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Abstract

In the present study we prove rigorously that in the long-wave

limit, the unidirectional solutions of a class of nonlocal wave equa-

tions to which the improved Boussinesq equation belongs are well

approximated by the solutions of the Camassa-Holm equation over

a long time scale. This general class of nonlocal wave equations model

bidirectional wave propagation in a nonlocally and nonlinearly elastic

medium whose constitutive equation is given by a convolution integral.

To justify the Camassa-Holm approximation we show that approxima-

tion errors remain small over a long time interval. To be more precise,

we obtain error estimates in terms of two independent, small, positive

parameters ǫ and δ measuring the effect of nonlinearity and disper-

sion, respectively. We further show that similar conclusions are also

valid for the lower order approximations: the Benjamin-Bona-Mahony

approximation and the Korteweg-de Vries approximation.

1 Introduction

In the present paper we rigorously prove that, in the long-wave limit and
on a relevant time interval, the right-going solutions of both the improved
Boussinesq (IB) equation

utt − uxx − δ2uxxtt − ǫ(u2)xx = 0, (1)
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and, more generally, the nonlocal wave equation

utt = βδ ∗ (u+ ǫu2)xx (2)

are well approximated by the solutions of the Camassa-Holm (CH) equation

wt + wx + ǫwwx −
3

4
δ2wxxx −

5

4
δ2wxxt −

3

4
ǫδ2(2wxwxx + wwxxx) = 0. (3)

In the above equations, u = u(x, t) and w = w(x, t) are real-valued func-
tions, ǫ and δ are two small positive parameters measuring the effect of
nonlinearity and dispersion, respectively, the symbol ∗ denotes convolution
in the x-variable, βδ(x) =

1
δ
β(x

δ
) is the kernel function. It should be noted

that (3) can be written in a more standard form by means of a coordinate
transformation. That is, in a moving frame defined by x̄ = 2√

5
(x − 3

5
t) and

t̄ = 2
3
√
5
t, (3) becomes

vt̄ +
6

5
vx̄ + 3ǫvvx̄ − δ2vt̄x̄x̄ −

9

5
ǫδ2(2vx̄vx̄x̄ + vvx̄x̄x̄) = 0, (4)

with v(x̄, t̄) = w(x, t). Also, by the use of the scaling transformation U(X, τ) =
ǫu(x, t), x = δX, t = δτ , (1) and (3) can be written in a more standard form
with no parameters, but the above forms of (1) and (3) are more suitable to
deal with small-but-finite amplitude long wave solutions.

In the literature, there have been a number of works concerning rigorous
justification of the model equations derived for the unidirectional propaga-
tion of long waves from nonlinear wave equations modeling various physical
systems. One of these model equations is the CH equation [4, 14, 15] de-
rived for the unidirectional propagation of long water waves in the context
of a shallow water approximation to the Euler equations of inviscid incom-
pressible fluid flow. The CH equation has attracted much attention from
researchers over the years. The two main properties of the CH equation are:
it is an infinite-dimensional completely integrable Hamiltonian system and
it captures wave-breaking of water waves (see [5, 6, 7, 17] for details). A
rigorous justification of the CH equation for shallow water waves was given
in [7].

In a recent study [11], the CH equation has been also derived as an ap-
propriate model for the unidirectional propagation of long elastic waves in
an infinite, nonlocally and nonlinearly elastic medium (see also [12]). The
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constitutive behavior of the nonlocally and nonlinearly elastic medium is de-
scribed by a convolution integral (we refer the reader to [9, 10] for a detailed
description of the nonlocally and nonlinearly elastic medium) and in the case
of quadratic nonlinearity the one-dimensional equation of motion reduces to
the nonlocal equation given in (2). Moreover, the nonlocal equation (that is,
the equation of motion for the medium) reduces to the IB equation (1) for a
particular choice of the kernel function appearing in the integral-type consti-
tutive relation (see Section 5 for details). In order to derive formally the CH
equation from the IB equation, an asymptotic expansion valid as nonlinear-
ity and dispersion parameters, that is ǫ and δ, tend to zero independently is
used in [11]. It has been also pointed out that a similar formal derivation of
the CH equation is possible by starting from the nonlocal equation (2).

The question that naturally arises is under which conditions the unidi-
rectional solutions of the nonlocal equation are well approximated by the
solutions of the CH equation and this is the subject of the present study.
Given a solution of the CH equation we find the corresponding solution of
the nonlocal equation and show that the approximation error, i.e. the dif-
ference between the two solutions, remains small in suitable norms on a
relevant time interval. We conclude that the CH equation is an appropri-
ate model equation for the unidirectional propagation of nonlinear dispersive
elastic waves. The methodology used in this study adapts the techniques in
[3, 7, 13].

We note that, in the terminology of some authors, our results are in fact
consistency-existence-convergence results for the CH approximation of the
IB equation and, more generally, of the nonlocal equation. We refer to [3]
and the references therein for a detailed discussion of these concepts.

As it is pointed above, the general class of nonlocal wave equations con-
tains the IB equation as a member. Therefore, to simplify our presentation,
we start with the CH approximation of the IB equation and then extend the
analysis to the case of the general class of nonlocal wave equations. Though
our analysis is mainly concerned with the CH approximations of the IB equa-
tion and the nonlocal equation, our results apply as well to the Benjamin-
Bona-Mahony (BBM) approximation. We also show how to use our results
to justify the Korteweg-de Vries (KdV) approximation.

The structure of the paper is as follows. In Section 2 we observe that
the solutions of the CH equation are uniformly bounded in suitable norms
for all values of ǫ and δ. In Section 3 we estimate the residual term that
arises when we plug the solution of the CH equation into the IB equation. In
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Section 4, using the energy estimate based on certain commutator estimates,
we complete the proof of the main theorem. In Section 5 we extend our
consideration from the IB equation to the nonlocal equation and we prove a
similar theorem for the nonlocal equation. Finally, in Section 6 we give error
estimates for the long-wave approximations based on the BBM equation [2]
and the KdV equation [16].

Throughout this paper, we use the standard notation for function spaces.
The Fourier transform of u, defined by û(ξ) =

∫
R
u(x)e−iξxdx, is denoted by

the symbol û. The symbol ‖u‖Lp represents the Lp (1 ≤ p < ∞) norm of u
on R. The symbol 〈u, v〉 represents the inner product of u and v in L2. The
notation Hs = Hs(R) denotes the L2-based Sobolev space of order s on R,

with the norm ‖u‖Hs =
(∫

R
(1 + ξ2)s|û(ξ)|2dξ

)1/2
. The symbol R in

∫
R
will

be suppressed. C is a generic positive constant. Partial differentiations are
denoted by Dt, Dx etc.

2 Uniform Estimates for the Solutions of the

Camassa-Holm Equation

In this section, we observe that the solutions wǫ,δ of the CH equation are
uniformly bounded in suitable norms for all values of ǫ and δ. This is a
direct consequence of the estimates proved by Constantin and Lannes in [7]
for a more general class of equations, containing the CH equation as a special
case.

For convenience of the reader, we rephrase below Proposition 4 of [7].
To that end, we first recall some definitions from [7]: (i) For every s ≥ 0,
the symbol Xs+1(R) represents the space Hs+1 (R) endowed with the norm
|f |2Xs+1 = ‖f‖2Hs + δ2‖fx‖

2
Hs, and (ii ) the symbol P denotes the index set

P = {(ǫ, δ) : 0 < δ < δ0, ǫ ≤ Mδ}

for some δ0 > 0 and M > 0. Then, Proposition 4 of [7] is as follows:

Proposition 1. Assume that κ5 < 0 and let δ0 > 0, M > 0, s > 3
2
, and

w0 ∈ Hs+1 (R). Then there exist T > 0 and a unique family of solutions
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{
wǫ,δ

}
(ǫ,δ)∈P to the Cauchy problem

wt + wx + κ1ǫwwx + κ2ǫ
2w2wx + κ3ǫ

3w3wx + δ2 (κ4wxxx + κ5wxxt)

− ǫδ2(κ6wwxxx + κ7wxwxx) = 0, (5)

w(x, 0) = w0(x) (6)

(with constants κi (i = 1, 2, ..., 7)) bounded in C
(
[0, T

ǫ
], Xs+1(R)

)
∩C1

(
[0, T

ǫ
], Xs(R)

)
.

We refer the reader to [7] for the proof of this proposition. Furthermore,
T of the existence time T/ǫ is expressed in [7] as

T = T

(
δ0,M, |w0|Xs+1

δ0

,
1

κ5

, κ2, κ3, κ6, κ7

)
> 0.

Obviously, the CH equation (3) is a special case of (5) where κ1 = 1,
κ2 = κ3 = 0, κ4 = −3

4
, κ5 = −5

4
and 2κ6 = κ7 = −3

2
. In subsequent

sections we will need to use uniform estimates for the terms
∥∥wǫ,δ (t)

∥∥
Hs+k

and
∥∥∥wǫ,δ

t (t)
∥∥∥
Hs+k−1

with some k ≥ 1. Proposition 1 provides us with such

estimates, nevertheless to avoid the extra δ2 term in the Xs+1-norm, we will
use a weaker version based on the inclusion Xs+k+1 ⊂ Hs+k. Furthermore,
for simplicity, we take δ0 = M = 1. We thus reach the following corollary:

Corollary 1. Let w0 ∈ Hs+k+1 (R), s > 1/2, k ≥ 1. Then, there exist T > 0,
C > 0 and a unique family of solutions

wǫ,δ ∈ C

(
[0,

T

ǫ
], Hs+k(R)

)
∩ C1

(
[0,

T

ǫ
], Hs+k−1(R)

)

to the CH equation (3) with initial value w(x, 0) = w0(x), satisfying

∥∥wǫ,δ (t)
∥∥
Hs+k +

∥∥∥wǫ,δ
t (t)

∥∥∥
Hs+k−1

≤ C,

for all 0 < δ ≤ 1, ǫ ≤ δ and t ∈ [0, T
ǫ
].

3 Estimates for the Residual Term Correspond-

ing to the Camassa-Holm Approximation

Let wǫ,δ be the family of solutions mentioned in Corollary 1 for the Cauchy
problem of the CH equation with initial value w0 ∈ Hs+k+1 (R). In this
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section we estimate the residual term that arises when we plug wǫ,δ into the
IB equation. Obviously, the residual term f for the IB equation is

f = wtt − wxx − δ2wxxtt − ǫ(w2)xx, (7)

where and hereafter we drop the indices ǫ, δ in u and w for simplicity.
Using the CH equation we now show that the residual term f has a

potential function. We start by rewriting the CH equation in the form

wt + wx = −ǫwwx +
3

4
δ2wxxx +

5

4
δ2wxxt +

3

4
ǫδ2(2wxwxx + wwxxx). (8)

Using repeatedly (8) in (7) we get

f =(Dt −Dx)

[
−ǫwwx +

3

4
δ2wxxx +

5

4
δ2wxxt +

3

4
ǫδ2Dx(

1

2
w2

x + wwxx)

]

− δ2wxxtt − ǫ(w2)xx

=ǫ2D2
x(
w3

3
)−

3

8
ǫ2δ2

[
D2

x(w
2
x + 2wwxx)

]

+
1

16
δ4

[
(D2

xDt − 3D3
x)(3wxxx + 5wxxt)

]

+
3

32
ǫδ4

[
(D3

xDt − 3D4
x)(w

2
x + 2wwxx)

]

+
1

4
ǫδ2Dx

[
(−3wD2

x + 2wxx + wxDx)(wt + wx)
]
. (9)

After some straightforward calculations we write f = Fx with

F =ǫ2(
w3

3
)x −

1

8
ǫ2δ2

[
3(w2

x + 2wwxx)x − 3w(w2)xxx + 2wxx(w
2)x + wx(w

2)xx
]

+
1

16
δ4

[
(DxDt − 3D2

x)(3wxxx + 5wxxt)
]

+
1

32
ǫδ4

[
3(D2

xDt − 3D3
x)(w

2
x + 2wwxx)

+2(−3wD2
x + 2wxx + wxDx)(3wxxx + 5wxxt)

]

+
1

32
ǫ2δ4

[
(−9wD3

x + 6wxxDx + 3wxD
2
x)(w

2
x + 2wwxx)

]
.

Note that, except for the term D3
xD

2
tw, F is a combination of terms of the

form Dj
xw with j ≤ 5 or Dl

xDtw with l ≤ 4. By taking k = 5 it immediately
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follows from Corollary 1 that all of the terms in F , except D3
xD

2
tw, are

uniformly bounded in the Hs norm. To deal with the term D3
xD

2
tw, we first

rewrite the CH equation in the form

wt = Q

[
−wx − ǫwwx +

3

4
δ2wxxx +

3

4
ǫδ2(2wxwxx + wwxxx)

]
, (10)

where the operator Q is

Q =

(
1−

5

4
δ2D2

x

)−1

. (11)

Then, applying the operator D3
xDt to (10) and using (8) we get

D3
xDtwt =D3

xDtQ

[
−wx − ǫwwx +

3

4
δ2wxxx +

3

4
ǫδ2(2wxwxx + wwxxx)

]

=Dt [−Q (wxxxx + ǫ (wwx)xxx)

+
3

4
δ2QD2

xwxxxx +
3

4
ǫδ2QD2

x(2wxwxx + wwxxx)x

]
.

We note that the operator norms of Q and Qδ2D2
x are bounded:

‖Q‖Hs ≤ 1 and
∥∥δ2QD2

x

∥∥
Hs ≤

4

5
.

The use of these bounds and uniform estimate for D3
xD

2
tw yield

∥∥D3
xD

2
tw

∥∥
Hs ≤ C

∥∥D4
xwt

∥∥
Hs ≤ C ‖wt‖Hs+4 . (12)

As all the terms in F have coefficients ǫ2, ǫ2δ2, δ4, ǫδ4 or ǫ2δ4 (with 0 < ǫ ≤
δ ≤ 1) we obtain the following estimate for the potential function

‖F (t)‖Hs ≤ C
(
ǫ2 + δ4

)
(‖w‖Hs+5 + ‖wt‖Hs+4) . (13)

Using Corollary 1 with k = 5, we obtain:

Lemma 3.1. Let w0 ∈ Hs+6 (R), s > 1/2. Then, there is some C > 0
so that the family of solutions wǫ,δ to the CH equation (3) with initial value
w(x, 0) = w0(x), satisfy

wtt − wxx − δ2wxxtt − ǫ(w2)xx = Fx

with
‖F (t)‖Hs ≤ C

(
ǫ2 + δ4

)
,

for all 0 < ǫ ≤ δ ≤ 1 and t ∈ [0, T
ǫ
].
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4 Justification of the Camassa-Holm Approx-

imation

In this section we prove Theorem 4.2 given below. We have the well-posedness
result for the IB equation (1) in a general setting [8, 10]:

Theorem 4.1. Let u0, u1 ∈ Hs (R), s > 1/2. Then for any pair of param-
eters ǫ and δ, there is some T ǫ,δ > 0 so that the Cauchy problem for the IB
equation (1) with initial values u(x, 0) = u0(x), ut(x, 0) = u1(x) has a unique
solution u ∈ C2

(
[0, T ǫ,δ], Hs(R)

)
.

The existence time T ǫ,δ above may depend on ǫ and δ and it may be
chosen arbitrarily large as long as T ǫ,δ < T ǫ,δ

max where T ǫ,δ
max is the maximal

time. Furthermore, it was shown in [10] that the existence time, if it is finite,
is determined by the L∞ blow-up condition

lim
t→T ǫ,δ

max

sup ‖u (t)‖L∞ = ∞.

We now consider the solutions w of the CH equation with initial data
w(x, 0) = w0. Then we take w0(x) and wt(x, 0) as the initial conditions for
the IB equation (1), that is,

u(x, 0) = w0(x), ut(x, 0) = wt(x, 0).

Let u be the corresponding solutions of the Cauchy problem defined for the
IB equation (1) with these initial conditions. Since w0 ∈ Hs+6(R), clearly
u(x, 0), ut(x, 0) ∈ Hs(R). Recalling from Corollary 1 that the guaranteed
existence time for w is T/ǫ, without loss of generality we will take T ǫ,δ ≤ T/ǫ.

In the course of our proof of Theorem 4.2, we will use certain commutator
estimates. We recall that the commutator is defined as [K,L] = KL − LK.
We refer the reader to [17] (see Proposition B.8) for the following result.

Proposition 2. Let q0 > 1/2, s ≥ 0 and let σ be a Fourier multiplier of
order s.

1. If 0 ≤ s ≤ q0 + 1 and w ∈ Hq0+1 then, for all g ∈ Hs−1, one has

‖[σ(Dx), w]g‖L2 ≤ C‖wx‖Hq0‖g‖Hs−1,
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2. If −q0 < r ≤ q0 + 1 − s and w ∈ Hq0+1 then, for all g ∈ Hr+s−1, one
has

‖[σ(Dx), w]g‖Hr ≤ C‖wx‖Hq0‖g‖Hr+s−1.

For the reader’s convenience we now restate the two estimates of the above
proposition as follows. Let Λs = (1−D2

x)
s/2

and take w ∈ Hs+1, g ∈ Hs−1

and h ∈ Hs. Then, for q0 = s, the first estimate above yields

〈[Λs, w]g,Λsh〉 ≤ C‖w‖Hs+1‖g‖Hs−1‖h‖Hs. (14)

Similarly, for q0 = s and −s < r ≤ 1, we obtain from the second estimate
that

〈Λ[Λs, w]h,Λs−1g〉 ≤C‖Λ[Λs, w]h‖L2‖Λs−1g‖L2

≤C‖[Λs, w]h‖H1‖g‖Hs−1

≤C‖w‖Hs+1‖h‖Hs‖g‖Hs−1. (15)

We are now ready to prove the main result for the CH approximation of the
IB equation (an extension of the following theorem to the nonlocal equation
will be given in Section 5 (see Theorem 5.2)):

Theorem 4.2. Let w0 ∈ Hs+6(R), s > 1/2 and suppose that wǫ,δ is the
solution of the CH equation (3) with initial value w(x, 0) = w0(x). Then,
there exist T > 0 and δ1 ≤ 1 such that the solution uǫ,δ of the Cauchy
problem for the IB equation

utt − uxx − δ2uxxtt − ǫ(u2)xx = 0

u(x, 0) = w0(x), ut(x, 0) = wǫ,δ
t (x, 0),

satisfies
‖uǫ,δ(t)− wǫ,δ(t)‖Hs ≤ C

(
ǫ2 + δ4

)
t

for all t ∈
[
0, T

ǫ

]
and all 0 < ǫ ≤ δ ≤ δ1.

Proof. We fix the parameters ǫ and δ such that 0 < ǫ ≤ δ ≤ 1. Let r = u−w.
We define

T ǫ,δ
0 = sup

{
t ≤ T ǫ,δ : ‖r(τ)‖Hs ≤ 1 for all τ ∈ [0, t]

}
. (16)

We note that either
∥∥∥r

(
T ǫ,δ
0

)∥∥∥
Hs

= 1 or T ǫ,δ
0 = T ǫ,δ. Moreover, in the latter

case we must have T ǫ,δ
0 = T ǫ,δ = T/ǫ by the discussion above about for the
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maximal time T ǫ,δ
max. For the rest of the proof we will drop the superscripts

ǫ, δ to simplify the notation. Henceforth, we will take t ∈ [0, T ǫ,δ
0 ]. Obviously,

the function r = u − w satisfies the initial conditions r(x, 0) = rt(x, 0) = 0.
Furthermore, it satisfies the evolution equation

(
1− δ2D2

x

)
rtt − rxx − ǫ

(
r2 + 2wr

)
xx

= −Fx,

with the residual term Fx = wtt − wxx − δ2wxxtt − ǫ(w2)xx that was already
estimated in (13)). We define a function ρ so that r = ρx with ρ(x, 0) =
ρt(x, 0) = 0. This is possible since r satisfies the initial conditions r(x, 0) =
rt(x, 0) = 0 (see [10] for details). In what follows we will use both ρ and r to
further simplify the calculation. The above equation then becomes

(
1− δ2D2

x

)
ρtt − rx − ǫ

(
r2 + 2wr

)
x
= −F. (17)

Motivated by the approach in [13], we define the ”energy” as

E2
s (t) =

1

2

(
‖ρt(t)‖

2
Hs + δ2 ‖rt(t)‖

2
Hs + ‖r(t)‖2Hs

)
+ ǫ 〈Λs(w(t)r(t)),Λsr(t)〉

+
ǫ

2

〈
Λsr2(t),Λsr(t)

〉
. (18)

Note that

|〈Λs(wr),Λsr〉| ≤ C ‖r(t)‖2Hs , and
∣∣〈Λsr2,Λsr

〉∣∣ ≤ ‖r(t)‖3Hs ≤ ‖r(t)‖2Hs ,

where we have used (16). Thus, for sufficiently small values of ǫ, we have

E2
s (t) ≥

1

4

(
‖ρt‖

2
Hs + δ2 ‖rt‖

2
Hs + ‖r‖2Hs

)
,

which shows that E2
s (t) is positive definite. The above result also shows that

an estimate obtained for E2
s gives an estimate for ‖r(t)‖2Hs . Differentiating

E2
s (t) with respect to t and using (17) to eliminate the term ρtt from the

resulting equation we get

d

dt
E2

s =
d

dt

(
ǫ 〈Λs(wr),Λsr〉+

ǫ

2

〈
Λsr2,Λsr

〉)
− ǫ

〈
Λs(r2 + 2wr),Λsrt

〉

− 〈ΛsF,Λsρt〉

=ǫ [〈Λs(wtr),Λ
sr〉 − 〈Λs(wr),Λsrt〉+ 〈Λsr,Λs(wrt)〉+ 〈Λs(rrt),Λ

sr〉

−
1

2

〈
Λsr2,Λsrt

〉]
− 〈ΛsF,Λsρt〉 . (19)
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The first term in the parentheses and the last term are estimated as

〈Λs(wtr),Λ
sr〉 ≤C ‖r‖2Hs ≤ CE2

s

〈ΛsF,Λsρt〉 ≤‖F‖Hs‖ρt‖Hs ≤ C
(
ǫ2 + δ4

)
Es,

respectively, where we have used Lemma 3.1. We rewrite the second and the
third terms in the parentheses in (19) as

−〈Λs(wr),Λsrt〉+ 〈Λsr,Λs(wrt)〉 =

∫
[−Λs(wr)Λsrt + ΛsrΛs(wrt)] dx

=− 〈[Λs, w]r,Λsrt〉+ 〈[Λs, w]rt,Λ
sr〉.
(20)

Furthermore, using the commutator estimates (14)-(15) we get the following
estimates for the two terms in (20):

〈[Λs, w]r,Λsrt〉 =〈Λ[Λs, w]r,Λs−1rt〉 ≤ C‖w‖Hs+1‖r‖Hs‖rt‖Hs−1 , (21)

〈[Λs, w]rt,Λ
sr〉 ≤C‖w‖Hs+1‖r‖Hs‖rt‖Hs−1 . (22)

We rewrite the fourth and fifth terms in the parentheses in (19) as

〈Λs(rrt),Λ
sr〉−

1

2

〈
Λsr2,Λsrt

〉

=
〈
Λs−1

(
1−D2

x

)
r,Λs−1(rrt)

〉
−

1

2

〈
Λs−1

(
1−D2

x

)
r2,Λs−1rt

〉

=
〈
Λs−1r,Λs−1(rrt)

〉
−

1

2

〈
Λs−1(r2 − 2r2x),Λ

s−1rt
〉

−
(〈
Λs−1(rrt),Λ

s−1rxx
〉
−

〈
Λs−1rt,Λ

s−1(rrxx)
〉)

.

Then, if we group the first two terms together and the last two terms together
in the above equation, we obtain the following estimates
∣∣∣∣
〈
Λs−1r,Λs−1(rrt)

〉
−

1

2

〈
Λs−1(r2 − 2r2x),Λ

s−1rt
〉∣∣∣∣ ≤C‖r‖2Hs−1‖rt‖Hs−1,

≤C‖r‖2Hs‖rt‖Hs−1 ,∣∣〈Λs−1(rrt),Λ
s−1rxx

〉
−

〈
Λs−1rt,Λ

s−1(rrxx)
〉∣∣ ≤C‖r‖Hs‖rt‖Hs−1‖rxx‖Hs−2

≤C‖r‖2Hs‖rt‖Hs−1 .

Note that the second line follows from (20) and ( 21) where w, r, rt are re-
placed, respectively, by r, rt, rxx and s by s− 1. Also, we remind that

‖rt‖Hs−1 = ‖ρxt‖Hs−1 ≤ ‖ρt‖Hs ≤ CEs (t)
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and ‖r‖Hs ≤ 1. Combining all the above results we get from (19) that

d

dt
E2

s (t) ≤ C
(
ǫE2

s (t) +
(
ǫ2 + δ4

)
Es(t)

)
.

As Es(0) = 0, Gronwall’s inequality yields

Es(t) ≤
ǫ2 + δ4

ǫ

(
eCǫt − 1

)
≤ CeCT

(
ǫ2 + δ4

)
t

≤C ′ (ǫ2 + δ4
)
t for t ≤ T ǫ,δ

0 ≤
T

ǫ
.

Finally recall that T ǫ,δ
0 was determined by the condition (16). The above

estimate shows that
∥∥∥r

(
T ǫ,δ
0

)∥∥∥
s
≤ C ′ (ǫ2 + δ4)T ǫ,δ

0 < 1 for ǫ ≤ δ small

enough. Then T ǫ,δ
0 = T ǫ,δ and furthermore T ǫ,δ = T

ǫ
, and this concludes the

proof.

We want to conclude with some remarks about the above proof.

Remark 1. Theorem 4.2 shows that the approximation error is O ((ǫ2 + δ4)t)
for times of order O(1

ǫ
). Consequently, the CH approximation provides a good

approximation to the solution of the IB equation for large times.

Remark 2. The key step is to use the extra ǫ terms in the energy E2
s , where

we have adopted the approach in [13]. This allows us to replace ‖rt‖Hs by
‖rt‖Hs−1 hence avoiding the loss of δ in our estimates. The proofs in [13]
work for integer values of s, whereas via commutator estimates our result
holds for general s. The standard approach of taking the energy as

Ẽ2
s (t) =

1

2

(
‖ρt(t)‖

2
Hs + δ2 ‖rt(t)‖

2
Hs + ‖r(t)‖2Hs

)

would give the estimate

Ẽs(t) ≤
(
ǫ2 + δ4

) ǫ

δ

(
eC

ǫ
δ
t − 1

)
,

in turn implying Ẽs(t) ≤ C ′ (ǫ2 + δ4) t for times t ≤ δ
ǫ
T , that is, only for

relatively shorter times.

12



5 The Nonlocal Wave Equation

In this section we return to the nonlocal equation (2) and extend the anal-
ysis of the previous sections concerning the IB equation (1) to (2). We will
very briefly sketch the main features of the nonlocal equation, referring the
reader to [10] for more details. In [10], for the propagation of strain waves
in a one-dimensional, homogeneous, nonlinearly and nonlocally elastic infi-
nite medium the following wave equation was proposed (here we restrict our
attention to the quadratically nonlinear equation):

Uττ = β ∗ (U + U2)XX (23)

where U = U(X, τ) is a real-valued function. Following the assumptions in
[10], the kernel function β(X) is even and its Fourier transform satisfies the
ellipticity condition

c1
(
1 + η2

)−r/2
≤ β̂(η) ≤ c2

(
1 + η2

)−r/2
(24)

for some c1, c2 > 0 and r ≥ 2, where η is the Fourier variable corresponding to
X . Then the convolution can be considered as an invertible pseudodifferential
operator of order r. The following result on the local well-posedness of the
Cauchy problem was originally given in [10]:

Theorem 5.1. Let r ≥ 2 and s > 1/2. For U0, U1 ∈ Hs(R), there is some
τ ∗ > 0 such that the Cauchy problem for (23) with initial values U(X, 0) =
U0(X), Uτ (X, 0) = U1(X) has a unique solution U ∈ C2([0, τ ∗], Hs(R)).

Moreover, as in the case of the IB equation, the L∞ blow-up condition

lim
τ→τ−max

sup ‖U(τ)‖L∞ = ∞

determines the maximal existence time if it is finite.
We note that, under the transformation defined by

U(X, τ) = ǫu(x, t), x = δX, t = δτ, (25)

(23) becomes (2) with βδ(x) =
1
δ
β(X) = 1

δ
β(x

δ
). Recall that the functional

relationship between the Fourier transforms of β(X) and βδ(x) is as follows:

β̂(η) = β̂(δξ) = β̂δ(ξ) where ξ is the Fourier variable corresponding to x.
Theorem 5.1 applies for (2) with t ∈ [0, T ǫ,δ]. Note that if we choose the

13



kernel function in the form βδ(x) =
1
2δ
e−|x|/δ (in which β(X) = 1

2
e−|X|, β̂(η) =

(1 + η2)
−1

and β̂δ(ξ) = (1 + δ2ξ2)
−1

), then (2) recovers the IB equation (1).
Our aim is to prove that, in the long-wave limit, the unidirectional so-

lutions of the nonlocal equation are well approximated by the solutions of
the CH equation under certain minimal conditions on β (equivalently on βδ).
From now on, we will make the following assumptions on the moments of β:

∫
β(X)dX = 1,

∫
X2β(X)dX = 2,

∫
X4|β(X)|dX < ∞. (26)

Proposition 3. Suppose that β satisfies the conditions in (26). Then there
is a continuous function m such that

1

β̂(η)
= 1 + η2 + η4m(η). (27)

Proof. Since the Fourier transform of −iXβ(X) equals d
dη
β̂(η), (26) implies

that β̂ ∈ C4 and

β̂(0) =

∫
β(X)dX = 1, (β̂)′′(0) = −

∫
X2β(X)dX = −2. (28)

Then 1/β̂(η) ∈ C4, 1/β̂(0) = 1 and
(
1/β̂

)′′
(0) = 2. As β is even, the odd

moments, hence the odd derivatives of 1/β̂(η), vanish at η = 0. Thus the
function defined as

m(η) =

1

β̂(η)
− 1− η2

η4

for η 6= 0 can be extended continuously to η = 0.

Remark 3. The above assumption is not very restrictive in our setting. For
instance, if

∫
β(X)dX = a and

∫
X2β(X)dX = b > 0, a suitable scaling will

reduce it to the above case.

The lower bound in (24) shows that

0 <
1

β̂(η)
= 1 + η2 + η4m(η) ≤ c−1

1 (1 + η2)r/2.

Thus

η4|m(η)| ≤ c−1
1 (1 + η2)r/2 + (1 + η2) ≤ C(1 + η2)r/2.

14



Since m(η) is continuous, this implies

|m(η)| ≤ C(1 + η2)
r−4

2 ,

so that m has order r − 4. We note that under the scaling (25) we have

1

β̂δ(ξ)
= 1 + δ2ξ2 + δ4ξ4m(δξ). (29)

We define the pseudodifferential operators

MU = F−1
(
m(η)Û(η)

)
, Mδu = F−1 (m (δξ) û(ξ)) .

When r > 4, we have

|m(δξ)| ≤ C(1 + δ2ξ2)
r−4

2 ≤ C(1 + ξ2)
r−4

2 ,

so that
‖Mδu‖Hs ≤ C ‖u‖Hs+r−4 .

On the other hand, when r ≤ 4, we get

|m(δξ)| ≤ C(1 + δ2ξ2)
r−4

2 ≤ C,

so that
‖Mδu‖Hs ≤ C ‖u‖Hs .

Thus we have the uniform estimates for Mδu:

‖Mδu‖Hs ≤ C ‖u‖Hs+σ−4 , σ = max{r, 4}. (30)

Due to (25), MU = ǫMδu. Multiplying (23) by (1−D2
X +D4

XM) and (2) by
(1− δ2D2

x + δ4D4
xMδ) we rewrite (23) and (2) more familiar forms

(
1−D2

X +D4
XM

)
Uττ − UXX =

(
U2

)
XX

(31)

and (
1− δ2D2

x + δ4D4
xMδ

)
utt − uxx = ǫ

(
u2
)
xx

, (32)

respectively.
When we apply the formal asymptotic approach given in [11] to (32)

(in [11] it was used to derive the CH equation from the IB equation), we

15



again get exactly the same result, that is, the CH equation. As remarked
in [11], this follows from the observation that the extra term δ4D4

xMδ will
only give rise to O (δ4) terms and these terms do not affect the derivation in
[11]. The following theorem gives the convergence of the formal asymptotic
expansion and shows that the right-going solutions of (32) (and (2)) are well
approximated by the solutions of the CH equation.

Theorem 5.2. Let w0 ∈ Hs+σ+2(R), s > 1/2, σ = max{r, 4} and suppose
wǫ,δ is the solution of the CH equation (3) with initial value w(x, 0) = w0(x).
Then, there exist T > 0 and δ1 ≤ 1 such that the solution uǫ,δ of the Cauchy
problem for (32) (equivalently for (2))

(
1− δ2D2

x + δ4D4
xMδ

)
utt − uxx − ǫ(u2)xx = 0,

u(x, 0) = w0 (x) , ut (x, 0) = wǫ,δ
t (x, 0) ,

satisfies
‖uǫ,δ(t)− wǫ,δ(t)‖Hs ≤ C

(
ǫ2 + δ4

)
t

for all t ∈
[
0, T

ǫ

]
and all 0 < ǫ ≤ δ ≤ δ1.

Proof. The proof follows a similar pattern to that of the proof of Theorem
4.2. The only difference is that (32) involves additional term δ4D4

xMδutt.
Following closely the scheme in the proof of Theorem 4.2 corresponding to
case of the IB equation, we now outline the proof. First we note that plugging
the solution wǫ,δ of the CH equation into (32) leads to a residual term DxF

M

with FM = F + δ4D3
xMδwtt where DxF is the residue term corresponding to

the IB case, given in (9). Going through a cancelation process similar to the
cancelations in the IB case, we get

∥∥D3
xMδwtt

∥∥
Hs ≤ C

∥∥D3
xwtt

∥∥
Hs+σ−4 ≤ C ‖wt‖Hs+σ−4+4 = C ‖wt‖Hs+σ ,

where we use the estimate (30) for Mδ and (12) for D3
xwtt. Since σ ≥ 4, we

have ∥∥FM(t)
∥∥
Hs ≤ C(ǫ2 + δ4) (‖w‖Hs+σ+1 + ‖wt‖Hs+σ) .

Thus we take k = σ + 1 in Corollary 1 to get a uniform bound on FM . The
next step is to define the energy as

E2
s,M = E2

s +
1

2
δ4 〈ΛsMδDxrt(t),Λ

sDxrt(t)〉 ,
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where E2
s is given by (18). We note that the extra term in E2

s,M is not
necessarily positive. Yet recalling that r = ρx and collecting the ρt and rt
terms in E2

s,M we have:

‖ρt‖
2
Hs + δ2 ‖rt‖

2
Hs − δ4

〈
ΛsD2

xMδrt,Λ
srt

〉
=
〈
Λs

(
1− δ2D2

x + δ4D4
xMδ

)
ρt,Λ

sρt
〉

=

∫
(1 + ξ2)

s

β̂(δξ)
|ρ̂t(ξ)|

2 dξ

≥c−1
2

∫
(1 + ξ2)s(1 + δ2ξ2)r/2 |ρ̂t(ξ)|

2 dξ

≥c−1
2

∫
(1 + ξ2)s(1 + δ2ξ2) |ρ̂t(ξ)|

2 dξ

=c−1
2

(
‖ρt‖

2
Hs + δ2 ‖ρxt‖

2
Hs

)

=c−1
2

(
‖ρt‖

2
Hs + δ2 ‖rt‖

2
Hs

)
.

Hence E2
s,M ≥ CE2

s . It is straightforward to compute the time derivative
of E2

s,M since as the extra term vanishes due to (31) and we are left with
the same right-hand side as in the previous section and hence with the same
conclusion.

Remark 4. We conclude from Theorem 5.2 that the comments made in
Remark 1 on the precision of the CH approximation to the IB equation are
also valid for the nonlocal equation.

6 The BBM and KdV Approximations

In this section we consider the BBM equation and the KdV equation which
characterize the particular cases of the CH equation and we show how the
results of the previous sections can be used to obtain the results for these
two equations. The analysis is similar in spirit to that of Sections 3 and 4,
we therefore give only the main steps in the proofs.

6.1 The BBM Approximation

When we neglect terms of order ǫδ2 in the CH equation (3), we get the BBM
equation

wt + wx + ǫwwx −
3

4
δ2wxxx −

5

4
δ2wxxt = 0, (33)
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which is a well-known model for unidirectional propagation of long waves in
shallow water [2]. It should be noted that, in order to write this equation
in a more standard form, the term wxxx can be eliminated by means of the
coordinate transformation given in Section 1. Obviously, the BBM equation
(33) is a special case of (5) with κ1 = 1, κ2 = κ3 = 0, κ4 = −3

4
, κ5 = −5

4
and

κ6 = κ7 = 0. Then, for the BBM equation, Corollary 1 takes the following
form:

Corollary 2. Let w0 ∈ Hs+k+1 (R), s > 1/2, k ≥ 1. Then, there exist T > 0,
C > 0 and a unique family of solutions

wǫ,δ ∈ C

(
[0,

T

ǫ
], Hs+k(R)

)
∩ C1

(
[0,

T

ǫ
], Hs+k−1(R)

)

to the BBM equation (33) with initial value w(x, 0) = w0(x), satisfying

∥∥wǫ,δ (t)
∥∥
Hs+k +

∥∥∥wǫ,δ
t (t)

∥∥∥
Hs+k−1

≤ C,

for all 0 < δ ≤ 1, ǫ ≤ δ and t ∈ [0, T
ǫ
].

As we did in Section 3, we plug the solution w of the Cauchy problem of
the BBM equation into the IB equation. Then the residual term f is given
by (7) but now w represents a solution of the BBM equation. Making use
of the approach in Section 3, we obtain f corresponding to the case of the
BBM approximation in the form f = Fx with

F =ǫ2
(
w3

3

)

x

−
1

4
ǫδ2 (6wwxxt + 2wxwxt + wtwxx − 9wxwxx)

+
1

16
δ4D3

x (5wtt − 12wxt − 9wxx) .

Thus we have the BBM version of Lemma 3.1, namely the uniform estimate

‖F (t)‖Hs ≤ C
(
ǫ2 + δ4

)
.

The rest of the proof holds and we obtain the BBM version of Theorem 4.2:

Theorem 6.1. Let w0 ∈ Hs+6(R), s > 1/2 and suppose wǫ,δ is the solution
of the BBM equation (33) with initial value w(x, 0) = w0(x). Then, there
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exist T > 0 and δ1 ≤ 1 such that the solution uǫ,δ of the Cauchy problem for
the IB equation

utt − uxx − δ2uxxtt − ǫ(u2)xx = 0

u(x, 0) = w0(x), ut(x, 0) = wǫ,δ
t (x, 0),

satisfies
‖uǫ,δ(t)− wǫ,δ(t)‖Hs ≤ C

(
ǫ2 + δ4

)
t

for all t ∈
[
0, T

ǫ

]
and all 0 < ǫ ≤ δ ≤ δ1.

Following the arguments in Section 5, we may extend Theorem 6.1 to the
general class of nonlocal wave equations, namely

Theorem 6.2. Let w0 ∈ Hs+σ+2(R), s > 1/2, σ = max{r, 4} and suppose
wǫ,δ is the solution of the BBM equation (33) with initial value w(x, 0) =
w0(x). Then, there exist T > 0 and δ1 ≤ 1 such that the solution uǫ,δ of the
Cauchy problem for the nonlocal equation

utt = βδ ∗ (u+ ǫu2)xx

u(x, 0) = w0(x), ut(x, 0) = wǫ,δ
t (x, 0),

satisfies
‖uǫ,δ(t)− wǫ,δ(t)‖Hs ≤ C

(
ǫ2 + δ4

)
t

for all t ∈
[
0, T

ǫ

]
and all 0 < ǫ ≤ δ ≤ δ1.

6.2 The KdV Approximation

The KdV equation [16]

wt + wx + ǫwwx +
δ2

2
wxxx = 0 (34)

is also a well-known model for unidirectional propagation of long waves in
shallow water and it has the same order of accuracy as the BBM equation.
In fact, the KdV equation (34) is a special case of (5) with κ1 = 1, κ4 = 1/2,
κ2 = κ3 = κ5 = κ6 = κ7 = 0. However, Proposition 1 will not apply to the
KdV equation because the condition κ5 < 0 is not satisfied. Instead we refer
to the following theorem proved by Alazman et al in [1]:

19



Theorem 6.3. (Theorem A2 in [1]) Let s ≥ 1 be an integer. Then for every
K > 0, there exists C > 0 such that the following is true. Suppose q0 ∈ Hs

with ‖q0‖Hs ≤ K, and let q be the solution of the KdV equation

qt + qx +
3

2
ǭqqx +

1

6
ǭqxxx = 0 (35)

with initial data q(x, 0) = q0(x). Then for all ǭ ∈ (0, 1] and all t ≥ 0,

‖q(t)‖Hs ≤ C.

Further, for every integer l such that 1 ≤ 3l ≤ s, it is the case that

∥∥Dl
tq(t)

∥∥
Hs−3l ≤ C.

It is easy to see that the substitution

w =
9

2

δ2

ǫ
q, δ2 =

ǭ

3
(36)

transforms (34) into (35). Suppose c1 ≤ δ2

ǫ
≤ c2 with positive constants c1

and c2. Then we have

‖w(t)‖Hs =
9

2

δ2

ǫ
‖q(t)‖Hs ≤

9

2
c2 ‖q(t)‖Hs (37)

and

‖q0‖Hs =
2

9

ǫ

δ2
‖w0‖Hs ≤

2

9c1
‖w0‖Hs . (38)

We thus reach the following corollary:

Corollary 3. Let s + k ≥ 1 be an integer. Suppose w0 ∈ Hs+k and let wǫ,δ

be the solution of the KdV equation (34) with initial data w(x, 0) = w0(x).

Then there is some C such that for all δ2 ∈ (0, 1
3
] and all ǫ ∈

[
δ2

c2
, δ

2

c1

]
with

positive constants c1 and c2 and all t ≥ 0,

∥∥wǫ,δ(t)
∥∥
Hs+k +

∥∥∥wǫ,δ
t (t)

∥∥∥
Hs+k−3

≤ C.

We next plug the solution wǫ,δ of the KdV equation (34) into the IB
equation. Again, omitting the indices ǫ, δ, the residual term f is given by
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(7). Following the steps in Section 3, we obtain f corresponding to the case
of the KdV approximation in the form f = Fx with

F = Dx

{
1

3
ǫ2w3 +

1

4
ǫδ2

[
−3(wx)

2 + 4(wwx)t
]
+

1

4
δ4(−wxxxx + 2wxxxt)

}
.

As there are at most five derivatives of w and four derivatives of wt in F ,
we will choose k = 7 in the corollary to get the KdV version of Lemma 3.1,
namely the estimate:

‖F (t)‖Hs ≤ Cǫ2

for the residual term.
Although the above results hold for all times, to follow the approach in

the previous sections we fix some T > 0 and restrict ourselves to the time
interval [0, T

ǫ
]. As in the previous cases, the residual estimate leads to the

following theorem:

Theorem 6.4. Let w0 ∈ Hs+7(R), s ≥ 1 an integer and suppose wǫ,δ is the
solution of the KdV equation (34) with initial value w(x, 0) = w0(x). Then,
for any T > 0 and 0 < c1 < c2 there exist δ21 ≤ 1

3
and C > 0 such that the

solution uǫ,δ of the Cauchy problem for the IB equation

utt − uxx − δ2uxxtt − ǫ(u2)xx = 0

u(x, 0) = w0(x), ut(x, 0) = wǫ,δ
t (x, 0),

satisfies
‖uǫ,δ(t)− wǫ,δ(t)‖Hs ≤ Cǫ2t

for all t ∈
[
0, T

ǫ

]
and all δ ∈ (0, δ1], ǫ ∈

[
δ2

c2
, δ

2

c1

]
.

The result in Theorem 6.4, namely the rigorous justification of the KdV
approximation of the IB equation, was already proved by Schneider [18].
The discussion in Section 5 allows us to prove a similar theorem for the
general class of nonlocal wave equations. Again we have to estimate the
term D3

xMδwtt in the residue FM . We get

∥∥D3
xMδwtt

∥∥
Hs ≤ ‖wtt‖Hs+3+σ−4 ≤ C ‖w‖Hs+3+σ−4+6 = C ‖w‖Hs+σ+5 ,

which requires taking k = σ + 5 in Corollary 3. Hence we get:

21



Theorem 6.5. Let w0 ∈ Hs+σ+5(R), s > 1/2, s+σ an integer, σ = max{r, 4}
and suppose wǫ,δ is the solution of the KdV equation (34) with initial value
w(x, 0) = w0(x). Then, for any T > 0 and 0 < c1 < c2 there exist δ21 ≤ 1

3

and C > 0 such that the solution uǫ,δ of the Cauchy problem for the nonlocal
equation

utt = βδ ∗ (u+ ǫu2)xx

u(x, 0) = w0(x), ut(x, 0) = wǫ,δ
t (x, 0),

satisfies
‖uǫ,δ(t)− wǫ,δ(t)‖Hs ≤ Cǫ2t

for all t ∈
[
0, T

ǫ

]
and all δ ∈ (0, δ1], ǫ ∈

[
δ2

c2
, δ

2

c1

]
.

We finally note that in the KdV case T can be chosen arbitrarily large
while in the CH or the BBM cases T is determined by the equation.
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