verify models
and theories. In that regard, many academics see large-scale
data collection and big data as promising fields of research.
According to Mayer-Schonberger and Cukier, the future of
learning analytics lies in big data [26]. There have already
been studies (e.g., the PAR project [19]) that aggregate online
educational data into a single, federated dataset and then
analyze the dataset for factors affecting student retention,
progression, and completion. On the other hand, several
academics criticize the hype for big data technologies and
their consequences. In [3], [4] and [14], authors point out that
data may contain hidden bias, e.g., only wealthy schools
have computerized education and the data collected from
these schools do not accurately represent the whole popula-
tion. In social sciences, great effort is spent on the collection
of data - especially when trying to pick a representative
sample of a population. Many of the new algorithms on big
data omit such careful consideration. Therefore conclusions
reached by these algorithms should not be blindly trusted.
Danaher critically refers to this as algocracy (i.e., being ruled
by algorithms) in [6].

In this work, we focus on the problem of privacy. In [47],
[48] and [49], Solove discusses why it is difficult to formulate
what is private and what constitutes a privacy violation. He
provides a taxonomy of privacy violations, and compares
and contrasts different elements of his classification. Within
his taxonomy, our work is concerned with privacy in infor-
mation dissemination, i.e., sharing the data or the information
extracted from the data while preserving privacy. In [16],
Gurses provides a bird’s eye view on privacy and describes
the roles of engineers in building systems that operate on
private data. Two important aspects from her study are
confidentiality and control. The latter is concerned with
individuals’ right to control how their data is used and
disseminated. The author argues that a quantifiable and
open privacy protection mechanism is valuable. Our work
aims to formulate such mechanisms in the realm of learning
analytics.

Without a doubt, educational data contains private and
sensitive information. Recent LA papers call for collabo-
ration and open learning initiatives [43], which can bene-
fit researchers from all over the world. However, sharing
sensitive information requires extra care with regards to
privacy. Careless attempts to collect and share data in other
domains have led to privacy problems. In [52], Sweeney
showed that using simple demographic information, one
can uniquely identify the majority of the US population.
In [29], Narayanan and Shmatikov showed that an insuf-
ficiently anonymized Netflix movie rating database can
compromise the identity of a user. A recent incident from the
LA community is the InBloom disaster [45]: InBloom was a
non-profit corporation offering to warehouse and manage
student data, e.g., attendance and grades. It had to shut its
doors because parents complained about privacy, e.g., they
found some data on InBloom too intimate and were not
comfortable with a third-party vendor acquiring this data.
The major issue regarding InBloom was its data collection
and storage policies, whereas in this work we focus on data
and information dissemination.

Several works in the LA domain discuss the ethical and
privacy implications of educational data. In [17], Heath
points out that institutions are collecting educational big
data, and offers philosophers’, lawyers’ and education spe-
cialists’ perspectives on privacy. In [46], Slade and Prinsloo
emphasize the definition of consent and students’ ability
to opt-out of data collection. In [38], Prinsloo and Slade
evaluate the policy frameworks of two large-distance ed-
ucation institutions according to a set of considerations
including who benefits under what conditions, consent, de-
identification and opting-out. Authors conclude that current
policies are mostly concerned with academic analytics (data
security, integrity of demographic data) and not with learn-
ing analytics (learners’ data at the course and departmental
level). As such, there is a pressing need for enforcing privacy
during the processes of obtaining and sharing LA results.
These two can be achieved using privacy-preserving data
mining and data publishing techniques, respectively.

Studies concerning the legal and ethical questions in
LA specifically target consent. In [50], Solove emphasizes
that everyone has the right to manage how his/her data
is stored and processed, i.e., individual consent should be
central in the analysis of private data. In [39], Prinsloo
and Slade study the consent and data collection policies
of three popular MOOC providers. The authors find that
although MOOC providers explicitly inform their users on
what data is collected, opting out is not an option. In [41],
Sclater and Bailey cite the Data Protection Act of the UK,
and argue that students should have the right to view their
data or LA results that use their data. In [37] and [41],
authors briefly touch upon the need for anonymization to
de-identify private data, but do not give a detailed, technical
perspective. We do so in this work. Further, we believe that
consent is tightly connected to privacy and anonymity: most
people would not want their data to be used or shared,
unless they are assured that they will remain anonymous.

Anonymity and anonymization in LA have also been
discussed in [8] and [54]. In [54], Swenson asserts that data
should not be used by any party without proper anonymiza-
tion, and even anonymized data can be de-anonymized
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in a way that can violate privacy. In [8], Drachsler and
Greller present DELICATE, a checklist for trusted learning
analytics. Although the checklist is broad, one of the main
points raised is the need for anonymization. The Learn-
ing Analytics Community Exchange (LACE) project has
recently put great emphasis on privacy and anonymization
for learning analytics. Their report [15] provides a list of
ethical and privacy issues concerning LA, together with the
current policies and regulations. The report concludes by
stating that the trust of students and staff is essential for
the adoption of LA, and a great way of fostering trust is to
embed support for privacy in LA tools. To achieve this, we
believe that technical solutions, such as the ones we present
in this work, are necessary.

3 KEY CONCEPTS AND DEFINITIONS

This section introduces the notions related to the collection,
conceptual modeling, storage and mining of educational
data, motivates the need for privacy, and briefly outlines
the system architecture.

3.1 Actors Involved and Their Roles
In the process of data collection and mining, the following
roles can be identified:

• Data subjects are persons and entities whose (po-
tentially sensitive) data is collected and analyzed.
In this work, we focus on students as the primary
data subjects, but instructors’ and schools’ sensitive
information should also be protected.

• The data owner/curator is the party that collects
and stores data regarding the subjects. The data
curator often decides whether data should be shared
with third parties, in what manner and using which
privacy measures. School administrators can be re-
garded as the data curator.

• Data analysts and recipients include all parties
that are given access to the data, e.g., third-party
LA experts, data scientists. In the case where data
is published (e.g., made available on the Web) the
public can be seen as the data recipient.

Actors are those parties that interact with the data col-
lection and learning analytics system. There is no clear-cut
mapping between actors and their roles. Certain actors often
need to have multiple roles: a course instructor needs to
access and modify parts of the data to grade her students.
Yet, she should be prohibited from viewing students’ grades
in other classes, or which student gave her a bad evaluation.
This information should be made available only in aggre-
gate or anonymized form, if at all.

3.2 Types of Information
A database contains several attributes (i.e., data fields). For
example, in tabular data, a column corresponds to an at-
tribute and each cell in that column contains a value for that
attribute. In terms of privacy, attributes can be divided into
four categories:

• Explicit Identifiers (EI) are attributes that uniquely
and explicitly identify a data subject. Names, student

Fig. 1: Schema for student data records

IDs and social security numbers are examples of
EIs. Removal of these attributes is necessary but not
sufficient to ensure privacy.

• Quasi-Identifiers (QI) are attributes that do not
necessarily disclose individuals’ identity when used
alone, but can be used in combination and/or to-
gether with external databases to single out data
subjects. Examples include gender, date of birth and
courses taken.

• Sensitive Attributes (SA) are private information
such as GPA, letter grades etc. that data subjects
are usually not willing to share with third parties. A
privacy-preserving scheme should prohibit an adver-
sary to make inferences regarding subjects’ sensitive
information.

• Auxiliary Information is data that bears no privacy
risk and does not fit into any of the categories above.
This data is often useful for LA, e.g., a course’s
learning outcomes and objectives defined by the
instructor.

One aspect of privacy is contextual integrity [33], [34].
This is a conceptual framework that ties privacy to specific
contexts (e.g., healthcare, education) and argues that infor-
mation gathering and dissemination should be specific to
that context. For instance, accessing and viewing a student’s
health record is not a privacy violation in the context of
healthcare, but it is a violation in the context of education.
To comply with the ideas of contextual integrity, the data
curator needs to be careful in deciding what constitutes a
quasi-identifier, what is sensitive and what is not.

3.3 Student Data Records (SDRs)
We say that a student’s education-related information at
an institution is collected into a single data record we
call a student data record (SDR). One record per student is
maintained. Each SDR should follow a similar, but loosely-
defined schema. A sample schema is provided in Fig. 1. We
place no constraints on SDRs apart from the ability to model
them using a tree-like (i.e., hierarchical) data structure. For
example, the data curator can have the flexibility of choosing
which attributes are QIs, SAs etc. at each level, according to
the type of data he has. This data model can also trivially
support tabular and set-valued data. As part of our funded
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Fig. 2: Overview of the system architecture

research, we obtained datasets from universities and high
schools that resemble the schema in Fig. 1. Sample SDRs are
given in 3a. Notice that we write QIs within the vertices of
the trees and SAs right outside the vertices.

3.4 System Architecture

General architecture of a PPLA system is outlined in Fig. 2.
An LA expert will have to choose between two privacy pro-
tection mechanisms: data publishing (further discussed in
Sec. 4), and statistical disclosure control (further discussed
in Sec. 5).

We placed an abstract data access layer between an SDR
database and the outside world, that handles all issues
related to accessing and fetching SDRs, e.g., in distributed
vs. centralized database environments. 1

The two privacy-preserving techniques are data pub-
lishing (anonymization) and statistical disclosure control. Data
publishing relies on privacy definitions such as k-anonymity
[53] and `-diversity [25]. The data curator picks a proper
privacy definition and decides on a value for the privacy
parameter (i.e., k for k-anonymity and ` for `-diversity).
Then an anonymizer algorithm accesses the SDR database
and transforms certain attribute values in such a way
that the output (which is now called an anonymized SDR
database) conforms with the privacy definition. Such con-
formance is assumed to imply that the association between
an anonymized SDR and the corresponding data subject is
sufficiently broken - an adversary cannot determine, above
a confidence threshold, which student an anonymized SDR
corresponds to. Therefore the anonymized database can be
shared with a data analyst for further processing. In this
scenario, the data analyst will obtain a modified but truthful
version of the original SDR database.

Statistical disclosure control techniques restrict direct
access to data. The data analyst can only access the database

1. If SDRs are stored in a centralized relational database management
system, there is no need for the data access layer.

through a disclosure control layer. The state-of-the-art mech-
anism for this purpose is based on ε-differential privacy [9],
[10]. ε-differential privacy ignores queries that fetch non-
statistical data from the database. Statistical queries such
as the count, minimum, maximum or average of groups of
SDRs that satisfy a predicate condition are answered. The
true answer to these statistical queries are protected against
privacy disclosures through the addition of random noise.

An important question is whether the system architec-
ture we define here can be supported by existing com-
mercial software. The data model and system architecture
we assume are quite generic and compatible with many
technologies. From a databases point of view, the advent
of NoSQL databases have greatly helped storage of unstruc-
tured and semi-structured data. Markup languages such as
XML and JSON are also prime candidates to represent and
manage hierarchical data objects. These can be readily used
to store SDRs. From a learning analytics point of view, there
exist standards, e.g., Caliper and xAPI, that record students’
data in a Learning Record Store (LRS). LRSs are data stores
that serve as repositories holding learning records. Relevant
works discuss guidelines in selecting which LRS to use and
the analytics that can be performed on that LRS [1], [21].
LRSs can communicate learner data with other systems.
Then, in Fig. 2 we can replace the SDR database with an
LRS, and program the data access layer to fetch learners’
records. We note that some standards (e.g., xAPI) already
use JSON, which makes it easy to transfer data between an
LRS and a PPLA system.

We note that interoperability with existing LRSs is more
of an issue for statistical disclosure control, where a privacy
layer must sit between a database and the analyst. The
implementation of this would be LRS-dependent. On the
other hand, in data publishing, a straightforward method is
to move the desired data to a trusted location in a desired
format, run the anonymizer, and then publish the results.

Also, depending on the setting and the choice of LRS,
data can be kept in a centralized manner or distributed
across multiple servers. For instance, the server at the uni-
versity’s registrar’s office may hold all demographic infor-
mation related to students, and departmental servers may
hold students’ courses and grades. These can be merged
later using explicitly identifying information (e.g., student
IDs) on demand. Furthermore, data from multiple insti-
tutions and LRSs can be merged as in PAR [19]. In such
cases, the existence of a common standard across these
institutions would be beneficial, but we must account for a
certain degree of difference and freedom. Hence we choose
to stick with the abstract representations of SDRs rather than
focusing deeply on one technology.

4 PRIVACY THROUGH ANONYMIZATION

We first study the data publishing scenario. In this scenario,
the data curator anonymizes the dataset and then shares the
anonymized data with the data recipient. After the data
is shared, the data curator has no control over what the
recipient decides to do with the data.

Anonymization refers to the data privacy approach that
seeks to hide the identity and/or sensitive information of
data subjects. That is, a data recipient armed with certain
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background knowledge should not be able to infer (with
high confidence) either the SDR or the sensitive informa-
tion of one or more subjects. We outline the prominent
ways of defining background knowledge and adversarial
inference below. In any case, anonymization involves a
trade-off between data utility and privacy: if absolutely no
inferences can be made using a published dataset, then the
dataset is essentially useless for LA purposes. For example,
if the school owner publishes completely random data about
students, students’ privacy is perfectly preserved but an LA
expert can harvest no useful relationship from the data. If
the published data is very specific, though, it helps not
only the LA expert to build accurate models but also the
adversary to make inferences.

4.1 Defining Adversaries and Privacy Notions
Adversarial Background Knowledge. In anonymization, it
is vital to properly define the background knowledge (i.e.,
the power) of the adversary. The literature [13] assumes that
an adversary has knowledge that his victim’s record will be
in the published dataset and complete knowledge regarding
the QIs of his victim. The adversary also knows all links
(i.e., edges) in his victim’s SDR, e.g., Alice submitted an
evaluation of 8/10 for course CS201, not for CS301. On the
other hand, adversarial background knowledge is limited to
QIs, and does not include SAs. The privacy notions we will
soon define will cover negative knowledge (e.g., Alice did
not take CS205) as well as positive knowledge (e.g., Alice
took CS201).

Despite these widely accepted assumptions, educational
data and learning analytics present unique challenges, some
of which are discussed below:

• The adversary could be an insider, e.g., a course
instructor. Although the data privacy literature as-
sumes that an adversary has no knowledge regard-
ing SAs of data subjects, an instructor will know
what grades she gave to each student. This makes
the course instructor a stronger adversary.

• Knowing that a student has faced some disciplinary
action (or, failed some class) is sometimes more im-
portant to an adversary than knowing which dis-
ciplinary action (or, which class) it was. Although
anonymization can protect against the question of
which, it cannot guarantee hiding the fact that some
event has happened.

• Having multiple records per data subject in a
database is complicating, since these records are
often correlated. E.g., a student may attend two
universities, and the Ministry of Education collects
data from these two universities. Then the ministry
should pre-process the data by merging SDRs that
belong to the same student before anonymization, a
step that can easily be overlooked.

• Continuous and sequential releases based on
anonymization are problematic. Assume that the
government publishes educational data every two
years, e.g., in 2012 and 2014. Consider Bob, a sopho-
more student actively enrolled in college during the
2012 release. Bob will have taken more classes by
2014. The 2012 release will contain Bob’s information

thus far. The 2014 release needs to contain data from
before 2012, which has already been included in the
2012 release. If the overlapping data between the two
releases is anonymized differently, this can lead to
identity disclosure [58].

Privacy Definitions. The goal of anonymization is to trans-
form a dataset to enforce a certain definition of privacy. We
now survey the literature for the prevalent definitions of
privacy.

k-anonymity is the most popular definition, and states
that each record in the published dataset needs to be indis-
tinguishable from at least k − 1 other records with respect
to QI values [53]. QI-wise groups of indistinguishability
are called equivalence classes. The main criticism of k-
anonymity is that it does not consider the distribution of
sensitive values [56], e.g., all records in an equivalence
class may contain the same sensitive value. For records in
such equivalence classes, the adversary can infer a sensitive
value with 100% confidence. Two notions were developed
to address this issue: `-diversity asserts that every equiva-
lence class should contain ` well-represented values for each
SA [25]. (There can be different interpretations of well-
represented. A widely accepted definition is to bound the
frequency of a sensitive value in an equivalence class by
1/` [59].) t-closeness asserts that the distance between the
distribution of sensitive values in an equivalence class and
the whole data should differ by no more than a threshold
t [22]. Finally, anatomy preserves privacy by disassociating
QIs and SAs, and releasing them in separate datasets [60].

We illustrate these privacy notions on tabular educa-
tional data, in Table 1. The data curator wishes to publish
students’ grades in a particular class, where the attributes
age, gender and major are QIs, and grade is sensitive. The
original dataset T is given in Table 1a. A 2-anonymous
version and a 3-anonymous version are given in 1b and 1c,
respectively. Each equivalence class is highlighted using a
different color. Neither 1b nor 1c are 2-diverse. In both, the
first equivalence class violates 2-diversity. (E.g., from Table
1c, an adversary knowing that Bob is a 21 year-old male
Computer Science student can infer that Bob is in the gray
equivalence class. Thus, he concludes with probability 2/3
that Bob got an A-.) 1d is, however, 2-diverse. Anatomy
is used in 1e, and data is divided into two tables: one for
the QIs and one for the SA. For each sensitive value, only
a count is given. Unlike the previous models, there is no
explicit link between a record and its SA.

4.2 Extensions to SDRs
The privacy notions given so far have been developed for
tabular data anonymization. However, they have applica-
bility outside that domain. (See [13] for a survey.) Next, we
will discuss their application to SDRs (i.e., the data model
we define in Section 3.3). We give formal mathematical defi-
nitions in [36], whereas here we present verbal explanations
and intuition.

We say that two SDRs R1 and R2 are QI-isomorphic
if they share the same structure (vertices and edges) and
QIs (labels within vertices). This definition of isomorphism
is analogous to the definition of tree isomorphism, which
requires two trees to appear the same. The only exception in
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TABLE 1: Anonymizing tabular educational data

(a) Private dataset T
Age Gender Major Grade
21 male Computer Science A-
22 male Computer Science A-
19 male Electrical Engr. B+
19 female Industrial Engr. C
20 female English A
23 female Art History B

(b) 2-anonymous T

Age Gender Major Grade
20-25 male Computer Science A-
20-25 male Computer Science A-

19 * Engineering B+
19 * Engineering C

20-25 female Arts & Humanities A
20-25 female Arts & Humanities B

(c) 3-anonymous T

Age Gender Major Grade
15-25 male Science & Engineering A-
15-25 male Science & Engineering A-
15-25 male Science & Engineering B+
15-25 female * C
15-25 female * A
15-25 female * B

(d) 2-diverse T

Age Gender Major Grade
15-25 * Science & Engineering A-
15-25 male Science & Engineering A-
15-25 male Science & Engineering B+
15-25 * Science & Engineering C
20-25 female Arts & Humanities A
20-25 female Arts & Humanities B

(e) Publishing T via anatomy
Age Gender Major Group-ID
21 male Computer Science 1
22 male Computer Science 1
19 male Electrical Engr. 1
19 female Industrial Engr. 2
20 female English 2
23 female Art History 2

Group-ID Grade Count
1 A- 2
1 B+ 1
2 A 1
2 B 1
2 C 1

our case are the SAs: we place no restrictions on them (yet).
We say that a set of larger than k SDRs is kSDR-anonymous
and forms an equivalence class, if all records in the set are
pairwise QI-isomorphic. In other words, all records look the
same in terms of structure and QIs.

As outlined in the previous section, an inherent short-
coming of kSDR-anonymity is its ignorance towards SAs.
We therefore propose `SDR-diversity. We say that an equiv-
alence class of SDRs is `SDR-diverse if for all vertices in
that equivalence class that look the same, the frequency of
occurrence of a sensitive value is at most 1/`. In other words,
`SDR-diversity takes the definition of `-diversity for tabular
data, and applies it to all vertices of SDRs.

A published dataset of SDRs is kSDR-anonymous [`SDR-
diverse] if all records in the dataset belong to a kSDR-
anonymous [`SDR-diverse] equivalence class. The literature
stops at `-diversity, i.e., there is no work that applies t-
closeness to SDRs, or tree-structured data in general. In our
ongoing research we would like to extend the likes of t-
closeness and anatomy to SDRs.

We explain the rationale behind kSDR-anonymity and
`SDR-diversity using examples. In Fig. 3a, we present two
SDRs, where major, birth year and gender are QIs at the root
vertex, each class is drawn as a child of the root vertex,
and evaluations for classes are drawn as children of the
corresponding classes. In course evaluations, the instruc-
tor is treated as the QI and his/her evaluation score (for
simplicity, we assume that this is an integer out of 10) is
treated as the SA. If the records in Fig. 3a are published
without anonymization, any of the following pieces of ad-
versarial background knowledge may cause the adversary
to distinguish one record from the other: (1) The victim was
born in 1995. (2) The victim took CS305. (3) The victim took
CS201 from Prof. Harry. (4) The victim took three classes. (1)
demonstrates that attacks due to demographic information
are possible, similar to attacks on tabular data. (2), (3) and
(4) demonstrate attacks that are unique to SDRs. (2) and
(3) show that QI information that is not only located within
the root vertex but also connected to it may cause leakage.
(4) shows that an adversary may use structural knowledge
(with or without QIs) to perform attacks. In this particular
case, knowing the number of classes a student took will
yield his SDR. Notice that information that is shared by
both SDRs (e.g., victim is majoring in Computer Science,
or victim has evaluated Prof. Bloggs in some class) is not

sufficient to distinguish records.
kSDR-anonymity solves the privacy problems above by

providing indistinguishability with respect to QIs and struc-
ture. For example, the SDRs in Fig. 3b are 2-anonymous, and
no background knowledge of QIs or structure may help the
adversary distinguish these records. This is because kSDR-
anonymity either invalidated or obfuscated the adversary’s
background knowledge. For example, by removing the fact
that the first student took CS204, both students are shown
having taken 2 classes, and the (4)th attack is now invalid.
For attacks (1), (2) and (3), there are now 2 SDRs that satisfy
these constraints, e.g., knowing that the victim was born
in 1995 no longer singles out the first record because both
students’ SDRs say that they were born between 1990-2000.

`SDR-diversity builds on kSDR-anonymity and enforces
diversity for every vertex in an equivalence class. A privacy
problem in Fig. 3b, for instance, is that both students gave
Prof. Bloggs 8/10. The adversary does not need to dis-
tinguish one record from the other to infer this sensitive
information, due to lack of diversity. (An interesting note:
the adversary’s background knowledge does not even have
to include that these students evaluated Prof. Bloggs in
order to infer this sensitive information. Attacks (1), (2), (3)
could as well be sufficient.) The `SDR-diversity definition
stops such inferences by making every vertex diverse, e.g.,
as in Fig. 3c. We do understand, however, that in some
scenarios diversity in some vertices might be needed, but
not others. (E.g., the data curator decides GPAs and course
grades should be diverse but lack of diversity in evaluation
scores is okay.) Then, the definition of `SDR-diversity can be
modified to specify those vertices where diversity must be
enforced, and leave others unattended.

It is not a good idea to convert SDRs to tabular for-
mat and then run tabular k-anonymity and `-diversity
algorithms on them, since this approach leads to serious
privacy problems. Due to space constraints we omit further
discussion on this topic, and refer the interested reader to
[31] and [36].

4.3 Tools for Anonymization

Given a database of SDRs, one aims to produce a kSDR-
anonymous/`SDR-diverse version with as little modifica-
tion as possible, so that the data is authentic and accurate,
but also ensures an adequate level of privacy. The choice of
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(a) Two SDRs prior to anonymization (b) 2-anonymous SDRs (c) 2-diverse SDRs

Fig. 3: Anonymization of tree-structured student data records

Fig. 4: Generalization hierarchy for courses

privacy notion and the exact values for k or ` are left to the
data curator (or dictated by the social norms, requirements
of the data recipient etc.). Higher k and ` offer better
protection, but are harder to satisfy.

The two conventional ways to modify datasets to achieve
privacy are generalization and suppression [13]. Generaliza-
tions replace specific values by more general ones, e.g.,
course ID “CS305” can be replaced by “CS 3rd year” or
“CS3**”. Generalizations occur with the help of a general-
ization hierarchy, where data values that are semantically
closer are grouped together and generalized to the same
value. A small generalization hierarchy is given in Fig. 4.
Generalization hierarchies can be inputs to the anonymiza-
tion procedure (i.e., specified by the data curator) or inferred
automatically from the data (e.g., when the data is numeric).
Suppressions conceal information by deleting it: informa-
tion that exists in the original data is removed from the final
output. The deletion of CS204 in Fig. 3b is an example.

Both generalizations and suppressions incur a cost: they
decrease the potential utility of the LA and data mining
techniques. For instance, if all third year CS classes are
generalized to “CS3**”, the data miner can measure student
success in 3rd year CS classes, but not in individual classes.
Also, in Fig. 3b, by suppressing CS204, we lose the useful
information that this student did poorly in CS204 poten-
tially because he did not like his instructor Prof. Doe. This
information could have been harvested via the application
of appropriate learning analytics methods.

We would like to note that in cases where answering
detailed questions is necessary (e.g., “How many students

took CS301?”) but the data is too generalized to answer
such questions (e.g., all CS 3rd year classes have been
generalized to “CS3**”, therefore no “CS301” classes are
directly observed in the output) one can make use of data
reconstruction [32]. In data reconstruction, we assume that
the actual value of an observed value in the output is equally
likely to be any of the leaves that lie under that observed
value in the generalization hierarchy. For example, “CS3**”
could be any of CS301, CS303 or CS305 according to Fig. 4.
In the presence of additional statistics (e.g., how often each
class is taken) each candidate can be given an appropriate
weight instead of assuming that they are equally probable.

Finally, an important advantage of anonymization is that
fake or noisy information is not added to the released data.
Apart from the uncertainty and analytical utility loss dis-
cussed above, anonymization preserves truthfulness. Noise
can be a significant drawback when dealing with sensitive
information, e.g., if we add bogus information to Alice’s
SDR that she has faced a disciplinary problem where she
actually has not, this can have serious consequences for her.

5 PRIVACY THROUGH STATISTICAL DISCLOSURE
CONTROL

Next, we study the privacy-preserving data mining scenario,
where data is kept by the data curator (in un-anonymized
form) and never published. Instead, the data analyst re-
ceives a privacy-preserving interface, using which he can
run various statistical analyses and learning analytics. We
emphasize that this is different than access control, in the
sense that the data analyst can run any statistical func-
tion/query on the data he desires, i.e., his access is not
limited to certain portions of the data. But, the answers
returned by the database incorporate subjects’ privacy and
can hence be limited and noisy.

The state-of-the-art method in statistical disclosure con-
trol is differential privacy [9], [10]. In this model, only sta-
tistical queries are allowed, and answers to these queries
are perturbed with (random) noise. Unlike anonymization
where properly defining adversarial knowledge and the pri-
vacy notion is required, differential privacy protects against
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all types of background information (e.g., attributes need
not be divided into QI/SA etc.). In that sense, some of the
problems discussed in Section 4.1 can be avoided using this
technique. In the next section, we briefly introduce the basics
of differential privacy.

5.1 Differential Privacy
In cryptography, some encryption mechanisms can guar-
antee that the ciphertext (i.e., encrypted data) reveal no
information at all about the plaintext (i.e., raw data). This
notion is called “semantic security”. Dwork proves in [9]
that a guarantee similar to “semantic security” cannot be
achieved in disclosure control. That is, any means of access
to a database that contains sensitive data automatically im-
plies a (non-zero) risk of disclosure. Additionally, revealed
information may not even pertain to individuals/data sub-
jects whose data is in this database. Even if one does not
participate in the database as a data subject by providing
his/her record, he or she is still under risk of disclosure.
Consequently, a disclosure control mechanism should not be
after preventing privacy leaks. ε-differential privacy instead
tries to control/bound the risk of disclosure.

Consider a single individual, say Alice, who is trying
to make a decision on participating in a database. Let
the database version that contains (resp. does not contain)
Alice’s record be referred to as D (resp. D′). All such D
and D′ will differ in only one record and any such pair
of databases are called neighboring databases. Differential
privacy tries to bound the probability that the response to a
query set/algorithm remains the same in the two worlds for
all possible data subjects including Alice2. Def. 1 formalizes
this notion.

Definition 1 (ε-Differential Privacy (ε-DP)). A randomized
algorithm A gives ε-DP if for all neighboring datasets D,D′ and
for all possible outcomes of the algorithm S ⊂ Range(A),

Pr[A(D) ∈ S] ≤ eε × Pr[A(D′) ∈ S]

where the probabilities are over the randomness of A.

In the definition, A includes the disclosure control layer
which is supposed to satisfy ε-differential privacy. S is a
transcript - a vector of outputs, e.g., statistical query results.
The probability that A produces the output S on D and D′
is bounded by eε for all possible S.

Differential privacy assumes that the output of an algo-
rithm does not overly depend on one record. In other words,
there is a significant probability (controlled by parameter ε)
that the same result could have been obtained if the algo-
rithm was run on a neighboring database. If an algorithm
produces the same outcome with and without Alice’s SDR
in D, then including Alice in D does not bear any privacy
risk for her. This gives a stronger incentive for data sharing
and data subjects can be reassured that they are safe. ε is
often regarded to be small, e.g., ε = 0.1, ln 2.

A typical way to achieve ε-DP is to model the learning
analytics task as a function (represented in terms of a set of
statistical queries). Then, the true answer of this function
(i.e., the queries) is computed. Finally, random noise is

2. The probability is bounded from above and below, since Def. 1 is
symmetric for D and D′.

added to the true answer. The amount of noise depends on
the privacy parameter ε and the sensitivity of the function.

Definition 2 (Sensitivity). Let f : D → Rd be a function
that maps a database into a fixed-size vector of real numbers. The
sensitivity of f is defined as:

∆f = max
D,D′
||f(D)− f(D′)||1

for all neighboring databases D,D′, where ||.|| denotes the L1

norm.

In the definition, f is the function that models the data
analytics task. The domain of the function is a data set D
and its range is a d-dimensional vector of real numbers
(the value d depends on the number of queries in f ). ∆f
is computed on all possible neighboring database pairs.
Based on this definition, sensitivity measures the maximum
difference in the output of f that can be caused by changing
one record in the database.

For example, the sensitivity of computing the answer to:
“how many students are majoring in CS?” is 1, because a
change in one record either (i) increases the count of CS
majors by 1, e.g., by making a non-CS major a CS major,
(ii) decreases the count by 1, e.g., by making a CS major
a non-CS major, or (iii) does not change the count of CS
majors. Computing the answer to: “f : what is the minimum
GPA observed?” has sensitivity 4, because there may exist a
database D where all students have perfect GPAs (i.e., 4.0)
where f(D) = 4.0. But, by modifying one student’s GPA
and making it 0.0 in D′, it is possible to obtain f(D′) = 0.0.
Hence, ∆f = 4.0− 0.0 = 4.0.

The output of a statistical query can either be numeric
(i.e., real or integer-valued) or categorical (i.e., discrete val-
ued). For example, the query: “how many students took
CS301?” is numeric, whereas the query: “which CS class
was taken the most?” is categorical. For each of these, there
exist simple mechanisms that satisfy differential privacy.

Laplace Mechanism [10]. For numeric queries, the Laplace
mechanism generates ε-DP outputs as follows: given a
dataset D and a function f , it first computes the true output
of the function f(D), and then perturbs the true output by
adding noise. The noise is sampled from a Laplace distribu-
tion with mean 0 and scale ∆f/ε. That is, the mechanism
that returns the noisy answer f(D) + Lap, where Lap is
noise, is ε-DP.

Exponential Mechanism [28]. The exponential mechanism
can be used for statistical queries with a categorical answer.
It is useful for selecting a discrete output r from a domain
R in a differentially private manner. For this purpose, the
mechanism employs a utility function (i.e., quality criterion)
q that associates each output r ∈ R with a probability of
being selected. This probability should be non-zero for each
r ∈ R.

The exponential mechanism first computes the sensitiv-
ity of the quality criterion, ∆q. Then, it computes the quality
score of each output on the database D, q(D, r). Finally, in-
stead of deterministically choosing the output with highest
q(D, r), it probabilistically samples one r ∈ R, where the
probability of being chosen for each r is proportional to
e

εq(D,r)
2∆q .
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For example, assume that each student can take a
class once, and let “Which CS class was taken the most?”
be the statistical query we would like to answer us-
ing differential privacy. The possible outputs are R =
{CS201,CS204,CS301,CS303,CS305}. We can define the
quality criterion q to be “the number of students that took
the class”. Then, ∆q would be 1. For each candidate, we
would first compute q(D, r) by querying the database for
the true counts, and then compute e

εq(D,r)
2∆q . Finally, the

exponential mechanism returns one candidate at random,
where the probability of being selected for each candidate is
proportional to its e

εq(D,r)
2∆q score.

Composition Properties [27]. The two mechanisms above
compute the output of one statistical query. A learning ana-
lytics task, however, requires repeated application of several
statistical queries. The composition properties of differential
privacy, namely sequential composition and parallel compo-
sition, enable the data analyst to run multiple queries in
parallel or in succession. Therefore, any complicated learn-
ing analytics task that can be broken down into a query-
by-query “recipe” can be implemented in a differentially
private manner. Parallel composition is applied in cases
where a statistical query partitions the database in disjoint
sets of records (i.e., changing a single record does not affect
multiple answers). Sequential composition is applied when
a successive query’s query region has an overlap with the
previous query.

5.2 Critique of Differential Privacy
Differential privacy obviously has advantages. It is not lim-
ited to adversarial background knowledge, and can hence
defend against adversaries that are much stronger than
those in the anonymization literature. The adversary does
not see the bulk of the data, so many of the issues and
privacy threats described in Section 4.1 are no longer of
concern. Also, the amount of information disclosure can
be theoretically bounded. Because of these, some academics
argue that differential privacy makes anonymization-based
privacy obsolete. However, several shortcomings of differ-
ential privacy have also been recognized [2]. Some of these
shortcomings, in the context of learning analytics, are:

• Differential privacy is based on noise addition. As
argued at the end of Section 4.3, adding noisy or
false information might cause problems in certain
sensitive situations.

• Since differential privacy is a relatively new notion,
a lot of useful data mining methods that can be
used in LA have not yet been implemented using
differential privacy (e.g., some clustering algorithms,
association rules, unsupervised learning). However,
all types of queries and LA methods can be run on
an anonymized and published dataset.

• Differential privacy is used via statistical queries. An
LA task must be expressed in terms of statistical
queries so that it can be run via a differentially pri-
vate interface. For a not tech-savvy user, expressing
a high-level LA task as a collection of low-level data
queries might be difficult.

• The choice of ε is an open question. k-anonymity and
`-diversity have semantic meanings that can easily

be interpreted and enforced. However, due to the
probabilistic nature of ε-DP, there is no clear link
between ε and the observed output. Even a fine-
tuned ε might not guarantee a semantic privacy
requirement.

• Application of ε-DP to tabular data is more straight-
forward and well-studied, but an off-the-shelf appli-
cation of ε-DP to SDRs does not exist (yet).

6 EXPERIMENTS AND DISCUSSION

In this section we provide privacy-preserving proof-of-
concept implementations of two LA tasks and illustrate the
trade-off between the utility of these methods (measured
by their accuracy) and data subjects’ privacy. We used the
Java programming language for implementation, and ran
the experiments using a laptop with commodity hardware.

Datasets. We obtained two datasets from two different
universities in Turkey. Both datasets share a similar schema
to that in Fig. 1 with minor modifications (e.g., in one
dataset, instead of the students’ year of birth, their age
was reported). We name the datasets synthetic and real for
reasons described next.

For the synthetic dataset, we obtained data regarding
students from a university’s Computer Science undergrad-
uate program. The data contained 30 students and their
grades in introductory-level classes and some upper-level
classes. Using this sample and according to the university’s
graduation requirements, we generated a dataset of 1000
students. We simulated GPA values using a normal distri-
bution, where the mean and the standard deviation were de-
termined by the GPA scores of our sample. According to the
university’s graduation requirements, we ensured that all
students took the obligatory and introductory-level classes.
To each student, we randomly assigned a fixed number of
classes from the pool of core classes, and a varying number
of technical area electives. Students’ grades in each class
were determined by their GPA, the type of class and the
distribution of grades in that class in our sample (depending
on availability - we had a distribution for all introductory
classes but only some of the upper-level classes).

The real dataset contains 3162 students from another
university, majoring in different areas. Compared to the
synthetic dataset, it has a wider array of classes and more
discrepancy between the number of classes students take
(e.g., there exist students that took only 1-2 classes, as well
as students that took 60 classes). The real dataset was used
as is, apart from trivial pre-processing (e.g., removal of
duplicate records).

Experimental Setup. We implemented privacy via
anonymization and statistical disclosure control sepa-
rately. We used the anonymization algorithms in [31]
and [36] to obtain kSDR-anonymous and `SDR-diverse
databases respectively. Both algorithms are for handling
hierarchical/tree-structured data, and are therefore directly
applicable to SDRs. Algorithms were run using the pa-
rameters suggested by their authors. When needed, data
was reconstructed probabilistically (see Section 4.3) without
assuming the existence of additional statistics.

For statistical disclosure control, we implemented a dif-
ferentially private interface to run the learning analytics
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tasks. We made a simplifying assumption that each class is
taken only once. The datasets we had were already modified
such that if a student took a class more than once, only
the highest grade would be retained and the others were
dropped. Hence, this is a reasonable assumption. Also,
differentially private real-valued answers to integer-valued
functions (e.g., count queries) were rounded to the nearest
non-negative integer, wherever applicable.

Data reconstruction after anonymization and noise ad-
dition for ε-DP are probabilistic. Therefore each experiment
was conducted 200 times and results were averaged.

6.1 Query Processing
One of the main goals of LA is personalizing and adapting
the learning process and content, ensuring that each stu-
dent receives resources and teaching that are appropriate
to their knowledge state [42]. Instructors should aim to
provide learning opportunities that are tailored according
to students’ background and needs. For example, students’
background, current performance and interests can be used
to recommend courses or majors, so that every student gets
the most out of their education.

Most universities offer a similar set of classes for their
first year students. For example, all engineering majors take
courses in calculus, physics, biology etc. Learning analytics
can be used to recommend suitable majors for students
based on their performance in these introductory classes.
After all, certain classes are more relevant for certain majors,
e.g., a biology course is probably not very useful for a Com-
puter Science student, but it is crucial for a Biochemistry
student.

A simple recommendation system can be built by finding
correlations between students’ success in a major and their
grades in first-year classes. Then, for a new student, given
his/her grades thus far, one can determine their suitability
for different majors: what is the probability that Alice be-
comes a successful Biochemistry major, given that her grade
in introductory biology (BIO101) was low? To be concrete,
let us model the question as follows:

Pr(major = Biochem ∩ GPA ≥ 3.50 | BIO101 ≤ C+)

=
Pr(major = Biochem ∩ GPA ≥ 3.50 ∩ BIO101 ≤ C+)

Pr(BIO101 ≤ C+)

=

COUNT the # of Biochem majors in the
database w/ GPA ≥ 3.50 and BIO101 ≤ C+
COUNT the # of students w/ BIO101 ≤ C+

As shown above, a computation of the recommendation
system can be reduced to statistical database queries (e.g.,
count queries). The parameters can easily be changed, i.e.,
one can repeat the process above for different majors, for
different GPA thresholds and one or more first-year classes.
(Note that here the “≤” sign, when used with course grades,
should not imply lexicographical ordering but rather be
interpreted as “worse than”.)

In the first experiment, we generated queries in the form
above, and ran them on the original data, kSDR-anonymous
and `SDR-diverse data, and via ε-DP; for various values of
k, ` and ε. We ran a total of 90 queries on the synthetic

dataset and 50 queries on the real dataset. We measured the
average relative error (AvRE) of these queries as follows: let
Xi be the answer obtained when the ith query is issued on
the original data and Yi be the answer obtained when the
same query is issued after a privacy definition is enforced.
The AvRE of N queries is:

AvRE =

N∑
i=1

|Yi−Xi|
Xi

N

For kSDR-anonymity and `SDR-diversity, we obtained
the results in Fig. 5. As expected, the amount of error
increases as privacy requirements get stricter, i.e., k and `
increase. An interesting observation is that there is a cross-
over between the error curves of the synthetic and real
datasets in Fig. 5a, when k=6. We believe that this is because
of the content of the two datasets: since all students in the
synthetic dataset are Computer Science majors, they have
taken more or less the same classes and have similar SDRs.
Therefore it is easier to find k students to group together.
On the other hand, when k is large, it is difficult to find
k similar students in the real dataset. This can be a factor
when choosing an appropriate k for anonymization.

We observe that `SDR-diversity often causes higher
AvRE than kSDR-anonymity. Even k=12 has less error than
`=3. We remind the reader that kSDR-anonymity is a pre-
requisite for `SDR-diversity, hence this is an expected result.
An important factor in `SDR-diversity is the amount of di-
versity in sensitive values: say that the MATH101 instructor
decides to grade very generously and gives everyone an A
or A- in the class. Then, 3-diversity for MATH101 cannot be
achieved no matter the algorithm, due to the simple fact
that there is no 3rd sensitive value for MATH101 in the
database. Generalizations and suppressions will have to be
performed, which potentially introduce additional error.

We issue the same queries on the original data via an ε-
DP interface, and report the AvRE in Fig. 6 for the synthetic
and real datasets separately. Notice that in these figures,
the y axes are in logarithmic scale. We divide our queries
into 3 categories: queries with small answers (i.e., less than
10), queries with large answers (i.e., greater than 100) and
queries in between. We compute the AvRE and draw an
error curve for each category, and finally one curve for the
average of all queries. This is to emphasize the relationship
between a query’s answer and its relative error (relevant for
ε-DP but not anonymization). Also, in differential privacy,
higher ε permits higher amount of information disclosure,
and hence provides less privacy. As expected, when ε is
increased in Fig. 6, privacy requirements are relaxed, and
this causes a decrease in AvRE.

As explained in Section 5, ε-DP adds noise to the output
of each query to satisfy privacy. The noise is sampled from
a distribution that does not depend on the true answer of
the query. If the true answer is small relative to the noise
added, then the error rate is high. If the true answer is
large and the same amount of noise is added, then the error
will be negligible. Our experiments clearly demonstrate
this. With ε ≥ 0.5 and queries with large answers, we
obtain AvRE close to 0.1, which is significantly better than
anonymization. But for all other queries (or for ε < 0.5), the
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(a) kSDR-anonymity (b) `SDR-diversity

Fig. 5: Query processing on anonymized data

(a) Real dataset (b) Synthetic dataset

Fig. 6: Query processing via ε-DP

error obtained from ε-DP is much higher (at least 2-3 times
higher) than the error in anonymization.

6.2 GPA Prediction

Another interesting task in LA is to build predictive mod-
els that characterize current student performance and help
forecast future success/failure. Data mining methods, espe-
cially supervised learning and classification, are useful for
building predictive models.

Some courses are good indicators of a student’s success
in college. For instance, it is very uncommon that a student
does poorly in calculus but eventually graduates as a math
major with a stellar GPA. If one can successfully predict
students’ success based on such classes, this can serve as an
indicator (or warning) that a student will do well (or have
trouble graduating) from their choice of major. This scenario
can also go hand in hand with the scenario in the previous
section. One can predict a student’s GPA in different majors
using his/her first-year courses, and advise the student to
choose a major that will maximize their success.

To build a predictive model, a data analyst needs to
access the data. Instead of granting access to the original
data, a privacy-preserving method is to anonymize the data
first and then grant access. Alternatively, the model can be
built through a differentially private interface, which will
add noise to the model every time a data access occurs.
For example, there exist differentially private algorithms for
Naive Bayes and decision tree classification [12], [57].

In this experiment, we used a Naive Bayes Classifier
(NBC) to implement a predictive model. We chose to use
NBCs because they are easy to implement using differential
privacy [57], and they are widely accepted and used as

baseline classifiers. A recent study in learning analytics has
also used NBCs to predict academically at risk students [20].

The goal of the NBC is to predict students’ GPA at
the end of their fourth year based on their performance in
introductory classes. We ran this experiment only on the
synthetic dataset because the real dataset did not have a
common set of classes that every student needs to take.
Among the classes in the synthetic dataset, we chose three
first-year and two second-year obligatory classes as predic-
tors. We discretized the GPA range [0-4] into four groups:
0.0-0.99, 1.0-1.99, 2.0-2.99 and 3.0-4.0. We used 5-fold cross
validation when building and testing the classifier.

We first build the classifier on the original data, with-
out anonymization or ε-DP. The accuracy of the classifier
turns out to be 76%, which is reasonably high. (In contrast,
the accuracy of a classifier that outputs random results
would be around 25%. A more informed classifier that takes
into account the mean and standard deviation of students’
GPA could be roughly 40-50% accurate, depending on the
standard deviation.) We then build classifiers on kSDR-
anonymous and `SDR-diverse data, and using ε-DP. We
graph the classification accuracy of these classifiers, with the
aim of quantifying the decrease in accuracy after a privacy
metric is applied.

We graph the results in Fig. 7. In all three figures,
the y-axis shows the ratio of students that were correctly
classified, i.e., number of students whose GPA was correctly
predicted divided by the total number of students. In Fig. 7a
and 7b, there is a steady decrease in classification accuracy
with increasing k and `. In the case of kSDR-anonymity,
after k=20, classification accuracy stays roughly the same at
around 63%. The drop is more significant (approximately
linear) in Fig. 7b, where `SDR-diversity is used. Contrary
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(a) kSDR-anonymity (b) lSDR-diversity (c) ε-DP

Fig. 7: Classification after privacy-preserving techniques

to anonymization-based methods, there is a positive cor-
relation between the privacy parameter ε and classification
accuracy in differential privacy. Again, this is because higher
ε implies less privacy.

6.3 Discussion
We start our discussion by re-stating that in both the query
processing experiment and the GPA prediction experiment,
we witness the obvious trade-offs between privacy and
utility. Increasing the level of privacy (i.e., increasing k and
`, or decreasing ε) comes at the cost of reduced accuracy
and higher error in the LA tasks. In addition, in the majority
of the experiments we observe that anonymization methods
(i.e., kSDR-anonymity and `SDR-diversity) offer results with
higher utility and accuracy than those obtained using ε-
DP. Although the privacy guarantees of anonymization and
ε-DP are fundamentally different, we believe that this is
a significant finding that could guide system designers in
choosing one method over the other in cases where both are
applicable.

An interesting argument is that we use the anonymized
data to classify subjects, and this itself is a privacy violation.
First, we note that after our privacy protection methods,
personal identifiers are removed, and a certain quantifiable
privacy notion is met. If we cannot build accurate classifiers
using this data, then the data has become useless. This is
undesirable from a LA point of view. After all, data is either
most useful or perfectly anonymous, but never both [35],
[37]. Second, the classifiers are trained using private data,
but are used by students or trusted school officials (on behalf
of students) that wish to use the classifier, and for doing so
they need to voluntarily feed their private data (e.g., course
grades) to the classifier.

A compelling research direction is to implement kSDR-
anonymity, `SDR-diversity and ε-DP into existing learning
management systems (LMSs). We feel that the technical
difficulties in doing so are context-specific (i.e., specific for
each LMS and institution). We choose to mitigate these
issues by placing a data access layer (see Fig. 2) that collects
data from multiple LMSs, merges them into one SDR etc.
The abstract SDR representation suits many technologies
and therefore maximizes applicability. It can be customized
by data owners to suit particular LMSs and data formats.

The choice of a privacy protection mechanism depends
on various factors. Although we have discussed and pre-
sented experimental results for the utility and accuracy fac-
tors, the cost, scalability and performance factors are also

important, as they determine how convenient it is to employ
one mechanism over the other.

We start by analyzing the performance of the proposed
mechanisms. The performance overhead of ε-DP is low,
since ε-DP relies mainly on data-independent noise addi-
tion. To return an answer to any query, the system needs
to get the true answer of the query from the LMS, which is
a step necessary regardless of whether ε-DP is used. Then,
noise addition for ε-DP is just a single step of additional
computation. On the other hand, the performance overhead
for anonymization is often high. For medium-sized datasets
(e.g., the ones we experiment on) the current algorithms
used for SDR anonymization take considerable time (tens
of minutes or hours) [36]. However, anonymization often
leads to a one-time data release (i.e., data publishing) which
can be done overnight and has no bearing on a real-time
system. Continuous anonymization is also possible, but
incurs a delay not only for the de-identification step but also
to increase the utility of its output.

We now comment on the scalability and cost factors of
the proposed mechanisms. Algorithms for kSDR-anonymity
and `SDR-diversity are quadratic in the number of SDRs
and exponential in the height/levels of SDRs. That is, if we
want to anonymize 10 times more SDRs, then we have to
pay 100 times more computational cost. For larger datasets
with thousands of SDRs, the cost becomes large. This is
a problem for scalability. Again, since the noise in ε-DP
is often data-independent, it is scalable. Furthermore, as
many LMSs run in the cloud, the costs for data manipu-
lations are critical. ε-DP fares better in this regard too, as
anonymization techniques need to make many data accesses
and manipulations before outputting a final result.

There can be cases where anonymization would be
preferable to ε-DP in terms of cost and performance over-
head, too. Say that there are many data analysts interested
in a university’s database stored on a cloud, and they all
wish to run long LA tasks. The university has two choices:
(1) Anonymize and publish the database once, where each
analyst receives a copy of the anonymized database. This
has a large one-time cost for the university, but since the
analysts now have a copy of the database, they no longer
need to access the university’s cloud. They will perform
computations on the published database (which they can
store locally). This may yield less computation on the cloud
in the long run (and hence less cost and performance over-
head for the university). (2) Each analyst is given a ε-DP
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access to the cloud, and is forced to retrieve information
through this access. In this case the only one-time overhead
is to establish a ε-DP interface, which does not require much
computation power. But, if the LA tasks are costly and
contain a lot of data accesses, the university might be worse
off using this strategy.

7 CONCLUSION

In this paper we studied the application of state-of-the-art
privacy-preserving data publishing and mining methods to
learning analytics. Despite its detailed and technical discus-
sion, this paper is not meant to be conclusive. Rather, we
hope that it sparks interest in the area, especially in ap-
plying privacy protection mechanisms to existing learning
analytics methods, and to adjust these methods so that the
added privacy does not destroy their utility.

Our analysis shows that there are trade-offs between
the proposed privacy mechanisms, and there is no single
technical solution to the privacy problem. Anonymization
is easy to understand, extensively studied and applicable
to many types of data (e.g., tree-structured SDRs, tabu-
lar and graph data). In contrast, ε-DP, the state-of-the-art
in statistical disclosure control, offers protection against
stronger adversaries and is more scalable; but comes at the
cost of utility and convenience. The major issues adversely
affecting its convenience are: (1) the need to reduce a data
analysis task to a set of low-level queries, and (2) the absence
of ε-DP implementations on different types of data. Yet,
considering that anonymization has recently come under
fire from academics [30], [35], we can expect a shift towards
ε-DP; and some of the major issues concerning ε-DP can
be solved via implementing a readily available, privacy-
integrated tool for LA. This can be an interesting area for
future work.

Data privacy is a difficult problem. Despite technical
solutions, there are still complexities in defining privacy
and inherent limitations of privacy-preserving mechanisms.
For example, how do we adequately define adversarial
background knowledge for anonymization? Will the data
owner’s definition be sufficient, or can a stronger adversary
be present? Furthermore, students’ promiscuity and care-
lessness in sharing personal information is a risk that cannot
be addressed by a privacy mechanism enforced by an insti-
tution. For example, people nowadays are happy to share
their location data (e.g., location check-ins on Foursquare).
Students share each others’ posts and information on social
media platforms. Are they aware of the privacy implications
of these? A learning institution’s enforcement of students’
privacy means very little if the students themselves are not
aware of their privacy. Therefore, we conclude by stating
that technical solutions for privacy are most beneficial if
there is a common demand from all parties, i.e., academics,
practitioners, data and system owners, and students.
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