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ABSTRACT 

 

The demand of aerospace, defence, medical and chemical industries to special alloys 

have been increasing recently in application requiring high performance. Ability to 

retain their high mechanical and chemical properties even at elevated temperatures 

makes superalloys such as ni-base, ti-base, co-base, ideal for use in these industries. 

Even though machining is one of the important production methods of these alloys, 

these alloys show formidable challenges to cutting tools. Due to their unique inherent 

properties, cutting tools expose to higher cutting temperatures and higher stresses 

during process resulting premature failure, hence these alloys are called difficult to 

machine alloys. As a result, machining of these alloys with conventional processes is 

unproductive, time consuming and costly. Rotary turning processes can be a good 

solution for machining these superalloys. Rotational motion of cutting insert around its 

axis during process provides fresh portion of cutting edge to cutting region 

continuously. As a result, generated heat is dissipated around cutting edge and heating 

of a particular portion of tool is prevented. This reduces the thermally activated wear 

mechanism on cutting edge resulting prolonged tool life and increasing machinability of 

these alloys. 

The main aim of this thesis is to understand the performance of self-propelled rotary 

turning (SPRT) and actively driven rotary turning (ADRT) tools on metals especially 

for difficult to cut alloys. Tool life, generated forces, surface roughness and circularity 

of workpiece are analyzed for various cutting and cooling conditions for rotary turning 

processes. The effects of tool inclination angle, tool velocity and cooling conditions on 

tool wear behavior are examined for ADRT process. Then these results are compared 

with conventional turning process results to see the process advantages. Tool rake face 

temperature measurements are conducted for ADRT process for various materials in 

order to correlate the tool life results with cutting temperature. In addition, the 

difference in performance of SPRT and ADRT is analyzed for the same testing 

materials and cutting conditions. 

 

Key Words: Machining, Self-Propelled Rotary Turning, Actively Driven Rotary 

Turning, Tool Life, Tool Temperature Measurement. 
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ÖZET 

 

Havacılık, savunma, medikal ve kimyasal endüstrilerin yüksek performans gerektiren 

uygulamaları için özel alaşımlara ihtiyaçları son yıllarda artış göstermektedir. Mekanik 

ve kimyasal özelliklerini yüksek sıcaklıklarda bile korumaları bu malzemelerin 

popularitesini artırmıştır. Talaşlı imalat bu alaşımlar için önemli işleme süreçlerinden 

biri olsa da bu alaşımların üstün özelliklerinden ötürü kesici takımlar yüksek 

sıcaklıklara ve yüksek gerilmelere maruz kalmaktadır. Bu durum takımların zamansız 

işgörmesine sebep olduğu gibi verimin düşmesine, kesme zamanının ve maliyetin 

artmasına sebep olmaktadır. Dönel tornalama süreçleri bu alaşımların işlenebilirliğini 

arttırması açısından güzel bir çözüm olabilir. Kesici takım dönme hareketi, kesici 

takımın hep aynı bölgesinin kesme işlemine maruz kalmasını engeller ve oluşan ısının 

tüm kesme kenarına yayılmasını sağlar. Bu sayede termal olarak aktif olan takım 

aşınması azalırken takım ömrü ve malzeme işlenebilirliği artar. 

Bu tezin en önemli amacı Kendiliğinden Hareketli Dönel Tornalama (KHDT) ve 

Tahrikli Dönel Tornalama (TDT) takımlarının değişik malzemeler ve değişik koşullar 

üzerinde performanslarının karşılaştırılmasıdır. Takım ömrü, kesme kuvvetleri, yüzey 

kalitesi ve iş parçası yuvarlaklığı dataları değişik kesme koşulları ve değişik soğutma 

koşulları için toplanmış ve konvensiyonel tornalama sonuçlarıyla kıyaslanmıştır. TDT 

için, takım eğikliğinin, takım hızının ve soğutma koşullarının takım ömrüne etkisi 

incelenmiştir. Aynı şekilde, TDT için, takım talaş akma yüzeyi üzerinde oluşan sıcaklık 

dağılımı ölçülmüş ve takım aşınması sonuçlarıyla karşılaştırılmıştır. KHDT ve TDT 

takımlarının performansları ayrıca değişik test malzemeleri ve değişik kesme koşulları 

üzerinde incelenmiş ve ilginç sonuçlara ulaşılmıştır. 

 

Anahtar Kelimeler: Talaşlı İmalat, Kendiliğinden Hareketli Dönel Tornalama, Tahrikli 

Dönel Tornalama, Takım Ömrü, Takım Sıcaklık Ölçümü. 
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CHAPTER 1 INTRODUCTION 

 

Manufacturing, combination of two Latin origin words “Manus” meaning “Hand” and 

“Factus” meaning “Made/Fashioned”, is the process of converting raw materials, 

components or parts into finished goods on large scale for use or sale using labor and 

machine, tools, chemical and/or biological processing and/or formulation. 

Manufacturing started some 6000 years ago and up to now several different processes 

and operations such as casting, forming, machining, welding, powder metallurgy, heat 

treatment were invented to produce valuable goods. 

Machining is one of the significant methods in today’s manufacturing world. It is 

material removal process to shape raw materials or near net shape parts to desired 

geometry where tight tolerances and finishes are required by using chip formation. 

Chips are produced by shearing mechanism by using cutting tool that is harder and 

stronger than work piece material. The biggest part of industry belongs to metal cutting 

that is the subject of this thesis. Conventional operations, turning, milling, broaching, 

drilling, grinding, etc. and non-traditional operations, EDM, LBM, EBM, etc are the 

basic metal cutting operations. 

The demand within aerospace and defence industries towards lighter, stronger and more 

heat resisting materials has resulted in that traditional materials, steel, cast iron, are 

replaced by high performance materials, metal matrix composites, super alloys [1-3]. 

Due to better mechanical and low thermal properties, to machine these newly developed 

materials is problematic; such that it is very difficult, time consuming, costly and most 

significantly unproductive. The reasons behind the scene are the generated high 

temperatures and high pressure during the operation [2-5]. 

Almost %95 of mechanical energy coming from shearing and friction mechanisms is 

converted into heat during operation. A significant portion of generated heat flows into 

the chip, the rest of it dissipates into the tool and workpiece. This results in an increase 

in temperature of tool and work piece. High process temperature causes thermal 

softening of workpiece material with less generated forces that is desirable. On the 
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other hand, excessive temperatures also soften the cutting edge of tool leading to 

permanent deformation at the contact zone. This situation is very critical especially for 

materials with unfavorable thermal properties, since due to low conduction properties, 

most of the heat goes into the cutting tool on behalf of chip. This accelerates thermally 

active wear on tool. Tool wear adversely affects the accuracy and integrity of generated 

surface. Hence, cost of tooling and load/unload time increase, productivity decreases as 

a consequence of excessive temperatures at tool tip. 

Many investigations about tool materials and cooling techniques have been made in 

order to reduce tool tip temperature. Hot hardness, lubricious, thermal and chemical 

stability even at elevated temperatures are the features for cutting tool materials used 

for machining aerospace alloys. Coated carbides, ceramics, CBN/PCBN tools are 

generally used to machine these alloys [2, 4, 6-8]. In addition to cutting tools, coolants 

are helpful to decrease tool tip temperature by moving heat from cutting zone. 

However, at high cutting speeds, penetration of coolants to cutting zone is limited and 

the usage of coolants cause environmental and health problems. Minimum quantity of 

liquid (MQL) can be a solution with application of small amount of oil and water with 

compressed air directed tool edge with a nozzle [9]. On the other hand, mist generation 

inspires hazardous health problems to operators. In cryogenic cooling, liquid nitrogen 

(LN2) is used as coolant, yet the ice formation on surface can lead damage on surface 

and ruin surface integrity [10]. 

The last but not the least rotary cutting tools can be a solution for generated excessive 

cutting temperatures. Rotary turning is specialized turning process such that round 

insert rotates continuously about its own axis during metal cutting. Each portion of 

cutting edge is in contact with the workpiece for a short period of time, followed by a 

longer period of time for cooling. Cutting edge cools down and fresh portion of edge is 

engaged with the work piece continuously. Insert rotation distributes the generated 

thermal energy to whole cutting edge resulting lowered cutting temperatures and 

uniformly distributed flank wear without crater wear. Rotary turning process provides a 

large effective rake angle without sacrificing tool tip strength. These tools transport 

cutting fluids to cutting region effectively. Moreover, without increasing cutting 

velocity, chip flow velocity can be enhanced. It is expected that this process increases 

machinability and productivity of alloys especially difficult to machine alloys. There 

are two types of rotary turning tools which are Self-Propelled Rotary Turning (SPRT) 
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tool and Actively Driven Rotary Turning (ADRT) tool as seen in Figure 1-1a and 

Figure 1-1b, respectively. In SPRT, tool rotation is caused by the action of workpiece 

with cutting tool. Tool should be inclined at an angle with respect to workpiece so 

generated cutting force propels cutting tool. However, rigidity of tool is a big problem 

for this process such that it is difficult to maintain a stable cutting with these tools. 

Moreover, tool velocity cannot be adjusted freely and it is dependent to tool inclination 

angle and workpiece velocity. 

 

Figure 1-1: Types of rotary turning tools a) SPRT b) ADRT [35]. 

In ADRT process, an external power source is utilized to propel round insert such that 

tool circumferential velocity and tool position can be adjusted freely from workpiece 

velocity and geometry. Despite its potentialities on machinability of difficult to cut 

machine this process could not be applied to real production process due to some 

reasons. In first researches, conventional turning centers lack in stiffness and rigidity 

were utilized to apply this process. Numerical control systems were not sophisticated to 

provide tool velocity, tool inclination angle and tool position with respect to workpiece. 

However, with the development of multi-tasking machining centers, the application of 

ADRT process to real production processes is possible. These machining centers are 

rigid and their milling head can be positioned with developed software. 

1.1 Literature Survey 

Even though the rotary turning process is not a novel issue, the publications were 

limited up to a few decades. First articles were about self-propelled rotary turning 
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process since in order to study actively driven rotary turning tools effectively and 

experimentally, specialized machining centers were required. 

The history of rotary turning process dates back to 1866 when James Napier foresaw 

the advantages of process in the manner of tool life and productivity. After his 

invention, there were a few studies in Soviet Russia, yet the details could not be 

reached.  

Studying kinematics and mechanics of this process is a key factor to gain deep 

understanding of this operation. Shaw [11] showed the equivalency between rotary 

turning process and classical oblique cutting process kinematically and mechanically. It 

is also stated that reduction of required power with lowered cutting temperature can be 

achieved with increasing tool inclination angle. Armarego et. al. [12, 13] modeled and 

simulated the rotary cutting processes based on thin shear zone cutting model. 

Operation is represented as equivalent classical oblique cutting process with chip 

transportation with no additional energy due to tool rotational motion. In order to 

predict forces, power and chip flow properties, data from orthogonal tests are required. 

Venuvinod et al. [14] studied the kinematics and mechanics of ADRT tools. It is stated 

that at higher tool rotational velocities, shear angle achieves and chip thickness ratio 

reduces due to eased friction conditions. Venuvinod and Rubenstein [15] used a cutting 

data taken from conventional oblique cutting tests with a tool having same rake as that 

of the rotary tool in order to find out chip flow angles and cutting force components of 

ADRT process by applying a general principle of equivalent obliquity. Choi and 

Dornfeld [16] indicated that the rotary turning process and classical cutting processes 

are kinematically equivalent, on the other hand, chip formation mechanisms differ from 

each other due to friction conditions. According to their hypothesis, chip flow angle for 

rotary cutting operation is a function of that for classical cutting operation found 

experimentally such that force components, shear and friction angles can be estimated 

depending on that function. Armarego and Katta [17] modeled the forces, power and 

chip flow angle of SPRT tool in turning operations based on “Unified Mechanics of 

Cutting Approach”. Basic data of tool-work piece couple such as shear angle, friction 

angle, force coefficients should be known from orthogonal cutting tests to predict the 

forces, power and chip flow angle. Li and Kishawy [18] extended the force model for 

orthogonal cutting to model the generated cutting forces for SPRT process using 

Oxley’s analysis for tube-end cutting. Hao et al. [19] estimated cutting forces of SPRT 
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tools using artificial neural networks using two algorithms; back propagation (BP) and 

hybrid of genetic algorithm (GA). Even though the rotary turning process is 

complicated mechanically and kinematically due to tool motion, their approach reduces 

the complexness of operation. Kishawy et al. [20] modeled the chip flow angle for 

SPRT tools during tube cutting by dividing the undeformed chip into finite elements. 

After each element’s chip flow direction is calculated, absolute chip flow angle is 

estimated using transformation matrices. Chang et al. [21] modeled a tool rotary 

velocity and feed rate equation using geometric relations in order to achieve good 

surface quality. Harun et al. [22] studied the effects of tool holder inclination angle and 

tool offset height on cutting mechanics of turning with ADRT tools. 

Tool wear is one of the challenging parameters in machining operations that limits the 

machinability of materials and productivity directly. In rotary turning operations whole 

cutting edge is in cutting zone with uniformly distributed wear on cutting edge. There 

are lots of studies about the advantages of rotary turning tools in tool wear compared to 

stationary turning operations for various materials. Kishawy et al. [23] modeled the 

SPRT tool wear for hard turning processes implementing Dawson and Kurfess’s wear 

model using genetic algorithm with various cutting tests. It is concluded from model 

that cutting speed and feed have almost the same influence on tool wear. Joshi et al. 

[24]modeled the rotary tool wear on intermittent machining utilizing Taguchi method to 

understand the effects of feed rate, cutting velocity, and tool inclination angle. Chen 

[25] evaluated the performance of SPRT tools on Al/SiC-MMC and compared with 

conventional fixed round and square tools. Test results show that rotary cutting tools 

exhibit longer tool life, less tool wear rate and distributed flank wear over entire cutting 

edge compared to fixed tools. Tool inclination angle affects the tool life in a positive 

way. Wang et al. [26] and Ezugwu et al. [27] evaluated the SPRT tools with IMI318 

and Inconel alloys. Extended tool life by more than 60 times compared to fixed tools 

with lowered cutting temperatures is obtained from cutting tests for SPRT tools. 

Thermal fluctuation and thermal fatigue cause excessive chipping, cracks and welding 

in SPRT process. Tool wear is statistically modeled and it was found that 97% of tool 

wear is related with cutting speed, feed and inclination angle of tool Kuroda et al. [28] 

investigated the efficiency of SPRT tools in Inconel and SUS304. Longer tool life is 

achieved with reduced cutting forces and temperatures. Due to stability problems, 

surface quality is not at a required level. Manna and Bhattacharyya [29] evaluated the 
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SPRT tool and compared with fixed rhombic, circular and square tools for Al/SiC-

MMC tests. SPRT tooling system gives best tool wear results with no built-up edge on 

tool. On the other hand, poorest surface roughness values were observed in cutting tests. 

This is because of large nose radius, greater radial force component and less stiffness of 

tooling system. Kishawy et al. [30] investigated the performance of SPRT tool in 

Waspaloy and titanium alloys. Uniformly distributed flank wear is the main tool failure 

phenomena in SPRT process. Surface scratches (grooves) obtained SPRT process are in 

direction of effective cutting velocity. Ezugwu [31] studied the machining of aero-

engine alloys using SPRT tools. He implies that oxide films that prevent adhesion and 

diffusion are produced in SPRT process due to short tool engagement time with 

workpiece. Smearing action between tool and work piece reduces the feed rate effect on 

surface quality. Kossakowska and Jemielniak [32] evaluated the performance of SPRT 

tools for turning of difficult to cut materials. Tool run-out, work piece chatter and chip 

adhesion are the main parameters affecting machined surface quality. Lei and Lui [33] 

investigated the effects of ADRT process for tool wear and cutting forces in titanium 

cutting. It is stated that tool strength, rigidity, and dynamic run-out problems directly 

affect the surface quality and vibration. There is an optimum tool speed in the manner 

of cutting temperature due to heating and cooling time problems of tool. Nakajima et al. 

[34] examined the effects of ADRT tools compared with SPRT tools during SUS304 

stainless steel cutting. It is stated that ADRT tools are more suitable than SPRT tools 

for high speed cutting due to wear rates on tools. Hosokawa et al. [35] investigated the 

ADRT tools in stainless steels and Inconel with dry and MQL cutting. Small and 

uniform wear without chipping on tool edge was observed in both cooling conditions.  

In metal cutting, the generated heat is directly affects the workpiece and tool 

mechanically and physically. At that point studies about heat generation and 

temperature measurement for rotary turning process are very significant to understand 

this mechanism ant its effects. Chen [36] modeled the heat generation for SPRT process 

using moving heat source approach. Cutting tests results show that SPRT tools provide 

lower cutting temperatures in both MMCs and Ti alloy compared to fixed tools. Both 

model and experimental results reveal that contact zone temperature is cooled down to 

neighborhood of ambient temperature. Dessoly et al. [37] modeled the chip and tool 

temperature on SPRT process by adding the convective flux term for tool rotation to the 

conduction term. An IR camera is utilized to measure the chip and tool temperatures. 
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Predicted and measured results show good correlation for heating and cooling behavior 

of tool during operation. Sasahara et al. [38] investigated the effects of tool inclination 

angles of ADRT tools in Inconel and SUS304 steel. It was found that higher cutting 

speed with lower tool inclination angle can be the optimum for lower cutting 

temperatures due to lower heat partitioning and lower cutting forces. Harun et al. 

[39]modeled thermal behavior of ADRT process using one-dimensional unsteady heat 

transfer theory. It is concluded that there should be an optimum rotary tool velocity for 

heating and cooling time of tool. Higher tool inclination angle enhances cutting 

temperature reduction during cutting. Yamamoto et al. [40] investigated the thermal 

behavior of ADRT process. It is found that heat capacity and velocity of tool have 

influence on thermal behavior of process. Larger tools provide lower cutting 

temperatures due to higher heat capacity. Hosokawa et al. [35] stated that a raise in tool 

rotational speed reduces temperature due to intermittent heat cycle. However, at higher 

cutting velocities, the heat caused by the friction between tool and chip seems to be 

significant causing tool temperature to increase. 

1.2 Objective 

The objective of this master thesis is to enhance the knowledge and understanding of 

rotary turning processes. Rotary turning process can be a remedy to machine difficult to 

cut alloys. Investigation of tool wear and tool life compared to conventional turning, 

especially for difficult to cut alloys, is one of the main objective of this thesis. Effects of 

tool inclination angle and tool velocity on tool life are investigated. Analyzing the effect 

of cooling types on tool life for various processes is one of the main purposes of thesis. 

Surface quality is one of the essential parameters in industry defining productivity. In 

this thesis, surface quality and circularity of machined parts for various cutting 

processes are examined, especially, for tool velocity and tool inclination angle of 

ADRT process. Generated component forces for various processes are monitored to see 

the effect of processes on forces. Cutting temperatures and temperature variations on 

tool rake face are investigated to understand the effects of tool inclination angle and 

tool velocity on generated temperatures during cutting. 
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1.3 Organization of Thesis 

This thesis is divided into 6 chapters. After this introductory Chapter 1, kinematics and 

mechanics of conventional and rotary turning processes is presented in Chapter 2. 

Experimental procedure about cutting tests is explained in Chapter 3 with machining 

centers, cutting tools, testing materials and measurement devices. Chapter 4 includes 

the cutting test results of SPRT process and conventional turning process. In Chapter 5, 

ADRT process results are presented. Temperature measurements of cutting tool of 

ADRT process is given in Chapter 6. In Chapter 7, cutting tests and temperature results 

are discussed and conclusions obtained from this study are presented. Conclusions and 

future works about rotary turning are given in Chapter 8. 

  



9 
 

 

CHAPTER 2 KINEMATICS AND MECHANICS OF ROTARY TURNING 

PROCESSES 

2.1 Fundamentals of Rotary Cutting Process and Equivalence with Classical 

Cutting Processes 

When rotary turning is taken into consideration, it is pretty obvious that this process is 

more complex compared to classical cutting processes, since both workpiece and 

cutting tool rotate about their own axes during cutting. In studying this process, 

machining a tube shape workpiece is utilized in order to understand the fundamentals of 

this process and to provide a correlation between classical cutting processes. Figure 2-1 

presents the rotary tool cutting processes for the tube cutting. 

 

Figure 2-1: Rotary tool cutting processes on tube cutting. 

In order to gain understanding of fundamentals of rotary cutting process, some 

assumptions are made [12]; 

 Tool and workpiece diameters are large compared to workpiece thickness so that 

the curvature of tool insert can be neglected.  

 Feed velocity, 𝑉𝑓 , is negligible compared to workpiece velocity, 𝑉𝑤 . 

 Since the tube thickness is undersize, 𝑉𝑤  is taken as constant across tube 

thickness. 

 Orientation of 𝑉𝑤  with respect to plane normal to tool cutting edge is dependent 

on tool position on workpiece rotation axis. 
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When the rotary tool is set as in Figure 2-1a and the tool rotates by an action of motor 

power, the process is called as driven oblique rotary tool cutting and it can be simulated 

as in Figure 2-2. 

 

Figure 2-2: Simulation of actively driven oblique rotary tool cutting and equivalent 

classical processes. 

If the rotary tool is set as in Figure 2-1b and an external power source provides tool 

motion, the process is called as driven orthogonal rotary tool cutting and it can be 

simulated as in Figure 2-3. 
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Figure 2-3: Simulation of actively driven orthogonal rotary tool cutting and equivalent 

classical processes. 

When tool is set as in Figure 2-1a or Figure 2-1c and tool rotates by the action between 

tool and workpiece, the process is called self-propelled rotary tool cutting and it can be 

simulated as in Figure 2-4. 

 

Figure 2-4: Simulation of self propelled rotary tool cutting and equivalent classical 

processes. 

In Figure 2-2, Figure 2-3 and Figure 2-4, 𝑃𝑛 , 𝑉𝑤 , 𝑉 , 𝑉𝑟 , 𝑉𝑐𝑟 , 𝑉𝑐𝑟 , 𝑖𝑠 , 𝑖𝑒𝑞 , 𝜂𝑐 ,𝜂𝑐𝑟 , 𝜓 

represent the plane normal to the cutting edge, workpiece velocity, resultant 

(equivalent) velocity, rotary tool velocity, relative chip flow velocity, absolute chip 
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flow velocity, static inclination angle (angle between 𝑉𝑤  and 𝑃𝑛 ), equivalent inclination 

angle (angle between 𝑉 and 𝑃𝑛 ), chip flow angle, relative chip flow angle and absolute 

chip flow angle, respectively. From figures, 𝑉 and 𝑖𝑒𝑞  can be found by using simple 

geometric relations [12]; 

𝑉 =   𝑉𝑤 ∗ cos 𝑖𝑠 
2 +  𝑉𝑟 + 𝑉𝑤 ∗ sin 𝑖𝑠 

2 ( 2-1) 

 

tan 𝑖𝑒𝑞 =
𝑉𝑟 + 𝑉𝑤 ∗ sin 𝑖𝑠

𝑉𝑤 ∗ cos 𝑖𝑠
 

( 2-2) 

 

Then, these relations between 𝑉𝑤 − 𝑉 and 𝑉𝑐 − 𝑉 can be seen easily; 

𝑉𝑤 ∗ cos 𝑖𝑠 = 𝑉 ∗ cos 𝑖𝑒𝑞  ( 2-3) 

 

𝑉𝑟

sin 𝑖𝑒𝑞 − 𝑖𝑠 
=

𝑉

sin 90 + 𝑖𝑠 
=

𝑉

cos 𝑖𝑠
 

( 2-4) 

 

The major variable in rotary tool cutting is rotary tool velocity. The effect of rotary tool 

velocity on kinematics of process can be understood from figures shown above. 

Without alteration the magnitude and direction of 𝑉𝑤 , just changing the magnitude 

and/or direction of 𝑉𝑟  results changes in magnitudes and directions in 𝑉 , 𝑉𝑐𝑟 , 𝑉𝑐 and 

obviously related cutting angles. 

For actively driven rotary tool, 𝑉𝑟  is controlled by a power source and obviously its 

direction and magnitude can be adjusted freely from 𝑉𝑤  and 𝑖𝑠. On the other hand, for 

self-propelled rotary tool, 𝑉𝑟  is achieved by the relation between tool and workpiece. 

Direction and magnitude of 𝑉𝑟  are function of 𝑉𝑤  and 𝑖𝑠. 

In Figure 2-2, tool is positioned above the workpiece axis as a result 𝑉𝑤  and 𝐵  are 

inclined to the 𝑃𝑛  by static inclination angle 𝑖𝑠 . Addition of tool rotary velocity, 𝑉𝑟 , 

introduces resultant velocity, 𝑉 , at an angle 𝑖𝑒𝑞  to the 𝑃𝑛 . In Figure 2-2a, tool and 

workpiece rotate in different directions, CW and CCW respectively. Addition of rotary 

tool velocity, 𝑉𝑟  to process increases 𝑉  and 𝑖𝑒𝑞 , such that process becomes more 

oblique. As a result, relative chip flow velocity, 𝑉𝑐𝑟  and relative chip flow angle, 𝜂𝑐𝑟  

can be estimated as in Figure 2-2a due to tool obliquity. However, from an observer’s 

point of view chip emerges with absolute chip flow velocity, 𝑉𝑐  and absolute chip flow 

angle, 𝜓, this is likely due to chip transportation by moving tool in the direction of 𝑉𝑟 . 
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Interestingly, 𝑉 and 𝑉𝑐  are in same side of 𝑃𝑛 . Figure 2-2f is expressed as the equivalent 

classical oblique cutting of Figure 2-2a. 

In Figure 2-2b, tool rotation is considered as 0 meaning that tool is stationary. In that 

case driven oblique tool cutting process is well identical to classical oblique cutting 

process, as seen in Figure 2-2g, since there is no effect of 𝑉𝑟  on process. 

In Figure 2-2c-d-e, tool and workpiece rotate in the same direction, CCW, only the 

magnitude of 𝑉𝑟  differs for these cases. In Figure 2-2c, 𝑉𝑟  reduces the 𝑉 and 𝑖𝑒𝑞 , such 

that 𝑖𝑠 > 𝑖𝑒𝑞 > 0 . In that case, the direction of 𝑉𝑐  also changes due to reversed 𝑉𝑟 . 

Figure 2-2h shows the equivalent classical oblique cutting of Figure 2-2c. In Figure 

2-2d, 𝑉𝑟  is increased such that it makes the process orthogonal cutting, 𝑉 is reduced to a 

minimum value and 𝑖𝑒𝑞 is equated to 0. However, as seen in figure, 𝑉𝑐  and 𝜓 increase 

due to different magnitude of 𝑉𝑟  compared to Figure 2-2c. A more increase in 𝑉𝑟  

changes the direction of 𝑉 as seen in Figure 2-2e. 𝑖𝑠-𝑖𝑒𝑞  and 𝜂𝑐𝑟 -𝜓 become in different 

signs. It can be again considered as classical oblique cutting as seen in Figure 2-2j. 

In Figure 2-3, rotary tool is set on the centre of workpiece axis as a result, 𝑉𝑤  is normal 

to the cutting edge on the 𝑃𝑛 . In that case 𝑖𝑠 is 0 and process is called as actively driven 

orthogonal rotary tool cutting. In Figure 2-3a, tool and workpiece rotate in different 

directions, CW and CCW respectively. Addition of 𝑉𝑟  to process introduces 𝑉 with an 

equivalent inclination angle, 𝑖𝑒𝑞  to the 𝑃𝑛 . Since process resembles classical oblique 

cutting as seen in Figure 2-3d, 𝑉𝑐𝑟  and 𝜂𝑐𝑟  can be estimated. In Figure 2-3b, rotary tool 

is considered as stationary due to the fact that velocity of tool is set 0. In that case, 

process is completely equivalent to orthogonal cutting process as seen in Figure 2-3e. In 

that case, 𝑉 is equal to 𝑉𝑤  and 𝜂𝑐𝑟  and 𝜓 are 0. In Figure 2-3c, tool and workpiece rotate 

in the same direction, CCW. This case is the complete symmetry of Figure 2-3a to the 

𝑃𝑛 . 

In Figure 2-4, tool is set above and below the centre of workpiece axis and it is free to 

rotate. Generated force due to initial cutting action propels and rotates rotary tool about 

its own axis. In that case process is called as self propelled rotary tool cutting. In Figure 

2-4a, tool set above workpiece axis such that 𝑉𝑤  is inclined to the 𝑃𝑛  at an angle of 𝑖𝑠. 

The cutting force accelerates the tool in the same direction with workpiece velocity and 

when 𝑉𝑟  reaches its equilibrium, it is anticipated that 𝑉 is in direction normal to cutting 
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edge, as a result 𝑖𝑒𝑞  is equal to 0. Moreover, 𝑉𝑐𝑟  is on the 𝑃𝑛  with relative chip flow 

angle of 0. So, this process is equivalent to classical orthogonal cutting process.  In that 

case the direction and magnitude of 𝑉𝑐  is strongly dependent to 𝑉𝑤  rather than 𝑉𝑟 . 

In order to consider a equivalency between rotary tool cutting and classical cutting 

processes, volume metal removal rate should be same for same 𝑉 and chip thickness, 𝑡. 

The relation is shown as; 

𝑉𝑤 ∗ 𝐵 ∗ 𝑡 = 𝑉 ∗ 𝑏 ∗ 𝑡 = 𝑉 ∗ 𝐵 ∗
cos 𝑖𝑒𝑞

cos 𝑖𝑠
∗ 𝑡 

( 2-5) 

 

𝑏 = 𝐵 ∗
cos 𝑖𝑒𝑞

cos 𝑖𝑠
 

( 2-6) 

 

where 𝐵 is chip width in rotary tool process, 𝑏 is equivalent width of cut in classical 

cutting process. 

Modified thin shear zone model is applied to rotary tool cutting process in order to 

develop cutting analysis. Process is considered as a deformation process with respect to 

fixed tool to obtain forces and relative chip flow velocity with chip transportation due to 

the effect of rotary tool velocity. There are some assumptions to associate rotary tool 

cutting with classical cutting processes [11, 12]: 

 Chip formation is continuous and straight. 

 Chip is formed by shearing in a thin shear plane. 

 Chip is in equilibrium under the action of equal, opposite and collinear forces 

acting at shear plane and rake face of tool. 

 Relative chip flow velocity and friction force on rake face are collinear, shear 

flow velocity and shear force on shear plane are coincident. 

 No additional energy is required for chip transportation due to rotary tool 

velocity. 
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Figure 2-5: Velocity relations, shear and rake angles in rotary turning process. 

Figure 2-5 exhibits the deformation geometry and cutting velocities of rotary tool 

cutting process. From Figure 2-5, using the continuity and incompressibility conditions 

of chip formation, the following relations can be correlated [12]; 

𝐵𝑐

cos 𝜓
=

𝐵

cos 𝑖𝑠
=

𝑏

cos 𝑖𝑒𝑞
 

( 2-7) 

 

where 𝐵𝑐  is chip width in rotary tool process. Chip length ratio, 𝑟𝑙 , the ratio of length of 

chip, 𝑙𝑐 , produced in 𝑉𝑐  direction to length of workpiece cut, 𝑙, in 𝑉𝑤  direction is found 

by [12]; 

𝑟𝑙 =
𝑙𝑐
𝑙

=
𝑉𝑐
𝑉𝑤

 
( 2-8) 

 

Then, chip thickness ratio is expressed as [12]; 

𝑟𝑐 = 𝑟𝑙 ∗
cos𝜓

cos 𝑖𝑠
 

( 2-9) 

 

The effective rake angle, 𝛼𝑒 , in the plane of 𝑉- 𝑉𝑐𝑟  as in classical oblique cutting is 

found by [11]; 

sin 𝛼𝑒 = sin 𝜂𝑐𝑟 ∗ sin 𝑖𝑒𝑞 + cos 𝜂𝑐𝑟 ∗ cos 𝑖𝑒𝑞 ∗ sin 𝛼𝑛  ( 2-10) 

 

The normal shear angle, 𝜙𝑛 , on 𝑃𝑛 , is defined [11, 12]; 

tan 𝜙𝑛 =
𝑟𝑐 ∗ cos𝛼𝑛

1 − 𝑟𝑐 ∗ sin𝛼𝑛
=

𝑟𝑙 ∗  
cos 𝜓

cos 𝑖𝑠
 ∗ cos 𝛼𝑛

1 − 𝑟𝑙 ∗  
cos 𝜓

cos 𝑖𝑠
 ∗ sin𝛼𝑛

 
( 2-11) 
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The effective shear angle, 𝜙𝑒 , in the plane of 𝑉- 𝑉𝑐𝑟  as in classical oblique cutting is 

expressed as [11,12]; 

 

tan 𝜙𝑒 =

𝑉𝑐𝑟
𝑉 ∗ cos𝛼𝑒

1 −
𝑉𝑐𝑟

𝑉 ∗ sin𝛼𝑒

 
( 2-12) 

 

sin𝜙𝑒 =
cos𝜂𝑠 ∗ cos𝛼𝑒

cos 𝜂𝑐𝑟 ∗ cos 𝛼𝑛
∗ sin 𝜙𝑛  ( 2-13) 

 

The relative chip flow angle, 𝜂𝑐𝑟 , on tool rake face is found by using geometric 

relations [12]; 

 

tan 𝜂𝑐𝑟 =
sin 𝑖𝑒𝑞 − 𝑖𝑠 

𝑟𝑡 ∗ cos 𝑖𝑒𝑞 ∗ cos 𝑖𝑠
− tan 𝜓 

( 2-14) 

 

On the other hand, 𝑉, 𝑉𝑐𝑟  and 𝑉𝑠 lie in velocity plane as discussed above and they are in 

balance. These velocity vectors can be defined by Cartesian coordinates; 

 

𝑉 =  𝑉 ∗ cos 𝑖𝑒𝑞                                               𝑉 ∗ sin 𝑖𝑒𝑞                                          0  

𝑉𝑐𝑟 =  𝑉𝑐𝑟 ∗ cos 𝜂𝑐𝑟 ∗ sin 𝛼𝑛                         𝑉𝑐𝑟 ∗ sin 𝜂𝑐𝑟                     𝑉𝑐𝑟 ∗ cos 𝜂𝑐𝑟 ∗ cos 𝛼𝑛  

𝑉𝑠 =  −𝑉𝑠 ∗ cos 𝜂𝑠 ∗ cos 𝜙𝑛                          − 𝑉𝑠 ∗ sin 𝜂𝑠                       𝑉𝑠 ∗ cos 𝜂𝑠 ∗ sin 𝜙𝑛  

After balancing each coordinate axis these relations can be found in terms of normal 

shear and rake angle as in classical oblique cutting; 

 

𝑉𝑐𝑟
𝑉

=
sin𝜙𝑛 ∗ cos 𝑖𝑒𝑞

cos 𝜙𝑛 − 𝛼𝑛 ∗ cos 𝜂𝑐𝑟
 

( 2-15) 

 

𝑉𝑠
𝑉

=
cos 𝑖𝑒𝑞 ∗ cos 𝛼𝑛

cos 𝜂𝑠 ∗ cos 𝜙𝑛 − 𝛼𝑛 
 

( 2-16) 

 

Then the shear flow angle, 𝜂𝑠, in shear plane is given by following equation [11]; 

 

tan 𝜂𝑠 =
tan 𝑖𝑒𝑞 ∗ cos 𝜙𝑛 − 𝛼𝑛 − sin𝜙𝑛 ∗ tan 𝜂𝑐𝑟

cos 𝛼𝑛
 

( 2-17) 
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Figure 2-6: Force components in rotary turning process. 

Figure 2-6 shows the deformation geometry and relevant forces in tool rake face, shear 

and normal planes of rotary tool cutting process. Using the assumptions explained 

above, these relations can be found [11, 12]; 

𝜂𝑐𝑟
′ = 𝜂𝑐𝑟  

𝜂𝑠
′ = 𝜂𝑠 

( 2-18) 

 

According to Figure 2-6, using these assumptions, resultant force, 𝑅, is expressed as; 

𝑅 =   𝑅′ 2 +  𝐹𝑟
′ 

2
 

𝑅 =  𝐹𝑡
2 + 𝐹𝑓

2 + 𝐹𝑟
2 

( 2-19) 

 

The friction angle, 𝛽, is expressed as in classical cutting processes. Then the friction 

angle obtained in 𝑃𝑛 , 𝛽𝑛 , is found by [12]; 

tan 𝛽𝑛 =
𝐹′

𝑁
=

𝐹 ∗ cos𝜂𝑐𝑟

𝑁
= tan 𝛽 ∗ cos 𝜂𝑐𝑟  

( 2-20) 

 

The direction of shear flow, 𝜂𝑠, from Figure 2-6 on shear plane is given by following 

equation [12]; 

tan 𝜂𝑠 =
𝐹𝑟

′

𝐹𝑠
′

=
𝐹′ ∗ tan 𝜂𝑐𝑟

𝑅′ ∗ cos 𝜙𝑛 + 𝛽𝑛 − 𝛼𝑛 
=

sin𝛽𝑛 ∗ tan 𝜂𝑐𝑟

cos 𝜙𝑛 + 𝛽𝑛 − 𝛼𝑛 
 

( 2-21) 

 

Assuming the stress distributions on the thin shear plane are uniform, the shear force, 

𝐹𝑠, is given by [12]; 
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𝐹𝑠 = 𝜏 ∗ 𝐴𝑠 = 𝜏 ∗
𝐵

cos 𝑖𝑒𝑞
∗

𝑡

sin𝜙𝑛
 

( 2-22) 

 

where 𝐴𝑠 is the area of shear plane in rotary tool cutting. From Figure 2-6, tangential 

force, 𝐹𝑡 , is found by [12]; 

𝐹𝑡 = 𝐹𝑡
′ ∗ cos 𝑖𝑒𝑞 + 𝐹𝑟

′ ∗ sin 𝑖𝑒𝑞  

𝐹𝑡 = 𝐹𝑠
′ ∗

cos 𝛽𝑛 − 𝛼𝑛 ∗ cos 𝑖𝑒𝑞
cos 𝜙𝑛 + 𝛽𝑛 − 𝛼𝑛 

+ 𝐹𝑠 ∗ sin 𝜂𝑠 ∗ sin 𝑖𝑒𝑞  

( 2-23) 

 

Hence the tangential force for rotary tool cutting is given by [12]; 

𝐹𝑡 = 𝑡 ∗
𝐵 ∗ cos 𝑖𝑒𝑞

cos 𝑖𝑠
∗  

𝜏

sin𝜙𝑛
∗

cos 𝛽𝑛 − 𝛼𝑛 + tan 𝑖𝑒𝑞 ∗ tan 𝜂𝑐𝑟 ∗ sin𝛽𝑛

 𝑐𝑜𝑠2 𝜙𝑛 + 𝛽𝑛 − 𝛼𝑛 + 𝑡𝑎𝑛2𝜂𝑐𝑟 ∗ 𝑠𝑖𝑛2𝛽𝑛

  
( 2-24) 

 

Similarly, feed force acting on tool tip, 𝐹𝑓 , is found by [12]; 

𝐹𝑓 = 𝑅′ ∗ sin 𝛽𝑛 − 𝛼𝑛 =
𝐹𝑠 ∗ cos 𝜂𝑠 ∗ sin 𝛽𝑛 − 𝛼𝑛 

cos 𝜙𝑛 + 𝛽𝑛 − 𝛼𝑛 
 

𝐹𝑓 = 𝑡 ∗
𝐵

cos 𝑖𝑠
∗  

𝜏

sin 𝜙𝑛
∗

sin 𝛽𝑛 − 𝛼𝑛 

 𝑐𝑜𝑠2 𝜙𝑛 + 𝛽𝑛 − 𝛼𝑛 + 𝑡𝑎𝑛2𝜂𝑐𝑟 ∗ 𝑠𝑖𝑛2𝛽𝑛

  

( 2-25) 

 

The radial force component, 𝐹𝑟 , is given by [12]; 

𝐹𝑟 = 𝐹𝑡
′ ∗ sin 𝑖𝑒𝑞 − 𝐹𝑟

′ ∗ cos 𝑖𝑒𝑞  

𝐹𝑟 = 𝐹𝑠
′ ∗

cos 𝛽𝑛 − 𝛼𝑛 ∗ sin 𝑖𝑒𝑞
cos 𝜙𝑛 + 𝛽𝑛 − 𝛼𝑛 

− 𝐹𝑠 ∗ sin 𝜂𝑠 ∗ cos 𝑖𝑒𝑞  

( 2-26) 

 

Hence, the radial force [12]; 

𝐹𝑟 = 𝑡 ∗
𝐵 ∗ cos 𝑖𝑒𝑞

cos 𝑖𝑠
∗  

𝜏

sin𝜙𝑛
∗

cos 𝛽𝑛 − 𝛼𝑛 ∗ tan 𝑖𝑒𝑞 − tan 𝜂𝑐𝑟 ∗ sin𝛽𝑛

 𝑐𝑜𝑠2 𝜙𝑛 + 𝛽𝑛 − 𝛼𝑛 + 𝑡𝑎𝑛2𝜂𝑐𝑟 ∗ 𝑠𝑖𝑛2𝛽𝑛

  
( 2-27) 

 

Using the geometric relations, since 𝐹𝑡 , 𝐹𝑓  and 𝐹𝑟  are known, friction force, 𝐹  and 

normal force, 𝑁 can be found [12]. 

𝐹 =    𝐹𝑡 ∗ cos 𝑖𝑒𝑞 + 𝐹𝑟 ∗ sin 𝑖𝑒𝑞  ∗ sin 𝛼𝑛 + 𝐹𝑓 ∗ cos 𝛼𝑛  
2

+  𝐹𝑡 ∗ sin 𝑖𝑒𝑞 − 𝐹𝑟 ∗ cos 𝑖𝑒𝑞  
2
 

( 2-28) 

 

and, 

𝑁 =  𝐹𝑡 ∗ cos 𝑖𝑒𝑞 + 𝐹𝑟 ∗ sin 𝑖𝑒𝑞  ∗ cos 𝛼𝑛 − 𝐹𝑓 ∗ sin 𝛼𝑛  ( 2-29) 

 

The shear force, 𝐹𝑠 , and the normal force on shear plane, 𝐹𝑛 , are also found using 

geometric relations [12]; 

𝐹𝑠 =    𝐹𝑡 ∗ cos 𝑖𝑒𝑞 + 𝐹𝑟 ∗ sin 𝑖𝑒𝑞  ∗ cos 𝜙𝑛 − 𝐹𝑓 ∗ sin 𝜙𝑛 
2

+  𝐹𝑡 ∗ sin 𝑖𝑒𝑞 − 𝐹𝑟 ∗ cos 𝑖𝑒𝑞  
2
 

( 2-30) 

 

and, 

𝐹𝑛 =  𝐹𝑡 ∗ cos 𝑖𝑒𝑞 + 𝐹𝑟 ∗ sin 𝑖𝑒𝑞  ∗ sin𝜙𝑛 + 𝐹𝑓 ∗ cos 𝜙𝑛  ( 2-31) 
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It is seen from equations that if 𝜙𝑛 , 𝛽, 𝜏 are known with additional quantity such as 𝛼𝑛 , 

𝑖𝑠 , 𝑉𝑟  generated forces can be predicted. Again by using the collinearity between 

relative chip flow velocity - friction force and shear flow velocity – shear force, the 

relation between 𝜙𝑛  and 𝛽𝑛  can be found [12]; 

tan 𝜙𝑛 + 𝛽𝑛 =
tan 𝑖𝑒𝑞 ∗ cos 𝛼𝑛

tan 𝜂𝑐 − sin𝛼𝑛 ∗ tan 𝑖𝑒𝑞
 

( 2-32) 

 

The formulas can be applicable to all rotary tool cutting processes. For actively driven 

rotary tool, 𝑖𝑒𝑞  and 𝑖𝑠 are used in equations. For actively driven orthogonal rotary tool, 

𝑖𝑠 is equated to 0 due to tool position according to workpiece. For self propelled rotary 

tool, 𝑖𝑒𝑞  is taken as 0 since tool rotational velocity, 𝑉𝑟  makes process classical 

orthogonal cutting. 

Using database taken from orthogonal cutting test results, the rotary turning process is 

simulated with the aid of MATLAB
®
. For simulation the tool-workpiece contact zone is 

divided into segments and cutting parameters for each segment are calculated. The 

orthogonal cutting parameters are 150 m/min cutting velocity, 0.05 mm/rev feed rate, 

2.05 mm depth of cut with 5° rake angle of cutting insert. Moreover, from experimental 

results, shear strength of material is calculated as 606 MPa, normal friction angle is 

found as 23° and chip ratio is taken as 0.55. For the simulation 𝑖𝑠 is taken as 15° with 

13.5 mm cutting insert radius. Depending on these parameters, the simulated results are 

found in following. The effect of tool velocity on effective rake, effective shear and 

chip flow angles are seen in Figure 2-7, Figure 2-8 and Figure 2-9, respectively. 

 

Figure 2-7: Effective rake angle variation with tool velocity. 
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Figure 2-8: Effective shear angle variation with tool velocity. 

 

Figure 2-9: Chip flow angle variation with tool velocity. 

Also Figure 2-10 shows the component force variation with tool velocity using 

orthogonal cutting parameters. 

 

Figure 2-10: Component forces variation with tool velocity. 
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The effects of tool inclination angle on cutting parameters are also simulated. The 

effects of tool velocity for different tool inclination angles on effective rake angle, 

effective shear angle and chip flow angle are seen in Figure 2-11, Figure 2-12, and 

Figure 2-13, respectively. 

 

Figure 2-11: Effective rake angle variation with tool velocity for different inclination 

angles. 

 

Figure 2-12: Effective shear angle variation with tool velocity for different inclination 

angles. 
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Figure 2-13: Chip flow angle variation with tool velocity for different inclination 

angles. 

The effects of tool inclination angle on component forces are also simulated. Figure 

2-14, Figure 2-15 and Figure 2-16 show the force variations in tangential, feed and 

radial directions, respectively. 

 

Figure 2-14: Tangential force variation with tool velocity for different inclination 

angles. 
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Figure 2-15: Feed force variation with tool velocity for different inclination angles. 

 

Figure 2-16: Radial force variation with tool velocity for different inclination angles. 

It is seen from graphs that without increasing cutting velocity, effective rake angle can 

be increased by changing tool velocity. As tool velocity increases in both CW and 

CCW directions, effective rake angle changes. Changing the tool inclination angle 

affects the position of minimum value of effective rake angle. Furthermore, a variation 

in tool velocity changes the effective shear angle during process. In a range of tool 

velocity in both CW and CCW directions, the value of effective shear angle becomes 

maximum and easy chip formation takes place. Variation in inclination angle affects 

only the tool velocity range in which the effective shear angle shows maximum values. 

Tool velocity also directly changes the chip flow angle. Obviously, including the effect 

of tool velocity makes the process oblique compared to conventional fixed one, as a 

result, increasing tool velocity in both CW and CCW directions rises chip flow angle. 

Change in tool inclination angle exhibits different behaviors on chip flow angle 
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depending on tool rotation direction. Change in tool velocity also affects the component 

forces due to variations in cutting angles. Tangential force shows its minimum at 

around 40 m/min tool velocity. As tool velocity increases in CW or CCW directions, 

freely from tool rotation direction tangential force rises in positive direction. However, 

forces in feed and radial directions show different behaviors depending on tool rotation 

direction. When workpiece and tool rotate at the same direction, feed force rises in 

positive direction, yet increase in radial force is observed in negative direction. When 

tool rotation direction is changed and as tool velocity is increased, feed force increases 

in negative direction, but radial force becomes positive and increases in that direction. 

Increasing inclination angle, when workpiece and tool rotate at the same direction, 

causes an increase for tangential and feed forces in positive direction, yet an increase in 

radial force in negative direction is observed. Reductions in tangential and radial forces 

in positive direction are found when tool rotation direction changes compared to 

workpiece. Similarly, feed force decreases as inclination angle increases when tool and 

workpiece rotate in different directions. 

2.2 Summary 

In this chapter, the kinematics and mechanics of rotary turning process are examined. It 

is observed that ADRT processes are similar to classical oblique cutting process while 

SPRT process is almost equivalent to classical orthogonal cutting process. Modified 

thin shear zone model is applied to develop cutting analysis. Rotary turning process is 

assumed to be a deformation process equivalent to classical cutting processes including 

the effect of tool velocity. Using equivalent cutting parameters, generated formulas are 

found to be similar to ones used in classical cutting processes. Simulation results show 

the effects of tool velocity and inclination angle on cutting parameters and forces during 

rotary cutting. 
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CHAPTER 3 EXPERIMENTAL PROCEDURE 

 

In this study, the effects of rotary turning tools on tool life, surface quality of machined 

parts and generated cutting temperatures are investigated. The tests are applied in a 

wide range of cutting conditions in order to have better and various data cutting with 

rotary turning tools. Tool wear, cutting forces, surface roughness, circularity of 

machined parts and tool rake face temperature are inspected during cutting tests. 

Cutting tests are performed in three different machining processes, conventional 

turning, SPRT and ADRT. These tests are applied for different testing materials 

especially difficult to cut materials in order to clarify the advantages of rotary turning 

processes on tool wear, cutting forces and surface quality. Different cooling conditions 

are used for these processes to explain the effects of coolants on tool life and cutting 

forces. For ADRT process, various rotary tool velocities and rotary tool inclination 

angles are utilized in order to gain understanding the effects of them on tool life, surface 

quality and generated cutting temperatures. 

3.1 Workpiece Materials 

3.1.1 AISI 1050 

Even though AISI 1050 steel is not a superalloy, cutting tests were conducted using this 

alloy for rotary turning and stationary turning process to discuss the tool performances. 

AISI 1050 is a high quality structural plain carbon steel and it is very commonly used in 

manufacturing. This alloy is used in parts of ships, automobiles, aircrafts, weapons, 

railways, pressure vessels. The metallurgical properties of AISI 1050 are seen in Table 

3-1. 

Element C Mn P S Fe 

Content (%) 0.47-0.55 0.6-0.9 0.04 0.05 Balance 

Table 3-1: Metallurgical properties of AISI 1050 steel. 

Density of AISI 1050 alloy is 7850 kg/m
3
. The mechanical properties and thermal 

properties are found in Table 3-2 and Table 3-3, respectively. 
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Property Metric Unit 

Tensile Strength 635 MPa 

Yield Strength 515 MPa 

Shear Modulus 80 GPa 

Bulk Modulus 140 GPa 

Elastic Modulus 190-210 GPa 

Poisson’s Ratio 0.27-0.3 

Elongation at Break 10-15 % 

Reduction of Area 30-40 % 

Hardness, Brinell 187-197 HB 

Impact Strength 16.9 J 

Table 3-2: Mechanical properties of AISI 1050 steel. 

Property Metric Unit 

Specific Heat Capacity 0.486 J/kg*°C 

Thermal Conductivity 49.8 W/m*K 

Coefficient of Thermal 

Expansion 
11.3*10

-6
/°C 

Table 3-3: Thermal properties of AISI 1050 steel. 

Plain carbon steels have the best machinability properties compared to other steel types. 

Carbon content is the main affecting parameter of machinability. High carbon steels are 

difficult to cut since they are strong and they may contain carbide particles. On the 

other hand, low carbon steels are very soft such that these alloys are gummy and stick 

to cutting tool causing BUE at the tool tip with shortened tool life. 

3.1.2 Waspaloy 

Waspaloy, a registered trademark of United Technologies Corp, is a wrought age-

hardenable austenitic nickel base superalloy. It has excellent high-temperature strength, 

hot hardness and good corrosion resistance, notably to oxidation, at service 

temperatures up to 650°C for critical applications and up to 870°C for less demanding 

applications. 

Solid solution strengthening elements, Mo, Co and Cr and age hardening elements Al 

and Ti provide high temperature strength to Waspaloy. The metallurgical properties of 

Waspaloy are seen in Table 3-4. 

Element Cr Mo Co Al Ti Fe C Mn Si Cu Ni 

Content % 21 5 15 1.6 3.25 2 0.1 0.1 0.15 0.1 Balance 

Table 3-4: Metallurgical properties of Waspaloy. 

Due to high strength and resistance to corrosion properties even at elevated 

temperatures, this alloy is preferable for high technology application areas such as gas 
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turbine engine components, miscellaneous jet engine hardware, space shuttle turbo 

pump seals, airframe assemblies and missile systems. The physical properties can be 

found in Table 3-5. 

Property Metric Unit 

Density 8190 kg/m
3
 

Melting Point 1330°C 

Table 3-5: Physical properties of Waspaloy. 

The mechanical properties and thermal properties of Waspaloy are found in Table 3-6 

and Table 3-7, respectively. 

Property Metric Unit 

Tensile Strength 1276 MPa 

Yield Strength 897 MPa 

Elastic Modulus 211 GPa 

Elongation at Break 26.6 % 

Reduction of Area 25% 

Hardness, Brinell 351 HB 

Table 3-6: Mechanical properties of Waspaloy. 

Property Metric Unit 

Specific Heat Capacity 0.52 J/kg*°C 

Thermal Conductivity 11 W/m*K 

Coefficient of Thermal 

Expansion 
12.2*10

-6
/°C 

Table 3-7: Thermal properties of Waspaloy. 

Waspaloy, like Nickel base super alloys, has bad reputation about their machinability 

properties. Due to its inherent properties, Waspaloy maintains its strength at high 

temperatures. Poor thermal diffusivity, high thermal gradients are generated in cutting 

tool. Austenitic matrix of alloy results in work hardening rapidly during machining. 

Abrasive wear on cutting tools is a result of presence of hard carbide particles in 

microstructure and tendency of Waspaloy to form BUE. At high cutting temperatures, 

chemical reaction occurs between tool and workpiece leading to high diffusion wear 

rate. Localization of shear in chip produces abrasive saw toothed chips that makes 

difficult to handle. Furthermore, forming of tough and continuous chip contributes for 

degradation of tool by seizure and cratering. 

3.1.3 Ti6Al4V 

Ti6Al4V, Grade 5 titanium, is the most commonly used titanium alloys such that over 

70% of all alloy grades melted are sub-grade of Ti6Al4V. It is stronger than pure 
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titanium having the same stiffness and thermal properties. It has high strength-to-weight 

ratio and high corrosion resistance. It is an α+β alloy that is heat treatable to achieve 

required strength values. The metallurgical properties of Ti6Al4V can be seen in Table 

3-8. 

Element Al V C N O H Fe Y Ti 

Content % 6 4 0.1 0.05 0.02 0.02 0.4 0.01 Balance 

Table 3-8: Metallurgical properties of Ti6Al4V. 

The addition of palladium, ruthenium and nickel increase corrosion resistance in acidic 

environments. Due to the combination of high strength and light weight with an 

excellent corrosion resistance, Ti6Al4V can be operable to any engineering 

applications. This alloy is mainly used in turbine engine components, structural 

components, aircraft fasteners, marine applications and sports equipments. Since it has 

superior biocompatibility, it can be used in medical industry especially when direct 

contact with tissue and bone is required. The physical properties can be found in Table 

3-9. 

Property Metric Unit 

Density 4430 kg/m
3 

Melting Point 1649°C 

Table 3-9: physical properties of Ti6Al4V. 

The mechanical properties and thermal properties are found in Table 3-10 and Table 

3-11 respectively. 

Property Metric Unit 

Tensile Strength 950 MPa 

Yield Strength 880 MPa 

Shear Strength 550 MPa 

Elastic Modulus 114 GPa 

Poisson’s Ratio 0.342 

Elongation at Break 14% 

Reduction of Area 36% 

Hardness, Brinell 334 HB 

Impact Strength 17J 

Table 3-10: Mechanical properties of Ti6Al4V. 

Property Metric Unit 

Specific Heat Capacity 0.53 J/kg*°C 

Thermal Conductivity 7.2 W/m*K 

Coefficient of Thermal 

Expansion 
8.6*10

-6
/°C 

Table 3-11: Thermal properties of Ti6Al4V. 
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Ti6Al4V alloys are well known as extremely difficult to machine alloys due to inherent 

properties. Low thermal conductivity prevents heat flow through chip. Maintaining its 

high strength even at elevated temperatures opposes the plastic deformation to form 

chip. Strong chemical reactivity of Ti6Al4V with almost all tooling materials 

contributes partially hardening of outer surface layer of workpiece with a high tool wear 

rate.  

3.1.4 Inconel 718 

Inconel 718, trademark of Special Metals Corporation, is an austenitic nickel-chromium 

based superalloy. Due to solid solution strengthening, Inconel 718 keeps its high 

strength even at elevated temperatures. Inconel 718 is oxidation and corrosion resistant 

material applicable for extreme environments such as high pressure and high heat. An 

oxide layer is formed on the surface of this alloy to protect material from further attack. 

Moreover, this alloy is preferable for high temperature engineering applications owing 

to high fatigue, creep and rupture strength values. The metallurgical properties of 

Inconel 718 are seen Table 3-12. 

Element Ni Cr Nb Mo Co Ti Si Al C Mn Fe 

Content % 55 21 5.5 3.3 1 0.3 0.35 1.15 0.08 0.35 Balance 

Table 3-12: Metallurgical properties of Inconel 718. 

Due to keeping its mechanical properties even at elevated temperatures, Inconel 718 has 

wide range of application areas. This alloy can be used in components for liquid fueled 

rockets, ring and casing parts for aircrafts, land-based gas turbine engines, and 

cryogenic tanks. The physical properties of Inconel 718 can be found in Table 3-13. 

Property Metric Unit 

Density 8190 kg/m
3 

Melting Point 1336°C 

Table 3-13: Physical properties of Inconel 718. 

The mechanical properties and thermal properties of Inconel 718 are seen in Table 3-14 

and Table 3-15, respectively. 
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Property Metric Unit 

Tensile Strength 1375 MPa 

Yield Strength 1100 MPa 

Bulk Modulus 150 GPa 

Shear Modulus 100 GPa 

Elastic Modulus 200 GPa 

Poisson’s Ratio 0.29 

Elongation at Break 12% 

Reduction of Area 15% 

Table 3-14: Mechanical properties of Inconel 718. 

Property Metric Unit 

Specific Heat Capacity 435 J/kg*°C 

Thermal Conductivity 11.4 W/m*K 

Coefficient of Thermal 

Expansion 
13/°C 

Table 3-15: Thermal properties of Inconel 718. 

Inconel shows the similar behavior with Waspaloy during machining operations. Their 

tendency to galling and welding on tool rake face, forming built-up edge on tool and 

presence of hard particles in microstructure increase tool wear rate. Relatively low 

thermal conductivity of these alloys causes heat piling up in front of tool tip. 

3.2 Cutting Tools and Holders 

The tool holder used in conventional turning tests is a TaeguTec PRGNR 2525 M12 as 

shown in Figure 3-1. It is a screw clamp holder for round inserts. The cutting insert 

used in conventional turning tests is TaeguTec RNMG 43 TT3500. The insert can be 

seen in Figure 3-2.  The insert is a carbide insert with CVD coating with TiN. It has a 

chip breaker on rake face with 15 mm diameter and 0º of rake and clearance angles. 

 

Figure 3-1: Tool holder for conventional turning tests. 
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Figure 3-2: The cutting insert used for conventional turning cutting tests. 

The holder used for SPRT cutting tests is patented design of Rotary Technologies 

Corporation, CLT-15/RH as shown in Figure 3-3. The inserts are coated carbide with a 

diameter of 27 mm with 0º of rake and clearance angles as shown in Figure 3-4. Insert 

cartridge and tool holder together provide -15° of rake and 5° of effective clearance to 

cutting edge. 

 

Figure 3-3: The tool holder for SPRT cutting tests. 

 

Figure 3-4: The cutting insert used for SPRT cutting tests. 

ADRT tool is composed of a round insert and a specified holder shaft. A holder shaft is 

simply designed as shown in Figure 3-5 and it is produced by a tool supplier in order to 

minimize the error in concentricity of the insert to the center of holder shaft within 30 

μm. 
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Figure 3-5: Designed ADRT holder shaft with half cone shaped cutting insert. 

The cutting insert used for ADRT process is SandvikCoromant RCMT 25 07 M0 4225 

as shown in Figure 3-6. It is a carbide insert with multi-layer CVD coating of MT-

Ti(C,N)+Al2O3+TiN. It has 25 mm diameter with a chip breaker and 7° clearance angle. 

 

Figure 3-6: The cutting insert used for ADRT cutting tests. 

3.3 Machine Tools 

For SPRT and conventional turning processes, Mori Seiki NL 1500 CNC lathe is used 

as shown in Figure 3-7. It is a 3-axis turning center with maximum 6000 rpm spindle 

speed. The machine tool has a maximum capacity of 260 mm diameter and 515 mm 

workpiece length. 
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Figure 3-7: Mori Seiki NL1500 CNC lathe. 

All ADRT process and temperature measurement tests are conducted in Mori Seiki 

NTX2000 Mill-Turn machining center as shown in Figure 3-8. This machine includes 9 

axes with two chucks, a milling spindle and a turning turret. Milling spindle moves 

along X-, Y- and Z- axes and rotates around B- axis. Turning turret moves in X- and Z- 

directions with maximum 10 cutting tools. 

 

Figure 3-8: Mori Seiki NTX2000 Mill-Turn center. 

3.4 Measurement Equipments 

The three generated cutting forces during SPRT and conventional turning tests are 

measured using Kistler 9257BA dynamometer as shown in Figure 3-9. The forces are 
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measured in every cutting tests under different cutting conditions. A program written in 

LabView amplifies the gathered force signals coming from dynamometer. 

 

Figure 3-9: Kistler 9257BA 3-Component Dynamometer. 

During SPRT cutting tests, the insert rotation velocity is measured by Keyence LK 031 

laser displacement sensor. The laser sensor is placed on a sliding fixture as shown in 

Figure 3-10. The small hole in the middle of rotary tool shaft is used as a reference 

point for velocity measurement. 

 

Figure 3-10: Configuration of SPRT tool and laser system in Mori Seiki NL1500. 

Tool flank wear is measured by using NanoFocusμsurf surface metrology system as 

shown in Figure 3-11. Measurements are conducted at four different locations for rotary 

turning tools. These locations are approximately equidistant along the perimeter of 

cutting insert. The obtained values are averaged to attain tool wear. For conventional 

turning tool, standard tool edge examination is performed to find out tool wear value. 
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Figure 3-11: Tool flank wear measurement using NanoFocusμsurf surface metrology 

system. 

A scanning electron microscope (SEM) is used for revealing information of a sample’s 

texture, chemical composition and crystalline structure. The worn ADRT cutting inserts 

for different cutting conditions are inspected by LEO Supra 35VP as shown in Figure 

3-12. The magnifying rate for SEM images varies between 200 and 1500 times greater 

than the original size. 

 

Figure 3-12: SEM for detailed inspection of ADRT cutting inserts. 
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Surface roughness of machined parts is accessed using NanoFocusμsurf metrology 

system. Ten measurements are performed in both feed direction of tool and 

circumferential direction of workpiece, the obtained values are averaged to attain 

surface roughness value. Mitutoyo Euro-C-A544 Coordinate Measuring System is 

utilized to measure the roundness of machined parts as shown in Figure 3-13. 

Measurements are conducted at four different height locations for machined 

workpieces. 0.005 mm is taken as tolerance while measuring roundness.  

 

Figure 3-13: Roundness measurement by using Mitutoyo Euro-C-A544 CMM. 

ADRT tool temperature measurements are made with FLIR A325 SC infrared thermal 

imaging camera as shown in Figure 3-14. This camera has ability to visually record and 

display in real time temperature distribution of the tool. 



37 
 

 

Figure 3-14: FLIR A325 SC infrared thermal camera. 

Using ThermaCAM software, the camera can be fully controlled from the PC. Its 

spectral range is 7.5-13 μm with 320*240 resolution. It can be focused to the target 

automatically or manually. Since the standard temperature range is not well enough for 

our testing conditions, camera is calibrated to high temperature (1200ºC). 

Thermal camera is positioned as close as possible to cutting insert in order to obtain 

exact temperature results in Mori Seiki NTX2000 Mill-Turn center. During 

measurements, chip motion obstructs the thermal measurement and its motion is almost 

unpredictable. Due to thermal camera position, chip generally moves between tool and 

thermal camera. A protective window is designed and produced to prevent chip flow 

through thermal camera lens. The protective window is made of ZnSe glass having 

thermal properties and there is no change in the quality and resolution of thermal image 

due to this protection. 

3.5 Cutting Conditions 

In this thesis, cutting velocity, feed rate and depth of cut are kept constant for SPRT, 

ADRT and conventional turning processes.  

3.5.1 SPRT and Conventional Turning Processes 

The cutting conditions for AISI 1050 steel, Waspaloy and Ti6Al4V with tooling system 

and cooling conditions are summarized in Table 3-16, Table 3-17, and Table 3-18 

respectively for tool wear and tool life tests. 
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Test 

No 
Workpiece 

Tooling 

System 

Cooling 

System 

Cutting Velocity 

(m/min) 

Feed Rate 

(mm/rev) 

Depth of 

Cut (mm) 

1 AISI 1050 Conventional Dry 400 0.2 1 

2 AISI 1050 SPRT Dry 400 0.2 1 

3 AISI 1050 SPRT Coolant 400 0.2 1 

Table 3-16: Experimental conditions for SPRT and conventional turning cutting tests 

for tool wear and tool life measurements for AISI 1050 steel cutting tests. 

Test 

No 
Workpiece 

Tooling 

System 

Cooling 

System 

Cutting Velocity 

(m/min) 

Feed Rate 

(mm/rev) 

Depth of 

Cut (mm) 

1 Waspaloy Conventional Dry 45 0.1 0.2 

2 Waspaloy SPRT Dry 45 0.1 0.2 

3 Waspaloy SPRT Coolant 45 0.1 0.2 

4 Waspaloy SPRT MQL 45 0.1 0.2 

Table 3-17: Experimental conditions for SPRT and conventional turning cutting tests 

for tool wear and tool life measurements for Waspaloy cutting tests. 

Test 

No 
Workpiece 

Tooling 

System 

Cooling 

System 

Cutting Velocity 

(m/min) 

Feed Rate 

(mm/rev) 

Depth of 

Cut (mm) 

1 Ti6Al4V Conventional Dry 45 0.1 0.2 

2 Ti6Al4V Conventional Coolant 45 0.1 0.2 

3 Ti6Al4V SPRT Dry 45 0.1 0.2 

4 Ti6Al4V SPRT Coolant 45 0.1 0.2 

5 Ti6Al4V SPRT MQL 45 0.1 0.2 

Table 3-18: Experimental conditions for SPRT and conventional turning cutting tests 

for tool wear and tool life measurements for Ti6Al4V cutting tests. 

Cutting tests in order to find out the behavior of rotary tool velocity are performed 

using AISI 1050 steel. All tests are conducted under dry cutting conditions using 0.2 

mm/rev feed rate and 1 mm depth of cut. Cutting velocities range from 50 m/min to 400 

m/min to gain understanding of the effects of workpiece velocity on tool velocity. 

3.5.2 ADRT Process 

For ADRT cutting tests, cutting velocity, feed rate and depth of cut for all testing 

materials are kept constant as in SPRT and conventional turning process. 400 m/min 

cutting velocity with 0.2 mm/rev feed rate and 1 mm depth of cut are the cutting 

parameters for AISI 1050 steel. However, for Waspaloy, Ti6Al4V and Inconel 718 

alloys, 45 m/min cutting velocity, 0.1 mm/rev feed rate and 0.2 mm depth of cut are 

used for cutting tests. Different rotary tool velocities and different rotary tool 

inclination angles are tested under various cooling conditions for each testing materials. 

The cutting conditions for AISI 1050 steel, Waspaloy, Ti6Al4V and Inconel 718 are 

summarized in Table 3-19, Table 3-20, Table 3-21 and Table 3-22, respectively. 
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Test 

No 
Workpiece 

Cooling 

Type 

Tool Velocity 

(m/min) 

Tool Inclination 

Angle (º) 

1 AISI 1050 Dry 50 0 

2 AISI 1050 Dry 250 0 

3 AISI 1050 Dry 400 0 

4 AISI 1050 Dry 50 5 

5 AISI 1050 Dry 250 5 

6 AISI 1050 Dry 400 5 

7 AISI 1050 Coolant 50 0 

8 AISI 1050 Coolant 250 0 

9 AISI 1050 Coolant 400 0 

10 AISI 1050 Coolant 50 5 

11 AISI 1050 Coolant 250 5 

12 AISI 1050 Coolant 400 5 

13 AISI 1050 MQL 50 0 

14 AISI 1050 MQL 250 0 

15 AISI 1050 MQL 50 5 

16 AISI 1050 MQL 250 5 

Table 3-19: Experimental conditions for ADRT turning cutting tests for tool wear and 

tool life measurements for AISI 1050 steel cutting tests. 

Test 

No 
Workpiece 

Cooling 

Type 

Tool Velocity 

(m/min) 

Tool Inclination 

Angle (º) 

1 Waspaloy Dry 10 0 

2 Waspaloy Dry 20 0 

3 Waspaloy Dry 45 0 

4 Waspaloy Dry 10 5 

5 Waspaloy Dry 20 5 

6 Waspaloy Dry 10 15 

7 Waspaloy Coolant 0 0 

8 Waspaloy Coolant 10 0 

9 Waspaloy Coolant 20 0 

10 Waspaloy Coolant 45 0 

11 Waspaloy Coolant 10 5 

12 Waspaloy Coolant 20 5 

13 Waspaloy Coolant 10 15 

14 Waspaloy MQL 10 0 

15 Waspaloy MQL 20 0 

16 Waspaloy MQL 45 0 

17 Waspaloy MQL 10 5 

18 Waspaloy MQL 20 5 

19 Waspaloy MQL 10 15 

Table 3-20: Experimental conditions for ADRT turning cutting tests for tool wear and 

tool life measurements for Waspaloy cutting tests. 

 

 



40 
 

Test 

No 
Workpiece 

Cooling 

Type 

Tool Velocity 

(m/min) 

Tool Inclination 

Angle (º) 

1 Ti6Al4V Dry 10 0 

2 Ti6Al4V Dry 20 0 

3 Ti6Al4V Dry 45 0 

4 Ti6Al4V Dry 10 5 

5 Ti6Al4V Dry 20 5 

6 Ti6Al4V Dry 10 15 

7 Ti6Al4V Coolant 0 0 

8 Ti6Al4V Coolant 10 0 

9 Ti6Al4V Coolant 20 0 

10 Ti6Al4V Coolant 45 0 

11 Ti6Al4V Coolant 10 5 

12 Ti6Al4V Coolant 20 5 

13 Ti6Al4V Coolant 10 15 

14 Ti6Al4V MQL 10 0 

15 Ti6Al4V MQL 20 0 

16 Ti6Al4V MQL 45 0 

17 Ti6Al4V MQL 10 5 

18 Ti6Al4V MQL 20 5 

19 Ti6Al4V MQL 10 15 

Table 3-21: Experimental conditions for ADRT turning cutting tests for tool wear and 

tool life measurements for Ti6Al4V cutting tests. 

Test 

No 
Workpiece 

Cooling 

Type 

Tool Velocity 

(m/min) 

Tool Inclination 

Angle (º) 

1 Inconel 718 Dry 10 0 

2 Inconel 718 Dry 20 0 

3 Inconel 718 Dry 45 0 

4 Inconel 718 Dry 10 5 

5 Inconel 718 Dry 20 5 

6 Inconel 718 Dry 10 15 

7 Inconel 718 Coolant 10 0 

8 Inconel 718 Coolant 20 0 

9 Inconel 718 Coolant 45 0 

10 Inconel 718 Coolant 10 5 

11 Inconel 718 Coolant 20 5 

12 Inconel 718 Coolant 10 15 

13 Inconel 718 MQL 10 0 

14 Inconel 718 MQL 20 0 

15 Inconel 718 MQL 10 5 

16 Inconel 718 MQL 20 5 

17 Inconel 718 MQL 10 15 

Table 3-22: Experimental conditions for ADRT turning cutting tests for tool wear and 

tool life measurements for Inconel 718 cutting tests. 

The effects of rotary tool velocity and rotary tool inclination angle on surface roughness 

and circularity of machined parts are also investigated using comprehensive cutting 
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tests of AISI 1050 steel under coolant cutting conditions. 400 m/min cutting velocity, 

0.2 mm/rev feed rate and 1 mm depth of cut are the cutting parameters. Table 3-23 

summarizes the tests plan for surface quality and circularity tests. 

Test 

No 
Workpiece 

Tool Velocity 

(m/min) 

Tool Inclination 

Angle (º) 

1 AISI 1050 50 0 

2 AISI 1050 75 0 

3 AISI 1050 100 0 

4 AISI 1050 125 0 

5 AISI 1050 150 0 

6 AISI 1050 50 5 

7 AISI 1050 75 5 

8 AISI 1050 100 5 

9 AISI 1050 125 5 

10 AISI 1050 150 5 

Table 3-23: Experimental conditions for ADRT turning cutting tests for surface 

roughness and circularity measurements for AISI 1050 steel cutting tests. 

Tool rake face temperature measurements are performed for AISI 1050 steel and 

Ti6Al4V alloy using infrared camera for various rotary tool velocities and for various 

rotary tool inclination angles. Cutting velocities for these tests are kept low owing to 

security reasons. All cutting tests are conducted under dry cutting conditions. 100 

m/min cutting velocity with 0.2 mm/rev feed rate and 1 mm depth of cut are AISI 1050 

steel cutting parameters while Ti6Al4V are tested using 20 m/min cutting velocity, 0.1 

mm/rev feed rate, 0.2 mm depth of cut. Table 3-24 and Table 3-25 summarize the 

cutting conditions for AISI 1050 steel and Ti6Al4V respectively. 

Test 

No 
Workpiece 

Tool Velocity 

(m/min) 

Tool Inclination 

Angle (º) 

1 AISI 1050 10 0 

2 AISI 1050 25 0 

3 AISI 1050 50 0 

4 AISI 1050 150 0 

5 AISI 1050 250 0 

6 AISI 1050 25 5 

7 AISI 1050 50 5 

8 AISI 1050 150 5 

Table 3-24: Experimental conditions for ADRT turning cutting tests for tool rake face 

temperature measurements for AISI 1050 steel cutting tests. 
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Test 

No 
Workpiece 

Tool Velocity 

(m/min) 

Tool Inclination 

Angle (º) 

1 Ti6Al4V 3 0 

2 Ti6Al4V 5 0 

3 Ti6Al4V 10 0 

4 Ti6Al4V 15 0 

5 Ti6Al4V 20 0 

6 Ti6Al4V 25 0 

7 Ti6Al4V 5 5 

8 Ti6Al4V 10 5 

9 Ti6Al4V 20 5 

10 Ti6Al4V 5 10 

11 Ti6Al4V 10 10 

12 Ti6Al4V 15 10 

13 Ti6Al4V 20 10 

14 Ti6Al4V 5 15 

15 Ti6Al4V 10 15 

16 Ti6Al4V 15 15 

17 Ti6Al4V 20 15 

Table 3-25: Experimental conditions for ADRT turning cutting tests for tool rake face 

temperature measurements for Ti6Al4V cutting tests. 
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CHAPTER 4 EXPERIMENTAL RESULTS FOR CONVENTIONAL TURNING 

AND SPRT PROCESSES 

All tests planned in Chapter 3 for conventional turning and SPRT operations for tool 

life, surface quality and rotary tool velocity were successfully completed. Different data 

is collected through measurements done during cutting tests. Worn cutting edges and 

surface roughness of machined parts are analyzed using NanoFocus. Kistler 

dynamometer is used to collect cutting force data. Mitutoyo CMM is used to measure 

roundness of workpieces after cutting tests. Keyence laser sensor is utilized to obtain 

rotary tool velocity data during operation. In this section tool life, cutting forces, surface 

quality and rotary tool velocity results are presented. 

The position of SPRT tool with Kistler dynamometer on Mori Seiki Nl1500 is shown in 

Figure 4-1. 

 

Figure 4-1: Configuration of SPRT tool and workpiece in Mori Seiki NL 1500 turning 

center. 

4.1 AISI 1050 Steel 

The AISI 1050 steel cutting test conditions for tool wear, cutting forces, surface quality 

and rotary tool velocity are explained in Chapter 3 in detail in Table 3-16. The 
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workpiece material has 120 mm diameter with 110 mm cutting length. The 

measurement results are presented as follows. 

4.1.1 Tool Wear 

Tool wear results of conventional turning and SPRT process for AISI 1050 steel cutting 

tests for different cooling conditions are presented in Figure 4-2. 

 

Figure 4-2: Tool flank wear variation with time for different tooling system and cooling 

conditions for AISI 1050 steel cutting. 

It is easily seen from the graph that flank wear rate of SPRT tool is lower than that of 

conventional turning. Obviously, due to lower tool wear rate higher tool life is attained 

for SPRT process compared to conventional turning process. In order to compare tool 

wear results properly, normalization of conventional turning insert is required. This 

insert can be indexed and its unused portions can be used until the whole cutting edge is 

completely worn. When normalization is done by considering the fact that the 

conventional turning tool can be indexed four times the tool life results seem to be close 

to each other for both processes. Flank wear on SPRT tool is the dominant wear 

mechanism and it is uniformly distributed over the entire circumferential cutting edge. 

The main reason of uniform flank wear distribution is the use of full circular cutting 

edge during operation. Little or no crater wear is observed on SPRT cutting edge. This 

can be attributed to lower heat generation during cutting. However, when conventional 

turning tool is examined, crater wear on tool rake face with flank wear is observed. This 

is likely due to heat accumulation on the same contact zone in conventional turning. It 
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is also noticeable that when SPRT process test are conducted under coolant cutting, tool 

wear rate slightly reduces compared to dry cutting condition such that 14 % 

improvement in tool life is achieved. The main reason is the effective transportation of 

coolant to cutting zone with rotational motion of insert. Moreover, uniform flank wear 

distribution is also dominant in SPRT process with coolant cutting. Small chipping of 

cutting edge is also observed. 

4.1.2 Cutting Forces 

Generated cutting force results of conventional turning and SPRT process for AISI 

1050 steel cutting tests for different cooling conditions are presented. Figure 4-3 

exhibits the cutting force results for various tooling system and cooling conditions. 

 

Figure 4-3: Generated cutting force variation for different tooling system and cooling 

conditions for AISI 1050 steel cutting. 

It is seen from graph that component forces except radial force are reduced when 

machining with SPRT tool compared to stationary tool for different cooling conditions. 

In machining of AISI 1050 steel, generated tangential and feed forces with SPRT tool 

are 16.7% and 25.5% lower than those in conventional turning tool, respectively, in dry 

cutting conditions. Reduction in work done for chip formation, reduction in specific 

energy and lower friction conditions on tool rake face causes lower forces during 

operation. An increase in radial force component is observed when machining with 

SPRT tool compared to conventional turning in dry cutting. The increased effective 

oblique angle during operation is the main reason for higher radial forces. When 
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machining with coolant cutting, 3% and 14% reduction in force components are found 

in tangential and feed directions, respectively, compared to dry cutting condition in 

SPRT machining. 9% increase in force component in radial direction is found when 

SPRT tests are conducted with coolant cutting compared to dry cutting. 

4.1.3 Surface Roughness and Circularity 

In this section, surface roughness and circularity results of conventional turning and 

SPRT processes for AISI 1050 steel cutting tests for same cutting conditions are 

presented. Figure 4-4 exhibits the generated surface topography for conventional 

turning and SPRT processes. 

 

Figure 4-4: Surface topography for a) Test-1 b) Test-2. 

The surface grooves for different cutting conditions are easily seen from the figure. The 

spinning feature of SPRT tool influences the surface topography of machined 

workpiece. Produced grooves from SPRT tool are found at an angle to the effective 

cutting velocity direction while the direction of grooves from conventional turning tool 

is parallel to feed direction. Moreover, the inclination angle of grooves produced by 

SPRT tool is always smaller than the tool inclination angle owing to friction conditions 

in SPRT tooling system. Furthermore, chip’s swirling action around SPRT tool rake 

face results pulling under insert and workpiece. This situation causes adhesion of chips, 

deeper grooves and scratches on workpiece surface reducing the surface quality as 

shown in Figure 4-5. 
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Figure 4-5: Example of machined surface of SPRT process with scratches and adhered 

chips. 

The measured surface roughness values are recorded after one machining pass in order 

to eliminate any tool wear effect. Table 4-1 summarizes the surface roughness 

measurements. Even though the differences in roughness values are not remarkable, the 

roughness in circumferential direction for SPRT tool is better than that of conventional 

turning tool. However, the roughness in feed direction increased significantly in SPRT 

process compared to conventional turning. 

The circularity is the measure of sharpness of workpiece’s corners. It is very essential 

for machined surface quality for turning operations. The circularity measurements for 

different tests are shown in Figure 4-6. 

 

Figure 4-6: Circularity of machined workpieces a) Test-1 b) Test-2. 
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The difference in the circularities of two processes is not remarkable as seen in Table 

4-1. The obtained circularity result with conventional turning tool is slightly better than 

SPRT process. This situation can be attributed to moving components and rigidity of 

SPRT tool. Lower rigidity of tool causes run-out of the insert resulting worse circularity 

of machined surface. 

 Test-1 Test-2 

Roughness in Feed 

Direction 
0.3 μm 0.65 μm 

Roughness in 

Circumferential 

Direction 

1.16 μm 0.77 μm 

Circularity 2-3 μm 4-6 μm 

Table 4-1: Surface roughness and circularity measurement results for Test-1 and Test-2. 

4.1.4 Rotary Tool Velocity Characteristics 

In this section, rotary tool velocity variation with different cutting velocities for AISI 

1050 steel is presented. In order to provide rotational motion to SPRT tool, tool axis 

should be at an inclination angle with respect to cutting velocity. This inclination angle 

is the most important factor in SPRT process such that it directly affects the 

performance of rotary tool. Rotary tool velocity is closely related to the inclination of 

tool edge as shown in Figure 4-7. 

 

Figure 4-7: The principle of SPRT process. 

Using the pure kinematic relations, rotary tool velocity is obtained analytically. The 

inclination angle of SPRT tool used in cutting tests is 15°. It is apparent from the results 

collected in Figure 4-8 how the cutting velocity affects the velocity of SPRT tool. Both 
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analytical and experimental results are seen in graph together. It should be clarified that 

all experimental tool velocities are measured after tool reaching stable period during 

cutting. 

 

Figure 4-8: Rotary tool velocity variation with different cutting velocities. 

It is seen from the graph that experimental results show that there is almost linearity 

with tool velocity and workpiece velocity. A good agreement between analytical and 

experimental results of rotary tool is observed up to 100 m/min cutting velocity. After 

that cutting velocity, the deviation between analytical and experimental results seems to 

be increased. For instance, 21.3% and 21.9% reductions in tool velocity are observed 

when cutting tests are performed at 150 m/min and 400 m/min cutting velocities, 

respectively. Friction conditions of process and tool rotary shaft mechanism can be 

reason of that deviation, since only the pure kinematic relations are used for analytic 

results without considering any side effects such as friction in SPRT process. At lower 

cutting velocities, the effect of friction on insert propelling is higher than at higher 

cutting velocities. As cutting velocity increases coefficient of friction between chip and 

tool reduces as a result, friction force acting on tool edge decreases with lowering effect 

to propel cutting insert. Moreover, a small loss in rotational velocity at lower cutting 

velocities can also be explained by the friction in bearing system in rotary shaft. 
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4.2 Waspaloy 

The Waspaloy cutting test conditions for tool wear and cutting forces are explained in 

Chapter 3 in detail in Table 3-17. The used workpiece material has 275 mm diameter 

with 27 mm cutting length. The obtained results are presented as follows. 

4.2.1 Tool Wear 

Tool wear results of conventional turning and SPRT process for Waspaloy cutting tests 

for different cooling conditions are presented. Figure 4-9 shows the tool wear results for 

different tooling system and cooling conditions. 

 

Figure 4-9: Tool flank wear variation with time for different tooling system and cooling 

conditions for Waspaloy cutting. 

Figure 4-9 shows that extremely low flank wear rate is recorded with SPRT tool when 

machining Waspaloy for various cooling conditions. Uniformly distributed flank wear 

over entire cutting edge is the main tool failure mechanism during SPRT process. Due 

to rotational motion of tool, the whole circular cutting edge is involved to chip shearing 

causing distributed flank wear on insert edge. There is no evidence of crater wear on 

tool edge which can be attributed to self-cooling feature of tool with a significant 

reduction in heat generation. As discussed in previous section, normalization of 

conventional turning insert life is required to compensate for the unused portions of the 

tool for proper tool life comparison with SPRT. Even normalization is done, tool life is 

achieved 8.9 folds when cutting with SPRT compared to conventional turning tool. 

Using longer effective cutting edge provided by tool motion is the main reason behind 



51 
 

it. Using coolants for SPRT process is also essential to increase the effectiveness of 

process. Coolant and MQL cutting improve tool life 2.2 folds and 2.4 folds compared to 

dry cutting conditions. Air pressure used in MQL cooling is also effective to remove 

chip from tool rake face. 

4.2.2 Cutting Forces 

Generated cutting force results of conventional turning and SPRT process for Waspaloy 

cutting tests for different cooling conditions are presented. Figure 4-10 exhibits the 

cutting force results for various tooling system and cooling conditions. 

 

Figure 4-10: Generated cutting force variation for different tooling system and cooling 

conditions for Waspaloy cutting. 

It is seen from figure that SPRT process reduces component forces compared to 

conventional turning process except in radial direction in all different cooling 

conditions. In machining of Waspaloy, generated tangential and feed forces with SPRT 

tool are 53% and 32% lower than those in conventional turning tool, respectively, in dry 

cutting conditions. Easy shearing of chip due to reduced work done in SPRT process 

and lower friction conditions are the reasons for decreased forces. An increase in radial 

force component is observed when machining with SPRT tool compared to 

conventional turning in dry cutting. The effective obliquity of tool due to spinning 

motion is the main reason for higher radial forces. When SPRT tool is tested in MQL 

cooling condition, a slight decrease in all three component forces are found. The 

lubrication effect of used oil in MQL decreases friction coefficient in tool rake face 
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resulting lowered forces. When cutting tests of SPRT tool with coolant cutting, almost 

similar feed and radial forces are observed compared to dry and MQL cooling 

condition. During machining with coolant, 14% and 6% reduction in tangential force 

component are found compared to dry and MQL cooling conditions, respectively. 

4.3 Ti6Al4V 

The Ti6Al4V cutting test conditions for tool wear and cutting forces are explained in 

Chapter 2 in detail in Table 3-18. The used workpiece material has 175 mm diameter 

with 50 mm cutting length. The obtained results are presented as follows. 

4.3.1 Tool Wear 

Tool wear results of conventional turning and SPRT process for Ti6Al4V cutting tests 

for different cooling conditions are presented. Figure 4-11 shows the tool wear results 

for different tooling system and cooling conditions. 

 

Figure 4-11: Tool flank wear variation with time for different tooling system and 

cooling conditions for Ti6Al4V cutting. 

When Ti6Al4V cutting tests results are considered, similar tool wear and tool life 

results are observed as in previous sections. SPRT tool shows superior wear resistance 

hence longer tool life compared to conventional turning. Uniformly distributed flank 

wear over the whole cutting edge with no crater wear is the main tool failure mode of 

SPRT process due to rotational motion of tool. However, in conventional turning 

process, high crater wear and flank wear at cutting zone are observed. It is seen from 
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figure that cutting with coolant is effective for conventional turning process such that it 

improves tool life 46% compared to dry cutting condition. Even normalization is 

performed to conventional turning tool, SPRT process is more effective for 

achievement of longer tool lives. A tool wear of 145 µm and 153 µm are measured on 

conventional turning tool after 45 seconds and 74 seconds for dry and coolant cutting 

respectively, whereas flank wear of 128 µm, 114 µm and 124 µm are measured on 

SPRT tool for dry, coolant and MQL cutting conditions, respectively. The effect of 

coolant on tool wear is not much enough as expected compared to dry cutting condition. 

4.3.2 Cutting Forces 

Generated cutting force results in conventional turning and SPRT process for Ti6Al4V 

cutting tests for different cooling conditions are presented in Figure 4-12. 

 

Figure 4-12: Generated cutting force variation for different tooling system and cooling 

conditions for Ti6Al4V cutting. 

Figure 4-12 shows that an improvement in forces is achieved when cutting with SPRT 

tool compared to conventional turning tool in all cooling conditions. In machining 

Ti6Al4V, tangential and feed forces obtained in SPRT process decrease 67% and 44% 

compared to conventional one in dry cutting conditions. Moreover, when SPRT results 

with coolant cutting are examined, 63% and 39% reductions are found in tangential and 

feed directions, respectively. Reduction in work done for chip formation with lowered 

friction conditions is likely to cause lowered component forces. It is also easily seen 

that in all cooling conditions, SPRT tool causes higher radial force component 
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compared to conventional one due to larger effective tool obliquity caused by tool 

rotary motion. Cutting with MQL in SPRT process results lower force components in 

tangential and feed directions. Minimum radial forces in SPRT process is achieved by 

dry cutting conditions. 

4.4 Summary 

Observations of conventional turning and SPRT tests bring some conclusions. SPRT 

process results in longer tool lives for various materials especially difficult to cut alloys 

even tool life normalization is applied to conventional turning tool. Lowered component 

forces except in radial direction are found when cutting tests are conducted in SPRT 

compared to conventional turning. In SPRT process, surface scratches are in different 

direction from feed direction due to process kinematic and machined surface roughness 

in circumferential direction is better compared to conventional turning. Circularity of 

machined surface with SPRT shows promising results. Tool velocity variation results 

show that at lower cutting velocities a good agreement between analytical and 

experimental results of tool velocity. 
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CHAPTER 5 EXPERIMENTAL RESULTS FOR ADRT PROCESS 

All testing plan mentioned in Chapter 3 for ADRT operation for tool life and surface 

quality is executed and successfully completed. Different data is collected through 

measurements done during cutting tests. Worn cutting edges and surface roughness of 

machined parts are analyzed using NanoFocus. SEM analysis makes it possible to take 

a closer look to worn cutting edge. Mitutoyo CMM measures the roundness of 

workpieces after cutting tests. In this section tool life and surface quality results are 

exhibited. 

Figure 5-1 shows the position of ADRT tool on Mori Seiki NTX2000 Mill-Turn 

machining center with rotary tool inclination angle (β). 

 

Figure 5-1: Position of ADRT tool and workpiece on Mori Seiki NTX2000 machining 

center. 

5.1 AISI 1050 Steel 

The AISI 1050 steel cutting test conditions for tool wear and surface quality are 

explained in Chapter 3 in detail in Table 3-19 and Table 3-23. The used workpiece 

material has 100 mm diameter with 150 mm cutting length. The obtained results are 

presented as follows. 
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5.1.1 Tool Wear 

Tool wear results of ADRT process for AISI 1050 steel cutting tests for different rotary 

tool velocities, rotary tool inclination angles and cooling conditions are presented. 

Figure 5-2, Figure 5-3 and Figure 5-4 give the tool life results for different rotary tool 

velocities and for different inclination angles for dry, coolant and MQL cutting 

conditions, respectively. 

 

Figure 5-2: Tool life results for different inclination angles and for different tool 

velocities for dry cutting of 1050 steel. 

 

Figure 5-3: Tool life results for different inclination angles and for different tool 

velocities for coolant cutting of 1050 steel. 
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Figure 5-4: Tool life results for different inclination angles and for different tool 

velocities for MQL cutting of 1050 steel. 

Results show that interestingly dry cutting condition gives the best tool life results for 

AISI 1050 steel. Using coolants, for this tool-workpiece couple, probably increases 

thermal fatigue action on cutting edge due to tool rotational motion resulting high tool 

wear rates and low tool lives. It is seen that for both tool inclination angles, reducing 

tool velocity achieves cutting tool life for all cooling conditions. At 0° inclination angle, 

50 m/min tool velocity improves tool life 370% and 180% compared to 400 m/min for 

dry and coolant cutting conditions, respectively. Moreover, 50 m/min tool velocity 

prolongs tool life 2.7, 2.3 and 4.2 times compared to 250 m/min tool velocity for dry, 

coolant and MQL conditions. 250 m/min tool velocity shows more promising tool life 

results than 400 m/min as seen in figures. At 0° inclination angle, cutting with 250 

m/min tool velocity is able to prolong tool life 1.9 and 1.2 times to that of 400 m/min 

for dry and coolant conditions, respectively. Tool life behavior also seems to be similar 

at 5° inclination angle such that cutting with 50 m/min improves tool life 2, 2.14 and 5 

times compared to 250 m/min for dry, coolant and MQL conditions, respectively. When 

400 m/min tool velocity is considered, it is seen that tool wear rate increases. It is found 

that tool life is one of four and one of three of 50 m/min tool velocity for dry and 

coolant conditions. 

It is seen from figures also that increasing tool inclination angle improves tool life 

except 50 m/min and 400 m/min for dry cutting condition. At 50 m/min, increasing 
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inclination angle achieves tool performance 21.8% and 25% for coolant and MQL 

cutting conditions, respectively. For 250 m/min, the most achievement in tool life is 

obtained by 18% in MQL cutting condition by increasing inclination angle to 5°. At 400 

m/min tool velocity, 5° inclination angle improves tool life 35% compared to 0° when 

coolant is used. It is also seen that cutting with MQL is the second best alternative after 

dry cutting for 50 m/min for both inclination angles. When 250 m/min is considered, 

cutting with coolant improves tool life 13% and 48% in comparison to MQL for 0° and 

5° inclination angles, respectively. Although highest tool wear rates are observed in 

cutting with 400 m/min tool velocity due to shortened cooling time of cutting edge, it is 

also seen that increasing tool inclination angle results 36% achievement in tool life for 

coolant condition.  

5.1.2 Surface Roughness and Circularity 

In this section, surface roughness and circularity results of ADRT process for AISI 

1050 steel cutting tests for different rotary tool velocities and rotary tool inclination 

angles are presented. Figure 5-5 shows the generated surface topography for different 

cutting conditions. 

 

Figure 5-5: Surface topography for a) Test-1 b) Test-6. 

Due to the effect of rotary tool spinning action, surface grooves are produced on 

machined surfaces. However, different tool inclination angles causes surface grooves in 

different directions. Both surface grooves in Figure 5-5 are found at an angle close to 
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the effective cutting directions of different cutting tests due to friction conditions of 

process. 

The effects of rotary tool velocities on surface roughness in feed and circumferential 

directions for 0° and 5° tool inclination angles are presented in Figure 5-6 and Figure 

5-7, respectively. 

 

Figure 5-6: Surface roughness variation with tool velocity in feed and circumferential 

directions for 0º tool inclination angle. 

 

Figure 5-7: Surface roughness variation with tool velocity in feed and circumferential 

directions 5º of rotary tool inclination angle. 

The measured surface roughness values are recorded after one machining pass in order 

to eliminate any tool wear effect. It is seen from the graphs, surface quality in feed 
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direction is worse than that in circumferential direction of workpiece. 0° of tool 

inclination angle with 50 m/min tool velocity shows the minimum surface roughness 

value in both feed and circumferential directions. In both directions, at 0° of tool 

inclination angle, change in tool velocity presents the same surface roughness trend 

such that at 125 m/min tool velocity worst surface quality is attained. At 5° inclination 

angle, roughness in feed direction is remained relatively constant over different tool 

velocities, however, in circumferential direction, surface quality deteriorates as tool 

velocity increases. 

The circularity of machined parts is also investigated. The effects of rotary tool 

inclination angle for different rotary tool velocities on circularity of machined parts are 

shown in Figure 5-8. 

 

Figure 5-8: Machined workpiece circularity variation with different tool velocities for 

0º and 5º of rotary tool inclination angles. 

One can see from Figure 5-8 easily that at 5° of tool inclination angle, circularity of 

machined surface is much better than 0° of that for every single tool velocities. For 0° 

of tool inclination angle, circularity curve has U shape, such that circularity values 

decrease as the tool velocity increases up to 100 m/min, then show an increasing 

behavior when tool velocity reaches up to 150 m/min. Regarding 5° of tool inclination 

angle, the least circularity value is attained at 125 m/min tool velocity while 75 m/min 

tool velocity shows highest value. 
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5.2 Waspaloy 

The Waspaloy cutting test conditions for tool wear are explained in Chapter 3 in detail 

in Table 3-20. The used workpiece material has 215 mm diameter with 27 mm cutting 

length. The obtained results are presented as follows. 

5.2.1 Tool Wear 

Tool wear results of ADRT process for Waspaloy cutting tests for different rotary tool 

velocities, rotary tool inclination angles and cooling conditions are presented. The 

effects of rotary tool velocities and inclination angles on tool life for dry, coolant and 

MQL cutting conditions are seen in Figure 5-9, Figure 5-10 and Figure 5-11, 

respectively. 

 

Figure 5-9: Tool life results for different inclination angles and for different tool 

velocities for dry cutting of Waspaloy. 
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Figure 5-10: Tool life results for different inclination angles and for different tool 

velocities for coolant cutting of Waspaloy. 

 

Figure 5-11: Tool life results for different inclination angles and for different tool 

velocities for MQL cutting of Waspaloy. 

It is seen from figures that coolant and MQL conditions give promising tool life results 

in comparison to dry cutting condition. This can be attributed to effective transportation 

of cutting fluids to cutting zone by rotational motion of insert resulting efficient cooling 

of insert. At lower velocities generally higher tool lives are achieved for all cooling 

conditions. At 0° inclination angle, 10 m/min tool velocity improves tool life 25% and 

40% compared to 20 m/min and 45 m/min in dry cutting condition respectively. When 



63 
 

cutting with coolant is taken into consideration, 20 m/min tool velocity is found to be 

the best choice in the manner of tool life and the tool life is the double of that obtained 

in 45 m/min tool velocity. As observed in other cooling conditions, 45 m/min tool 

velocity exhibits the worst tool life results such that 45% and 15% reductions in tool 

life are found in comparison to 10 m/min and 20 m/min in MQL cutting condition. At 

5° inclination angle, lowering tool velocity reduces tool wear rate with prolonged tool 

life. Cutting with 10 m/min tool velocity improves tool life 15%, 95% and 39% 

compared to 20 m/min for dry, coolant and MQL cutting conditions, respectively. At 

15° inclination angle, when tool reaches its end of life after cutting tests, it is found that 

tool life for coolant and MQL cutting condition is almost double of that for dry cutting 

condition. 

Increasing tool inclination angle generally prolongs tool life with reducing tool wear 

rate as observed from figures. For 10 m/min tool velocity, positioning the tool to 15° 

improves tool life 1.5, 2.15 and 1.94 times in comparison to 0° inclination angle for dry, 

coolant and MQL cutting conditions, respectively. When tool velocity is doubled, 28% 

and 50% achievements in tool life are performed by increasing inclination angle to 5° 

for dry and MQL cutting conditions. However, for coolant cutting condition, it should 

be pointed out that increasing inclination angle causes almost 40% reduction in tool life. 

At 45 m/min tool velocity, a significant improvement in tool life could not be achieved 

in coolant and MQL conditions, yet tool life results are slightly better than dry cutting. 

 

Figure 5-12: Tool Life variation with different tool velocities for 0° tool inclination 

angle for coolant cutting of Waspaloy. 
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Figure 5-12 shows comparison of tool lives of conventional turning and rotary turning 

processes for coolant cutting condition. 0 m/min tool velocity represents fixed tool. In 

order to compare tool life results properly with conventional one, normalization of 

round insert used in conventional turning test is necessary. Figure 5-12 exhibits the 

normalized tool life results. 20 m/min tool velocity shows the best tool life. At that tool 

velocity, tool life increases 43% compared to conventional turning result. At lower and 

at higher tool velocities, expectation is the reduction of tool life with higher wear rate. 

At lower tool velocities, due to higher tool workpiece contact time and at higher tool 

velocities, due to lower cooling time of insert, tool temperature increases resulting 

lower tool life. Moreover, at 45 m/min tool velocity, tool life reduces 29% compared to 

conventional turning test result. 

5.2.2 SEM Analysis of Worn Tools 

In this section, SEM analyses of wear zones on cutting edge for a number of samples 

are presented in order to inspect the cutting inserts in detail for different cutting 

conditions of Waspaloy cutting tests. Acceleration voltage used for SEM analyses is 10 

kV for each sample. Figure 5-13 shows the SEM image of worn zone of cutting edge of 

10 m/min tool velocity for 0º of rotary tool inclination angle for dry cutting. 

 

Figure 5-13: SEM image of cutting edge with 200X magnification for 10 m/min rotary 

tool velocity for 0º of rotary tool inclination angle for dry cutting of Waspaloy. 

SEM images of cutting edge for 10 m/min tool velocity for 0º of rotary tool inclination 

angle for coolant and MQL cooling conditions are shown in Figure 5-14 and Figure 

5-15, respectively. 
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Figure 5-14: SEM image of cutting edge with 200X magnification for 10 m/min rotary 

tool velocity for 0º of rotary tool inclination angle for coolant cutting of Waspaloy. 

 

Figure 5-15: SEM image of cutting edge with 200X magnification for 10 m/min rotary 

tool velocity for 0º of rotary tool inclination angle for MQL cutting of Waspaloy. 

Typical wear lands for 10 m/min tool velocity for 0° of tool inclination angle for 

different cooling conditions at 200X magnifications are presented in figures. For better 

SEM images, samples are coated with carbon film. It is observed that flank wear is the 

dominant mode of tool failure. Uniform flank wear distribution over entire 

circumferential of the tool edge due to tool rotational motion can be seen in figures. 

Moreover, there is no evidence of formation of crater wear on tool rake face. Workpiece 

material deposition on worn are on flank face is observed in all samples of cutting 
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inserts. Highest rate of material deposition on flank wear land is observed in dry 

cutting. 

5.3 Ti6Al4V 

The Ti6Al4V cutting test conditions for tool wear are explained in Chapter 3 in detail in 

Table 3-21. The used workpiece material has 135 mm diameter with 50 mm cutting 

length. The obtained results are presented as follows. 

5.3.1 Tool Wear 

Tool wear results of ADRT process for Ti6Al4V cutting tests for different rotary tool 

velocities, rotary tool inclination angles and cooling conditions are presented. The 

effects of rotary tool velocities and inclination angles on tool life for dry, coolant and 

MQL cooling conditions are seen in Figure 5-16, Figure 5-17 and Figure 5-18 

respectively. 

 

Figure 5-16: Tool life results for different inclination angles and for different tool 

velocities for dry cutting of Ti6Al4V. 
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Figure 5-17: Tool life results for different inclination angles and for different tool 

velocities for coolant cutting of Ti6Al4V. 

 

Figure 5-18: Tool life results for different inclination angles and for different tool 

velocities for MQL cutting of Ti6Al4V. 

Cutting with coolant and MQL are more preferable compared to dry cutting conditions 

for Ti6Al4V cutting tests due to easy penetration of fluids to cutting zone as a result of 

cutting insert rotational motion. It is also found that lower tool velocities generally 

show promising tool life results as observed in previous sections. At 0° inclination 

angle, in dry cutting condition, 43% and 180% improvement in tool life are achieved 

when cutting with 10 m/min tool velocity compared to 20 m/min and 45 m/min, 
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respectively. Similarly, at coolant cutting condition, 10 m/min tool velocity improves 

tool life 4.2 times in comparison to 45 m/min. When MQL cooling condition is 

considered for 0° inclination angle, 20 m/min tool velocity shows the best tool life 

result. When 5° inclination angle results are examined, highest tool life results are 

observed for 10 m/min tool velocity for dry and MQL conditions. In coolant cutting, 20 

m/min tool velocity reduces tool wear rate and improves tool life by 27%. At 15° 

inclination angle, cutting with MQL is more advantageous such that tool life doubled 

compared to dry cutting. 

It is observed from figures that a rise in inclination angle results longer tool life with 

decreasing tool wear rate. For 10 m/min tool velocity, increasing tool inclination angle 

from 5° to 15° achieves tool life 41%, 21% and 192% for dry, coolant and MQL 

conditions, respectively. However, contrary to expectations, increasing inclination angle 

to 5° causes 10% reduction in tool life compared to 0° in coolant condition. When 20 

m/min tool velocity results are examined, tool life is improved by increasing inclination 

angle to 5°, but the most achievement is observed in dry cutting condition by 46% 

increase. Obviously, the worst tool life results are observed at 45 m/min tool velocity. 

In that case even, coolant and MQL improve tool life 27% and 190% compared to dry 

cutting condition, the observed results are not significant compared to other tool 

velocities. 

 

Figure 5-19: Tool flank wear variation with time for different tool velocities for 0º of 

rotary tool inclination angle for coolant cutting of Ti6Al4V. 
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Figure 5-19 exhibits the comparison between rotary turning tool and conventional 

turning tool for coolant cutting condition. 0 m/min tool velocity presents the 

conventional turning test. Normalization of conventional turning insert is required to 

yield unused portions of tool. It is seen that 10 m/min tool velocity achieves highest tool 

life result such that tool life increases 22% compared to conventional turning test. 

Cutting with 45 m/min tool velocity is worthless such that 71% reduction in tool life is 

observed compared to conventional turning test. 

5.3.2 SEM Analysis of Worn Tools 

In this section, SEM analyses of wear zones on cutting edge for a number of samples 

are presented in order to inspect the cutting inserts in detail for different cutting 

conditions of Ti6Al4V cutting tests. Acceleration voltage used for SEM analyses is 10 

kV for each sample. Figure 5-20 shows the SEM image of worn zone of cutting edge of 

10 m/min tool velocity for 0º of rotary tool inclination angle for dry cutting. 

 

Figure 5-20: SEM image of cutting edge with 200X magnification for 10 m/min tool 

velocity for 0º of rotary tool inclination angle for dry cutting of Ti6Al4V. 

SEM images of cutting edge for 10 m/min tool velocity for 0º of rotary tool inclination 

angle for coolant and MQL cooling conditions are shown in Figure 5-21 and Figure 

5-22, respectively. 
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Figure 5-21: SEM image of cutting edge with 200X magnification for 10 m/min tool 

velocity for 0º of rotary tool inclination angle for coolant cutting of Ti6Al4V. 

 

Figure 5-22: SEM image of cutting edge with 200X magnification for 10 m/min tool 

velocity for 0º of rotary tool inclination angle for MQL cutting of Ti6Al4V. 

Figures exhibit typical wear lands for 10 m/min tool velocity for 0° of tool inclination 

angle for different cooling condition at 200X magnification. Carbon film coating is 

applied for better SEM images. Uniformly distributed flank wear on tool edge is 

observed in all samples with practically no formation of crater wear. Material 

deposition is not as much as observed in Waspaloy samples. Material deposits slightly 

on wear land for dry and coolant conditions while almost no material deposition is 

attained in MQL cutting. 
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5.4 Inconel 718 

The Inconel 718 cutting test conditions for tool wear are explained in Chapter 3 in 

detail in Table 3-22. The used workpiece material has 180 mm diameter with 30 mm 

cutting length. The obtained results are presented as follows. 

5.4.1 Tool Wear 

Tool wear results of ADRT process for Inconel 718 cutting tests for different rotary tool 

velocities, rotary tool inclination angles and cooling conditions are presented. The 

effects of rotary tool velocities and inclination angles on tool life for dry, coolant and 

MQL cooling conditions are seen in Figure 5-23, Figure 5-24 and Figure 5-25 

respectively. 

 

Figure 5-23: Tool life results for different inclination angles and for different tool 

velocities for dry cutting of Inconel 718. 
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Figure 5-24: Tool life results for different inclination angles and for different tool 

velocities for coolant cutting of Inconel 718. 

 

Figure 5-25: Tool life results for different inclination angles and for different tool 

velocities for MQL cutting of Inconel 718. 

Effective transportation of cutting fluids to cutting zone improves the performance of 

cutting insert as seen from the figures. Lowering tool velocity results higher tool lives 

for all inclination angles and cooling conditions. 62% and 65% achievements in tool life 

are observed when cutting with 10 m/min tool velocity compared to 20 m/min at 0° 

inclination angle for dry and coolant cutting conditions, respectively. Using 20 m/min 

tool velocity instead of 45 m/min doubles the tool life for all cooling conditions at 0° 
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inclination angle. When 5° inclination angle tool life results are examined, cutting with 

MQL gives the best solution. 10 m/min tool velocity prolongs tool life 55%, 52% and 

32% compared to 20 m/min for dry, coolant and MQL cutting conditions, respectively. 

At 15° inclination angle, coolant and MQL show similar tool life results that are slightly 

better than dry cutting condition. 

It is found that increasing tool inclination angle yields an improvement in tool life in all 

cooling conditions. When tool rotates at 10 m/min, increasing inclination angle from 0° 

to 15° has a progress in tool life 93% and 107% for dry and coolant cutting conditions, 

respectively. When MQL cutting condition is considered, similar tool wear behaviors 

are observed for both 5° and 15° inclination angles. For 20 m/min tool velocity, to 

increase inclination angle to 5° results significant changes in tool life such that 60%, 

72% and 59% improvements in tool lives are achieved for dry, coolant and MQL 

cutting conditions, respectively. It is seen that cutting insert reaches its end of life very 

rapidly even in cooling cutting condition when tool rotates at 45 m/min. As a result, it is 

meaningless to machine Inconel 718 at that tool velocity in the manner of tool life. 

5.4.2 SEM Analysis of Worn Tools 

In this section, SEM analyses of wear zones on cutting edge for a number of samples 

are presented in order to inspect the cutting inserts in detail for different cutting 

conditions of Inconel 718 cutting tests. Acceleration voltage used for SEM analyses is 

10 kV for each sample. Figure 5-26 shows the SEM image of worn zone of cutting edge 

of 10 m/min tool velocity for 0º of rotary tool inclination angle for MQL cutting. 

 

Figure 5-26: SEM image of cutting edge with 200X magnification for 10 m/min tool 

velocity for 0º of rotary tool inclination angle for MQL of Inconel 718. 
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SEM images of cutting edge for 10 m/min tool velocity for MQL cooling condition for 

5º and 15º of rotary tool inclination angle are shown in Figure 5-27 and Figure 5-28, 

respectively. 

 

Figure 5-27: SEM image of cutting edge with 200X magnification for 10 m/min tool 

velocity for 5º of rotary tool inclination angle for MQL of Inconel 718. 

 

Figure 5-28: SEM image of cutting edge with 200X magnification for 10 m/min tool 

velocity for 15º of rotary tool inclination angle for MQL of Inconel 718. 

SEM images of worn areas of inserts used for Inconel 718 tests for 10 m/min tool 

velocity for MQL cooling condition for difficult tool inclination angle are shown in 

figures. Folded and broken carbon film parts on tool rake face are seen due to high rate 

of carbon coating on sample. Uniformly distributed flank wear on tool edge is observed 

for all different tool inclination angles. Crater wear is not dominant wear mechanism. 
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High rate of material deposition on worn areas is observed for all samples. When 

samples are examined carefully, the directions of grooves on deposited material can be 

distinguished. These different groove directions are formed due to different tool 

inclination angles. 

5.5 Summary 

ADRT cutting tests are conducted for various tool materials and various cutting 

conditions to clarify the performance of process. It is seen that at the same cooling 

conditions and tool inclination angles, as tool velocity decreases, tool wear rate 

generally reduces with increasing tool life, yet, there are some exceptions in Waspaloy 

and Ti6Al4V. When tool velocity and cooling conditions are kept constant, higher 

inclination angles usually improve tool lives except a few examples in AISI 1050 steel 

and Waspaloy. It is also observed that interestingly dry cutting gives the best tool life 

results in AISI 1050 steel tests while coolant and MQL are effective for difficult to cut 

alloys. For surface quality, reducing tool inclination angle improves surface in both feed 

and circumferential directions while deteriorating circularity of machined part. 

Increasing tool velocity causes a rise in roughness in both feed and circumferential 

directions up to 125 m/min. SEM images show that adhesion of workpiece material to 

worn area in dry cutting is found to be more compared to coolant and MQL conditions 

while tool inclination angle almost no effect on amount of workpiece adhesion. 
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CHAPTER 6 TOOL TEMPERATURE RESULTS FOR ADRT PROCESS 

Test plan given in Chapter 3 for ADRT operation for cutting temperature distribution 

was carried out. Temperature distribution of tool rake face is recorded by FLIR A325 

SC infrared thermal camera and the results are analyzed by ThermaCAM software. 

The position of thermal camera with protective window on Mori Seiki NTX2000 Mill-

Turn machining center is seen in Figure 6-1. 

 

Figure 6-1: Temperature measurement set-up for ADRT cutting tests. 

As stated earlier, chip motion between cutting zone and thermal camera prevents taking 

a clear image. In this section, the obtained best images and results will be presented. 

Figure 6-2 shows an example of thermal image during cutting. These images are 

obtained after the tool reaches the steady-state during cutting. 
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Figure 6-2: An example thermal imaging of rotary cutting. 

6.1 AISI 1050 Steel 

The AISI 1050 steel cutting test conditions for temperature measurements are explained 

in Chapter 2 in detail in Table 3-24. The used workpiece material has 80 mm diameter 

with 150 mm cutting length. The obtained results are presented as follows. 

6.1.1 Tool Rake Face Temperature Distribution 

In this section, tool rake face temperature distributions for AISI 1050 steel for different 

rotary tool velocities and rotary tool inclination angles are presented. During 

experiments, both rotary tool and workpiece rotate in CW direction. 

6.1.1.1 0º Rotary Tool Inclination Angle 

In this section, best thermal images for different rotary tool velocities at 0º rotary tool 

inclination angle are presented. Figure 6-3 shows the image for 10 m/min tool velocity. 
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Figure 6-3: Thermal image of tool rake face temperature distribution for 10 m/min tool 

velocity, 0º of rotary tool inclination angle of AISI 1050 steel cutting. 

Close-up views of tool rake face temperature distributions for 25 m/min and 50 m/min 

tool velocities are seen in Figure 6-4. 

 

Figure 6-4: Thermal image of tool rake face temperature distribution for a) 25 m/min b) 

50 m/min tool velocity for 0º of rotary tool inclination angle of AISI 1050 steel cutting. 

Close-up views of thermal images obtained from 150 m/min and 250 m/min tool 

velocities are shown in Figure 6-5. 
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Figure 6-5: Close-up view of thermal image for tool rake face temperature distribution 

for a) 150 m/min b) 250 m/min tool velocity for 0º of rotary tool inclination angle of 

AISI 1050 steel cutting. 

Temperature distributions on the tool rake face for different tool velocities are presented 

in the figures above. Although the temperature of the contact zone of tool with chip 

after leaving cutting region is expected to decrease gradually until re-entering cutting 

region, the results are not line in that way. Thermal fluctuations on the cutting edge are 

observed for all tool velocities. Contact zone temperature begins decreasing after the 

edge leaves cutting region and then a sudden jump to higher temperature is observed. 

After the jump, the temperature of the contact zone again cools down to a minimum 

value. Due to rotary tool motion, when the tool contact is near the cutting zone, the 

temperature again rises to higher temperatures close to cutting temperature. It is also 

seen from figures that as the tool velocity increases, higher tool temperatures are 

attained. 

6.1.1.2 5º of Rotary Tool Inclination Angle 

In this section, the best thermal images for different rotary tool velocities at 5º of rotary 

tool inclination angle are presented. Figure 6-6 shows the close-up view of the image 

obtained from cutting tests for 25 m/min tool velocity. 
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Figure 6-6: Close-up view of thermal image for tool rake face temperature distribution 

for 25 m/min tool velocity for 5º of rotary tool inclination angle of AISI 1050 steel 

cutting. 

Figure 6-7 exhibits the temperature distribution on tool rake face obtained from thermal 

images of 50 m/min and 150 m/min tool velocities, respectively. 

 

Figure 6-7: Close-up view of thermal image for tool rake face temperature distribution 

for a) 50 m/min and b) 150 m/min tool velocity for 5º of rotary tool inclination angle of 

AISI 1050 steel cutting. 

For 5° of tool inclination angle, similar tool temperature distribution results are 

observed with 0° of that. Increasing tool velocity results an increase in temperature at 

leaving and entering zone of contact region of tool. At 25 m/min tool velocity, 

fluctuation of temperature on cutting edge is not seen, however, as tool velocity 

increases, temperature fluctuation rises. 
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6.1.2 Generated Cutting Temperatures 

During temperature measurements, the chip covers the cutting zone and consequently 

the measured temperature is not the generated cutting temperature but that of the chip. 

On the other hand, in this study, chip thickness is very small, as a result, the measured 

temperature is assumed to be equal to or slightly lower than generated cutting 

temperature. 

Figure 6-8 presents the generated cutting temperatures for different rotary tool 

velocities and for different tool inclination angles of AISI 1050 steel. 

 

Figure 6-8: Generated cutting temperature variation with tool velocity for 0º and 5° tool 

inclination angles for AISI 1050 steel. 

For 0° of tool inclination angle, at 25 m/min tool velocity, the minimum cutting 

temperatures are observed. Doubling the tool velocity to 50 m/min, results 15 % 

increase in cutting temperatures. As tool velocity increases further, the cutting 

temperature seems to exceed 1100°C. When 5° of tool inclination angle is considered, 

all temperature results seem to be close to each other. In the case of 50 m/min tool 

velocity, highest temperature is observed. When tool rotates at 50 m/min, 4% 

temperature rise is attained compared to half velocity. However, further increase in tool 

velocity causes reduction in temperature results such that in the case of 150 m/min tool 

velocity maximum temperature decreases 3% and 6% compared to 25 m/min and 50 

m/min, respectively. It is seen from Figure 6-8, in the case of 25 m/min tool velocity, 
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when tool inclination angle increases from 0° to 5°, 7% decline in maximum 

temperature is observed. For higher tool velocities the situation changes and lower 

temperatures are obtained. Rising tool inclination angle causes reduction 4% and 18% 

in temperature for 50 m/min and 150 m/min tool velocities, respectively. 

6.1.3 Cutting Temperature-Tool Life Relation 

It is well known that tool wear is generally thermal base and the relation between 

cutting temperature and tool life is critical. Figure 6-9 shows the relation between 

cutting temperature and tool life for various tool velocities for 0° inclination angle. 

 

Figure 6-9:  Cutting temperature and tool life variation with tool velocity for 0° 

inclination angle for AISI 1050 steel. 

As stated before, temperature measurements are conducted under dry cutting 

conditions, as a result tool life results of dry cutting conditions are used for comparison. 

The correlation between cutting temperatures and tool life is observed as expected such 

that as tool velocity increases beyond the optimum one cutting temperatures start to 

increase and thermally induced wear mechanism becomes active. Increasing cutting 

temperature cause a rise in tool wear rate with reducing tool life. It is seen from Figure 

6-9 that when tool velocity is increased from 50 m/min to 250 m/min, cutting 

temperature also rises from 1000°C to 1270°C due to reduced cooling time of cutting 

insert resulting almost 60 % reduction in tool life. 
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6.2 Ti6Al4V 

The Ti6Al4V cutting test conditions for tool rake face temperature distribution and 

generated cutting temperatures are explained in Chapter 3 in detail in Table 3-25. The 

used workpiece material has 110 mm diameter with 50 mm cutting length. The obtained 

results are presented as follows. 

6.2.1 Tool Rake Face Temperature Distribution 

In this section, tool rake face temperature distributions for Ti6Al4V for different rotary 

tool velocities and rotary tool inclination angles are presented. During experiments, 

both rotary tool and workpiece rotate in CW direction. 

6.2.1.1 0º of Rotary Tool Inclination Angle 

In this section, obtained best images for different rotary tool velocities 0º of rotary tool 

inclination angle are presented. Figure 6-10 shows the image obtained from cutting tests 

for 3 m/min tool velocity. 

 

Figure 6-10: Thermal image for tool rake face temperature distribution for 3 m/min tool 

velocity for 0º of rotary tool inclination angle of Ti6Al4V cutting. 

Thermal image with close-up view for 5 m/min tool velocity is presented in Figure 

6-11. 
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Figure 6-11: Thermal image for tool rake face temperature distribution for 5 m/min tool 

velocity for 0º of rotary tool inclination angle of Ti6Al4V cutting. 

Close-up views of thermal images obtained from 10 m/min, 15 m/min, 20 m/min and 25 

m/min tool velocities are seen in Figure 6-12. 

 

Figure 6-12: Close-up view of thermal image for tool rake face temperature distribution 

for a) 10 m/min b) 15 m/min c) 20 m/min and d) 25 m/min tool velocity for 0º of rotary 

tool inclination angle of Ti6Al4V cutting. 
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For 0° of tool inclination angle, temperature distributions on tool rake face are seen in 

figures for different tool velocities. Thermal fluctuations on tool cutting edge are 

observed in all tool velocities. It is seen that higher tool velocity cases cause more 

irregular thermal fluctuations compared to lower ones. Moreover, as tool velocity 

increases, the leaving and re-entering temperatures of contact zone seems to be much 

higher. 

6.2.1.2 5º of Rotary Tool Inclination Angle 

In this section, obtained best images for different rotary tool velocities 5º of rotary tool 

inclination angle are presented. Figure 6-13 shows the image obtained from cutting tests 

for 5 m/min tool velocity. 

 

Figure 6-13: Close-up view of thermal image for tool rake face temperature distribution 

for 5 m/min tool velocity for 5º of rotary tool inclination angle of Ti6Al4V cutting. 

Tool rake face temperature distributions for 10 m/min and 20 m/min tool velocities are 

seen in Figure 6-14. 
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Figure 6-14: Close-up view of thermal image for tool rake face temperature distribution 

for a) 10 m/min b) 20m/min rotary tool velocity for 5º of tool inclination angle of 

Ti6Al4V cutting. 

When 5° of tool inclination angle is considered, almost similar temperature behaviors 

are observed with 0° of that. An increase in tool velocity causes higher irregular thermal 

fluctuations. It is noticed from figures that the effect of tool velocity on process to rise 

tool temperature during operation. 

6.2.1.3 10º of Rotary Tool Inclination Angle 

Figure 6-15 shows the image obtained from cutting tests for 5 m/min and 10 m/min tool 

velocities. 

 

Figure 6-15: Close-up view of thermal image for tool rake face temperature distribution 

for a) 5 m/min and b) 10 m/min tool velocity for 10º of rotary tool inclination angle of 

Ti6Al4V cutting. 
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Close-up views of thermal images obtained from 15 m/min and 20 m/min tool 

velocities are seen in Figure 6-16. 

 

Figure 6-16: Close-up view of thermal image for tool rake face temperature distribution 

for a) 15 m/min and b) 20 m/min tool velocity for 10º of rotary tool inclination angle of 

Ti6Al4V cutting. 

When temperature distribution on tool cutting edge for 10° of tool inclination angle is 

examined, irregularity in temperature fluctuation on tool cutting edge seems to be 

increased. As tool velocity increased, temperature on tool rake face rises. At 10° of tool 

inclination angle, the amount of change in temperature as tool velocity increases is not 

high as much as at lower tool inclination angles. 

6.2.1.4 15º of Rotary Tool Inclination Angle 

In this section, obtained best images for different rotary tool velocities and 15º of rotary 

tool inclination angle are presented. Figure 6-17 shows the image obtained from cutting 

tests for 5 m/min and 10 m/min tool velocities. 
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Figure 6-17: Close-up view of thermal image for tool rake face temperature distribution 

for a) 5 m/min and b) 10 m/min tool velocity for 15º of rotary tool inclination angle of 

Ti6Al4V cutting. 

Close-up views of thermal images obtained from 15 m/min and 20 m/min tool 

velocities are seen in Figure 6-18. 

 

Figure 6-18: Close-up view of thermal image for tool rake face temperature distribution 

for a) 15 m/min and b) 20 m/min tool velocity for 15º of rotary tool inclination angle of 

Ti6Al4V cutting. 

From figures for 15° of tool inclination angle it is easily understood that increasing tool 

velocity up to 20 m/min causes higher tool temperatures. At 20 m/min tool velocity, 

almost 10% reduction in temperature is found compared to 15 m/min tool velocity. 

However, thermal fluctuation on tool cutting edge at that inclination angle shows 

similar behavior with lower tool inclination angle such that as tool velocity increases, 

irregularity on thermal fluctuation seems to be rise significantly. 
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6.2.2 Generated Cutting Temperatures 

As in AISI 1050 steel, during cutting tests, the measured temperature is not the 

generated cutting temperature due to chip preventing of good image. Measured chip 

temperature is close to generated cutting temperature since chip thickness is very small. 

Figure 6-19 presents the generated cutting temperatures for different rotary tool 

velocities and for different inclination angles of Ti6Al4V. 

 

Figure 6-19: Generated cutting temperature variation with tool velocity for 0º, 5°, 10° 

and 15° tool inclination angles for Ti6Al4V. 

Almost similar tool temperature trends are observed for both 0° and 5° inclination 

angles. Lowest tool temperatures are found at 10 m/min tool velocity for both 0° and 5° 

inclination angles, then, as tool velocity increases further, temperature seems to be rise 

gradually. Cutting with 10 m/min provides 27% and 12% reduction in temperature 

compared to highest temperatures for 0° and 5° of tool inclination angles, respectively. 

For 10° of tool inclination angle, highest temperatures are attained at 15 m/min tool 

velocity. Decreasing tool velocity to one third of 15 m/min results in 7% reduction in 

the generated temperature. When 15° of tool inclination angle results are examined, 

temperature variation with tool velocity seems to be irregular. When tool rotates at 10 

m/min, 13% progress in generated temperatures is achieved compared to 5 m/min tool 

velocity. Lowest temperatures are found when tool velocity is 20 m/min. at that 

velocity, improvements in temperature are 4% and 14 % compared to 10 m/min and 15 
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m/min tool velocities, respectively. From Figure 6-19, it is seen that at 5° of tool 

inclination angle, all tool velocities result in higher temperatures. Beyond that 

inclination angle, for 10 m/min and 20 m/min tool velocities, a decreasing trend for 

cutting temperatures are observed. For 5 m/min tool velocity, 9% and 4% improved 

cutting temperature results are attained for 10° and 15° of tool inclination angles 

compared to 5° of tool inclination angle. 

6.2.3 Cutting Temperature-Tool Life Relation 

The relation between cutting temperature and tool life for Ti6Al4V for different cutting 

conditions is also examined. Figure 6-20 and Figure 6-21 show the relation between 

cutting temperatures and tool life for various tool velocities for 0° and 5° inclination 

angles, respectively. 

 

Figure 6-20: Cutting temperature and tool life variation with tool velocity for 0° 

inclination angle for Ti6Al4V. 

 

Figure 6-21: Cutting temperature and tool life variation with tool velocity for 5° 

inclination angle for Ti6Al4V. 
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All cutting tests for temperature measurement and tool life are conducted under dry 

cutting conditions. It is seen from figures that at lower cutting temperatures longer tool 

lives are observed for both inclination angles. Lower cutting temperature suppresses 

thermally induced wear mechanism and reduces tool wear rate. Generally, as tool 

velocity increases beyond optimum value, cutting temperatures increase resulting lower 

tool life. At 0° tool inclination angle and at 10 m/min tool velocity, cutting temperature 

is measured almost 900°C. When tool velocity is doubled, generated cutting 

temperature increases up to 1180°C and 30% reduction in tool life is obtained due to 

high wear rate. Similarly, at 5° inclination angle, increasing tool velocity from 10 

m/min to 20 m/min causes 14% increase in cutting temperature and 24% decline in tool 

life for Ti6Al4V cutting tests.  

6.3 Summary 

Temperature measurements are done for different materials and for different cutting 

parameters under dry cutting condition. It seen from results that increasing tool velocity 

causes an increase in thermal fluctuations on tool rake face. At the same tool velocities, 

an increase in inclination angle causes reduction in cutting temperatures except lower 

velocities. At the same inclination angles, the effect of tool velocity is not same for all 

conditions. For AISI 1050 steel, at low inclination angle, increasing velocity results 

higher cutting temperatures while at higher inclination angle, moderate tool velocity 

shows maximum cutting temperature. When Ti6Al4V tests are considered, at lower 

inclination angles, increasing tool velocity results higher cutting temperatures, yet, at 

higher inclination angles, fluctuations at cutting temperatures are observed as tool 

velocity varies. 
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CHAPTER 7 DISCUSSIONS 

In this thesis, conventional turning, SPRT and ADRT cutting tests are conducted for 

different workpiece materials and cutting conditions. The tool wear, cutting force, 

surface quality and temperature measurements obtained from cutting tests are given in 

Chapters 4-6. In this chapter, a comprehensive summary of cutting test results are 

discussed. 

7.1 Conventional Turning and SPRT Cutting Tests 

Different workpiece materials with different cutting conditions are used to investigate 

the performance of SPRT compared to conventional turning tool. For proper 

comparison in tool life, insert normalization is done on the conventional turning tool. It 

is found that SPRT process exhibits superior tool life compared to conventional one 

especially in difficult to cut alloys. For AISI 1050 steel, similar tool life results are 

observed for SPRT and conventional turning processes in dry cutting conditions. In 

Waspaloy tests, an improvement of achieved 9 folds in achieved compared to 

conventional turning in dry cutting conditions. When Ti6Al4V tests are considered, 

SPRT tool improves tool life 6.5 folds compared to conventional turning tool in dry 

cutting condition. The effect of coolants on tool life cannot be disregarded. Coolant has 

positive effect in tool life such that 14 % achievement in tool life compared to dry 

cutting condition is observed. When coolant and MQL are used in Waspaloy tests, tool 

life is at least doubled compared to dry cutting condition. In Ti6Al4V tests, 114 μm and 

124 μm tool wear are measured after 150 154 minutes cutting with coolant and MQL, 

respectively, while 153 μm flank wear is observed in 74 seconds in conventional 

turning tests with using coolant. Uniformly distributed flank wear over entire cutting 

edge with no crater wear is the main tool deformation mode for SPRT process. In 

addition to flank wear, crater wear is also observed in conventional turning tests 

especially for difficult to cut alloys. The prolonged tool life in SPRT is attributed to the 

use of entire perimeter of circular insert as well as cooling period during cutting. In 

conventional turning, the same portion of tool is engaged with workpiece while in 

SPRT, tool rotation provides the fresh portions of the tool continuously to engage the 
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workpiece. This situation reduces the insert- workpiece contact time for SPRT process, 

and as a result, heat accumulation at the same portion of tool reduces. This is to say that 

the generated heat dissipated to all over the circular cutting edge. The work done for 

chip formation is reduced compared to conventional turning, and furthermore the 

friction condition on tool rake face is easier. Low cutting temperatures are achieved in 

SPRT reducing the thermally activated tool wear mechanism on the cutting edge. 

When cutting force results are considered, SPRT process provides lower forces 

compared to conventional turning tool except in radial direction. In SPRT, the reduction 

in the tangential and feed forces are not less than 17% in all cutting conditions 

compared to conventional turning process. This reduction is attributed to easier chip 

shearing with reduced work done resulting in lowered specific cutting energy in SPRT 

process. Moreover, lower cutting forces are observed due to reduced friction conditions 

in SPRT process. In SPRT, radial forces are found to be higher than conventional 

turning. This is because of the rotary motion of the insert which causes changes in the 

cutting velocity direction due to process kinematics resulting process to be more 

oblique compared to conventional turning. 

After the cutting tests with the SPRT, marks on the surface are analyzed. These are 

caused by the rotary motion of tool. This motion changes the direction of cutting and 

the marks on the surface are found to be parallel to this direction. Chip adhesion to 

workpiece reduces surface quality, too. This can be attributed to the smearing action. 

Chip swirls around the tool and squeezes between the tool and workpiece. Moreover, in 

the SPRT process the surface roughness in the circumferential direction is found to be 

better than conventional turning. Low rigidity is an important problem in the SPRT 

process as it increases tool run-out and tendency to chatter during cutting. Worse 

roughness values in feed direction and worse circularity values can be explained by this. 

It is seen that at lower cutting velocities, theoretical and experimental tool velocity 

(rotation speed) results show good agreement. However, when cutting velocity 

increases the difference between the predicted and measured tool speeds increases. This 

can be attributed the reduced friction conditions between chip and tool at higher cutting 

velocities. Moreover, friction in bearing system of rotary shaft is also another factor 

effecting tool velocity. 
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7.2 ADRT Cutting Tests 

The performance of ADRT process is tested for different workpiece materials and 

cooling conditions with various tool velocities and inclination angles. When tool 

inclination angles and cooling conditions are kept constant, it is seen that reduction in 

tool velocity results longer tool lives in all cutting materials. Tool life is improved at 

least 2 folds when tool velocity is 50 m/min compared to other tool velocities for every 

cooling and inclination angles in AISI 1050 steel. When Waspaloy tests are examined, 

cutting with 10 m/min achieves tool life at least 60% higher compared to other 

velocities while other cutting conditions are kept constant. The only exception is 20 

m/min tool velocity with 0º of tool inclination angle for cutting with coolant. 10m/min 

and 20 m/min tool velocities show promising results in Ti6Al4V tests. It is obvious 

from Inconel 718 test results that minimum tool velocity reduces tool wear rate. For 

instance 35% and 31% improvements in tool life is achieved when tool velocity is 10 

m/min compared to 20 m/min in MQL cutting for 0º and 5º of tool inclination angles. 

It is also found that when tool velocity and cooling condition are kept constant, 

increasing tool inclination angle generally results lower tool wear rates and longer tool 

lives. When AISI 1050 steel tests are considered, at higher tool inclination angles, tool 

life performance is achieved at least 20% compared to lower ones. However, lower 

inclination angle tested for 50 m/min and 400 m/min tool velocities for dry cutting 

condition shows better tool life results compared to higher one. Similar results are 

observed in Waspaloy tests where higher tool inclination angle provides prolonged tool 

life. 5º of inclination angle at 10 m/min tool velocity in dry cutting is the only exception 

to this situation by providing slightly better tool life compared to 15º of that. Similarly, 

improvement in tool life by increasing tool inclination angle in Ti6Al4V tests is 

evidential. For example, 15º of inclination angle achieves tool lives 41 %, 72% and 

192% compared to 0º of inclination angle for dry, coolant and MQL cutting conditions 

respectively. Similar results are observed in Inconel 718 tests, too. Increasing 

inclination angle to 15º improves tool life 93% and 107% for dry and coolant cutting 

conditions, respectively, for 10 m/min tool velocity. However, increasing inclination 

angle to 5º does not have considerable effect such that only 5% and 4% improvements 

are achieved in tool life for coolant and MQL conditions, respectively. 
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As expected, coolant and MQL generally show promising tool life results in cutting 

tests especially in difficult to cut alloys. In Waspaloy, at 10 m/min tool velocity, dry 

cutting improves tool life at least 11% compared to coolants in 0º and 5º of tool 

inclination angles. Interestingly, dry cutting condition provides longer tool lives in all 

cutting conditions in AISI 1050 steel. 

It is essential to discuss the material machinability for the same cutting conditions. 

Figure 7-1, Figure 7-2 and Figure 7-3 show some examples for Waspaloy, Ti6Al4V and 

Inconel 718 tests for various conditions. 

 

Figure 7-1: Tool life variation with different rotary tool inclination angles for 10 m/min 

rotary tool velocity for MQL cutting of Waspaloy, Ti6Al4V and Inconel 718. 

 

Figure 7-2: Tool life variation with different rotary tool inclination angles for 20 m/min 

rotary tool velocity for dry cutting of Waspaloy, Ti6Al4V and Inconel 718. 
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Figure 7-3: Tool life variation with different cooling conditions for 45 m/min tool 

velocity for 0º inclination angle of Waspaloy, Ti6Al4V and Inconel 718 cutting. 

It is seen from figures that machinability of Ti6Al4V is better compared to nickel-base 

alloys in all conditions. Although thermal properties of Ti6Al4V is limited compared to 

nickel-base alloys, owing to lower mechanical properties, chip formation is easier 

compared to nickel-base alloys resulting longer tool lives. Moreover, hard carbide 

particles in microstructure of nickel-base alloys results higher tool wear rates. Lower 

tool velocities should be selected for prolonged tool life. Increasing inclination angle is 

effective in all testing materials. Coolants and MQL generally improves tool 

performance during cutting. 

When the surface quality of machined parts is examined it is found that marks on the 

surface are in the direction close to effective cutting velocity owing to tool rotational 

motion. Cutting at 0º of tool inclination angle shows better results in both feed and 

circumferential directions compared to 5º of that except 125 m/min tool velocity. The 

change in tool velocity has little effect on surface quality in feed direction at 5º of tool 

inclination angle. On the other hand, at 0º of inclination angle, as tool velocity 

increases, the roughness in feed direction increases up to 3.2 μm at 125 m/min. In 

circumferential direction, an increase in tool velocity deteriorates surface quality for 

both tool inclination angles. Increasing tool velocity up to 150 m/min results 1.99 μm in 

surface roughness for 5º of tool inclination angle. On the other hand, at 0º of tool 

inclination angle, surface roughness rises gradually up to 125 m/min tool velocity then 

for further velocities it starts to decrease. When circularity of machined workpiece is 



97 
 

taken into consideration, it is seen that 5º of tool inclination angle shows better results 

than 0º of that. At 0º of tool inclination angle, as tool velocity increase, circularity 

reduces from 61.33 μm to 18.5 μm at 100 m/min then rises up to 54.5 μm at 150 m/min 

tool velocity. At 5º of inclination angle, except 50 m/min, the trend of circularity tend to 

decrease as tool velocity increases up to 125 m/min. 

SEM images show that uniformly distributed flank wear with no crater wear is observed 

in ADRT tools for all testing materials. Higher rate of material adhesion to worn area is 

observed in dry cutting of Waspaloy tests. In Ti6Al4V tests, little or no material 

adhesion is observed such that especially in MQL condition, almost clear worn land is 

seen. In Inconel 718 tests, the effect of inclination angle is examined and deposited 

material is observed in all cases. However, due to different inclination angles, various 

adhesion directions are observed for all cases. 

7.3 Comparison of Different Inserts 

In this part, the different insert performances on machinability of difficult to cut alloys 

are examined. The Insert-1, used in SPRT tests, and Insert-2, used in ADRT tests are 

compared for tool wear behaviors. Coolant and MQL conditions with two different 

inclination angles are tested for Waspaloy, Ti6Al4V and Inconel 718 alloys. 

 

Figure 7-4: Tool flank wear comparisons for two different inserts for Waspaloy for a) 

coolant cutting b) MQL cutting. 
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Figure 7-5: Tool flank wear comparisons for two different inserts for Ti6Al4V for a) 

coolant cutting b) MQL cutting. 

 

Figure 7-6: Tool flank wear comparisons for two different inserts for Inconel 718 for a) 

coolant cutting b) MQL cutting. 

It is seen that Insert-1, used in SPRT tests, exhibits better tool wear results than Insert-2, 

used in ADRT tests, in all testing materials and cutting conditions. Increasing tool 

inclination angle has positive effect on Insert-1 tool life as expected. The considerable 

difference between tool wear rates can be explained by the different coating types of 

inserts. Insert-1 has a special coating called Alcrona has superior hot hardness and 

oxidation resistance compared to conventional coating types. Moreover, the diameter of 

Insert-1 (27 mm) is larger than Insert-2 (25mm) but this situation is not effective as the 

influence of coating type. 

7.4 Comparison of SPRT and ADRT 

ADRT process is more flexible compared to SPRT process such that tool inclination 

angle and tool velocity can be arranged by user. On the other hand, it would be 

worthless unless this flexibility has an advantage on SPRT process concerning 

machinability and productivity of alloys. In this purpose, the performance comparison 

of SPRT and ADRT is very essential. For proper comparison, same insert, MU23-
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PN1.5A is used for both processes. Waspaloy and Ti6Al4V alloys are tested for coolant 

and MQL conditions. The results are shown in Figure 7-7 and Figure 7-8. 

 

Figure 7-7: Tool flank wear comparisons of SPRT and ADRT for Waspaloy for a) 

coolant cutting b) MQL cutting. 

 

Figure 7-8: Tool flank wear comparisons of SPRT and ADRT for Ti6Al4V for a) 

coolant cutting b) MQL cutting. 

It should be mentioned that tool velocities are 9.5 m/min and 10 m/min for SPRT and 

ADRT processes, respectively. It is seen from graphs that ADRT gives better tool lives 

than SPRT for Waspaloy for both inclination angles and for both cooling conditions. 

Increasing tool inclination angle also improves tool life in ADRT. When Ti6Al4V 

results are considered, ADRT exhibits slightly better tool lives for both inclination 

angles for MQL cutting. For coolant cutting, similar tool wear rates are observed for 

both processes. This can be attributed the low supporting rigidity of SPRT process. 

Lower rigidity of SPRT tool can cause chatter resulting higher tool wear rate and 

chipping of insert. 
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7.5 Temperature Measurements 

Temperature measurements are conducted for two different materials and for various 

cutting conditions. It is seen that as tool inclination angle is constant and the  tool 

velocity increases, the tool temperature tends to increase for all inclination angles and 

for all testing materials. Fluctuations on tool rake face become irregular when tool 

velocity increases. It can be explained by the change in convection conditions of air on 

tool rake face during cutting and change in the cooling time contact zone of insert due 

to change in tool velocity.  

Optimum tool velocities for minimum generated temperatures are observed in some 

cases such that 0º of inclination angle of AISI 1050 steel and Ti6Al4V. At velocities 

lower than optimum one higher temperature is attained mainly owing to longer contact 

time between the tool engagement zone and workpiece. On the other hand, further 

increase in tool velocity results higher temperatures due to shortened cooling time of 

this intermittent cutting process. Apart from these cases, increasing tool velocity results 

in higher temperatures except at 15º of tool inclination angle for Ti6Al4V. It is also 

seen that increasing tool inclination angle generally suppresses the temperature rise. 

Increasing inclination angle from 0º to 5º, in AISI 1050 steel, causes 4% and 18% 

reduction in temperatures. When Ti6Al4V is considered, 5º of tool inclination angle 

presents higher temperatures. Further increase in inclination angle results lower 

temperatures. 

7.6 Summary 

In this chapter, all cutting tests results are examined. In addition to concluded results of 

previous sections, this chapter brings some conclusions. Ti6Al4V shows superior 

machinability in all cutting conditions compared to nickel-base alloys due to lower 

mechanical properties. Moreover, it is found that coating type of insert has a great 

influence on tool wear rate. Increasing hot hardness and oxidation resistance of insert 

lowers tool wear rate. When ADRT and SPRT are considered using the same insert and 

keeping other cutting parameters constant, ADRT is found to have low wear rate for all 

testing materials and cooling conditions compared to SPRT. This is mainly due to 

rigidity of SPRT tool. 
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CHAPTER 8 CONCLUSIONS 

The objective of this thesis is to understand the performance of rotary turning processes 

on especially difficult to cut alloys with different cutting parameters and cooling 

conditions. As an important indication of the performance, tool wear measurements are 

done at varying time intervals where VB=0.2 mm is considered as the end of tool life 

criteria. In addition, cutting forces in three directions are measured in these tests. 

Furthermore, surface roughness and circularity of machined workpiece are examined. 

Temperature distributions on tool rake face for various materials are also analyzed 

using a thermal camera. 

Based on the results obtained from the cutting tests, some conclusions are derived and 

listed below.  

 The development of tool wear of SPRT is lower than conventional turning for 

difficult to cut alloys due to effective self-cooling of rotary tool. 

 Coolant and MQL improve tool life in both conventional and SPRT process 

owing to effective heat removal from the cutting zone in addition to the 

lubrication effects. 

 Lower cutting forces in tangential and feed direction are observed in SPRT 

compared to conventional turning due to increased effective rake angle and 

oblique angle reducing cutting energy.  

 Machined surface marks are found to be at an angle to feed direction in SPRT. 

 SPRT deteriorates surface quality in feed direction. Also, slightly worse 

circularity results are observed in SPRT compared to conventional turning. 

 There is an optimum tool velocity minimizing tool wear rate and cutting 

temperatures in ADRT. The velocities apart from this optimum one results 

higher wear rates and cutting temperatures. 

 At high tool inclination angles, ADRT shows better performance in tool life for 

every tested material. 

 Coolant and MQL show promising results for difficult to cut alloys while dry 

cutting is the best choice for AISI 1050 steel for ADRT process. 
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 SEM images show that material adhesion is observed on worn land of the flank 

face in most cases of ADRT. High rate of material deposition is found at dry 

cutting for difficult to cut alloys. 

 At 0º tool inclination angle, increasing tool velocity deteriorates surface 

roughness in both feed and circumferential direction. At 5º tool inclination 

angle, change in tool velocity does not have any significant effect on roughness 

in feed direction. However, in circumferential direction, increasing tool velocity 

deteriorates surface quality. 

 Higher tool inclination angle shows better circularity of workpiece in ADRT. 

There is an optimum tool velocity, 125 m/min, beyond that circularity of part 

begins to deteriorate. 

 Increasing tool velocity in ADRT, causes irregular thermal fluctuations on tool 

rake face. Moreover, increasing tool velocity results in higher generated 

temperatures during cutting. 

 Increasing tool inclination angle results lower temperatures except low tool 

velocities. 

8.1 Suggestion for Rotary Turning Applications 

The rigidity of SPRT tool should be increased. It reduces process chatter preventing 

chipping on cutting edge and surface deterioration. Cutting with coolant and MQL 

should be preferable for removing heat from cutting zone for SPRT. Optimum tool 

velocity should be selected for ADRT process to provide longer tool life and lowering 

thermal fluctuations on tool rake face. Tool inclination angle should be increases as 

much as possible without exposing to chatter for increasing tool life. For better surface 

quality, lower tool inclination angle with lower tool velocity should be selected, but it 

should be keep in mind that lowering inclination angle causes worse workpiece 

circularity. As a result, higher inclination angles could be used for roughing operations. 

Coolant and MQL should be used during cutting for difficult to machine materials 

while dry cutting is the best option for AISI 1050 steel. 

8.2 Original Contributions of the Thesis 

For SPRT process, due to lots of studies in literature about tool life, component forces 

and surface quality, showing the increment in machinability of one of the difficult to 
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alloys, Waspaloy, with using SPRT for various conditions with prolonged tool life and 

lowered component forces is one of the additive features of this thesis. Contributions of 

this thesis to ADRT are more essential than that of SPRT. The effects of tool inclination 

angle and tool velocity on tool life, surface quality and circularity of workpiece are 

investigated for various difficult to cut alloys and various cooling conditions. In 

addition, better thermal images of ADRT tool are observed with thermal fluctuation on 

tool rake face using thermal camera. Furthermore, the result of the performance 

comparison of SPRT and ADRT for the same workpieces and for the same cutting 

conditions is another implication of thesis. 

8.3 Future Work 

As a future work, more rigid and stiff SPRT and ADRT tools can be designed and 

produced as chatter stability is one of the most important limiting factors for rotary 

turning. The cutting parameters such as cutting velocity, feed rate and depth of cut 

which are kept constant during cutting tests would be changed for further tests in order 

to see their effects on performance of process. The performance of rotary turning would 

be tried on other difficult to machine materials such as cobalt-base alloys, structural 

ceramics, composite materials and hardened steels. In addition to tool inclination angle, 

tool offset height with respect to workpiece axis can be incorporated in order to 

evaluate performance of process for various conditions for further studies. Various 

cooling systems like cryogenic cooling and CO2 spray cooling could be tried for rotary 

processes. Modeling of tool temperature can be another issue in order to understand the 

mechanism behind rotary tool wear. Correlation of model results with tool rake face 

temperature measurement results would be useful for optimization process. A proper 

set-up for thermal camera could be produced to see only the cutting insert rake face 

temperature without influenced from environmental effects. The results which are 

obtained from these long tests will be used to create a database for future works. 
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