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ABSTRACT 

Water pollution mainly caused by arsenic and heavy metal ions is a growing threat to 

environment and public health. Adsorption is one of the most efficient methods for the 

removal of the contaminants due to its high efficiency, easy operation and low cost. 

This thesis aims to develop nano and porous materials, and then implement these into 

adsorptions of arsenic, lead, and copper in order to investigate an effective water 

purification system for communities. In this study, specific functional nanomaterials 

comprising ferric ion loaded red mud, iron oxide/activated carbon, titanium dioxide 

nanoparticles, and titanium dioxide/activated carbon nanocomposites have been 

successfully fabricated. The obtained nanomaterials are characterized by using X-ray 

diffraction, Raman spectroscopy, scanning electron microscopy, Fourier transform 

infrared spectroscopy, and X-ray photoelectron spectrometer. 
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The arsenic removal efficiency of ferric ion loaded red mud considering effect of pH, 

initial arsenic concentration, and contact time is evaluated and the higher adsorption 

capacities found 11.640 mg/g for As(V) at pH 7.0 and 5.254 mg/g for As(III) at pH 2.0. 

The presence of ferric ion in the system increased the uptakes of arsenic species from 

water; therefore, the following study is focused on utilization of iron oxide 

nanoparticles deposited uniformly on activated carbon support with high loadings by 

microwave hydrothermal treatment. Maximum adsorption capacity is 27.78 mg/g for 

As(V) and for a loading of 0.75 g/L, 99.90% uptake is reached within 5 minutes. On the 

other hand, the beneficial adsorptive eliminations of Pb(II), Cu(II), and As(III) from 

water are also demonstrated using anatase nanoadsorbent produced by sol-gel method. 

The maximum experimental adsorption uptakes were 31.25 mg/g for Pb(II), 23.74 mg/g 

for Cu(II), and 16.98 mg/g for As(III), respectively. XPS analyses revealed that the 

surface oxygen-containing functional groups including hydroxyl groups were involved 

in the adsorption process. In order to prevent release of the nanoparticles to the 

environment, activated carbon was used as a support material for TiO2 nanoparticles. It 

was observed that As(III) uptake capacity of the nanocomposite was improved 

approximately 2.7 times as compare to the bare TiO2 nanoparticles. Finally, the 

effectiveness of titanium dioxide nanoparticles in removing arsenic species from water 

was enhanced by the photocatalytic oxidation experiments converting As(III) to As(V). 

The maximum adsorption capacities were found 12.13 mg/g for As(III) in the absence 

of UV-A illumination, 41.38 mg/g for As(V), and 36.55 mg/g for As(III) in the presence 

of UV-A illumination. 

 

Overall, anatase nanoadsorbent are able to reduce Pb(II) and Cu(II) concentrations 

below the MCL requirements for drinking water. The enhanced As(III) removal are 

observed under UV-A illumination by using TiO2 nanoparticles and they are able to 

reduce As(III) concentrations below the MCL requirements for drinking water up to 

moderate initial concentrations. Additionally, 10-AC/TiO2 nanocomposite, having a 

considerable As(III) uptake capacity, can be also potentially used in arsenic removal. 
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BAKIR VE KURŞUN İLE KİRLENMİŞ SULARIN TEMİZLENMESİNDE 

KULLANIMI 
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ÖZET 

Suların arsenik ve ağır metaller ile kirletilmesi çevre ve insan sağlığı için giderek 

büyüyen bir tehlike haline gelmiştir. Adsorpsiyon yöntemi diğer su temizliği teknikleri 

arasında en etkili, uygulanabilir ve düşük maliyete sahip olandır. Bu tez çalışmasında 

nano ve gözenekli malzemeler sulardan arsenik, kurşun ve bakır’ın alınması için 

geliştirilerek; etkin, ucuz ve yüksek kalitede su temizliği sağlayacak sistemin ortaya 

koyulması amaçlanmıştır. Bu çalışmada ferrik iyonları ile yüklenmiş kırmızı çamur, 

demir oksit/aktif karbon, titanyum dioksit nano parçacıklar ve titanyum dioksit/aktif 

karbon nano kompozitlerden oluşan spesifik fonksiyonel nano malzemeler başarılı bir 

şekilde üretilmiştir. Elde edilen bu malzemeler X-ışını kırınımı, taramalı elektron 

mikroskopisi, Raman spektrometrisi, FTIR spektrometrisi ve X-ışını foto elektron 

spektroskopisi kullanılarak ayrıntılı olarak karakterize edilmiştir. 

 



 vii 

Ferrik iyonları ile yüklenmiş kırmızı çamurun sulardan arsenik alma etkinliği pH, temas 

süresi ve ilk arsenik konsantrasyon miktarı göz önüne alınarak, As(V) iyonu için pH 

7.0’de 11.640 mg/L ve As(III) iyonları için pH 2.0’de 5.254 mg/L olarak bulunmuştur. 

Ferrik iyonların arsenik alımını iyileştirdiği gözlenmesinin sonucunda yüksek miktarda 

demir oksit nano parçacıkları ile kaplı aktif karbon mikrodalga yöntemi ile üretilmiştir. 

Bu malzemelerin maksimum adsorpsiyon kapasiteleri 27.78 mg/g olup 0.75 mg/L 

adsorban kullanarak 5 dakikalık temas süresi sonunda sudan %99.90 oranında As(V) 

alınmıştır. Sol-gel yöntemi ile sentezlenen anataz nano parçacıkları ile kurşun, bakır ve 

arsenik sulardan adsorpsiyon yöntemi ile başarılı bir şekilde alınmıştır. Bulunan 

korelasyon katsayısı ve ortalama hata oranı değerlerine göre, Pb(II) adsorpsiyonu en iyi 

Langmuir izotermi ile Cu(II) ve As(III) adsorpsiyonları ise Freundlich izotermi ile 

açıklanmıştır. Deneysel olarak bulunan maksimum adsopsiyon değerleri kurşun için 

31.25 mg/L, bakır için 23.74 mg/L ve arsenik için 16.98 mg/L olarak bulunmuştur. XPS 

analizleri sonucunda adsorpsiyon prosesinde yüzeydeki oksijen içeren gruplar rol aldığı 

bulunmuştur. Nano parçacıkların çevreye dağılmasını engellemek için, üretilen 

titanyum dioksit nano parçacıklarının içerisine aktif karbon eklenmiş olup, bu nano 

kompozitin arsenik tutma kapasitesi, saf titanyum dioksit nano parçacıkların 2.7 katında 

arttırdığı görülmüştür. Son olarak titanyum dioksit nano parçacıkların sulardan arsenik 

tutma kapasiteleri foto katalatik oksidasyon yöntemi kullanarak iyileştirilmiştir. 

Titanyum dioksit nano parçacıklarını içeren 4 mg/L As(III) solüsyon 120 dakika 

içerisinde denge durumuna gelmiştir. Maksimum UV-A ışığı yokluğunda As(III) 

adsorpsiyonu 12.13 mg/g ve As(V) adsorpsiyonu 41.38 mg/g olup, UV-A ışığında 

36.55 mg/g As(III) adsorplanmıştır. 

 

Genel olarak, anataz nano adsorbanlar kullanılarak içme sularındaki maksimum Pb(II) 

ve Cu(II) konsantrasyonların altına düşürülebilir. UV-A ışığı ile aydınlatılan titanyum 

dioksit nano parçacıklar sulardaki maksimum As(III) konsantrasyonunu belirlenen 

değerlerin altına düşmesinde etkili olmuşlardır. Ayrıca üretilen 10-AC/TiO2 nano 

kompozit malzemesi yüksek As(III) alımı ile sulardan arsenik alınmasında kullanılan 

potansiyel bir malzeme olabilir. 
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CHAPTER 1 

 

INTRODUCTION 

 
 
 
 
Water, as a universal solvent for many reactions including metabolic processes within 

the body, is one of the vital components for the continuity of life on earth. The threats 

of long-term water shortages driven by population growth and climate change are 

forcing researchers to find a way to treat water contaminated with heavy metal and 

arsenic. Specifically, rapid industrialization is the major cause for introducing heavy 

metal and arsenic contaminants to the water.  

 

The existence of heavy metals and arsenic in water supplies may cause severe effects on 

health, environmental toxicity, and affect the quality of the water environment [11]. 

Arsenic and lead may accumulate in the body and can reach toxic levels. Arsenic is the 

most dangerous as it can cause lung, liver, kidney, skin, and bladder cancers. Long-term 

consumption of even low levels of arsenic could be dangerous [12]. Lead also can cause 

serious health problems, such as damage to the brain and kidneys, and may cause 

lowered intelligence in children. Furthermore, in the case of women, lead is stored in 

the bones, and it can be released later in life and during pregnancy [13]. Copper is 

essential elements for good health, but like all heavy metals, an excess of the metals can 

be harmful. For instance, copper excess can cause Wilson’s disease [14]. Arsenic, lead, 

and copper are naturally occurring contaminants of groundwater and surface water. 

Arsenic is introduced into environment by geochemical reactions, natural weathering 

reaction, mining activities, industrial wastes and volcanic emissions [9]. Lead and 
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copper may enter drinking water after the treatment process due to the corrosion of 

pipes or faucets made of lead and copper. The primary sources of copper in drinking 

water are corrosion of household plumbing systems, erosion of natural deposits, and 

leaching from wood preservatives. The current allowable concentrations of lead, 

arsenic, and copper in drinking water as set by the United States Environmental 

Protection Agency (U.S. EPA) are 15 ppb, 10 ppb, and 1.3 parts per million (ppm), 

respectively [15].  

 

The most common methods, which have been used for removal of heavy metal ions 

from an aqueous medium, contain solvent extraction, ultra-filtration, reverse osmosis, 

electro dialysis, chemical precipitation, ion exchange, and adsorption[16-19]. Among 

these water treatments, adsorption is the most preferred method for removal of heavy 

metal ions since it is a highly efficient method with low cost and a range of different 

adsorbents. The adsorbents, which are extensively used for heavy metal removal, 

include activated carbon, zeolites, sawdust, fly ash, chitosan, activated alumina, and 

iron oxide particles [20-23].  

 

The new promises that nanotechnology have encouraged the industry to focus their 

research and investments on developing new applications for the nanomaterials. It is 

estimated that the United States federal government has invested approximately one 

billion dollars, while the total worldwide investments were greater than three billion 

dollars in 2005 alone [24]. Although used in many fields such as medicine, 

biotechnology and electronics, the beneficial applications of nanotechnology in drinking 

water treatment are only recently initiated [25-27]. As a consequence of their size, 

nanomaterials can exhibit an array of unique novel properties, which can be utilized in 

development of new heavy metal and arsenic treatment technologies. Some of their 

properties, such as high surface area, self-assembly, and high specificity make them an 

excellent candidate for removal of heavy metals and arsenic from water by adsorption. 

Particularly, metal oxide nanomaterials can interpret better heavy metal and arsenic 

removal properties of an adsorbent compared to conventional porous metal oxide 

particles. 

 

Iron oxide, which is one of the widely used metal oxides as an adsorbent, exists in many 

forms in nature. Magnetite (Fe3O4), maghemite (γ-Fe2O3), and hematite (α-Fe2O3) are 
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the most common forms [28]. In recent years, the synthesis and utilization of adsorbent 

materials with iron oxide, which includes novel properties and functions, have been 

widely studied [29]. Additionally, iron oxide with low toxicity, chemical inertness and 

biocompatibility may show a tremendous potential in combination with other materials 

[30].  

 

Titanium dioxide (TiO2) has many properties such as non-toxicity, inertness, high 

refractive index, hydrophilicity, and low cost [31]. In addition, TiO2 is well known as a 

matter with a high photocatalytic activity due to its strong oxidizing power and 

favorable band gap energy. These desired properties make TiO2 an excellent choice and 

it has been extensively tested in environmental applications, especially in adsorption 

technologies on removal of heavy metals and arsenic. Moreover, the high mobility and 

reactivity of TiO2 nanoparticles due to their small size; make TiO2 particles effective as 

an adsorbent material. TiO2 nanoparticles have the ability to hold onto heavy metal ions 

and collect them from water. As the oxidation states of the heavy metals become more 

stable, they turn into more toxic structures since they can go into a reaction with bio-

molecules of body and construct bio-toxic complexes that are very stable [32]. As3+ is 

of the most toxic arsenic forms that are mostly cause water pollution and TiO2 has the 

capability of converting stable forms into less toxic and more adsorbable forms under 

UV radiation [33]. 

 

Although the properties, such as high surface area, self-assembly, and high specificity 

make nanomaterials excellent candidates for removal of heavy metals and arsenic from 

water by adsorption, these properties also bring some disadvantages for human health. 

For instance the nanoparticles can easily go into the body through inhalation; ingestion 

due to their small size and this problem can restrict the application of the nanoparticles 

for water remediation [34]. In order to solve this problem, nanoparticles can be 

immobilized by embedding them onto a bulk material. This provides the prevention of 

release of the nanoparticles to the environment and at the same time, the reactivity of 

them will be preserved.  

 

While the primary goal of the thesis is to demonstrate nanomaterial synthesis to 

engineer adsorbents for environmental pollutants, the secondary goal is to determine 

extent of adsorption of arsenic, lead, and copper onto low-cost nanomaterials with a 
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series of adsorption and photocatalytic oxidation experiments in order to investigate an 

effective and inexpensive water purification system for communities that cost less and 

is easy to operate, and produced drinking water with a high quality. The specific 

objectives of the study involved two major technological practices for water treatment 

i.e. adsorption and photocatalysis, which encompass five separate research and 

development stages. These include: 

 

(1) Evaluation, modification and characterization of ferric ion loaded red mud minerals 

as alternative low-cost adsorbents for As(III) and As(V) removal. 

 

(2) Evaluation of the impact of synthesis conditions (e.g. iron concentration, and contact 

time) on the distribution of iron (hydr)oxide nanomaterials derived from Fe(III) inside 

activated carbon media, oxidized with KMnO4, and the consequent impact on As(V) 

removal. 

 

(3) Synthesis and characterization of TiO2 nanoparticles with sol-gel method and 

evaluation of the arsenic, lead, and copper removal capabilities, kinetics and adsorption 

mechanisms of the nanoparticles. 

 

(4) Preparation and characterization of activated carbon/TiO2 nanocomposites and the 

evaluation of As(III) adsorption capabilities of activated carbon /TiO2 nanocomposites, 

activated carbon, and TiO2 in terms of contact time and pH 

 

(5) Synthesis of anatase nanophotocatalyst and integration of the adsorption-

photocatalysis process for the removal of As(III) and As(V) species from water 
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CHAPTER 2 

 

LITERATURE SURVEY 

 
 
 
 

The literature review mainly pointed out three topics. First, the significance of arsenic, 

lead, and copper removal from drinking waters were considered in terms of their effects 

on human health and their chemistry, mobility, and redox reactions. Second, the water 

treatment techniques and their efficiency to remove arsenic, lead, and copper from 

aqueous solution were explained. Finally, the types of adsorbents that were used in 

removal of arsenic, lead, and copper were concerned.  

 
 
 

2.1. Contaminations in Natural Water 

 
 
 

2.1.1. Arsenic 

 
 
Excessively high arsenic concentration in water/wastewater is threatening 

environmental problem for many countries especially in Bangladesh, India, Germany, 

China and Turkey [35]. Additionally, many parts of European countries have also had 

arsenic concentration higher than 10 µg/l in ground water [36]. As shown in Table 2.1, 

the largest population at risk among the 14 countries with known groundwater arsenic 

contamination is in Bangladesh, followed by West Bengal in India [9, 37, 38]. 

 

 

 



 6 

Table 2.1. Global Arsenic Contamination In Ground Water [9] 

 

Country /region            Potential exposed population               Concentration(µg/L) 

  Bangladesh                                   30,000,000                                       < 1 to 2,500 
  West Bengal, India                        6,000,000                                        < 10 to 3,200 
  Argentina                                      2,000,000                                         < 1 to 9,900 
  Vietnam                                        >1,000,000                                        1 to 3,050 
  Inner Mongolia                       100,000 to 600,000                                < 1 to 2,400 
  Chile                                              400,000                                           100 to 1,000 
  Mexico                                            400,000                                              8 to 620 
  Romania                                          400,000                                            < 2 to 176 
  Taiwan                                   100,000 to 200,000                                 <1 to 2,500 
  Greece                                              150,000                                                 - 
  Spain                                               >50,000                                            1 to >100 
  Germany                                                -                                              < 10 to 150 
  Xinjiag, Shanxi                                   500                                              40 to 750 
Usa / Canada                                          -                                         < 1 to > 100,000 
 
 

Water is one of the most significant media that makes enable arsenic to enter into 

human body [39]. Due to its toxic and carcinogenic effects on human beings, the 

maximum contamination level of arsenic (MCL) in water has taken serious 

consideration by environmental authorities and the World Health Organization (WHO), 

has adopted 10 µg/L as a maximum contamination level of arsenic in drinking water 

[40].  

 

Although arsenic is essential as a nutrient for humans in small quantities, it can cause to 

death in chronic consumptions [41]. Humans are exposed to arsenic from air, food, and 

water and the deadly dosage for adults is 1-4 mg As/kg body weight. The most 

significant source of arsenic exposure is ingestion of drinking water since the arsenic 

levels are generally highest in groundwater where geochemical conditions increase the 

dissolution of arsenic [42]. The arsenic poisoning of ground water was first reported in 

Taiwan in 1968 [43]. Arsenic exposure can cause short and long term health problems 

in both humans and animals. Acute poisoning with arsenic in humans may produce 

dryness of mouth and throat, dysphasia, vomiting, severe diarrhea, and hematuria. Sub-

acute toxicity can result in loss of appetite, nausea possibly with vomiting, dry throat, 

sharp pains, diarrhea and erythema. Chronic exposure to sub-acute levels of arsenic can 

produce dry, loose hair, brittle nails, and eczema [38]. Chronic exposure to high levels 
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of arsenic in drinking water can also lead to long term damage to internal organs in the 

respiratory, digestive, circulatory, neural, and renal systems. Additionally, long-term 

exposure to arsenic can result in skin, lung, and bladder cancer [12].  

 

Arsenic is mobilized by natural conditions and anthropogenic activities, however most 

environmental arsenic problems result from the natural conditions which contain 

geochemical reactions, weathering reactions, biological activity, wind erosion and 

volcanic emissions [35]. In addition to natural sources, arsenic can also be introduced 

by the man-made sources into water. The wastes from mining operations, the smelting 

of metal ores, the use of particular pesticides and wood preservatives including arsenic 

can contribute to the presence of arsenic in the water environment [38]. 

 

In the environment, arsenic occurs in different oxidation states that form various 

species. Arsenic is presented as arsenate with an oxidation state of +5 or arsenite with 

an oxidation state of +3 [44]. The toxicity of arsenic is associated with its chemical 

form that is governed by the valence state. When arsenic forms complexes with organic 

compounds it becomes mostly less toxic than inorganic forms of arsenic. The toxicity 

level of arsenic decreases in the following order: arsine > inorganic arsenic (III) > 

organic arsenic(III) > inorganic arsenic(V) > organic arsenic(V) > arsonium compounds 

and elemental arsenic [45].  

 

The organic and inorganic forms of arsenic are illustrated in Figure 2.1. Two inorganic 

forms of arsenic are common in natural waters: arsenite (AsO3
3−) and arsenate 

(AsO43
−), referred to as As(III) and As(V). As(III) is a hard acid and specifically makes 

complexes with oxides and nitrogen. However As(V) behaves like a soft acid, forming 

complexes with sulfides. Organic arsenic species which are mono methyl arsenate 

(MMA) and dimethyl arsenate (DMA) available in contaminated surface and ground 

water [46]. They are widespread in surface water more often than in groundwater and 

they are rarely present at concentrations higher than 1 µg/L. Therefore, organic species 

are mostly considered less significant in contrast to inorganic arsenic species in drinking 

water treatment [47]. Although organic arsenic is detoxified by methylation process, 

inorganic arsenic is needed a well-established treatment [48]. 
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Figure 2.1. Arsenic species found in water. 

 

Especially, As(III) has greater toxicity (25–60 times) and mobility than As(V) since 

preferential reactions with sulfhydryl groups in mammalian enzymes [49]. As(V) 

generally reveals a low mobility in aquifer and sediment systems due to its retention on 

mineral surfaces controlled largely by adsorption reactions with metal hydroxide [50]. 

Arsenic speciation graphs as a function pH is illustrated in Figure 2.2. H2AsO4− 

dominates at low pH (less than about pH 6.9) in oxidizing conditions while at higher 

pH, HAsO4 2− is the dominant form. Moreover, H3AsO4 and AsO4 3− may be present in 

strong acid or base conditions, respectively. Under reducing conditions at pH <∼9.2, the 

uncharged H3AsO4 predominates [35].  

 

 
Figure 2.2: (a) Arsenate and (b) Arsenite speciation as a function of pH [1]. 
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Deprotations of arsenious (H3AsO3) and arsenic (H3AsO4) acids under different 

conditions are summarized in Table 2.2 with the respective pKa values [51]. The 

conversion of As(III) to As(V) in oxygenated water is thermodynamically favored, but 

the rate of the transformation may take days, weeks or months. However, strong acidic 

or alkaline solutions, the presence of copper salts, carbon, unknown catalysts and higher 

temperatures can increase the oxidation rate. In contrast, the reduction of As(V) to 

As(III) in anaerobic conditions may require bacterial mediation since the conversion is 

chemically slow [52]. 

 

Table 2.2: Acidity constants for As(V) and As(III) [10] 

   Reaction                                                                                                 pKa 

                 As(V) (arsenic acid) 
H2AsO4

- + H+ è H3AsO4                                                                            2.24 
HAsO4

-2 + H+ è H2AsO4
-
                                                                           6.96 

  AsO4
-3 + H+ è HAsO4

-2
                                                                              11.50 

                      As(III) (arsenous acid) 
H2AsO3

- + H+ è H2AsO3                                                                             9.22 
HAsO3

-2 + H+ è H2AsO3
-
                                                                           12.11 

AsO3
-3 + H+ è HAsO3

-2
                                                                               13.41 

 
 
 
2.1.2. Lead 

 
 
Lead, which is one of the most toxic heavy metals, is attracting comprehensive attention 

of environmentalists because of its acute and chronic toxic effects in human health. 

According to the list organized by the Agency for Toxic Substances and Disease 

Registry (ATSDR) in 2011, lead is ranked as second hazardous heavy metals among the 

substances after arsenic [53]. 

 

Lead, abundant in the environment, can enter the human body through uptake of food, 

water and air. The combustion of fossil fuels and the smelting of sulfide ore, and into lakes 

and streams by acid mine drainage are the main reasons for lead contamination in water. 

Additionally, process industries, such as battery manufacturing, metal plating and finishing 

are also major source of lead pollution [54]. In acute and long-term exposure, lead can 

cause numerous undesirable effects, such as gastrointestinal symptoms, sleeplessness, 



 10 

headaches, abdominal cramps, kidney damages and loss of memory. Moreover, renal 

diseases and increased of blood hypertension also have been interconnected with lead 

poisoning [55]. In addition to that, infants, children up to 6 years of age, the fetus, and 

pregnant women are the most susceptible to adverse health effects of lead. Current EPA 

drinking water standard for lead are 0.05 mg/L, but the level 0.02 mg/L is under review 

[56].  

 

A speciation diagram for a 3x10−4 M solution is plotted in Figure 2.3. In aqueous 

solution at pH<10, divalent lead speciation is generally cationic; the major species are 

Pb2+, PbOH+ and Pb3(OH)4
2+. Anionic Pb(OH)3

− is only found under alkaline 

conditions. Pb(OH)2(aq.) is the prevalent molecule at pH 10, however because of the 

low solubility constant of Pb(OH)2(s) it precipitates at high lead concentration (when 

the total lead concentration is >10−4 M) [2]. 

 

 
Figure 2.3. Distribution of Pb(II) species at 25 °C [2] 

 
 

 
2.1.3. Copper 

 
 
Copper, which is an important catalyst for synthesis various materials, is essential 

element of humans and living organism in small amount. Following zinc and iron, 

copper is the third most abundant trace element in the body [57]. Although copper is 

essential element in the human body, it can cause adverse health effect. The excessive 

exposure to copper above the limit value, the health problems varying from stomach 
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distress to excessively damage caused by vomiting, diarrhoea, stomach cramps and 

nausea can be observed [58]. Morover, long-term exposure to copper is correlated with 

liver damage and kidney disease. Although the human body has a natural mechanism 

for keeping the proper level of copper, children under one year old are more vulnerable 

to the toxic effects of copper. People with Wilson’s disease also have a problem with 

maintaining the proper balance and taking care to limit the exposure of copper [14]. 

According to World Health Organization the maximum acceptable concentration of Cu 

(II) in drinking water is 1.3 mg/L [59] . 

 

The main concentration of copper in atmosphere is ranging from 5–200 ng/m3. It is 

releasing to atmosphere by natural source (windblown dust 65%, volcanoes, forest fire 

and sea spray) and anthropogenic source (nonferrous metal production 3.3%, copper 

smelters and copper sulphate production 2.7%, coal and oil combustion 4.6%, iron and 

steel production 7.4%, municipal incinerators 1.9% others 2.3%) [60]. There are also 

many other factors that affect the amount of copper in drinking water such as the 

temperature of water in pipe and copper availability in the distribution system. Figure 

2.4 interpreted the speciation diagram of copper in water. Copper exists in both the free 

state and in hydroxyl forms. Among all the forms free Cu2+ ions and Cu+ are considered 

to be highly toxic as compared to the anionic complexes such as carbonate complexes 

[61]. 

 

 
Figure 2.4. The speciation diagram of copper in water [3] 
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2.2. Removal Technologies in Wastewater Treatment 

 
 
 
Many technologies have been developed for the removal of arsenic and heavy metals. 

The water treatment processes can be categorized based on the mechanisms involved; 

precipitation and coagulation, ion exchange, oxidation, membrane technology, and 

adsorption. All of these technologies which rely on various chemical processes for the 

removal of lead, copper, and arsenic were summarized in the below. 

 
 
 
2.2.1. Precipitation and Coagulation Processes 

 
 
Precipitation process results in low-solubility solid mineral from dissolved 

contaminants. The solid can then be removed through sedimentation and filtration. The 

contaminants can become insoluble by presenting coagulants in the solution and they 

form solid complexes known as co-precipitation. 

 

Precipitation/ coagulation are the most commonly used technologies for the removal of 

arsenic from surface and groundwaters, gaining residual arsenic concentrations in the 

range of 5-10 µg/L with having the initial arsenic concentrations in the range of 10-500 

µg/L [52]. However, direct precipitation has not been shown to play a significant role in 

the arsenic removal. Thus co-precipitation and filtration are needed to activate arsenic 

removal mechanisms. 

 

The most frequently used metal salts are ferric salts such as ferric chloride or ferric 

sulfate and aluminum salts such as alum. Ferrous sulfate has seldom been used since it 

is less effective [39]. This treatment can provide advantages in terms of simple in 

operation and relatively low cost. However, the optimal conditions vary for removal of 

different constituents, and coagulation to remove contaminants may not be optimal for 

removal of other compounds, especially phosphate and fluoride in the case of arsenic 

removal [35]. Fore example, aluminum coagulation can produce toxic sludges with 

having low arsenic and heavy metal removal efficiencies. Although iron coagulation 
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provides medium arsenic removal efficiency, which is higher than aluminum 

coagulation, it requires readjustment of pH during the co-precipitation process. 

 
 
 
2.2.2. Ion exchange processes 

 
 
Ion exchange involves the reversible displacement of an ion adsorbed onto a solid 

surface by a dissolved ion. The resins have been developed specifically to optimize 

removal of contaminants from water. Different resins will have various selectivity 

sequences. For example, the acidic resins are negatively charged, and can be loaded 

with cations (e.g. Na+), which are easily displaced by other cations during water 

treatment. This type of cation exchange is most commonly used for heavy metal 

removal. Conversely, strongly basic resins can be pretreated with anions, such as Cl-, 

and used to remove a wide range of negatively charged species [62]. The anion 

exchange resin can be applied to arsenic species, which is also negatively charged. The 

typical anion exchange process is illustrated at Figure 2.5. In this system an ion 

exchange resin loaded with anions at the “exchange sites”, is placed in vessels. The 

water containing negatively charged contaminant is passed through the vessels and the 

contaminant “exchanges” for the anions. The water exiting the vessel is lower in the 

contaminant but higher in anion than the water entering the vessel. Finally, the resin 

becomes “exhausted”; that is, all or most of the “exchange sites” that were loaded with 

anions become loaded with contaminants [4].  

 

 
Figure 2.5. The illustration of ion exchange process [4]. 
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The effect of the presence of other anions is an important factor to ion exchanger 

treatment of arsenic and heavy metals. Jackson and Miller [63] reported that sulfate was 

reported not to influence As(V) sorption by ferrihydrite but resulted in a considerable 

decrease in As(III) sorption below pH 7, with the largest decrease at the lowest pH. In 

low-sulfate waters, ion exchange resin can easily remove As(V), but removing As(III) 

species from water is quite difficult. Accordingly, the USEPA recommends that ion 

exchange resins not be used in waters with >120 mg/L sulfate and will be most effective 

in waters with even lower sulfate levels (<25 mg/L) [64]. Additionally, major 

disadvantage of ion exchange is that it is expensive in capital and operating cost. 

 
 
 
2.5.3. Membrane Technology 

 
 
Membrane filtration has the advantage of removing many contaminants from water, 

including bacteria, salts, and various heavy metals as can be seen in Figure 2.6. The 

structure of the membrane is such that some molecules can pass through, while others 

are excluded, or rejected. Two classes of membrane filtration can be considered; low-

pressure membranes, such as microfiltration and ultrafiltration, and high-pressure 

membranes such as nanofiltration and reverse osmosis. 

 

 

Figure 2.6. Pressure Driven Membrane Process Classification [5] 
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The main disadvantage of membranes is fouling by colloidal matter in the raw water, 

particularly with organic matter. Iron and manganese can also cause to membrane 

fouling [65]. To prevent fouling, reverse osmosis filters are almost always 

preconditioned by a filtration step. High technology operation cost and maintenance, 

and very high-capital and running cost is prohibiting to usage of membrane process in 

the removal of contaminants from water. 

 
 
 
2.5.4. Oxidation Processes 

 
 
In most arsenic removal technologies, the As(V) is most effectively removed from 

water than As(III) since As(III) is predominantly non-charged below pH 9.2 [66]. 

Therefore, various treatment systems contain an oxidation step to convert As(III) to 

As(V).  

 

Ultraviolet radiation can catalyze the oxidization of As(III) in the presence of other 

oxidants, such as gaseous chlorine, hypochlorite, ozone, permanganate, hydrogen 

peroxide [67-70] Chlorine is a rapid and effective oxidant, but may result in reactions 

with organic matter, which produces toxic trihalomethanes as a by-product. In Europe 

and the USA, ozone is being used as an oxidant material, but in developing countries, 

ozone has not been so widely used. An ozone dose of 2 mg/L, contacted with the water 

for 1 minute prior to filtration, has been shown to be effective in oxidizing iron and 

manganese, at the same time removing arsenic and other metals to below detection 

limits [71]. At a similar ozone dose, As(III) was shown to have a half-life of 

approximately 4 minutes [68]. Hydrogen peroxide may be an effective oxidant if the 

raw water contains high levels of dissolved iron, which often occur in conjunction with 

arsenic contamination. Oxidation alone does not remove arsenic from solution; 

therefore it must be combined with a removal process such as coagulation, adsorption or 

ion exchange.  
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2.5.5. Adsorption Processes 

 
 

Adsorption is the adhesion of a chemical species onto the surface of particles. In 

general, adsorption can be defined as accumulation or depletion of solute molecules at 

an interface. Adsorption is primarily described with intermolecular interactions between 

solute and solid phases [68]. The interactions can be surface complexation reactions, 

which are basically inner-sphere surface complexes of the metal or arsenic ions and the 

respective surface functional groups. Moreover the interactions can comprise in an 

account of the electrostatic interactions where the metal or arsenic ions form outer-

sphere complexes at a certain distance from the surface [72]. In general, heavy metal 

and arsenic adsorption is explicated in terms of two essential mechanisms: specific 

adsorption, which is considered more selective and less reversible reactions comprising 

chemisorbed inner-sphere complexes, and nonspecific adsorption (ion exchange), which 

contains rather weak and less selective outer-sphere complexes Specific adsorption 

result in strong and irreversible binding of heavy metal or arsenic ions onto adsorbent 

while nonspecific adsorption is an electrostatic phenomenon in which cations/anions 

from the pore water are replaced for cations/anions near the surface. Cation/anion 

exchange is a form of outer-sphere complexation with only weak covalent bonding 

between metals or arsenic ions and charged adsorbent surfaces. It is reversible in nature 

and occurs rather quickly as it is typical for reactions which are diffusion-controlled and 

of electrostatic nature [73]. Specific adsorption depends largely on pH due to formation 

of surface complexes by pH dependent species on the edges. Figure 2.7 interprets the 

possible specific and nonspecific adsorption of lead, copper, and arsenic onto adsorbent 

surface.  
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Figure 2.7. Illustration of specific and nonspecific adsorption. 

 

The third fundamental mechanism of sorption is fixation (absorption), which includes 

the diffusion of heavy metal or arsenic species into the adsorbent surface. Heavy metals 

or arsenic that are specifically adsorbed onto clay minerals and metal oxides may 

diffuse into the lattice structures of these minerals. Then these species become fixed 

into the pore spaces of the adsorbent [72]. 

 
 
 

2.3. Types of Adsorbents Used in Water Treatment 

 
 
 

Among the methods used for heavy metal and arsenic removal from water, adsorption is 

acquired importance due to its technical simplicity and applicability in rural areas, 

where people are more subjected to polluted drinking water [74]. For the adsorption of 

contaminants from water, several adsorbent materials have already been proposed. In 

terms of variety of different materials can be ranged from natural materials to specially 

designed technical particles. Especially, selective adsorption utilizing metal oxides, 

carbonaceous materials, and nanomaterials, has generated increasing excitement. 
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2.3.1. Low-Cost Adsorbents 

 
 

Activated carbon (AC) has unquestionably been the most popular and widely used low-

cost adsorbent in wastewater treatments all around the world. AC has been obtained 

from coconut shells, wood char, lignin, petroleum coke, bone-char, peat, sawdust, 

carbon black, rice hulls, sugar, peach pits, fish, fertilizer waste, waste rubber tire, etc 

[75]. They are produced by carbonization process, heating them in the absence of air 

below 600 ◦C to remove volatile compounds. Subsequently, chemical and physical 

activation steps are investigated using oxidizing agents (steam, carbon dioxide, or 

oxygen) at higher temperature or with chemical activants (ZnCl2, H2PO4, H2SO4, KOH, 

K2S, KCNS, etc.) Based on its shape and size, AC is categorized into four types: 

powder (PAC), granular (GAC), fibrous (ACF), and clothe (ACC). Because of the 

different sources of raw materials, each type of AC has its specific function as well as 

inherent disadvantages and advantages in water treatment. As can be seen in Figure 2.8, 

AC can comprise mesopores and micropores providing high surface areas up to 

2000m2/g [76]. However, surface area may not be a leading factor for adsorption on 

activated carbon. Actually, high surface area does not mean high adsorption capacity. 

Although a significant number of low-cost adsorbents from various materials have been 

found, AC has still been used extensively today. Numerous researchers were studied to 

utilize AC for removing heavy metals such as mercury, arsenic, copper, lead, 

chromium, and zinc [77]. Recently the market price of AC for industrial grade is about 

US$ 20–22.00/kg, depending on the quality of AC [78]. 

 

 
Figure 2.8. Activated carbon particles with the illustration of micro and mesopores 
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Red mud is a waste material that is formed during the production of alumina from 

bauxite. As can be seen in Table 2.3, it mineralogically consists mainly of different 

forms of iron and aluminum oxide minerals, calcium and sodium aluminum silicates 

and various titanium compounds [79]. In the study conducted by Altundogan et.al, red 

mud has been explored as an alternate adsorbent for arsenic and an alkaline aqueous 

medium (pH 9.5) favored As (III) removal, whereas the acidic pH range (1.0-3.2) was 

effective for As(V) removal [79]. In another study, Bauxsol combined by acid and heat 

treatment, and Bauxsol with added ferric sulfate or aluminum sulfate were investigated 

and it was found that the acid treatment alone, as well as in combination with heat 

treatment, increased arsenic removal efficiency. In contrast, the addition of ferric sulfate 

or aluminum sulfate suppressed arsenic removal [80]. 

 

Table 2.3. Chemical compositions of the RM. 

 

     Constituent % w/w 

Al2O3 20.39 

SiO2 15.74 

Fe2O3 36.94 

CaO 2.23 

Na2O 10.10 

V2O5 – P2O5 0.55 

TiO2 4.98 

CO2 2.04 

S 0.08 

Loss on ignition (900oC) 8.19 

 

 
 
 
 
 
 
 



 20 

2.3.2. Iron Impregnated Adsorbents 

 
 

Iron oxides exist in many forms in nature. Magnetite (Fe3O4), maghemite (γ-Fe2O3), and 

hematite (α-Fe2O3) are the most common forms [28]. In recent years, the synthesis and 

utilization of adsorbent materials with iron oxide, which includes novel properties and 

functions, have been widely studied [29]. Additionally, iron oxide with low toxicity, 

chemical inertness and biocompatibility may show a tremendous potential in 

combination with other materials [30].  

 

When FeCl3 is added to water, it hydrolyzes to form ferric hydroxide [Fe(OH)3(s)], 

which has a net positive charge on the surface of the particles formed. The net positive 

charge of Fe(OH)3(s) particles changes relying on the pH of solution, and as the pH of 

solution decreases, the number of positively charged sites on the Fe(OH)3(s) particles 

increases. According to ferric hydroxide speciation diagram (Figure 2.9), a pH around 

7.3 is required for Fe(OH)3(s) particles to have a net positive charge [6]. 

 

                           
Figure 2.9 Ferric hydroxide speciation [6]. 

 

The combination of AC and iron loading would take advantage of the strength of these 

two materials. The AC serves as an ideal support media for iron loading. Recently, 

various researchers have studied arsenic removal from water using iron impregnated 

GAC. These studies analyzed the removal of arsenic, mercury, and lead using iron-

impregnated GAC (Fe-GAC) [81, 82], As(V) removal by iron-impregnated GAC [83].  
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2.3.3. Nanoadsorbents  

 
 

Utilization of specific nanoparticles either embedded in supporting structural media that 

can effectively, inexpensively and rapidly treat water contaminant with heavy metals 

and arsenic. The use of nanoparticles for treatment of wastewater may potentially 

provide greater advantages over the traditional adsorbents. Figure 2.10 highlights four 

classes of nanoscale materials that are being evaluated as functional materials for (1) 

metal containing nanoparticles, (2) carbonaceous nanomaterials, (3) zeolites and (4) 

dendrimers. These have a broad range of physicochemical properties that make them 

specifically attractive as reactive and separation media for water treatment. 

 

 
Figure 2.10. Selected nanomaterials currently being evaluated as functional materials 

for water purification [7]. 

 

Nanoparticles have two significant properties that make them precisely attractive as 

adsorbents. First, they have much larger surface areas than bulk particles; second, 

nanoparticles can be functionalized with various chemical groups to increase their 

affinity towards target compounds. Numerous research groups are utilizing the unique 

properties of nanoparticles to develop high capacity and selective adsorbents for heavy 

metal and arsenic species. Li et al. [84] have investigated the sorption of Pb(II), Cu(II) 

and Cd(II) onto multiwalled carbon nanotubes (MWCNTs). They reported maximum 

sorption capacities of 97.08 mg/g for Pb(II), 24.49 mg/g for Cu(II) and 10.86 mg/g for 

Cd(II) at room temperature, pH 5.0 and metal ion equilibrium concentration of 10 mg/l. 
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Qi and Xu [85] have evaluated the sorption of Pb(II) onto chitosan nanoparticles (40–

100 nm) prepared by ionic gelation of chitosan and tripolyphosphate.  

 

For adsorption of heavy metals and arsenic from aqueous systems, one of the most 

widely studied nanomaterial is titanium dioxide. Titanium dioxide (TiO2) is a relatively 

common material that has been used in many products including paints, plastics, foods, 

cosmetics, paper, and toothpastes because of its stable, brilliant white color [86]. TiO2 

can have three crystal structures: anatase, rutile, and brookite. Rutile is 

thermodynamically stable at room temperature while anatase is kinetically stable and 

will not readily transform to the rutile phase at room temperature. In addition to that the 

anatase phase of TiO2 has commonly been used as a photocatalyst to oxidize organic 

pollutants in water and air [87]. 

 

It has been reported that bulk and nanoparticle TiO2 anatase exhibit different chemical 

behavior, catalytic reactivity, and surface acidity based on their different surface planes 

[88]. According to study conducted by the nanoparticles were able to simultaneously 

remove multiple metals (Zn, Cd, Pb, Ni, Cu) from a solution of pH 8.0. Adsorption 

kinetics for heavy metals followed a modified first order model, and the nanoparticles 

had a faster adsorption than the bulk ones. Langmuir isotherm was suitable to 

characterize metal adsorption onto TiO2 anatase [89]. In another study conducted by 

Liang et al. [90], nano-TiO2 (diameter = 10–50 nm, BET surface area = 208 m2/g) 

showed adsorptive capacity to Zn and Cd as 15.3 and 7.9 mg/g, respectively, at pH 9.0.  

 
 
 
2.3.4. Nanocatalysts and Redox Active Nanocomposites 
 
 

In photocatalysis, light of energy greater than the band gap of the semiconductor, 

excites an electron from the valence band to the conduction band (Figure 2.11). In the 

case of anatase TiO2, the band gap is 3.2 eV, therefore UV light (λ ≤ 387 nm) is 

required [87]. As illustrated in Figure 2.11 the absorption of a photon excites an 

electron to the conduction band (eCB
−) generating a positive hole in the valence band 

(hVB
+). Charge carriers can be trapped in the TiO2 lattice or they can recombine, 

releasing energy. Otherwise, the charge carriers can migrate to the catalyst surface and 



 23 

initiate redox reactions with adsorbates. Positive holes can oxidize OH− or water at the 

surface to produce •OH radicals, which are extremely powerful oxidants [8]. 

 

                                
Figure 2.11. Schematic of TiO2 photocatalytic mechanism [8] 

 

The photooxidation of As(III) to As(V) in the presence of TiO2 and light and 

subsequent adsorption into TiO2 has also been investigated. Bissen et al. [91] have 

reported that photooxidation of As(III) to As(V) occurs within minutes and that 

exponential declines in As(III) concentration. No reverse reaction of As(V) to As(III) 

was observed, and while As(III) was oxidized by UV light in the absence of TiO2, the 

reaction was too slow to be practical in water treatment. Pena et al. [92] reported that 

rapid photooxidation of As(III) to As(V) occurred in the presence of sunlight, 

nanocrystalline TiO2, and oxygen. In natural groundwater, the oxidation of As(III) to 

As(V) and subsequent adsorption of As(V) onto TiO2 would completely remove arsenic 

at slightly acidic pH values. The photooxidation pathways of the TiO2-catalyzed As(III) 

is given in the following [92]. 

 

 

 

Generation charge carriers and photoxidants: 

 

TiO2 + hν → TiO2(ecb
− + hvb

+ )                                 (2.1) 

ecb
− + O2 → O2

•−                                                                                   (2.2) 

hvb
+ + OH- → HO•                                                     (2.3) 
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 Arsenic(III) oxidation: 

As(III) +  HO• →  As(IV) + OH-                              (2.4) 

As(III) +   O2
•−  → 2H+ → As(IV) + H202                        (2.5) 

As(IV) +   O2
  → As(V) + O2

•−                                                  (2.6)       

                         

TiO2 powder, can by itself, photodegrade pollutant molecules when radiated with UV 

radiation. However, during the photodegradation process, interaction by certain 

pollutant molecules or their intermediates could cause the TiO2 powder to coagulate, 

thereby reducing the amount of UV radiation from reaching the TiO2 active centers (due 

to reduction of its surface area) catalytic effectiveness. In order to overcome this 

coagulation problem, some researchers have used different materials as a support for the 

titania photocatalyst. Carboneus materials were initially used as a support for TiO2 in 

photodegradation studies [93]. It has a very large specific surface area that is typically 

more than TiO2. 
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CHAPTER 3 

 

KINETIC MODELING OF ARSENIC REMOVAL FROM WATER 

 BY FERRIC ION LOADED RED MUD 

 
 
 
 

3.1. Background 

 
 
 

Arsenic is one of the well-known toxic contaminants in the environment. Arsenic 

contamination in aqueous system is a global problem. The excessively high arsenic 

concentration, especially in drinking water, is a challenging environmental water 

pollution problem for many countries as the USA, China, Chile, Bangladesh, Taiwan, 

Mexico, Argentina, Poland, Canada, Hungary, Japan, India, and Turkey [94]. Arsenic is 

severely harmful to the human health. Long-term exposure to arsenic can lead to cancer 

of the lungs, skin, kidney, and liver [95]. Due to its toxic and carcinogenic effects on 

humans, the contamination level of arsenic in water has been taken under serious 

consideration by environmental authorities. According to the World Health 

Organization (WHO), 10 µg/L has been adopted as the maximum contamination level 

(MCL) of arsenic in drinking water [96]. The technologies for removal of arsenic 

species from water can be classified as coagulation, electrolysis, ion exchange, 

membrane processes and adsorption [16, 18, 19, 97]. Nowadays, removal of arsenic by 

adsorption has acquired importance due to its technical simplicity and applicability in 

rural areas, where people are more subject to polluted drinking water with arsenic [74]. 

However, the issue of arsenic contaminated water is not only related to technical 

obstacles but also associated with economic ones. The costs of arsenic removal 

technologies are prohibitive. Considering the millions of people threatened by arsenic-
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contaminated water, low-cost technologies are urgently needed to effectively remediate 

arsenic from water, especially in developing nations.  

 

Several researchers have reported the removal of arsenic from aqueous solution by solid 

adsorbents. The most widely studied low cost solid adsorbents for adsorption processes 

include untreated rice husks [98], lignite [99], activated carbon [100], fly ash [101], 

sand [102], clay minerals [103] and natural zeolites [15]. Recent literature has also 

shown that red mud (RM), which is a cost-effective adsorbent material, significantly 

reduces arsenic concentration in water [104]. RM is composed generally of iron, 

aluminum, silica, calcium and titanium oxides particles and obtained as a waste material 

during the production of alumina [105]. At present, about 1-2 tons of RM residues are 

produced from a ton of alumina, and the disposal of RM is especially one of the main 

problems for many alumina industries [106, 107]. Such a residue causes a severe 

environmental problem because of RM’s high alkalinity and depositing large amounts 

of RM in depony areas [80, 106, 107]. Therefore, proper modification of RM and 

utilization of it as an adsorbing material for environmentally hazardous pollutants may 

be beneficial for such an inexpensive material. Genc-Fuhrman et al. [80] investigated 

the neutralization of RM by acids and ferrous sulfate in order to facilitate the 

environmental use of the RM. They demonstrated that with acid treatment alone arsenic 

removal efficiency increased. Li et al. [108] prepared ferrous based red mud as 

adsorbent for As(V) removal and they discovered that an amount of 0.4 g/L ferrous 

based red mud was sufficient for remarkable arsenic removal of an initial 0.5 mg/L 

As(V) concentration.  

 

Recent studies have illustrated the possible use of ferric based sorbents for water 

containing arsenic species [108, 109] since ferric iron has a high affinity towards 

inorganic arsenic species and is very selective in the adsorption process [110]. 

However, the removal of both As(III) and As(V) from water using ferric ion loaded red 

mud (FRM) has not been reported in the adsorption literature; moreover, the sorption 

kinetics and adsorption mechanisms of As(III) and As(V) on the adsorbent material has 

not been reported previously. Therefore, the objectives of this chapter were: (i) to 

prepare the adsorbent material by mixing a certain ratio of FeCl3 with RM (ii) to 

investigate the influence of pH, initial arsenic concentration, and contact time on As(III) 

and As(V) adsorption (iii) to understand the adsorption mechanisms and rate-
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determining steps of As(III) and As(V) onto FRM by analyzing the sorption kinetic 

models and (iv) to obtain adsorption isotherm parameters for As(III) and As(V). 

 
 
 

3.2. Experimental 

 
 
 

3.2.1.Materials and Reagents 

 
 
RM supplied from Etibank Seydisehir Aluminium Plant, Konya, Turkey was washed 

with distilled water and boiled for 30 min, then dried at 100oC in oven for 32 h and 

stored in a desiccator for further analysis and experiments. Analytical grade 

hydrochloric acid, sodium hydroxide and ferric chloride hexahydrate were purchased 

from Merck. All the solutions were prepared by deionized water using Q-H2O, 

Millipore Corp. deionizer until 18.2 MΩcm of resistivity. As2O3 (99.9 % from Sigma-

Aldrich) was dissolved in deionized water for 50 mg/L As(III) stock solution. 

Na2HAsO4.7H2O salt (99.9 % from Sigma-Aldrich) was dissolved in deionized water 

for 50 mg/L As(V) stock solution. The working solutions were prepared by diluting 

these stock solutions with deionized water. All stock solutions were prepared weekly 

and frozen to prevent oxidation. 

 
 
 

 3.2.2. Preparation of Ferric Ion Loaded Red Mud (FRM) 

 
 

10 g of RM was washed with deionized water and dried at about 100oC for 24 h. Then, 

6 g of the dried RM was mixed with 100 mL of 0.05 M FeCl3.6H2O solution, and the 

pH of mixture was adjusted to ∼4.0 by the addition of 5 M sodium hydroxide (NaOH) 

solution. The resulting solution was precipitated and dried at 80oC for 2 days. The dried 

material was washed with deionized water until the washing liquid became free from 

iron. 
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 3.2.3.Adsorption Experiments 

 
 

Experiments for the effect of varied pH on adsorption efficiency were carried out by 

adjusting pH values of 1 mg/L As (III) or As (V) solution from 2.0 to 10.0 with the 

addition of 1 g/L adsorbent material. The pH of solutions was adjusted to specified 

values with diluted HCl or NaOH, and the mixtures were shaken in an incubator shaker 

at 180 rpm mixing rate for 12 h at 25oC. At the end of experiment, the solution was 

separated from the solid adsorbent by using 0.45 µm PVDF membrane filter. In kinetic 

experiments, 100 mL of 1 mg/L As(III) or As (V) solution with 1 g/L adsorbent 

material at pH 2.0 were used and sampled at different time intervals. A series of batch 

adsorption tests were conducted by using a known amount of adsorbent with 50 mL 

aqueous solution of As (III) or As (V) of desired initial concentrations of 0.04-20 mg/L 

at pH 2.0 and 7.0 to develop adsorption isotherms.  Each adsorption experiment in the 

present study was repeated three times and average values were reported below. 

 
 
 

 3.2.4. Characterization  

Leo Supra 35VP field emission scanning electron microscope, Leo 32 and electron 

dispersive spectrometer software was used for images and analysis. Imaging was 

generally done at 2-5 keV accelerating voltage, using the secondary electron imaging 

technique. X-ray diffraction (XRD) measurements of all samples were done with a 

Bruker axs advance powder diffractometer fitted with a Siemens X-ray gun and 

equipped with Bruker axs Diffrac PLUS software. The sample was swept from 2θ = 10o 

through to 70o. The X-ray generator was set to 40kV at 40 mA. Fourier transform 

infrared spectroscopy (FTIR) of the samples was conducted on an Nicolet iS10 

spectrometer ranging from 525 to 4000 cm−1 

 

Arsenic concentrations of the solutions were measured with a Varian, Vista-Pro CCD 

simultaneous inductively coupled plasma ICP-OES spectrophotometer. Samples before 

and after adsorption experiments were analyzed to obtain residual arsenic concentration.  
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3.3. Results and Discussion 

 
 
 

3.3.1. Characterization of Adsorbent Materials 

 
 
The SEM image of FRM indicated visual differences in terms of surface roughness and 

cavities as compared to RM (Figure 3.1a and 3.1b). Loading red mud with FeCl3 was 

the reason for the development of some irregularities on the surface of red mud. 

 

 

 

Figure 3.1. (a) SEM micrograph of the particles of the RM and (b) SEM micrograph of 

the particles of the FRM 



 30 

The mineralogical compositions of the samples were determined by X-ray diffraction 

analyses over a range of 10-70o in Figure 3.2.a. The increase in the content of Fe in 

FRM was also validated by XRD characterization. The characteristic peaks of ferric 

oxide (α-Fe2O3), which gives the brick red color to the adsorbent material, were 

observed at 24.07o, 33.13o, 35.61o, 40.88o, 49.41o, 53.94o, 62.43o and 64.1o for FRM 

with an increase in the intensity of those peaks as compared to the XRD graph of RM. 

However, the other mineralogical constituents of iron as goethite (FeOOH) and iron 

hydroxide (Fe(OH)3) were not detected in both adsorbent material. In addition, XRD 

analysis revealed the existence of compounds including mainly aluminum oxide at 

14.14 o, and calcite at 29.68o. Those characteristic peaks of aluminum oxide and calcite 

were reduced in the XRD graph of FRM.  

 

In order to investigate functional groups on the surface of RM and FRM, FTIR 

measurements were performed. The positions of absorption bands were roughly similar 

in both adsorbent materials (Figure 3.2.b). Characteristic bands correspond to Si-O 

vibration were observed at ~978 cm-1 proved the presence of silica groups in the 

structure of RM and FRM. In addition, the two peaks at ~1642 and ~530 cm-1 indicated 

the presence of the stretching vibrations of Fe3+-O2- bond [111]. Intensities of these 

peaks were increased in FRM, which confirmed successful ferric ion loading of red 

mud. Furthermore, the FTIR spectrum of FRM indicated a broad band at ~3396 cm-1 

due to the O-H stretching vibrations of adsorbed H2O during the ferric ion loading 

process. The absorption bands at ~1421, and ~1455 cm-1 of RM represented the 

existence of calcite (CaCO3) and for the case of FRM, this absorption band were not 

detected as consistent with the results obtained from the XRD analysis. 
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Figure 3.2. (a) X-ray diffractogram of  RM and FRM and (b) Infrared spectra of  RM 

and FRM 
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3.3.2. Effect of pH 

 
 
The pH of aqueous solution can affect considerably the removal of As(III) and As(V) 

ions, and the formation of surface charge groups onto adsorbent. The adsorptions of an 

initial As(III) and As(V) concentration of 1 mg/L onto FRM have been conducted using 

the initial pH range (pHinitial) of 2.0-10.0. After completion of reaction, equilibrium pH 

(pHfinal) values as well as the arsenic uptake, qe (mg/g) were measured and results were 

shown in Figure. 3.3. For the adsorption of As(III), the pHfinal had a plateau, that was 

found at the pHinitial range of 6.0-7.0, near to pH 6.0 and then again started to increase 

with the initial pH. However, for the adsorption of As(V), the pHfinal increased gradually 

with the increase of pHinitial. The maximum arsenic uptakes were found 0.57 mg/L for 

As(III) at pH 7.6 and 0.98 mg/L for As(V) at pH 3.3, respectively. 

 

 
Figure 3.3. The pHfinal and arsenic uptake, qe as a function of pHinitial for adsorptions of 

As(III) and As(V) onto FRM. (initial arsenic concentration: 1mg/L adsorbent amount: 1 

mg/L, temperature: 25oC and contact time: 12 h). 
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According to Figure 3.3 favorable adsorption took place in the pH range of 2.3-4.2 for 

As(V) and in the pH 7.6 for As(III). In terms of the ionic character of the arsenic 

species that varies with pH, the predominant As(III) species are available as H3AsO3 

and H2AsO3
- in the pH range of 4.0-9.5, while the predominant As(V) species show 

variations with pH values: H3AsO4 (pH 0.0-2.0), H2AsO4
- (pH 3.0-6.0), and HAsO4

2- 

(pH 7.0-11.0) [112]. In the study carried out by Zhang et al. [109], the higher As(V) 

removal percentage was obtained at lower pH values for modified RM and a similar 

decline in As(V) uptakes through the basic pH values was also observed in our results. 

This decline could be explained by the decrease in the number of positively charged 

surface groups onto the FRM when the pH value increased from acidic to a basic 

condition. 

 

 The FRM contained oxides of iron, aluminum, silicon, and calcium which are 

responsible for the forming of charges on the adsorbent surface. At acidic pH 

conditions, the surface of adsorbent is covered with positively charged surface groups 

that boost the adsorption of the negatively charged As(V) anions through the 

electrostatic attraction [113]. The strong electrostatic attraction between adsorbent and 

adsorbate along with chemical interaction provides a higher As(V) removal efficiency. 

Indeed, the As(V) species became more negatively charged at basic pH values (7.0-

11.0), but the active sites of adsorbent were negatively charged that reduce their 

interactions with As(V) anions. The maximum arsenic uptake of FRM was observed at 

pH 7.6 for As(III). In the removal of As(III) by amorphous ferric hydroxide [114, 115], 

modified calcined bauxite [116] and granular ferric hydroxide [117], similar results 

were reported in terms of optimum pH value. The considerable reduction of arsenic 

uptake was observed for As(III) at pH 9.9 because of the electrostatic repulsion between 

the surface groups of adsorbent and As(III) species. In other words, with the increase in 

pH value, H3AsO4 species is drastically reduced and anionic As(III) species such as 

H3AsO3
- H3AsO3

2- are dominant at pH 9.0 [104]. In conclusion, the negatively charged 

nature of adsorbent surface and anionic As(III) species may result in the electrostatic 

repulsion that attributes the reduction in As(III) removal. 
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3.3.3.Effect of Initial Arsenic Concentration 

 
 
Initial arsenic concentration influenced the removal percentage of arsenic species from 

water. At constant adsorbent amount which was 1 g/L for RM and FRM, different initial 

As(III) and As(V) concentrations, varied between 0.04-20 mg/L  at pH 2.0, were chosen 

for both adsorbent material. The experimental results (Figure 3.4) indicated that 

removal percentage of arsenic species decreased with increase in initial arsenic 

concentration. For an initial arsenic concentration of 0.04 mg/L, FRM was able to 

remove ~91% of As(III) from water while this percentage decreased to 38 for RM. At 

an initial concentration lower than 0.12 mg/L, the FRM with a dosage of 1 g/L was able 

to reduce As(III) below its MCL of 0.01 mg/L. In case of As(V) adsorption onto FRM 

considerably high arsenic adsorption percentages were observed for initial arsenic 

concentrations lower than 5 mg/L and the percent removal increased from 95.26% at 5 

mg/L to 99.35% at 2 mg/L. In general, at higher arsenic concentrations, most of the 

active binding sites of adsorbents were covered with arsenic species and further 

adsorptions were prevented leading to lower arsenic removal percentages for both 

adsorbents. The sharper decrease in arsenic removal percentage was also observed in 

the case of RM due to the rapid saturation of active sites with arsenic species. 

Moreover, the results demonstrated that, RM had nearly no adsorption ability when 

As(V) concentration was higher than 1 mg/L. Essentially, the FRM which was 

neutralized with iron chloride to obtain environmentally safe adsorbent material 

provided better As(III) and As(V) removal performances rather than RM for all of the 

initial arsenic concentrations. The present results are promising for the use of FRM in 

drinking water contaminated with low concentrations of arsenic species. 
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Figure 3.4. Effect of initial arsenic concentration on arsenic removal by FRM and RM. 

(initial arsenic concentration: 0.04-20 mg/L, adsorbent amount: 1 mg/L, pH: 2.0, 

temperature: 25oC and contact time: 5 h). 

 
 
 

3.3.4. Effect of Contact Time and Sorption Kinetics 

 
 
The kinetic studies were conducted in order to understand the adsorption behavior of 

the FRM by taking subsamples at different time intervals. The experiments were 

performed with 0.1 g of adsorbent material and 100 mL of As(III) and As(V) solutions 

at a desired concentration (1, 2 and 4 mg/L) for 1, 5, 10, 20, 40, 60, 100, 140, 180, and 

260 min reaction times at pH 2.0. The plots of arsenic uptake versus adsorption time t at 

three initial As(III) and As(V) concentrations were presented in Figure 3.5a and 3.5b. 

The results revealed that the adsorption of arsenic species was greatly dependent on 

contact time and the sorption of As(V) ions from water was rapid in contrast with the 

adsorption of As(III) species. Adsorption due only to the electrostatic forces is quite 

rapid and can occur in the order of milliseconds [118] to seconds [119]. Adsorptions of 

As(III) and As(V) in this study were in the order of minutes, indicating a specific 

adsorption site preference of those arsenic species onto the FRM surface. At all initial 
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As(III) and As(V) concentrations, the arsenic uptake increased fast in the initial stage of 

adsorption followed by a slower increase before achieving a plateau.  

 

 

 
Figure 3.5. Arsenic uptake on FRM versus adsorption time at different initial arsenic 

concentrations (a) pure As(III) (b) pure As(V). (initial arsenic concentration: 1, 2, and 4 

mg/L, adsorbent amount: 1 mg/L, pH: 2.0, temperature: 25oC). 
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The initial As(V) uptake by FRM was high since a large number of adsorption sites 

were available for the adsorption by loading red mud with ferric chloride solution. 

According to Deliyanni [110] and Pedersen’s [120] results, As(V) species showed a 

strong adsorption behavior on the iron and aluminum sites of adsorbent. The adsorption 

efficiency of As(V) increased onto those sites and this could be one of the explanations 

of the lower As(III)  uptake. Secondly, the removal of As(III) from water was usually 

poor compared to that of As(V) due to the predominant neutral As(III) compound in 

terms of charge [121]. 

 

For the usage of an adsorbent in sorption processes, the understanding of adsorption 

kinetics is necessary in order to predict the adsorption rate, the mechanism of adsorption 

and identifying the rate-determining steps. The kinetic data obtained from this study 

were first analyzed by employing the pseudo-first order (Equation 3.1) and the pseudo-

second-order (Equation 3.2) equations [122, 123]; 

 

log(qe − qt ) = log(qe )−
k1t
2.303

                                     (3.1) 

 

t
qt
=
1
k2qe

2 +
t
qe

                                                           (3.2) 

 

where, qt is the amount of arsenic adsorbed (mg/g) at time t, qe is the maximum 

adsorption capacity (mg/g) for the pseudo first-order adsorption and pseudo second 

order adsorption, kad is the pseudo-first-order rate constant for the arsenic adsorption 

process (1/min), k2 is the pseudo second order rate constant (g/mg.min).  

 

The experimental data were fitted with both the linearized pseudo first order and 

linearized pseudo second order models. The parameters calculated from the pseudo first 

order and pseudo second order linearized equations were listed in Table 3.1. The 

adsorption process did not follow the pseudo first order, as observed by the poor fit in 

all three different As(III) and As(V) initial concentrations. However, the higher 

regression coefficients (R2) were obtained after the application of pseudo-second order 

to the experimental data of As(III) and As(V) initial  concentrations (Figure 3.6). The 

pseudo first-order kinetic model has been used for reversible reaction between liquid 
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and solid phases [124]. In contrast, the pseudo second-order kinetic model may consider 

chemical adsorption as the rate-determining step [125]. 

 
Figure 3.6. Linearized pseudo-second-order reaction kinetics of As(III) and As(V) on 

FRM. (initial arsenic concentration: 1, 2, and 4 mg/L, adsorbent amount: 1 mg/L, pH: 

2.0, temperature: 25oC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 50 100 150 200 250 300
0

100

200

300

400

500
t/q

t

Time (min)

 As(III) - 1 mg/L
 As(III) - 2 mg/L
 As(III) - 4 mg/L
 As(V) - 1 mg/L
 As(V) - 2 mg/L
 As(V) - 4 mg/L

 



 39 

Table 3.1. Parameters of pseudo first order and pseudo second order kinetic models for 

adsorption of As(III) and As(V) on FRM at pH 2.0. 

 

The physical and chemical adsorption processes contain namely diffusion to bulk 

solution, external diffusion, internal intraparticle diffusion, and adsorption [126, 127]. 

In fact, the controlling steps occur at which the adsorbate transports through the exterior 

surface of the adsorbent (external diffusion), and at which the adsorbate diffuses into 

the adsorbent surface of internal pores (intraparticle diffusion) [126]. In order to 

understand the adsorption mechanism and to obtain the process of rate-determining 

steps, external diffusion and intraparticle diffusion models were investigated. 

 

The external diffusion model [128] was considered to analyze the experimental results 

by employing the following equation. 

 

 
ln Ct

C0
= −kextt                                                                  (3.3) 

 

  As(III)   As(V)  
Co 1 mg/L 2 mg/L 4 mg/L 1 mg/L    2 mg/L 4 mg/L 

qe-exp (mg/g) 0.555 0.823 1.903 
 

0.986 1.975 3.921 
 

Pseudo first order 
    

qe (mg/g) 0.371 0.547 1.070 0.457 0.963 2.750 
 

kad  (min-1) 0.032 0.029 0.009 0.074 0.043 0.046 
 

R2 80.97 92.54 84.66 67.82 66.69 85.53 
 

Pseudo second order     
q2 (mg/g) 0.559 0.829 1.928 0.987 1.977 4.043 

 
k2 (g/mg min) 3.590 0.352 0.092 3.036 1.448 16.82 

 
R2 99.62 99.96 99.92 99.99 99.99 99.94 
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where kext is the external diffusion rate constant (1/min) and Ct is the equilibrium 

solution concentration (mg/L) and Co is the initial solution concentration (mg/L). A 

linear plots of lnCt versus time t indicated in Figure 3.7a and 3.7b for the adsorptions of 

As(III) and As(V) onto FRM.  

 

 

 
Figure 3.7. Analysis of adsorption process using external diffusion model (a) pure 

As(III) (b) pure As(V). (initial arsenic concentration: 1, 2, and 4 mg/L, adsorbent 

amount: 1 mg/L, pH: 2.0, temperature: 25oC). 
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For the rate of intraparticle diffusion process, the equation 3.4, which was proposed, by 

Weber and Morris [127] was used ; 

 

qt = A+ kint
0.5                                                               (3.4) 

 

where kint (mg/(g min0.5)) is the internal diffusion rate constant and A is the intercept of 

the linear plot of qt versus t0.5 (Figure 3.8a and 3.8b). The modeling results of our kinetic 

data were shown in Table 3.2. 

 

From the short straight trend lines in Figure 3.7a and 3.7b, external film diffusion model 

was the rate-determining mechanism only at the initial stage of As(III) and As(V) 

adsorptions. The plots obtained from the intraparticle diffusion model indicated the 

presence of three linear sections of experimental data for three different initial As(III) 

and As(V) concentrations. At the first linear stage, fast adsorptions of arsenic species 

were observed due to the external surface adsorption. However, in the second linear 

stage, slower adsorptions of As(III) and As(V) onto FRM indicated the intraparticle 

diffusion process  which was rate determining mechanism for both arsenic species. The 

third stage was the final equilibrium stage where the intraparticle diffusion rates of 

As(III) and As(V) were reduced and the processes reached the plateau.  
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Figure 3.8. Analysis of adsorption process of arsenic onto FRM using intraparticle 

diffusion model (a) pure As(III) (b) pure As(V). (initial arsenic concentration: 1, 2, and 

4 mg/L, adsorbent amount: 1 mg/L, pH: 2.0, temperature: 25oC). 
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Table 3.2. Parameters of external diffusion and intraparticle diffusion models for 

adsorption of As(III) and As(V) on FRM at pH 2.0. 

 

3.3.5. Adsorption Capacity 

The adsorption of arsenic, initially ranging from 0.04 to 20 mg/L concentration onto 

FRM has been performed at pH 2.0 and pH 7.0 using 1 g/L adsorbent material in the 

batch mode. A time of 300 min. was used to reach equilibrium in the experiments to 

construct the adsorption isotherms. The relationship between the adsorption capability, 

(qe) and equilibrium concentration, (Ce) of arsenic onto FRM was shown in Figure 3.9, 

indicating better As(V) removal capabilities of FRM compared to As(III) for the two 

  As(III)   As(V)  

Co 1 mg/L 2 mg/L 4 mg/L 1 mg/L 2 mg/L 4 mg/L 

 

External diffusion model 

    

kext   

(min-1) 

0.048 0.034 0.017 0.247 0.154 0.115 

 

R2 99.22 98.88 98.71 94.35 84.61 89.09 

 

Intraparticle diffusion model     

k1 int   

(mg/(g min1/2)) 

0.178 0.289 0.3853 0.223 0.607 0.989 

 

R1
2 96.97 99.96 99.93    99.99 99.99 98.15 

 

k2 int   

(mg/(g min1/2)) 

0.008 0.009 0.062 0.025 0.072 0.107 

 

R2
2 96.05 76.33 95.27 75.73 99.81 94.17 

 

k3 int   

(mg/(g min1/2)) 

0.005 0.007 0.023 0.001 0.003 0.018 

 

R3
2 91.04    81.42 82.94 89.70 88.66 69.50 
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different pH values. It was apparent that the extent of As(V) adsorption at pH 2.0 was 

higher than that at pH 7.0 over the entire range of equilibrium concentration values. 

However, the adsorption of As(III) onto FRM at pH 7.0 exhibited the comparable 

increase with respect to the adsorption at pH 2.0. Since the surface of FRM was covered 

with positively charged surface groups at acidic pH conditions and the strong 

electrostatic attraction between negatively charged As(V) anions and positively charged 

surface groups provided a higher As(V) removal efficiency. In the case of As(III), the 

maximum uptake of FRM was observed at pH 7.0, since the predominant As(III) 

species were available as H3AsO3 and H3AsO3
- in the pH range of 4.0-9.5. 

 

             

 
 

Figure 3.9. Adsorption isotherm of As(III) and As(V) on the FRM (initial arsenic 

concentration: 0.04-20 mg/L, adsorbent amount: 1 mg/L, pH: 2.0 and 7.0, temperature: 

25oC and contact time: 5 h). 

 

The theoretical adsorption capacity of an adsorbent can be obtained through the 

adsorption isotherm [129]. In this study, the Langmuir and Freundlich isotherm models 
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concentration of equilibrium in solutions. The Langmuir model assumes monolayer 

adsorption onto homogenous surface with a fixed number of energetically identical sites 

[130], while the Freundlich model is derived from the multilayer adsorption and the 

adsorption occurs first the most energetically favorable sites [131]. The linearized forms 

of the Langmuir, (Equation 3.5) and Freundlich, (Equation 3.6), isotherms are;  

 

Ce

qe
=

1
qmonb

+
Ce

qmon
                                                        (3.5) 

 

lnqe = lnKF +
1
n
lnCe                           .                       (3.6) 

 

where qe is the amount adsorbed on solid (mg/g), Ce is the equilibrium solution 

concentration (mg/L), qmon is adsorption capacity (mg/g), b is a constant related to 

enthalpy of sorption which should vary with temperature (L/mg), Kf, (mg/g) is related to 

the adsorption capacity of the adsorbent and 1/n is a constant known as the 

heterogeneity factor is related to surface heterogeneity [132, 133]. Table 3.3 

summarized the results of the adsorption parameters. According to the regression 

coefficient values for As(III) and As(V) adsorption onto FRM for the two different pH 

values, the Langmuir model described the isotherm better than the Freundlich model. 

The maximum adsorption capacity of FRM at pH 2.0 was about 1.5 times higher than 

that at pH 7.0 for As(V), whereas the greatest adsorption capacity of FRM was found at 

pH 7.0 for As(III). The adsorbed arsenic species onto FRM at equilibrium were 

relatively 5 times lower than those reported by Zhang et al. [109] and Li et al. [108], 

however such a difference in the results of adsorption capacity was not related to the 

FRM investigated in this study was a poor adsorbent. Indeed, those studies dealt with 

much higher initial arsenic concentration at least 5 times higher than ours. 
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Table 3.3. Calculated isotherm parameters for As(III) and As(V) adsorption onto FRM 

at pH 2.0 and  7.0 

 

The other significant parameter of the Langmuir isotherm, L, is the equilibrium constant 

relating the rates of adsorption and desorption.  For As(V) adsorption onto FRM the L 

value was higher than the corresponding value for As(III). In fact, the higher L values, 

in adsorption As(V) onto FRM could be explained by the higher rates of adsorption 

rather than desorption, which suggested more material adsorbed on the surface of 

adsorbent. Also from the equilibrium constant of Langmuir isotherm, the dimensionless 

constant separation factor (RL), which was the indicative of the isotherm shape, could be 

obtained by using the following equation: 

 

Isotherm models                                 Isotherm parameters 

Langmuir qmax 

(mg/g) 

b 

(L/mg) 

–∆G0 

(kJ/mol) 
R2 

As(III) – pH 2.0  3.192 1.226 0.504 99.60 

As(V)  – pH 2.0 11.640 4.014 3.444 99.26 

As(III) – pH 7.0  5.254 1.432 0.889 99.70 

As(V)  – pH 7.0 7.917 2.004 1.722 99.69 

Freundlich Kf  

(mg/g) 

n –∆G  

(kJ/mol) 

R2 

As(III) – pH 2.0  0.997 1.883 17.101 97.83 

As(V)  – pH 2.0 6.145 1.889 21.653 96.08 

As(III) – pH 7.0  1.729 1.736 18.473 95.52 

As(V)  – pH 7.0 3.126 1.661 19.931 90.13 

DKR β 

(mol2/kJ2)                   

 -E  

(kJ/mol)                               

R2 

As(III) – pH 2.0  0.0035  11.952 99.31 

As(V)  – pH 2.0 0.0028  13.363 99.18 

As(III) – pH 7.0  0.0030  12.910 98.24 

As(V)  – pH 7.0 0.0039  11.322 93.97 
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RL =
1

1+ bCo

                                                                (3.7) 

 

where, Co is the initial As(III) concentration (mg/L). The value of RL demonstrates the 

nature of adsorption as unfavorable (RL > 1), linear (RL = 1), favorable (0 < RL < 1) and 

irreversible (RL = 0). The calculated values of RL were found to be 0.9532 to 0.0391 for 

As(III) and 0.8616 to 0.0123 for As(V) at pH 2.0, indicating highly favorable 

adsorption of As(V) onto FRM. 

 

Standard Gibbs free energy (ΔG0, kJ/mol) for the adsorption process was calculated 

using the following equation: 

 

ln 1
b
=
ΔGo

RT
                                                                  (3.8) 

 

where  R is the ideal gas constant (0.00831447 kJ/K.mol), and T is the temperature (K). 

In this study, the negative ΔG0 values obtained for As(III) and As(V) adsorption on 

FRM by confirming the feasibility of the adsorption processes and the spontaneous 

nature of adsorptions. 

 

From the linearized equation of Freundlich model, the calculated Kf values were 1.729 

mg/g for As(III) at pH 2.0 and 6.145 mg/g for As(V) at pH 2.0, while the n valuesfor 

As(III) and As(V) were 1.736 and 1.889, respectively. In fact, the numerical value of n 

which is between 1 and 10 indicates beneficial adsorptions [134]. By knowing the Kf  

value, the free energy change of arsenic adsorption onto FRM can be calculated using 

the equation:  

 

ΔG = −RT ln(KFx1000)                                               (3.9) 

 

Similarly, in the adsorption of As(V) on FRM, free energy change was more negative 

(Table 3) as compared to As(III) adsorption for the two different pH  values of 2.0 and 

7.0. Dubinin-Kaganer-Radushkevich (DKR) isotherm model was investigated to 

determine the physical and chemical adsorption [135] of As(III) and As(V). DKR 

isotherm equation [136] is: 
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lnqe = ln χm − kε
2                                                      (3.10) 

 

where ε is Polanyi potential, equal to RT ln (1+1/Ce), Xm is the adsorption capacity 

(mol/g), k is a constant related to adsorption energy (mol2/kJ2). Xm and k values were 

obtained by plotting lnqe versus ε2 at 25 ˚C. The slope of line yields k (mol2/kJ2) and the 

intercept is equal to lnXm.  

 

In order to evaluate the interaction between arsenic and binding sites of FRM, the mean 

free energy of adsorption ((E)-the free energy change one mol adsorbate in transferred 

from infinity in solution to the surface of the adsorbent) was calculated from the 

following relationship [133]. 

 

      E = −(2k)−0.5                                                 (3.11) 

 

The calculated E values for As(III) and As(V) were respectively -12.910 kJ/mol for pH 

7.0 and -13.363 kJ/mol for pH 2.0. Since E values found in the present study were less 

than 8 kJ/mol, the physical adsorption due to weak van der Waals forces [137, 138] was 

also occurring in addition to the chemisorption that was observed by the Type I 

isotherms which assumes the continuous increase in the amount of adsorbed component 

with concentration until a plateau is reached where surface of the adsorbent is 

practically saturated.  

 

Table 3.4 interprets a comparative evaluation of the tested adsorbent material in this 

study with some commercially available and synthesized adsorbents. The evaluation has 

been made in terms of maximum arsenic adsorption capacities from isotherm model 

used. The most important observation is that FRM exhibits higher adsorption capacities 

obtained from Langmuir isotherm model than most of the adsorbent materials reported 

earlier.  
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Table 3.4. Comparison of adsorption performance of tested adsorbent with 

 previous works 

 
 
 
 

 

 

Adsorbent Adsorption 
isotherm model 

   Aso 
 (mg/L) 

Capacity (mg/g) 
Ref. 

As(III)          As(V) 
 
Beydellite-Fe 
 

Langmuir 5 0.789 0.794 [139] 

Modified light 
expanded clay 
aggregate (LECA) 
 

Langmuir 0.1-0.3 0.035 0.058 [140] 

Fe-exchange zeolite 
(Fe-eZ) 
 

Freundlich 0.1-20 0.100 0.050 [141] 

Copper oxide 
incorporated 
mesoporous alumina 
(COIMA) 
 

Langmuir 1 2.161 2.017 [142] 

Commercial Titanium 
dioxide  
(Degussa P25) 

Langmuir 37.5 3.450 4.650 [143] 

 
Red mud 
 

Langmuir 2.5-30 0.884 0.941 [104] 

Feric ion loaded  
red mud (FRM) 
 

Langmuir 0.4-20 5.254 11.640 
This 
work 

Iron-containing 
ordered mesoporous 
carbon (FeOMC) 

Langmuir 1-24 8.156 6.465 [144] 

Activated Alumina Langmuir 20-100 0.180 11.02 
 
[145] 
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3.4. Concluding Remarks 

 
 
FRM is very effective adsorbent that reduce both As(III) and As(V) concentrations 

below the MCL requirements for drinking water. In the current study, evaluation of the 

arsenic removal efficiency of FRM was performed considering effect of pH, initial 

arsenic concentration, and contact time. It is important to note that using of 1 g/L FRM 

dosage for an initial arsenic concentration of 1 mg/L, the maximum arsenic uptakes 

were found 0.57 mg/g for As(III) at pH 7.6 and 0.98 mg/g for As(V) at pH 3.3, 

respectively. Moreover, according to kinetic sorption experiments, the higher regression 

coefficients (R2) were obtained after the application of pseudo-second order to the 

experimental data of As(III) and As(V) initial  concentrations. In terms of adsorption 

mechanisms of As(III) and As(V) onto FRM, external diffusion mechanism governed 

the initial stage of adsorptions and while the intraparticle diffusion mechanism was rate-

determining step for the later stages of adsorption. The most important observation was 

that the higher adsorption capacities achieved from Langmuir isotherm model was 

found for As(V) at pH 2.0 as compared to As(III) at pH 7.0 and the calculated  

maximum adsorption capacity values were 11.640 mg/g for As(V) pH 7.0 and 5.254 

mg/g for As(III). Essentially, present results are promising for the usage of FRM in 

drinking water contaminated with low concentration of arsenic species.  
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CHAPTER 4 

 

As(V) REMOVAL FROM WATER BY IRON OXIDE/ACTIVATED CARBON 

SYSTEM MANUFACTURED BY MICROWAVE HEATING  

 
 
 
 

4.1. Background 

 
 
 

The most efficient ways to remediate waters are probably adsorption and catalytic 

oxidation of the pollutants. Surely, for such a process to be economical, the catalyst and 

the adsorbent should have a high catalytic activity and adsorption capacity, and be 

inexpensive. Many high surface area materials, especially metal oxides, are studied for 

their special catalytic properties [87, 146, 147] One of these metal oxides is iron oxide, 

which is studied and used in areas like catalysis [148-151] and environmental 

applications [152-157]. It is known that synthesizing iron oxides in nano dimensions 

enhances their catalytic and adsorption properties [158, 159]. These materials are 

perfect adsorbents for their high specific surface areas. The high surface area-to-mass 

ratio of nanomaterials can show high adsorption capacities [159]. 

 

Iron oxide nanoparticles can be synthesized with various methods like oxidation, 

hydrolysis of metal alkoxide, micro emulsion, pyrolysis, ultrasonic-assisted methods 

and decomposition of a metal complex [159-164]. Other than these methods, it has been 

reported that iron oxide and other metal oxide nanoparticles can be formed by 

hydrothermal techniques [165-167]. At the supercritical region, with fast reaction rates, 

metal oxide nanoparticles can be synthesized at an extremely high nucleation rate [165]. 
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The advantage of hydrothermal treatment is, while fine particles are formed in water, 

these particles can be easily impregnated deep in to the porous support by the help of 

water. Oshima et al. [166] showed that some metal and metal oxide nano particles can 

be crystallized onto the alumina support surface, and could reach into the deeper part of 

the support with an increase of reaction time. On the other hand, Teja et al. [168, 169], 

used supercritical water to synthesize and disperse iron oxide nanoparticles in activated 

carbon (AC) pores. They managed to deposit iron oxide particles deep in to 

hydrophobic pores of AC. 

 

Microwave hydrothermal (MH) synthesis is a new technique for the production of 

materials like metal oxides, zeolites, and other nanoporous materials [170-173]. 

Komarneni et al. [170] was the first group using this technique and they synthesized 

TiO2, ZrO2, KNbO3, BaTiO3 successfully. According to Tompsett et al. [174], when 

MH is utilized, the synthesis duration is reduced by over an order of magnitude. In 

addition, the synthesized material has a more uniform dimension and composition. Date 

et. al [172] was able to synthesize α-Fe2O3 and Fe3O4 particles from FeSO4 solution by 

changing the pH of the solution during MH synthesis. On the other hand, studies of iron 

oxide nanoparticle deposition on a support are quite few. Garcia-Martinez et al. [175] 

deposited FeO and Fe2O3 nanoparticles on MCM-41 support with microwave radiation 

and studied its catalytic performance on selective oxidation of benzyl alcohol to 

benzaldehyde and alkylation of toluene with benzyl chloride. Additionally, Suggs et al. 

[176] prepared carbon/iron oxide nanocomposites starting with sugar and 1,1’-

dilithioferrocene. However, to our knowledge there are not any studies about 

microwave deposition on AC and its adsorption behavior. 

 

In the present chapter, we utilized microwave hydrothermal techniques, to synthesize 

iron oxide nano particles on AC and ACO support. The effects of parameters like 

oxidation, heating time and pH on As(V) removal using this material in water cleaning 

were studied. 
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4.2. Experimental 
 
 
 

4.2.1. Materials 
 
 

Charcoal activated (powder extra pure food grade) was used as a support material and 

supplied from Merck Millipore. To obtain oxidized activated carbon (ACO), some 

portion of the charcoal activated was treated with KMnO4 (Ak Kimya). The iron 

precursor was ferric chloride (FeCl3·6H2O) and was purchased from Merck Millipore. 

As(V) solutions were prepared with Na2HAsO4.7H2O salt (Sigma-Aldrich). 

Additionally pH values of the solutions were controlled with HCl (Merck Millipore) 

and NaOH (Merck Millipore) solutions. All chemicals were used as received and all 

solutions were prepared with de-ionized (DI) water. MH synthesis were performed in a 

Teflon autoclave using microwave radiation (Delonghi EMD MW 311 adjustable power 

<800 W, 230 V, 50 Hz). 

 
 
 
4.2.2. Deposition of iron oxide nanoparticles on AC 
 
 

The deposition method was a microwave-modified version of Shemer et al.’s iron oxide 

deposition on AC. Before starting the deposition of iron oxide nano particles, AC was 

washed thoroughly and dried overnight at 100 °C. For the iron oxide deposition, AC 

was used without any additional treatment. However, for the deposition on ACO, AC 

was treated with KMnO4. In this oxidation step, 7.5 g of dried AC was mixed with 0.5 

M KMnO4 solution for 30 min at 150 rpm and 25 °C in a glass Erlenmeyer flask. The 

mixing was followed by repeated rinsing of the ACO with DI water until no purple 

color was observed. 

 

After drying, 1 g of AC or ACO were mixed with 5 mL of FeCl3.6H2O solution at 25 °C 

(20 g/L (0.36 M) of total iron) and put into Teflon autoclave. Then, the samples were 

treated for 3, 6 or 9 minutes under microwave radiation of 280 W. Following the 

treatment, the samples were washed with DI water to remove residual iron. After the 
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washing step, iron loaded AC (AC-x) and ACO (ACO-x) were dried overnight at 100 

°C, where x is 3, 6, or 9 representing the MH treatment duration. 

 
 
 
4.2.3. Sample characterization 
 
 

The deposited amount iron oxide and the ash content of AC and ACO were determined 

by burning a known mass of the material. For this purpose, NETZSCH 449C 

thermogravimetric analyzer (TGA-DTA) was utilized. Samples were heated from room 

temperature to 1000 °C at 10 °C/min in a pure alumina crucible and the residue left after 

burning away all the carbon were weighed. 

 

For the XRD characterization, a Bruker AXS-D8 advanced powder diffractometer fitted 

with a Siemens X-ray gun and equipped with Bruker AXS DIFFRAC Plus software was 

used at room temperature. Measurements were performed in the 2θ range of 5°–90°, at 

40 kV and 40 mA, using Cu-Kα 1.5406 Å radiation. The step size was always 0.01° and 

data collection was in 1-s steps. 

 

The surface areas and pore size distribution of the supports and loaded supports were 

determined using a NOVA 2200e Surface Area and Pore Size Analyzer (Quantachrome 

Instruments Co., USA). The analyses were performed in boiling liquid nitrogen (77 K). 

Samples were outgassed at 150 °C overnight. BET surface areas were calculated by the 

multipoint method using adsorption data in the relative pressure (P/P0) with a range of 

0.05–0.3. The pore volume and pore size distributions were estimated from the 

desorption branch of the isotherms by the Barrett-Joyner-Halenda (BJH) method. Also 

standard DR model were applied to derive micropore structural information. 

 

A Leo G34-Supra 35VP field emission scanning electron microscope (SEM) coupled to 

energy dispersive spectrometer software was used for morphological analysis. Iron 

loaded samples were first coated with carbon by an Emitech T950 Turbo Evaporator to 

provide a conducting surface layer. The gun chamber pressure was ~10-11 mbar. The 

SEM electron column was equipped with a secondary electron detector, a back-

scattering electron detector, and an in-lens detector for secondary electron detection. 



 55 

Imaging was done at the extractor voltage of 5.2 keV and accelerating voltages ranging 

between 2 and 5 keV using the secondary electron detector. 

 
 
 
4.2.4. Batch adsorption experiments 
 
 

Arsenic stock solutions with various concentrations were prepared by dissolving As(V) 

Na2HAsO4.7H2O salt in DI water. Batch adsorption experiments were carried out in 100 

mL flasks with 30 mL As(V) solutions with appropriate concentrations. To reach a 0.75 

loading (g adsorbent / 1 L solution), 0.0225 g of adsorbent were added to solutions. 

Afterwards, the bottles were shaken in a controlled incubator shaker at 150-rpm and 25 

°C for 24 h. The kinetic experiment were carried out at different time intervals (5 min to 

48 h) in an initial As(V) concentration of 5 mg/L at pH 7.0. Several initial 

concentrations ranging from 0.5 to 20 mg/L aqueous solutions were used for 

equilibrium studies at fixed pH 7.0 for 24 h. The effect of pH on the adsorptions were 

studied by using 5 mg/L of As(V) solution in a pH range of 3.0–8.0 at 25 °C. At the end 

of each experiment, the solution was separated from the solid adsorbent by using 0.45 

µm PVDF membrane filter. As(V) concentrations of the solutions were measured with a 

Varian, Vista-Pro CCD simultaneous inductively coupled plasma ICPOES 

spectrophotometer. Samples before and after adsorption experiments were analyzed to 

obtain residual adsorbate ion concentrations. In order to test the reproducibility, the 

experiments were carried in triplicate and average results were reported. 

 
 
 

4.3. Results and Discussion 
 
 
 

4.3.1. XRD characterization of the Samples 
 
 

Figure 4.1 shows XRD patterns of iron deposited AC samples with different heating 

times. Initially before iron deposition, XRD pattern of the AC confirmed that there was 

not any detectable crystalline phase. However, after 3 minutes, particles started to 

deposit on the support with the structure of β-FeOOH. On the other hand, further 
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microwave heating for 3 minutes transformed them to α–Fe2O3. Finally, after a total 9 

minutes of heating the structure was still α–Fe2O3. Since essentially the peak heights of 

the main XRD peaks of α–Fe2O3 were the same height, it could be suggested that after 

α–Fe2O3 was formed, extra heating did not have any effect on the crystal structure. 

Forced hydrolysis of FeCl3 solutions has been used to synthesize β-FeOOH [177].  

 

 

 
 

Figure 4.1. XRD patterns of iron deposited AC 

 
 
 

4.3.2. SEM Characterization of the Particles 
 
 

Representative SEM images of iron deposited AC and ACO are shown in Figure 2. 

Treatment with KMnO4 created rough surfaces. The roughness was most probably 

caused by the surface restructuring in oxidative medium. After 3 minutes of heating 

under microwave radiation, homogenously distributed particles began to appear on both 

AC and ACO surfaces. XRD results (Figure 4.1) indicated that these particles were β-
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FeOOH. While for AC (3 min.) the particles size was around 60 nm, the particle size on 

ACO (3 min.) was about 55 nm. When the surfaces were examined, it was observed that 

the surface of ACO was completely covered with β-FeOOH particles. However, the AC 

surface was not that crowded with particles. This complete coverage can be explained 

by the mechanism suggested by Shemer et al. [178]. The mechanism is as follows: 

 

   AC- + Fe3+ → AC + Fe2+ 

 

2Fe2+ + MnO2(s) + 2H2O → 2FeOOH(s) + Mn2+ + 2H+ 

 

Therefore, initially Fe2+ ions reacted with residual MnO2 particles on the ACO surface 

and adsorbed as β-FeOOH. On the other hand, for AC, β-FeOOH particles formed not 

on the surface but in the liquid medium, which caused a less covered AC surface. At the 

end of 9 minutes of heating, it could be seen that ACO surface was completely covered 

with a thick layer. On the contrary, AC surface is not covered with such a structure. 

Instead, there were large clumps of particles near AC particles. In addition to that, daisy 

like disks could be seen on AC surfaces.  

 

When particle deposition at 9 minutes was examined (Figure 4.2), we observed quite 

large particles on the surface or near the surface. For instance, 500 nm particles cover 

the ACO surface. Nevertheless, when these particles were examined at high optical 

magnifications, we observed a porous microstructure (Figure 4.3). In fact, these large 

clumps consisted of 50 nm iron oxide particles. At the initial stages of hydrolysis, β-

FeOOH particles with similar dimensions started to cover the surface. It seemed that 

once the surface was covered, new particles started to form in the liquid and aggregated 

on each other, thus creating porous particles. Actually, reaction rates are very high with 

microwave heating [179], so this kind of heating may have caused bigger particles. 
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Figure 4.2. Iron deposited AC and ACO with various heating times 

 

 
Figure 4.3. Close up of iron deposited ACO heated for 9 minutes 

 
 
 
 
4.3.3. Porous Texture of the Adsorbents 
 
 

The adsorption–desorption characteristics of the AC and ACO was characterized by N2 

physisorption. The isotherms for iron deposited AC prepared at different heating times 

are shown in Figure 4.4. All of the isotherms indicated similar trends to those of virgin 

AC. It was determined that the isotherms showed a type IV (IUPAC classification) 

behavior which characteristic for mesoporous materials. According to IUPAC, the 

hysteresis loop obtained belongs to type H4 hysteresis. These types of loops are often 

associated with narrow slit pores and include pores in the micropore region [180].  For 

both AC and ACO, we observed a decrease in adsorption-desorption characteristics 

with increasing heating time, which caused a decrease in the specific surface areas and 
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total pore volumes (Figure 4.4 and Table 4.1). The decrease in specific surface area and 

pore volume seemed to be mostly because of a decrease in the microporous volume. As 

a result, it could be suggested that during oxidation and iron oxide deposition, pore 

blockage and filling might have occurred. When meso and micropore volume fractions 

of AC and ACO were compared, we observed that they almost had the same values 

suggesting that oxidative medium affected the meso and micropores equally. Moreover, 

ACO supports’ micropores were filled faster when compared with AC due easier 

penetration of pores with oxygen groups. 

 

 
Figure 4.4. Nitrogen adsorption and desorption isotherms of ACO samples prepared at 

different heating durations 
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Table 4.1. Surface area and pore structure parameters for iron deposited AC & ACO 

Sample 
BET surface 

area (m2/g) 

Vmicro  

(cm3/g) 

Vmeso  

(cm3/g) 

Volume 

fractions  

(xmeso - xmicro)   

Pore 

size(Å) 

AC-0 1313 0.505 0.679 0.57 – 0.43 18.1 

AC-3 770 0.293 0.442 0.60 – 0.40 18.1 

AC-9 43 0.014 0.071 0.84 – 0.16 17.9 

ACO-0 256 0.098 0.120 0.55 – 0.45 18.0 

ACO-3 74 0.025 0.093 0.79 – 0.21 17.8 

ACO-9 26 0.007 0.090 0.93 – 0.07 18.0 

 

 

 

4.3.4. Effect of Heating Duration on Iron Loading 
 
 

The amount of iron deposited on supports with changing heating time is shown in Table 

4.2. The effect of oxidation on iron oxide deposition can be clearly seen from the 

results. Even after 3 minutes of heating, iron deposition on ACO was 19.37 %. On the 

other hand, for AC under the same condition, iron content was just 2.13 %. Since ACO 

surface was covered with carbon-oxygen groups, hydrolysis started easily anywhere on 

the surface at the early stages of heating. However, for AC, hydrolysis would be 

delayed because of the lack of oxygen containing species. The hydrolysis most probably 

would occur in liquid, not on the surface, due to the hydrophobic nature of AC. That 

was the reason of obtaining low iron loading on AC. After 9 minutes of heating, iron 

loading on ACO reached to 20.37 %. For AC, the amount of iron was close to that 

value. This explained that once the iron oxide species were formed, hydrolysis became 

easier on AC.  
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Table 4.2. Iron loading on AC & ACO 

Fe loading wt (%) 

Sample 3 min 9 min 

AC 2.13 19.53 

ACO 19.37 20.37 

 
 
 
4.3.5. Adsorption Isotherms 
 
 

The As(V) sorption studies onto the synthesized nanoparticles were investigated by 

changing the initial sorbate concentrations ranging from 0.5 to 20 mg/L. As a potential 

water treatment material, these materials performance were studied at pH 7.0. The 

nonlinear As(V) adsorption isotherms of these materials are given in Figure 4.5. The 

maximum adsorption capacity was 27.78 mg/g, which was obtained with ACO-9 min. 

To examine adsorption performance, Langmuir [130], Freundlich [181], and Sips 

(Langmuir–Freundlich) [182] isotherm models were utilized. The calculated isotherm 

parameters of all three models were summarized in Table 4.3. Langmuir model assumes 

that single species of the sorbate adsorbs on specific homogenous adsorption sites 

within the sorbent by forming monolayer coverage. On the other hand, in Freundlich 

model, heterogeneous adsorption sites and interactions are considered [130, 181]. 

Langmuir (Equation 4.1) and Freundlich (Equation 4.2) isotherms can be expressed 

with the following equations: 

 

                                                qe =
qmonbCe

1+ bCe
                                                  (4.1) 

 

                                                    n
eFe CKq /1=          (4.2) 

 

where qe is the solute amount adsorbed per unit weight of adsorbent (mg/g), Ce is liquid 

phase sorbate concentration in equilibrium, qmon is the monolayer adsorption capacity 

(mg/g), KF indicates the adsorbent’s relative adsorption capacity (mg/g), 1/n is the 

constant representing adsorption intensity and b is the adsorption equilibrium constant 

(L/mg) related to adsorption enthalpy. 
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The Sips isotherm model is a combined form of Langmuir and Freundlich equations and 

possesses a finite saturation limit when the initial sorbate concentration is sufficiently 

high. The nonlinear form of Sips sorption isotherm is: 

 

                                                     
LF

LF

n
eLF

n
eLF

e Ca
CK

q
)(1+

=                (4.3) 

 

where KLF, aLF, and nLF are the Sips isotherm constants. The variation of Sips from 

Langmuir equation is the additional nLF parameter. If nLF parameter is 1 then the 

equation reduces to the Langmuir equation which represents homogeneous surfaces. 

However, the deviation further away from unity points out heterogeneity of the system. 

 

Considering the R2 values shown in Table 4.3 and Figure 4.5, the adsorption isotherm 

behavior of As(V) was better fitted to Langmuir isotherm when compared with 

Freundlich model. As(V) removal with fresh AC and ACO is very low and almost stays 

constant with changing initial concentration. For that reason, R2 values are relatively 

smaller but still satisfies Langmuir model. In addition to that, for Sips model, the 

calculated nLF values were found to be close to unity, which actually satisfies the 

Langmuir model. This means that a homogeneous adsorption occurs on these surfaces 

with monolayer coverage. From qmon data, it can be concluded that with increasing 

heating time, adsorption capacity increases. However, when iron oxide loading and 

surface area values (Table 4.1 & 4.2) were put side by side with these capacity values, 

we observed that after 9 minutes of heating, although iron oxide amount increased, 

capacity did not increase that much. This suggested that available iron oxide surface 

disappeared after certain duration of heating. Highest capacity was calculated as 27.78 

mg/g, when ACO was heated for 9 minutes. Nevertheless, these values were still high 

when compared with literature. For example Rangel-Mendez & Vitela-Rodriguez [183], 

and Fierro et al. [184] studied As(V) removal with iron-doped activated carbons. 

Maximum capacities obtained were 1.250 and 0.036 mg/g respectively. However, there 

are also some studies with higher uptake values like 51.3 mg/g [82]. 
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Figure 4.5. Adsorption isotherm of As(V) adsorbed by (a) AC-3min, (b) ACO-3min, 

(c) AC-9min and (d) ACO-9min (initial concentration = 0.5–20 mg/L, pH = 7.0,  

S:L = 750 mg/L, contact time = 24 h) 
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Table 4.3. Langmuir, Freundlich, and Sips isotherm parameters for fresh and iron 

deposited AC and ACO 

 

Isotherm 

Parameters 
AC 

AC-

3min 

AC-

9min 
ACO 

ACO-

3min 

ACO-

9min 

Langmuir       

qmon (mg/g) 1.22 15.34 24.69 0.35 13.89 27.78 

b (L/mg) 1.393 0.068 4.263 1.035 2.880 2.609 

R2 0.881 0.962 0.984 0.794 0.998 0.903 

Freundlich       

KF (mg/g) 0.769 0.639 12.747 1.651 5.648 12.844 

1/n 0.508 1.061 0.355 1.054 0.449 0.348 

R2 0.748 0.941 0.867 0.430 0.912 0.650 

Sips       

KLF (L/g) 1.70 0.92 143.68 0.34 25.45 72.46 

aLF (L/mg) 1.392 0.044 5.966 1.03 1.922 2.611 

nLF 0.999 0.999 0.999 0.999 0.999 0.999 

R2 0.880 0.921 0.984 0.794 0.996 0.903 

 
 
 
4.3.6. Adsorption Kinetics 
 
 

In 1993, WHO lowered the guideline value for arsenic in drinking water from 50 µg/L 

down to 10 µg/L [185]. Furthermore, it is stated that ground water arsenic 

contamination can reach from 100 to 3900 µg/L [186]. Therefore, for kinetic modeling, 

an initial concentration like 5.0 mg/L, which was at the upper limit, would be 

appropriate. Highest adsorption capacities were obtained with samples heated for 9 

minutes. For that reason, kinetic modeling was studied with AC, AC-9 min, ACO, and 

ACO-9min. The kinetic profiles of As(V) adsorption with AC-9 min and ACO-9min  

are illustrated in Figure 4.6. It was noted that at the very beginning of the experiment, 

adsorption percentages of As(V) reached to high values. For AC-9min, just at the 5th 

minute, adsorption percentage reached 99.56% and for ACO-9min, at that instant the 

percentage is 99.90%. When profiles were compared, ACO-9 min reached equilibrium 
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much faster than AC-9 min. Most probable reason for this was, for ACO version, the 

surface was covered more homogeneously with iron oxide, while for AC version there 

were large aggregates of iron oxide. Diffusion through these aggregates might have 

taken much more time. Actually, it is reported that such biphasic behavior is likely to 

occur from the variety of reactive sorption sites and/or the diffusion of adsorbate ions 

on the surface for seeking available sites [187]. After 24 hours, with ACO-9 min, 

concentration droped to below detection limits, and with AC-9 min concentration was 6 

µg/L. Conversely, supports without any iron deposition did not show any good 

performance. Their uptake values were low and stayed almost constant. While average 

uptake for AC was 0.72 mg/g, it decreased to 0.18 mg/g for ACO. This decrease might 

be probably because of surface charges. Zhang et al. [188], showed that after oxidation 

with KMnO4, carbon surface becomes more basic after pH of 5.1. Consequently, at pH 

7.0, surface of ACO became negatively charged and it started to repel anions, thus 

resulting in smaller uptake values. 

 

To investigate the rate-controlling step for the sorption processes, four different kinetic 

models were studied. These models were pseudo-first-order equation (Equation 4.4) 

[122], the pseudo-second-order equation (Equation 4.5) [189], the Elovich equation 

(Equation 4.6) [190] and intraparticle diffusion (Equation 4.7) [127]. The linear 

mathematical forms of kinetics equations used are shown below: 

 

                                       ( ) ( ) tkqqq ete 303.2
loglog 1−=−           (4.4) 

 

                                       
eet q
t

qkq
t

+= 2
2

1
             (4.5) 

 

                                        ( ) ( )tqt ln1ln1
β

αβ
β

+=                 (4.6) 

 

                                       Ctkqt += 5.0
int                          (4.7) 
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where qt is the amount of adsorbed contaminant (mg/g) at time t, qe is the maximum 

adsorption capacity (mg/g) for the pseudo-first-order adsorption and pseudo-second-

order adsorption, k1 is the pseudo-first-order rate constant for the adsorption process 

(1/min), k2 is the pseudo-second-order rate constant (g/mg min), constant α (mg/g min) 

is the initial adsorption rate, β (g/mg) is related to surface coverage, and kint is the 

constant for the particle diffusion rate (mg/g min1/2). The sorption modeling parameters 

are summarized in Table 4.4. 

 

 
 

Figure 4.6. Kinetic profile and pseudo-second-order model fit of As(V) onto (a) AC-

9min, and (b) ACO-9min (initial concentration = 5.0 mg/L, pH = 7.0, S:L = 750 mg/L). 
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Table 4.4. The kinetic sorption modelling parameters of As(V) on AC-9min 

and ACO-9min. 

Model Parameters AC-9min ACO-9min 

Pseudo-first-order k1 (1/min) 0.0025 0.0007 

 qe1 (mg/g) 0.016 0.007 

 R2 0.959 0.610 

Pseudo-second-

order 
k2 (g/mg min) 0.677 1.177 

 qe2 (mg/g) 6.50 6.51 

 R2 0.999 0.999 

Elovich equation β (g/mg) 294.118 714.286 

 α (mg/g min) - - 

 R2 0.958 0.464 

Intraparticle 

diffusion 
k1 int (mg/g min1/2) 0.0015 0.0012 

 R1
2 0.975 0.939 

 
K2 int (mg/g 

min1/2) 
0.00026 0.00002 

   R2
2 0.996 0.997 

 

The pseudo-second-order model appeared to be the best-fitting model for the removal of 

As(V) for the highest R2 values (Table 4.4, Figure 4.6). This good fit with the pseudo-

second-order model suggested that chemical adsorption is the rate limiting step on iron 

deposited AC and ACO [189] and the adsorption rates were proportional with the 

square of the number of sites on the adsorbent surface. Profile of ACO-9 min did not fit 

pseudo-first-order or Elovich model. On the other hand, profile of AC-9 min also fitted 

to these models with a little smaller R2 values. Also in literature, with similar structures, 

pseudo-second-order model was suggested for As(V) adsorption [183].  

 

For the aim of comparison, kinetic data were also evaluated using the intraparticle 

diffusion equation. The intraparticle diffusion can be considered as the rate-determining 

step, if the linearized curve passes through the origin (0, 0). Actually, the obtained R2 

values were high for pseudo-second-order model, and the results of fitting did not pass 

through the origin (0, 0) but very close to it. Therefore, it could be considered that 
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intraparticle diffusion might have some contribution. In Table 4.4 and Figure 4.7 

intraparticle diffusion parameters and model fit are shown. A plot of qe vs. t0.5 showed 

two separate regions with different slopes. Region I of the plot reflects film diffusion 

while region II, which illustrates a less steep slope, stands for the diffusion within the 

adsorbent. In fact, parameters for these models were too small because of almost 

instantaneous adsorption. However, they could still be interpreted. As can be seen from 

Figure 4.7, the diffusivities in film were same for both of the samples. This result was 

expected since both of the materials were similarly synthesized iron oxide particles. 

After being diffused through the film, for ACO-9min, diffusion ended at region II. This 

might suggest that all of adsorption has occurred at the surface of particle but not in the 

particle because of high uptake amount and thin iron oxide layer. Conversely, since AC-

9 min had large aggregates of iron oxide, thus intraparticle diffusion could be observed. 

 

 
 

Figure 4.7. Intraparticle diffusion model fit of As(V) onto AC-9min, and ACO-9min 

(initial concentration = 5.0 mg/L, pH = 7.0, S:L = 750 mg/L) 
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4.3.7. Effect of solution pH 
 
 

The As(V) uptake onto iron oxide deposited supports for an initial concentrations of 5.0 

mg/L within a pH range of 3.0–8.0 are shown in Figure 4.8. The pH was an important 

parameter, which had an effect on surface properties of adsorbent. At pH was close to 

4.0, uptake was 41.54 %. Moreover, with increasing pH, uptake amount decreased and 

the uptake value was close to zero at pH 7.7. According to Zhang et al. [188], point of 

zero charge pH of ACO is 5.1, so at pH values greater than that, no significant 

adsorption is expected. Also Luo et al.’s study shows that at pH values lower than 4.0 

As(V) is in the form of H3AsO4 [191]. This means that no attraction will occur at pH 

values lower than 4.0. On the contrary, AC uptake capacity was relatively inferior. 

From pH 3.0 to 8.0, uptake amount increased slightly from 0.42 to 0.56 mg/g (not 

shown in figure). After deposition with iron oxide, AC-9 min and ACO-9 min 

responded similarly to changing pH. From pH 4.0, with increasing pH value, the As(V) 

uptake increased. For AC-9 min maximum percentage of 99.96% was reached at pH 5.8 

and for ACO-9min, uptake of 99.97% was obtained at 6.2. Similar findings were also 

reported in literature [192, 193]. Iron oxide has a zero point of charge pH of 8.5 [194]. 

This means that iron oxide deposited materials’ surface charge is positive below that 

point. Because of that, adsorption is expected to occur below that point. In addition to 

that, at the pH range of 4.0 to 9.0, As(V)’s structure changes from H2AsO4
- to HAsO4

-2 

[191]. According to that, with increasing pH, adsorption and electrostatic attraction 

between arsenate and iron oxide should increase until pH 8.5. This also the situation 

happened in our case.    

 

Variations of pHfinal against pHinitial of batch experiments for As(V) sorption are also 

illustrated in Figure 4.8. For adsorption on ACO, it has been seen that the solution 

pHfinal was greater than pHinitial. This was likely due to the uptake of H+ ions by the 

oxidized solid surface at the studied pH range. On the other hand, for iron deposited 

samples, pHfinal was lower than pHinitial. Which means that, during adsorption, positively 

charged surface starts to release H+ ions. 
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Figure 4.8. Adsorption of As(V) as a function of pH and by pHfinal versus pHinitial for (a) 

AC0, (b) ACO-9min, and (c) AC-9min (initial concentration = 5.0 mg/L, S:L = 750 

mg/L, contact time = 24 h) 
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4.4. Concluding Remarks 

 

In the present chapter, iron oxide nanoparticles were deposited on to activated carbon 

with a new technique and showed very promising results. Moreover, this material can 

also find its place in catalysis area. Iron oxide nanoparticles could be deposited 

uniformly on activated carbon support rapidly with high loadings with microwave 

hydrothermal treatment. XRD analyses revealed that not only α–Fe2O3, but also β-

FeOOH particles could be generated with the adjustment of heating duration. With this 

method, about 20% of iron loading was obtained in less than 9 minutes. Uniformity and 

amount of iron oxide could be adjusted with surface oxidation and duration of 

microwave heating. However, adsorption isotherms and porous texture studies indicated 

that, available sites started to disappear at extended times of heating due to 

agglomeration of iron oxide particles on the surface. Nevertheless, for ACO, high 

As(V) uptake value like 27.78 mg/g was obtained and 99.90% of uptake was reached 

within 5 minutes of batch adsorption process. With adsorption isotherm and kinetic 

studies, it was understood that As(V) adsorption onto iron oxide deposited AC and 

ACO fits Langmuir and pseudo-second order models. High As(V) uptakes were 

obtained in the range of pH 6.0-8.0. The high As(V) adsorption performance, especially 

at pH 7.0, makes the material a good candidate for water treatment processes.  
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CHAPTER 5 
 

SYNTHESIS AND CHARACTERIZATION OF ANATASE NANOADSORBENT 

AND APPLICATION IN REMOVAL OF LEAD, COPPER AND ARSENIC 

FROM WATER 

 
 
 
 

5.1. Background 

 
 
 

Lead, copper, and arsenic are well-known inorganic contaminants in drinking water 

[195]. Arsenic is introduced into environment by geochemical reactions, natural 

weathering reaction, mining activities, industrial wastes and volcanic emissions [9]. 

However, the primary sources of lead and copper are the corrosion of pipes, faucets, 

household plumbing systems, mining, smelting and battery manufacturing [196, 197]. 

Especially, the accumulation of arsenic, lead, and copper in the body may reach toxic 

levels. Long-term consumption of even low levels of arsenic could be dangerous as it 

can result in lung, skin, liver, bladder, and kidney cancers [198, 199]. Similarly, lead 

poisoning in human causes severe harm to the kidney, nervous system, liver and brain. 

Moreover, chronic exposure to lead has been correlated with sterility, abortion, 

stillbirths and neo-natal deaths [200].  Although copper is one of the essential nutrients 

for good health, an excess of the metal can cause Wilson’s disease [201]. The current 

allowable maximum contamination level (MCL) of lead, arsenic, and copper in drinking 

water as set by the United States Environmental Protection Agency (U.S. EPA) are 15 

parts per billion (ppb), 10 ppb, and 1.3 parts per million (ppm), respectively [202]. 
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The most common methods, which have been proposed to remove arsenic and heavy 

metal ions from an aqueous medium, contain solvent extraction, ultra-filtration, reverse 

osmosis, chemical precipitation, nanofiltration, ion exchange and adsorption [16, 97, 

203]. Among these methods, adsorption is the most preferred method since it is highly 

efficient technique with particularly low operational cost and widely applicable range of 

adsorbents. The materials that are extensively used for the removal of arsenic, lead, and 

copper from water may comprise activated carbon, ion-exchange resins, red mud, 

activated alumina, biomass, chitosan, and carbon nanotubes [204-209]. 

 

The use of nanoparticles in water treatment has received a substantial interest due to 

their high specific surface area, mobility, and activity [210, 211].  Remarkably, titanium 

dioxide (TiO2), which has many properties such as non-toxicity, relative cheapness and 

hydrophilicity, is becoming a new class of adsorbent material in the removal of organic 

and inorganic pollutants from water [31, 212].  Previous studies interpreted arsenic and 

heavy metals adsorption onto commercial TiO2 containing both rutile and anatase 

crystalline forms of TiO2 [213]. Anatase crystalline form of TiO2 is well known as a 

matter with a high photocatalytic activity due to its strong oxidizing power and 

favorable band gap energy. As anatase is illuminated, electrons and holes are generated 

and various chemical redox reactions are initiated due to the migration of those pairs to 

the anatase surface [214]. The electrons placed on the surface can promote the hydroxyl 

formation at the interface between surface and water [215]. Then, the formation of 

hydroxyl groups can increase the adsorption rate of metals from water. Moreover, the 

inherent capability of TiO2 to convert As(III) to As(V) by photo-oxidation can provide 

an extra advantage [213]. Considering these properties, anatase crystalline type of TiO2 

can be used as sorbent material for the removal of contaminants from water. 

 

This chapter presented a successful synthesis of anatase nanoadsorbent, and 

demonstrated fast and effective Pb(II), Cu(II) and As(III) removal from synthetically 

polluted water with the utilization of the nanoadsorbent. To the best of our knowledge, 

this is a comprehensive work about the assessment of the synthesized phase pure 

anatase nanoadsorbent for the removal Pb(II), Cu(II) and As(III) considering kinetics, 

equilibrium and thermodynamic properties. 
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5.2. Materials and Methods 
 
 
 

5.2.1. Synthesis of Anatase Nanoadsorbent 
 
 

Anatase nanoadsorbent was synthesized by sol-gel method at low temperature using 

titanium tetraisopropoxide (TTIP) (C12H28O4Ti, 97%). A metal organic solution was 

prepared by mixing TTIP (10 mL) with 30 mL of 2-propanol (C3H8O, 99%) in a 250 

mL flask and was kept stirring for 5 min under air. Secondly, the mixture of distilled 

water and 2-propanol was prepared separately with a volume ratio of 1:2. Afterwards, 

the metal organic solution was slowly added to the vigorous stirred second solution. 

After completion of the addition, the mixture was continued to mix for 2 h at 40oC. The 

sample was dried for several hours at 100˚C and annealed at 400oC for 3 h. 

 
 
 
5.2.2. Characterization 
 
 

X- ray diffraction (XRD) measurement was done with a Brukeraxs advance powder 

diffractometer fitted with a Siemens X-ray gun and equipped with Brukeraxs Diffrac 

PLUS software. The sample was swept from 2θ = 10o through to 70o. The X-ray 

generator was set to 40kV at 40 mA. Raman spectrum was obtained from an InVia 

Reflex Raman microscope and spectrometer using a 532 nm diode laser excitation. Leo 

Supra 35VP field emission scanning electron microscope, Leo 32 and electron 

dispersive spectrometer software was used for images and analysis. Imaging was 

generally done at 2-5 keV accelerating voltage, using the secondary electron and in lens 

imaging techniques. The XPS measurements were performed using a Thermo K-alpha 

X-ray photoelectron spectrometer with a monochromated Al Kα radiation and a 

combined low-energy electron/ion flood gun for charge neutralization. The binding 

energy scale for final calibration was corrected by C1s peak to 285.0 eV. 
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5.2.3. Batch Adsorption Experiments 
 
 

The stock solutions containing 1000 mg/L of each lead and copper were prepared 

separately by dissolving 1.599 g Pb(NO3)2 (99.9%) and  2.9515 g Cu(NO3)2 (99.9%) in 

1 L of deionized water. On the other hand, a standard arsenic solution (1000 mg/L) was 

prepared by dissolving 1.320 g As(III) (As2O3, 99.9%) in 10 mL 5% (w/v) NaOH and 

making up to 1 L with deionized water. Batch adsorption experiments were carried out 

in 100 mL flasks, each containing 30 mL Pb(II), Cu(II) or As(III) ions solutions with 

appropriate concentrations. After the addition of 0.015 g of anatase nanoadsorbent each, 

the bottles were shaken in a controlled incubator shaker at 150-rpm and 25oC for 24 

hours. The kinetic experiment were carried out at different time intervals (5 minutes to 

36 hours) in an initial metal ion concentrations of 10 mg/L Pb(II), Cu(II), and As(III) in 

the solution at pH 6.0. Several initial concentrations ranging from 0.1 to 20 mg/L initial 

Pb(II), Cu(II), and As(III) of homogenous aqueous solutions were used for equilibrium 

studies at fixed pH 6.0 for 12 h. The effect of pH on the adsorptions were studied by 

using separately prepared 10 mg/L of Pb(II), Cu(II), and As(III) solutions in a pH range 

of 3.0-9.0 at 25oC. In the effect of temperature on Pb(II), Cu(II), and As(III) 

adsorptions, the temperatures were controlled to 298 K, 308 K and 318 K, respectively. 

At the end of each experiment the solution was separated from the solid adsorbent by 

using 0.45 µm PVDF membrane filter. Pb(II), Cu(II), and As(III) concentrations of the 

solutions were measured with a Varian, Vista-Pro CCD simultaneous inductively 

coupled plasma ICP-OES spectrophotometer. Samples before and after adsorption 

experiments were analyzed to obtain residual adsorbate ion concentrations. The blank 

experiments including different adsorbate concentrations were performed in the absence 

of the adsorbent to verify that no chemical precipitation occurred in the batch 

adsorption studies. In order to test the reproducibility, the experiments were carried in 

triplicate and average results were reported. 
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5.3. Result and Discussion 

 
 
 

5.3.1. Characterization of the Nanoadsorbent 
 
 

Figure 5.1 showed that XRD pattern of the anatase nanoadsorbent obtained by sol-gel 

synthesis. The characteristic diffraction peaks were indexed at 2θ of 25.2o (101), 37.8o 

(004), 48.0o (200), 54.8o (211), and 62.6o (220) planes of anatase phase of TiO2, 

respectively [216]. No other irrelevant peaks were observed indicating the sample was 

pure in anatase phase. The average size of the anatase crystallite was calculated by 

applying the Debye-Scherrer formula [217] to the main anatase (101) peak in XRD 

spectrum and the average crystallite size was found to be 7.97 nm.  

 

 
Figure 5.1. XRD pattern of the synthesized anatase nanoadsorbent. 

 

Raman spectroscopy provides a rapid way of obtaining the surface crystal structure of 

the TiO2. The Raman spectrum of the adsorbent material used in here was shown in 

Figure 5.2, with the characteristic Raman lines giving evidence for the crystalline type 

of anatase rather than rutile and brookite. Anatase has six Raman active modes (A1g + 

2B1g + 3Eg) and the Raman lines observed at 152.0 cm−1, 399.0 cm−1, 516.0 cm−1, and 
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635.0 cm−1 assigned to the Eg, B1g, A1g, and Eg vibrational modes of anatase, 

respectively [212, 217]. The conclusion obtained from Raman spectra of sample was 

consistent with the XRD result indicated in Figure 5.1. 

 

 
Figure 5.2. Raman spectra of the synthesized anatase nanoadsorbent. 

The SEM (Figure 5.3) micrographs clearly indicated spherical morphology. The anatase 

nanoadsorbent was composed of spherical particles that were 20-60 nm in diameter. 

The observed particle sizes in SEM were found to be larger than the crystallite size 

calculated from the XRD line broadening due to agglomeration of the primary particles 

after the calcination. Similar finding was also found in previous works [218]. 
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Figure 5.3. SEM image of (in lens detector) the synthesized anatase nanoadsorbent. 

XPS, a highly surface selective technique, can provide quantitative chemical 

information as well as oxidation and structural environment of elements except 

hydrogen and helium. A typical wide scan XPS survey spectrum of the anatase 

nanoadsorbent was shown in Figure 5.4a and the distinct photoelectron peaks were 

observed for Ti2p and O1s peaks of the titanium dioxide. The total surface 

concentrations of Ti, O and C were 30.3, 62.3, and 7.4 at%, respectively. The titanium 

to oxygen ratio was 0.49:1, which is close to that expected from the stoichiometry of 

TiO2.  A C1s peak was seen due to the deposition of adventitious hydrocarbon on the 

surface of sample from the pumps evacuating the analysis chamber [212]. The Ti2p and 

O1s narrow scans were illustrated in Figure 5.4b and Figure 5.4c. The Ti2p1/2 and 

Ti2p3/2 peaks were observed at 458.7 and 464.4 eV with a split of 5.7 eV between the 

doublets, indicating that Ti exists in the Ti4+ form [219] The O1s XPS spectra 

demonstrated at least two O chemical states according to the binding energy range of 

530.0-531.2 eV. The main contribution was attributed to Ti-O in the nanoadsorbent. 

The other minor peak was assigned to the OH groups presented on the surface of 

nanoadsorbent. The difference between the binding energies of the assigned oxide (O2-) 

and hydroxyl (OH) species was 1.2 eV, which is close to reported differences of 1.5-1.9 

eV in the literature [220]. 
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Figure 5.4. XPS spectra of (a) survey scan, (b) Ti2p, (c) O1s of anatase nanoadsorbent 

surface at pH 6.0. 
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5.3.2. Kinetic Studies and Mathematical Modeling 
 
 

The kinetic profiles of Pb(II), Cu(II), and As(III) adsorption at pH 6.0 were illustrated 

in Figure 5.5. It was noted that at the beginning of the experiment the adsorption 

percentages of arsenic and heavy metal ions increased remarkably and then reached 

equilibrium. As can be seen in Figure 5.5a, there was a substantial increase in the 

As(III) adsorption percentage when contact time was increased from 5 to 180 min and 

the maximum As(III) uptake was obtained at 480 min of contact. On the other hand, 

Figure 5.5b and Figure 5.5c indicated the rapid adsorptions of Pb(II) and Cu(II) ions 

within the first 5 min of contact time because of the high affinity to the sorption sites. 

The fast adsorption trend at initial stage is mostly observed phenomenon in the removal 

of contaminants from water and it is most likely caused reactive chemical groups 

readily presented on the surface [221]. After initial fast reactions of adsorbate ions with 

the nanoparticles, the slower reactions were observed especially in the cases of removal 

of Cu(II) and As(III). Such biphasic behavior was likely resulted from the variety of 

reactive sorption sites and/or the diffusion of adsorbate ions on the surface for seeking 

available sites [222]. 

 

In order to investigate the rate-controlling step for the sorption processes, four kinetic 

models were studied by applying the experimental sorption data to the pseudo-first-

order equation (Equation 5.1) [122], the pseudu-second-order equation (Equation 5.2)  

[189], the Elovich equation (Equation 5.3) [190] and intraparticle diffusion (Equation 

5.4) [127]. The linear mathematical forms of kinetics equations used are shown below: 
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where, qt is the amount of adsorbed contaminant (mg/g) at time t, qe is the maximum 

adsorption capacity (mg/g) for the pseudo-first-order adsorption and pseudo-second-

order adsorption, k1 is the pseudo-first-order rate constant for the adsorption process 

(1/min), k2 is the pseudo-second-order rate constant (g/mg.min), constant α 

(mg/(g.min)) is the initial adsorption rate, β (g/mg) is related to surface coverage, and 

kint is the constant for the particle diffusion rate (mg/g.min1/2 ). The fitting ability of 

kinetic and adsorption models were analyzed according to the average percent error 

(APE) given in below: 

 

                                          
1001 exp

exp

x
N
q
qq

APE

n

i

cal∑
=

−

=
                                               (5.5) 

 

where N is the number of data points. The subscripts “exp” and “calc” show the 

experimental and calculated values. Error function was employed in this study to find 

out the most suitable isotherm model to represent the experimental data. The APE 

minimizes the fractional error distribution across the entire concentration range [223]. 

Small values of APE represent better fits of the model to the data. The sorption 

modeling parameters and APE values were summarized in Table 5.1.  
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Figure 5.5. Kinetic modeling of sorption of (a) As(III), (b) Pb(II), and (c) Cu(II) onto 

synthesized anatase nanoparticles [Temperature = 25oC,  pH =  6.0,  S:L = 500 mg/L]. 
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Table 5.1. The kinetic sorption modelling parameters of Pb, Cu, and As on the anatase 

nanoparticles at pH 6.0. 

 

The pseuodo second order model appeared to be the better-fitting model for the removal 

of Pb(II), Cu(II), and As(III) because it has the highest R2 (0.999, 0.999, 0.998) and 

lower APE (2.605, 1.139, 5.178) values. Good agreements with the pseudo-second-

order model suggested that chemical adsorption was the rate-limiting step [189] and the 

adsorption rates were proportional to the square of the number of sites on the adsorbent 

Model Parameters Pb(II) 
Cu(II

) 
As(III) 

Pseudo First 

Order 

k1(1/min) 0.001 0.001   .0.003 

qe1(mg/g) 1.198 8.356    3.119 

R2 0.539 0.493 0.646 

APE 98.17 97.98 64.29 

Pseudo 

Second 

Order 

k2(g/mg.min) 0.021 0.027 0.005 

qe2(mg/g) 15.79 12.53 9.980 

R2 0.999 0.999 0.998 

APE 2.605 1.139 5.178 

 

Elovich 

Equation 

β (g/mg) 2.306 1.840 0.911 

α (mg/g.min) 4506 1289 13.16 

R2 0.917 0.986 0.939 

APE 0.002 0.104 0.452 

 

Intraparticle 

Diffusion 

         kint(mg/g.min1/2) 22.04 27.58 55.20 

R2 0.986 0.919 0.990 

APE 0.001 0.080 0.069 
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surface. On the other hand, the higher R2 values found in the Elovich model for Cu(II) 

and As(III) indicated that the adsorbing surface was heterogonous and therefore 

exhibited different activation energies for chemisorption. The constant α is related to the 

rate of chemisorption [223] and higher value for α was obtained for Cu(II) indicating a 

fast kinetic process. For comparison purposes, kinetic data were also evaluated using 

the intraparticle diffusion equation. The intraparticle diffusion can be considered as the 

rate-determining step, if the linearized curve passes through the origin (0, 0). Although, 

the obtained R2 values were comparably high with the pseudo-second-order model for 

all three absorbates, the results of fitting did not pass through the origin (0, 0) 

interpreting that intraparticle diffusion was not the rate-determining step in the 

adsorption processes. Such a finding was similar to that made in previous works on 

adsorption [224]. Moreover, due to the apparent lack of linear behavior, the pseudo-

first-order, which considers specifically single class of sorbing sites, was not suitable to 

describe the kinetic profiles. According to the results in Table 5.1 obtained from the 

above kinetic studies and based on the R2 and APE values considering the entire contact 

time for the three contaminants, it can be concluded that the pseudo-second-order and 

Elovich models best explained the Cu(II) and As(III) adsorption kinetics, whereas the 

pseudo-second-order model described the Pb(II) adsorption kinetics. Furthermore, the 

experimental data indicated better agreement for models that describe adsorption to 

heterogeneous surfaces except for Pb(II)  adsorption. 

 
 
 
5.3.3. Adsorption Isotherms 
 
 

The Pb(II), Cu(II), and As(III) sorption studies onto the nanoparticles were investigated 

by varying the initial sorbate concentrations ranging from 0.1 to 20 mg/L at pH 6.0. The 

nonlinear Pb(II), Cu(II), and As(III) adsorption isotherms were given for the anatase 

nanoparticles in Figure 6. The maximum adsorption capacities were found 31.25 mg/g 

for Pb(II), 23.74  mg/g for Cu(II), and 16.95 mg/g for As(III). In order to investigate 

adsorption performance, Langmuir [130], Freundlich [225], Redlich-Peterson [226], and 

Sips (Langmuir-Freundlich) [182] isotherm models were utilized. The calculated 

isotherm parameters of all four models were summarized in Table 5.2. Langmuir model 

assumes that single specie of the sorbate adsorbs on specific homogenous adsorption 
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sites within the sorbent by forming monolayer coverage. However, Freundlich model is 

derived considering a theory of the heterogeneous adsorption sites and interactions 

[130, 225]. Langmuir (Equation 5.7) and Freundlich (Equation 5.8) isotherms can be 

expressed by the following equations:  

 

                                                                                                             (5.7) 

 

                                                                                                                 (5.8) 

 

where qe is the solute amount adsorbed per unit weight of adsorbent (mg/g), Ce is liquid 

phase sorbate concentration in equilibrium, qmon is the monolayer adsorption capacity 

(mg/g), KF indicates the adsorbent’s relative adsorption capacity (mg/g), 1/n is the 

constant representing adsorption intensity and b is the adsorption equilibrium constant 

(L/mg) related to adsorption enthalpy (bαexp-ΔH/RT).  

 

The Redlich-Peterson isotherm model, which can be applied in either homogeneous or 

heterogeneous systems due to its versatility, can be described as follows:  
 

                                                      
RP

eRP

eRP
e Ca

CKq β+
=
1                                                     (5.9) 

 

where KRP is Redlich-Peterson isotherm constant (L/g), aRP is Redlich-Peterson 

isotherm constant (L/mg) β
RP and βRP is the exponent which lies between 0 and 1. The 

βRP parameter (dimensionless) represents the heterogeneity of the binding surface. If βRP 

tends to unity Redlich–Peterson model results in Langmuir model. When βRP tends to 

zero Redlich–Peterson model represents Henry law . The Sips isotherm model, which is 

combined form of Langmuir and Freundlich equations, possesses a finite saturation 

limit when the initial sorbate concentration is sufficiently high. The nonlinear form of 

Sips sorption isotherm is: 

                                                                                                      (5.10) 

 

qe =
qmonb Ce

1+ b Ce

qe = KFCe
1/n
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KLFCe
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nLF



 86 

where KLF, aLF, and nLF are the Sips isotherm constant. The difference between this 

equation and Langmuir equation is the additional nLF parameter in the Sips equation. If 

nLF parameter is unity, the equation effectively reduces to the Langmuir equation 

appropriate for ideal surfaces. On the other hand, the deviation further away from unity 

indicates heterogeneity of the system. 

 

Considering the APE error percentages and R2 values, the adsorption isotherm behavior 

of Pb(II) was better fitted to Sips isotherm, followed by Langmuir isotherm. The 

calculated nLF value was found to close to unity, therefore, the Langmuir model 

successfully explained the adsorption of Pb(II) ions onto the nanoparticles. 

Additionally, the suitability of Langmuir isotherm model to the Pb(II) sorption data was 

also supported by the obtained dimensionless parameter value in Redlich-Peterson, 

which was also close to unity. On the other hand, the deviation of nLF parameter further 

away from unity indicates heterogeneity of the system. This was the case of adsorption 

of Cu(II), which fitted better to the Freundlich model, followed by the Sips model. 

However, the system heterogeneity might be resulted from the sorbate or sorbent or a 

combination of both. Moreover it can be seen that As(III) fitted better to the Langmuir 

isotherm model followed by Redlich-Peterson isotherm model according to R2 values. 

However, Langmuir model with the high APE error reduced the applicability of model 

to the experimental data. Therefore, the lower APE error in between experimental and 

calculated data was required to obtain the appropriate evaluation for the adsorption of 

As(III). As can be seen in Table 5.2, the Freundlich and Redlich-Peterson isotherm 

models indicated a good agreement according to APE error percentages. The Redlich-

Peterson isotherm equation reduced to Freundlich isotherm equation since the 

calculated aRP value for As(III) adsorption was large enough. It can be concluded that 

the Langmuir model was more suitable for Pb(II) uptake supported with lower APE and 

higher R2 value, in contrast the higher correlation between experimental and calculated 

adsorption data of Cu(II) and As(III) were observed in Freundlich isotherm model. 

Moreover, the KF values achieved from the Freundlich model were 9.948 mg/g for 

Cu(II) and 8.729 mg/g for As(III), suggesting higher binding affinity of Cu(II) as 

compared to As(III).  
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Figure 5.6. Adsorption isotherm of (a) As(III), (b) Pb(II), and C) Cu(II)  adsorbed by 

synthesized anatase nanoparticles [Initial concentration = 0.3–20  mg/L, Temperature = 

25oC,  pH =  6.0,  S:L = 500 mg/L]. 
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Table 5.2. Langmuir, Freundlich, Redlich_Peterson, and Sips, isotherm parameters for 

Pb(II), Cu(II), and As(III) removal on the anatase nanoparticles 

 

Isotherm 

Parameters 
Pb(II) Cu(II) As(III) 

qexp(mg/g) 31.25 23.74  16.95 

Langmuir     

qmon(mg/g) 31.05 23.09 16.83 
b(L/mg) 13.42 1.968 3.644 

R2 0.999 0.929 0.986 

APE 0.696 36.98  39.62 
Freundlich    

KF (mg/g) 30.17 9.948 8.729 
1/n 0.539 0.379 0.354 

R2 0.836 0.989 0.951 

APE 26.39 1.139 5.393 
Redlich-Peterson    

KRP(L/g) 90.09 3.966 2.490 

aRP (L/mg)βRP 25.31 0.280 277.1 

βRP 0.876 0.331 0.743 

R2 0.995 0.968 0.981 
APE 0.701 63.75 7.051 

Sips     

KLF(L/g) 31.94 25.71 21.99 

aLF(L/mg) 9.859 1.192 1.244 

nLF 0.950 0.592 0.588 
R2 0.999 0.987 0.965 

APE 0.014 3.377 25.43 
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5.3.4. Adsorption Thermodynamics 

 

In order to analyze the effect of temperature, experiments were carried out at 

temperatures of 25, 35, and 45°C and the following equations were used to calculate the 

thermodynamic parameters: 

 

                                                                                                                     (5.11) 

 

                                                cKRTG ln−=Δ                                                            
(5.12) 

 

                                                RT
H

R
SKc

Δ
−

Δ
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                                                        (5.13) 

 

where Kc is an equilibrium constant between the adsorbed equilibrium concentration 

and the aqueous equilibrium concentration (L/g). Furthermore, ΔH (kJ/ mol) and ΔS 

(kJ/mol K), which are the variation of enthalpy and entropy, were calculated (Table 5.3) 

from the slope and the intercept of lnKC versus 1/T graphs. 

 

Table 5.3. Thermodynamic parameters for Pb(II), Cu(II), and As(III) sorption on the 

anatase nanoparticles 

 

 
oC 

Pb(II) Cu(II) As(III) 

25 35 45 25 35 45 25 35 45 

ΔG  

(kJ/mol) -14.4 -17.9 -21.5 -6.56 -9.54 -12.5 -4.63 -4.08 -3.53 

ΔH 

 (kJ/mol) 91.76 19.36 -21.20 

ΔS 

(kJ/mol.K) 0.356 0.117 -0.055 

 

 

Kc =
qe
Ce
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It has been stated that the value of ΔG found below 8 kJ/mol is consistent with a 

physical adsorption involving electrostatic interaction between adsorption sites and the 

adsorbate ion. Moreover, it has been noted that if the value of ΔG is in between 8 and 

16 kJ/mol, the adsorption proceeds via a chemical ion exchange mechanism. The more 

negative ΔG values imply chemisorption mechanism by forming stable complexes on 

the adsorbent surface [227]. According to the results presented in Table 5.3, the values 

of ΔG for Pb(II) were found to range from -14.4 to -21.5 kJ/mol suggesting chemical 

adsorption as major mechanism responsible for the adsorption process. In the case of 

Cu(II) adsorption, the most probable type of reaction would be ion-exchange according 

to the values of ΔG. Furthermore, the calculated ΔS values were positive and the 

favorable Gibbs energies were entropically controlled since the adsorptions of Pb(II) 

and Cu(II) were endothermic signifying the decrease in uptake capacity by increasing 

the temperature. Due to increase in the randomness of the system at the adsorbate-

adsorbent interface, the positive values for ΔS were observed for Pb(II) and Cu(II) 

together with the structural change during the adsorption process. In the case of As(III), 

physical adsorption might be the main mechanism since the calculated ΔG values were 

in the range of electrostatic interactions. Especially, the negative ΔH value of As(III)  

might be suggested that the physical adsorption was the leading mechanism of the 

adsorption. 

 

The negative ΔG values were obtained for Cu(II), Pb(II), and As(III) adsorptions on the 

adsorbent by confirming the feasibility of the adsorption processes and the spontaneous 

nature of adsorptions. Moreover, the numerical values of 1/n which is calculated from 

the linearized form of Freundlich model was found between 0 and 1, indicated 

beneficial adsorptions [211]. In addition to that, from the adsorption equilibrium 

constant in Langmuir model, the dimensionless separation factor (RL), which was the 

indicative of the isotherm shape, could be obtained by using the following equation: 

 

                                                                                                            (5.14)       

                                               

where, Co is the initial absorbate concentration (mg/L). The value of RL demonstrates 

the nature of adsorption as unfavorable (RL > 1), linear (RL = 1), favorable (0 < RL < 1) 

and irreversible (RL = 0) [207]. The RL were found to be 0.427 to 0.0037 for Pb(II), 

RL =
1

1+ b Co
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0.8356 to 0.0248 for Cu(II) and 0.4777 to 0.01353 respectively for As(III) indicating 

irreversible adsorptions of the sorbates on the anatase nanoadsorbent with the increase 

of initial sorbate concentration.    

 
 
 
5.3.5. Effect of Solution pH 
 
 

The uptakes of Pb(II), Cu(II), and As(III) onto the anatase nanoparticles for an initial 

concentrations of 10 mg/L within a pH range of 3.0-9.0 were shown in Figure 5.7a. The 

pH is a significant parameter for determining the adsorption between the adsorbent and 

aqueous interface. At pH 3.0, the adsorption percentages of the nanoadsorbent to Pb(II), 

Cu(II), and As(III) were 29.73%, 1.15%, and 51.76%, respectively. From pH 3.0 to 8.0, 

the uptake percentages of contaminants increased, 97.41% of Pb(II), 62.57% of Cu(II) 

and 49.29% of As(III) were removed at pH 6.0. Similar findings were also found in 

literature [208, 211, 215]. Compare to Pb(II) and Cu(II), the effect of pH on As(III) 

sorption on the anatase nanoadsorbent was nearly negligible in the pH range of 3.0-8.0 

[213]. 

 

According to surface complex formation theory (SCF), the increase in the pH value 

leads to the decrease in the competition between proton and metal ions for the 

adsorption sites [228]. At acidic pH conditions surface of the anatase nanoparticles was 

mostly covered with positively charged surface groups, leading to more coulombic 

repulsion of the metal ions. Additionally, at lower pH values heavy metal ions possibly 

found less chance to form a complex with the adsorbent material due to the competition 

with hydrogen and heavy metal ions for the sorption sites. At higher pH values, the 

surface of adsorbent was covered with more negative charges and more sorption sites 

were available to attract the heavy metal ions. However, Pb(II) and Cu(II) ions could 

begin to precipitate as Pb(OH)2 and Cu(OH)2 at pH>6.0. In the case of As(III) 

adsorption, the amount of negatively charged As(III) increased when the pH value was 

shifted to higher pH values [213]. Therefore, at higher pH value was not suitable for 

efficient As(III) adsorption onto the nanoparticles. At pH values from 3.0 to 8.0, the 

neutral As(III) species mostly existed and the interaction of neutral species with some 

hydroxyl groups presented on the surface of the nanoparticle could be observed [229]. 
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Variations of pHf  against pHi of batch experiments for Pb(II), Cu(II), and As(III) 

sorptions were illustrated Figure 5.7b. For As(III) adsorption, it has been seen that the 

solution pHf  was greater than the pHi in the range of 3.0–8.0. However, after that, the 

final pH of the solution was decreased during sorption of As(III) by anatase 

nanoadsorbent. This was likely due to the uptake of H+ ions by the solid surface at pHi 

ranging from 3.0 to 8.0. In addition to that, the lowering of pHf than pHi can be ascribed 

by the releasing H+ ions. In the case of Pb(II) and Cu(II) adsorption, the pHf  were 

higher than pHi until pH 5.0. However, the decrease in final pH values were observed 

due to liberating H+ ions after the reaction between the heavy metal ions with anatase 

nanoadsorbent. 
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Figure 5.7.  (a) Adsorption of 10 mg/L Pb(II), Cu(II), and As(III) as a function of pH 

by 500 mg/L synthesized anatase nanoparticles 25 °C (b) pHfinal versus pHinitial during 

the adsorption. 
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5.3.6. Proposed Binding Mechanism 
 
 

The binding mechanisms of Pb(II), Cu(II), and As(III) to the anatase nanoparticles were 

mainly depended on the type of active sites on the surface of adsorbent and the 

concentrations of the produced sorbate species at measured pH value. In literature, the 

point of zero charge (pzc) for the anatase nanoparticles was approximately found in 

between 5.9-6.9 [230]. The anatase nanoparticles are composed of the mixture of 

positively charged TiOH2
+ and neutral species of TiOH0 when pH is below. However, 

the primary species of the nanoparticles include the neutral species of TiOH0 and the 

negatively charged TiO- when pH is above pHpzc [143, 213]. Therefore, the surface of 

nanoparticles mostly covered with the neutral TiOH0 and negatively charged TiO- at pH 

6.0. Bonato et al. presented experimental study in order to determine the active lead 

species in aqueous solution as a function of pH. In aqueous solution at pH < 10, the 

main lead species were Pb2+, PbOH+ and Pb3(OH)4
2+. Additionally, the anionic 

Pb(OH)3
− was only found under alkaline conditions. They observed that Pb(OH)2(aq.) 

was the prevalent molecule at pH 10, but due to the low solubility constant of 

Pb(OH)2(s) it precipitated at high lead concentration (when the total lead concentration 

was greater than 20.72 mg/L) [2].  According to study conducted by Deng et al., the 

hydrolysis of Cu(II) to form Cu2(OH)2
2+ and Cu(OH)+, Cu(OH)2, and Cu(OH)3− species 

occured in dilute solution with increasing pH from 8 to 12 when the total copper 

concentration was 100 mg/L). Additionally, Cu(OH)4
2− was observed in the more 

alkaline solutions [231]. At pH 6.0, the predominant specie of lead and copper was 

Me2+, followed by Me(OH)+ [2, 230]. The stable complexes might easily form between 

the metal cations/ hydroxyl metal cations and active surface sites. At pH 6.0-9.4, the 

available As(III) species were the combination of H3AsO3
o and H2AsO3

- [229]. The 

negatively charged surface would not tend to attract the negatively charged As(III) ions, 

therefore the less favorable interactions were observed in the case of As(III) adsorption. 

 

Besides the influence of concentrations of absorbate species and active sorbing sites on 

the sorption, the defined kinetic and adsorption modeling could be supportive evidence 

in order to comprehend the adsorption mechanism. Kinetic sorption analysis indicated 

that adsorption of Pb(II), Cu(II), and As(III) were better described by pseudo-second-

order that assumes more than one binding pathway. Essentially, the adsorbed amount of 
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Pb(II) and Cu(II) increased through the basic pH values and this supported the 

formation of surface complexation rather than electrostatic interactions with surface 

sites [221]. In addition to that, from the calculated dimensionless separation factor (RL) 

for Pb(II), the more irreversible adsorptions were observed and this could be the 

indication of chemical adsorption. In contrast, heterogeneity of the surface due to 

involvement of both strong and weaker binding sites for adsorption were favored for 

Cu(II) with a higher suitability to the Freundlich isotherm model [143]. Apart from that, 

according to the obtained ΔG values for Cu(II), the removal of absorbate from solution 

with the nanoparticles was mainly governed by ion exchange mechanism rather than 

physical adsorption, and chemical adsorption might also contribute to the adsorption of 

Cu(II). In the case of As(III) adsorption, the uptake capacity was remain almost 

constant as the pH value was changed from 3.0 to 8.0 and the reason might be related to 

low affinity of the available As(III) species towards the active surface sites.  

 

To further probe into the removal mechanisms of Pb(II), Cu(II), and As(III) by the 

anatase nanoadsorbent, XPS analyses on the nanoadsorbent were carried out after 

adsorptions of arsenic and heavy metals. The O1s narrow scans were illustrated in 

Figure 5.8. The spectra were divided into two peaks positioned at 530.0 and 531.3 eV, 

which could be assigned to metal oxide (M-O) and hydroxyl bonded to metal (M-OH), 

respectively [232]. After adsorption, it was found that the area ratio of the peak at 530.0 

eV assigned to M-O increased due to the formation of Ti-O-R (R: functional groups), 

Pb-O, Cu-O or As-O groups on the anatase surface. On the other hand, the peak area 

ratio of the oxygen at 531.3 decreased after Pb(II), Cu(II), and As(III) adsorption, 

suggesting that hydroxyl groups created on the surface of anatase participated in the 

adsorption.  
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Figure 5.8. XPS spectra of O1s after (a) Pb(II), (b) Cu(II), (c) As(III) adsorption at pH 

6.0. 
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Figure 5.9a illustrated the Pb4f spectrum of the adsorbent after Pb(II) adsorption, and 

the to Pb4f7/2 and Pb4f5/2 binding energies of 138.8 eV and 143.6 eV were attributed the 

PbO2 and PbO forms [2, 232], respectively. Figure 5.9b showed the XPS spectrum of 

Cu2p region. The XPS spectrum of Cu2p3/2 indicates that there are two components after 

deconvolution, attributed to Cu2O (932.5eV) and CuO (934.3 eV) on the surface of 

anatase nanoadsorbent, respectively. Peaks at 941.3 and 943.8 eV were assigned to CuO 

satellites [233]. The As 3d spectrum of adsorbent after As(III) adsorption was shown in 

Figure 5.9c, and only one peak observed at 44.6 eV ascribing to As(III) species verified 

its successful binding to the adsorbent surface [233]. This result indicated that As(III) 

was not oxidized into As(V) during the sorption process. According to the XPS 

analysis, the metal oxide and hydroxyl groups on the anatase nanoadsorbent surface 

were responsible for Pb(II), Cu(II), and As(III) sorption. Those groups on the surface of 

nanoadsorbent could react with arsenic and heavy metals directly to form stable inner-

sphere complexation and outer-sphere complexation through electrostatic binding 

reactions. Moreover, it was supposed that Pb(II), Cu(II), and As(III) could adsorb onto 

the nanoadsorbent by forming surface complexes of monodentate and bidentate. 
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Figure 5.9. XPS (a) Pb 4f, (b) Cu 2p, (c) As 3d XPS core-level spectra on the anatase 

nanoadsorbent surface after adsorption at pH 6.0. 
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5.4. Concluding Remarks 
 
 
 

The synthesized anatase nanoparticles indicated greater potential for the removal of 

Pb(II) and Cu(II)  from  drinking water. Additionally, the nanoparticles were able to 

reduce As(III) concentrations below the MCL requirements for drinking water up to 

moderate initial concentrations. The amount of Pb(II) and Cu(II) ions removed from 

water was strongly influenced by the pH and the type of reactive adsorbate species and 

active sites on the surface of adsorbent. In the case of As(III) adsorption, the uptake 

percentages were almost same upon entire pH value. Based on the R2 and APE values, 

the pseudo-second-order model described the Pb(II), Cu(II), and As(III) adsorption 

kinetics. Langmuir model fitted well for Pb(II) uptake supported with lower APE and 

higher R2 value, on the other hand the higher relationship between experimental and 

calculated adsorption data for Cu(II) and As(III) were observed in Freundlich isotherm 

model. Based on experimental data, the maximum adsorption capacity for Cu(II), 

Pb(II), and As(III) ions  were 31.25 mg/g, 23.74 mg/g, and 16.95 mg/g respectively. 

Thermodynamic parameters indicated that the calculated ΔS values were positive and 

the favorable Gibbs energies were entropically controlled in the adsorptions of Pb(II) 

and Cu(II), while the As(III) adsorption was thermodynamically favorable without any 

limitations. XPS analyses revealed that the surface oxygen-containing functional groups 

including hydroxyl groups were involved in the adsorption process. Thus, the whole 

Pb(II), Cu(II), and As(III) sorption  studies  on the nanoparticles indicated that the 

synthesized nanoparticles can be effectively used in the treatment of water polluted with 

the arsenic and heavy metal ions. 
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CHAPTER 6. 

 

A FACILE SYNTHESIS OF ACTIVATED CARBON/TITANIUM DIOXIDE 

NANOCOMPOSITES FOR ENHANCED AS(III) REMOVAL FROM WATER 

 
 
 
 

6.1. Background 
 
 
 

Water is one of the vital components for the continuity of life on earth. The existence of 

arsenic in water supplies poses the greatest risk to human health, due to its extreme 

toxicity and carcinogenicity [234]. Considering technical simplicity, applicability, and 

cost, adsorption is acquired a great importance in the removal of arsenic from water 

[74]. In natural water, inorganic arsenic generally exists in two predominant oxidation 

states, As(III) and As(V) and various studies have found that among the two species, 

As(III) is more toxic, mobile, and uncharged than the negatively charged As(V) species 

[207, 235]. The number adsorbents, which are extensively used for arsenic removal, 

include activated carbon, zeolite, ferric ion loaded red-mud, magnetite-doped activated 

carbon nanotubes, and graphene sheets [20, 22, 23, 207, 236, 237]. Titanium dioxide 

(TiO2) is a widely used photocatalyst due to its strong oxidizing power and favorable 

band gap energy. It is effective in arsenic removal since it is capable of converting 

As(III) to less toxic and more adsorbable As(V) species under UV irradiation [213]. 

However, TiO2 has suffered from continuously converting arsenic species under a 

visible light. Furthermore the difficulties in separation of small particles after adsorption 

have limited its wider industrial-scale operations [234, 238]. In order to address these 

challenges, nanoparticles can be embedded onto a support material. Embedding 

provides not only the prevention of release of metal oxide nanoparticles to the 
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environment but also the preservation of their reactivity [239, 240]. Activated carbon 

(AC) has been frequently used as the supporting material that enhances the applicability 

of metal oxide nanoparticles in the water treatment by adsorption [20, 241]. Moreover, 

introducing AC as a support material into TiO2 not only allows visible light absorption 

but also provides trap sites within the TiO2 bands by increasing the lifetime of photo-

generated charge carriers [8]. 

 

Recently, some studies have recently emerged on the enhancement of sorption of 

arsenic species by combining metal oxide nanoparticles with carbonaceous materials 

[20, 234, 242-244] The AC treatment provides a good cost-effective matrix for TiO2 

and by providing a pathway for the electron transfer simultaneously promotes more 

effective separation between photo-generated electrons and holes [245, 246]. However, 

no studies have focused on the As(III) adsorption properties of the TiO2 nanoparticles 

are combined with various amount of AC. Therefore, in this chapter, AC/TiO2 

nanocomposites were fabricated successfully via a simple sol-gel method in order to 

enhance the removal of As(III) from water. The adsorption capabilities of AC, TiO2, 

and AC/TiO2 nanocomposites were evaluated in terms of contact time and pH. 

 
 
 

6.2. Experimental 
 
 
 

6.2.1. Synthesis of AC/TiO2 Nanocomposites 
 
 

The method used to prepare TiO2 nanoparticles was described in detail in a previous 

study [187]. Briefly, titanium dioxide nanoparticles were synthesized by sol-gel method 

using titanium tetraisopropoxide (TTIP) (C12H28O4Ti, Aldrich, 97%) as a metal organic 

precursor. TTIP (5 mL) was added to mixture of distilled water and 2-propanol (C3H8O, 

Merck, 99%). The gel preparation process was started when the pH of solution was 

adjusted to ~1 by the addition of 1 M HNO3 under continuous stirring at 80˚C. After the 

color of solution became transparent, a different amount of commercial activated carbon 

powder, which was used as a support material, was added to the solution. The 

nanocomposites synthesized with sol-gel method were denoted as x-AC/TiO2, where x 

is 10, 20 and 40 present the weight percent of AC. The obtained solids were dried for 
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several hours at 100˚C and annealed at 400˚C for 2 h. 

 
 
 
6.2.2. Characterization 
 
 

Leo Supra 35VP field emission scanning electron microscope, Leo 32 and electron 

dispersive spectrometer software was used for imaging which was mostly done at 2-5 

keV accelerating voltage, using the secondary electron imaging technique. X-ray 

diffraction (XRD) measurement was performed with a Brukeraxs advance powder 

diffractometer fitted with a Siemens X-ray gun and equipped with Brukeraxs Diffrac 

PLUS software. The sample was swept from 2θ = 10o through to 70o. The X-ray 

generator was set to 40kV at 40 mA. Raman spectrum was obtained from an InVia 

Reflex Raman microscope and spectrometer using a 532 nm diode laser excitation. 

Thermogravimetric analyses (TGA) were performed with a NETZSCH 449C 

thermogravimetric analyzer from room temperature to 1000°C at a heating rate of 

10°C/min under air flow in a pure alumina crucible. Surface area was measured by 

Quantachrome NOVA 2200e series Surface Analyzer. The adsorption isotherms of 

nitrogen at 77 K were investigated using the Brunauer–Emmett–Teller (BET) method in 

the P/P0 range of 0.05–0.3. All samples were outgassed for 24 h at 150°C. Total pore 

volume and pore diameter were calculated based on BJH (Brrett–Joyner–Halenda) 

method and the desorption branch of isotherm.  

 
 
 
6.2.3. Batch Adsorption and Desorption Experiments 
 
 

 A standard arsenic solution (1000 mg/L) was prepared by dissolving 1.320 g As(III) 

(As2O3, 99.9%) in 10 mL 5% (w/v) NaOH and making up to 1 L with deionized water. 

Adsorption kinetics was studied by adding 0.025 g of adsorbent to 50 mL of As(III) 

solution with an initial As(III) concentration of 4 mg/L in a flask, the pH value was 

adjusted to 7.0 by adding HCl and NaOH solution, measurements of As(III) 

concentrations were performed different time intervals (5 minutes to 24 hours). Several 

initial As(III) concentrations ranging from 0.5 to 17 mg/L were used for equilibrium 

studies at fixed pH 7.0 for 12 h. The effect of pH on the adsorptions was studied by 
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using a prepared 5 mg/L of As(III) solution in a pH range of 3.0-10.0 at 25oC. At the 

end of each experiment the solution was separated from the solid adsorbent by using 

0.45 µm PVDF membrane filter.  

 

Five cycles of adsorption and desorption were carried out in order to analyze the 

reusability of the 10-AC/TiO2. For the adsorption test, 0.5 g/L of adsorbent was added 

into a vessel containing 25 mg/L As(III) and the solution was stirred for 24 h and 

maintained at about pH 7.0, and then the adsorbent was separated  from the solution and 

the solution was kept for the measurement of arsenic concentration. For the desorption 

test, four different eluents were studied: distilled water, HCl, HNO3, and NaOH 

solution. For all these solutions, 50 mL of 1 M eluent solutions were separately mixed 

with 0.5 g/L adsorbent for 12 h and temperature of the system was arranged to 25 °C. 

For the adsorption-regeneration cycles, arsenic-containing adsorbent was added into a 

50 mL of 1 M eluent solution. The mixture was stirred for 12 h and then regenerated 

adsorbent was separated from the solution. After washing and drying steps, it was used 

in the next adsorption–desorption cycle. As(III) concentrations of the solutions were 

measured with a Varian, Vista-Pro CCD simultaneous inductively coupled plasma ICP-

OES spectrophotometer. Samples before and after adsorption experiments were 

analyzed to obtain residual As(III) concentrations. The experiments were carried in 

triplicate and average results were reported. 

 
 
 

6.3. Results and Discussion 

 
 
 

6.3.1.  Characterization of AC/TiO2 

 
 

The SEM (Figure 6.1a) micrograph clearly indicated spherical morphology of TiO2 

nanoparticles. The images for AC/TiO2 nanocomposites where the nanoparticles were 

located on the AC surface were illustrated in Figure 6.1b-d. Increasing the content of 

TiO2 nanoparticles in the composites caused the agglomeration of larger amount of 

TiO2 on the AC surface. The SEM image of AC, which was used in the 

nanocomposites, revealed layered structure with some pores illustrated in Figure 6.1e. 
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Figure 6.1. SEM images of TiO2 (a), 40-AC/TiO2 (b) 20-AC/TiO2 (c), 10-

AC/TiO2 (d) and AC (e). 

 

In Figure 6.2, XRD patterns of AC/TiO2 nanocomposites, AC, and TiO2 nanoparticles 

were illustrated. The characteristic diffraction peaks, which were indexed at 2θ of 25.6o 

(101) of the anatase phase of TiO2, were clearly detected for TiO2 nanoparticles and 

AC/TiO2 nanocomposites [216]. No other irrelevant peaks were observed indicating the 

sample was pure in anatase phase. After the combination of TiO2 with AC, XRD 

patterns were almost the same except there was some gradual decrease in the intensity 

of main peak with the decrease in TiO2 content. Moreover, no crystalline peaks were 

detected for the AC because of its amorphous structure.  
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Figure 6.2. XRD patterns of the TiO2, AC, and AC/TiO2 nanocomposites 

 

Raman spectroscopy provides a rapid way of obtaining the surface crystal structure of 

the TiO2. The Raman spectra of AC, 10-AC/TiO2 and 20-AC/TiO2 nanocomposites, 

were shown in Figure 6.3. Two peaks approximately at 1348.3 and 1605.5 cm−1 were 

attributed to the disordered structure and the graphite structure of activated carbon in the 

samples AC and AC/TiO2 nanocomposites [247, 248]. In addition, the characteristic 

peaks of anatase were also found for AC/TiO2 nanocomposites with the characteristic 

Raman lines giving evidence for the crystalline type of anatase rather than rutile and 

brookite. Anatase has six Raman active modes (A1g + 2B1g + 3Eg) and the Raman lines 

observed at 150.5 cm−1, 398.0 cm−1, 518.0 cm−1, and 639.0 cm−1 assigned to the Eg, B1g, 

A1g, and Eg vibrational modes of anatase, respectively [217, 249]. 
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Figure 6.3. Raman spectra of AC, 10-AC/TiO2, 20-AC/TiO2 

 

The TGA curves for the AC, TiO2 nanoparticles, AC/TiO2 nanocomposites were shown 

in Figure 6.4. AC was stable up to 400oC. However, the presence of TiO2 nanoparticles 

in the system led to a weight loss at an earlier stage approximately at 100oC for 

AC/TiO2 nanocomposites. The TiO2 and nanocomposite samples demonstrated two 

main weight losses. The first rapid weight losses were observed from 100 to 150oC 

mainly corresponded to the removal of the adsorbed water and the dehydration of 

hydroxyls on the surface TiO2 [250]. As the temperature was further increased, the 

second weight loss appeared in the range of 200–400 °C, which was mainly due to 

decomposition of some oxygen containing groups. The weight loss at 1000oC provided 

comparable information about the content of TiO2 in the nanocomposites. The residual 

weights for AC, TiO2 nanoparticles and 10-AC/TiO2 nanocomposites were achieved at 

860oC, 400oC and 650oC, respectively.  
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Figure 6.4. TGA curves of the TiO2, AC, and AC/TiO2 nanocomposites 

 

The nitrogen adsorption/desorption isotherms of AC/TiO2 nanocomposites and AC 

were illustrated Figure 6.5. Typical type IV hysteresis that is often associated with 

narrow slit-like pores for distinctive mesoporosity [251], was observed in all of the 

samples. In addition to that, there was an inverse proportion between the amounts of AC 

content in nanocomposites and surface area. The BET surface area of 10-AC/TiO2 

nanocomposite was 176.81 m2/g, decreased by approximately 86% when compared to 

1252.84 m2/g of AC support. The reason for this dramatic decrease in the surface areas 

could be associated with aggregation of TiO2 nanoparticles on the external surface and 

inside the pores of AC. The porosity parameters, which were calculated from desorption 

isotherms by BJH model of the samples, were summarized in Table 6.1. The reductions 

in pore volumes as increasing the TiO2 nanoparticles content were attributed to 

agglomeration of the nanoparticles on the AC surface by blocking the most of the pore 

entrance and effect of calcinations at 400oC to stimulate the formation of anatase TiO2 

[252].  
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Figure 6.5. Nitrogen adsorption/desorption isotherms of AC and AC/TiO2 

nanocomposites. 

 

Table 6.1. Structural characteristic parameters of AC and AC/TiO2. 

Adsorbent BET surface area (m2/g) Pore volume 

(mL/g) 

Pore diameter 

(Å) 

AC 1252.84 0.90 16.97 

40-AC/TiO2 306.40 0.11 16.77 

20-AC/TiO2 217.84 0.09 16.76 

10-AC/TiO2 176.81 0.08 16.69 

 
 
 
6.3.2. Sorption Kinetics of the AC/TiO2 Nanocomposites 
 
 

The sorption of As(III) on the AC, TiO2 nanoparticles, and AC/TiO2 nanocomposites as 

a function of contact time are shown in Figure 6.6. Clearly, the combination of TiO2 

nanoparticles with AC significantly enhanced the As(III) uptake. It could be seen that 

the As(III) adsorption by 10-AC/TiO2 nanocomposite occurred very quickly reaching 

adsorption equilibrium after 5 minutes. The fast adsorption trend at initial stage is 
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freuquently observed phenomenon in the removal of contaminants from water and it is 

most likely caused by reactive chemical groups readily presented on the surface [221]. 

On the other hand, there was a gradual increase in the As(III) adsorption by 20-

AC/TiO2 and 40-AC/TiO2 nanocomposites, and TiO2 nanoparticles when contact time 

was increased from 5 to 240 min and the maximum As(III) uptake was obtained after 

480 minutes of contact. Therefore, a contact time of 480 minutes was selected for all 

batch adsorption experiments in order to ensure that equilibrium was established in each 

case. Moreover, due to the apparent lack of adsorption behavior, AC was found to be 

unsuitable to remove As(III) ions from water. 

 

Figure 6.6. Effect of contact time for As(III) adsorption onto TiO2, AC, and AC/TiO2 

nanocomposites [Temperature = 25oC,  pH =  7.0,  S:L = 500 mg/L]. 

 

To investigate the adsorption kinetics for the sorption processes, four kinetic models 

were studied by applying the experimental sorption data to the pseudo-first-order 

(Equation 6.1) [122], the pseudo-second-order equation (Equation 6.2)  [189]. The 

linear mathematical forms of kinetics equations used are shown below: 
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                                                                                                             (6.2) 

 

The initial adsorption rate h (mg/g.min) can be defined as: 

 

                                                                                                                     (6.3)       

 

where, qt is the amount of adsorbed contaminant (mg/g) at time t, qe is the maximum 

adsorption capacity (mg/g) for the pseudo first order adsorption and pseudo second 

order adsorption, k1 is the pseudo first order rate constant for the adsorption process 

(1/min) and k2 is the pseudo second order rate constant (g/mg.min). The sorption 

modeling parameters and the correlation coefficients (R2) values were summarized in 

Table 6.2. R2 values for pseudo-second order model were much higher than that of 

pseudo-first order model. Moreover, the experimental adsorption capacity (qexp) values 

were particularly close to the calculated adsorption capacity (qcal) values for pseudo-

second order model, signifying that the pseudo-second order kinetic model well 

described the kinetics of As(III) adsorption. Good agreements with the pseudo-second-

order model suggest that chemical adsorption was the rate-limiting step [189] and the 

adsorption rates were proportional to the square of the number of sites on the adsorbent 

surface. Additionally, the k2 value calculated for 10-AC/TiO2 was higher than that for 

20-AC/TiO2, 40-AC/TiO2, and TiO2, indicating faster As(III) adsorption rate of 10-

AC/TiO2 as can be seen in Table 6.2. 

 

Table 6.2. The kinetic sorption modeling parameters for As(III) adsorption. 

Model Parameters TiO2 10-AC/TiO2 20-AC/TiO2 40-AC/TiO2 

 

Pseudo First 

Order 

k1(1/min) 0.010 0.002 4.950 0.004 

qe1(mg/g) 2.399  0.042        3.851        4.255 

R2 0.990  0.775 0.995 0.973 

 

Pseudo Second 

Order 

k2(g/mg.min) 0.028 0.635 0.006 0.004 

qe2(mg/g) 3.637 8.271 8.237 7.836 

R2 0.994 0.999 0.998 0.999 

h(mg/g.min) 0.376 43.44 0.465 0.266 

 

t
qt
=
1
k2qe

2 +
t
qe

h = k2qe
2
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In order to obtain more information about the adsorption mechanism and rate 

controlling steps that affects the kinetics of adsorption, the intraparticle diffusion model 

(Equation 6.4)), which was proposed by Weber and Morris, was applied [127]; 

 

                                                            qt =kintt0.5 + A                                                                                   (6.4) 

 

where kint (mg/(g min0.5)) is the internal diffusion rate constant and A, which is obtained 

from the intercept of the linear plot of qt versus t0.5, gives information about thickness of 

the boundary layer. As could be seen in Figure 6.7, two straight lines were obtained 

from the experimental data. The first portion was related external diffusion, which 

concerns the diffusion of adsorbate through the solution to the external surface of the 

adsorbent. The second portion corresponded with intraparticle diffusion, which is also 

entitled with the slow adsorption stage correlated with the diffusion of the adsorbate 

species inside the adsorbent [253]. The modeling results for the two portions of kinetic 

data are shown in Table 6.3. It is obvious that kp1 was higher than kp2 for all four 

adsorbents. This indicated that the rate of As(III) removal was higher in the beginning 

since more reactive sorption sites on the adsorbents were available at initial time for the 

adsorption. Besides, the larger value of A2 was attributed to the greater boundary-layer 

effect at the second portion [254].  

 

 
Figure 6.7. Intraparticle diffusion model for the As(III) adsorption onto the TiO2 and 

AC/TiO2 nanocomposites. 
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The intraparticle diffusion can be considered as the rate-determining step, if the 

linearized curve passes through the origin (0, 0). Although, the obtained R2 values were 

comparably high with the pseudo-second-order model for all four adsorbents, the results 

of fitting did not pass through the origin (0, 0) interpreting that the adsorption 

mechanism of As(III) removal on to the adorsobents was complex. The intraparticle 

diffusion or ion exchange mechanism may also control the rate of adsorption apart from 

the surface adsorption [255]. 

 

Table 6.3. Parameters of intraparticle diffusion model for As(III) adsorption. 

Adsorbent kp1 

(mg/g.min1/2) 

kp2 

(mg/g.min1/2) 

     A1      A2 R1
2     R2

2 

TiO2 0.176 0.002 1.768 4.423 0.981 0.919 

10-AC/TiO2 0.007 0.001 8.187 8.257 0.847 0.991 

20-AC/TiO2 0.383 0.019 2.218 7.444 0.994 0.835 

40-AC/TiO2 0.399 0.039 1.596 6.329 0.994 0.821 

 
 
 
6.3.3. Adsorption Capacity 
 
 

Adsorption isotherm models are commonly used to describe the adsorption and its 

mechanisms. To understand the adsorption patterns, Langmuir, Freundlich, Redlich-

Peterson, and Temkin, isotherm models were investigated by using the adsorption 

equilibrium data of As(III) onto TiO2 and AC/TiO2 nanocomposites [130, 181, 226, 

256]. 

 

Langmuir model [130] assumes that a single specie of the sorbate adsorbs on specific 

homogenous adsorption sites within the sorbent by forming monolayer coverage and 

can be represented by the following equation:  

 

                                                                                                               (6.5) 

 

qe =
qmonb Ce

1+ b Ce
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where qe is the solute amount adsorbed per unit weight of adsorbent (mg/g), Ce is liquid 

phase sorbate concentration in equilibrium, qmon is the monolayer adsorption capacity 

(mg/g) and b is the adsorption equilibrium constant (L/mg) related to adsorption 

enthalpy (bαexp-ΔH/RT). From the adsorption equilibrium constant in Langmuir model, 

the dimensionless separation factor (RL), which was the indicative of the isotherm 

shape, could be obtained by using the following equation: 

 

                                                                                                              (6.6) 

                                                  

where, Co is the initial absorbate concentration (mg/L). The value of RL demonstrates 

the nature of adsorption as unfavorable (RL > 1), linear (RL = 1), favorable (0 < RL < 1) 

and irreversible (RL = 0) [187]. 

 

Freundlich model [181] is derived considering a theory of the heterogeneous adsorption 

sites and interactions by assuming a heterogeneous surface and it can be described as 

follows: 

 

                                                                                                                  (6.7) 

 

where KF indicates the adsorbent’s relative adsorption capacity (mg/g), 1/n is the 

constant representing adsorption intensity. If the value of 1/n is lower than 1, it indicates 

a normal Langmuir isotherm; otherwise, it is indicative of cooperative adsorption. 

 

The Redlich-Peterson isotherm model, [226] which includes features of both the 

Langmuir and Freundlich equations, can be described as follows: 

 

                                                                                                          (6.8) 

 

where KRP is Redlich-Peterson isotherm constant (L/g), aRP is Redlich-Peterson 

isotherm constant (L/mg) β
RP and βRP is the exponent which lies between 0 and 1. The 

βRP parameter (dimensionless) represents the heterogeneity of the binding surface. If βRP 

RL =
1

1+ b Co

qe = KFCe
1/n

RP
eRP

eRP
e Ca

CKq β+
=
1
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tends to unity Redlich–Peterson model results in Langmuir model. 

 

The Temkin isotherm model’s [256] assumption that the heat of adsorption decreases 

linearly with adsorbate coverage ascribes to some indirect adsorbate–adsorbent 

interactions. The Temkin isotherm can be described in the following form: 

 

qe = B ln(KTCe )     (6.9) 

 

where, B (B = RT/b ) is a constant related to heat of adsorption (J/mol), R is the 

universal gas constant (8.314 J/mol), and KT is the Temkin isotherm constant (L/mg). 

 

The nonlinear adsorption isotherms were illustrated in Figure 6.8. The maximum 

adsorption capacities were found as 9.79 mg/g for TiO2, 14.12 mg/g for 40-AC/TiO2, 

18.45 mg/g for 20-AC/TiO2 and 26.62 mg/g for 10-AC/TiO2. The incorporation of TiO2 

with AC indicated higher As(III) uptakes at all initial sorbate concentrations than do 

bare TiO2 nanoparticles. The optimum uptake of As(III) was achieved at 10-AC/TiO2. 

AC probably enhanced the adsorption by creating additional adsorption sites on the 

nanocomposites [257].  

 

The isotherm constants and correlation coefficients (R2) were summarized in Table 6.4. 

The correlation coefficients for the Langmuir isotherm were the highest in comparison 

to the values obtained for the Freundlich, Temkin, and Redlich-Peterson isotherms. 

Therefore, the Langmuir isotherm was the best-fit isotherm for the adsorption of As(III) 

onto TiO2 nanoparticles, and AC/TiO2 nanocomposites indicating specific homogenous 

adsorption sites within the sorbent by forming monolayer coverage. Additionally, the 

suitability of Langmuir isotherm model to the As(III) sorption data were also supported 

by the obtained dimensionless parameter value in Redlich-Peterson, which was also 

close to unity for AC/TiO2 nanocomposites. Moreover, from the calculated 

dimensionless separation factor (RL) were found to be 0.96 to 0.39 for TiO2, 0.29 to 

0.01 for 10-AC/TiO2, 0.64 to 0.05 for 20-AC/TiO2, and 0.66 to 0.06 for 40-AC/TiO2 

respectively, indicating more irreversible As(III) adsorptions onto the nanocomposites 

with the increase of initial sorbate concentration.  
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Figure 6.8. Adsorption isotherm of As(III) onto TiO2 (a), 10-AC/TiO2 (b) 20-AC/TiO2 

(c), 40-AC/TiO2 (d) [Initial concentration = 0.5–17 mg/L, Temperature = 25oC,  pH =  

7.0,  S:L = 500 mg/L]. 
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Table 6.4. Sorption isotherm parameters for As(III) removal onto TiO2 and 

AC/TiO2. 

Isotherm Parameters TiO2 10-AC/TiO2 20-AC/TiO2 40-AC/TiO2 

     qexp(mg/g) 9.797 26.62 18.45 14.12 

Langmuir      

qmon (mg/g) 17.54 28.57 20.83 15.38 

b (L/mg) 0.094 4.971 1.116 1.015 

R2 0.856 0.999 0.975 0.998 
Freundlich     

KF (mg/g) 1.809 18.41 7.568 5.551 
1/n 0.658 0.458 0.551 0.481 

R2 0.991 0.907 0.877 0.982 

Temkin     

KT  1.315    

1.315 

81.04 30.73 26.59 

B 3.188 4.562 3.15 2.318 
R2 0.909 0.996 0.875 0.938 

Redlich-Peterson     

KRP(L/g) 3.821 211.7 20.83 23.53 

aRP (L/mg)βRP 1.586 8.928 0.992 2.593 

βRP 0.346 0.886 0.987 0.772 
R2 0.966 0.998 0.974 0.996 

 

 

6.3.4. Effect of pH on Adsorption 

 

The pH is a significant parameter for determining the adsorption between the adsorbent 

and aqueous interface.  The relationship between the removal of As(III) in the variation 

of initial pH 3.0–10.0 was presented for TiO2 nanoparticles, AC, and the 

nanocomposites of AC/TiO2 in Figure 6.9a. 98.2% of As(III) removal was obtained 

with the 10-AC/TiO2 nanocomposite at pH 7.0. Combining AC with TiO2 may increase 

the oxidation of As(III) to As(V) under visible light [8] and higher amounts of arsenic 

species were removed from water. However the increase in the AC weight percent in 
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the nanocomposite led to a decrease in adsorption performance due to lack of sufficient 

TiO2 active sites.  

 

The ionic character of the arsenic species varies with pH as the predominant As(III) 

species available are the H3AsO3  and H2AsO3
- in the pH range of 4.0-9.5 [207]. The 

AC/TiO2 nanocomposites were most effectively adsorbed As(III) at pH 7.0. One likely 

reason for the observed result is that at pH 7.0 H3AsO4 was mostly found in the aqueous 

solution and those neutral As(III) species formed complex with surface groups 

especially at pH in the range of 6.15-8.0 [112]. Apart from that, with the increase in pH 

value, H3AsO4 species is drastically reduced and anionic As(III) species such as 

H3AsO3
- and H3AsO3

2- are dominant at pH 9.0 [207]. This observation explained the 

decrease in the adsorption of As(III) on to the adsorbents.  

 

Variations of pHFinal against pHInitial of batch experiments for As(III) sorption are 

illustrated Figure 6.9b. During the adsorption process of As(III), it has been seen that 

the solution pHFinal was greater than the pHInitial in the range of 3.0–8.0. This was likely 

due to the uptake of H+ ions by the adsorbent surface at pHInitial ranging from 3.0 to 8.0. 

However, after that, the pHFinal of the solution was decreased during sorption of As(III). 
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Figure 6.9. Adsorption of 5 mg/L As(III) as a function of pH by 500 mg/L adsorbent 

materials 25 °C (a)  and pHfinal versus pHinitial during the adsorption (b). 
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and NaOH solutions. Experimental results are depicted in Figure 6.10 in terms of the 

desorption efficiency achieved with the different eluting solutions, and  indicate that the 

optimal solutions for arsenic desorption were those containing HNO3 or HCl.  

 

 
Figure 6.10. Desorption capacity of 10-AC/TiO2 nanocomposite for As(III) with the 

different eluting solutions 

 

The adsorption–regeneration cycles were carried out up to five times by using HNO3 

which provided better desorption media for As(III). The results obtained are shown in 

Figure 6.11. It was observed that the removal efficiency gradually decreased with the 

increase of in cycle number. However, the removal efficiency after five cycles was of 

82%, demonstrates that it could be used as an effective material for many cycles by 

regeneration.  
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Figure 6.11. Regeneration of 10-AC/TiO2 nanocomposite for As(III) with the increase 

of cycle number 

 

 

 

6.4. Concluding Remarks 

 

 

In the present chapter, AC/TiO2 nanocomposites were fabricated by introducing 

different amounts of AC in the system. According to the results obtained from SEM and 

BET, TiO2 nanoparticles were inserted into the external surface and inside the pores of 

AC and the surface area of the nanocomposites increased with the higher amount of 

AC. TGA results show that AC was stable up to 400oC, however, presence of TiO2 

nanoparticles in the system led to weight loss at an earlier stage approximately at 

100oC. Moreover, the better adsorption capacity for As(III) which the AC/TiO2  

composites exhibited is 2.7 times greater than that of bare TiO2. The maximum As(III) 

removal was found at 26.62 mg/L for the 10-AC/TiO2 nanocomposite at pH 7.0. 

However, increasing the amount of AC in the composite system led to decline in the 

adsorption. The 10-AC/TiO2 nanocomposite has a potential application for arsenic 

removal in water treatment due to its high As(III) adsorption –desorption capabilities.  
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CHAPTER 7.  

 

ARSENIC REMOVAL FROM WATER BY TiO2 NANOPARTICLES 

THROUGH SIMULTANEOUS PHOTOCATALYTIC OXIDATION AND 

ADSORPTION 

 
 
 
 

7.1. Background 
 
 
 

Arsenic commonly presented in natural water as As(III) and As(V) oxyanions, arsenite 

(AsO2)− and arsenate (AsO4)3− [258] cause to severe health problems. Specifically 

As(III) has higher toxicity and mobility in natural waters compare to As(V). Recent 

reports also indicate that up to 67–99% of total arsenic in groundwater includes As(III) 

species [259, 260].  In order to achieve higher total arsenic removal, arsenic treatment 

techniques including coagulation/precipitation, ion exchange, membrane/reverse 

osmosis, biological treatment and adsorption, require a preoxidation step in order to 

convert arsenite to arsenate. Some of the widely studied oxidation technologies are the 

injection of oxygen and/or ozone [68], photocatalytic oxidation [261], biological 

oxidation [262], and electro-oxidation [263]. Kim and Nriagu [68] demonstrated that 

arsenic in groundwater samples were converted to As(III) in the presence of ozone, air 

and pure oxygen. In an another study, it was shown that the oxidation of As(III) is also 

possible in the presence of hypochlorite and potassium permanganate [264]. Although 

conversion can be achieved by oxidants such as hydrogen peroxide, oxygen, ozone, 

manganese oxides and chlorine [70], the rate of As(III) oxidation was slow and larger 
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amount of those chemical oxidants were needed to treat water contaminated with high 

concentration of arsenite [265]. 

 

Titanium dioxide is a very well studied material with a wide range of applications [87]. 

One reason that makes this material so important is its ability to act as a photocatalyst. 

Anatase form has band gap energy (Eg) of 3.2 eV. An efficient promotion of an electron 

from the valence band to the conduction band is observed upon irradiation with UV 

radiation. This results in the formation of an electron-hole pair [266]. These reactive 

species then participate in oxidation and reduction processes, either within the TiO2 

itself (electron and hole recombination), or with adsorbates at the surface. The major 

reactive intermediate species in this reaction is the hydroxyl radical, produced by redox 

reactions between photo-excited TiO2 and adsorbed water molecules [267] According to 

the study conducted by Zhang, a concentration of 100 mg/L arsenite could be entirely 

oxidized to arsenate within 3 h in the presence of slag-iron oxide-TiO2 with UV-light 

irradiation [265]. Yu reported that Fe–Ti binary oxide magnetic nanoparticles which 

combined the photocatalytic oxidation property of TiO2, can be efficiently oxidized 

As(III) to As(V) by dissolved O2 in α-Fe2O3–TiO2 nanoparticle suspensions under UV 

light [261]. 

 

In this chapter, the TiO2 nanoparticles, which were fabricated through a facile sol-gel 

route, were used for photocatalytic removal of arsenic from aqueous solution. The 

experimental study evaluated the efficiencies of both As(III) and As(V) removal from 

water by adsorption process under visible light. The removal capacities of TiO2 

nanoparticles were also compared with the presence of UV-light illumination. 

Adsorption behavior considering contact time, pH and sorption capacity was 

investigated in detail for As(III) and As(V). 
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7.2. Experimental 
 
 
 

7.2.1. Synthesis of TiO2 Nanoparticles 
 
 

Sol gel method was used in order to prepare TiO2 nanoparticles. 25 mL of titanium 

tetraisopropoxide (TTIP) (C12H28O4Ti, Aldrich, 97%) metal organic precursor solution 

was mixed with 2-propanol (C3H8O, Merck, 99%) and distilled water. The pH of 

solution was adjusted to ~ 2 by the addition of 1 M HCl under continuous stirring at 

room temperature. The blue-yellowish gel was achieved after 30 minutes of mixing. 

The obtained gel was washed with anhydrous ethyl alcohol (C2H5O, Aldrich, 99.5%) 

and dried for several hours at 100 ˚C. The sample was smashed into fine powder and 

calcinated for 2 h at 400 °C to achieve the desired nanoparticles.  

 
 
 
7.2.2. Adsorption and photocatalytic oxidation experiments 
 
 

A standard As(III) solution containing (100 mg/L) was prepared by dissolving 0.1332 g 

As2O3 in 10 mL 1% (w/v) NaOH and making up to 1 L with deionized water. A stock 

solution of As(V) (100 mg/L) was obtained by dissolving 0.4164 g  Na2HAsO4.7H2O in 

1 L of deionized water. The effect of pH on the adsorptions were studied by using 

prepared 4.5 mg/L of As(III) and As(V) solutions in a pH range of 2.0-10.0 at 25oC for 

24 h. Adsorption kinetics was studied with addition 0.025 g of adsorbent to 50 mL of 

arsenic solution with an initial adsorbate concentration of 4 mg/L in a flask, the pH 

value was adjusted to 7.0 for As(III) and 3.0 for As(V) by adding HCl and NaOH 

solution, measurements of adsorbate concentrations were investigated different time 

intervals (5 minutes to 24 hours). The initial arsenic concentrations ranging from 1 to 25 

mg/L were used for equilibrium studies at fixed pH 7.0 for As(III) and 3.0 for As(V). At 

the end of each experiment the solution was separated from the solid adsorbent by using 

0.45 µm PVDF membrane filter.  

 

The As(III) photocatalytic oxidation experiments were carried out inside a 60 cm x 60 

cm x 45 cm stainless black box with a door in one side for sampling. A UV- A lamp 
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(300 < λ < 400 nm) was used as the UV irradiation source. The photocatalytic oxidation 

experiments were conducted using a glass vessel, which was filled with 120 mL of 

As(III) solution (4 mg/L) and 0.5 g/L TiO2 nanoparticles. Inside the stainless black box, 

the UV irradiation source was positioned at the center within a glass vessel. The 

distance between UV-A lamp and glass solution surface was 1.25 cm. The entire system 

was kept open to the atmosphere in all photocatalytic oxidation experiments. A 

magnetic stirrer was used to ensure that the solution was continuously stirred at a 

constant speed. At regular intervals, around 10 mL of the sample was taken out of the 

reactor, filtered using 0.45µm disposable PVDF membrane filter.   

 
 
 
7.2.3. Characterization 
 
 

Leo Supra 35VP field emission scanning electron microscope, Leo 32 and electron 

dispersive spectrometer software was used for images and analysis. Imaging was mostly 

performed at 2-5 keV accelerating voltage, using the secondary electron imaging 

technique. X-ray diffraction (XRD) measurement was done with a Brukeraxs advance 

powder diffractometer fitted with a Siemens X-ray gun and equipped with Brukeraxs 

Diffrac PLUS software. The sample was swept from 2θ = 10o through to 70o. The X-ray 

generator was set to 40kV at 40 mA. Arsenic concentrations of the solutions were 

measured with a Varian, Vista-Pro CCD simultaneous inductively coupled plasma ICP-

OES spectrophotometer. Samples before and after adsorption experiments were 

analyzed to obtain residual arsenic concentration. In order to test the reproducibility, the 

experiments were carried in triplicate and average results were reported. 
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7.3. Results and Disccusion 

 
 
 

7.3.1. Crystal structure and morphology of TiO2 Nanoparticles 

 
 

XRD spectra of synthesized TiO2 nanoparticles (Figure 7.1a) demonstrated the presence 

of the main peaks at 2θ values of 25.4◦ (101), 37.8◦ and 48.1◦ that are matched with the 

commercial anatase particles. The characteristic peaks corresponding to the rutile phase 

of TiO2 at 2θ values of 27.5◦ (110), 30.8◦ and 36.4◦ were absent in the XRD spectra 

[268]. The average size of the anatase crystallite was calculated by applying the Debye-

Scherrer formula (Equation 7.1) [269] to the main anatase (101) peak in XRD spectrum 

and the average crystallite size was found to be 9.02 nm.  

 

                                           DXRD =
0.9λ
β cosθB

                                                       (7.1) 

 

where λ is the average wavelength of the X-ray radiation, β is the full width at half-

maximum peak position, and θ is the diffracting angle. 

 

SEM image of synthesized TiO2 nanoparticles was shown in Figure 7.1b and Figure 

7.1c. At lower magnification, the bigger TiO2 particles were observed due to the 

agglomeration, which is a general phenomenon observed in nanoparticle synthesis 

[270]. At higher magnification, it was observed that the nanoparticles interpreted a well-

ordered texture with heterogeneous particle size in the range of 10 to 150 nm starting 

from the interfaces of the contacting anatase grains. 
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Figure 7.1. XRD spectra of the TiO2 nanoparticles and commercial anatase powder (a), 

SEM images of the TiO2 nanoparticles at 20 kX (b) and 120 kx (c). 
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7.3.2. Effect of pH 

 
 

The pH is a significant parameter for determining the adsorption between the adsorbent 

and aqueous interface. The uptakes of As(III) and As(V) onto anatase nanoparticles for 

an initial concentrations of 4.5 mg/L within a pH range of 2.0-10.0 were shown in 

Figure 7.2. The maximum arsenic removal percentages were found 43% for As(III) at 

pH 7 and 91% for As(V) at pH 3, respectively. The ionic character of the arsenic 

species varies with pH as the predominant As(III) species available are H3AsO3  and 

H2AsO3
- in the pH range of 4.0-9.5, while the predominant As(V) species show 

variation with pH values: H3AsO4 (pH 0.0-2.0), H2AsO4
- (pH 3.0-6.0), HAsO4

2- (pH 

7.0-11.0) [270]. In literature, the point of zero charge (pzc) for the anatase nanoparticles 

was approximately found in between 5.9-6.9 [230].  

 

 
Figure 7.2. Effect of pH on the adsorptions of As(III) and As(V) [Adsorbent amount: 

0.5 g/L, initial arsenic concentration: 4.5 mg/L reaction temperature: 25oC] 
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when pH is above pHpzc [213]. The surface of nanoparticles mostly covered with the 

neutral TiOH0 and negatively charged TiO- at pH 7.0. This explained the higher 

adsorption of As(III) on to TiO2 nanoparticles. On the other hand, positively charged 

TiOH2
+ and neutral species of TiOH0 were dominant at pH 3 on the surface of 

nanoparticles. Thus, at acidic pH conditions surface of adsorbent was covered with 

positively charged surface groups that boost the adsorption of the negatively charged 

As(V) anions. Similar increase in As(V) uptakes through the acidic pH values was also 

observed for mesaporous alumina [271] and mesoporous Ce–Fe bimetal oxide [272]. 

 
 
 

7.3.3. Effect of contact time on arsenic removal and kinetic modeling 

 
 

The effect of contact time on the adsorptions of As(III) and As(V) were illustrated in 

Figure 7.3. The synthesized TiO2 nanoparticles revealed better results for As(V) 

adsorption capability as compared to As(III). In contrast, both arsenic species required 

at least 180 minutes to reach steady state. At initial stage of adsorption, most of the 

reactive sites on the TiO2 were available for the adsorption, therefore rapid increase in 

uptakes of arsenic species were achieved. However, the slower uptake of arsenic species 

at later stage was observed and it could be attributed to diffusion of arsenic into 

adsorbent in order to find available sorption sites or surface reactions of arsenic [222]. 

 

The kinetic data obtained from this study were first analyzed by employing the pseudo 

first order [122] (Equation 7.2) and the pseudo second order [189] (Equation 7.3) 

equations: 

 

   
log(qe − qt ) = log(qe )−

k1t
2.303

                                    (7.2) 

 

    

t
qt
=
1
k2qe

2 +
t
qe

                                                          (7.3) 

 

where, qt is the amount of arsenic adsorbed (mg/g) at time t, qe is the maximum 

adsorption capacity (mg/g) for the pseudo first order adsorption and pseudo second 
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order adsorption, k1 is the pseudo first order rate constant for the arsenic adsorption 

process (min−1), k2 is the pseudo second order rate constant (g/mg min). 

 

 
Figure 7.3. Time dependence of As(III) (a) and As(V) (b) adsorbent amount, 0.5 g/L; 

initial arsenic concentration: 4 mg/L, pH, ~ 6 for As(III) and ~ 4 for As(V). The inset  

of figure represents pseudo second order curve for adsorption of As(III) and As(V) on 

TiO2 nanoparticles. 
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The sorption modeling parameters were summarized in Table 7.1. The pseudo second 

order model seemed to be the better-fitting model for the removal of As(III) and As(V). 

It is obvious from the obtained correlation coefficient (R2) that the data were explained 

well by pseudo-second order model, indicating the predominant mechanism of the 

adsorption process was chemisorption that involved chemical bonding via valence 

forces by sharing or exchanging the electrons between adsorbate and adsorbent [273]. 

The calculated k2 value for As(III) was higher than that for As(V), suggesting the 

adsorption rate of As(III) by TiO2 nanoparticles was fast in some extent as compared to 

the adsorption rate of As(V). 

 

Table 7.1. The kinetic sorption modeling parameters for As(III)  and As(V)  

adsorption on to TiO2 nanoparticles 

 

Model Parameters As(III) As(V) 

Pseudo First 

Order 

k1(1/min) 0.017 0.005 

qe1(mg/g) 3.139 2.471 

R2 0.982 0.8245 

Pseudo Second 

Order 

k2(g/mg.min) 0.021 0.011 

qe2(mg/g) 4.392 8.361 

R2 0.999 0.999 

h(mg/g.min) 0.406 0.774 

  
 
 
7.3.4. Role of UV-A Illumination 
 
 
As TiO2 is illuminated, electrons and holes are generated and various chemical redox 

reactions are initiated due to the migration of those pairs to the TiO2 surface [214]. 

When the electrons and holes do not recombine, they can reduce and oxidize other 

molecules at the TiO2 surface. The potential mechanisms of As(III) oxidation to As(V) 

by using the TiO2 as an adsorbent were shown in below. 
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                               TiO2 + hν → TiO2(ecb
− + hvb

+ )                                                      (1) 

                                ecb
− + O2 → O2

•−                                                                                                                  (2) 

                                hvb
+ + OH- → HO•                                                                         (3) 

                               As(III) +  HO• →  As(IV) + OH-                                                    (4) 

                               As(III) +   O2
•−  → 2H+ → As(IV) + H2O2                                                      (5) 

                               As(IV) +   O2
  → As(V) + O2

•−                                                                                  (6) 

 

Because of the short life times of both excited electron-hole pairs, the produced radicals 

such as hydroxyl radicals (·OH and HO2·) and superoxide radicals (O2·-) [274] from the 

photocatalytic reactions occur only close to the photocatalyst surface [275]. Therefore it 

is important that photocatalysts have good interactions with arsenic species. In Figure 

7.4, the effect of illumination time on As(III) oxidation was tested at an initial adsorbate 

concentration of 4 mg/L and  adsorbent amount 0.5 g/L. A period of 120 min UV-A 

light irradiation was sufficient to reach steady state condition in the presence of TiO2 

nanoparticles. The maximum uptake of As(III) was 8.47 mg/g at 360 min interaction 

time. 

 

      
Figure 7.4. Effect of UV-A light interaction time on As(III) adsorption from water by 

TiO2 nanoparticles. 
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In Figure 7.5, the residual arsenic concentrations were shown with and without UV-A 

illumination by using TiO2 nanoparticles. It was observed that the UV-A irradiation 

significantly enhanced the adsorption of As(III) species from water. In the absence of 

UV light, As (III) removal was less than As(V) removal which was consistent with 

literature that report the sorption capacity of TiO2 for As(III) to be less than that of 

As(V) [86, 143]. In the presence of UV-A light, residual As(III) concentration was 

approximately equal to As(V) suggesting that TiO2 oxidized As(III) to As(V) and 

removed arsenic as As(V).  As shown in Figure 7.5, the lower pH values contributed to 

greater arsenic removal efficiencies for As(III) species with UV-A illumination and for 

As(V) species without UV-A illumination. The data in Figure 7.5 supported previously 

reported results that in the presence of UV light and nano-TiO2, As(III) is readily 

oxidized to As(V) [209, 276]. 

 

 
Figure 7.5. Residual arsenic concentrations versus pH considering with and without 

UV-A illumination by using TiO2 nanoparticles. 

 
 
7.3.5. Adsorption isotherm 
 
 
The As(III) and As(V) adsorption studies onto the nanoparticles were investigated by 

varying the initial sorbate concentrations ranging from 1 to 25 mg/L. The nonlinear 

2 4 6 8 10

0

20

40

60

80

100

 As(III) 
 As(V)
 As(III) - UVR

es
id

ua
l A

rs
en

ic
 P

er
ce

nt
ag

e 
(%

)

pH

0 2 4 6 8 10



 133 

adsorption isotherms for As(III) with/without UV-A illumination and As(V) were given 

for the nanoparticles in Figure 7.6. The maximum adsorption capacities were found 

12.13 mg/g for As(III) in the absence of UV-A illumination, 41.38 mg/g for As(V), and 

36.55 mg/g for As(III) in the presence of UV-A illumination. The results were higher 

than or compatible with the previously results reported. A comparable result in terms of 

the initial arsenic concentration could be found in the recent work of Xu and Meng 

[277] synthesized TiO2 particles ranging from 6.6 to 30.1 nm after calcining 

nanocrystalline TiO2 at different temperatures. They evaluated the effect of the 

crystalline size on the adsorption by using initial arsenic concentration of 50 mg /L in a 

suspension containing 1 g/L TiO2. The maximum arsenic adsorption capacity of 6.6 nm 

TiO2 for As(V) was calculated by the Langmuir model to be 30.5 mg g−1 and the 

adsorption capacities of the TiO2 for As(III) were slightly less than that for As(V). 

 

The theoretical adsorption capacity of an adsorbent can be obtained through the 

adsorption isotherm. Langmuir and Freundlich isotherm models were investigated to 

evaluate adsorption patterns of arsenic on to TiO2 nanoparticles with respect to its 

concentration of equilibrium in solutions. Langmuir [130] (Equation 7.4) and 

Freundlich [181] (Equation 7.5) isotherms can be expressed by the following equations:  

 

                                                    qe =
qmonbCe

1+ bCe

                                                            (7.4) 

 

                                                     qe = KFCe
1/n                                                             (7.5) 

 

where qe is the solute amount adsorbed per unit weight of adsorbent (mg/g), Ce is liquid 

phase sorbate concentration in equilibrium, qmon is the monolayer adsorption capacity 

(mg/g), b is the adsorption equilibrium constant (L/mg) related to adsorption enthalpy 

(bαexp-ΔH/RT), KF indicates the adsorbent’s relative adsorption capacity (mg/g), 1/n is 

the constant representing adsorption intensity. If the value of 1/n is lower than 1, it 

indicates a normal Langmuir isotherm; otherwise, it is indicative of cooperative 

adsorption [211]. 
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Figure 7.6. Adsorption isotherm of As(III) (a), As(V) (b) and UV-light illuminated 

As(III) (c) onto TiO2  nanoparticles. 
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Figure 7.7 depicted the linearized Langmuir and Freundlich models of As(III), As(V), 

and UV-A illuminated As(III). The adsorption isotherm parameters were summarized in 

Table 7.2. Considering obtained R2 values, the adsorption isotherm behavior of As(III) 

in the absence of UV illumination was better fitted to Freundlich isotherm. On the other 

hand, the Langmuir model successfully explained the adsorption of As(V) and UV-A 

illuminated As(III) ions onto the nanoparticles. The respective 1/n values were within 

the range between 0 and 1 showing beneficial adsorptions for As(III) with/without UV 

illumination and As(V) by using TiO2 nanoparticles. 
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Figure 7.7. Langmuir and Freundlich plots of the adsorption data of As(III) (a), As(V) 

(b) and UV-light illuminated As(III) (c) in the concentration range from 1 to 25 mg/L. 
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Table 7.2. Adsorption isotherm parameters for As(III) with/without UV illumination 

and As(V) by using TiO2 nanoparticles. 

Isotherm 

Parameters 
As(III) As(V) 

As(III)-

UV 

    
qexp(mg/g) 12.13 41.38 36.55 

Langmuir     

qmon (mg/g) 60.25 45.66 38.76 
b (L/mg) 0.061 1.938 2.224 
R2 0.771 0.986 0.995 

Freundlich    

KF (mg/g) 3.464 21.70 18.23 
 1/n 0.799 0.512 0.467 
R2 0.991 0.969 0.971 

 

 

 

7.3.6. Adsorption Energy 

 
 

Dubinin-Kaganer-Radushkevich (DKR) isotherm model was investigated to determine 

the physical and chemical adsorption of arsenic.  DKR isotherm equation [136] is: 

 

                                                      ln qe = ln Xm –k ε2                                                  (7.6) 

 

where ε is Polanyi potential, equal to RT ln (1+1/Ce), Xm is the adsorption capacity 

(mol/g), k is a constant related to adsorption energy (mol2/kJ2). Xm and k values were 

obtained by plotting lnqe versus ε2 at 25 ˚C as illustrated in Figure 7.8, the slope of line 

yields k (mol2/kJ2) and the intercept is equal to lnXm. In order to evaluate the interaction 

between arsenic and binding sites of TiO2, the mean free energy of adsorption (E) the 

free energy change one mol adsorbate in transferred from infinity in solution to the 

surface of the adsorbent) was calculated from the following relationship [133]. 

 

                                                         E = − (2k) − 0.5                                                 (7.7) 
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Figure 7.8. The linearized graph of DKR isotherm for As(III), As(V), and UV-

illuminated As(III). 

 

The calculated E values were -17.68 kJ/mol for As(V) at pH 7.0, -12.80 kJ/mol for 

As(III) at pH 3, and -18.26 kJ/mol for As(III) with UV treatment at pH 3.0, 

respectively. It has been stated that the value of ΔG found below 8 kJ/mol is consistent 

with a physical adsorption involving electrostatic interaction between adsorption sites 

and the adsorbate ion. Moreover, it has been noted that if the value of ΔG is in between 

8 and 16 kJ/mol, the adsorption proceeds via a chemical ion exchange mechanism. The 

more negative ΔG values imply chemisorption mechanism by forming stable complexes 

on the adsorbent surface [227]. The obtained E values for As(III) and As(V) suggested 

ion-exchange as major mechanism responsible for the adsorption process. In the case of 

removal of As(III) in the presence of UV illumination, the most probable type of 

reaction would be chemisorption according to the value of E. 

 

 

 

 

 

 

 

400 600 800 1000 1200 1400 1600
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ln
q e(m

g/
g)

 As(V)
 As(III)
 As(III)-UV

ε2

 

 



 139 

7.4. Concluding Remarks 

 
 
 

By using sol-gel method, TiO2 nanoparticles were fabricated with particle size ranging 

10 to 150 nm. Adsorption experiments were performed for anatase to obtain optimum 

pH and contact time. The obtained TiO2 nanoparticles revealed better results for As(V) 

adsorption capability as compared to As(III). Based on the R2 values, the pseudo-

second-order model described the adsorption kinetics. It was observed that the low 

As(III) adsorption capacity of TiO2 nanoparticles from water limits its application in 

contaminated water treatment and adsorption of As(III) was enhanced by UV 

irradiation. The removal capacity of total arsenic from water was improved by UV 

irradiation about approximately third times as compared to purely adsorption process of 

TiO2 nanoparticles. 
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CHAPTER 8 

 

CONCLUSION 

 
 
 

4.1. Concluding Remarks 
 
 
 

In this thesis, FRM, iron oxide, TiO2 nanoparticles and composites based on activated 

carbon were successfully fabricated. Numerous adsorption and photocatalytic oxidation 

experiments were performed to utilize these adsorbents in order to remove arsenic, 

copper, lead from water. The important outputs of the each chapter were summarized in 

below. 

 

Chapter 3 evaluated the arsenic removal efficiency of FRM considering effect of pH, 

initial arsenic concentration, and contact time. It is suggested that FRM is very effective 

adsorbent that reduce both As(III) and As(V) concentrations below the MCL 

requirements for drinking water. Moreover, it is important to note that using of 1 g/L 

FRM dosage for an initial arsenic concentration of 1 mg/L, the maximum arsenic 

uptakes were found 0.57 mg/L for As(III) at pH 7.6 and 0.98 mg/L for As(V) at pH 3.3, 

respectively. Kinetic sorption experiments indicated higher regression coefficients (R2) 

after the application of pseudo-second order to the experimental data of As(III) and 

As(V) initial concentrations. In terms of adsorption mechanisms of As(III) and As(V) 

onto FRM, external diffusion mechanism governed the initial stage of adsorptions and 

while the intraparticle diffusion mechanism was rate-determining step for the later 

stages of adsorption. The most important observation was that the higher adsorption 

capacities achieved from Langmuir isotherm model was found for As(V) at pH 2.0 as 

compared to As(III) at pH 7.0 and the calculated  maximum adsorption capacity values 

were 11.640 mg/g for As(V) pH 7.0 and 5.254 mg/g for As(III). Essentially, present 
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results are promising for the usage of FRM in drinking water contaminated with low 

concentration of arsenic species.  

 
Chapter 4 presented the deposition of iron oxide nanoparticles on to activated carbon 

with a new technique indicating very promising results. Iron oxide nanoparticles were 

deposited uniformly on activated carbon support rapidly with high loadings with 

microwave hydrothermal treatment. XRD analyses revealed that not only α–Fe2O3, but 

also β-FeOOH particles could be generated with the adjustment of heating duration. 

With this method, about 20% of iron loading was obtained in less than 9 minutes. 

Uniformity and amount of iron oxide could be adjusted with surface oxidation and 

duration of microwave heating. However, adsorption isotherms and porous texture 

studies indicated that, available sites started to disappear at extended times of heating 

due to agglomeration of iron oxide particles on the surface. For ACO, high As(V) 

uptake value like 27.78 mg/g was obtained and 99.90% of uptake was reached within 5 

minutes of batch adsorption process. With adsorption isotherm and kinetic studies, it 

was understood that As(V) adsorption onto iron oxide deposited AC and ACO fits 

Langmuir and pseudo-second order models. High As(V) uptakes were obtained in the 

range of pH 6.0-8.0. The high As(V) adsorption performance, especially at pH 7.0, 

makes the material a good candidate for water treatment processes.  

 
Chapter 5 indicated greater Pb(II) and Cu(II) removal potential of synthesized anatase 

nanoparticles from  drinking water. Additionally, the nanoparticles were able to reduce 

As(III) concentrations below the MCL requirements for drinking water up to moderate 

initial concentrations. The amount of Pb(II) and Cu(II) ions removed from water was 

strongly influenced by the pH and the type of reactive adsorbate species and active sites 

on the surface of adsorbent. Based on the R2 and APE values, the pseudo second order 

model described the Pb(II), Cu(II), and As(III) adsorption kinetics. Langmuir model 

fitted well for Pb(II) uptake supported with lower APE and higher R2 value, on the other 

hand the higher relationship between experimental and calculated adsorption data for 

Cu(II) and As(III) were observed in Freundlich isotherm model. Based on experimental 

data, the maximum adsorption capacity for Cu(II), Pb(II), and As(III) ions  were 31.25 

mg/g, 23.74 mg/g, and 16.95 mg/g respectively. Thermodynamic parameters indicated 

that the calculated ΔS values were positive and the favorable Gibbs energies were 

entropically controlled in the adsorptions of Pb(II) and Cu(II), while the As(III) 
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adsorption was thermodynamically favorable without any limitations. XPS analyses 

revealed that the surface oxygen-containing functional groups including hydroxyl 

groups were involved in the adsorption process. Thus, the whole Pb(II), Cu(II), and 

As(III) sorption studies on the nanoparticles indicated that the synthesized nanoparticles 

can be effectively used in the treatment of water polluted with the arsenic and heavy 

metal ions. 

 
Chapter 6 presented the fabrication of AC/TiO2 nanocomposites by varying the content 

of AC in the system. According to the results obtained from SEM and BET, TiO2 

nanoparticles were inserted into the external surface and inside the pores of AC and the 

surface area of the nanocomposites increased with the higher amount of AC. TGA 

results showed that AC was stable up to 400oC, however, presence of TiO2 

nanoparticles in the system led to weight loss at earlier stage approximately at 100oC. 

Moreover, it was found that AC/TiO2 composites exhibited a better adsorption capacity 

for As(III) which is 2.7 times greater than that of bare TiO2. The maximum As(III) 

removal was found 26.62 mg/L for the 10-AC/TiO2 nanocomposite at pH 7.0. However, 

increasing the amount of AC in the composite system led to decline in the adsorption. 

The 10-AC/TiO2 nanocomposite have a potential application for arsenic removal in 

water treatment due to its high As(III) adsorption –desorption capabilities. The removal 

efficiency after five cycles was 82%, demonstrating that it could be used as an effective 

material for many cycles by regeneration. Embedding the nanoparticles onto AC 

provided the prevention of release of the nanoparticles to the environment and at the 

same time, the reactivity of them improved as compared to bare TiO2.  

 

Chapter 7 highlighted the improvement of As(III) removal from water by using 

synthesized TiO2 nanoparticles under UV-A light irradiation. Sol-gel method was 

preferred to synthesize TiO2 nanoparticles ranging 10 to 150 nm. Adsorption 

experiments were performed in order to obtain optimum pH and contact time. The 

obtained TiO2 nanoparticles revealed better results for As(V) adsorption capability as 

compared to As(III).  Based on the R2 values, the pseudo second order model described 

the adsorption kinetics. It was observed that the low As(III) adsorption capacity of TiO2 

nanoparticles from water limits its application in contaminated water treatment and 

adsorption of As(III) was enhanced by UV-A light irradiation. The maximum 

adsorption capacities were found 12.13 mg/g for As(III) in the absence of UV-A 
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illumination, 41.38 mg/g for As(V), and 36.55 mg/g for As(III) in the presence of UV-A 

illumination. The removal capacity of total arsenic from water was improved by UV-A 

light irradiation about approximately third times as compared to purely adsorption 

process of TiO2 nanoparticles. 

 
 

 
8.2. Future Works 

 
 
 

The adsorption experiments for Pb(II) and Cu(II) by using synthesized 10-AC/TiO2 

nanocomposite which indicated better adsorption capability for As(III) is recommended. 

In addition to that, the As(III) adsorption behavior of the nanocomposite would be 

analyzed under UV-A light illumination. The As(III), Pb(II), and Cu(II) adsorption 

abilities of other carbonaceous material such as carbon nanotubes, carbon nanofibers, 

and graphene might be further tested. 
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