
SentiTurkNet: a Turkish polarity lexicon for sentiment
analysis

Rahim Dehkharghani1 • Yucel Saygin1 •

Berrin Yanikoglu1 • Kemal Oflazer2

Abstract Sentiment analysis aims to extract the sentiment polarity of given seg-

ment of text. Polarity resources that indicate the sentiment polarity of words are

commonly used in different approaches. While English is the richest language in

regard to having such resources, the majority of other languages, including Turkish,

lack polarity resources. In this work we present the first comprehensive Turkish

polarity resource, SentiTurkNet, where three polarity scores are assigned to each

synset in the Turkish WordNet, indicating its positivity, negativity, and objectivity

(neutrality) levels. Our method is general and applicable to other languages.

Evaluation results for Turkish show that the polarity scores obtained through this

method are more accurate compared to those obtained through direct translation

(mapping) from SentiWordNet.
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1 Introduction

Sentiment analysis and opinion mining on natural language text have received much

attention in the last two decades. The goal of sentiment analysis is to extract the

aggregate opinion that is embedded in given data. Sentiment analysis is often

performed on textual data (e.g., a review or comment), while the input may also be a

speech or video recording whose sentimental polarity is to be estimated. Popular

applications of sentiment analysis include automatic extraction of the sentiment

from the social media, about a particular product, service, or even political events.

Polarity lexicons are commonly used in estimating the sentiment polarity of a

review based on the polarity of its constituent words obtained from the lexicon.

While simpler approaches only use a polarity lexicon (Vural et al. 2012), more

advanced approaches also benefit from labelled data in the given domain (a corpus

of reviews with known polarities) (Pang et al. 2002; Ye et al. 2009; Agarwal et al.

2011; Gezici et al. 2012). The latter approaches consisting of statistical and

learning-based methods are effective when there is sufficient data to learn from.

They also work well in document level where there is sufficient information, but not

necessarily in finer grained levels, such as phrase level (Havasi et al. 2013).

General-purpose polarity lexicons such as SentiWordNet (Baccianella et al.

2010) are domain-independent and have the shortcomings that they do not capture

sentiment variations across different domains or cultures, nor can they handle the

changing aspects of the language; however, these lexicons do provide a fast and

scalable approach to sentiment analysis.

A typical example for the shortcomings of domain-independent polarity lexicons

is the term ‘‘big’’ that is positive for room size in the hotel domain but negative when

referring to battery size in camera domain. As for cultural–dependence, one can give

the example of the noun ‘‘Atatürk’’ (a former Turkish leader) which is mostly

positive in Turkish culture, while it may be neutral in others. In order to solve these

issues, domain-dependent and language-dependent (or culturally-dependent) lexi-

cons are required. Another issue is that while languages are changing, polarity

resources also need to be updated to reflect the changes. However doing so manually

is time consuming, costly and open for bias. Finally, the polarity of an idiomatic

phrase may differ from the polarity of its parts. For example, ‘‘costing an arm and a

leg’’ has a negative sentiment while no single word has negative polarity in the

phrase. Hence, covering idioms is also necessary for sentiment analysis.

The need for domain-specific lexicons is approaches by some researchers as an

adaptation problem where a general purpose polarity lexicon is adapted to a specific

domain using some domain-specific data (Choi and Cardie 2009; Demiröz et al.

2012). Others have worked on constructing a lexicon in a given domain starting

from a seed word set (Hatzivassiloglou and Mckeown 1997).

Yet another issue in sentiment analysis is the need for common sense knowledge

to properly understand the meaning or sentiment in a given text. Common sense

knowledge can be defined as the collection of facts and information that people build

up during their lives. While there are common sense knowledge resources such as

Cyc (Lenat and Guha 1989) and ConceptNet (Havasi et al. 2007) for English, there



are only few works to build (Cambria et al. 2012) or incorporate common sense

knowledge in different recognition/understanding tasks, including sentiment analysis

or language understanding (Wang et al. 2013; Sureka et al. 2009).

Numerous polarity resources already exist for English, e.g., SentiWordNet

(SWN), SenticNet (SN) (Cambria et al. 2014), and NRC Emotion Lexicon

(Mohammad and Turney 2013). On the other hand, the absence of polarity

resources in many other languages such as Turkish, hampers the development of

sentiment analysis tools and applications in these languages. In order to close this

gap in Turkish, we have undertaken the development of the first polarity resource

for Turkish.

A simple approach for building polarity resources for non-English languages has

been to translate available polarity resources fromEnglish. The reason whywe did not

take the same approach and translate SentiWordNet to Turkish is twofold. Firstly,

meaning between languages is often lost in translation. Translating a Turkish word

into an English word only implies that this English word is the closest term in English

for the given Turkish word, rather than their meaning being equivalent. Indeed, the

meaning of many words only exist within a native context: The Turkish word ‘‘gönül’’
which is translated to English as ‘‘heart/soul/feelings’’ lacks a single equivalent term

in English. Secondly, translation of meaning does not necessarily correspond to

translation of the polarity strength in language dependent terms. For example, ‘‘Tanrı’’
[God] is a positive term in Turkish although the term may be objective in another

language. Indeed, polarity scores given in SentiWordNet for the synset ‘‘supreme-

being, God’’ are (pos, neg, obj) = (0, 0, 1), supporting this observation.

In this paper, we propose a semi-automatic method for assigning polarity

strengths to the synsets in the Turkish WordNet, by starting from a manually

labelled polarity lexicon indicating only the polarity class (positive, negative, or

objective/neutral) of these synsets. The method uses the correspondence information

obtained from Turkish WordNet and the polarity strength of the equivalent synset

from SentiWordNet to derive the polarity strength of a particular synset. Although

we applied the proposed methodology on Turkish, our method is language

independent and can be applied on other languages.

We evaluated the assigned polarity scores using three different evaluation

methods, as explained in Sect. 6.3. Experimental results show that the polarity

scores obtained are reliable and our methodology outperforms the baseline method

of directly translating SentiWordNet.

The contributions of this paper can then be summarized as (1) proposing a novel

language-independent approach to build a polarity lexicon based on WordNet and

(2) building the first such sentiment polarity resource for Turkish and evaluating its

accuracy.

2 Turkish and its challenges in sentiment analysis

Turkish is a member of the Turkic family of Altaic languages. Particular

characteristics of Turkish make natural language processing (NLP) and sentiment

analysis tasks difficult for this language. Morphologically, Turkish is an



agglutinative language with morphemes attaching to a root word as ‘‘beads-on-a-

string’’. Words are formed by very productive affixations of multiple suffixes to root

words, from a lexicon of about 30K root words (not counting proper names.) Nouns

do not have any classes nor are there any markings of grammatical gender in

morphology and syntax. When used in the context of a sentence, Turkish words can

take many inflectional and derivational suffixes. It is quite common to construct

words which correspond to almost a sentence in English: For example, the

equivalent of the Turkish word: ‘‘sağlamlas�tırabileceksek’’ in English can be

expressed with the fragment if we will be able to make [it] become strong (fortify it)
(Oflazer and Bozşahin 1994).

For Turkish, the morphological structure of a word is also necessary for

sentiment analysis in addition to the root word, as suffixes may change the polarity

of a word. For instance, the word is�tahsız (having no appetite), is negative (due to

suffix-sız), while its antonym, is�tahlı, is positive (due to suffix-lı). Note that the root
word itself, is�tah, is also positive. This issue is handled in our system busing

morphological analysis to extract and analyze suffixes of synonym terms and gloss

in a synset.

3 Related work

In this section, We report some works related to polarity lexicon generation and

discuss them under three groups: ‘‘English’’, ‘‘Turkish’’, and ‘‘Other Languages’’.

Comprehensive surveys on sentiment analysis can be found in Havasi et al. (2013)

and Liu (2012).

There exist a few well-known polarity lexicons in English, such as SentiWordNet

and SenticNet, as explained in Sect. 4. Some research in the area of polarity lexicon

generation aim to improve these resources by modifying the polarity scores so as to

be more accurate. For instance, Hung and Lin (2013) re-evaluate the polarities of

objective words that make up more than 93 % of all the words in SentiWordNet by

assessing their associated sentences. The proposed revision improves the sentiment

classification accuracies significantly (by around 4 %). Poria et al. (2013) enrich

SenticNet with affective information, by assigning an emotion label to each term,

using WordNet Affect (Strapparava et al. 2004). Other work contribute to polarity

lexicon generation by taking special cases into account. For instance, Bosco et al.

(2013) developed a corpora with irony detection which is a difficult problem for

sentiment analysis systems. In Tsai et al. (2013), a two-step method is employed to

build a concept-level sentiment dictionary using common-sense knowledge. At the

first step, a sentiment value is assigned to each concept in ConceptNet (Havasi et al.

2007). Then a random-walk method is used to improve those sentiment values.

For Turkish, there are no previous efforts for developing sentiment lexicons, but

there have been a few attempts for sentiment analysis on Turkish texts. Kaya et al.

(2012) have investigated Turkish political news in online media. In this work,

unigrams and bigrams together with polar Turkish terms are used as classification

features, which in turn are used to train a classifier to estimate the label of unseen

documents. The authors have used four different classifiers: Naive Bayes, Maximum



Entropy, SVM, and a character based n-gram language model, and compared their

effectiveness. They conclude that the Maximum Entropy classifier and the n-gram

language model are more effective than SVM and Naive Bayes classifiers in

classifying Turkish political news. The classification accuracy in different cases

ranges from 65 to 77 %.

Eroğul (2009) investigated those linguistic information that affect sentiment

analysis such as POS tags and negation markers, along with unigrams and bigrams.

An NLP tool for Turkish [Zemberek (Akın and Akın 2007)] is used to analyse the

words. The obtained accuracy on classifying Turkish movie reviews into positive

and negative is reported to be 85 %.

Aytekin (2013) designed a model which assigns positive and negative polarities

to opinionated texts in Turkish blogs to present a general view on products and

services. The model uses semi-supervised learning based on the Naive Bayes

approach. The training set consists of Turkish words stating sentiments. Polar words

in this work have been translated from English. The obtained accuracy in this work

ranges from 65 to 84 % in different cases.

Vural et al. (2012) present a framework for unsupervised sentiment analysis in

Turkish text documents. They customized SentiStrength–a sentiment analysis

library for English–for Turkish by translating its polarity lexicon. SentiStrength

(Thelwall et al. 2012) is a sentiment analysis library which assigns a positive and a

negative score to an input text in English. In this work, after segmenting a text into

sentences and each sentence into terms, polarity scores are assigned to each

sentence by translating English polarity lexicon to Turkish. Zemberek is used also

for stemming, negation extraction, spell checking and ASCII to Turkish conversion.

The authors evaluated their framework by applying it on Turkish movie reviews and

report a classification accuracy of 76 % on classifying reviews as positive or

negative.

In languages other than English and Turkish, we report only one work which is

most relevant to ours. Das and Bandyopadhyay (2010) propose a method for

building SentiWordNet(s) for three Indian languages: Hindi, Bengali and Telugu.

The key focus in this work is translating English SentiWordNet and the Subjectivity

Word List (list of polar English terms) (Wilson et al. 2005) to a target language so

as to build a polarity resource. They also provide a game which lets a player assign

polarity values to each term. The main difference between this work and ours is that

in this work, two English polarity resources are translated to the target language,

while we use a more complex approach. In fact, we use a direct translation approach

as baseline and show that the proposed method outperforms that baseline.

4 Polarity resources used in building SentiTurkNet

4.1 English resources

We have used the following three English resources during the construction of

SentiTurkNet.



• English WordNet (Miller 1995): This lexical resource groups synonym terms in

a set called synset that includes a gloss (natural language explanation) for each

synset. There are about 117,000 synsets in English WordNet.

• SentiWordNet (Baccianella et al. 2010): This resource is built with the purpose

of supporting sentiment analysis tasks in English. Three polarity scores

summing to one are assigned, indicating the positivity, negativity, and

objectivity of each English Wordnet synset.

• SenticNet (Cambria et al. 2014): This resource assigns numerical values to each

term according to its pleasantness, attention, sensitivity, aptitude and also the

overall polarity strength. We have translated this resource to Turkish by a

bilingual dictionary1 and used the overall polarity strength as features in our

algorithm.

4.2 Turkish resources

We have used only one Turkish resource in this work: Turkish WordNet. This

resource consists of about 15,000 synsets along with the gloss, equivalent English

synset, POS tag and so on (Bilgin et al. 2004). Each synset includes these fields:

• Synonyms are the synonym terms in a synset.

• Gloss is the Turkish gloss for the synonym list. Gloss is not available for all

synsets; therefore we added them some explanations from the TDK (Turkish

Language Organization) monolingual dictionary2.

• Synset ID is a unique identifier for each synset.

• ILI ID is the Interlingual Index used for mapping the Turkish synset to its

equivalent English synset in English WordNet.

• POS tag is the part of speech tag of the terms in the synset –noun, verb, adverb,

or adjective.

• Hypernym synset ID is the synset ID of the hypernym synset (denoting a more

general concept). This ID is not available for all synsets; therefore we used only

those available.

• Near-antonym synset ID is the synset ID of the near-antonym synset. This ID is

not available for all synsets; therefore we used only those available.

A sample entry from Turkish WordNet is provided in the top part of Table 1. The

bottom part shows information derived from the manual labelling (Sect. 5.2) and

WordNet mapping (Sect. 4.2.1).

In the original version of Turkish WordNet, some of the synsets do not have

Turkish gloss. As our approach requires this gloss, we extracted Turkish

explanations for synsets from a Turkish dictionary (TDK). This mono-lingual

dictionary consists of over 80,000 entries.

1 http://www.seslisozluk.net.
2 http://www.tdk.gov.tr.

http://www.seslisozluk.net
http://www.tdk.gov.tr


4.2.1 WordNet mapping

Turkish Wordnet has been already mapped (one to one) to English WordNet by

using the ILIs. In this mapping, some Turkish synsets have a mapping to English

WordNet v2.0 and some others to WordNet v2.1. Since all synsets among different

versions of English WordNet have been mapped to each other, we used the existing

mappings between Turkish to English synsets, to map the Turkish WordNet to

English WordNet 3.0.

As SentiWordNet 3.0 is based on WordNet 3.0, we could then extract the polarity

scores of the equivalent English synset, for each Turkish synset from SentiWordNet.

These polarity scores are used as two features in Sect. 5.3 and to establish a baseline

to which the proposed method is compared against Sect. 6.2.

5 Building SentiTurkNet

The problem addressed in this paper is to build a polarity lexicon for Turkish,

indicating the polarity scores for all the synsets in the Turkish WordNet (14,795 of

them). The assigned polarity scores are triplets indicating the positivity, negativity,

and objectivity strength of each synset, summing to 1 as in SentiWordNet.

The proposed methodology starts manually assigning one of the three polarity

classes (positive, objective/neutral, or negative) to each one of the synsets. Note that

this is a relatively easy step compared to the ultimate goal of assigning sentiment

polarities to each synset, not just class labels.

After the manual labelling, we extract various features about the synsets from the

resources indicated in Sect. 4. The extracted features include some characteristics of

the synonyms and gloss of the synset, as indicated by different resources. We then

build a classifier to learn this classification given the features extracted from the

synsets. In other words, the classifier learns the mapping from extracted features to

polarity classes and once it is trained, the confidence scores returned by the classifier

for a given synset si are used as the polarity strength values posðsiÞ; objðsiÞ; negðsiÞ.
The process is illustrated in Fig. 1 and can be summarized in four steps that are

explained in the following subsections:

Table 1 A synset from the Turkish Wordnet extended with manually assigned sentiment class and

English WordNet mapping

Field Value

Synonyms güzellesùtirmek, süslemek

Gloss daha güzel hale getirmek

POS tag Verb

Synset label Pos

Hypernym synset label Pos

Near-antonym synset label Neg

Equivalent English synset Ameliorate, improve, better, amend...



• Step 1 Manually labelling all synsets in Turkish WordNet as positive, negative,

or objective (Sect. 5.2).

• Step 2 Extracting features related to each synset (Sect. 5.3).

• Step 3 Learning the mapping between synsets described by the extracted features

and the three class labels (positive, negative, objective/neutral) through machine

learning techniques (Sect. 5.4).

• Step 4 Combining output of the classifiers to obtain more accurate results. (Sect.

5.5)

5.1 Resource generation

In addition to the resources mentioned in Sect. 4, we developed and used two small

polarity lexicons in extracting features for the classification.

Polar Word Set (PWS) We have semi-automatically generated a list of polar Turkish

terms including 1000 positive and 1000 negative terms using the method proposed by

Hu and Liu (2004). This method uses the synonymy and antonymy relations between

terms to generate a large polar word set starting from a small seed set.

Polar words with PMI scores We have assigned polarity scores to each word in

PWS using Pairwise Mutual Information (PMI) score between that word and pure

positive or negative Turkish words listed in Table 2.

The PMI concept was first introduced by Turney (2002). Our PMI scores are

calculated according to co-occurrence of two terms in a database of 10,000 Turkish

Fig. 1 Flow diagram of the proposed methodology for building SentiTurkNet



sentences that have been manually labelled as positive, negative, or objective

(neutral). The PMI score of two words wi and wj is given in Eq. 1.

PMIðwi;wjÞ ¼
Pðwi;wjÞ

PðwiÞ � PðwjÞ
ð1Þ

where PðwiÞ is the probability of seeing wi in the above mentioned 10,000 labelled

Turkish sentences. Similarly Pðwi;wjÞ is the probability of seeing wiwj sequence in

a sentence in the same database.

In our case, wi is each one of the polar words in PWS and wj is a pure positive or

negative word in Table 2. Note that a higher PMI score between the term wi and

positive (or negative) terms indicates a higher positive (or negative) polarity for wi.

We calculate the PMI score of each word, wi, in PWS with ten pure positive

words and assign the average of these scores to wi as its positivity score (Eq. 2). The

negativity score (NegPMI) is computed in similar way by using the ten pure

negative word list.

PosPMIðwiÞ ¼
P

wj2PurePos PMIðwi;wjÞ
10

ð2Þ

where PurePos is the above mentioned ten pure positive word list in Table 2.

The word wi is then assumed to be positive according to the PMI scores, if

PosPMIðwiÞ is greater than its NegPMIðwiÞ.

5.2 Manual labelling of the polarity lexicon

As the first step, all 14,795 synsets in the Turkish WordNet are manually labelled to

indicate only their polarity class as positive, negative, or objective. The manual

labelling is done by native Turkish speakers. Labelling the synsets in this simple

manner, without assigning polarity strengths, is needed to train the classifier, whose

output scores are then used as polarity values.

5.3 Feature extraction

We extract 23 features shown in Table 3 for each synset. The extracted features

include some characteristics (e.g. average polarity) of the synonyms and gloss of the

synset, as indicated by different resources.

Before feature extraction, the gloss of each synsets are tokenized, then each token

is stemmed to extract its root word and suffixes.

Table 2 Pure positive and pure negative Turkish words used in the PMI formula

Pos. harika (excellent), güzel (beautiful/fine), mükemmel (perfect), sevgi (love), inanılmaz
(unbelievable), mühtesùem (gorgeous), iyi (good), sùahane (fantastic), hayırlı(good),
olumlu (positive)

Neg. berbat (terrible), korkunç (terrible), iğrenc (disgusting), rezil (abject), felaket (disaster),
kötü (bad), yetersiz (inadequate), üzgün (sad), fena (bad), olumsuz (negative)



• f1–f4: The first four features compute the average polarity scores of synonyms in

a synset using different resources. The first two features are the average PMI

score of positive and negative terms, as classified according to their PosPMI and

NegPMI scores. The next pair of features uses the polarity scores of SenticNet.

In SenticNet, we assume a term (or phrase) is positive if its polarity score is

greater than or equal to zero or as negative otherwise. Note that simply using the

average polarity of all synonyms would require also using the purity measure.

We take a different and more symmetric approach and use the average polarity

of positive and negative synonyms separately.

• f5–f6: These features capture the frequency of positive and negative polar terms

in each synset according to PWS.

• f7–f9: These features cover certain characteristics of synonyms. f7 captures the

number of synonyms in a synset that are adjective. Generally, those synsets with

higher number of adjectives are more subjective. Adverbs are not considered in

f7 because less than 1 % of the synsets are tagged as adverbs. f8 captures the part

of speech tag of the synset. The rationale behind f8 is that adjective and adverb

Table 3 Features are extracted for each synset using SenticNet (SN), PolarWordSet (PWS) and Sen-

tiWordNet (SWN)

Feature name

f1: Avg. polarity of pos. synonyms based on PMI

f2: Avg. polarity of neg. synonyms based on PMI

f3: Avg. polarity of pos. synonyms based on SN

f4: Avg. polarity of neg. synonyms based on SN

f5: Number of pos synonyms based on PWS

f6: Number of neg. synonyms based on PWS

f7: Number of synonyms that are adjectives

f8: POS tag of the synset

f9: Number of capitalized synonyms

f10: Number of pos. synonyms in gloss according to PWS

f11: Number of neg. synonyms in gloss according to PWS

f12: Avg. polarity of pos. terms in gloss based on PMI

f13: Avg. polarity of neg. terms in gloss based on PMI

f14: Avg. polarity of pos. terms in gloss based on SN

f15: Avg. polarity of neg. terms in gloss based on SN

f16: Number of pos. terms in gloss based on PWS

f17: Number of neg. terms in gloss based on PWS

f18: Number of adjectives in gloss

f19: Number of capitalized terms in gloss

f20: Pos. score of equivalent synset in SWN

f21: Neg. score of equivalent synset in SWN

f22: Label of hypernym synset

f23: Label of near-antonym synset



synsets have a tendency to be more subjective than do noun or verb synsets. f8 is

different from f7 in that, some synsets tagged as adjective have non-adjective

synonyms. f9 is the number of synonyms that start with a capital letter. These

synonyms (generally proper nouns) are most probably objective e.g. ‘‘Milli

Güvenlik Kurulu’’ (National Security Corporation).

• f10–f11: Similar to f5–f6, this pair represents the frequency of positive and

negative polar terms in a gloss.

• f12–f15: Similar to f1–f2, this set computes the average polarity scores of the

terms (unigrams and bigrams) in a gloss.

• f16–f17: Similar to f5–f6, this pair represents the frequency of polar terms in a

gloss.

• f18–f19: Similar to f7 and f9, these features represent the number of adjectives and

(first letter) capitalized terms in gloss.

• f20–f21: This pair indicates the positivity and negativity scores of equivalent

English synset (in SentiWordNet), as found by the mapping via WordNet and

SentiWordNet.

• f22–f23: This pair indicates the polarity class of hypernym and near-antonym

synsets of a given synset. Most of the synsets in Turkish WordNet have

hypernymy and near-antonymy relations with other synsets which can be used to

estimate the polarity of the given synset. Some synsets in Turkish WordNet lack

the hypernymy or near-antonymy relations; if these relations are not available, a

default value (e.g. �1) is assigned to f22 and f23.

5.4 Synset classification

We trained three different classifiers to learn the mapping between features and

polarity classes: logistic regression (LR) (Hosmer Jr and Lemeshow 2004), feed-

forward neural networks (NN) (Haykin 1994), and support vector machine with

sequential minimal optimization algorithm (SMO) (Burges 1998). These three

classifiers are some of the most commonly used classifiers for various reasons, such

as good generalization accuracy (SVM, NN) and simplicity and computing posterior

probabilities (LR). We used Weka 3.6 (Holmes et al. 1994) for implementing these

classifiers.

5.5 Classifier combination

After training the base classifiers, we used a classifier combination method called

stacking, to learn how to combine the individual classifier results. Classifier

combination is a commonly used technique for improving generalization accuracy

(Mitchell 1997). In this approach, the output of these three base classifiers are given

as input to a final classifier which learns to map them to the desired polarity classes.

In our case, the training set of the new classifier receives input samples that

consist of confidence scores obtained from each classifier as features (3� 3 ¼ 9

features), along with the label (the known polarity class of the corresponding

synset). During testing, given a synset, the classifier assigns different confidence



values to each of the three classes; we then interpret the output oi as the polarity

strength of the synset for the corresponding class i (positive, negative, and

objective). Classifier combination brought an increase of 8 % points in classification

accuracy, over the base classifiers.

5.6 Example

In Table 4, we provide a real example for the proposed methodology. The top part of

the table shows the information obtained from the extended Turkish WordNet, while

the bottom parts shows the scores assigned by mapping from SentiWordNet and the

proposedmethod. For the latter, we give the results of the three base classifiers and the

combination (indicated as SentiTurkNet score). As can be seen with this

language/culture dependent synset, the result of the proposedmethod is in accordance

with the term that is accepted as mostly positive in Turkish. On the other hand,

polarities obtained from translations from SentiWordNet indicate it as objective.

6 Experimental results

6.1 Data set

In the evaluations, we either used a small test set that was sequestered for this

purpose or all of the data using cross-validation.

The test set is a small subset of the synsets (3 %) that is kept sequestered for

testing purposes. For this subset, called the gold standard set, we manually assigned

a quantized polarity strength value to each synset in one of eight possible polarity

levels ranging from 0 to 7. The reason for using this categorization was so that we

could compare our resource with SentiWordNet where the same quantization is used

(multiples of 0.125, between 0 and 1) and because assigning a value in a finer

resolution would have been difficult.

6.2 Methodology

We evaluated the proposed approach in three different tests:

• Test 1 Mean absolute error (MAE) between manually assigned ground-truth

polarities on a small test set and the polarities estimated by the proposed

method;

• Test 2 Misclassification error of the proposed method as calculated by

comparing the estimated class labels with those assigned manually, using

fivefold cross-validation on all data;

• Test 3 Sentiment analysis improvements when using SentiTurkNet instead of the

mapped SentiWordNet to Turkish for classifying Turkish movie reviews.

As baseline, we use the MAE and misclassification error rates obtained by using a

direct mapping from Turkish to English synsets. Specifically, since Turkish

WordNet has been mapped (one to one) to English WordNet, the polarity scores of



an English synset are used as polarity scores of its equivalent Turkish synset, from

which class labels are also deduced.

6.3 Results

6.3.1 Test 1

In the first evaluation, we used the small and sequestered test set and compared the

(MAE) between the manually assigned ground-truth polarities on this set and the

ones obtained with proposed methodology. The MAE values presented in Table 5

are computed using Eq. 3.

MAE ¼ 1

n

Xn

i¼1

jfi � yij ð3Þ

where fi is the estimated polarity level (0–7) and yi is the ground-truth polarity level

of the ith synset, computed separately for positive and negative cases and n is the

number of evaluated synsets.

As seen in this table, the MAE computed over all the synsets by the final system

is 2.45 and 1.95 (with a weighted average of 2.28) for positive and negative synsets,

respectively. Note that the ground-truth scores are eight polarity levels ranging from

0 to 7, and e.g. 2.28 means that the error rate in estimating the polarity level of a

sysnset by proposed methodology is 0.31 and 0.24 over 1. These results support the

assumption that translating (mapping) SentiWordNet to another language can be

improved as proposed.

Table 4 An entry from SentiTurkNet, together with assigned polarities

Field Value

Synonyms Cuma namazi [Friday Prayers]

Gloss Müslümanların Cuma günleri yaptığı ibadet
[Worship muslims perform on Friday]

POS tag Noun

Synset label Pos

Hypernym synset label Pos

Near-antonym synset label Not specified

Equivalent English synset salat, salah, salaat...

SentiWordNet scores (P, O, N) = (0, 1, 0)

score by NN (P, O, N) = (0.52, 0.45, 0.02)

score by LR (P, O, N) = (0.54, 0.45, 0.01)

score by SMO (P, O, N) = (0.33, 0.66, 0.01)

SentiTurkNet scores (P, O, N) = (0.49, 0.44, 0.06)

SentiTurkNet label Pos

The bold rows are for highlighting the final polarity scores assigned by two polarity resources (Sen-

tiWordNet and SentiTurkNet) for the given synset in SentiTurkNet and its equivalent synset in

SentiWordNet, plus its label assigned by SentiTurkNe



6.3.2 Test 2

In the second test, we evaluated the classification of synsets into three polarity

classes, using the trained classifier. Note that here we are evaluating the outcome of

the trained classifier in comparison with the manually assigned labels. If the

manually assigned label differs from the label of maximum polarity score (out of

three scores for (pos, obj, neg), this is counted as a misclassification error.

We used fivefold cross-validation where the mapping between features and three

polarity classes is learned using 80 % of the data (training set) and the system is

tested with the remaining 20 % of the data, for an unbiased testing. This process is

repeated five times with different 80–20 % splits of the data and the results are

averaged.

In this test we also evaluated the relative importance of different feature groups.

Features f1–f9 extract polarity from synonym list; f10–f19 are related to the gloss;

f20–f21 correspond to polarities that would be obtained if a direct mapping was used;

and f22–f23 uses the manually assigned class label of hypernym and near-antonym

synsets.

As seen in Table 6, the best accuracy of 91.11 % is achieved using all features

and classifier combination of three classifiers. The feature pairs f20–f21 (polarity

Table 6 Classification accuracy by the individual classifiers using fivefold cross validation on all

data(%)

Feature subset Accuracy (%)

SMO NN Logistic Classifier combination

f1–f9 79.03 79.71 79.42 86.72

f10–f19 79.02 78.74 78.97 85.26

f20–f21 79.03 79.16 79.22 86.11

f22–f23 81.63 81.99 81.93 87.32

f1–f19 79.05 79.79 79.56 85.07

f1–f21 79.05 79.85 80.14 87.99

f1–f23 81.90 82.44 82.01 88.82

All features 82:89 83:32 83:13 91:11

The bold values show the highest accuracy we obtained by using all features

Table 5 MAE on test data

Classifier Pos Neg Avg

SentiWordNet mapped to Turkish 3.73 3.01 3.48

SentiTurkNet with SMO 2.95 2.21 2.70

SentiTurkNet with LR 2.81 2.25 2.62

SentiTurkNet with NN 2.99 2.14 2.70

SentiTurkNet with classifier combination 2.45 1.95 2.28

The bold values show the lowest error rate we obtained by classifier combination



scores of corresponding English synsets) and f22–f23 (manually assigned class labels

of hypernym and near-antonym synsets) are good indicators for the polarity of a

synset, as expected. However, we see that by adding the other features, we are able

to obtain higher accuracies (up to 4 % points).

6.3.3 Test 3

The last evaluation studies sentiment analysis improvements when using STN
instead of the mapped SWN, for classifying Turkish movie reviews. More

specifically, we use polarity scores obtained from STN or from the mapped SWN,
to classify 300 reviews from Turkish movie dataset.3

The method simply tokenizes the reviews and extracts the average polarity of

terms in each review, to feed to a simple sentiment analysis classifier [by logistic

regression (Hosmer Jr and Lemeshow 2004)] we had developed previously. The

accuracy of ternary classification (positive, negative, objective) by logistic

regression and fivefold cross-validation method using STN is 66.7 % while it is

61.3 % by using the mapped SWN to Turkish.

The low accuracy may be caused by the lack of language features such a

negations, conjunctions, and intensifiers; our goal was to show the difference

between polarity scores in two polarity resources by using them in a sentiment

classification task. An example review that was correctly classified as positive using

STN but incorrectly classified as negative using SWN is ‘‘Sadece müziği için bile
izlenir’’ [It can be watched just for of its soundtrack].

We did not do word-sense disambiguation (WSD) within the sentiment analysis

system, as WSD is an ongoing problem in Turkish and is out of the scope of this

work. Instead, for a given term with a given POS tag, we simply used the average

polarity of all of its synsets with a matching POS tag. No NLP technique except

extracting the root of words and their POS tag is used for this purpose.

The misclassified reviews by our system generally are those that include words

which are absent in STN or those that are subjective but need background

knowledge to distinguish this subjectivity such as ‘‘izlerken bana ordaymıs� hissi
veren nadir filmlerden.’’ [‘‘of those rare movies that gives the feeling of being there

(in movie) while watching’’].

6.4 Discussion

Results presented in Sect. 6.3 indicate that the proposed methodology is quite

successful in predicting the label of synsets. Using only the mapping approach

(baseline) would correspond to f20–f21 that get us 86.11 % accuracy in classifying

synsets as positive, negative, or objective, but by using all features, we obtain

91.11 % accuracy.

The errors are mostly caused by features related to glosses. It is common for a

positive (or negative) synset to be explained by a non-positive (or non-negative)

3 This dataset is collected from http://www.beyazperde.com.

http://www.beyazperde.com


sentence. In most of the synsets, this deficiency is compensated by other features.

An example for this statement is given in Table 7.

The distribution (in percent) of positive, objective, and negative synsets in each

part of speech is illustrated in Fig. 2. As can be seen, the majority of synsets are

objective in all parts of speech.Note that the situation is similar for SentiWordNet as

well, where the overwhelming majority of all words are marked as dominantly

objective. Also among four parts of speech, nouns constitute the majority. Note that

because of the low percentage of adverbs (less than 1 %), they do not appear in this

chart.

7 Summary and contributions

The two contributions of this work are building the first comprehensive polarity

lexicon for Turkish (SentiTurkNet) and proposing a semi-automatic approach to do

this for other languages as well. The developed lexicon contains polarity score

triplets for all synsets in the Turkish WordNet, containing almost 15,000 synsets.

Table 7 A negative synset misclassifed as neutral (objective)

Fields Content

Synonym iştahsız

Gloss Yemek yeme isteği olmayan, boğazsız [no desire to eat]

Actual label Neg.

Estimated label Obj.

Fig. 2 Distribution (%) of pos/neg/obj parts of speech in SentiTurkNet



SentiTurkNet is thus based on Turkish WordNet and is mapped (one to one) to

English WordNet and consequently to SentiWordNet.

The quality of the lexicon is established using different approaches, including

low MAE between the estimated and the manually assigned polarities for a small

portion of the lexicon for which groundtruth exists. Furthermore, we showed that

the use of the new lexicon result in higher classification accuracy in sentiment

classification, compared to using translated resources.

The shortcoming of the developed lexicon is its relatively small coverage size. As

for the proposed methodology, it is applicable to any language for which a WordNet

exists, but it is time consuming to manually label the polarity classes of the synsets.

Here we compare SentiTurkNet with SentiWordNet because it is the most similar

resource to SentiTurkNet and the main idea for building SentiTurkNet has been

derived from SentiWordNet. The similarities and differences are as follows:

• Both resources benefit from the polarity of the gloss of a synset as a feature to

estimate the polarity scores for the synset.

• Both resources assign polarity scores to each synset in WordNets of different

languages such that the sum of these scores equals to one.

• English WordNet (and consequently SentiWordNet) has around 117,000 synsets

while Turkish WordNet (and SentiTurkNet) has 15,000 synsets.

• In SentiWordNet, the label of a synset is estimated as one of eight categories;

hence, polarity scores in SentiWordNet are multiples of 0.125, while the polarity

scores in SentiTurkNet are continuous values in the range [0, 1].

8 Conclusion and future work

Sentiment analysis especially in non-English languages suffers from the shortage of

polarity resources. We built the first polarity resource for Turkish by a novel

methodology. This methodology is inspired by the idea used in building the

SentiWordNet; however, our overall methodology is novel. This methodology can

be employed to build such polarity resources for other non-English languages.

We conclude that translating polarity resources from another language (English)

to Turkish (or any other language) is not the best approach because (1) not all terms

in a language have equivalent terms in other languages and (2) language/cultural

dependent terms generally possess different polarities in different languages.

Despite these difficulties, polarity resources from other languages can be used to

extract features; for example, we used positivity and negativity scores of each synset

in SentiWordNet and SenticNet as features for classification of Turkish synsets.

We have made a subset of this resource public which can be downloaded from

(http://myweb.sabanciuniv.edu/rdehkharghani/sentiwordnet/). We will make the

entire resource publicly available in near future.

The constructed polarity resource is the first version (v1.0) of SentiTurkNet. We

will extend this resource in the near future by (1) covering negation in Turkish gloss

which may increase the accuracy of estimated results, and (2) benefiting from

dependency parse trees, for analysing the gloss.

http://myweb.sabanciuniv.edu/rdehkharghani/sentiwordnet/
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