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(")zet

Bir elektrik aginda, elektrik tireticileri iletim hatlarini kullanarak sistemdeki talebi
kargilarlar. Literatiirde, sistemdeki talebi kargilayan, elektrik aginin fiziksel kisitlarina
uyan ve elektrik tireticileri i¢in en diigiik maliyeti oneren matematiksel modeller bu-
lunmaktadir. Fakat, elektrik dagitimi bircok dig nedenden dolay1 aksamaya ugrayabilir.
Bu aksamalar hava kogullarina, terorist saldirilarina, insandan ve insan dig1 gerceklesen
teknik hatalara veya voltaj diiglisii yiiziinden gerceklegen kayiplara bagl olabilir. Bu
dig nedenler sistemdeki talebin kargilanmasinda bir risk olugturmaktadir. Ayrica,
elektrik tireticisi ve talep noktasi arasindaki uzaklik arttiginda bu risk daha da
biiytimektedir. Bu tezde sunulan elektrik aglari i¢in eniyileme modelinin amaci uzun
mesafeli elektrik iletiminden kaynaklanan riskin 6nemini vurgulamaktir. Bir elektrik
ag1 diigtiniildiigiinde, elektrik tireticileri yakin g¢evrelerindeki talebi karsiladiklar: za-
man kayip riskini azaltabilirler. Bu baglamda, onerdigimiz modelde degisken olarak

iretici ve talep noktasi arasinda bulunan yol iizerinden gecen yiikii kullanilirken,
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amag fonksiyonu bu yolun uzunluguna ve yolun tizerinden gegen yiike baglh olan
bir risk fonksiyonunu enkticiikleyecek sekilde sunulmaktadir. Risk fonksiyonu, elek-
trik tretcisinin digbiikey ve kareli ortalama maliyet fonksiyonu ile iiretici ve talep
noktasi arasindaki yolun uzunluguna baglh olan bir risk katsayisi ile birlestirilerek
elde edilmektedir. Bu caligmanin literatiirdeki diger ¢aligmalardan farki, tiretici ve
talep noktasi arasindaki uzakligi bir risk etkeni olarak sunulmasi ve bu riskin mod-
ele katilmasidir. Sundugumuz matematiksel eniyileme modelini ¢ozmek i¢in stitun
tiretme yontemi kullanilmaktadir. Fakat, siitun tiiretme yonetimi, digbiikey ve
kareli ortalama amag fonksiyonuna sahip olan eniyileme modelinde kullanilamamakta-
dir. Bu nedenle oncelikli olarak amag fonksiyonu parcali dogrusal fonksiyonlar ile
yakimsanmigtir. Fakat, ortaya ¢ikan amag fonksiyonunu dogrusal olarak modelle-
mek, satir sayisinda artiga neden olmaktadr. Bu artig, onerilen ¢oziim yonteminin
degistirilmesine sebep olacaktr. Bu sebeple, amacg fonksiyonu literatiirdeki bir yontem
ile satir sayisim arttirmayacak sekilde dogrusal olarak modellenmistir. Elde edilen
dogrusal programlama modeli stitun tiiretme yontemiyle ¢oziilmiig ve bu yaklagim

ornek problemler iizerinde sinanmigtir.
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Abstract

Electricity is supplied by generators to meet the demand of the customers through
the transmission lines. The flow-based optimization models in the literature seek
for optimal generation cost while satisfying the demand and the physical constraints
of the network. However, electricity transmission can be disrupted by exogenous
factors such as weather conditions, terrorist attacks, human and operational errors
or voltage drop due to line losses. These factors can generate a risk in the system
leading to unmet demand of customers. Furthermore, this risk increases when the
distances between the generators and the demand points becomes larger. In this
thesis, we propose an electric network optimization model which emphasizes the
risk arising from the long distance electricity transmission. In an electric network,
if generators satisfy the demand in their vicinity, the arising risk from long distance
electricity transmission can be reduced. In this regard, we use a path-based electric

network optimization model where the objective is to minimize a risk function based
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on the path lengths and the flows. This risk function is obtained by incorporating
a path length dependent risk coefficient into the convex quadratic generator cost
function. Our work differs from the works in the literature as we consider such at
risk function. To solve the resulting model, we employ column generation. However,
column generation is not applicable when the objective function is convex quadratic.
Therefore first, the convex quadratic function is approximated by a piece-wise linear
convex function. However, the linear programming equivalent of this model causes a
row-wise increase. This increase would cause to change the given solution approach.
Thus second, an equivalent linear programming model without a row-wise increase
is presented. The resulted model is solved with standard column generation and the

numerical results are obtained for example networks.
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Chapter 1

Introduction

Electricity power is one of the most crucial elements for the financial, industrial and
social developments of any country. Since electricity cannot be stocked, the market
regulation depends on the hourly supply and demand balance. Electricity is supplied
by generators to meet the demand of the customers through the transmission lines.
However, the electricity transmission can be disrupted by exogenous factors such
as weather conditions, terrorist attacks, human and operational errors or voltage
drop due to line losses (Simonoff et al., 2007). These factors create a risk of not
satisfying the customer demand in the system. In addition, this risk may become
more crucial when the distances between suppliers and demand points become larger.
Moreover, a disruption on a single line can cause unmet demand at multiple demand
points. In this thesis, we propose an electric network optimization model which
emphasizes the risk arising from the long distance electricity transmission. In an
electric network, if the generators satisfy the demand in their vicinity, this risk can
be reduced. In this regard, we use a path-based electric network optimization model
where the objective function minimizes the risk arising from an exogenous factor
in long distance electricity transmission. The risk is defined as a function, which
depends on the amount of flow between a generator and demand point as well as the
length of the path. We use one example of the exogenous factor, which is the incurred
voltage due to line losses. The path-based formulation may have excessive number
of paths even for moderate size networks so that column generation is a viable
approach to solve the resulting problem. However, column generation approach

requires a linear programming model but the risk function in the objective function



is nonlinear, in particular, convex quadratic. To overcome this difficulty, we first
approximate the convex quadratic function by a piece-wise linear convex function.
However, the linear programming equivalent of this model gives a row-wise increase.
For such a model, we need to change the solution approach. Instead of changing the
solution approach, we give an equivalent linear programming model that does not
grow row-wise. Finally, the resulting linear programming model is solved by column

generation.

There are other network optimization models in the literature. Generally, these
models have the objective of minimizing the generation cost while conforming the
operational constraints of the electric network. These constraints ensure the power
flow between nodes under physical restrictions that govern the network. These
models can be referred to as flow-based models. The path-based formulation of this
model that reaches the same capacities as the flow-based model can be written using
theoretical results. However, we also incorporate a risk function into the objective
which results in a more condensed electricity distribution. This result cannot be
obtained in the flow-based model due to the structure of the risk function. The

structure contains a risk component which depends on the path length.

In this chapter, the problem definition is given in Section 1.1. Then, the motivation
behind our study is explained in Section 1.2. The contributions of the thesis are

given in Section 1.3. Lastly, Section 1.4 describes the flow of the thesis.

1.1 Problem Definition

Finding the optimal generation quantity in a transmission network dates back to
the beginning of the 20" century. In 1960s, an electric network optimization model,
called optimal power flow (OPF) model is introduced. Basically, this model seeks
to minimize the generator cost subject to the operational constraints of the given
electric network. This problem is originally nonlinear and nonconvex due to the
physical laws governing the network. Lavaei and Low (2010) shows that OPF prob-
lem is NP-hard. Through linearization, the problem can be simplified. The linear
formulations of the OPF are frequently used by the energy industry due to their
simplicity. However, none of these formulations consider the possibility of incurred
risk due to long distance electricity transmission. We present a path-based model

with a convex quadratic objective function and linear constraints. Also, we propose



a risk function that is defined for every path between generators and demand points
with respect to the path length and the power flow on it. Since the risk function
requires a path-based formulation, we alter the linear flow based formulation of Vil-
lumsen and Philpott (2011) into a path-based model. Then, we incorporate the
path-dependent risk function into the objective function of the path-based model
in the form of convex quadratic function. This form arises as a result of a risk
coefficient, which alters the original convex quadratic generator cost function with

respect to the path length.

1.2 Motivation

Electricity transmission carries a risk of encountering a voltage drop due to line
losses, terrorist attacks or unexpected changes in weather conditions. As a result
of these exogenous factors, the customer demands may not be satisfied or the costs
of generators may increase. The risk here becomes a more crucial issue when the
long distance transmission is considered. With this motivation, we determine a
model with a risk function, which depends on the path length and the path flow.
To clarify our motivation, we give an example in Figure 1.1. In this figure, both
generators ¢g; and gy supply electricity power to demand point ¢3. The lengths of
transmission lines are given on each link. First, suppose that the generation cost of
g1 is slightly lower than g, and neglect the path lengths between g; — i3 and g — 3.
In this case, the generator with the lowest generation cost will supply electricity
to the demand point assuming that the operational constraints are satisfied. Now
consider the path length between generators and the demand point. As mentioned
earlier, the exogenous factors increase the risk of having an unsatisfied demand in
long distance electricity transmission. Considering this risk may result in favoring
the generators that are closer to demand points. In Figure 1.1, the path length of
g1 — 13 is significantly longer than gy — i3. If any one of the risk factors is realized
through the path between g; — i3 the demand of i3 may not be satisfied. As a result,
supplying electricity from generator g, is less risky as it is much closer to the demand

point 3.

In this thesis, we aim to reduce the risk of experiencing a demand loss while minimiz-
ing the generation costs. To satisfy this goal, a risk function depending on the path

length and the flow is presented. Then, we incorporate the risk function into the



Figure 1.1: An example network to illustrate the motivation of the thesis

objective function of a path-based power flow model. The risk function is obtained
by multiplying two components. The first component is the generator cost function
where the independent variable is the flow on the path. This cost function is as-
sumed to have a convex quadratic form. Another factor that has detrimental effect
is the voltage drop on the path due to loss. In this regard, we use a predictive loss
function for the second component. The output of this function returns a positive
risk coefficient. This function depends on the path length. When the path length
becomes larger, the value of this coefficient increases. With this risk function, we

propose a model that considers the risk of long distance electricity transmission.

1.3 Contributions

Originally, the OPF formulations do not consider the risk factors in the transmission
of electricity from a generator to a demand point. However, electricity transmission
may contain a disruption risk, which may result in unmet demand. When the dis-
tance between a generator and a demand point becomes larger, the risk is expected
to become higher. In this thesis, we considered this risk through a function, which
depends on the path length and the flow. We give a path-based formulation for OPF
problem with a risk function in the objective. This path-based model obtains the
optimal generator capacities that satisfy the demand and the operational constraints
while minimizing the generator costs along with the incurred risk in the network.

As far as we know, a similar model does not exist in the literature.



1.4 Outline

We give a literature review of optimal power flow models in Chapter 2. The formu-
lations that are reviewed in this chapter are flow-based formulations. In Chapter 3,
the flow-based and the path-based models are explained. Introduction and integra-
tion of the risk function into the path-based model is also given in the same chapter.
We select the column generation approach as a solution method. The approxima-
tion of the risk function by piece-wise linear functions is presented at the end of
Chapter 3. In Chapter 4, an equivalent linear programming model is given for the
model with a piece-wise linear separable objective function to employ the column
generation method. The column generation approach with the selected sub-pricing
problem is explained at the last section of Chapter 4. The computational results are
presented for IEEE 14 Bus and 118 Bus networks in Chapter 5. Finally, we conclude
the thesis in Chapter 6.



Chapter 2

Literature Review

An electric network or a transmission network is formed by the connection of the
electricity suppliers and the customers through the transmission lines. This power
system can be mathematically formulated as a network optimization problem. Rep-
resentation of the electrical state of the network in an optimization model is given by
the system variables such as generation power, transmission line flow, voltage and
phase angle (Frank et al., 2012). The major optimization model in the literature for

the electric network optimization problem is the Optimal Power Flow (OPF) model.

The objective of the OPF problem is minimizing the generation cost or the system
losses (Zhang, 2010). The operational constraints ensure that the physical char-
acteristics of the transmission network is satisfied with the given capacity on the
system variables. There are equality and inequality constraints in standard form
of the optimal power flow model (Kundur et al., 1994). Generally, the equality
constraints are given for the power flow equations. These equations correspond to
the conservation of power flow and Kirchhoft’s Voltage Law constraints. In most of
the formulations, power flow equations are given for both real and reactive power.
On the other hand, the inequality constraints are given for capacity of the system

variables.

OPF model, which is formulated at the beginning of 1960s by Carpentier (1962),
is a nonlinear programming problem. The nonlinearity in this problem arises from
the Kirchhoff’s Voltage Law equation (Bukhsh et al., 2011) as it reflects the non-

linear relationship between the voltage and phase angles. The resulting problem



is classified as an NP-hard problem (Lavaei and Low, 2010). Since, OPF problem
is NP-hard, several approximations are introduced. Deterministic, stochastic and
hybrid formulations (combination of deterministic methods) for OPF are presented
in the literature (Suthat and Vyas, 2013).

Later in 1960s, gradient based solution methods are used for solving the model pro-
posed by Carpentier (1962). One of the early examples in the literature is given by
Dommel and Tinney (1968). They insert a penalty factor into the objective function
for the bound constraints of basic variables and solve the model by reduced gradi-
ent method. They did not use the Newton’s method due to being computationally
expensive at that time. However in 1970s, Sasson et al. (1973) present a solution
for OPF problem with Newton’s method. Later, Sun et al. (1984) also use Newton’s
method to solve the OPF problem. They approximate the Lagrangian function as
a quadratic one and use the sparsity characteristic of the Hessian matrix to reduce
the computational time. Burchett et al. (1984) present a newly sparse implementa-
tion of an optimization method where the exact second derivative can be computed.

Their method is applicable to large scale networks having 350 to 2000 nodes.

An efficient solution of OPF with linear constraints is presented by Carpentier (1968,
1972) through application of generalized reduced gradient method in 1972. In the
same year, Peschon et al. (1972) also describe the application of generalized reduced
gradient to solve the OPF problem. They also present sensitivity and efficiency
analyses. Yu et al. (1986) propose a new nonlinear programming formulation for
OPF, where the model includes network performance measures such as scheduled
bus voltages and topological constraints. There are also quadratic programming
based approximations to OPF. Contaxis et al. (1986) solve OPF problem with a
quadratic programming based approach. Grudinin (1998) present a reactive power
optimization with quadratic programming formulation in which the solution is given
by Newton’s method. Fletcher (1971)’s method is used by Nanda et al. (1989) to
solve OPF problem for minimum generation cost and minimum losses. Jabr (2008)
gives a conic quadratic representation of OPF and solves the problem by primal-
dual interior point method. In this thesis, we use an OPF model where the objective

function is convex quadratic and the constraints are linear.

In some formulations of OPF model, discrete variables representing the transformer
tap ratios or switched capacitor banks are also used. These variables are especially

used for network design problems. Lima et al. (2003) give a mixed integer linear



programming model for finding the optimal locations of phase shifter transformers.
However according to Suthat and Vyas (2013), mixed integer nonlinear programming
approach is more accurate for representing the system behavior of discrete variables.
A recent example of such a model is introduced by Kumar and Gao (2010). In this
work, the optimal location and the number of power generators are determined in a

hybrid electricity market.

Nonlinear programming formulations can reflect the transmission network behavior
better than linear programming formulations. However, the nonlinear program-
ming formulations are hard to solve (Almeida and Galiana, 1996). Therefore, linear
programming approximations are frequently used. Solving the linear programming
approximation of OPF, which is also called as the Direct Current(DC) formulation,
is very fast(Rau, 003b). In this thesis, we use a DC approximation model where the
model is adopted from the model of Villumsen and Philpott (2011). In their model,
the objective is to acquire the optimal generator capacity with the minimum cost
subject to linear operational constraints. The main advantage of this model is to
use a linear Kirschhoff’s Voltage Law constraint. We use this model to integrate a
risk function where it changes with the path length s between the generators and
the demand points. Due to this path dependent structure, a path-based OPF model

is proposed.

While the electric network is operating, some lines may not be used to decrease the
cost and the efficiency. In addition, the cyclic structure of the electric networks re-
quires to take off those lines which this process of taking the lines off and using them
again is called switching. Villumsen and Philpott (2011) used DC approximation
of OPF model to find minimum cost dispatch and commitment of power generation
units in a transmission network with active switching. We assume in this work that
the switching constraint is not considered. Another work that uses DC approxi-
mation is given by Fisher et al. (2008). In their work, they solve the linear OPF
problem with optimal transmission switching. Their work is similar to Villumsen
and Philpott (2011) where there are some differences in the modeling phase. Also,
Fisher et al. (2008) integrate the N-1 security constraint to the OPF model with
active switching. N-1 security constraint signifies the deprivation of any element in

the system such as generator or transmission line.

Heuristic methods are also used for solving the OPF problem. Yang et al. (1996)

introduce an evolutionary algorithm for economical dispatch problem with nons-



mooth cost function. This algorithm finds near optimal solutions. Sayah and Zehar
(2008) propose modified differential evolution algorithm for the OPF problem with
nonsmooth and nonconvex generator fuel cost functions. Lee et al. (1998) pro-
poses a method based on neural networks to solve an OPF problem with piece-wise
quadratic cost function. OPF is also solved with an enhanced Genetic Algorithm
by Bakirtzis et al. (2002) where the model includes both discrete and continuous

variables.

In this thesis, we use the DC approximated model where the objective function
is convex quadratic. This objective function also involves the risk associated with
transmission on long lines. That is, the risk function that we propose depends on
path length and flow on that path. To the best of our knowledge, a model similar

to ours has not been studied in the literature before.



Chapter 3

Mathematical Programming Models

The OPF model minimizes the generator costs in an electric network subject to
power flow conservation and Kirchhoff’s Voltage Law constraints. Consideration of
the distances between the generators and the demand points is crucial regarding the
effect of the exogenous factors. Because, there may be a risk of having a possible
terrorist attack, line voltage drop due to loss or an unexpected weather condition.
In such a case, customer demand may not be satisfied. In this thesis, we introduce

a risk function that depends on the path length and the flow.

The OPF problem is a flow-based problem which can have a linear or convex
quadratic objective function. This model can be equivalently formulated as a path-
based model through the flow decomposition theorem (Ahuja et al., 1993). We
replace the objective function of the path-based model with a risk function that is
based on path length and path flow. Our motivation of using this model comes from
the emerging risk of the long distance electricity transmission. The proposed risk
function has two components. The first component is the original convex quadratic
generator cost function which depends on the flow on the path. For the second
component we consider a path length dependent risk factor. As mentioned before,
disruption on electricity transmission occurs as a result of the outside factors. One
example of these factors is the voltage drop due to the incurred loss. Since loss is
a function of path length, the second component of the risk function considers the
loss and the path length. We call this component as the risk coefficient which is
determined through a predictive loss function from the literature. As a result of

multiplying these two components, the risk function becomes convex quadratic and

10



defined for each path separately.

This chapter consists of five sections. First, low-based model is explained in Section

3.1.

3.1 Flow-Based Model

As mentioned in Chapter 2, the linear programming model is used to approximate
the nonlinear optimal power flow model. This formulation is called DC approxima-
tion. Next we use the optimal power flow formulation of Villumsen and Philpott
(2011). In the rest of the thesis, this model will be referred to as the flow-based

model. The formulation is given as follows:

minimize Z CySgs (3.1)
geg

subject to Z 5¢ + Z fe— Z fe=d;, ieN, (3.2)
g€G (1) e€Z(7) ecO(i)
refe = Hj — 97;, (Z,]) =ec 5, (33)
S < sy < s gE€g, (3.4)
A AR c€EE, (3.5)
g < g, < e, ieN, (3.6)

where the problem variables s,, f. and 6; stand for the generated electricity at the
generator g, the flow on an edge e and the voltage angle at node i, respectively.
Here N is the set of nodes and & is the set of edges. There are two sets associated
with the generators. The first one, G(i) is the set of generators at node i and it
is a subset of the entire set of generators, G. The set Z(i) denotes all those edges
entering node ¢. Similarly, O(i) is the set of all edges leaving node i. We assume
that the following problem parameters are given: cost of generating one unit supply,
¢g; demand at each node, d; (if a node is not a demand point then simply d; = 0);
resistance factor, r.; upper and lower bounds on supply, flow and voltage angle given
by the pairs (i, s0@), (f™*, f2*) and (6", 6;°*), respectively. The objective
(3.1) is to minimize the total cost of the supply at the generators. The constraints
(3.2) correspond to the conservation of flow at each node. The Kirschoff rule on

each edge e = (i,7) is represented by constraint (3.3). The remaining constraints

11



(3.4)-(3.6) denote the bounds on the problem variables.

Solving flow-based problem is relatively simple as the objective function and con-
straints are linear. However, most of the nonlinear or quadratic programming ap-
proximations of flow-based model contain a nonlinear generator cost function. Some
example approximations are given in the form of convex quadratic (Dieu and Scheg-
ner, 2013; Sayah and Zehar, 2008; Lee and Yang, 1998; Mahdad et al., 2010), third
degree polynomial (Shoults and Mead, 1984) or as a discrete function (Wang et al.,
2007). Also, in some cases the electricity suppliers prefer to use the cost function
with a single linear segment or with multiple linear segments (Wood and Wollen-
berg, 2012). We assume a convex quadratic generator cost function (Park et al.,

1993). This function is given by:

Z cy(sy) = Z as? + bsy + d. (3.7)

geG geG

Note that this function is simply the sum of uni-variate functions.

In this section, flow-based model with linear and convex quadratic objective func-
tion is presented. In the following section, the flow-based model is converted to a
path-based one thorough the flow decomposition theorem in Ahuja et al. (1993).
The generation quantity s, is written according to the summation of the flow on
paths between generator and demand points. This alteration forms a base for the

integration of the path dependent risk function in Section 3.3.

3.2 Path-Based Model

The goal of this thesis is to present a model for reducing the risk of long distance
electricity transmission. We assume that the risk depends on the path length and
the flow. Due to this structure, we decompose the flow-based formulation into a

path-based one.

Before presenting the path-based formulation, we introduce some new notation using

various collections of paths. Let P denote the set of all paths in the network. Then

77; = {p € P : pis a path between generator g and node i}.

12



This allows us to define for g € G, the set
P(g) = {p € P : pis a path starting from generator g} = UZ-ENP;
and for i € N, the set
P(i) = {p € P :pis a path terminating at node i} = UgegP;.
The last set is associated with those paths traversing a given edge and it is given by

P(e) = {p € P : p includes edge e}.

We next give the path-based formulation:

minimize ch Z fos (3.8)

9€G  peP(g)

subject to Z I, =d;, ieN, (3.9)
peP(i)
Te Z fr=0,— (i,j) = e € &, (3.10)
peEP(e
s < Z Io <89, g€q, (3.11)
peP(9)
< fy S ced, (3.12)
pEP(e)
grin < g; < oM, i€N. (3.13)

Here f, denotes the flow on a path and the remaining variables as well as the
parameters are as before. The objective function of this model has a linear structure.
Recall that the convex quadratic function objective function of the flow-based model

in (3.7). Same quadratic function can be given for the path-based problem

> ey Z fo) = _a( Z P40 f+d (3.14)

g€G  peP(g 9€G  peP(g pEP(9)

Note that the solutions of the flow-based and the path-based problems are inter-

changeable since s; = > p(,) fp-
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3.3 Risk Function

Long distance electricity transmission may result in unsatisfied demand due to pos-
sible terrorist attacks, voltage drop along the line due to loss or an unexpected
weather condition. In this regard, we present a risk function that considers the path
length and the flow on the path. Instead of considering all of the possible risks, we
exemplify this risk function according to the possibility of voltage drop on the path

due to loss.

Power movement in an electrical device, such as a conductor or a regulator, acquires
a certain amount of loss because of the resistance to the flow of electricity on the
device (Willis, 2010). Considering the transmission line loss in an electrical network
is crucial for determining the quantity of power generation. Power loss could effect
the quantity of the transmitted power when transmission line length is several hun-
dred kilometers (Gustafson and Baylor, 1988). Total generation quantity equals to
the summation of demand and the line losses (Wood and Wollenberg, 2012). The
optimal power flow models that consider line loss use this equation as the flow of
conservation constraint. In these models, loss is taken as a decision variable and
the objective function either minimizes the loss or the generation cost. Sharif et al.
(1996) propose a mathematical model where the objective is to minimize the to-
tal loss in the network while maintaining the acceptable voltage limits. Sinsuphun
et al. (2011) also minimize the total loss in the system. They use a method based
on swarm intelligence for minimizing the nonlinear loss function. Smita and Vaidya
(2012) also use particle swarm optimization. Baldwin and Makram (1989) presented
the optimal generation cost through a quadratic loss function in the constraint. Fur-
thermore, Baran and Wu (1989) propose a method in network configuration for loss

reduction and load balancing.

Bamigbola et al. (2014) define loss through a predictive loss function. In this work,
the loss is divided into two components as ohmic loss and corona effect. Ohmic loss
is defined as the flow resistance in the transmission lines where the resistance results
in the form of heat (Smed et al., 1991). On the other hand, corona effect occurs
when the applied voltage exceeds a critical level (Sakhavati et al., 2012). Summation
of these two types of losses leads to an exponential loss function with the parameters
line length and power flow. This relatively simple definition of the loss inspired us

to present the risk function that we propose in here. The resulting path-based risk
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function is given by:

Tp(fps lp) = ﬁ(lp)cg(fp>7 DE 7);7 (3.15)

where

B(l,) =t—etr. (3.16)

The risk function in (3.15) is obtained by multiplying of two components ((l,) and
¢y(fp). The latter component is the original convex quadratic cost function in (3.14)
where f, is the power that is sent on the path p. The former component is presented
through the predictive loss function where [, represents the length of the path. Since
the path length is known, the result of the exponential function returns a positive
coefficient. We call this positive number as the risk coefficient. The cost of the
path increases with respect to the risk coefficient. The justification for the usage of
exponential function can be formed through considering the boundary conditions.
When the generator supplies electricity through a path with the length of infinity, the
risk coefficient gives the maximum value possible which is . In the computational
study section a sensitivity analysis is given for different values of t. On the other

hand, if the path length is zero, the risk coefficient becomes one.

Notice that, the risk function shifts the cost function up with respect to the path
length and the path flow. To clarify this issue, consider the example network in

Figure 3.1.

Figure 3.1: Example network to illustrate the structure of the risk function

Now, consider the paths g —¢ — k — d and ¢ — j — m — d where the path lengths
are assumed to be 50 and 300 km respectively. We call these paths as p; and p,.
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Suppose that the flow on the paths are the same and the path length is ignored,

then the risk function becomes:

rp(fp, 0) = afz +bf, +c. (3.17)

If we now consider the path lengths, then we obtain:

Ty (fpr,50) = (2 = ) (af + bfp, +©), (3.18)
and
Tpo (fpa: 300) = (2 — € 72) (af?, + bfp, + C). (3.19)

Notice that, the risk coefficient shifts the functions with respect to the path length.

[lustration of this shift can be seen in Figure 3.2.

()
r5(f,300)

/

rp(fp,O)

Figure 3.2: Shift in the risk functions with respect to path lengths

We replace the objective function of the path-based model given in (3.8) with the
risk function in (3.15). This change signifies the usefulness of the path-based model
over the flow-based model. It is important to notice that the risk function does not
simply consider the summation of the incurred risks on the individual lines. In other

words; it is not separable. Therefore a flow-based model cannot be directly used.

The convex quadratic path-based model can be solved by the standard methods.
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However, the number of paths exponentially grows especially when there is con-
siderable number of nodes in the network. As a result, employ column generation
approach to solve the model. In the next section, the convex quadratic risk func-
tion is approximated by piece-wise linear convex function. Afterwards in Chapter
4 an equivalent linear programming model is given for the piece-wise model so that

column generation approach can be applied.

3.4 Piece-wise Linear Approximation

In this section, quadratic convex objective function of path-based problem is lin-
earized by piece-wise linear upper and lower approximation. There are piece-wise
quadratic and piece-wise linear approximations in the literature for the flow-based
model with a convex quadratic generator cost curve. Lin and Viviani (1984) intro-
duces a method for solving the optimal power flow model by piece-wise quadratic
cost functions. They use a hierarchical solution methodology that the decentralized
computations can be possible. Furthermore, Dieu and Schegner (2013) also approx-
imate the generator cost curve by a piece-wise quadratic function. Then, they are

solving nonlinear flow-based model.

Every path between a generator and a demand point has its own quadratic convex
risk function which depends on the path length and the path flow. However, since
the path length only effects the value of the risk coefficient, the decision variable for
the piece-wise linear approximation is the flow on the path. The piece-wise linear

path-based model becomes

minimize Z Op([fp), (3.20)
peP(g)

subject to Z fr=4d;, ieN, (3.21)
pEP(i)
re Y fy=0,—0; (i,j)=e €&, (3.22)

peP(e)
N g€G, (3.23)
peP(9)
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<y fy < ecé, (3.24)

pEP(e)
9;111n S ‘91 S Qinax’ 1€ _/\/’, (325)

where ¢,(f,) represents the set of approximated piece-wise linear convex functions

for every path p in P(g). The function ¢,(f,) is defined as

op(fp) = maximize  {aurfp + Ok, k= 1,...,m,} (3.26)

where m,, denotes the number of linear pieces that is given for each path. The slopes
and the intercepts are denoted by «,, and d,,, respectively. Since a convex function

is approximated, the slopes and the intercepts satisfy

ap S ap, <<y, S, (3.27)
and
Opr 2> Opy > oo 2 Op, 4 > Op,, - (3.28)

In the next chapter we will discuss how to obtain a linear programming model that

can be solved by column generation.
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Chapter 4

Solution Approach

The path-based model with piece-wise linear convex objective function can be solved
by simplex method after a simple transformation. The drawback of this approach
arises if the network includes considerable number of nodes because the increase in
the number of nodes results in an exponential increase in the number of paths. This
issue can be handled by column generation. However, column generation method
needs a linear model with a fixed number of rows to obtain the reduced costs prop-
erly. If the piece-wise linear convex objective function is linearized by introducing

rows, then column generation cannot be applied directly.

Fourer (1985, 1988, 1992) introduced a solution method for piece-wise linear convex
models by introducing auxiliary variables. This approach leads to an increase in the
number of constraints with respect to the number of piece-wise linear equations in
the objective function. This increase in the number of rows also creates a problem for
column generation as the rows depend on the generated columns. In the literature,
there are also methods to solve problems with column dependent rows. One recent

example is given by Muter et al. (2013).

In this thesis, we use a solution method called Dantzig Reformulation. This solution
approach provides an equivalent linear programming model without any change in
the number of constraints. However, application of this methodology causes an
increase in the number of columns. This increase can again be handled by column

generation.
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4.1 Row-wise Expanding Linear Model

An equivalent linear programming formulation of (3.20)-(3.25) by a simple trans-
formation using auxiliary variables. This variable defines the cost of every path

between generator and demand point in the network. That is

z, = maximize  {aprfp + Bpr. k=1, ...,mp}. (4.1)
Then, we obtain
minimize Z Zp, (4.2)
peP(g)
subject to Z fo=d;, ieN, (4.3)
PEP(i)
re Y fy=10;— (i,j) =e €&, (4.4)
pEP(e)
mm < Z fp < Smax g€ g’ (45)
pEP(g
frin < Z o S 1, ceE, (4.6)
peP(e)
o < f; < g ieN (4.7)
Zp 2> Qi fp + Bpks p € Plg), k=1, cony My (4.8)

As it can be seen from the model, the constraints in (4.8) depend on p. Thus, the
problem size increases row-wise as new paths are added. Even for small networks,
this increase can be cumbersome. For example, suppose there are 1,200 paths
between generators and demand points in an electric network. Also, assume that
the piece-wise linear approximation is done with 100 linear pieces. In this case,
1,200 times 100 additional rows are included to the model. Especially in large
scale problems, the numbers of rows and columns increase exponentially due to
the number of paths in the network. Even though column generation can handle
the increase in number of columns, the increase in the number of rows changes the

solution approach. Therefore, we use Dantzig Reformulation instead of the standard
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reformulation, since Dantzig Reformulation does not add rows to the model.

4.2 Dantzig Reformulation

Dantzig (1956) reformulates the piece-wise model in a way that the increase in the
number of constraints is avoided. This solution method is referred to as Dantzig
Reformulation or Delta Formulation. In this reformulation, every linear piece that
approximates the convex quadratic objective function is considered as a new variable.
Then, the decision variable in the piece-wise objective function is described as the

summation of these new variables.

Consider the piece-wise linear convex function ¢,(f,). The connected linear pieces
that generates this function have bounds with respect to the distance between the

breakpoints. An illustration is given in Figure 4.1, where the breakpoints are denoted

by ~p.-

of )

p

Figure 4.1: lustration of Dantzig Reformulation

In Dantzig Reformulation, every linear piece is designated with a new decision vari-

able. Summation of these variables gives the decision variable f,.That is

fr=AT+ AL+ .+ AP (4.9)

Then, the upper bound on A is simply the distance between the associated break-

points,
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0<AY <AF = 4, k=1..m,. (4.10)

The crucial point of this reformulation is that at the optimal solution A in (4.9)
is nonzero if and only if A? | is equal to its upper bound. This situation can be
interpreted through the cost perspective. The cost of these variables is represented
in the objective function through the slope of the lines. Consider the slope of A} and
A} | as oy, and o, respectively. Since the slopes occur in an increasing fashion,
Qp, < p,_,, the simplex method will not consider A? until A? | hits the upper
bound as the coefficients of both variables are identical in the constraints. Next, we

present the reformulated model:

minimize Z Z af AV (4.11)

pEP(g) kEmp
subject to Z Z A = d;, ieN, (4.12)

pEP (i) keEmy

re Y AV =0; -0, (i,j)=e€ &,  (4.13)

pEP(e) kEmy

< YT Y A< s g€G,  (4.14)
pEP(g) kemyp

Sy T A< ec&,  (4.15)
pEP(e) kemy

g < 9, < g, ieN,  (4.16)

0 <A <% — Vet pEP(g), k=1.my  (417)

Note that after this reformulation, the number of constraints in the original model
is preserved. However, the number of columns is considerably increased as many
new decision variables are introduced. In the next section, we will discuss how to

apply column generation approach to (4.11)-(4.17).
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4.3 Column Generation

Column generation entails a restricted master problem (RMP) and a pricing sub-
problem. The master problem consists of feasible and fewer number of columns
than the original problem. The idea of the column generation method is to start
with a fewer number of variables in the basis and then adding the promising vari-
ables to the basis iteratively (Dantzig and Wolfe, 1960). The RMP establishes the
primal feasibility. However, the dual problem may not be feasible. The infeasible
constraints in the dual problem corresponds to columns that should enter the basis
to improve the primal objective function value. A column with a corresponding
infeasible constraint is said to have a negative reduced cost. The reduced cost of a
primal variable(column) is the magnitude of the infeasibility of the corresponding
dual constraint. The search for a column with negative reduced cost is carried out
through a pricing subproblem. The framework of the column generation approach

is given in Figure 4.2.

not found

Declare
optimality

Solve dual Solve
EMP Pricing Subproblem

Negative
Feduced
Cost?

addvanable to EMP

Figure 4.2: Flowchart of the column generation approach

In this thesis, the initial feasible solution for the master problem is set by using
artificial variables with very high costs. The pricing subproblem is the elementary
shortest path problem. This problem finds the paths that improve the objective
function mostly according to their reduced costs. Then, these paths are added to
the RMP in every iteration until no further negative path with a negative reduced

cost is found.

The pricing subproblem searches for the paths that have negative reduced costs.
Before explaining the elementary shortest path problem, the reduced cost calculation
is presented. Since the reduced cost calculation is related to the dual problem, first
we present the dual problem of (4.11)-(4.17):

23



s 1 _max 2 min 1 rmin
maximize E widz-+g AySy —E AySy _E o, fo

ieEN geg geg ec&

YOI =D O Y o (4.18)
ecf ieN ieN

subject to w; + )\; - )\3 + Zai - Zag
eEp ecp

+Zreﬂe§ai, pEP;, k=1.m, g€§G, ieN, (4.19)
eep

pi— >0, i €N, (4.20)

pi =13, >0, i€ N, (4.21)

Ags Ngrg, 2, 1 i > 0, (4.22)

where the dual variables w;, Ay, a., 8. and p, related to the constraints (4.12), (4.13),
(4.14), (4.15) and (4.16) respectively. Notice that, constraints (4.14), (4.15) and
(4.16) have lower bound values. Depending on the selected electric network, these
values can be different than zero. In this regard, constraints (4.14), (4.15) and (4.16)
are divided into two parts to make the lower bound zero. The corresponding dual
variables for these constraints are defined as o, a2, 4} and p2. The reduced cost for

a realizable f, is then given by

q:a;—wi+>\;—>\§+2a;—2a§

ecp ecp

+Y reBe, pEPL k=1..m,, g€G, i €N, (4.23)

eep

where 0411) represents slope of the first linear piece of the cost function. The refor-
mulated model has a slightly unusual reduced cost calculation due to the structure
of the objective function. According to Dantzig Reformulation, the objective func-
tion consists of multiple cost components with respect to the slopes of the linear
pieces. We assume an initial piece-wise convex generator cost function where the
path length is not considered then use the slope of the first piece of this function in
the reduced cost calculation. Recall that in equation (4.9), the second variable A}

is not included into the model until the first variable A hits its upper bound. This

24



means that if the reduced cost of the variable corresponding to the piece does not

improve the objective function, the others surely will not.

The pricing subproblem of column generation is the elementary shortest path prob-
lem. The standard shortest path problem is not used due to the cyclic structure
of the network. When the standard shortest path problem is used as the pricing
subproblem, negative cycles are encountered. As a result, we could not find any
path to start with. For this reason, elementary shortest path problem is necessary
to solve the model by column generation. However, finding the elementary paths
in the network is an NP-hard problem (Feillet et al., 2004). In this regard, a label
correcting algorithm of Feillet et al. (2004) is used which returns the elementary
paths for every node in the network under a dominance rule. This rule reduces
the computational time and avoids to encounter a path that contains a cycle. The
notation and the elements in their work is slightly changed to adapt the structure of
our problem. Consider the electric network, G = (N, E) where & is the set of edges
and N = (iy, ..., i,) is the set of nodes in the network. The generator nodes are also
included into this set. Consider that each elementary path from generator g € G
and i € N belongs to the set P} = (X, .

ias (R;, C;, L;). To simplify the notation, we denote the reduced cost and the length

.., Xj7). These paths create a label on node

of each elementary path as C; and L; respectively. Also, R; = (Vi!,...,V;") where
(V" = 1) if the path includes the node 4,. In this context, consider X ; and X}; as
two distinct paths between a generator node g and demand point ¢. The dominance
rule states that X}, dominates X/, if and only if C < CJ, Ly < L and V;** < V/*
for k = 1,...,n. Otherwise, the algorithm extends the labels to node i. The last part
of the definition claims that if a label is a subset of another label, it is called as the
dominant label. Therefore, the accumulation of the labels on the nodes is avoided

by the domination rule. In addition, the dominance rule also prevents cycles.

Before presenting the algorithm, some additional notation is required. The array
L represents the nodes that are waiting to be treated. The label list on node i
is denoted as I'y. Furthermore, the successor set of node iy is given by Succ(iy).
The labels extended from node i to %,, is denoted by Fj,,. In addition, during
the iterations of the algorithm we keep the labels which are to be treated and this
structure is shown by T'reat(k). Finally, the details of the elementary shortest path
algorithm is given by Algorithm 1. This algorithm is in fact adapted from Feillet
et al. (2004).
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Algorithm 1: Elementary Shortest Path Algorithm

1 forallge g

2 INITIALIZATION
3 I'y « {(0,...,0}

4 for all iy € N\ {g}
5 doly, + @

6 L ={p}

7 repeat

8 Choose i, € L

9 for all i,, € Succ(ix)

10 do £}, + @

11 for all (Ry,c,,[,) € Iy

12 doif V" =0

13 then Extend label into Fj,,
14 Treat(k) < (Ry, G, 1)
15 L« LU{i}

16 REDUCTION OF L

17 L+ L\ {ix}

18 until L = o

Now we are ready to test our solution approach on two problems taken from the

literature.
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Chapter 5

Computational Study

In this chapter, we present our numerical results. We use MATLAB 12b and CPLEX
12.5 in our implementation. Two example electric networks are selected: ITEEFFE 14
bus network and IFEFE 118 bus network. The network data is taken from the
University of Washington Power System Test Case Archive (Nanda et al., 1994;
Blumsack, 2006).

5.1 IEEE 14 Bus Network

IEFEFE 14 bus network structure is relatively simple due to the number of nodes in
the network. There are 3 generators, 13 demand points and 20 undirected edges
in the network. The generator, line and bus data for I/EEE 14 bus network is
presented in Appendiz A. Incorporating the risk function into the objective function
of the path-based model results with a more condensed network where the generators
satisfy demand in their vicinity. In this regard, the first implementation is done for
IEEE 14 Bus Network and we present a comparison for two cases. First, (4.11)-
(4.17) solved by column generation without considering the risk arising from the long
distance electricity transmission. That is, the original convex-quadratic generator
cost function is preserved. Second, the risk function is incorporated and (4.11)-(4.17)
is solved by column generation. For the second case, we achieve to present a more
condensed network where the generators satisfy the demand in their vicinity. The

Figure 5.1 shows the implementation results of two cases for IEEFE 14 bus network

27



where the number on the lines are the transmission line length.

s=100 d=47.8
Srisk=61.3
d=94.2

Figure 5.1: IEEE 14 Bus Network Generator Capacity for Case 1 and Case 2

In Figure 5.1, the nodes 1,2 and 3 indicates the generators whereas the other nodes
represent the demand points in /EEFE 14 bus network. The amount of demand is
shown below or above the demand points. The generator capacity is found under
the first and second case are shown as s and s, respectively. The results also can

also be seen in the following Table 5.1.

Table 5.1: Resulting Generator Capacities of IEEE 14 Bus Network for
two cases

Generator Number s Srisk
1 159.3 160
2 0 38
3 100 61.3

Notice that when the risk is considered, the capacity of generator 2 is increased
whereas the capacity of generator 3 is decreased. The reason behind is that the
path length dependent risk function promote the demand points which are closer
to generator 2 than generator 3. In the first case, the demand of 12,13 and 14 was

partially satisfied from generator 3. However, these demand points are relatively
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closer to generator 2. As a result, the generator capacity of generator 2 increases
to satisfy the demand in its vicinity. The resulted increase is not that drastic since

there are just three generators and the network is small.

Moreover, we give the same presentation for the demand side.

Table 5.2: Average distance to satisfy demand considering the risk function
for IEEFFE 14 Bus Network

Demand Point 25% 50% 75% 100%
1 0 0 0 0
2 500 417 10 10
3 510 407 10 10
4 461 13 13 13
5 7 7 40 40
6 100 7 110 110
7 0 0 0 0
8 0 0 0 0
9 150.5 560 0 0

10 600 95 85 85
11 107 140 140 140
12 117 117 150 150
13 160 144 144 144
14 369 141 141 141

average 220.125 151.285 60.214 60.214

We present the average distance in kilometers that is required to satisfy the 25%,
50%, 75% and 100% of the demand. First we show the results with considering the
risk function in Table 5.2. Then, the risk function is not considered and the results

are shown in 5.3.

Table 5.3: Average distance to satisfy demand without the risk function
for IEFEFFE 14 Bus Network

Demand Point 25% 50% 75% 100%
1 0 0 0 0
2 416 500 500 500
3 553 510 510 510
4 355 515 515 515
5 324 598 597 597
6 494 494 494 494
7 1175 1175 1175 1175
8 0 0 0 0
9 375 555 555 555

10 431 431 431 431
11 367 1010 1010 1010
12 590 590 590 590
13 527 527 527 527
14 510 510 510 510

average 436.832  529.560 529.525  529.525

The last row of the Tables 5.2 and 5.3 show that when the risk is considered most of
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the demand is satisfied from closer generators. Because, the average distance found
to satisfy the 75% and 100% of demand is much smaller than the average distance
found to satisfy 25% and 50% of demand. However when the risk is not considered,
the average distance increases. That means, considering the risk function provides

a network structure where the demand is satisfied by the closer generators.

5.2 IEEE 118 Bus Network

IEFEFE 118 bus network can be considered as a large-scale problem due to the number
of nodes and the transmission lines in it. There are 19 generators, 118 demand
points and 360 edges in the network. Appendiz B contains the generator, line and
bus data tables for ITEEFE 118 Bus Network. The comparison of two cases is also
given for IEFE'E 118 Bus Network. The first case does not include the risk function
and the second one does. The results are presented in Figure 5.2 through a similar
fashion with IEEFE 14. However, since the IEFEE 118 bus network is large, the
figure contains the resulting generator capacities under case 1 and 2 for the selected

generators 59 and 61.

Figure 5.2: IEEE 118 Bus Network an example path considering the risk

The change in all of the generator capacities can be seen in the following Table 5.4.
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Table 5.4: Resulting Generator Capacities of IEEE 118 Bus Network for
two cases

Generator Number S Spisk

10 550 541.6
12 30 1278
25 320 318.3
26 307.6 4125
31 17 1.5
46 11.3 2
49 304 1174
o4 30 2.3
29 0 248.7
61 744 2352
65 491 169.4
66 492 4484
69 805.2 804
80 77T 575.3
87 8.5 7.3
92 ) 4
100 352 346
103 139.5 132
111 4.5 253

As it can be seen from the Figure 5.2 and the Table 5.4 the resulting capacity of
generators changes when the risk is incorporated into the model. The generators
59 and 61 are two example generators whose capacities increase drastically when
the risk arising from long distance electricity transmission is considered. These
generators are closer to demand points 54,55,56,60,62,67,63,64 and 65. When the
model is solved with the path-length dependent risk function the demand of these
points mostly satisfied by generators 59 and 61. The same interpretation can be
given for the remaining generators where their capacity is changed with the risk

function.

In the following tables, we also present the results through the demand point per-
spective. In Table 5.5 and 5.6, the average distances are shown that 25%, 50%, 75%
and 100% of the demand is satisfied with and without considering the risk function.
The average distance is given considering all of the demand points in the network
at the last row of the tables.

As it can be seen from the tables when the risk is considered, the demands are
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mostly satisfied from closer generators. Because, the average distance to satisfy
75% and 100% are much smaller than 25% and 50% in Table 5.5. However, in Table
5.6 the average distances found are larger than the values in Table 5.5 as expected.
In this case, the demand is mostly satisfied from distant generator points. There
are demand points that has the same average distance values in all columns. The

reason behind is that all of the demand is satisfied by a single generator.
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5.3 Sensitivity Analysis

We present a sensitivity analysis for different values of the constant element in the
risk coefficient function. Recall that, in Chapter 3 the risk function is given as
the multiplication of the original convex quadratic function and the risk coefficient.
The risk coefficient function 5(I,) has a constant element which is given as ¢. In
this section, a sensitivity analysis is given for three different values of the constant
element t. The constant element is taken as 2,3 and 4 and implementation is done for
IEFFE 14 and IEEE 118 Bus Networks. The values in the tables shows the average
distance between the generators and the demand points to satisfy the demand. We

use the following calculation which is:

ZpeP(g) lpfp

—~ 5 9€0.
Zpep(g) fp

average distance =
The last row of the tables shows the average distance which considers all of the
generators in the network. This row indicates the result that when the risk coefficient
becomes larger, generators satisfy the demand of the closer points. In both of
the tables, the average distance to satisfy the demand becomes smaller when ¢ is
increased. In addition, There are cases of generators that shows an average distance

increase when ¢ increases. The reason is due to the capacity limit over the generators.

Table 5.7: Sensitivity Analysis for /EFE 14 Bus Network

Generator Number 2 —elr 3 —elr 4 — ¢l

1 478 475 451
2 36 63 62
3 91 90 92
average 326.04 324.74 308.56
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Table 5.8: Sensitivity Analysis for /EEFFE 118 Bus Network
Generator Number 2 —e'r 3 —el» 4 —¢l

10 1032 956 672
12 775 734 841
25 552 710 733
26 969 845 862
31 915 1001 775
46 272 506 384
49 589 506 209
54 769 408 776
59 718 710 551
61 630 572 631
65 413 504 628
66 549 581 510
69 355 342 304
30 346 295 362
87 672 547 728
92 1089 615 824
100 356 500 462
103 348 395 865
111 726 651 425

average 589.051 579.324 565.637
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Chapter 6

Conclusion and Future Work

This thesis incorporates the risk arising from the long distance electricity transmis-
sion into an electric power optimization model. As mentioned, electricity transmis-
sion can disrupted by many unexpected outside factors. This disruption creates
risk of encountering a situation where the demand may not be met. This risk be-
comes more crucial when the distance between supply and demand is large. The
risk function that we consider considers both of these facts. As a result, we achieve
to present a more condensed network structure where the generators satisfy the de-
mand in their vicinity. We achieve this result by the risk function that considers
path length and path flow. Our work differs from the works in the literature through
the incorporation of the risk function into the power flow optimization model. We
utilize one example of the outside factor which is the incurred voltage drop due to
line losses. However, the risk function can be improved to obtain a more accurate

and realistic function that contains all of the risk factors for a future study.

Recall that, the linear flow-based model is decomposed into a path-based model to
incorporate the risk function. This incorporation can also be presented for the flow-
based problem. A similar risk function that considers the risk on each of the trans-
mission line can be incorporated into the objective function of the model. However,
due to structure of the risk function, flow-based problem will result in an overes-
timation of risk. This overestimation can be observed in flow-based problem in a

future study.

In this thesis, we use an electric network optimization model where the objective
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is to minimize the convex quadratic risk function subject to linear constraints. We
employ column generation method to solve the path-based model. First, the convex-
quadratic objective function is approximated by piece-wise linear functions. After-
wards, an equivalent linear programming model for the piece-wise model is given to
apply the column generation method. The Dantzig Reformulation method avoids
the increase in number of rows which improves the computational time of the col-
umn generation. For future work, the solution methodology which is proposed by

Muter et al. (2013) can be applied and solution performance can be compared.

In addition; the linear programming network optimization model that we use is an
approximation of the original non-linear and non-convex optimal power flow model.
A more realistic approach should have been given, if a nonlinear model is used.
In this thesis, we neglect some of the power flow equations due to using the DC
approximated model. However, the selected scope and the given time to propose

such a model was not enough.

In conclusion, we successfully incorporate the risk function into the path-based
model and also present a more condensed network for IEEE 14 Bus Network and
IEEE 118 Bus Network. This implementation can be done for larger networks where
the number of nodes can be between 250-3000. The power optimization in electric
networks has a wide research area. There are still voids in model where these voids
can be fulfilled with further improvement in implementation and also in the math-

ematical modeling.
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Appendix A

The data of IEEE 14 Bus Network is shown in the following tables. The minimum

and maximum vales for phase angles is taken as —45° and —45°. The data does not

cover all of the information about the transmission system. Some part of the data

where it is taken from Nanda et al. (1994). The line length values are randomly

generated.

Table 1: Generator Capacity and Cost Coefficients

Generator Number =~ s s b c

1 10 160 0.005 245 105

2 20 150 0.005 3.51 44.1

3 20 100 0.005 3.89 40.6

Table 2: Line Data

Line Number From Bus To Bus Resistance p.u. F™" [F™> Tine Length (km)
1 1 2 0.01938 -220 220 300
2 1 5 0.05403 -220 220 400
3 2 3 0.04699 -220 220 10
4 2 4 0.05811 -220 220 20
5 2 5 0.05695 -220 220 30
6 3 4 0.06701 -220 220 5
7 4 5 0.01335 -220 220 2
8 4 7 0 -220 220 60
9 4 9 0 -220 220 40
10 5 6 0 -220 220 70
11 6 11 0.09498 -220 220 30
12 6 12 0.12291 -220 220 40
13 6 13 0.06615 -220 220 50
14 7 8 0 -220 220 60
15 7 9 0 -220 220 10
16 9 10 0.03181 -220 220 40
17 9 14 0.12711  -220 220 100
18 10 11 0.08205 -220 220 100
19 12 13 0.22092 -220 220 5
20 13 14 0.17093 -220 220 10
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Table 3: Bus Data

Bus Number

Real Power Demand 6™

max
0;

0
21.7
94.2
47.8

7.6
11.2

0

0
29.5

9

3.5
6.1
13.8
14.9

-45
-45
-45
-45
-45
-45
-45
-45
-45
-45
-45
-45
-45
-45

45
45
45
45
45
45
45
45
45
45
45
45
45
45
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Appendix B

The data of IEEE 14 Bus Network is shown in the following tables. The minimum
and maximum vales for phase angles is taken as 180—° and —180°. The data does
not cover all of the information about the transmission system. Some part of the
data is taken from Blumsack (2006) and Washington University Test Case Archive.

The generator cost data is randomly generated.

Table 4: Generator Capacity and Cost Coefficients

Generator Number sg‘in G a b c
10 0 550 0.009 7.24 89.5
12 0 185 0.003 6.42 72.8
25 0 320 0.002 7.17 81.8
26 0 414 0.002 4.68 50.0
31 0 107 0.006 3.26 81.0
46 0 119 0.006 4.40 9.6
49 0 304 0.010 7.30 21.9
54 0 148 0.007 9.94 25.9
59 0 255 0.007 6.77 46.8
61 0 260 0.007 7.91 45.9
65 0 491 0.007 1.71 71.0
66 0 492 0.010 0.27 17.8
69 0 805.2 0 800 53.1
80 0 577 0.001 9.04 16.8
87 0 104 0.003 0.25 76.9
92 0 100 0.007 4.92 92.8
100 0 352 0.008 5.26 60.9
103 0 140 0.009 5.96 15.0
111 0 136 0.010 0.52 49.0
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Table 5: Line Data

Line Number From Bus To Bus Resistance p.u. F™* [F™> Tine Length (km)

1 1 2 0.0303 -220 220 48
2 1 3 0.0129 -220 220 204
3 2 12 0.0187 -220 220 29.6
4 3 5 0.0241 -220 220 43.7
) 3 12 0.0484 -220 220 76.8
6 4 5 0.00176 -220 440 3.2
7 4 11 0.0209 -220 220 33.1
8 ) 6 0.0119 -220 220 21.7
9 ) 11 0.0203 -220 220 32.4
10 6 7 0.00459 -220 220 8.4
11 7 12 0.00862 -220 220 14.7
12 8 9 0.00244 -220 1100 90.5
13 8 5 0 -220 880 90.5
14 8 30 0.00431 -220 220 154.3
15 9 10 0.00258 -220 1100 95.6
16 11 12 0.00595 -220 220 9.4
17 11 13 0.02225 -220 220 35.2
18 12 15 0.0215 -220 220 34
19 12 17 0.0212 -220 220 36.2
20 12 117 0.0329 -220 220 58.3
21 13 15 0.0744 -220 220 117.8
22 14 15 0.0595 -220 220 94.1
23 15 17 0.0132 -220 440 21
24 15 19 0.012 -220 220 19
25 15 33 0.038 -220 220 60.1
26 16 17 0.0454 -220 220 77.9
27 17 19 0.0123 -220 220 214
28 17 31 0.0474 -220 220 75.2
29 17 113 0.00913 -220 220 14.5
30 18 19 0.01119 -220 220 20.8
31 19 20 0.0252 -220 220 46.5
32 19 34 0.0752 -220 220 119
33 20 21 0.0183 -220 220 33.8
34 21 22 0.0209 -220 220 38.6
35 22 23 0.0342 -220 220 63.2
36 23 24 0.0135 -220 220 22.3
37 23 25 0.0156 -220 440 30.3
38 23 32 0.0317 -220 220 52.3
39 24 70 0.00221 -220 220 176.5
40 24 72 0.0488 -220 220 84.2
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Line Number From Bus To Bus Resistance p.u. F™* F™> Tine Length (km)

41 25 27 0.0318 -220 440 61.7
42 26 25 0 -220 220 61.7
43 26 30 0.00799 -220 660 274.2
44 27 28 0.01913 -220 220 34.7
45 27 32 0.0229 -220 220 36.3
46 27 115 0.0164 -220 220 29.9
47 28 31 0.0237 -220 220 29.9
48 29 31 0.0108 -220 220 40.7
49 30 17 0 -220 660 16.6
20 30 38 0.00464 -220 220 165.7
o1 31 32 0.0298 -220 220 47.3
o2 32 113 0.0615 -220 220 97.5
23 32 114 0.0135 -220 220 24.6
o4 33 37 0.0415 -220 220 66.8
25 34 36 0.00871 -220 220 13.4
56 34 37 0.00256 -220 440 4.2
57 34 43 0.0413 -220 220 717
o8 35 36 0.00224 -220 220 4.1
29 35 37 0.011 -220 220 4.1
60 37 39 0.0321 -220 220 50.9
61 37 40 0.0593 -220 220 88.7
62 38 37 0 -220 660 88.7
63 38 65 0.00901 -220 440 311.8
64 39 40 0.0184 -220 220 29.1
65 40 41 0.0145 -220 220 23
66 40 42 0.0555 -220 220 88
67 41 42 0.041 -220 220 65
68 42 49 0.0715 -220 220 130.3
69 43 44 0.0608 -220 220 105.1
70 44 45 0.0224 -220 220 38.7
71 45 46 0.04 -220 220 64.1
72 45 49 0.0684 -220 220 100.8
73 46 47 0.038 -220 220 60.6
74 46 48 0.0601 -220 220 93.5
75 47 49 0.0191 -220 220 30.2
76 47 69 0.0844 -220 220 133.7
7 48 49 0.0179 -220 220 26.7
78 49 20 0.0267 -220 220 39.8
79 49 ol 0.0486 -220 220 72.5
80 49 o4 0.073 -220 220 125.1
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Line Number From Bus To Bus Resistance p.u. F™* F™> Tine Length (km)

81 49 66 0.018 -220 440 34.8
82 49 69 0.0985 -220 220 156
83 20 o7 0.0474 -220 220 70.8
84 o1 52 0.0203 -220 220 30.6
85 51 o8 0.0255 -220 220 38.1
86 52 53 0.0405 -220 220 70
87 93 o4 0.0263 -220 220 48.5
88 o4 95 0.0169 -220 220 29.7
89 o4 26 0.00275 -220 220 4.5
90 54 29 0.0503 -220 220 92
91 95 56 0.00488 -220 220 7.5
92 95 29 0.04739 -220 220 86.7
93 26 o7 0.0343 -220 220 01.2
94 26 o8 0.0343 -220 220 51.2
95 26 29 0.0825 -220 220 126.7
96 59 60 0.0317 -220 220 28.1
97 29 61 0.0328 -220 220 60.1
98 60 61 0.00264 -220 440 5.1
99 60 62 0.0123 -220 220 22.5
100 61 62 0.00824 -220 220 15.1
101 62 66 0.0482 -220 220 87.9
102 62 67 0.0258 -220 220 47.1
103 63 29 0 -220 440 47.1
104 63 64 0.00172 -220 440 61.4
105 64 61 0 -220 220 61.4
106 64 65 0.00269 -220 440 94.3
107 65 66 0 -220 220 94.3
108 65 68 0.00138 -220 220 49.2
109 66 67 0.0224 -220 220 40.9
110 68 69 0 -220 440 40.9
111 68 81 0.00175 -220 220 62.2
112 68 116 0.00034 -220 440 12.3
113 69 70 0.03 -220 440 93
114 69 75 0.0405 -220 440 62
115 69 77 0.0309 -220 220 48.8
116 70 71 0.00882 -220 220 15.2
117 70 74 0.0401 -220 220 63.6
118 70 75 0.0428 -220 220 67.8
119 71 72 0.0446 -220 220 77.1
120 71 73 0.00866 -220 220 17

20



Line Number From Bus To Bus Resistance p.u. F™* F™> Tine Length (km)

121 74 75 0.0123 -220 220 19.5
122 75 77 0.0601 -220 220 95.6
123 75 118 0.0145 -220 220 23
124 76 7 0.0444 -220 220 70.7
125 76 118 0.0164 -220 220 26.1
126 7 78 0.00376 -220 220 6
127 7 80 0.017 -220 440 25.5
128 7 82 0.0298 -220 220 44.7
129 78 79 0.00546 -220 220 9.9
130 79 80 0.0156 -220 220 28.4
131 80 96 0.0356 -220 220 69
132 80 97 0.0183 -220 220 35.4
133 80 98 0.0238 -220 220 43.5
134 80 99 0.0454 -220 220 82.9
135 81 80 0 -220 220 82.9
136 82 83 0.0112 -220 220 17.7
137 82 96 0.0162 -220 220 25.6
138 83 84 0.0625 -220 220 74.6
139 83 85 0.043 -220 220 69.4
140 84 85 0.0302 -220 220 36.2
141 85 86 0.035 -220 220 57
142 85 88 0.02 -220 220 38.7
143 85 89 0.0239 -220 220 169.1
144 86 87 0.02828 -220 220 201.5
145 88 89 0.0139 -220 440 27
146 89 90 0.0518 -220 660 85.5
147 89 91 0.0099 -220 220 85.5
148 89 92 0.0099 -220 220 67.8
149 90 91 0.0254 -220 660 40.2
150 91 92 0.0387 -220 220 61.3
151 92 93 0.0258 -220 220 40.9
152 92 94 0.0481 -220 220 76.1
153 92 100 0.0648 -220 220 118.5
154 92 102 0.0123 -220 220 22.5
155 93 94 0.0223 -220 220 35.3
156 94 95 0.0132 -220 220 20.9
157 94 96 0.0269 -220 220 42.3
158 94 100 0.0178 -220 220 28.1
159 95 96 0.0171 -220 220 26.8
160 96 97 0.0173 -220 220 33.5
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Line Number From Bus To Bus Resistance p.u. F™" F™* Line Length (km)
161 98 100 0.0397 -220 220 72.3
162 99 100 0.018 -220 220 32.8
163 100 101 0.0277 -220 220 50.7
164 100 103 0.016 -220 440 25.3
165 100 104 0.0451 -220 220 82
166 100 106 0.0605 -220 220 101.6
167 101 102 0.0246 -220 220 45
168 103 104 0.0466 -220 220 74.8
169 103 105 0.0535 -220 220 82.1
170 103 110 0.03906 -220 220 72.1
171 104 105 0.00994 -220 220 16.7
172 105 106 0.014 -220 220 23.9
173 105 107 0.053 -220 220 85.6
174 105 108 0.0261 -220 220 38.3
175 106 107 0.053 -220 220 85.6
176 108 109 0.0105 -220 220 15.5
177 109 110 0.0278 -220 220 41.1
178 110 111 0.022 -220 220 35.5
179 110 112 0.0247 -220 220 35.8
180 114 115 0.0023 -220 220 4.2

52



Table 6: Bus Data

Bus Number Real Power Demand @™ gmax
1 51 -180 180
2 20 -180 180
3 39 -180 180
4 39 -180 180
5 0 -180 180
6 52 -180 180
7 19 -180 180
8 28 -180 180
9 0 -180 180
10 0 -180 180
11 70 -180 180
12 47 -180 180
13 34 -180 180
14 14 -180 180
15 90 -180 180
16 25 -180 180
17 11 -180 180
18 60 -180 180
19 45 -180 180
20 18 -180 180
21 14 -180 180
22 10 -180 180
23 7 -180 180
24 13 -180 180
25 0 -180 180
26 0 -180 180
27 71 -180 180
28 17 -180 180
29 24 -180 180
30 0 -180 180
31 43 -180 180
32 59 -180 180
33 23 -180 180
34 59 -180 180
35 33 -180 180
36 31 -180 180
37 0 -180 180
38 0 -180 180
39 27 -180 180
40 66 -180 180
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Bus Number Real Power Demand g™ gmax

41 37 -180 180
42 96 -180 180
43 18 -180 180
44 16 -180 180
45 53 -180 180
46 28 -180 180
47 34 -180 180
48 20 -180 180
49 87 -180 180
50 17 -180 180
ol 17 -180 180
02 18 -180 180
23 23 -180 180
o4 113 -180 180
95 63 -180 180
56 84 -180 180
57 12 -180 180
o8 12 -180 180
29 277 -180 180
60 78 -180 180
61 0 -180 180
62 77 -180 180
63 0 -180 180
64 0 -180 180
65 0 -180 180
66 39 -180 180
67 28 -180 180
68 0 -180 180
69 0 -180 180
70 66 -180 180
71 0 -180 180
72 12 -180 180
73 6 -180 180
74 68 -180 180
75 47 -180 180
76 68 -180 180
7 61 -180 180
78 71 -180 180
79 39 -180 180
80 130 -180 180
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Bus Number Real Power Demand 6;“1“ grmax

81 0 -180 180
82 54 -180 180
83 20 -180 180
84 11 -180 180
85 24 -180 180
86 21 -180 180
87 0 -180 180
88 48 -180 180
89 0 -180 180
90 440 -180 180
91 10 -180 180
92 65 -180 180
93 12 -180 180
94 30 -180 180
95 42 -180 180
96 38 -180 180
97 15 -180 180
98 34 -180 180
99 42 -180 180
100 37 -180 180
101 22 -180 180
102 5 -180 180
103 23 -180 180
104 38 -180 180
105 31 -180 180
106 43 -180 180
107 50 -180 180
108 2 -180 180
109 8 -180 180
110 39 -180 180
111 0 -180 180
112 68 -180 180
113 6 -180 180
114 8 -180 180
115 22 -180 180
116 184 -180 180
117 20 -180 180
118 33 -180 180
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