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Abstract

In this thesis we consider the following question: Given a finite separable non-Galois
extension F/K of a global field K, how a prime P of K decomposes in the field F.

In the first part, we study the Galois extension M/K where M is the Galois closure
of F/K and action of Galois group G of M/K over the set of primes of F lying over a
prime P in K. We obtain a one to one correspondence between the double coset space
of G with respect to certain subgroups of G (depending on P and F) and the set of
primes of F lying over P. Under this correspondence ramification indices and inertia
degrees are explicitly determined.

Then we investigate the case where G is a finite group of Lie type and F is the
intermediate field corresponding to a parabolic subgroup of G. We obtain that the
number of primes of F' lying over an unramified place with given residue degree can be
given as polynomials in a power of the characteristic of the variety G. This polynomials

depend on the length function on the certain subgroups of the Weyl group of G.



ASALLARIN SONLU CISIM GENISLEMELERINDE CARPANLARINA AYRILISI

Ozgiir Deniz Polat
Matematik, Doktora Tezi, 2013

Tez Danigmani: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: Galois olmayan genigleme, cisim, asal, Galois grup, ¢ift koset

uzay1, sonlu Lie gruplari, Weyl grup, ramifikasyon derecesi, kalan derecesi

(")zet

Bu tezde su sorunun cevabini arastirdik. Verilen bir K cisminin Galois olmayan F
geniglemesinde K’ in bir asali, F'de nasil carpanlarina ayrilir?

Ik boliimde F/K geniglemesinin Galois kapanigi olan M cismi ve bu cismin K
tizerindeki Galois grubunun K’daki herhangi bir P asalinin F cismindeki asal ¢arpanlar
tizerindeki aksiyonunu inceledik. Boylelikle G’in belirli altgruplarina gore belirlenmig
¢ift koset uzayiyla (P ve F tarafindan belirlenen) P’in F’deki asal ¢carpanlarindan olugan
kiime arasinda birebir bir fonksiyon bulduk. Bu fonksiyonun goriintiisii altinda P’in
her bir asal ¢arpani i¢in ramifikasyon ve kalan derecelerini acikca belirledik.

Daha sonra G’in sonlu bir Lie grup oldugu ve F’inde G’in parabolik bir altgrubuna
kargilik geldigi durumu inceledik. Bu kosullar altinda K’in F iizerinde ramifikasy-
onun olmadigr P asallari icin, kalan derecesinin belli bir say1 oldugu asal ¢arpanlarinin
sayisinin bir polinom seklinde verildigini belirledik. Bu polinom G’in tizerinde tanimh
oldugu cismin karakteristiginin bir giicii olarak verilir ve G’in Weyl grubu iizerindeki
uzunluk fonksiyonunun bu grubun belli altgruplar: tizerindeki goriintiisii tarafindan

belirlenir.



To my grandfather and my brother Ulas



Acknowledgments

I am grateful to everybody.

vi



Table of Contents

—Abstract
[ Ozed]

Acknowledgments|

(1 _Introduction|

[2

Group-theoretical Data Associated to Finite Non-Galois Extensions|

[2.1  Decomposition of Places in Non-Galois Extensions|. . . . . . . . .. ..

2.2  Decomposition ot polynomials over . . . . . .. ... ... ... ...

2.3 The Decomposition of 9™ +x —al . . . . . ... ... ... ... ...

More Results for a Finite Group of Lie Type|

[3.1 Methods of Counting the Double Cosetsot G| . . . . . ... ... ...

3.2 Further Results for Finite Groups of Lie Typel . . . . . . . .. ... ..

3.3 Decomposition of the Polynomials ™V +2x—a| . . ... ... ... .

Appendix|

4.1 Structure of Algebraic Groups| . . . . . . . . ... ...

4.2  Finite Groups of Lie Type|

Bibliography|

vil

iii

iv

vi

—

40
40
47

51



CHAPTER 1

Introduction

In this thesis we are interested in the following question: Given a finite seperable
extension of function fields F'/ K, what we can say about the decomposition of a place
P of K in F'?7 Though all results hold for any finite seperable extension of global fields,

we consider K as a function field over the constant field F.

Our motivation comes from a very interesting article of Bluher. In her work, Bluher
has shown that if F, C F, the number of roots of h(z) = 29! + az + b in the field F,
a,b € F is either 0,1,2 or ¢+ 1. Her result can be interpreted in the theory of function
fields as follows. If F, C F, then in the extension F(x)/F(h(z)), there are either 0, 1,2
or ¢ + 1 rational places of F(x) lying over the rational place P, of F(h(z)). In a series
of papers, Abhyankar has constructed explicit polynomials h(x) over F, such that
F(x)/F(h(x)) has Galois closure M whose Galois group Gal(M/F(h(z))) is a classical
group defined over F,. In particular he has shown that when h,(z) = ™V + 2 +1
where (n—1) = ¢" ' +¢"?+...+ 1, then Gal(M/F(h,(z)) is isomorphic to PGL(n, q)
(see |1]).

In her paper, Bluher has shown that the splitting field M of E(x) has Galois group
G = Gal(M/F(h(z))) which is a subgroup of PGL(2,q). Her method is the following:
She has labeled the roots of h(z) as points of the projective line P! (F,). Then she has
constructed an action of PGL(2,q) on the set of roots S = {ry,, ..., 7u,,,| vi € P'(Fy)}
of h(z) and this action of PGL(2, q) on S is similar as on P* (Fg). Namely o(ry) = 7o)
for o € P}(F,) and v € P'(F,). Then he has analyzed this extension in detail and has
given the result.

We have started to study any finite separable extension F' of K with Gal(M/K) ~
PGL(2,q) where M is the Galois clousure of F//K. We also assume that F is finite.
First we deal with the decomposition of unramified places P of K in F. By fundamental
theorem of Galois theory the extension M/F is a Galois extension and H = Gal(M/F)
is a subgroup of G. Our method is to use the transitive action of G on the places R
of M lying over P. We know that the restriction @) of each R to the field F is a place



Q@ of F' lying over P and again the action of H on the places R of M lying over @ is
transitive.

On the other hand, the subgroups D := D(R|P) C G (respectively D(R|Q) C H)
fixing R are cyclic by our assumption that P is unramified. By Dickson’s theorem
(see Theorem 2.3.12) we know all subgroups of G' and their structures. We know also
the number of fixed points of each element g € PGL(2,q) when acting on P!(F,).
Then we have observed that for any unramified place P in F'/K the number of places
Q@ of F with residue degree f(Q|P) = 1 is either 0,1,2 or ¢ + 1. After that, we
have enabled to formulate the general case, i.e for any G and any place P of K we
have a correspondence between the places () of F' lying over P and the double coset
space H\G/D. Furthermore we also determined ramification index e(Q|P) and residue
degree f(Q|P) for each () under this correspondence.

In Chapter two, first we discuss this correspondence (Theorem 2.1.4). Then since
in a finite separable extension F/K there are only finitely many ramified places, we
focus on the decomposition of an unramified place P in a non-Galois extension F/K.
In the Galois extension M /K, each unramified place P determines a conjucagy class in
G. This conjugacy class is called Artin class of P in M /K. Then using the Cheboterev
Density Theorem, we have shown that the decomposition of P in F// K strongly depends
on the Artin class of P in M /K and the subgroup H. In Section 2.3, we give another
proof of Bluher’s result using these arguments (Theorem 2.3.18). Indeed we do not
just give the number of roots of 72,(3}) but also give the number of irreducible factors
m; of h(z) of degree i over the field F.

By the Classification Theorem of finite simple groups, we know the importance of
finite groups of Lie type. In fact, almost all finite simple groups are in these classes.
Therefore we have concentrated on these groups and we have investigated the de-
composition of places in this extensions. Our viewpoint is to consider these groups as
algebraic groups over finite fields reformulated by in terms of Frobenius endomorphisms
(see Appendix, Section 2). This reformulation is given by Steinberg as follows: Let
G be an algebraic group defined over Fp, and let F be a Frobenius endomorphism on
G. Then the subgroup GF¥ of G fixed by F is a finite group of Lie type and all these
groups arise in this way. The endomorphism F conveys the algebraic group structure
of G to G¥. Let W be the Weyl group of G. The action of F on G gives rise to an
automorphism ¢ on W.

It is well known that the identity component Cg(s)? of the centralizer of a semisim-
ple element s € G is a connected reductive group. When s is F-rational, then Cg(s)°
is also F-rational. Therefore F also acts on the Weyl group W (s) of Cq(s)? which is a
subgroup of W. This action of F on W(s) is closely related to that on W i.e. F acts
on W(s) as the automorphism w o ¢ for some w € W. The subgroups W (s)(w o ¢) of
W (s) which are fixed by w o ¢ pointwise, are our main objects. They give polynomials
in ¢ which completely determined by the length function I of W on W (s)(w o ¢). We



here note that they are parabolic subgroups of W in general.

In Chapter 3, first, assuming that H = Ng(H), we have given a method to deter-
mine the number m; of places @ of F with f(Q|P) = i for an unramified place P of
K. Then we have assumed that G is a finite group of Lie type and H is a parabolic
subgroup of G. If the Artin class of P is a conjugacy class of a semisimple element s, we
have shown that the number m;, for unramified place P can be given by a product of a
polynomial in ¢ and a factor, determined explicitly in Section 3.1. In short, the Artin
class of P in M/K completely determines these polynomials. When Artin class of P
is a conjugacy class of an arbitrary element g = su, where s semisimple, u unipotent
(see Section 4.1), we also give the exact value of m; for each 7. It is the number of
F-rational points of a subvariety of certain homogeneous space, arising from a closed
connected subgroup of Cg(s)?/ . It can be shown that also in this case, m; can be
given in terms of polynomials determined by a subset of W(s) and the length function
l.

In Section 3.3, we apply our arguments, to decompose the polynomials h,,(z) con-
structed by Abhyankar.

In the Appendix we recall some facts and definitions from the theory of algebraic

groups that we have used throughout this thesis.



CHAPTER 2

Group-theoretical Data Associated to Finite Non-(Galois Extensions

2.1. Decomposition of Places in Non-(Galois Extensions

The main result of this section (see Theorem below) relates the ramification
behavior of a place in a finite non-Galois extension of function fields with certain

group-theoretical data of the Galois group of the Galois closure of this extension.
For the convenience of the reader, we first fix some notation. Denote by

[F a finite field,

[F, the finite field of cardinality ¢ and characteristic p,

K a function field having F as its full constant field,

F/K a finite separable field extension,

M /K the Galois closure of the extension F'/K,

G = Gal(M/K) the Galois group of M/K,

H = Gal(M/F) C G the Galois group of M/F,

P the set of places of a function field E/F,

Opg the valuation ring of the place R € Pg,

Er the residue class field of the place R € Pg.



Let L/E be an extension of function fields. For P € Py and Q € Py, we use Q | P
if P C ). We denote by e(Q|P) and f(Q|P) the ramification index and the relative
degree of Q|P, respectively.

Proposition 2.1.1 Let F' be a finite extension of K.
(i) For each Q) € P, there is exactly one place P € Pk such that Q|P.

(i) Conversely, every place P € Pk has at least one, but only finitely many extensions
P € Pp.

Proof: See [25], Proposition 3.1.7. O

Fix a place P € Pk, a place @) € Pr and a place R € P, such that @ lies over P
and R lies over (). We denote by @)1, ..., Q; all extensions of P in F' and by Ry, ..., R;
all extensions of P in M. Without loss of generality, say ()1 := @ and R, := R.

The Galois group G acts in a natural way on the set { Ry, ..., R;}. Define the following

sets:
D :=D(R|P)={c € G | o(R) = R}

I:=I(R|P) ={7 € G| 7(w) =w modR, w € Og}
D and I are the decomposition group and the inertia group of R/P.

We need the following facts related to these subgroups which are significant for the

rest of the section.

Proposition 2.1.2 (i) The Galois group G acts transitively on the set { Ry, ..., Ri},

and hence every place R; can be written as R; = o(R) for some o € G.

(i1) D(R|P) and I(R|P) are subgroups of G of order e(R|P) - f(R|P) and e(R|P),

respectively.

Proof: See [25], Theorem 3.8.2.

Proposition 2.1.3 Suppose that M /K is a Galois extension with the Galois group G
and R is a place of M lying over a place P of K. Let 0 € G. Then D(o(R)|P) =
oD(R|P)o~" and I(o(R)|P) = ocI(R|P)c.

Proof: See [21], Proposition 9.7. O

As an immediate consequence of Proposition 1.1.1 and 1.1.2, each place Q;, 1 <1i < s,
is the restriction to F' of o(R), for some o € G. We write Q; = o(R)|r.

For ¢ € G we denote by Ho D the double coset of o with respect to the subgroups
D, H CG,ie.
HoD ={top| 7€ H and p € D} .

5



Observe that HoD = Ho'D if and only if o' € HoD. The set H\G/D represents the
set of all double cosets of G modulo H and D.

Now we can state the main result of this section.

Theorem 2.1.4 Let F/K be a finite separable extension with the Galois closure M.
Fiz a place R € Py lying over P € Pk, and denote by D(R|P) =: D and I[(R|P) =: 1
the decomposition group and the inertia group of R/ P, respectively. If H is the subgroup
of G corresponding to the field F', then the following hold.

(i) There is a bijection between the set {Q1,...,Qs} of all places of F that lie over

P, and the set of double cosets of G modulo H and D, H\G/D, given by

®:Q;=0(R)|p+— HoD .

(ii) Let Q; be the place corresponding to the double coset HoD. Then we have:

(QP) - f(QP) = 2L _ [HoD

= = 2.1
loDo=' N H| |H| (2.1)

@lp) = i = ]

= = 2.2
lolo~' N H| |H| (22)

Proof:

(i)

First we show that ® is well-defined. In fact, suppose that Q; = o(R)|r =
o'(R)|r. As M/F is Galois and H is the Galois group of M/F, there exists an
automorphism 7 € H such that o(R) = 70’(R). Hence o~ 'r¢’'(R) = R which
shows that 0~ '70’ =: p € D. We conclude that ¢’ = 77'op € Ho D and therefore
Ho'D = HoD.

Next we show that ® is one-to-one. Suppose that HAD = HoD with o, A € G.
This means that A = 7op for some 7 € H and p € D. It follows that \(R) =
Top(R) = To(R). Since 7 € H, the places \(R) and o(R) are conjugate over F.
Therefore A(R)|r = 0(R)|r, as desired.

The fact that ® is onto, comes from the definition of ® : the double coset Ho D
is the image of the place o(R)|r under ®.

By definition, the decomposition group of o(R)|Q; is given by
D(c(R)|Q;) = HN D(o(R)|P) = HNoDo™* .

By transitivity of ramification indices and residue degrees of places in finite sep-

arable extensions K C F' C M, we obtain the following equality.



e(QilP) - f(Qi|P) =

e(U(R)‘IP) : ;%a(R)!P) _ D] (2.3)

Qi) - f(o(R)|Qi)  |[HNoDo™!|
In the same way, since

I(0(R)|Q;) = HNolo ™,

and e(o(R)|Q;) - e(Qi|P) = e(c(R)|P) by Proposition 1.1.2(ii), we obtain the
equation
_ e(o(R)|P) 1|

AQIP) = SRy ~ THAalo T

(2.4)

. We fix a complete system of representatives

Now we calculate £
p1,- -, pr of left cosets of H modulo its subgroup H NoDo™ !, so |H|=k-|HN

oDo™1|.

Claivm 1: HoD is the disjoint union of the left cosets pyoD,--- , proD of G
modulo D, hence |HoD| =k - |D|.

Clatm 2: Hol is the disjoint union of the left cosets p1ol, - - -, prol of G modulo
I, hence |Hol| =k - |I].

Assuming the Claim 1 is true, we obtain the following equations.

D] _|Dl-k _|D| |HoD| _|HoD| (2.5)
|[HnoDo™'| — |H|  [H] [D| — |H| '
In the same way assuming claim 2 we obtain
1] _ -k _ 1] |Hol| _|Hol (2.6)
|Hnolot|  [H] [H] 1] |H]| '

Equations (1.1) and (1.2) and Equation yield the statement of our theorem.

Proof of the Claims: We will only prove claim 1. The proof of claim 2 is the
same as the proof of claim 1. Clearly, the double coset HoD is the union of all left
cosets poD with p € H. For given p € H, let p;, be the representative of the coset
p(HNoDo™ '), then p = pee with € € cDo~t. Write € = gdo! with 6 € D, then
poD = pyeoD = pyodotoD = p,oD. This shows that

k
HoD = U peo D,
(=1
and it remains to show that the cosets p,oD (1 < ¢ < k) are pairwise distinct.

Assume that p,,0D = p,oD. Then p,,0 = p,od for some § € D and therefore p, ' p,, =
cdoc~t € HNoDo~t. This implies that m = ¢ and finishes the proof of the claim. O



Corollary 2.1.5 Let notation be as above. Then e(Q;|P)f(Qi|P) = 1 if and only
if cDo~t C H, where Q; corresponds to HoD. In particular, if P is rational and
oDo~' C H, then Q; is rational.

Proof: This is clear by Theorem 1.1.3 (ii). O

Definition 2.1.1 Let F/K be a finite function field extension of degree l. To any
unramified place P € P, we attach an l-tuple Ap = {A,....., A4/} € N with the
property there are exactly A; places Q of F lying over P with f(@|P) = 1. We call the
l-tuple Ap the splitting type of P.

Since the extension F'/K is finite, the cardinality of the set
Ap/k = {Ap| P is unramified in P} C N!

is finite. Indeed it is bounded above by the number of partitions of [. Now we want to

determine the cardinality of Ap/x. But first we need the following results.

Theorem 2.1.6 Let M/K be a Galois extension and R be a place of M lying over
a place P of K. Then the extension Mr/Kp is a Galois extension with cyclic Galois
group Gal(Mgr/Kp). There is a natural homomorphism from D(R/P) onto Gal(Mpg/Kp)
with kernel I(R/P). Hence the inertia group I(R|P) is a normal subgroup of D(R|P).
In particular, if P is unramified, then D(R|P) is a cyclic group.

Proof: See [25], Theorem 3.8.2. O

When P is unramified, we have an isomorphism D(R|P) = Gal(Mp/Kp) by The-
orem [2.1.6] If m is the cardinality of Kp, then the group Gal(Mp/Kp) is generated
by ¢p which is defined by ¢p(z) = 2™ for € Mp. Then there is unique element
or € D(R|P) which corresponds to the element ¢p under this isomorphism. We call
or the Frobenius automorphism of R for the extension M /K. By Proposition and
Theorem [2.1.6, we see that as R varies over the places above P in M, the Frobenius
automorphisms og fill out a conjugacy class in GG. Therefore in a Galois extension
M/ K, to each unramified place P in K we attach a conjugacy class in G . This conju-
gacy class is called the Artin conjugacy class of P. Any element of this class is called

a Frobenius element of P.

Theorem 2.1.7 (Tchebotarev Density Theorem) Let M/K be a Galois extension of
function fields with Galois group G. Let C be a conjugacy class in G. Let S be the
set of unramified places of K in F/K whose Frobenius elements are in C. Then the

Dirichlet density of S is %



Proof: For the proof see [21], Theorem 9.13A O
One of the important consequences of the Tchebotarev Density Theorem is that
every conjugacy class C is the set of Frobenius elements for infinitely many unramified

places of K.

Corollary 2.1.8 Let F'/K be as above, and M be its Galois closure with Galois group

G = Gal(M/K). Let H C G be such that M" = F. Denote by Cg the set of all distinct

conjugacy classes in G. Let C € Cg and choose g € C. Let A; be the number of double
[Ho(g)|

cosets Ho(g) with “E = Then there is a one to one correspondence between Cg

and Apk, which is defined as follows:
CG — AF/K
C— (Al,...,Al)

Proof: Observe that the number A; is independent of the choice of g € C. To see this,
let ¢’ be another element in C. Then ¢’ is a conjugate of g by an element A € G. Now
for each representative p € Ho(g), we obtain that Hp(g) = HoA{g')A~!. Therefore
each double coset HoA(¢') of G modulo H and (¢’) is a translation of Ho(g) by A.
Furthermore, since ¢ is the number of distinct right cosets of H in Ho(g), then the
number of right coset of H in HoA(g') is also i. Hence we conclude that the number
A; is independent of the choice of g € C. Set Ac = (A, ....A;). Now we want to show
that {A¢| C € Cq} = Ap/k. By Theorem if C is the Artin class of P € Py in
M/K, then Ac = (Ay,....A;) is the splitting type of P in F'/K. Hence every element of
Ap/k is of the form A¢ for some C € Cg. On the other hand by Tchebotarev Density
Theorem we know that every conjugacy class C occurs as the Artin conjugacy class for

infinitely many places of K. Hence we obtain the desired result. O

Notation: We denote by A¢(7) the i-th coordinate A; of Ac.

2.2. Decomposition of polynomials over F

Let h(x) = 2F + ap_12" ' + ... + a, € Flz]. Then h(zx) induces as a function over
F. We can extend h(z) as a rational function on the projective line P'(F) by sending
oo to oo. Then h(x) gives rise to an extension of rational function fields F(x)/F(z),
where z = h(z). The following proposition gives the basic idea how to use the theory
of function fields to decompose h(z) in the field F.

9



Proposition 2.2.9 Let P, be the rational place of F(z) that corresponds to z—« where

a € F. Assume that h(x) — « decomposes over F as

h(z) —a =TT hi(z)™

where h;(x)’s are pairwise distinct, monic, irreducible polynomials of degree > 1. Then
Qhs(z) € Prey are the only places of F(x) lying over P, and we have e(Qn,z)|Pa) = i
and f(th(:c |Fo) = deg(hi(x)), fori=1,.

Proof: Let (y)]g(x) resp. (y)g “ denote the zero divisor of y € F(z) in Div(F(z))
resp. in Div(F(z)). By assumption h(z) —a = [[;_; hi(z)™. Hence (h(z) —a)g(z) =P,
and (h(z) — a)gm = 1 1n;Qn). For a place P € Pg(,), consider its conorm (with
respect to the extension F(x)/F(z)) defined as

Cong(ayw)(P) = Y e(P'|P) - P'
PP

where the sum runs over all places of F(z) lying over P. The conorm map is extended
to a homomorphism from Div(F(z)) to Div(F(z)) by setting

COHF(QU)/]F(Z)(Z np-P)= Z np - Conp(y)/r(z) (P).

By [25] Proposition 3.1.9, ConF(x)/F(z)(y)g(z) = (y)g(x) for 0 # y € F(z). Therefore
the places Q) are the only places of F(z) lying over P, with e(Qp,@)|P) = ni.
Conversely, let Qq, .....Q be the all places of F(x) that lie over P, with e(Q;|P,) is

equal to n;. Since (z — a) = P,, then

F(z
Cong(ayp() (2 — a)g” = D i+ Qi = (h(z) — o)y ™.
QilPa
Now we obtain that if h;(x) is the irreducible polynomial that corresponds to Q; for
each 1 <i < s, then h(z) — « is the product []7_, hi(z)™. O

Applying Theorem to the extension F(x)/F(h(x)), we obtain the following result.

Theorem 2.2.10 Let h(x) be a polynomial with coefficients in F. Denote by M the
Galois closure of F(x)/F(h(x)) with Galois group G = Gal(M/F(h(x))) and by H the
subgroup corresponding to F(x). Let P, be the rational place of F(h(x)) corresponding
to z — a and R be any place of M lying over P with the decomposition group D and
the inertia group I. Then the following hold.

(i) h(z) — « is a product of exactly |H\G/D)| distinct irreducible polynomials in T,
and each irreducible polynomial corresponds to a double coset Ho;D.

(i) If hi(x) corresponds to Ho;D, then the multiplicity m; of h;(x) is the number
of left cosets of H in Ho;l and the degree of hi(x) is -, where s; denotes the
number of left cosets of H in Ho; D .

10



Now we want to determine the number of roots of A(z) —a in F

Corollary 2.2.11 Let notation be as above and assume that h(x) — « is a square free
polynomial with coefficients in F. Let k be the number of roots of h(x) —a in F. Then
ke {Ac(1)] C e Cq}. Moreover, if we denote by k; the number of irreducible factors
of degree i of h(z) — « in F, then k; € {Ac(i)| C € Ca}.

Proof: Consider the extension F(z)/F(z) with the Galois closure M. By Proposition
, the decomposition of the place P, € Pp(;(»)) corresponding to z — v is determined
by the decomposition of h(x) —« in F(x). Since h(x)—« is square free, P is unramified.
By Corollary [2.1.8] - Ap is of the form A¢ for some C € Cq. Since Ac(i) is defined as
the number of places Q of F over P with f (Q|P) = ¢ the result follows. a
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2.3. The Decomposition of 29! + 2 — «

Let ¢ = p* and F, C F. In this section, we consider the extension F(z)/F(h(x))
where h(z) = 277! 4+ z € F[z]. The irreducible polynomial of x over F(h(z)) is G(T) =
ToH LT — h().

In [1] Proposition 5.2, Abhyankar showed that if M is the Galois closure of the
extension F(z)/F(h(z)), then Gal(M/F(h(x)) = PGL(2,q). The more general form
é(T) = T7! + 4T + 3 with coefficients in any field L containing F, was studied by
Bluher in [2]. The polynomial G (T") also gives the group PGL(2, q) as the Galois group
of corresponding extension. Moreover, she obtained more detailed information about
the possible number of roots of G(T) in L.

This section is devoted to find the possible decompositions of h(z) — v in F for all
a € F. Write h(z) = 2. Let P, € Pg(,) be the rational place of F(z) corresponding to

the irreducible polynomial z — «.

In 1], p.3 line 16, Abhyankar remarked that the extension F(z)/F(z) gives an
unramified covering of the (once) punctured affine line over F, (punctured at z = 0).
So we conclude that there is no ramification for the rational places P € Pg(,) other
than P,, and Fy. Therefore by Theorem we conclude that for any rational place
P, with a ¢ {00,0} the decomposition group is D(R|P,) = Gal(Mg/Fp). Recall that
it is a cyclic group.

In Section 1.1, we have seen that the splitting type of a place P in the extension
F(x)/F(h(x)) depends on the Galois group PGL(2,q), the Artin conjugacy class of
P in PGL(2,q) and the subgroup H of PGL(2,q) whose fixed field is F(z). So we
will investigate cyclic subgroups of PGL(2,q) to determine D(R|P). Actually all the

subgroups of PGL(2,q) and their structures are known. Below we list all of them.

Notation: We denote by S; and A; the symmetric group and the alternating group of
degree [. Dy is the dihedral group of order 2s.

Theorem 2.3.12 (Dickson’s Theorem) PGL(2,p*) has only the following subgroups:
(i) elementary abelian p-groups of order p’ with f < a;
(i) cyclic groups of order k with k|(p® £ 1);

(iii) D, with s|(p® £ 1);

12



(iv) Ay forp>2orp=2anda=0 (mod2);
(v) Sy forp>2;
(vi) As forp=75 or p®* —1 =0 (mod5);

(vii) semidirect products of elementary abelian p-groups of order p/ with cyclic groups
of order k with f < a, k|(p/ — 1) and k|(p* — 1);

(viii) PSL(2,p") and PGL(2,p’) with f|a.

Proof: See [26], Theorem 3. O

By Theorem [2.3.12] we conclude that there are only 3 types of cyclic subgroups of
PGL(2,q). If o generates one of them, then the order of ¢ is either p or it must divide
qg+t1.

It is well known that PGL(2,q) acts 3- transitively on P'(F,), the projective line
over F,. Another important property of the action of PGL(2,q) on P'(F,) is that

only identity fixes three elements of Pl(Fq). Now we give properties of subgroups of
PGL(2,q) fixing a point in P*(F,).

(i) The stabilizer B, C PGL(2,q) of a point v € P*(g) has order ¢- (¢ —1). Any two
of such groups are conjugate and there are exactly ¢+ 1 such groups in PGL(2, q).
Note that these subgroups correspond to (vii) of Theorem [2.3.12

(ii) The group 7., which is the intersection of B, and B,, is a cyclic group of order
g — 1. Any two subgroups of this type are conjugate in PGL(2,q), and if they

are distinct, their intersection is trivial.

The subgroups B, are important in our context, because they are conjugate to the
subgroup H of PGL(2,q) corresponding to the intermediate field Fym (). Indeed

|Gal(M/Fqm(2))| = [PGL(2,9)] = q- (¢ —1)- (¢ +1)

and

[Fom () : Fgm(2)] = q+1.
So the order of H must be ¢ - (¢ — 1). On the other hand, by Theorem the
subgroups of PG L(2, ¢) having this order are semidirect products of elementary abelian
p-groups and cyclic groups of order ¢ — 1. The subgroups B, have this order and we
remarked above that these subgroups of PGL(2,q) are all conjugate and there are

exactly ¢ + 1 subgroups of this order. Hence H must be one of them. We conclude
that H = B, for some u € P'(F,).

The following Theorem gives the number of fixed points of ¢ € PGL(2, q) arising from
the action of PGL(2,q) on P'(F,).

13



Theorem 2.3.13 Let g be a nontrivial element in PGL(2,q) of order d # 2 and k be
the number of fized points of g. Then one of the following holds.

(i) d=p and k = 1;
(ii) d|(qg+1) and k = 0;
(iii) d|(q — 1) and k = 2.
Proof: See [3], Theorem 1. O

Now we consider the case d = 2 when p is odd. For odd p, PGL(2,q) contains
two classes of involutions. The centralizer of an involution is a dihedral group of order
either 2(q + 1) or 2(¢ — 1). See |16], Lemma A.3. Let g € PGL(2,q) be an involution
whose centralizer is a dihedral group Dy(44.1). We want to show that g does not fix any
element of Pl(IFq). Let w € D41y be a generator of the cyclic subgroup of Do)
of order ¢ + 1. By Theorem w does not fix any element in P'(F,). But w is in
the centralizer of g. Therefore if ¢ fixes an element u, then wig(w®) ' (v) = g(u) = v,
hence g also fixes (w') ' (u) for each i. Since all (w') '(u) are distinct, we conclude
that g fixes ¢+ 1 elements. It is well known that in PG L(2, q) only the identity element
fixes more than three elements. Hence g does not fix any element. Similarly if g is an
involution of PGL(2,q) with centralizer Dy(,_1), it can be shown that g fixes 2 points
of Pl(IFq). Indeed let w € Dyy—1) be a generator of the cyclic subgroup of Dy—1) of
order ¢ — 1. We know by Theorem that w fixes two elements u; (for i = 1,2)
of PY(F,). Since w is in the centralizer of g, then gwg™(u;) = w(u;) = u;, and g fixes
w™t(u;) for (i =1,2). We conclude that g fixes two elements of P'(F,).

Let (g) denote the subgroup of PGL(2,q) generated by the element g, and H = B,
for some u € P'(F,). To determine the decomposition of P, in F(x)/F(z) by applying
Theorem [2.1.4] we first need to count the number of double cosets Ho(g) of G modulo
H and (g), for one of three types of g mentioned in Theorem [2.3.13]

Remark 2.3.1 Let G be any group with subgroups H, N and let H\G be the set of
right cosets of H in G. Then N acts on the set H\G as given below.

H\G x N - H\G

(Ho,k) — Hok

Then each orbit of N on the set H\G gives a double coset HoN for some Ho in the
orbit. Since double cosets are disjoint, for each subgroup N of G, the double cosets
space H\G/N gives a partition of the set H\G . In particular, each double coset Ho N
corresponds to a subset of H\G.
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Lemma 2.3.14 Let H be a subgroup of G, g € G of order n and 0 € G. Let i be the
least positive integer such that ¢' is contained in o *Ho. Then the number of right

cosets of H in the double coset Ho(g) is equal to i.

Proof: Clearly, the cosets Ho, Hog, ...., Hog'™! are contained in Ho{g). We claim
that they are pairwise distinct.In fact, assume that Hog/ = Hog* for some 0 < j < k <
i. Then Hog*7 = Ho, so g*7 € 0~'Ho. Since k — j < i, we obtain a contradiction
to the choice of 7.

li+k

Now we will show that Hoyg = Hog" for some integers k,l with 0 < k < 4 and

0<I If¢g" € 07 Ho, then ¢" € 07'Ho, and hence ¢" = 0= ho for some h € H. Then
Hog'g" = Ho(07'ho)g* = Hog"

So there are exactly i right cosets of H in Ho(g). O

From now on H denotes the subgroup B, of PG L(2,q) that fixes the point u € P'(F,).
Recall that there are g+1 right cosets of H in PG Ly (q) since the order of H is ¢-(¢—1).

Lemma 2.3.15 Let g € PGL(2,p") =: G be an element of order p. Then there are
exactly p"~' + 1 double cosets of G modulo H and {(g). p™ ' double cosets contain

exactly p right cosets of H. The remaining one consists of only one coset of H.

Proof: Since g has order p, by Theorem [2.3.13] g fixes only one point, and so g
is contained in B, for a unique v € P'. Let ¢ € G be such that o(u) = v. Then g is
contained in cHo™' = B,. So Ho{g) is the double coset consisting of only the right
coset Ho by Lemma2.3.14] Since ¢ fixes only one element, it is not contained in any
other conjugate THT~! # o Ho~!. Therefore the number of right cosets of H in Hr(g)
is exactly p, by Lemma Hence there must be exactly p™/p = p"~! double cosets
Bo(g) containing p right cosets of H. O

Lemma 2.3.16 Let g € G be an element of order k dividing p — 1. Then there are
2+ q;kl double cosets of G modulo H and (g). Two of these double cosets contain
exactly one right coset of H, and (q — 1)/k double cosets contain exactly k right cosets
of H.

Proof: By Theorem , g fixes two elements v,w of P*. So ¢ is contained in
oHo™' and 6H5 !, where o(u) = v and 6(u) = w. Hence the double cosets Ho{g)
and Hao(g) consist of only one right coset of H, namely Ho and Hé. Since g fixes only
two elements, it is not contained in any other conjugates THT ™! ¢ {cHo ', 6 Ho'}.
By Lemma the remaining double cosets contain exactly k right cosets of H.
Hence there are (¢ — 1)/k double cosets which contain k right cosets of H. O
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Lemma 2.3.17 Let g € G be an element of order k dividing ¢ + 1. Then there are
exactly (q+1)/k double cosets of G modulo H and (g), containing k right cosets of H.

Proof: By Theorem , g does not fix any element in P'. Hence it is not
contained in oHo~! for any ¢ € G. By Lemma [2.3.14 each double coset Ho{g)
contains exactly k right cosets of H. Therefore there are (¢ + 1)/k double cosets of G
modulo H and (g).

Remark 2.3.2 In Section 1.1, Theorem M(m) we have seen that if @ corresponds
to the double coset HoD, then e(Q|P)f(Q|P) = %. Note that |IT;]|)| is the number
of right cosets of H contained in HoD.

Remark and Theorem [2.1.4] give the following result.

Theorem 2.3.18 Let h(z) — a = 27 + 2 — o with o € F\ {0}. Then h(z) — « is
a square-free polynomial and has one of the following decompositions into irreducible

factors over T :

(i) (x = B) [Li<po—r hi(x) with deg(hi(z)) = p;

(ii) (& = B1)(z = B2) [Tcoe s hil) with deg(hi(x)) = k > 1, and k(g — 1);
(iti) [Ticons hi(w) with deg(hi(x)) =k > 1 and k|(q + 1);
(i) [icqr(& = Bi).

Proof: We know by [1], Proposition 5.2, Gal(M/F(h(z))) = PGL(2,q). The
subgroup H that corresponds to F(z) must be B, for some u € P'. Since h(z) — a is
square-free, for the place P, corresponding to h(z) — « and a place R of M lying over
P, the decomposition group D(R|F,) is cyclic. Let g, be a generator of D(R|P,); i.e.
D(R|P,) = (ga). By Theorem 1.1.2 each place Q of F(z) lying over P, corresponds to
a double coset of G modulo H and (g,), say Ho(g,). Since there is no ramification,
by Remark F(Q|P) is the number of right cosets of H in Ho(g,). On the other
hand, (g,) is either one of the types of cyclic subgroups of PGL(2, q) in Theorem
or {id}. Then the cases (7), (7i) and (4i7) come from Lemmas 2.2.13, 2.2.14 and 2.2.15,
respectively. (g,) = {id} gives the last case. O

If =0, then h(z) =29 + 2z =2 (29+ 1) = - (v + 1)?. By Proposition [2.2.9] we
conclude that there are two rational places @), and Q.41 of F(z) lying over P, with
ramification indices e(Q.|Fy) = 1 and e(Q.11|Fo) = ¢.

Bluher had shown in her article [2] that the number of roots of g(x) is either 0, 1,2
or ¢+ 1. Now we state the same result as a corollary of Theorem [2.3.18}
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Corollary 2.3.19 Let g(x) = 27" + x + a be in Flx]. Then the number of roots of
g(x) in F is either 0,1,2 or ¢+ 1.
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CHAPTER 3

More Results for a Finite Group of Lie Type

In this chapter we will investigate the decomposition of P € Pk in the finite ex-
tension F'/K by assuming that the Galois closure M has the Galois group G over K,
which is a finite group of Lie type. We restrict ourselves to the case that [F': K] is
prime to char(G). Also we have the restriction that D(R|P) is a cyclic group. Under

these assumptions, we will attach a combinatorial data to the group G.

The first section is devoted to investigate general results under certain conditions

on the structure of D and the normalizer of H in G.

3.1. Methods of Counting the Double Cosets of G

Let K be a function field whose constant field F has cardinality r° with characteristic
r, and let F' be a finite separable extension of K. Let M be the Galois closure of the
extension F/K, with Galois group G. By H, we denote the Galois group of M/F.
Hence F is the fixed field of H. For a place P € Py, fix a place R € Py, that lies over
P. We denote by D(R|P) = D the decomposition group of R|P. Section 2.1 contains a
preparation to computing the number of double cosets of any group G with respect to

two subgroups H and N with the properties that Ng(H) = H and N is cyclic group.

We use the following notations:

Pr={Q : Q€ Pr, Q| P}
Pr(i) ={Q : Q € Py, e(Q|P)- f(QIP) =i}

This section is devoted to determine the cardinalities of PL and P£(i).
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Remark 3.1.1 Let H, N be any two subgroups of G. Let H denote the set of all
conjugates of H. There is an action of N on the set H defined as

NXxH—H

(z,9Ag™") = zgAg~ ™!

Lemma 3.1.1 Let notation be as above. Consider the actions of N on the sets H and
the set of right cosets of G modulo H. Then there is a bijection between the set of
orbits O\ of N on the set H\G defined in Remark 2.3.1 and the set of orbits O of
N on the set H defined in Remark|3.1.1. The bijection is given by

DH\G — DH
orb(Hz) — orb(z ' Hz)

Proof: Let z,y € G. We will show that Hx and Hy are in the same orbit of N in
the set O if and only if 2 'Hz and y~'Hy are in the same orbit in the set Oy.
Now assume that Hx and Hy lie in the same orbit. Then there is n € N such that
Hxzn = Hy. So zny ' € H and hence (amyfl)_l = yn~'z~! € H. This implies that
yn tx 'Hany ! = H and therefore y"'Hy = n~'a ' Han. That means that 2 'Hx
and y~'Hy lie in the same orbit in Oy.

Conversely, assume that 2 'Hx and y ' Hy lie in the same orbit of N in 9. Then
there is n € N such that n™'a ' Han = y~'Hy. So yn~'a " 'Hzny ' = H. Note that

! = y~lan. By our assumption Ng(H) = H,so zHz"' = H,

2z = yn~'z~! has inverse 2~
and z = yn~la=! € H. Hence H = Hyn 'z~! and it follows that Hyn~! = Hz. It
means that Hz and Hy lie in the same orbit of in O\ ¢. Hence the result follows.

O

Corollary 3.1.2 Let O € Op\q, and let O be the corresponding orbit in O4y with
respect to the bijection defined in Lemma (3.1.1, Then these two orbits have the same

cardinality.

As remarked in Chapter 2, the double cosets HwN can be seen as orbits of
N arising from the action on the right cosets of H. We can consider the length of the
orbit of Hw as the number of right cosets of G in the double coset HwN. Now by
Corollary this length is equal to the length of the orbit of wHw™!, arising from
the action of N on the set H.

The following theorem is very useful when computing the number of double cosets.
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Theorem 3.1.3 (Burnside’s lemma) Let N be a finite group acting on a finite set X.

Then the number of orbits of the action is

ﬁ S |findg).

geEN

where fix(g) denotes the set of x € X that are fized by g.

Proof: See [17], Theorem 3. O

Now we fix some notation that will be used in the rest of this section frequently;
pn(0) == |{d : dln, i|d} |
H(g'):= the set of all conjugates of H containing g

HE(g):= the set of conjugates H' of H, such that k is the least integer with g* € H'.

Remark 3.1.2 Note that by definition H(g") = |, H*(g), and that H = ||, H*(g).

Proposition 3.1.4 Let H be a subgroup of G with No(H) = H and let g € N be of
order n. Let fix(g) be the set of fixed points of g, under the action of N on the set H.
Then fix(g) = H(g)

Proof: Let N act on the set H by conjugation as in Remark [3.1.1} Then g fixes an
element H € # if and only if gHg™' = H. Since Ng(H) = H, then Ng(H) = H.
Therefore g must be in H. So fix(g) = H(g). O

Corollary 3.1.5 Let H be a subgroup of G with Ng(H) = H and let (g) denote the
subgroup of G generated by the element g of order n. Let ¢(n) denote the Euler ¢-
function. Then the number of double cosets of G modulo H and (g) is

A )+ 303 )

Proof: By Burnside’s Lemma, the number of orbits of the action of (g) on the set H

ﬁ S |fin(e).

1<i<n

is

We can write >, ;. | fiz(g")| as

> fia(g)l =Y |fie(g") + Y | fix(g)] (3.1)

1<i<n “n i|n

By Remark 3.1.2} we replace fix(g") with [ |, H*(g) for i|n. Then we obtain that
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Z1§i§n |fiz(g")| = Zim | fiz(g")| + Zi|n Zkh‘ LAO]

When kli, then the set H*(g) occurs in fix(g') on the right hand side. So H*(g)
is seen exactly p,(7) times in the right hand sum. Observe that if ged(i,n) = 1, then
fix(¢') = fix(g). Hence the first sum of the right hand side is ¢(n)|H(g)|. Multiplying
both sides with %, we obtain desired result. On the other hand, by Lemma we
know that the number of orbits of the action of (g) on the set H is equal to the number
of orbits of the action of (g) on the set H\G. Since the latter orbits are just double
cosets Hw(g) with w € G, the result follows. O

Proposition 3.1.6 The number of double cosets of G modulo H and (g) that contain
exactly v, © # 1 right cosets of G modulo H is

i) g

n

Proof: We know that double cosets of G modulo H and (g) are the orbits of (g) on
‘H by Remark 2.3.1. It is clear that the double coset Hw(g) corresponds to the orbit
of Hw in Op\¢. By Lemma m Hw(g) corresponds also to the orbit of w™'Hw. By
Remark , wtHw € H*(g) for some k in the set D3, We have seen in Chapter 2,
Lemma that, the number of right cosets of H contained in Hw(g) is the least
integer i such that ¢’ is contained wHw™". So i = k. There are exactly “"T“) |H(9)]

double cosets of length ¢ by Corollary |3.1.5] Hence we obtain the result. O

Proposition 3.1.7 The number of double cosets of G modulo H and (g) containing
Just one right coset of G modulo H is |H(g)|.

Proof: Suppose that ged(i,n) = 1, and let xtHz~! be any conjugate of H. Then
clearly g € xHx~! if and only if ¢ € vH2z~!. By Lemma 2.3.14 the number of right
cosets of G modulo H that are contained Hz(g) is 1. There are exactly ¢(n) integers
less than n and that prime to n. On the other hand for ¢ = 1, i|k for all & with
ged(k,n) # 1, which means that g is contained in all fix(¢g*) for ged(k,n) # 1. Hence
g occurs in second sum of right hand sum in exactly of n — ¢(n) times. When we
sum up all of them, and dividing it by the factor n, we obtain the desired result. O

Now we can state the main theorem of this section.

Theorem 3.1.8 Let F//K be a finite separable extension with Galois closure M. Let
G be the Galois group of M /K with subgroup H corresponding to the intermediate field
F. Assume that Ng(H) = H. Let P be a place of K such that D(R|P) is a cyclic
subgroup of G for some R € Py lying over P. If g is a generator of D(R|P) of order
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n, then the cardinality of P% is ), |PR(i)| where [PL(4)| is given by

H(g)| cifi=1
Pr(i)| = 228 %1i(g)| | ifiln
0 Jifitn

3.2. Further Results for Finite Groups of Lie Type

A consequence of the classification theorem of the finite simple groups is that most
finite simple groups are closely related to finite groups of Lie type. We will first explain

how a finite group of Lie type arises.

Let K be the algebraic closure of F,. The simple algebraic groups over K were
classified by Chevalley and fall into the following families:

classical types : A, B, C, D,
examples : SL(n+1,K), SO(2n+1,K), Sp(2n,K), SO(2n,K)
exceptional types : Go Ey Eg E; Eg

Let G be an algebraic group, and let IF, denote the field with ¢ = p™ elements. By
G(F,) we mean the rational points of the affine variety G in the field F,. They are
examples of finite groups of Lie types. But not all finite groups of Lie type arise in this
way. To unify the description of all finite groups of Lie type, Steinberg [24] studied an
arbitrary algebraic group endomorphism ¢ : G — G whose group of fixed points G°
is finite. The most basic example is the standard Frobenius map relative to q. The

resulting finite group of fixed points coincides with the group G(F,).

More complicated endomorphisms are obtained by composing the standard Frobe-
nius map relative to ¢ with a nontrivial graph automorphism 7 arising from the Dynkin
diagram of G. But not all Dynkin diagrams of simple algebraic groups listed above
have a non-trivial automorphism. The only simple groups with a nontrivial graph
automorphism are those of types A,, D,, and Fj.

Also for groups with root system of type Go, Fy, and Bs, more different endomor-
phism of G can be constructed, yielding Suzuki groups in type By with p = 2 and
g = 22" and Ree groups in type Fy and Gy. For type Fj, the prime p = 2 and for
type G5 the prime p = 3 yields these types of endomorphisms.
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Steinberg’s work shows that these are the only possible endomorphisms of G having
a finite fixed point subgroup. We call such an endomorphism of G a Frobenius map

on G and use the notation F for a Frobenius map.

Now by a finite group of Lie type we mean a group of the form G¥, where G is a
semisimple algebraic group and where F is a Frobenius map. Sometimes we will use G
as the finite group GF.

There is another characterization of finite groups of Lie type. G has a BN-pair
structure characterized by J. Tits. Indeed any connected algebraic group G has a BN-
pair structure and the BN-pair structure of G is endowed with BN-pair structure of
G. (see Appendix). In this section we will use frequently the notions that come from
the BN-structure of G.

We fix some notations. G is a connected reductive algebraic group and F is a
Frobenius map on G. G is the group of fixed points G¥ of G under F. We denote by
B a Borel subgroup of G and by T a maximal torus of G, with normalizer Ng(T).
W is the Weyl group of the algebraic group G with respect to T. It is isomorphic to
Ng(T)/T which is by definition the Weyl group of the BN-pair G with B = B and
N = Ng(T). See Section 4.2 for related argument.

By a rational subgroup of G we mean that it is an F-stable subgroup. Let B be a
rational Borel subgroup of G containing a maximal torus T. It always exists by the

Theorem 4.2.1. A rational maximal torus contained in a rational Borel subgroup is

called a maximally split torus of G. We will use the notation T, for a maximally split

torus in G. Then T,F is a maximal torus contained in a Borel subgroup BF of G.

Here we note that not all rational maximal tori are maximally split tori of G under
F. We also note that all maximally split tori are conjugate in G. If T" is a maximally
split torus of G contained in B with normalizer N = Ng(T'), B and N is of the form
B = BF and N = Ng(To)". They form a split BN- structure of G, with Weyl group
W =N/T.

Let @ be the root system of G with respect to Ty. For each a € & we denote by U,
the root subgroup of G defined as the image of the morphism u,, : G, — G, satisfying
tug(c)t™t = uy(a(t)c) for all t € Ty. They are minimal unipotent subgroups of G. Any
Borel subgroup containing Ty is of the form T Hae¢+ U, for some positive system
®* in ® by Theorem 4.1.8.

Let Ty be a maximally split torus in G. Then Ng(T)) is also F-stable. Since F acts
on Ng(Ty) and Ty, so it also acts on W = Ng(Ty)/Ty by F(nTy) = F(n)T,. We
denote by W the F-stable subgroup of W.

Let U be the unipotent radical of B. Since B is F-stable, U is also F-stable. As
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mentioned above, U = []
Hence F permutes the root subgroups U, for a € ®*. Therefore there is a permutation
¢ on &+ such that F(U,) = Ug). Let A be the simple system of ®*. Observe that
since ¢(®1) = ®T then we have ¢(A) = A, hence ¢ gives rise to a permutation of the

acot Ua Where O is a positive system of roots relative to B.

simple roots. Let I denote the set of simple reflections in W that generate W relative
to the basis A, i.e I = {s,; a € A}. Clearly F permutes also I. The relation of ¢ with
the action of F on the character group X (T) can be found in Section 4.2.

When F acts on the Weyl group W as the automorphism ¢, we prefer to use the notion
¢-action.

In this section we will investigate the following:

Let F/K be a finite extension of function fields with Galois closure M. We assume
that Gal(M/K) = G is the group of rational points of a reductive algebraic group G
under a Frobenius endomorphism F. Let H be the subgroup of G whose fixed field is
F. Our aim is to determine the splitting type of any unramified place P of K in the

extension F/K, assuming that H is a parabolic subgroup of G.

To do this we need to determine the number of double cosets of G modulo H and (g)

for any g € G. First we investigate the properties of single elements of G.

Definition 3.2.1 Let s be a semisimple element of G. If s is F-stable, we say that s
1s a semisimple element of G. Similarly a rational unipotent element in G is called a

unipotent element of G.

Proposition 3.2.9 Let g be any element in G.

(i) There exists unique s,u € G with s semisimple and u unipotent in G such that

g = us = su.

(ii) The semisimple elements of G are p'-elements of G, and unipotent elements of

G are p- elements of G.
Proof: (i) is the just Jordan decomposition of g (see Theorem 4.1.1). For the proof
of (ii) see [9], Proposition 3.18. O
Lemma 3.2.10 Let B be a Borel subgroup of G with unipotent radical U.

(i) U =UF is a Sylow p-subgroup of G, and Ng(U) is a Borel subgroup B = B¥ of
the group G.

(i1) All Borel subgroups of G are conjugate.
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Proof: For the proof of (i), see [19], Corollary 24.11. Now we will consider (ii). We
know that Sylow p-subgroups in a finite group are conjugate. Therefore given any two
Sylow p-subgroups U; and U, of G, there is ¢ € G such that U; = 9U; then B; =
Neg(Uy) = 9Ng(Us) = 9B,. Hence the result follows.

By definition, a parabolic subgroup H of BN-pair is a subgroup containing a Borel
subgroup. Its structure is defined as follows. Let W be the Weyl group of BN-pair with
respect to maximally split torus 7" contained in the Borel group B. It is a reflection
group generated by involutions. Let I’ be a set of involutions in W that generate W.
A standard parabolic subgroup P; with respect to B is of the form BW ;B for some
J' C I'. We notice here that P} = P ;¥ where J is a union of ¢-orbits on I. See [6], page
63, for related argument. W is the subgroup of W generated by the subset J' C I’,
and all conjugate classes of parabolic subgroups of G are parametrized by the subset of
I'. Then H is conjugate to a unique standard parabolic subgroup. In particular a Borel
subgroup is a parabolic subgroup that is conjugate to the standard parabolic subgroup

BW B where J is the empty set. See Section 4.2 fore more detailed information.

Proposition 3.2.11 Let G be a finite group of Lie type. Let H be a parabolic subgroup
of G. Then

(i ) No(H) = H, and any conjugate of H is also a parabolic subgroup of G.

(ii) Any two conjugate parabolic subgroups can not contain the same Borel subgroup

of G.

Proof: See [6], Proposition 2.1.6 and [9] Proposition 1.9.

Recall that a subgroup of G is called a subgroup of maximal rank, if it contains a

maximal torus T of G. The following result is crucial in our context.

Theorem 3.2.12 Let s be a semisimple element in G. Then the identity component
Ca(s)? of Ca(s) is a connected reductive group. It is also a closed connected subgroup

of G of maximal rank.
Proof: See [ [9], Proposition 2.3].

Since Cg(s) is connected algebraic group of maximal rank, it contains a maximal torus
T of G. Let ®; be the root system of Cg(s) with respect to T and let W(s) be the
Weyl group of ®,. If ® is the root system of G relative to T, it is a closed subsystem
of ®@, hence W(s) is a subgroup of W. Observe that maximal tori of Cg(s) are the
maximal tori of G containing s. Assume that s € G¥. Since s is fixed by F, Cg(s) is
an F-stable subgroup of G. Furthermore Cg(s)" = Cg(s). Since Cg(s) is F-rational,
it has an F-stable Borel subgroup B,. Again Cg(s)¥ is a finite group of Lie type and
therefore it has a finite BN-pair structure BN-pair with B = B, with Weyl group
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W(s) = Neg(s)F(To)/To), where T, is a maximally split torus of Cc(s)? contained in
B;. We note here that, a maximally split torus of C'g(s) is not maximally split torus

of G under a Frobenius map F in general.

The next proposition gives the relation between the parabolic subgroups of G and the
parabolic subgroups of Cg(s) which will lead to count the rational parabolic subgroups

of G containing s.

Proposition 3.2.13 Let C be a closed reductive subgroup of G of mazimal rank.
Then:

(i) The parabolic subgroups of C are of the form CNP, where P is a parabolic sub-
group containing a maximal torus of C. Any parabolic subgroup of C is obtained

in this way.

(i) If P is a parabolic subgroup of G containing a mazimal torus of C, the Levi
subgroups of P N C are the L N C where L is a Levi subgroup of P containing a

mazimal torus of C.

Proof: See [9], Proposition 2.2. O

Lemma 3.2.14 Let notation be as above. For all « € ®, and w € W

WS, W 1— Sw(a)
Proof: See [19], Lemma A.4

Lemma 3.2.15 Let G be a reductive algebraic group. Let T be a mazimal torus of
G contained in B. Denote by Bg(T) the set of all Borel subgroups of G containing
T. Then the Weyl group W of G relative to T acts on Bg(T) simply transitively. In
particular the cardinality of the set Bg(T) is |[W].

Proof: By [9],Theorem 0.31, the Borel subgroups containing the maximal torus T
correspond one to one to bases of a root system ® of G with respect to T. If &7 is
the positive system which is the set of positive integral linear combinations of elements
in the basis A, the corresponding Borel subgroup is T[] .4+ Ua. By Proposition 9.4
in [19], for any two bases Ay, Ay of @, there is a unique w € W such that A; = w(Ay).
This means that W acts simply transitively on the bases of ® hence on the set of
all positive systems in ®. The action of W on Bg(T) is the following. Let n, be a
representative of w in Ng(T)/T. Then “B := n,Bn,, ! is different from B. Indeed,
by Lemma [3.2.14 n,Uany, ™' = Uy for all @ € . So “B = T[] c,(e+) Ua- By
simply transitivity of W on the set of of all positive systems in @, it follows that W

acts also simply transitively on Bg(T). O
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Lemma 3.2.16 Let s be a semisimple element of G. Let By be a Borel subgroup of
Cqa(5)°. Then the number of Borel subgroups of G containing By is |[Nw (W (s))/W (s)].

Proof: Let T be a maximal torus of G contained in B,. Since B, is a Borel
subgroup of Cg(s), by , there is a Borel subgroup B of G containing B;. Now
we fix B. Let @, be root system of Cg(s) relative to a maximal torus T in B, and
let ®F be the positive system in @, with respect to a basis Ay corresponding to Bi.
Then B; = T - [[,cp+ Ua- Let ®F be positive system corresponding to B. Since B
contains By, ®,7 must be contained in ®*. Hence the basis A of the positive system
®* must contain A,. By Lemma [3.2.15, any two Borel subgroups of G containing T
are conjugate by element in W. Assume that "B contains B, for some element v € W.
Then v must fix A,. Since A, is a a basis of the root system ®,, then W, is generated
by {s«| @ € As}. By Lemma vs8,U™! = sy for any o € A,. So v fixes the
set Ay if and only if v fixes W,. Hence v € Nyw (Wy).

Conversely if v € Nw (W (s))/W (s) any coset representatives of W(s), then B con-
tains vB,v~!. Since v € Nyw (W (s)), v(®F) is of the form “(®]). We replace v by the

coset representative vw ™!, and obtain that vw'B contains Bi.

Convention: The Borel subgroups of P are the Borel subgroups of G contained in P.
Now if s € P, given a Borel subgroup B, of Cg(s)?, we want to count the number of

Borel subgroups of P containing Bs. To do this, we need the following.

Lemma 3.2.17 Let P be a parabolic subgroup of G with Levi complement Li and unipo-
tent radical Up. Then there is a bijection ¢ between the Borel subgroups By, of L and
Borel subgroups of P where ¢ is given by

Q: B:, — B, Up.

In particular the unipotent radical of a parabolic subgroup P is contained in all Borel

subgroups of G contained in P.

Proof: See in [11], Springer’s article C.5, Section 2.6

Proposition 3.2.18 Let s be a semisimple element contained in a parabolic subgroup
P. Then Cg(s)° C P.

Proof: Let L x U be a Levi decomposition of P with unipotent radical U and Levi
subgroup L. Since s is semisimple, it lies in a maximal torus in P, hence it lies in
a maximal torus of a conjugate of L. Since any Levi complement of P is conjugate
by an element in U we can assume that s lies in L. We know that every semisimple
element of a connected reductive group is contained in a maximal torus of it. Let T be
a maximal torus of L containing s. Clearly T is contained in Cg(s)°. By Proposition
Cc(s)’ NP is a parabolic subgroup of Cg(s)” containing a Borel subgroup Bs.
Note also that P N L is a parabolic subgroup of L and By is a subgroup of Borel
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subgroup By, of L. If Ay, is the simple system contained in the positive system @
that corresponds to By, then the simple system A, corresponding to B, is contained
in A. Since By, = (T,U,| @ € &) and L = (T,U,,U_,| a € ®f), then U_, is
contained in L for all « € ®f. In particular U_g is contained in L for any 8 € Ag.
Hence Cg(s)? = (T, U,,U_,| a € 1) is contained in P. O

We notice that, except a finite set of semisimple elements in G, Cg(s)° is a Levi

subgroup of G. Related argument can be found in [9], stated before Lemma 14.11.

The following lemma is another important step to count the number of conjugates of

P containing s in G.

Lemma 3.2.19 Let B, be a Borel subgroup of Cg(s)’. Let P be a parabolic subgroup
of G conjugate to BW ;B for some J C I. Then the number of Borel subgroups of P
containing By is [Nw,(W(s))/W(s)].

Proof: Let T be a maximal torus of Cg(s)? contained in B,. By [9] Proposition
1.17, there is unique Levi complement L of P containing T. We know that Weyl
group of L with respect to T is Wy (see Section 4.1). Recall that W acts simply
transitively on the set of Borel subgroups of L containing T. Hence if By, is a Borel
subgroup of L such that B Up N Cg(s) = B,, where BLUp as in [3.2.17 then for any
v € Wp, v(Br)U N Cg(s) is a Borel subgroup of Cg(s) containing T. So Wy, acts
simply transitively on the set of Borel subgroups of P that contain T. This action
is given by : “(BLU) =" (By)U. In this way we obtain that N(Wp,) acts on the
set of Borel subgroups P containing Bs. Applying the same idea used in the proof of
Lemma [3.2.16] we obtain that the number of Borel subgroups of P containing B; is
[N, (W (5))/W(s)]. 0

Now our task will be: given a F-rational Borel subgroup B, of Cg(s)?, to count
both the numbers of Borel subgroups of G and Borel subgroups of P containing B;.
Although such Borel subgroups are not F-stable, we will see below that they are wF-
stable.

We know that there is always a F-stable Borel subgroup B of G, and any two of
them are conjugate by an element in G¥. Let T be a maximally split torus contained
in B. Let W be the Weyl group of G with respect to Ty. Since B is fixed by F,
it permutes the root subgroups U, for a € ®*, hence fixes the basis A contained
in ®*. By Lemma [3.2.14] we conclude that F permutes the set of simple reflections
I ={s,| « € A}, hence gives rise to an automorphism ¢ on W.

Since Borel subgroups contain the product of root subgroups, F permutes these root
subgroups and gives rise to a permutation of the set Bg(Tg). This permutation is given
as follows: Let B’ be in Bg(Ty) corresponding to positive system & C @, and let A’

be the simple system in ®*+. Since W acts simple transitively on the set of all simple
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systems in @, there is v € W such that A’ = v(A). Since ¢ is an automorphism of W,
it permutes simple systems in ® by sending v(A) to ¢(v)(A). Therefore &'+ = v(d).
Now it is clear that F sends B’ = T[], p+) Ua to FI(B') = T[[,cs()@+) Ua-

Let Ty be a maximally split torus of G with respect to F. Since all maximal tori of

G are conjugate , any maximal torus of G is of the form 9T, for some g € G. To go

further, we need information about the action of F on the maximal tori of G.

Proposition 3.2.20 Let T be as above.
(1) 9Ty is F-stable if and only if g 'F(g) € Ng(Ty)

(i) Suppose 1Ty =9 Ty. Let wy and wy be the images of g; 'F(g1) and g5 F(go)

respectively under the natural map
7 : Nag(To) - W
Then there is v € W such that wy =z~ w, (F(z))

Proof: See [6], Proposition 3.3.1 and Proposition 3.3.2 O

Definition 3.2.2 We say that w is ¢-conjugate to w' in W, if there is x € W such

that w' = 2~ we(z). Clearly ¢-conjugacy is an equivalence relation on W.

Let w € W. The set
Cw(we) = {z € Wiz lwor = w}

is called ¢-centralizer of w in W.

Proposition 3.2.21 The map 9Ty — ¢(g~'F(g)) determines a bijection between the
GF-classes of F-stable mazimal tori of G and the ¢-conjugacy classes of W.

Proof: See [19], Proposition 25.1 O

If T is a rational maximal torus of G for which the corresponding ¢-conjugacy
class of W contains w, we say that T is obtained from the maximally split torus T
by twisting with w. We use the notation T, for the rational maximal tori that are

obtained twisting T with w.

We want to mention the action of F on T, and on the closed connected subgroups of
G containing T,. This notion has great importance in our text. Since T, is obtained
twisting To by w € W, then T, = ¢gTog~ ! and ¢ 'F(g) € Ng(Ty) represents an
element which is ¢-conjugate to w Any element x of T, is of the form gtg~! for
t € Ty. F sends gtg~ € T, to F(¢)F(t)F(g7!) = g¢'F(9)F(t)F(g )gg~*. Since
g 'F(g) == w, F(gtg™') = gwF(t)w 'g~!. So it acts on T, like wF acts on T\.
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Let s be a rational element of G. Then Cg(s)" is an F-stable connected reductive
group. In general, as we noted above, maximally split tori of Cg(s)? under F are
not maximally split tori of G. Let ¢ be the outer automorphism arising the action of
F on the Weyl group of G. If T, is a maximally split torus of Cg(s)?, then again
Ng(T,)/T, ~ W, but the action of F on the Weyl group W with respect to T,

becomes w o ¢. For example if B, is a rational Borel subgroup of Cg(s)? under F,

then By is an wF-rational subgroup of G. An argument discussing this concept can

be found in the proof of Proposition 4.3 in [9].

Let Ty, T, be maximally split tori of G and Cg(s)® respectively. Then T, is
obtained by twisting Ty by w for some w € W.

Proposition 3.2.22 Let Ty be a maximally split torus of G. Let Ty be a mazimally
split torus of Cg(s)o obtained twisting Ty by an element w € W. Then W,F =

Cw (s)(wo).

Proof: We know that the Weyl group of Cg(s)° is isomorphic to Neg (5)0(Tw)/Tw. By
Proposition 23.2 in [19], (N¢g (s (Ty)/T,)F ~ Cee(s0(Tw)/T," and it is isomorphic
to Cw (s)(w¢) by Proposition 25.3 of [19]. O

Corollary 3.2.23 Let s be a rational point of G under a Frobenius map F. Let By be
a F-rational Borel subgroup of Cg(s)® containing mazimally split torus T.,, obtained
twisting a mazimally split torus Tog of G by w € W. Let P be a F-rational parabolic
subgroup conjugate to a standard parabolic subgroup BW ;B for some rational Borel

subgroup B. Assume that s is contained in a F-rational parabolic subgroup P. Then

(i) the number of wF-rational Borel subgroups of G containing By is
|Cw (W (s) (W) / Cw () (W)
(ii) the number of wF-rational Borel subgroups of P containing By is

|Crw, (wWis)) (W) / Cw(s) (wo)]

Proof: (i) Let T, be a maximally split torus contained in B,. First we want to
show that there is wF-stable Borel subgroup B of G containing B,. By assumption
T, = gTog~! for some g € G where g7'F(g) € Ng(Ty) is

representative of w € W. Let B be a F-rational Borel subgroup of G containing
Ty. Then gBg~! is a Borel subgroup of G containing the maximal torus T,. By
[3.2.13] the intersection of gBg~! with Cg(s)° is a rational Borel subgroup By of Cg(s)°
because it contains the maximally split torus T,. So there is v € W(s)¥ such that
B, = B,. Now the Borel group g-'vBv !¢ clearly lies over B,. Now we want to
show that g~ 'vBv~!g is wF-stable. Indeed wF (g 'vBv'g) = wF(g 'vBv lg)w™! =
w(F(g™)F(0)F(B)F (v 1)F(g))w .
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But B and v are F-stable and w := ¢ 'F(g), we obtain that wF(¢ 'vBv~lg) =
g 'wBvlg. So g 'wBv g is wF —stable.

We know that W(s) acts simply transitively on the Borel subgroups of Cg(s)° con-
taining T,,. So any of them is conjugate to By by a unique v € W(s). It is clear that
YB, is rational if and only if v € W¥. Hence W¥ acts on the rational Borel subgroups
of Cg(s)? containing T,, simply transitively. On the other hand, by Lemma ,
we know that Nw (W (s))/W(s) acts simply transitively on the set of Borel subgroups
of G containing B,. So every Borel subgroup containing By is of the form "B’ for
v a representative in Ny (qr). It is clear that "B’ is wF- rational if and only if
wF(YB’) = "B’. Observe that since B’ is wF stable, F(B’) = “"'B. Since wF(*B’) =
wF()F(B'), we obtain that wF(*B’) = “F)* B/, Therefore "B’ is wF-stable if and
only if wF (v)w™ = v, which means that v € Chy, (w(s) (We).

To prove (ii) first we note that if s is contained in P, then w is ¢-conjugate to some
element in W;. This follows from by [6], Proposition 6.5.2. Therefore if B" is a F-
rational Borel subgroup contained in P, then w !B’ also lies in P. Consider the Borel
subgroup B’. Then by Lemma [3.2.17] we know that it is of the form B’ Up where Up
is the unipotent radical of P and B’y is a Borel subgroup of a Levi complement L of
P. Note that by assumption B’ is F-rational. Hence B’ is also F- rational. We know
that Nw,(W(s))/W(s) acts simply transitively on Borel subgroups of P containing
B, by sending B';Up to "B/, Up. Then applying the same arguments in the proof
of (i), we obtain that "B’,Up is wF-rational if and only if v € Cy (w(s)(we).
Hence we obtain that the number of wF-rational Borel subgroups containing By is

|Cw , (W(s)) (WD) / Cws) (w)].
O

Let [ be the length function on W. Recall that for a fixed basis A C ® and a the

positive system ®* containing A, it is defined as

l(w)=|{8 €27 w(B) €7}

Since W is a Coxeter group, for a fixed generating set I = {s,| « € A} the length of
w € W can be given also as follows: If w = sy...s;, s; € I, is a reduced expression of
w, then [(w) = k.

Proposition 3.2.24 Let G be a connected reductive group with a mazimal split torus
Ty contained in a rational Borel subgroup under a Frobenius endomorphism ¥. Let W
be the Weyl group of G with respect to Ty. Then

IGF| =¢*"|Tf| Y~ ¢
veEWF
(w)

In particular the number of rational Borel subgroups of G is given by Y weWF q
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Proof: For the proof of the equation see [9], Proposition 3.18. The order of a Borel
subgroup of GF = G is ¢®"|.|To¥| by the proof of [9], Proposition 3.18. Let BF = B.
We know that Ng(B) = B and all Borel subgroups are conjugate in G. So > _wr ¢/

gives the number of Borel subgroups of GF.

Proposition 3.2.25 Let notation be as above and let H be a parabolic subgroup of
G which is conjugate to the standard parabolic subgroup P; for some J C I. If s is
contained in at least one conjugate of H, then the number of conjugates of P containing
s is given by

[Cv wio) W)/ [Cv Wi (wd)| S g

weW (s)F

Proof: Let H be the set of all F-rational conjugates of H in G. Observe that given
a rational Borel subgroup B of G, there is unique element Q in H containing B, hence
containing ' B. In fact, by Proposition two conjugate parabolic subgroups
can not contain the same Borel subgroup of G. It follows that each rational Borel
subgroup B, of Cg(s)? determines a unique Q € H. Indeed if s € Q, by Proposition
[3.2.13] the intersection QN Cg(s)’ is a parabolic subgroup of Cg(s)” hence contains a
rational Borel subgroup B, of Cg(s)?. Conversely, given any rational Borel subgroup
B, of Cg(s)?, any parabolic subgroup of G containing B, contains a wF-rational Borel
subgroup B of G containing B, and any such B containing B, determine a unique

parabolic subgroup in ‘H containing it. O

Let HE be the subset {Q € H| [ € Q} of H. Then HF is the set of parabolic
subgroups of GG that conjugate to H containing s.

To determine the cardinality of the set HF it is enough to count the wF-rational Borel
subgroups of G containing a rational Borel subgroup Cg(s)°. Note that in this way
we count each parabolic subgroups in HF n times, where n denotes the number of wF-
rational Borel subgroup of P containing a fixed Borel subgroup B, of Cg(s)". Observe
that n is the same for all parabolic subgroups containing s. By Proposition we
know that the number of Borel subgroups of Cg(s)°F is

> o
weW (s)F

For each rational B, in Cg(s)?, there are exactly |Cyy w(s)(wo)/Cw (s)(we)|. wF-
rational Borel subgroups of G containing B,. So the number of all wF-Borel subgroups

of G containing a Borel subgroup of Cg(s)? is

|ONW
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Each parabolic subgroup Q € HF contains exactly |Cvw, (wis)(@)/Cws)(¢)| wF-
rational Borel subgroups of G containing Bs. Hence we conclude that the cardinality
of the set HE is

|C g (W(s)) (W) ] Z 4.

|ONWJ (W(s)) (w¢) | vew(s)F

a

Let ¢ be as above. Recall that by Proposition 4.2.20 , the action of F on the
character group X(T) of G with respect to the maximal torus T is ¢¢ for some p-
power ¢q. Let

Corollary 3.2.26 Let notation be as above and let F/K be an extension of function
fields with Galois closure M. Assume that Gal(M/K) = G is a finite group of Lie type
which is the group of fixed points of a connected algebraic group G under a Frobenius
map F whose action on character group X(To) is qp for some mazimally split torus
Ty . Assume that I is the fixed field of a parabolic subgroup H which is conjugate to
H = BW BF for some J C I where I is the set of involutions that generate W. Let
P be an unramified place of K, and let s € G be a Frobenius element of P in M/K,
which is semisimple element of order n. Let Ty, be a mazimally split torus of Cq(s)°
that is obtained twisting Ty by w € W. Then the number m; of places @ of F lying
over P with f(Q|P) =i is given by

m; =

fn(i)  Cnw(wisiy (we) 1)
wp) 2 ¢

no Onw,wen(wo) S

Proof: The number of conjugate of H containing s* is

Cnw (W(s)) (@) 1(v)
q
;2

C’J\JWJ(W(Si))(QS —

by Proposition [3.2.25] Applying Theorem [3.1.8] we obtain desired result. ]

Now we want to determine m; for the case that a Frobenius element g of P is arbitrary.
By Proposition|3.2.9, ¢ = su = us where u is a unipotent element and s is a semisimple
element. To count the number of parabolic subgroups that are conjugate to a fixed

parabolic of G and containing g, we need the following;:

Proposition 3.2.27 If g = su is the Jordan decomposition of an element of G, then
g < Og(S)O.

Proof: See [9], Proposition 2.5.

Proposition 3.2.28 Let G be a connected algebraic group defined over F,. Then any

F-rational unipotent element is contained in a F-rational Borel subgroup.
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Proof: See [9], Corollary 3.20.

Let g be an element in G. Since g is rational then both s and u are rational. Rationality
of s implies that Cg(s)? is a rational subgroup of G. Recall that s is contained in all

maximal tori of Cg(s)°.

In particular, it is contained in all maximally split tori of
Ca(s)?. It follows that s is contained in all Borel subgroups of Cg(s)?. On the other
hand, since u is a rational element of Cg(s)?, it is contained in some Borel subgroup+
of Cq(s)?. We conclude that g is contained in all Borel subgroups of Cg(s)? containing
u. Let P be a parabolic subgroup of G. Then ¢ is contained in P if and only if there
is a Borel subgroup of G contained in P whose intersection with Cg(s)? is a Borel
subgroup of Cg(s)? containing u. Denote by B, the set of rational Borel subgroups of

Cg(s)? containing u. Combining these with previous results, we obtain the following :

Corollary 3.2.29 Let notation be as above. Let g = su be a rational element of G
under a Frobenius map ¥. Let H be a parabolic subgroup of G which is conjugate to
the standard parabolic subgroup P ;¥ for some J C I. Then the number of rational

parabolic subgroups of G that G* conjugate to H and containing g is

|Crwwis) (WO)|/|Ciy , (wis)) (W) - | Bul

Corollary 3.2.30 Let notation be as in C’orollary and let F/K be an extension
of function fields with Galois closure M. Let P be an unramified place of K, and let
su= g € G be a Frobenuis element of P of order n in the extension M /K. Then the
number m; of places Q of M lying over P with f(@]N) =1 1is given by

,un(l)

m; =

NCnw (Wi (/| Oy, (wisi) (8) - [Buil.

Remark 3.2.3 When P is ramified and D(R|P) is a cyclic group generated by g = su,
then we can deduce that the number m; of places Q of F with e(Q|P)f(Q|P) =i is

fin (7)

m; =

O W5 (D) | Cv, (Wisiy) (0) - | Bus

We have seen that, for any ¢ € G, the number of parabolic subgroups of GG that
contain g = su, depends on the combinatorial data of the centralizer C(s)? of the
semisimple element s. This data consists of the number of Borel subgroup that contains
u and the Weyl group W(s) of Cg(s). When u = 1 we know the exact value. If two
subgroups (', C5 of G are conjugate in (G, then the data that they convey will be the
same. Now we are interested in the set of conjugacy classes of centralizers of semisimple

elements in G.

In literature there are two important works on conjugacy classes of centralizers of

semisimple elements in a finite group of Lie type. Deriziotis gives the criteria for a
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closed connected reductive subgroup of G to be a centralizer of semisimple elements,
in terms of root system of G in the articles |7] and [8]. He also gives the parametrization
of these classes in terms of subset of the root system of GG inherited from G. Carter
gives all conjugacy classes of centralizer of semisimple elements in a finite group of Lie
type for classical types A,,, B,, C, and D,, explicitly. He also computed their orders.
See [5].

Now we state the following Theorem which gives the conjugacy classes of centralizer

of semisimple elements in G:

Theorem 3.2.31 G is simple linear algebraic group defined over F,. Let G = G¥ be
finite group of Lie type with a Frobenius endomorphism F. Let A= AU{—ap} where A
15 a basis for a root system ® of G with respect to a mazximal torus T and ag be highest
root. Let W ; be the Weyl group of the subsytem ®; of ® generated by J C A. Then
G-conjugacy classes of centralizers of semisimple elements are parametrized by (J, [v])

where J is a subset of A and [v] is a conjugacy class in the group Ny (W) /W .

Proof: See [§]. O

3.3. Decomposition of the Polynomials z("~! 4+ 2 — o

In this section we will assume that F, C F and consider the polynomial h(z) =
2"V 4 g over F, where (i) = ¢ + ¢! + ....q¢"' + 1 with the conventions (0) = 1 and
(—1) = 0. We point out here that the polynomial that we studied in Section 2.3 is the
special case n = 2. Let h(z) = z. In the paper [1], Abhyankar has shown that F(x)/F(z)
has the Galois closure M with Gal(M /F(z) isomorphic to PGL(n,q). Furthermore he
has proved that in the extension F(z)/F(z) the only ramified places of F(z) are P,
and P,. In this section we want to find the decomposition of a place P € Py, in
the extension F(z)/F(z). In particular, if P is a rational place corresponding to the

element a € F, we will find the number of roots of h(x) — o in F.

Now we consider the group PGL(n, q) as the group of fixed points of PGL(n,F,) under
the standard Frobenius map F. It is well known that the type of PGL(n,F,) is A,
and the Weyl group of linear algebraic groups of type A, _; is the symmetric group S,
on n letters. It is a Coxeter group generated by I = {s; = (i,i+1)] 1 <i<n—1}.
As explained by [19] in example 22.6 and beginning of Section 22.2, F acts trivially
on the Weyl group S, of PGL(n,F,). Hence the automorphism ¢ acts on W as the
identity.
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First we will determine the structure of the subgroup H of PGL(n,q) whose fixed
field is F(z). Indeed it is a parabolic subgroup of PG L(n, q). To see this, observe that
the degree of the extension F(z)/F(h(z)) is 14+ ¢+ ...+¢" ' which is prime to p. Hence
H contains a Sylow p-subgroup of PGL(n,q). By definition, a parabolic subgroup
contains a Borel subgroup of PGL(n,q). So it is enough to show that a maximally
split torus is also contained in H. To do this we look at the order of PGL(n,q). It is
given by

"R -1 - 1) (" 1)

On the other hand, since ¢ fixes each element of I, then the length of each orbit of ¢
is just 1. By the order formula given in |6] Section 2.9, a maximally split torus of G
has order (¢ — 1)"~!. Therefore H contains a maximally split torus 7', hence contains
a Borel subgroup B. We recall that by Borel subgroups of PGL(n,q) we mean that
they are the fixed points BF of F-rational Borel subgroups of PGL(n,F,). Therefore
it is a parabolic subgroup. Hence H is of the form BW BF for a subset J C I.

Our next aim is to determine the set J. To do this first we need the following: Recall
that a Coxeter group W is a group generated by a subset {si, ..., sy} C W such that
(si)>=1forall 1 <i<k.

Let W be a finite Coxeter group with a generating set I = {s1, ..., sx.}. A subgroup
of W is called parabolic if it is conjugate to the subgroup W; generated by some J C I.
By definition, W} is also a Coxeter group. Let [ be the length function on W relative to
I. See Appendix for the definition. The following proposition summarizes the behavior
of [ on Wj.

Proposition 3.3.32 Let W be a finite Coxeter group with a generating set I and let
J C I. Letl be the length function on W.

(i) Viewing Wy as a Cozeter group with length function l; relative to the generating

set J, we have l =1; on W,

(i1) Define W’ := {w € W| l(ws) > l(w) for all s € J }. Givenw € W, there is a
unique u € WY and a unique v € W such that w = uw. Their lengths satisfy
l(w) = l(u) + l(v). Moreover, u is the unique element of smallest length in the

coset wW.
Proof: See [14], Proposition in Section 1.10.

The distinguished coset representatives in W7 are called minimal coset representatives

of the subgroup W;.

Let W be a Coxeter group. Given a subset X of W we define a polynomial X ()
attached to X as follows.
X(t) =) ™

weX
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When X = W, we call W (t) the Poincare polynomial of W.

Proposition 3.3.33 Let notation be as above. Then W (t) = W;(t)W(t)
Proof: It is stated in [14], Section 1.11. O

We notice here that given a subgroup W’ of W, W’(t) divides W (¢) if and only if the

subgroup W’ has minimal coset representatives.

Let G be a connected reductive algebraic group with a Frobenius endomorphism
F. Now given an F-stable parabolic subgroup P; of G, we want to express |GF /P |
in terms of Poincare polynomials. First we need to show that W ;¥ has minimal coset

representatives in W¥. But first we will state that WF is a Coxeter group.

Proposition 3.3.34 Let W be the Weyl group of a root system with set of simple
reflections I C W and ¢ an automorphism of W stabilizing 1.

(i) For each ¢-orbit J C I, W ;* = (s;) for a (unique) involution s; € Wy .

(ii) The group of fized points W¥ is a Cozeter group generated by {s;| J is a ¢ —
orbit}.

Proof: See [19],Lemma 23.3 O

Observe that a parabolic subgroup GF-conjugate to P is rational if and only if .J
is fixed by ¢. Let J be a ¢-stable subset of I. Let I’ and J’ be the sets of ¢-orbits on
I and on J respectively. Then J’ is a subset of I’. Since the set I’ is generating set of
WF as a Coxeter group, W ¥ is a parabolic subgroup of WF. Hence we obtain that
there is a bijection between GG-conjugacy classes of rational parabolic subgroups of G,

and the set of subsets of I'. Related argument can be found in Section 6.5 of [3].

We define WF () = 3", e ¢'”). We point out that [(v) is the length of v in W, not
in WF.

Proposition 3.3.35 Let notation be as above, then WE(t)[WF(t).

Proof: We know by Proposition that the number of Borel subgroups of GF is
I ¢'™) which is equal to W¥(q). Let L; be a Levi complement of P; = BW ;B
for some rational Borel subgroup of G. Then again by Proposition W¥(q) =
ZU€W§ ¢'™ is the number of Borel subgroups of L¥. But since any Borel subgroup of
L, is extended uniquely to a Borel subgroup of P;, W¥(q) is equal to the number of
Borel subgroups of P¥. But B is a subgroup of P and Np(B) = B, hence W¥(q) is
equal to the number of all Borel subgroups of P ;. So W¥(¢)|W¥ (¢). O

Since WE(¢)|W¥(¢), we conclude that W¥ has minimal coset representatives in W¥.

Let WYF be the set of minimal coset representatives of W, ¥ in WF_ and let W Flg) =
ZUEWJF ql(v).
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Proposition 3.3.36 Let G be a reductive algebraic group defined over F, and let B
be a rational Borel subgroup under a Frobenius endomorphism F. Let P be a rational
parabolic subgroup of G which is conjugate to BW ;B for some ¢-stable J C I. Denote
by G the group G¥ and by P the group P¥. Then |G/P| = W7¥(q). In particular the
index of W is equal to sum of coefficients of W7F (t).

Proof: We know that in G, all Borel subgroups are conjugate, and they are self
normalizing subgroups of G. So |G/B]| is the number of Borel subgroups contained in
G. By Proposition this number is given by > _wr ¢"®) which is the Poincare
polynomial W¥(gq). On the other hand |G/B| = |G/P| - |P/B|. We already know
by Proposition that |P/B| = W1 (q) is the number of Borel subgroups of G
contained in P. Combining all of these, we obtain that |G/P| = |G/B|/|P/B| =

%ﬁgw = W’F(g). Since the set W”F is a set of coset representatives of the
subgroup W ;¥ the sum of coefficients of P ¢"® clearly gives the index of W ;¥
in W. O

In particular, since |G/H| = 14+q+...+q¢" !, and ¢ is identity, by Proposition we
conclude that [W/W | is n. As we noted above, the type of PGL(n,F,) is 4, _; and
in this type, each conjugacy class of parabolic subgroups of S,, gives rise to a partition
of n. If (ny,...n,) is the partition of n corresponding to J, then W; =5, x ... x S, .
All related arguments can be found in [18],Section 2.1. So |[W/W | = m,"—'nr, Hence

the parabolic subgroup of W corresponding to H should be in the class given by the
partition (1,n — 1) of n. We deduce that W is the group S,,_;.

In type A, all roots have the same lengths, hence there is no longest root. Therefore all
closed connected subgroups of G = PGL(n,E)) of maximal rank are Levi subgroups.
Therefore for any s € G, Cg(s)? is a Levi subgroup of G, hence W(s) is isomorphic
to W for some J C I. In G all Levi subgroups of a parabolic subgroup are conjugate.
But this is no longer true in G¥. The following theorem gives the GF-conjugacy classes

of Levi subgroups.

Theorem 3.3.37 Let @ be a set of roots of G with respect to a mazimally split torus
To. Let A be a basis in ®. Then GF¥-conjugacy classes of Levi subgroups of G are
parametrized by F- conjugacy classes of W yw where J C A and "YW ; = W .

Proof: See [9], Proposition 4.3

Note here that when L; corresponds to the class W jw, then the maximally split
torus of L is obtained twisting Ty by w € C,,, where C, is a ¢-conjugacy class in W.
Indeed we have seen that w € W ;. So this conjugacy class C,, is in W ;. On the other
hand, since ¢ is identity, ¢-conjugacy classes of S, are usual conjugacy classes of S,,.
Hence we obtain that W ;“F = Cw, (w).

Recall that maximal tori of G are also Levi subgroups of G with root system corre-
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sponding to the empty set C A. Hence they are parametrized by conjugacy classes of
S, by Theorem [3.3.37 We also note that for each maximal torus T of G, there is a
semisimple element s in G whose centralizer Cg(s)? is T. Such an element is called a
regular element of G. See [9], Proposition 14.6 and Corollary 14.7 for the existence of
these elements.

We summarize:

Theorem 3.3.38 Let notation be as above. Let P, be a rational place of F(h(x))
corresponding to o € F. Assume that a Frobenius element g € G of P, in the extension
M/F(h(x)) has order prime to p. Let m; be the number of irreducible factors h;(z) of
h(x) — « of degree i in F. If i|n, then there exist a subset J C I, and a conjugacy class

Cw of W containing w such that

me = D N (O, )/ Ns, L Cw, ) - 2 4O

vECW ; (w)

Proof: Recall that if i { n there are no irreducible factors of degree i. So we consider
the case i|n. By Theorem [3.2.26] the number of degree i places of F(x) lying over P,
is given by

) C
m; = :un(l) Nw (W Z q

n C
NW (W(S EW sl

Since Cg(s)? is a Levi subgroup, W(s)¥ is of the form Cy,(w) for some J C I. Since
the group H has a Levi subgroup whose Weyl group is S,_1, the result follows. a

Corollary 3.3.39 Let notation be as above. Let P, be a rational place of F(h(z))
corresponding to o € F. Assume that the Frobenius element g € G of P, in the
extension M/F(h(x)) is g = su = us where the order of s is prime to p and u has
order a power of p. Fori|n, let J C A and W jw correspond to Cg(s")° as in Theorem
[3.5.57. Let B, be the set of all Borel subgroups of Cc(s')°F containing u. Then the
number of irreducible factors h;(x) of h(x) — « of degree i is

Ns, (Cw, (w))/Ns,  (Cw,(w)) - [Bul.
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CHAPTER 4

Appendix

4.1. Structure of Algebraic Groups

Definition 4.1.1 An algebraic group is an affine variety over an algebraically closed
field K endowed with a group structure such that the multiplication and inverse maps
are algebraic. For such a group G, we will call elements of G the elements of the set
G(K) of K- valued points of G.

Example 4.1.1 (i) The multiplicative group Gy, and the additive group G,, defined
respectively by the algebras K[T,T~| and K[T] are examples of algebraic groups.
We have Gy, ~ KX, G, ~ KT

(i) The linear group GL,, and its subgroup, the special linear group SL,.

Definition 4.1.2
(i) An algebraic group is called linear if it is isomorphic to a closed subgroup of GL,,.
(ii) An element of a linear algebraic group G is called semi-simple(respectively, unipo-
tent) if its image in some embedding of G in a GL,, is semi-simple (respectively unipo-
tent).

Theorem 4.1.1 (Jordan decomposition) Let G be a linear algebraic group. Then
for any embedding p of G into some GL(V), and for any g € G, there exist unique
Js, 9u € G such that g = gs-gu = gu-gs where p(gs) is semisimple and p(g,) is unipotent.
This decomposition of g is independent of the chosen embedding.
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Proof: See [19], Theorem 2.5. O

Tori, solvable groups, Borel subgroups

Definition 4.1.3 (i) A torus is an algebraic group defined over K which is iso-

morphic to the product of a finite number of copies of the multiplicative group
K*.

(i) A rational character of an algebraic group G is an algebraic group morphism

from G to Gp,.

(i1i) The character group X(T) is the group of rational characters of T.

Let G be a linear algebraic group. The irreducible components of G are pairwise

disjoint. So they are connected components of G

Definition 4.1.4 Let G be a linear algebraic group. The irreducible component G° of
G containing 1 € G is a closed normal subgroup of finite index in G and called the

identity component of G.

Proposition 4.1.2 For a solvable algebraic group G,
(i) Every semi-simple element of G° lies in a mazimal torus of G.
(i1) All maximal tori are conjugate.

(111) If G is connected, the set Gy of unipotent elements of G is a normal connected
subgroup, and for every maximal torus T of G, there is a semi-direct product

decomposition G = Gy x T.

Proof: See [23], 6.11. O

Definition 4.1.5 Mazimal closed connected solvable subgroups of an algebraic group

are called Borel subgroups.

These groups are of paramount importance in the theory. The next theorem states

their basic properties.

Theorem 4.1.3 Let G be a connected algebraic group. Then:
(i) All Borel subgroups are conjugate,
(i) Every element of G is in some Borel subgroup.

(i1i) A Borel subgroup is equal to its normalizer in G.

Proof: For a detailed proof see 23], 7.2.6, 7.3.3, 7.3.7. a
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Theorem 4.1.4 Let G be a connected algebraic group. Then:

(i) Any closed subgroup containing a Borel subgroup is equal to its normalizer in G,
and is connected.

(i) Two closed subgroups, containing the same Borel subgroup and conjugate in G
are equal.

Proof: For a detailed proof see [9], 0.12. O

Definition 4.1.6 A closed subgroup of G containing a Borel subgroup is called parabolic
subgroup of G.

Radical, unipotent radical, reductive and semi-simple groups

Definition 4.1.7 A unipotent subgroup of an algebraic group is a subgroup con-

taining only unipotent elements.

The product of all the closed connected normal solvable subgroups of G is also closed
connected normal solvable subgroup of G, called the radical of G, and denoted by
R(G). Similarly, the set of all closed connected normal unipotent subgroups of G has

a unique maximal element called unipotent radical of G, and denoted by R,(G).

Definition 4.1.8 An algebraic group is called reductive, if its unipotent radical is

trivial, and semai-simple, if its radical is trivial.

Example 4.1.2 The group GL, is reductive. The group SL, is semi-simple.

Roots, coroots, root systems, structure theorem for reductive groups

Let T be a torus. Algebraic group homomorphisms from G,, to T are called one-
parameter subgroups of T. They form an abelian group denoted by Y (T). There
is an exact pairing between X (T) and Y (T) (i.e, a map X(T) x Y(T) — Z) obtained
as follows: given x € X(T) and ¢ € Y(T) the composite map y o is a homomorphism
from Gy, to itself, so is of the form z +— 2" for some n € Z. The map X (T)xY(T) — Z
is defined as (x,¥) — n.

Definition 4.1.9 A root system in a real vector space V is a subset ® with the

following properties:

(i) ® is finite, generates V and 0 & ®

(i1) For any o € ®, there exists & in the vector space dual to V' such that (o, a) = 2
and such that ® is stable under the reflection s, : V — V defined by
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r—r—{(x,Q) -«

(i1i) a(P) C Z for any o € ®

The a form a root system ® in the dual of V. They are called coroots. There exists
a scalar product on V invariant by the s,. Let us identify V' with its dual. Under this
identification, @ becomes «/(«, ). Note that by (ii), if a is a root, then —a is also a
root. The root system is reduced if any line in V' containing a root contains exactly
two (opposite) roots. If @ is the union of two orthogonal subsets then each of them is
root system in the subspace of V' that it generates. A root system is irreducible, if

there is no such decomposition.

Definition 4.1.10 The group W generated by the s, ’s is called the Weyl group of
the root system P.

Definition 4.1.11 Let ® be a root system in V. A subset ®* is called a positive
system if there is X € Y/(T) with (a, \) # 0 for all o € X(T) such that

Ot ={a € d| {a,\) > 0}.

® is disjoint union of ®* and ®~ := —®1 and the elements of T (resp. ®~) are
called positive (resp. negative) roots. Positive roots which are indecomposable into a
sum of other positive roots are called stmple roots. The set of simple roots is called

the bastis of ® relative to given order

Proposition 4.1.5 A subset A C ® is a basis for some order if and only if A is a
basis of V' and every element of ® is a linear combination of elements of A with integral

coefficients which all have the same sign.

Proof: See [9], Proposition 0.27. O

Proposition 4.1.6 Let A1 and Ay be two bases of ®. then there exist a unique w € W
such w(Ay) = A,.

Proof: See [19], Proposition 9.4. O

Proposition 4.1.7 FEvery positive system in ® contains a unique basis. Conversely,

any base is contained in a unique positive system.

Proof: See [19], Proposition A.7

Definition 4.1.12 Let W be the Weyl group of a root system ® with a base A. Let

OT be a positive system relative to A. The length of an element w is the integer

l(w) = {6 € ©7[; w(f) € 27},
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Theorem 4.1.8 (Structure theorem for reductive groups) Let G be a connected

reductive group and T be a mazximal torus of G.

(i) Non-trivial minimal closed unipotent subgroups of G normalized by T are iso-
morphic to Gy; the conjugation action of T is mapped by this isomorphism to an
action of T on G, of the form v — «(t) - z, where o € T.

(i) The elements a € T thus obtained are all distinct and non-zero and are finite in
number. They form a reduced root system ® in the subspace X (T)RR that they
generate. The group W(T) = Ng(T)/T is isomorphic to the Weyl group of ®.

(i1i) The group G is generated by T and {U,}aco where U, is the unipotent subgroup

corresponding to o by (i) and (i7).

(iv) The Borel subgroups containing T correspond one to one to bases of ®; if & is
the set of positive roots corrresponding to such a basis, the corresponding Borel

subgroup is equal to T[], co+ Ua for any order in &,

Proof: See [9], Theorem 0.31.

Definition 4.1.13 The elements « in the Structure Theorem (ii) are called the roots
of G relative to T. For each o € ® there is an isomorphism u, of G, onto a unique
closed subgroup U, of G such that for anyt € T and v € KT, tu,(z)t™' = uy(a(t)z).
The subgroup U, is called a root subgroup of G.

Corollary 4.1.9 Let U be the unipotent radical of a Borel subgroup B of G. Let ® be
a root system relative to a mazximal torus T of G contained in B. Let A be the basis

corresponding to B with positive system ®*. Then U =[] .o+ Ua.

BN-pairs, parabolic subgroups, Levi subgroups

Definition 4.1.14 Let G be a group with two subgroups B and N. Then G is a group
with BN -pair if

(Z) G = <B>N>;
(ii) H = BN N is normal in N;
(iii) N/H =W is generated by a set of elements s;, i € [ with s? =1;

(iv) If n; € N maps to s; € W under the natural homomorphism m : N — W, then

(v) For each n € N and each n; we have n;Bn C Bn;nB U BnB.

The group W = N/T is called Weyl group of the BN-pair GG. The cardinality of the
set I is called the rank of G
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Definition 4.1.15 Let G be a group with a BN -pair (B, N). This is said to be a split
BN -pair of characteristic p, if the following additional hypotheses are satisfied.

(i) B =UT with U is normal in B, and T a complement of U.

(ii) ey nBn =T

Theorem 4.1.10 (Tits) Let G be a connected reductive algebraic group, and let B be
a Borel subgroup and N := Ng(T)/T for some mazimal torus T C B. Then (B,N)
15 a split BN -pair in G whose Weyl group is equal that of G

Proof: See |9], Theorem 1.2
Parabolic subgroups and Levi subgroups
Let G be a group with a split BN-pair. Any conjugate of B is called a Borel subgroup

of G. A parabolic subgroup of GG is any subgroup of G that contains a Borel
subgroup.

Proposition 4.1.11 Let W be the Weyl group of G with respect to (B, N).

(i) W is a Cozxeter group generated by reflections s;, i € I.

(ii) Let J be a subset of the index set I. Let W be the subgroup of W generated by
the elements s;,j € J, and let Ny be the subgroup of N satisfying N;/H = W .
Then the following hold;

(a) P; = BN;B is a subgroup of G.
(b) Any subgroup of G containing B is of the form P; for some J C I.

(c) If J, K are distinct subsets of I then Py, Pk are distinct and non-conjugate
subgroups of G.

(d) For all J C I we have Ng(Py) = Pj.
Proof: See [9], Section 1.

Now assume that G is a connected reductive group, and T < G is a maximal torus
contained in a Borel subgroup B of G. Let ® be the root system of G with respect
to T < B and A C ® be a set of simple roots , I = {s,| a € A} the corresponding
set of generating reflections of the Weyl group W = Ng(T)/T. By W3 we denote the
subgroup of W generated by J. For J C I define A; = {s,| a € A;} and

q>J=<I>mZZa

OZGAJ
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Proposition 4.1.12 Let J C I. Let w be a representative of w € W in Ng(T).
(i) Then ®; is a root system in R®; with base A; and Weyl group W.
(i) Py := BW;B = Uyew,BwB is a closed connected subgroup of G

(ZZZ) PJ:<T,Ua| oz€<I>+U<I>J)

Moreover all subgroups of G containing B arise in this way.

Proof: See [19], Proposition 12.2. O

Definition 4.1.16 Let P < G be a parabolic subgroup. Then there are subgroups Up
and L of P such that

P =UpL =LUp

The group Up is the largest normal unipotent subgroup of P and is called unipotent
radical of P, and L is a complement to Up in P. The decomposition is called a Levi
decomposition of P, and L is denoted by a Levi complement of G. It is well known

that any two Levi complements of P are conjugate by unique element v € U. Note that

R,(P) = Up.

The following Theorem gives the structures of parabolic subgroups and the structure

of their Levi complements.

Theorem 4.1.13 Let P be a parabolic subgroup of G containing the Borel subgroup
B and of the form BW ;B. Let ®T C ® be a positive system in the root system ® of

G with respect to a maximal torus T contained in B. Then
(i) Up = Haeqﬁ\% U,.
(i) Ly =(T,U,| a€ dy).
Proof: See [19], Proposition 12.6. O

Proposition 4.1.14 (i) Let P be a parabolic subgroup of G and T be a mazimal

torus of P. There exist a unique Levi subgroup of P containing T.

(i1) Two Levi subgroups of a parabolic subgroup P are conjugate by a unique element

of RU(P)

Proof: See [9], Proposition 1.17, and Proposition 1.18.

4.2. Finite Groups of Lie Type
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Frobenius maps and finite reductive groups

Let G < GL,(F,) be a connected reductive algebraic group. A Frobenius map
F : G — G is an endomorphism such that F™ is a homomorphism of G of the form
F™: G — G, F"((a;;)) = (af;) where ¢ is a power of p and m > 1. Here F™ denotes
the compositions of F m times. Let G be a connected reductive algebraic group over
Fq, and let F be a Frobenius map of G. Then

G" ={g€ G| F(g) = g}
is a finite group.

Example 4.2.3 Let q be a power of p and let F = F, be the corresponding standard

Frobenius map of GL,(F,). Then GL,(F,)¥ = GL,(q), SL.(F,)¥ = SL,(q), and
SO241(F,)" = SOz11(a).

Definition 4.2.17 Let G be a connected reductive group, ¥ : G — G a Frobenius
map. Then the finite group of fized points G is called a finite group of Lie type.
The theorem of Lang-Steinberg

The crucial tool transferring results from algebraic groups G to finite groups G¥ of

fixed points under a Frobenius map F is the theorem of Lang-Steinberg.

Theorem 4.2.15 (Lang-Steinberg Theorem) Let G be a connected linear algebraic
group over Fq with a Frobenius map F : G — G. Then the morphism

L:G— G, g—F(g)g!

18 surjective.

Proof: See [24], Theorem 10.1. O

One of important consequence of Lang Steinberg Theorem is that G has a F-rational
Borel subgroup. Before stating another important consequence of Lang-Steinberg The-

orem, we need the following definition.

Definition 4.2.18 Let H be a group, o an automorphism of H. We say that hy, ho
are o-conjugate if there exist an v € H with hy = (x)hyo(x)~t. The equivalence classes

for this relation are called o-conjugacy classes of H.
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Proposition 4.2.16 Let H be closed connected rational subgroup of G, then
(i) (G/H) = & /H

(ii) Assume that H is normal. Then there is a bijection between the set of GF-conjugacy

classes in H and F- conjugacy classes of G/H.

Proof: | See 9], for (i) Corollary 3.13, for (ii) Lemma 3.22. O

If H is a connected closed subgroup of G and V is the set of F-stable conjugates of H
in G, then G acts on V transitively, and this action is clearly a compatible F-action.

Thus we have the following corollaries.

Corollary 4.2.17 Let G and F be as above. The set of G¥- conjugacy classes of

rational mazimal tori is parametrized by the set of F-conjugacy classes in W.

Corollary 4.2.18 Let P be a F-stable parabolic subgroup of G. There is unique GF -

conjugacy class of conjugates of P.

Proof: We know that Ng(P) = P. Applying Theorem ?7 to the set V of all conjugate
of P with the action of G, we see that Gp = P. Since P is connected, P’ = P; and
the result follows.

Let G and F be as above and B a Borel subgroup and let T be a maximal torus
contained in B. Since T is rational then Ng(T) is also rational. Hence F also acts on W
by sending n'T to F(n)T. Let ® be the positive system of roots in ® that correspond
to B, i.e B = T[] .o+ Ua. Since B is F-stable, F permutes the root subgroups U,
of B. Thus F permutes ®*. Recall that ®* is the set of linear combinations of the

elements in a simple system A C ® with positive coefficients. So F fixes A.

F acts on both the character group and cocharacter group X (T) and Y(T) of T. These

actions are defined as follows:

F(x)(t) = x(E(t)) for y € X(T),t € T
F(7(c)) = F(y(c)) for 7 € Y(T),c € F,

Write ® C X(T) for the root system of G, with positive system ®* with respect to
T and B. For a € ® lets choose isomorphisms u,, : G, — U, onto the root subgroups.
We set Xg := X(T) ®z R.

Proposition 4.2.19 Let G be a connected reductive algebraic group with Frobenius
endomorphism F : G — G, and T,B, X(T),® as above.
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e (a) There exists a permutation p of ® and, for each o € T, a positive integral
power q, of p and a, € F; such that F(p(a)) = qaar and F(ua(c)) = tpa)(aacl)
for all € F,

e (b) There exists § > 1 such that F5|X(T) = ¢%d and F = q¢ on Xg for some
positive fractional power q of p and some ¢ € Aut(Xg) of order § inducing p=*
on ®F.

Proof: See [19] Proposition 22.2.
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BN-pair of GF¥

Theorem 4.2.20 Let G be a connected reductive group with Frobenius map F : G —
G and let T be an F-stable maximal torus in an F-stable Borel subgroup of G, with
normalizer N := Ng(T). Then B¥, N¥ is a BN-pair in G* whose Weyl group is

isomorphic to WF.

Proof: See [19], Theorem 24.10.

Centralizer of semisimple elements

Definition 4.2.19

Let G be a connected reductive group. Let s be a semisimple element of G. Since
every semisimple element lies in a maximal torus of G, there is a maximal torus T of

G containing s. Since T is abelian, T C Cg(s).

Theorem 4.2.21 Let s be a semisimple element of G contained in a maximal torus
T. Let ® be a root system of G relative to T. Then Cg(s) is reductive. Its connected
component Cg(s)° is generated by T together with Uy, o € ® for which a(s) = 1.

Proof: See [9], Proposition 2.3

Let @ the be root system of G with respect to the maximal torus T.

Definition 4.2.20 A subset ¥ C ® is said to be closed if whenever o, 3 € ¥ and n,m
are positive integers such that na+mp is a root, then na+mp € V. A subset ¥ C ®

15 called symmetric if a« in ¥ then —a in W

Proposition 4.2.22 The connected reductive subgroups of G which contain T are
Gy = (T,U,| a € V), where V is a closed and symmetric subset of .

Remark 4.2.1 Since ® is a finite set, its closed and symmetric subsets are also finite.
Recall that for a basis A C ® its subset A" gives a closed and symmetric subset of ®.
Indeed they are corresponding to Levi complement of some parabolic subgroups of G.
Hence we conclude that almost all of centralizers of semisimple elements are
Levi subgroups of G.
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