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Abstract

The Electric Vehicle Routing Problem with Time Windows (E-VRPTW) is an extension
to the well-known Vehicle Routing Problem with Time Windows (VRPTW). Different
from VRPTW, the fleet in E-VRPTW consists of electric vehicles (EVs) which have a
limited driving range due to their battery charge capacities. Since the battery charge
level decreases proportional to the distance traveled, an EV may need to visit recharging
stations to have its battery recharged in order to be able to continue servicing the
customers along its route. The recharging may take place at any battery level and after
the recharging the battery is assumed to be full. Recharging time is proportional to the
amount charged. The number of stations is usually small and the stations are dispersed
in distant locations, which increases the difficulty of the problem. In this thesis, we
propose an Adaptive Large Neighborhood Search (ALNS) method to solve this
problem. ALNS is based on the destroy-and-repair framework where at any iteration the
existing feasible solution is destroyed by removing some customers and recharging
stations from their routes and then repaired by inserting the removed customers to the
solution along with the stations when recharging is necessary. Several removal and
insertion algorithms are applied by selecting them dynamically and adaptively based on
their past performances. The new solution is accepted according to the Simulated
Annealing criterion. Our approach combines the removal and insertion mechanisms
from the literature with some new mechanisms designed specifically for E-VRPTW. To
test the performance of the proposed ALNS we use the instances and benchmark results
presented in by Schneider et al (2014). Our computational results show that the
proposed method is effective in finding good solutions in reasonable amount of time.
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Ozet

Zaman Pencereli Elektrikli Ara¢ Rotalama Problemi (E-ZARP), cokga bilinen Zaman
Pencereli Ara¢ Rotalama Problemi (ZARP) nin genisletilmis bir bigimidir. ZARP’den
farkli olarak, E-ZARP’de filo, batarya sarj kapasitesinden dolay1 sinirli siiriis menziline
sahip elektrikli araclardan (EA) olusmaktadir. Batarya sarj seviyesi, alinan yol ile
orantilt bir sekilde azaldigindan dolayr EA, rotasindaki miisterilere hizmet vermeyi
stirdiirebilmek i¢in, bataryasini sarj etmek amaciyla rotasinin herhangi bir yerinde, sarj
istasyonuna ugramak durumunda Kalabilir. Sarj islemi herhangi sarj seviyesinde
olabilmekte ve sarj isleminden sonra bataryanin tam sarj oldugu kabul edilmektedir.
Sarj siiresi, sarj edilen miktar ile dogru orantilidir. Istasyon sayis1 genellikle az olup
istasyonlar uzak noktalarda konumlanmiglardir. Bu da problemin zorluk derecesini
arttirmaktadir. Bu tezde, belirtilen problemi ¢6zmek igin bir Uyarlanabilir Genis
Komsuluk Arama Yontemi (UGKA) onerilmistir. UGKA ydntemi, boz-onar sistemine
dayanmaktadir. Olurlu ¢6ziim, baz1 miisteri ve istasyonlarin rotalarindan g¢ikarilmalari
ile bozulmakta, ¢ikarilan misterilerin, sarj islemi de gerekli ise istasyonlar ile beraber
¢cozime tekrar eklenmeleri ile onarilmaktadir. Birgok ¢ikarma ve ekleme algoritmasi
kullanilmis ve bu algoritmalar yontem ig¢inde, ge¢mis performanslar1 baz alinarak
dinamik ve uyarlanabilir bir sekilde secilmistir. Elde edilen yeni ¢oziim Benzetilmis
Tavlama kriterine gore kabul edilmistir. Bizim yaklasimimiz, literatiirde var olan
cikarma ve ekleme algoritmalari ile E-ZARP igin 0zel olarak tasarlanmis yeni
mekanizmalar1 birlestirmektedir. Onerilen UGKA’nin performansini test etmek icin,
Schneider et al. (2014)’de sunulan 6rnekler ve sonuglar kullanilmistir. Sonug¢larimiz,
Onerilen yontemin, makul siireler igcinde iyi sonuglar bulmada etkili oldugunu
gostermistir.
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Chapter 1

Introduction

Transportation systems account for about 20-25% of global energy consumption and
CO, emissions. Road transport is a major contributor with 75% share. 95% of the
world's transportation energy comes from fossil fuels, mainly gasoline and diesel
(www.epa.gov). Transport accounts for 63% of fuel consumption and 29% of all CO,
emissions in the EU. 45% of the goods are moved by trucks and road transport is
predicted to grow by 33% in 2030 (http://ec.europa.eu). In the US, about 28% of total
greenhouse gas (GHG) emissions are transport related. (www.epa.gov). 75% of the
domestic freight is moved by trucks and the freight volume is expected to grow by 39%

in 2040 (www.bts.gov).

Transportation will continue to be a major and still growing source of GHGs. Hence,
governments are considering new environmental measures and targets for reducing
emissions and fuel resource consumptions. The US Administration aims at cutting the
overall GHG emissions 17% below 2005 levels by 2020 and has recently established the
toughest fuel economy standards for vehicles (http://www.whitehouse.gov). The EU
targets 80-95% reduction of GHGs below 1990 levels by 2050, where a reduction of at
least 60% is expected from the transport sector. The European Commission aims at
reducing the transport-related GHG emissions to around 20% below their 2008 level by
2030. The use of conventionally fuelled cars will be reduced by 50% in urban transport
by 2030 and phased out by 2050. City logistics in major European urban centers will be
CO,-free by 2030 (White Paper on Transport, 2011).

The targets set by governments and the new regulations imposed encourage the usage of

alternative fuel vehicles (AFV) such as solar, electric, biodiesel, LNG, CNG vehicles.
1
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Many municipalities, government agencies, non-profit organizations and private
companies are converting their fleets to include AFVs, either to reduce their
environmental impact voluntarily or to meet new environmental regulations (Erdogan
and Miller-Hooks, 2012).

In a world where environmental protection and energy conservation are growing
concerns, the development of electric vehicle (EV) technology has taken on an
accelerated pace to fulfill those needs. Concerning the environment, EVs can provide
emission-free urban transportation. Even taking into account the emissions from the
power plants needed to fuel the vehicles, the use of EVs can still significantly reduce

global air pollution.

EV is a vehicle which moves with electric propulsion. EVs may be classified as battery
electric vehicles (BEV), hybrid electric vehicles (HEV), and fuel-cell electric vehicles
(FCEV) (Chan, 2002). They include electric trains, airplanes, boats, motorcycles,
scooters and spacecrafts. In the thesis, we refer to EV as a road vehicle such as a truck
or van. A fleet of EVs can be used in a variety of transport needs such as public
transportation, home deliveries from grocery stores, postal deliveries and courier

services, distribution operations in different sectors.

Although EVs enable emission-free logistics services, operating an EV fleet has several
drawbacks: (i) low energy density of batteries compared to the fuel of combustion
engined vehicles; (ii) EV often have long recharge times compared to the relatively fast
process of refueling a tank; and (iii) the scarcity of public charging stations (Touati-
Moungla and Jost, 2011). Under these limitations, routing an EV fleet arises as a
challenging combinatorial optimization problem among the Vehicle Routing Problems
(VRPs).

In this thesis, we address the Electric Vehicle Routing Problem with Time Windows (E-
VRPTW). The problem was introduced by Schneider et al. (2014) as an extension to the
Green Vehicle Routing Problem (G-VRP) of Erdogan and Miller-Hooks (2012). G-VRP
concerns “green” vehicles which run with biodiesel, liquid natural gas, or CNG and
have a limited driving range. Hence, the vehicles may need refueling along their route.
Refueling is fast; however, the stations for these fuels are scarce. E-VRPTW is a variant
of the classical VRPTW where the vehicles may need to visit stations to have their

batteries recharged in order to continue their route, as in G-VRP. Recharging operation
2



may take a significant amount of time, especially when compared to relatively short
fueling times of gasoline. Furthermore, unlike gasoline stations recharging stations are

dispersed at distant locations, which significantly affects the route planning.

To solve this challenging problem, we propose an Adaptive Large Neighborhood
Search (ALNS) approach. Our approach combines the ALNS schemes presented in
Ropke and Pisinger (2006a, 2006b), Pisinger and Ropke (2007) and Demir et al. (2012)
with new algorithms specific to E-VRPTW. We address the distance minimization
objective as well as the hierarchical objective approach where minimizing the number
of vehicles (routes) is the primary objective and minimizing total travel distance is the
secondary. Our results show that the ALNS algorithm is effective in finding good

quality solutions and improves some of the best-known solutions in the literature.

The remainder of the thesis is organized as follows: Chapter 2 reviews the related
literature. Chapter 3 describes the problem and gives the mathematical model. The
proposed ALNS is presented in Chapter 4 and the computational study is provided in
Chapter 5. Finally, Chapter 6 concludes the thesis with some remarks and directions for

future research.



Chapter 2

Literature Review

There are relatively few publications on optimization problems related to alternative
fuels. Some works concentrate on finding the energy shortest path from a given origin to
a destination. Artmeirer et al. (2010) studied this problem within a graph-theoretic
context and proposes extensions to general shortest path algorithms that address the
problem of energy-optimal routing. They formalize energy-efficient routing in the
presence of rechargeable batteries as a special case of the constrained shortest path
problem and present an adaption of a general shortest path algorithm that respects the
given constraints. Wang and Shen (2007) developed a model that minimizes the number
of tours and total deadhead time hierarchically. There is a constraint which limits the
travel time of every vehicle after being recharged. The recharging durations, time
windows and vehicle capacities are not considered. A multiple ant colony algorithm was

developed to solve the problem.

Wang and Cheu (2012) investigated the operations of an electric taxi fleet. Their model
minimizes total distance travelled under the recharging constraints and maximum route
time. Charge of the battery is consumed with a given rate per traveled distance and can
be replenished at the recharging stations. Recharging times are assumed to be fixed and
after charging the battery becomes full. They construct an initial solution using one of
the nearest-neighbor, sweep and earliest time window insertion heuristics and improve
it using Tabu Search (TS). They also suggested three different charging plans which
provide different driving ranges and compare the results against the full charging

scheme.



Omidvar and R. Tavakkoli-Moghaddam (2012) addressed an AFV routing problem with
time-windows and proposed a mathematical model that minimizes total costs associated
with the vehicles, distance travelled, travel time and emissions. The refueling times are
constant and the depot is considered as an alternative fuel station. They developed
Simulated Annealing (SA) and Genetic Algorithm (GA) approaches and compared their

performances.

Conrad and Figliozzi (2011) introduced the Recharging Vehicle Routing Problem
(RVRP), a new variant of the VRP where the EVs are allowed to recharge at the
customer locations they visit. The model has dual objectives: the primary objective
minimizes the number of routes or vehicles whereas the secondary objective minimizes
the total costs associated with the travel distance, service time and vehicle recharging
which is a penalty cost if recharging is performed. Charging is done while servicing the
customer and charging time is taken as a parameter which is a constant value. The
battery level departing from a customer depends on the choice of normal charging or
fast charging. In the fast charging case the battery is charged to a specified level such as
80% of battery capacity.

Worley et al. (2012) addressed the problem of locating charging stations and designing
EV routes simultaneously. The objective is to minimize the sum of the travel costs,
recharging costs, and costs of locating recharging stations. A solution method is not

proposed and left as future work.

Erdogan and Miller-Hooks (2012) considered the routing of AFVs within the context G-
VRP and formulated the mathematical model. The model aims at minimizing the total
distance travelled where the length of the routes is restricted. Fuel is consumed with a
given rate per traveled distance and can be replenished at the alternative fuel stations
(AFVs). Refueling times are assumed to be fixed and after refueling the tank becomes
full. The model does not involve time windows and vehicle capacity constraints.
Erdogan and Miller-Hooks (2012) proposed two heuristics to solve the G-VRP. The
first is a Modified Clarke and Wright Savings (MCWS) algorithm which creates routes
by establishing feasibility through the insertion of AFSs, merging feasible routes
according to savings values, and removing redundant AFSs. The second is a Density-
Based Clustering Algorithm (DBCA) based on the cluster-first and route-second

approach. DBCA forms clusters of customers such that every vertex within a given

5



radius contains at least a predefined number of neighbors. Subsequently, the MCWS
algorithm is applied on the identified clusters. To test the performance of these two
heuristics, they designed two sets of problem instances. The first consists of 40 small-
sized instances with 20 customers while the second involves 12 instances with up to 500

customers.

Schneider et al. (2014) introduced the E-VRPTW where the customers are associated
with time windows and the vehicles have capacity and driving range constraints. The
recharging duration is proportional to the battery usage when arriving at the station and
the battery is fully recharged when departing from the station. To solve this problem,
Schneider et al. developed a hybrid metaheuristic that combines the Variable
Neighborhood Search (VNS) algorithm with TS. They tested the performance of the
proposed method on newly designed benchmark instances for E-VRPTW as well as on
test instances of related problems, namely the Green VRP (G-VRP) and the Multi-
Depot VRP with Inter-Depot Routes (MDVRPI).

ALNS was introduced by Ropke and Pisinger (2006a) as an extension of the Large
Neighborhood Search (LNS) framework put forward by Shaw (1998). Ropke and
Pisinger (2006b) developed a unified ALNS heuristic for a large class of VRP with
Backhauls. Pisinger and Ropke (2007) improved this heuristic with additional
algorithms and showed that the proposed framework gives competitive results in
different VRP variants. Different implementations of ALNS include the resource-
constrained project scheduling problem (Muller, 2009), scheduling of technicians and
tasks in a large telecommunication company (Cordeau et al., 2010), lot-sizing problem
with setup times (Muller et al., 2010), and consultation timetabling problem at Danish
high schools (Kristiansen et al., 2013). Within the VRP framework, ALNS is used for
solving, the Pick-up and Delivery Problem (PDP) where requests can be transferred
between vehicles during their trip (Masson et al., 2012), Capacitated Vehicle Routing
Problem (CVRP) which minimizes the sum of arrival times at customers (Ribeiro and
Laporte, 2012) and the Pollution-Routing Problem (PRP) (Demir et al., 2012).



Chapter 3

Problem Description and Formulation

In this chapter, we first describe the E-VRPTW and then provide its 0-1 mixed-integer

linear programming model.
3.1. Problem Description

Similar to the classical VRPTW, E-VRPTW concerns a set of customers with known
demands, delivery time windows and service durations. It constructs routes that begin
with the depot and end at the depot. Different from VRPTW, the deliveries are
performed by a homogeneous fleet consisting of EVs with fixed loading capacities and
limited cruising ranges. While the vehicle is traveling, the battery charge level decreases
proportionally with the distance traversed. So, the vehicle may need to visit a recharging
station and have its battery recharged in order to be able to continue servicing customers
along its route. The number of stations is usually small and the stations are dispersed in
distant locations, which complicates the problem. There is one depot and it can also be
used as a recharging station. Recharging may take place at any battery level and after
the recharging the battery is assumed to be full. The recharge duration is proportional to
the recharge quantity. Each vehicle departs from the depot with a full battery and

returns to the depot at the end of its route before the due date.

Figure 3.1 illustrates a sample problem involving 10 customers and 4 stations and
shows the optimal solution. In this figure, D refers to the depot. The customer set is
C ={C1,€2,C3,C4,C5,C6,C7,C8,C9,C10} and the station set is S = {51, 52,53, 54}.
S1is the depot.



Figure 3.1: A sample network of 10 customers and the routes at the optimal solution

There are three routes in the optimal solution. EV1 services C1 and C2, returns to the
depot with its initial charge. EV2 visits S2 after servicing C4 and has its battery
recharged before visiting C5 and C3. On the other hand, EV3 is recharged once in S4
and twice in S3, first after servicing C9 and next after servicing C7 on its way back to
D. As it can be seen from this example, a station (S3) can be visited multiple times by

the same or different vehicles and a station is not necessarily visited (S5).
3.2. 0-1 Mixed Integer Linear Programming Formulation

In this section, we provide the mathematical model of E-VRPTW formulated in
Schneider et al. (2014). Let V = {1, ..., N} denote the set of customers and F denote the
set of recharging stations. Since a recharging station may be visited more than once
depending on the route structure, we must create F'which is the set of dummy vertices
generated to permit several visits to each vertex in the set F. Vertices 0 and N + 1
denote the depot and every route starts at 0 and ends at N + 1. Let V' be a set of vertices
with V' =V U F'. In order to indicate that a set contains the respective instance of the
depot, the set is subscripted with 0 or N + 1. Hence V, = V' u {0} and Vy,; =V U
{N + 1}. Now we can define the problem on a complete directed graph G = (Vg y41,4)
with the set of arcs A = {(i, )| i,j € Von41, i # j} where Vg yiq = {0} U Vy,,. Each
arc is associated with a distance d;; and travel time t;;. The battery charge is consumed

at a rate of h and every traveled arc consumes h X d;; of the remaining battery. Each

vertex i € V' has positive demand g;, service time s; and time window [e;, ;]. All EVs



have a load capacity of C and battery capacity of Q. At a recharging station, the battery
is charged at a recharging rate of g. The decision variables, t;, u; and y; keep track of
the arrival time, remaining cargo level and remaining charge level at vertex i € VO,,N+1’

respectively. The binary decision variable x; takes value 1 if arc (i, ) is traversed and

0 otherwise.

min ¥ o dyxy €Y)
JEVy 41 i#]

Yiev,, iz¥y =1 Vi€V (2)

Yiev iz Xy ST VIEF 3)

Yievg inj Xij = Dievy, % N VJE v (4)

T+ x;(ty +s)—l(l—-x;) <7y ViEVy,VjEVy,y, i £ ) (5)

Ti"‘xijtij+9(Q—J’i)—(lo+gQ)(1—xij)STj ViEF,Vj€Vyy, i #j (6)

¢ <7<l Vj€EVinn (7)
0<w <u—xjq;+C(1—x;) VieV,VjEVyy, (#]) (8)
0<uy,<C €))
0<y <y —x;(djh) +Q(1—x;) ViEV,VjEVyyq, i #] (10)
0<y <Q—(djh)x; Vi€F),Vj€Vyy, i#] (11)
xj €{0,1} Vi€V, VjEVyyy, i #) (12)

The objective function (1) minimizes total travelled distance. Constraints (2) and (3)
handle the connectivity of customers and visits to recharging stations, respectively. The
flow conservations constraints (4) enforce that the number of outgoing arcs equals to the
number of incoming arcs at each vertex. Constraints (5) and (6) ensure the time
feasibility of arcs leaving the customers (and the depot) and the stations, respectively.
Constraints (7) enforce the time windows of the customers and the depot. In addition,
constraints (5)-(7) eliminate the sub-tours by maintaining the schedule feasibility with
respect to time considerations. Constraints (8) and (9) guarantee that demand of all



customers are satisfied and constraints (10) and (11) make sure that the battery level is
never negative. Finally, (12) define the binary decision variables.

If the objective function is to minimize the number of vehicles, it is formulated as
follows:

min Z Xoj 1)

J€Vi1

10



Chapter 4

Solution Methodology

In this chapter, we present the details of ALNS proposed for solving E-VRPTW.
4.1. Proposed Adaptive Large Neighborhood Search Approach

The ALNS approach proposed in this study includes the following five types of

algorithms:

o Acgr: Customer Removal Algorithms
o A Customer Insertion Algorithms
o Agp:Station Removal Algorithms
o Ag;:Station Insertion Algorithms

o Ay:Update Algorithms

It combines the strengths of the ALNS heuristics introduced by Ropke and Pisinger
(2006a, 2006b), Pisinger and Ropke (2007), and Demir et al. (2012) by
introducing new removal, insertion and station removal, insertion algorithms specific to

this problem. The main components of the heuristic can be stated as follows:

o General Flow: The algorithm begins with an initial solution and iteratively
improves it by removal and insertion mechanisms. The current feasible solution is
destroyed by removing some customers and stations from their routes and then
repaired by inserting the removed customers and necessary stations to the solution
in an intelligent way. Let S; be the current feasible solution at the beginning of a
new iteration. At each iteration a customer removal algorithm cr, and an update

algorithm wu,, is selected. Then the customers identified by the customer removal

11



algorithm are removed from S; in the update phase. Depending on u, some stations
may also be removed from S.. At the end of the update phase, we have another
feasible solution S;. Then a customer insertion algorithm ci, is selected and each
removed customer is inserted into S; according to the insertion algorithm. Let the
feasible solution after the customer insertion be called S,. If there have been Ngp
iterations since last station removal-insertion procedure is applied, then it should be
applied again. A station removal algorithm sr;, is selected and the identified stations
are removed from S, and we obtain a solution called S3. S3 may be infeasible in
terms of charge. If this is the case, then a station insertion algorithm si, is selected
and S3 is made feasible by inserting stations according to the selected algorithm. Let
S, denote this feasible solution. If there have been Ny iterations since the last
execution of the route minimization procedure, then it should be applied again. In
this procedure, only route removal algorithms are used in the customer removal
phase. Then the customers identified by the customer removal algorithm are
removed from S,. Let us denote this partial feasible solution by Ss. Since all the
customers of a route or routes are removed from the solution we do not need an
update phase which updates the features of the remaining customers and stations in
the routes that are changed after the removal process. Then a customer insertion
algorithm ci,, is selected and each removed customer is inserted into Ss according to
the insertion algorithm. Let the feasible solution after the customer insertion be
called Sy . If there has been Ngy iterations since last station removal-insertion
procedure is applied, then it should be applied again to the solution Sg. This route
minimization procedure is applied in a loop which lasts for 7 iterations. Then the
algorithm continues with regular customer removal and insertion algorithms. The
whole procedure is repeated until the maximum number of iterations is reached.

If the objective is to minimize the total distance, the general framework remains
same; however, we do not apply the route minimization procedure and slightly

modify some of the insertion algorithms and new solution acceptance criteria.

Adaptive Scoring: Each algorithm has a score which measures how well the
algorithm has performed recently. High scores correspond to a successful heuristic.
We let the entire search last N iterations. Then we divide the entire search into a

number of segments which is a part of the search consisting of a number of
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iterations. Let r, be the score of algorithm a. m, value of all algorithms is set to
zero at the beginning of each segment. If a new best solution is found in an iteration
of a segment, then m,values of corresponding algorithms are increased by o;. If
customer removal, update and insertion were carried out in that iteration, then m,
values of cr,, u,, ci, algorithms are increased. Since we do not know which
algorithm has yielded the improvement, we increase the score of all algorithms used
at that iteration. If station removal and insertion were carried out in that iteration,
then the same procedure is applied to sr,, si, algorithms used. Similarly, if route
minimization is operated in that iteration, this procedure is applied to rr, and ci,
algorithms used. If a better solution is found in an iteration of a segment, then
m, values of corresponding algorithms are increased by o, similar as above.
Nevertheless, if a worse solution is found in an iteration of a segment and it is
accepted by SA mechanism, then m,values are increased by a5. If a worse solution
is found but not accepted, then only the number of selections of algorithms used in
that iteration are increased by 1. Their scores stay the same since they do not
contribute to an improvement. The same scoring is applied if a solution with the
same objective function is found.

Adaptive Weight Adjustment: At the end of each segment, new weights of
algorithms are calculated using total score during the last segment. Let w, ; and 6, ;
represent the adaptive weight of the algorithm and the number of times the
algorithm has been selected during segment j = 1,2 ...A respectively. Initially all
weights are equal to 1, i.e. w,; =1 Va € A. At the end of segment j, scores are
updated as in (13):

T
Wejt1 = Wq;(1—1) + s = (13)
a,j

r € [0,1] is the reaction factor that controls how quickly the weight adjustment
mechanism reacts to changes in the effectiveness of the algorithms. If r is 0, we do
not use update mechanism and weights stay at their initial values. If r is 1, then the
weight of previous segment has no effect on the new weight; only the score decides
the weight of the current segment. Apparently, if an algorithm is not used in the
previous segment, then its , value will be 0 and the new weight is determined by

the first term in the formula.
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Because there are 2 types of removal-insertion algorithms (customer and station),
their adaptive weight adjustment will also be done at different intervals. Number of
segments is different for station removal and insertion algorithms. Hence, their

weight updates are done with different intervals.

Adaptive Selection: All algorithms are selected by a roulette-wheel mechanism
independent from each other. Each of them has a selection probability which is
dependent to the adaptive weight of the algorithm. Given k algorithms with [ =
1...k, let p§ denote the selection probability of algorithm a during segment s. This

is calculated as follows:

s _— Wags

pa - 2?:1 Wi (14]

Acceptance and Stopping Criteria: A simple acceptance criterion would be to
accept only solutions that are better than the current solution. However, this may
cause getting trapped in a local minimum. Instead, we use a criterion from
Simulated Annealing that accepts some worse solutions according to a probability.
The probability of accepting a worse solution Sy is calculated as:
. e-(f(sT)T—f(sC)) (15)

where S is the current solution and T > 0 is the temperature. Temperature starts at
Tsiare - Similar to Ropke and Pisinger (2006a), Ts:4+ 1S dependent on the problem
and it is set in such a way that Sy is accepted with probability 0.5 if it is u (start
temperature control parameter) percent worse than S.. The temperature is decreased
every iteration using the expression T =T X € where 0 < ¢ < 1 is a parameter

called cooling rate.

If the objective is distance minimization, we always accept the solution with lower
total distance value. If the new solution has the same or worse distance value, then

simulated annealing is applied to determine accepting the new solution or not.
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When we solve the problem with the hierarchical objective function, we accept the

new solution if:

® It uses less number of vehicles than the previous solution or,
® It uses the same number of vehicles with the previous solution but the

total distance traveled is shorter.

We do not accept the solution if it requires more vehicles than the previous solution.
We apply the SA procedure if the new solution uses the same number of vehicles

but its total distance is longer.
4.2. Customer Removal & Insertion Mechanism
4.2.1. Customer Removal Algorithms

In the first step of the algorithm, the current solution is destroyed by removing q
customers from the solution according to different rules and adding them in a removal
list £. g is determined randomly using a uniform distribution and the removal rule cr; is
selected in an adaptive manner from the set of algorithms; A.. The generic structure of

a customer removal procedure is given in Algorithm 1.

Algorithm 1: The genenic structure of the customer removal procedure

input: Current feasible solution 5., number of customers to be removed g
output: The set of customers which will be removed

Initialize removal list (£ « @)

Applv a removal operator to find a set of customers for removal, 1
Lo (Luy)

Return L

e Lad B =

Firstly, the number of customers which will be removed is determined. It is dependent

to total number of customers and selected randomly between n. and n.. Then, the

selected rule is applied to the current feasible solution and g customers are selected and
added to the removal list £. In Figure 4.1a we see a feasible route. In Figure 4.1b C6 is

removed from the route and in Figure 4.1c, C4 is also removed from the solution.
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Figure 4.1: An illustration of a customer removal process.

We use 10 customer removal algorithms. The first eight are adapted from Ropke and
Pisinger (2006a, 2006b), Pisinger and Ropke (2007), and Demir et al. (2012) and the

last two are inspired from Emeg et al. (2013).

1. Random Removal: This algorithm simply selects q customers randomly. This

random selection helps diversifying the search.

. Worst Distance Removal: This algorithm calculates the cost of a customer as
g; = |di + dji | where dj; is the distance between j and i € N which is the
preceding node of j and dj; is the distance between j and k which is the successing
node of j in the corresponding route. If U is the ordered list of customers in this
way, then the algorithm selects the customer j* = U[|A*|] from S, where A € [0,1]
is a random number and k > 1 is a parameter called worst removal determinism
factor which introduces randomness in the selection of customers in order to avoid
choosing the same customers over and over again. This selection continues until q
customers are chosen. This algorithm aims to make as much distance saving as
possible with removal of customers with high deviation.

. Worst Time Removal: This algorithm calculates time deviations of customers as
g; = |5 — €| where 1; is the service start time and ¢; is the early time window of
customer j. Customers are ordered in non-increasing order of their time deviation. If
O is the ordered list of customers in this way, then the algorithm selects the
customer j* = O[[A*]] from S;. Selecting in this way continues until q customers
are chosen. The idea behind this algorithm is to prevent long waits before going to a

customer or delayed service starts by removing customers with high deviation.
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4. Shaw Removal: The logic behind this algorithm which was introduced by Shaw
(1998) is to remove customers that are similar to each other and therefore easy to
change hence generating better solutions. If we choose customers which are
different from each other, then we may gain worse solutions because we may only
be able to insert the customers at their original positions or at some worse positions
due to not finding any other proper positions to insert. The similarity of two

customers i and j is defined with the relatedness measure

R(i,j) = ¢1cy + d2|t — 7| + P30y + Pu|qi — ;| (16)

Where ¢ — ¢, are Shaw parameters.

_(—1, ifiand j arein the same route
Wi = { 1, otherwise (17)

The similarity of customers increases when R(i, j) decreases. The algorithm firstly
selects a customer randomly and adds it to the list. Then, other customers are sorted
in non-decreasing order of their relatedness measures with the previous selected
customer. If O is the ordered list, then algorithm selects the customer j =
O[|A"|0]]] where A € [0,1] is a random number and n > 1 is a determinism
parameter which introduces some randomness in the selection of the customers, i.e.
low value of n corresponds to much randomness. This procedure is repeated until n,

customers are selected.

5. Proximity Based Removal: This algorithm is a special case of Shaw Removal
which selects customers that are related in terms of the distance between them. Only
difference is the parameter values which are taken as ¢p; =1, ¢, = ¢p3 = ¢, = 0.

Figure 4.2 illustrates the mechanism of this algorithm.
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a) Feasible solution b) Destroyed solution
Figure 4.2: Proximity Based Removal. a) Feasible solution before removal,
b) Partial solution after removal

6. Time Based Removal: This algorithm is another special case of Shaw Removal and
selects customers which are similar in terms of their service beginning times. Only
difference is the parameter values which are takenas ¢, =1, ¢; = ¢p3 = ¢, = 0.

7. Demand Based Removal: This algorithm is again a special case of Shaw Removal
and chooses customers which are similar in terms of their demands. Only difference
is the parameter values which are takenas ¢, =1, ¢1 = ¢, = ¢p3 = 0.

8. Zone Removal: This algorithm is based on removal of nodes in a predefined area in
the Cartesian coordinate system in which nodes are located (Demir et al., 2012).
Firstly, the corner points of the area are specified by the maximum and minimum x
and y coordinates of the customers, stations and the depot. Then the whole region is
horizontally split up into smaller areas which are zones, according to the number of
zones which is a parameter. At the end, each customer and station belong to a zone.
The algorithm chooses a zone randomly and selects all customers in this zone. If

that zone does not contain any customer, then another zone is selected randomly.
Let Z = {Z,,Z,,...Z,} be the set of randomly selected zones and nZ = nCZ1 +

nCZ2 + -+ nf" be the number of customers in these zones where Z, represents the
kt" randomly selected zone for which nZ becomes firstly greater than or equal to
n.. The algorithm selects all customers in the zones Z € Z \ Z,, . Furthermore, if the
number of customers in zone Z, is greater than the remaining number of customers
to be removed, it means all customers from that zone cannot be selected. Then the
customers which belong to zone Z, are sorted in non-decreasing order of their
distance to the center of zone Z;,. Then (n, — Yi={ nl) many closest customers are
selected. Figure 4.3a illustrates the zones and the distribution of customers in the
zones and Figure 4.3b shows the destroyed solution which will be obtained in the
18



update step of ALNS with zone removal algorithm. Here the customers in zone 5 are
removed from the feasible solution. After the removal, the routes 2 and 3 (with
dense dashed and dashed lines, respectively) are changed.

— Zong 1 €—

— Zong 2 &— 9

— Zone 3 &
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a) Feasible solution b) Destroyed solution

Figure 4.3: Zone Removal. a) Feasible solution before removal, b) Partial solution

after removal

9. Multiple Random Route Removal: This operator randomly chooses r routes and
removes all the customers in those routes. r is a parameter and depends on the
number of routes in the current solution. It is determined randomly between 10%
and m,.% of total number of routes.

10. Multiple Greedy Route Removal: This operator removes some routes in a greedy
way. r is determined in the same way with Multiple Random Route Removal. The
number of customers in each route is identified and then the route which has the
least number of customers is removed from the solution. This continues until r
routes are removed. This operator helps to distribute the customers in shorter routes
into other routes in an attempt to reduce the total distance traveled. The process is
illustrated in the Figure 4.4. Let us assume that r is 2, then firstly the customers in
the route whose arcs are shown with dense dashed line will be removed because that
route has the least number of customers. Then the customers in the route whose arcs
are shown with dashed line will be removed due to having fewer customers than the

other route.
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Figure 4.4: Multiple Greedy Route Removal. a) Feasible solution before
removal, b) Partial solution after removal

4.2.2. Update Algorithms

After identifying the customers to be removed from the current feasible solution, those
customers should be removed and the corresponding routes must be updated because at
some nodes, the arrival charge, time and capacity features of some nodes will change
with the removal of some customers. Those operations are done in the update
procedure. Unlike the classical VRPTW, there may be stations in some routes due to
charge constraint. Hence, in some cases, it might be useful to remove not only the
customer but also the predecessor or successor station of the customer. We introduce
three update procedures which are Remove Customer Only (RCO), Remove Customer
with Predecessor Station (RCwPS), Remove Customer with Successor Station
(RCwSS). Since route removal algorithms remove all customers and stations from the
selected routes, update phase is not necessary when those algorithms are used at the

removal step.

1. Remove Customer Only: RCO removes only the customers in the removal list
from their routes. However, if the predecessor and successor of a customer are the
same stations, then after the removal of that customer, two identical stations become
successive in the route which is an unnecessary situation. Hence, this is checked in
the update operation and if such a case occurs, one of those stations is also removed
from the solution. Additionally, if the depot is used as a station in a route, after
removal of intermediary customers, the depot which the vehicle begins or ends its

route with and the depot which is used as a station become successive likewise. In
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this situation, the depot which is used as station is removed from the solution. After
the removal operation, the arrival time, arrival charge, capacity, departure time and
departure charge of the customers and stations in the route are recalculated
according to the new sequence. In order to decrease computational time by
eliminating unnecessary operations, only customers and stations which come after
the position of removed customer are considered since other nodes are not affected
by the removal operation and the features of the vehicle at those nodes stay the
same. In some cases, after removal of customers, the destroyed route may become
infeasible in terms of charge. We need to make this route feasible again because in
the next step the removed customers will be inserted to the routes and if the route
stays infeasible, then during the insertion of customers, we need to insert additional
stations which will increase the cost. Hence, Best Station Insertion algorithm is
applied to make it feasible. The pseudo code of this algorithm is given in
Algorithm2.

Algorithm 2: Remove Customer Only

input: Set of customers to be removed 4, current feasible solution S
output: Destroved solution 5,

while 1 = @ do
Femove the first customer in v from 5
Updatethetime and charge features of the corresponding route
if routeis charge infeasible then
Perform Best Station Insertion
delete the removed customer from
end while
Return 5,

=T I Y WP T S VR e i

2. Remove Customer with Predecessor Station: RCwPS does not only remove the
customer in the removal list but it also removes the preceding station if any. The
idea behind this removal is that the station which precedes the removed customer
may be relevant to the customer. In other words, the station before the removed
customer may have been located there in order to make the vehicle enough charged
to go to the removed customer. Hence, with the removal of that customer, the station
may become redundant because there would be enough charge to connect other

customers. Under this assumption, if there is a station before the removed customer,
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the algorithm removes it and then recalculates the arrival time, arrival charge,
capacity, departure time and departure charge of the customers and stations at the
nodes according to the new sequence. Like in previous procedure, only the nodes
after the removed customer or station —if there is- are considered in order to
eliminate unnecessary operations. Figure 4.5 shows a route before and after

removing the customer C4 and the station before C4 from the route.

(c2) (c2)

() )
Feasible solution Destroyed solution

Figure 4.5: Removing customers and their predecessor stations. a) Feasible
solution before removal, b) Partial solution after removal

Like in the Algorithm 2, if a route becomes infeasible after removal of some
customers and stations, then we will call Best Station Insertion algorithm to make it
feasible. The pseudo code of this algorithm is given in Algorithm 3.

Algorithm 3: Eemove Customer with Predecessor Station

input: Set of customers to be removed 1. current feasible solution S
output: Destroyed solution 5,

while 1 = @ do
F.emove the first customer in vy from 5,
if there is a station just before that customer then
| Remove that station from § c
Update the time and charge features of the corresponding route
if routeis charge infeasible then
|  Perform Best Station Insertion
delete the removed customer from i
end while
0 Return S,

i = = R (s R NS R S B Ty N g o)
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3. Remove Customer with Successor Station: RCwSS removes the customer in the
removal list along with the succeeding station, if any. The idea is similar to RCwPS.
The station after the removed customer may have been located there in order to
make the vehicle enough charged to go from the removed customer. However, with
the removal of that customer, the station may become redundant because there
would be enough charge to connect other customers. After the removal process,
arrival time, arrival charge, capacity, departure time and departure charge of the
customers and stations in the route are recalculated according to the new sequence.
Also in this algorithm, only the nodes after the removed customer are considered in
order to eliminate unnecessary operations. Figure 4.6 illustrates the removal

operation of customer C3 and the station after C3.
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Feasible solution Destroyed solution
Figure 4.6: Removing customers and their successor stations. a) Feasible
solution before removal, b) Partial solution after removal

Also in this algorithm, if a route becomes infeasible after removal of some
customers and stations, then we will apply Best Station Insertion algorithm to make

it feasible.

4.2.3. Customer Insertion Algorithms

After removing some customers from the current feasible solution, we need to repair the
solution by reinserting the customers in the removal list to the partial feasible solution.
The first four algorithms, Greedy Insertion, Zone Insertion, Regret-2 Insertion and
Regret-3 Insertion are adopted from Ropke and Pisinger (2006a), Pisinger and Ropke
(2007), and Demir et al. (2012). The last one, Time Based Insertion is newly proposed.

1. Greedy Insertion: This algorithm simply inserts customers to their best position in

the fleet and the customer which has the least cost is chosen among others and
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inserted first. The cost criteria c; is determined for all customers in the removal list
as follows: Customer i is inserted to a position j in route k and if this insertion does
not violate time windows of any customer, the increase of the total distance of that
route is calculated as f;;, . If that insertion is feasible in time but infeasible in charge
then a station should also be inserted into that route. If this is the case, the Greedy
Station Insertion algorithm is used to find a station which will make the route
feasible. After inserting a station, the cost of this insertion is calculated as the
increase of the total distance after the insertion of that customer and corresponding
station. After trial of all positions in the route, the position which has the minimum
distance increase is determined and a cost f;; = argminj{ﬁ-jk} is assigned to
customer i for route k. If the customer cannot be inserted into route k, then we set
fir = oo. After analyzing all routes, the cost of opening a new route for that
customer is also considered because that customer may not be inserted to any
position in the existing routes. The cost of opening a new vehicle is just the multiple
of the distance from depot to the customer if a vehicle can service that customer
without visiting a station. If a station is needed to complete the route, then the whole
distance including the station is considered as the new route opening cost. The
position which increases the objective function the least is the one that has c¢; =
mink{fi,k} for customer i. After analyzing all customers, the customer which has
the min;{c;} is selected to be inserted to its minimum cost position. If this insertion
requires a station insertion, then the corresponding station is also inserted to the
predetermined position in the route. Moreover, if the position which has min{c;} is
in a new route, then a new vehicle is opened and added to the fleet. After the
insertion is performed, that customer is removed from the removed customers list
and arrival time, arrival charge, capacity, departure time and departure charge of the
vehicle in which the insertion is performed are recalculated according to the new
sequence. On the other hand, only the nodes after the removed customer are
considered in order to eliminate unnecessary operations. Then, f;, values of
remaining customers for the selected route are recalculated because the route is
changed due to the insertion of the previous customer. Thus, the insertion costs and
insertion places would be different. Furthermore, if a new route is opened in the
previous iteration, then insertion costs f; , where Kk is the new route are calculated

for remaining customers. After updating the costs of remaining customers, the
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customer which has the minimum c; is selected to be inserted to its minimum cost
position again and until all removed customers are inserted, this procedure is

repeated. Pseudo code of the Greedy Insertion is given in Algorithm 4.

Algorithm 4: Greedv Insertion

input: Destroyed feasible solution §,, removal list £
output: Fepaired feasible solution 5,

1 Initialize the insertion cost hash map as (Costs « @)
2 for each customer in L
3 for all positions in all routes
4 Insert the customer to the position
3 if this insertion does not violate time windows of the route then
6 if charge feasibilitv of the route is violated then
7 Perform Greedy Station Insertion
8 if time and charge feasibilitv is satisfied then
9 Fecord the total insertion cost to Costs
10 Ise
11 J—I\i'.eu:lz:nru:l the total insertion cost to Costs
12 end for
13 end for
14 while £+ D do
15 Sort the values in Casts in non-decreasing order
16 Select the first value in Costs and perform the insertion corresponding
to that cost
17 if this insertion requires a station insertion then
18 Insert the station to the corresponding position
19 Update the features of the route to which the insertion is done
20 Delete the costs of recently inserted customer from Costs
21 Update the costs of insertions to the recently updated route
for other customers in Costs
22 Delete the customer from £
23 end while
24 Return 5,

2. Regret-k Insertion: Greedy heuristic often postpones the placement of customers
which are expensive to insert to the last iterations because it always selects the
customer with the least cost. The regret heuristics try to circumvent this problem by
incorporating a kind of look-ahead information when selecting the customer to
insert (Ropke and Pisinger, 2007a). Let Af* denote the change in the objective
function value incurred by inserting customer i into its k" best position in all

routes. For example, Af;* corresponds to the change in the objective function value
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incurred by inserting customer i into its second best position. If an insertion requires
a station insertion due to charge infeasibility, then the increase in the objective
function is calculated with the station insertion like in the greedy insertion. After
calculating Af* values for all customer in the removal list, the heuristic chooses the
customer i which has argmax;{ Af¥ — Af'}. Then the customer is inserted to its
minimum cost position. After an insertion is performed, the route to which a
customer is inserted is updated by means of time, capacity and charge. Only the
nodes after the removed customer are considered in order to eliminate unnecessary
operations. Then, Af* — Af! values of remaining customers for the changed route
are recalculated because the route is changed due to the insertion of the customer.
Thus, the insertion costs and insertion places would be different. Furthermore, if a
new route is opened, then insertion costs to the new route are calculated and
considered in the recalculation of Af* — Af? values for the remaining customers,
Finally, the procedure is repeated for remaining customers in the removal list until

all customers are inserted to the solution.

Zone Insertion: This algorithm inserts customers in a time based manner. The logic
behind this algorithm is leaving enough space for future insertions by selecting the
insertions according to time windows instead of distance. Firstly, the routes which
pass through each zone are determined. For instance, the route 1 in the Figure 4.7
(with solid arcs) passes through zones 1, 2, 3 and 4 whereas the route 2 (with dense
dashed arcs) passes through zones 4, 5, ... n;. Moreover, zone 1, 2 and 3 only have
the route 1 whereas zone 4 has routes 1, 2 and 3 (with dashed arcs).
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Figure 4.7: Routes in the zones
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After determining route distribution among the zones, a customer is selected
randomly from the removal list. Then it is inserted to the positions in the routes
which pass through the zone in which that customer is located and the customer
which has the least insertion cost is chosen among others and is inserted first. For
instance, if the first customer of the red route is selected, insertions to all routes will
be considered. However, if the first customer of brown route is selected, then
insertions to red and brown routes will be considered. The cost criteria c; is
determined for all customers as follows: When customer i is inserted to a position j
in route k and if this insertion does not violate time windows of any customer, the
time delay of the inserted customer is calculated as fi;; = max{0, (z; — e;)}. This
expression stands for the waiting time of customer i when it is inserted to the
position j in the route k. If that insertion is feasible in time but infeasible in charge
then a station should also be inserted to that route. If this is the case, Greedy Station
Insertion algorithm is used to find a station which will make the route feasible. After
inserting a station, cost of this insertion is calculated as mentioned above. After trial
of all positions in the route, the position which has the minimum waiting time is
determined and a cost f; , = argmin, {fi]-k} is assigned to customer i for route k. If
the customer cannot be inserted route k, then we set f; , = co. Then the position
which vyields least waiting time is determined as having c; :mink{fi,k} and
customer i is inserted to that position. If this insertion requires a station insertion,
then the corresponding station is also inserted to the predetermined position in the
route. In some cases, any position may not be found for those routes. For such
customers, Greedy Insertion algorithm is applied instead of Zone Insertion. After the
insertion is performed, that customer is removed from the removed customers list
and arrival time, arrival charge, capacity, departure time and departure charge of the
customers and stations in the route are recalculated according to the new sequence.
Again, only the nodes after the removed customer are updated in order to eliminate
unnecessary operations.

After the insertion, route k may pass through a new zone. Hence, if the updated
route passes through a new zone, new route distribution is determined for those
zones. Then another customer from the list is selected randomly and the above

procedure is repeated until all removed customers are inserted.
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4. Time Based Insertion: This algorithm combines greedy insertion with the logic of
zone insertion. It inserts customers to their best position in the fleet and the
customer which has the least cost is chosen among others and inserted first. Here,
the cost criteria c; is the waiting time of the customer i as in Zone Insertion. All

other steps of the algorithm are the same as those in the Greedy Insertion.

In customer insertion algorithms, assigning a customer to a new route costs the total of
distance from depot to that customer and the distance from that customer to the depot.
This is valid for distance minimization objective. If we solve the problem with
hierarchical objective function, then we need to assign a big cost to the new route in

order to motivate decreasing number of vehicles.

4.3. Station Removal & Insertion Mechanism

After customer removal and insertion, the first part of the ALNS framework is
completed. In the second part, we will destroy the current feasible solution by removing
recharging stations because stations are the crucial part of this problem. Hence,
changing their positions in the visit sequence of a route may also improve the solution.
Between a pre-determined number of iterations, a station removal and insertion
procedure is applied. The number of stations to be removed n, is determined in a
similar fashion to q. Firstly, the total number of stations in the current solution is
calculated. Then n, is selected randomly between 10% and 40% of total number of
stations. There are three types of station removal algorithms which are Worst Distance,

Worst Charge Usage and Random Station Removal.

4.3.1. Station Removal Algorithms

1. Random Station Removal: This algorithm simply selects n, stations randomly and
removes them from the current feasible solution. This random selection contributes
diversification of the search.

2. Worst Charge Usage Station Removal: The main idea of this algorithm is to
increase the efficiency of usage of the stations. We want the number of stations to
be as small as possible because going to a station causes an increase in distance.
Hence, a vehicle should go to a station at its minimum charge level. In other words,

a vehicle should go to a station if it does not have enough charge to travel any other
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customer. From this point of view, it would be reasonable if we remove those
stations to which a vehicle goes with high charge level. Firstly, the arrival charge of
the vehicle for each station in the fleet is examined and added to a list, i.e. Listl.
After analyzing all stations, Listl is ordered in non-increasing order of charge levels
which are found as indicated above. Then the algorithm removes the station which
has the first value in the Listl. If the number of stations in the whole fleet is smaller
than or equal to ng, then all the stations in the solution are removed. For the other
case, the above procedure is repeated until ng stations are selected and removed
from the current solution. With this algorithm, it is expected that a new station
which causes less distance increase is inserted to the route. Hence, the utilization of
stations increases while distance decreases. Pseudo code of this removal operation is

given in Algorithm 5.

Algorithm 5: Worst Charge Usage Station Removal

input: Current feasible solution S,. number of stations to be removed n,
output: Destroyed solution 5. Route list to be repaired £

Initialize the charge status hash map as C « @

Initialize number of removed stationsas g < 0

for all stations in 5,
Determine the arrival charge of the vehicle to that station
Record that charge level in € with the station ID

end for

Sort the charge levels in € in non-increasing order

while g < n,
Select the first element in € and identifv the station
corresponding to that charge level

10 Remove that station from its route

11 gqeg+l

12 if the route number is not added in £ before then

13 Add the route number to £

14 end while

15 Return S, and L

MOGE =] O LA e L b =

3. Worst Distance Station Removal: This algorithm is similar to the worst distance
customer removal. Costs of the stations are calculated as g; = |dl-j + djy | where d;;
is the distance between j and i € N which is the preceding node of j and dj; is the

distance between j and k which is the successing node of j in the corresponding
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route and added to a list, i.e. Listl. Then Listl is sorted in non-decreasing order and
the station which has the highest cost j* = argmaxjeN{g}-} is removed from the

solution. This process is repeated until ng stations are removed. This algorithm aims

to decrease total distance by removing stations with high distance deviation.

4.3.2. Station Insertion Algorithms

After removing some stations, the solution may become charge infeasible. In order to
make infeasible routes feasible, station insertion algorithms are used. These algorithms
insert stations to the infeasible routes. The difference with customer insertion
algorithms is that the algorithm does not necessarily insert the stations which are
removed in the station removal phase. Because stations are always available and
assumed to be infinitely many, any station can be inserted throughout the algorithm.
There are three station insertion mechanisms.

At the beginning of all station insertion algorithms, feasibility of destroyed routes is
checked. A destroyed route may have become infeasible in terms of charge, time or
both of them. We can explain these situations through the following figures:

Feasible route before station removal

Time infeasible route after station removal

Figure 4.8: Simple illustration of a station removal process.

Consider the route shown in Figure 4.8. After the removal of station S2 which is before
C1, arrival times of C1 and C2 will either be the same (if arrival time of C1 is earlier
than its early arrival time) or earlier than the former case due to elimination of charging
and traveling time of the station. However, the arrival charge of the vehicle at S2 which
is after C2 will be smaller because the vehicle did not visit a station like before. That
means charging will be longer and arrival time to C3 will be later. If that time is later
than the late arrive time of C3, then the vehicle is late for C3 which means the route is
infeasible in time. In order to accomplish this situation, we need to insert a station or

stations before the node of which arrival time is later than its late arrive time.
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Feasible route before station removal

/A—ED—E—E—\

Charge infeasible route after station removal

Figure 4.9: Routes before and after station removal

Figure 4.9 illustrates how the charge infeasibility may occur after the station removal.
Features of C1 and C2 will be the same after the removal. However, departure charge
at C2 may not be enough to travel from C2 to C3. Or it may arrive to C3 but not have
enough charge to return Depot. In order to overcome this situation, we need to insert a

station or stations before the node of which arrival charge is smaller than 0.

At the beginning of the station insertion, we need to discard time infeasibility. Firstly,
we identify the node whose arrival time is greater than its early arrive time. Then we
insert the stations beginning from the position just before that node. We insert the
stations beginning with the nearest station for the corresponding position. If the nearest
station does not make the route feasible, then we continue trying with further stations
until we obtain feasibility. If any station for the position between C1 and C2 still does
not make the route feasible, we repeat the same operations for the preceding positions

until feasibility is satisfied.

1. Greedy Station Insertion: This station insertion algorithm inserts stations in a
greedy manner. Firstly, the algorithm identifies the node which has the first negative
arrival charge in the route. Then it inserts the nearest station to the position just
before the negative node. If the arrival charge of the node which has the first
negative arrival charge becomes positive and time window feasibility of all nodes in
the route does not violated, then this station is inserted to that position. If that station
does not make the arrival charge of that node positive or violates time windows,
then the previous positions are investigated until a proper station is found. We are
looking at the positions between the negative node and the first station before that

node. If there is no station before that node, we look at the positions between that
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node and the depot at the beginning of the route. We restrict the positions in this
way because we can make the arrival charge of that node positive by inserting only
to the previous positions. And because vehicles are fully charged at a station, it is
useless to look at the positions before a station; the vehicle will leave that station
fully charged anyway. In addition, since we did not check the route feasibility while
analyzing the stations, that insertion may not make the whole route feasible. If there
are any nodes which have negative arrival charge, then the procedure is repeated for
the new negative charged node until the whole route become charge feasible. The
pseudo code of this algorithm is given in Algorithm 6.

Best Station Insertion: This algorithm tries to insert the best station in terms of
distance in order to make the arrival charge of the first negative charged node
positive. Firstly, the algorithm inserts the nearest station to the position just before
the first negative charged node. If this insertion makes the arrival charge of the
negative charged node positive and does not violate time window feasibility of all
nodes in the route, then the increase of the total distance of the route is added to a
list i.e. Listl. This distance increase is kept for comparing the stations and selecting
the best one. Then the previous position is analyzed likewise and this backward
investigation continues until we reach a station.

Then Listl is sorted in non-decreasing order and the insertion which has the smallest
distance increase, first in Listl, is performed. After the insertion, arrival time and
charge, departure time and charge information of the station inserted and the
customers which are after the insertion position are updated accordingly. Since we
did not check the route feasibility while analyzing the stations, that insertion may
not make the whole route feasible. Thus, if it is the case, the node which has the first
negative charge is again identified and the algorithm is reoperated in the same

manner until all nodes have positive arrival charge.

32



Algorithm 6: Greedy Station Insertion

[l = IR I o Y N R S P Ty S T ]
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31
32
33
34
35
36
37
38

input: Route list to be repaired £ and destroyed solution 5,
output: Fepaired feasible solution 5,

while L+ 0 do
Select the first route from £
if the route is time feasible but charge infeasible then

while the route is charge infeasible de

Identify the first node which has negative arrival charge
while the ammival charge of that node is negative do
for all positions before that node
Insert that nearest station to that position
if the amival charge of that node
becomes positive then
if time window feasibilitv of the route
is not violated then

end for

end for
if the amrival charge of that node is still negative then
Insert the stations as before the station remowval
Goto step 36
end while

end while
else if the route is time infeasible then
while the route is time infeasible do

[dentify the first node whose arrival time is
greater than its late ammive
while its time window feasibilitv is not satisfied de
for all positions before that node
for all stations
Insert the station to that position

if the time window of the identified node

becomes feasible then
end for
end for

end for

if the arrival time of that node is still greater than

its late ammive then
Insert the stations as before the station removal

Goto step 36
end while

end while
Recall steps 3 — 18

Delete the route from £

end while
Return 5,
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3. Greedy Station Insertion with Comparison: This algorithm is a more forward
looking version of the greedy station insertion. While greedy station insertion
performs insertion to the first position of which a feasible station is found, this
algorithm also analyzes the previous position of that position. Firstly, the nearest
station for the position just before the negative arrival charged node is inserted to
that position. If the arrival charge of the node which has the first negative arrival
charge becomes positive and time window feasibility of all nodes in the route is not
violated, the distance increase of this insertion is kept. Then the same procedure is
applied to the previous position. After that, those two stations are compared in terms
of distance increase and the better one is selected for insertion. After the insertion,
arrival time and charge, departure time and charge information of the station
inserted and the customers which are after the insertion position are updated
accordingly. Since we did not check the route feasibility while analyzing the
stations, that insertion may not make the whole route feasible. Thus, if it is the case,
the node which has the negative charge is again identified and the algorithm is
reoperated in the same manner until all nodes have positive arrival charge.

This algorithm works like above if the stations for the first and second positions are
feasible. In other words, if the nearest station for the first position is not feasible,
then we assume that the cost of inserting a station in the first position c. Hence, the
nearest station of the previous position will have less cost compared to oo and it will
be inserted. The same rule is valid when the station of the first position is feasible
and the station of the previous position is not. Then insertion cost in the second
position will be oo and the station of the first position will be inserted.

Consequently, in those cases, this algorithm works like greedy station insertion.

In some cases, those station insertion algorithms are not able to make the whole route
feasible. It may occur because the route might have destroyed too much and algorithms
cannot find a feasible station because instead of looking all stations in the station list,
we look the nearest stations for each position. Hence, a proper sequence may not have
been found by those stations. If this is the case, we cancel the removal process for this

route and reinsert the stations which are removed in the station removal step.
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Figure 4.10 illustrates a possible improvement after the station removal and insertion in

aroute.
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a) Feasible solution b) Improved feasible solution

Figure 4.10: Improvement after station removal and insertion operations

The generic structure of the algorithm for the hierarchical objective is given in
Algorithm 7. The algorithm for distance minimization objective is very similar and is

provided in Appendix C.
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Algorithm 7: ALNS algorithm for hierarchical objective case

input: Acg, Acp Agp, Ay, Ay, NNyt Npya, Ngpo 1L £, T

output: The best solution 5,__.

1 Generate an initial solution 5; by using Greedy insertion algorithm
2 Initialize selection probabilities pZ, . p7; . ps. . ps . pa_ foreach cr, € Agg,
cl, EAy, ST, €EAcp, SI_E A u, €Ay
3 Initialize T and T, ... by using f(5,;)and p
4 Let j be the outermost iteration counter initialized as j « 1
5  Let S, 5y« S5,
6 while j< N, do
7 Select a customer removal algorithm cr, € A, with probability p/,.
8 Select an update mechanism u, € A, with probability p;_
9 Generate 5, by applyving cr, and u_to 5
10 Select a customer insertion algorithm ci; € A, with probability pZ;_
11 Generate 5, by applving ci, to 5,
12 if z(5,) < z(5;) then
13 | S, 5,
14 elseif z(5,)= z(5;) then
15 if f(5,)< f(5:) then
16 L 5.5,
17 else
-(r(s7)-risc))

18 let p=e T
19 Generate a random number 4 € [0,1]
20 if 9 <p then
21 | S« 5,
22 if f(5:)=<f(55) then
23 L Sp« 5,
24 if j=0(modNg,,) then
25 Update the probabilities p7, . p5; . p]_using the

adaptive weight procedure
26 Update the current temperatureas T « T.s
27 Increase the counteras j <« j+ 1
28 if j=0(modNgg) then
29 Select a station removal algorithm sr, € Ag; with probability p_,_
30 Generate 55 by applyving sr, to 5,
31 if 5;isinfeasible then
32 Select a station insertion algorithm si; € Ag; with probability p;
33 Generate 5, by applying si_ to 5
34 Fecall the steps 12 — 23 with 5, instead of §,
35 if j=0(modNg,,) then
36 Update the probabilities p;,,u= p_fi-ﬂ using the

adaptive weight procedure

37 EFecall steps 26 — 27
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if j =0 (modNg;) then

end while
Return 5

Let k the counter of route minimization procedure as k « 1
while k<71 do

Let S« 5;
Select a route removal algorithm from cr, € A ; with probability p_,._
Generate 5 by applyving cr, to 5,
Select a customer insertion algorithm ci, € A, with probability pZ;_
Generate 5 by applving ci_ to 5.
Fecall the steps 12 — 23 with 5, instead of 5,
if j=0(modNgy,) then
L Update the probabilities piiu using the adaptive weight procedure
Fecall the steps 26 — 27
if z(5.)< z(5;) then
Update the probabilities p;, using the adaptive weight procedure
break while
else
ke—k+1
Recall steps 28 — 36
Fecall steps 50 — 58

end while
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Chapter 5

Computational Experiments

In this chapter, we perform computational experiments to validate the performance of
the proposed ALNS approach. We first tune the parameters using a subset of instances
and determine their values separately for the distance minimization and hierarchical
objectives. Then we test the performance of the proposed ALNS using the 36 small and
56 large instances generated by Schneider et al. (2014) based on the well-known
VRPTW instances of Solomon. The large set involves three main problem classes
where 100 customers and 21 recharging stations are clustered (C), randomly distributed
(R), and both clustered and randomly distributed (RC) over a 100x100 grid. Each set
has also two subsets, type 1 and type 2, which differ by the length of the time windows
and the vehicle capacity. The small set includes three subsets of 12 problems with 5, 10

and 15 customers in each subset, respectively.

The battery capacity is set to the maximum of the following two values: (i) the charge
needed to travel 60% of the average route length of the best known solution to the
corresponding VRPTW instance; and (ii) twice the amount of battery charge required to
travel the longest arc between a customer and a station. This procedure ensures that
instances with geographically disperse and remote customers stay feasible. Furthermore,
the instances guarantee that recharging stations have to be used. For the sake of
simplicity, the consumption rate is assumed 1.0 and the recharging rate g is set so that a
complete recharge requires three times the average customer service time of the

respective instance.
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The algorithm is coded on Java programming language and all experiments are
performed on an Intel Core i7 processor with 3.40 GHz speed and 16 GB RAM, and 64-

bit Windows 7 operating system.
5.1. Parameter Tuning

We adopted a tuning methodology similar to that of Ropke and Pisinger (2006a). We
selected six large problems and performed ten runs for each parameter by considering
the initial values as described in Ropke and Pisinger (2006a, 2006b), Pisinger and
Ropke (2007), and Demir et al. (2012). For the new parameters, we determined a
selection of reasonable values inspiring from Ropke and Pisinger (2006a). We omitted
C1 and C2 problem classes since they usually converge to same solutions for different
parameter values and do not provide much information about the contribution of the
parameter value on the solution quality. Consequently, we selected the instances R107,
RC101, RC104, RC105, R205 and RC205 for parameter tuning.

At each step, we allow one parameter to take a number of predefined values while the
rest of the parameters are kept fixed. For each parameter, we run the heuristic ten times
on the tuning instances and we select the value that gives the least average deviation
from the best achieved solution. After a parameter value is determined, its value is fixed
and this procedure is repeated for the remaining parameters until all parameters have
been tuned. The details of the parameter setting, tuning sequence, deviations and final

values are given in Appendix A.

Although many parameters take different values we observe that the score of the worse
solution (o3 ) is greater than the score of the better solution (a,) which allows
diversification by rewarding non-improved solutions as in Ropke and Pisinger (2006a)
and Demir et al. (2012).

Ropke and Pisinger (2006a) set the number of iterations to 25,000 and noted that
additional runtime had minor contribution to the solution quality. Our convergence

analysis showed similar results. So, we also performed 25,000 iterations.

In addition, n. and n, are taken as 0.1|N] and 0.4|N| in Ropke and Pisinger (2006a).

We also use those values, did not include them in the parameter tuning.
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5.2. Experimental Study on Small Instances

We solve all small instances to optimality by CPLEX. ALNS is run for 25 times for
each instance and it was able to find the optimal solutions. We give the optimal results
for distance minimization case in the Appendix B. Results for hierarchical objective
case given in Schneider et al. (2014) include optimal solutions and upper bounds
obtained in 7200 seconds. However, we solved all of them optimally and proved that
those upper bounds are optimal. ALNS also successfully found those results.

5.3. Experimental Study on Large Instances
5.3.1. Hierarchical Objective Function Case
5.3.1.1. Numerical Results

We compare our solutions on large instances with the results reported by Schneider et al
(2014) in Table 5.1. Schneider et al. (2014) presented the best solution found using (i)
the hybrid VNS and TS with an SA acceptance criterion (denoted as VNS/TS), (ii)
VNS/TS only accepting improving solutions, (iii) pure TS as well as the best known
solution they observed throughout all computational study including the parameter
tuning. The first column denotes the instance. The second and third columns report the
best solutions, i.e. the number of vehicles (#Veh) and total distance (TD), found by
Schneider et al. (2014) throughout all experiments they performed while the results
achieved by ALNS for the hierarchical objective denoted by ALNS (Hier) are given in
the following columns. The column “#Rech” reports the total number of recharges in
the best solution found. The column “ATD” shows the percentage difference between
the distance in Schneider et al. (2014) and that found by ALNS (a negative value
implies improvement). The following four columns compare the best solutions found by
VNS/TS (the best method among the three algorithms) to those of ALNS after all the
parameters of the two approaches were tuned. Note that Schneider et al. (2014)
performed 10 runs while ALNS was run 25 times with fixed parameters. The last
column gives the average computational time in minutes. Finally, “#Better” and
“#Better or Same” at the bottom of the table denote the number of instances in which
ALNS showed better performance and better than or same performance, respectively,
compared to Schneider et al (2014).
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Table 5.1: ALNS results for hierarchical objective function

Best in All Computational Tests

Best with Fixed Parameters

Schneider et al. ALNS (Hier) ATD VNS/TS ALNS (Hier) ATD

Problem | #Veh TD #Veh TD #Rech (%) | #Veh TD #Veh TD (%) t (min)
c101 12 1053.83 12 1053.83 8 0.00 12 1053.83 12 1053.83 0.00 1.28
c102 11 1056.47 11 1056.12 9 -0.03 11 1057.16 11 1056.12 -0.10 2.28
c103 10 1041.55 11 1001.81 7 - 10 1041.55 11  1002.60 - 418
c104 10 979.51 10 951.57 7 -2.85 10 980.82 11 969.46 - 7.02
c105 11 1075.37 11 1075.37 9 0.00 11 1075.37 11  1080.85 0.51 151
c106 11 1057.87 11 1057.65 9 -0.02 11 1057.87 11 1057.65 -0.02 171
c107 11 1031.56 11 1031.56 9 0.00 11 1031.56 11 1031.56 0.00 1.80
c108 10 1100.32 11 1015.68 8 - 10 1100.32 11  1015.68 - 217
c109 10 1036.64 11 993.77 9 - 10 1051.84 11  1004.36 - 2.97
c201 4 645.16 4 645.16 4 0.00 4 645.16 4 645.16 0.00 3.12
c202 645.16 4 645.16 4 0.00 4 645.16 4 645.16 0.00 16.61
€203 4 644.98 4 644.98 4 0.00 4 644.98 4 644.98 0.00 38.18
€204 4 636.43 4 636.43 4 0.00 4 636.43 4 636.43 0.00 74.21
€205 4 641.13 4 641.13 3 0.00 4 641.13 4 641.13 0.00 8.42
c206 4 638.17 4 638.17 4 0.00 4 638.17 4 638.17 0.00 18.42
c207 4 638.17 4 638.17 4 0.00 4 638.17 4 638.17 0.00 21.63
€208 4 638.17 4 638.17 4 0.00 4 638.17 4 638.17 0.00 2741
rio1 18 1670.80 18  1679.06 23 0.49 18 1672.55 19  1659.47 - 2.42
r102 16 1495.31 17  1480.10 19 - 16  1535.81 17 1480.10 - 3.00
r103 13 1299.17 14 1269.20 17 - 13 1299.64 14 1269.20 - 345
r104 11 1088.43 12 1071.89 11 - 11  1088.43 12 1073.75 - 4.29
r105 14 1461.25 15 1383.29 19 - 14 147359 15 1428.10 - 2.65
r106 13 1344.66 14 1276.33 18 - 13 1344.66 14 1276.33 - 3.13
r107 12 1154.52 12 1148.43 14 -0.53 12 115452 12 1148.62 -0.51 3.48
r108 11 1050.04 11 1051.59 13 0.15 11  1065.89 11  1067.32 0.13 4.88
r109 12 1294.05 13 1214.72 14 - 12 1294.05 13 1246.65 - 3.87
r110 11 1126.74 12 1097.89 12 - 11 114352 12 1104.72 - 251
ri1l 12 1106.19 12 1109.14 15 0.27 12 1124.06 12 1111.86 -1.09 2.49
ri12 11 1026.52 11  1038.74 14 1.19 11 1026.52 12 1045.42 - 3.20
r201 3 1264.82 3 1265.67 7 0.07 3 1264.82 3 132590 483 10.36
r202 3 1052.32 3 1052.32 3 0.00 3 105232 3 1055.48 0.30 25.83
r203 3 895.91 3 895.54 4 -0.04 3 912.86 3 895.54 | -1.90 40.78
r204 2 790.57 2 780.98 3 -1.21 2 790.57 3 720.51 - 65.74
r205 3 988.67 3 987.36 3 -0.13 3 988.67 3 987.36 -0.13 17.39
r206 3 925.20 3 922.70 3 -0.27 3 925.20 3 925.37 0.02 27.79
r207 2 848.53 2 850.80 2 0.27 2 852.73 2 851.75| -0.11 38.98
r208 2 736.60 2 736.12 2 -0.07 2 736.60 2 736.12 -0.07 160.85
r209 3 872.36 3 871.22 4 -0.13 3 872.36 3 876.54 0.48 27.82
r210 3 847.06 3 843.65 3 -0.40 3 847.06 3 846.96 -0.01 43.03
r211 2 847.45 3 761.56 1 - 2 866.21 3 761.56 - 46.81
rc101 16 1731.07 16  1731.07 17 0.00 16 1731.07 16  1757.09 1.50 1.26
rc102 15 1554.61 15  1551.69 17 -0.19 15 155461 15  1552.58 -0.13 1.77
rc103 13 1351.15 13 1351.73 14 0.04 13 1353.55 13 1365.91 0.91 2.12
rcl04 11 1238.56 11 123245 13 -0.49 11 1249.23 12 123291 - 2.90
rc105 14 1475.31 14 1473.24 16 -0.14 14  1483.38 14 1499.42 1.08 1.65
rc106 13 1437.96 14 141499 15 - 13 1440.19 14 1425.64 - 1.75
rcl07 12 1279.08 12 1283.05 14 0.31 12 1275.89 12 1304.89 2.27 2.33
rc108 11 1209.61 11 1209.11 14 -0.04 11 1238.81 12 1231.89 - 2.80
rc201 4 144494 4 1446.84 4 0.13 4 1447.20 4 1453.87 0.46 5.52
rc202 3 1412.91 3 1450.34 6 2.65 3 1412091 4 124355 - 12.08
rc203 3 1073.98 3 1069.27 5 -0.44 3 1078.28 3 1082.04 0.35 23.76
rc204 3 885.35 3 887.76 4 0.27 3 889.22 3 892.15 0.33 79.69
rc205 3 1321.75 3 1277.60 6 -3.34 3 132175 4 1158.72 - 13.12
rc206 3 1190.75 3 122107 4 2.55 3 119113 3 122310 2.68 12.86
rc207 3 995.52 3 1001.33 4 0.58 3 995.52 3 1003.01 0.75 32.44
rc208 3 837.82 3 841.34 5 0.42 3 838.03 3 844.23 0.74 44.24
#Better 17 10

#Better  or Same 30 20
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The results in Table 5.1 show that ALNS performs better in type 2 problems where the
time windows are wider and vehicle capacities are larger. In these problems, the number
of routes is small and each vehicle visits many customers along its route. In addition,
the run times of type 1 problems are significantly shorter. These problems involve
narrow time windows and the feasible region is smaller; hence, converging to a solution
is faster. However, ALNS fails to reach the number of vehicles found by VNS/TS in
many instances, in particular in rl problems. Overall, ALNS improves the BKS of 17
problems. In these problems, the number of vehicles is usually same as in Schneider et
al. (2014) and the improvement is in the distance. Better solutions are shown as bold
and underlined while the same solutions are shown as bold in the table. Schneider et al.
(2014) did not give any details of the computational effort and only reported an overall
average run time of 15.34 minutes on an Intel Core i5 processor with 2.67 GHz speed
and 4 GB RAM, operating Windows 7 Professional. The computation time of ALNS is
18 minutes on the average.

Table 5.1 also shows that on the average each vehicle visits a station for recharging. In
addition, recharging is more frequent in r- and rc- type problems compared to the c-
type problems where the average number of recharges is less than 1 (0.75 in c1 and 0.97
in c2 problems). There is no significant difference between type-1 and type-2 problems
in terms of the number of recharges; nevertheless, the recharges are slightly more
frequent in type-2 problems where the time windows are wider.
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5.3.1.2. Analysis of the ALNS Algorithms

In this section, we investigate the utilization of the removal and insertion algorithms.
We record the number of times that the algorithms are selected in a run and take the
average of 25 runs for 56 large instances. This average value indicates the number of
times that an algorithm is selected throughout the search. Figure 5.1 shows the

percentage usage of customer removal algorithms compared to each other.

Customer Removal Algorithms Usage
Zone, Random

8.86% 8.35% )
WorstTime,

7.94%
MultipleRouteRandom
18.95% Shaw,
8.37%

MultipleRouteGreedy : —/‘
16.51%

DemandBased, TimeBased
6.01% 8.37%

Figure 5.1: Average usage of customer removal algorithms

WorstDistance
8.31%

ProximityBased,
8.34%

We see that route removal algorithms are used much more than others. There may be
two reasons of this situation. Firstly, only route removal algorithms are used during the
route minimization procedure which is performed for 4 times (4,000 iterations)
throughout the search. Secondly, route removal algorithms are more likely to contribute
decreasing the number of vehicles. Hence, they are awarded more than others meaning
that their scores will be higher and their selection probabilities will be greater. On the

other hand, demand based removal is used least among removal algorithms.
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Update Algorithms Usage

SuccessorStation
30.50%

OnlyCustomers
40.49%

PredecessorStatio
n29.01%

Figure 5.2: Average usage of update algorithms

Customer Insertion Algorithms Usage

TimeBased
Zone 1.29%
3.539
% Greedy
19.96%
Regret3

38.94%

Regret2
36.28%

Figure 5.3: Average usage of customer insertion algorithms

Figure 5.2 shows that all three of the update algorithms are frequently utilized with
ROC slightly more than the other two. According to Figure 5.3, regret2 and regret3
insertions correspond to 75% of the algorithms used for reinsertion of removed

customers to the solution whereas zone and time based insertions are rarely utilized.
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Station Removal Algorithms Usage

Random,
4.46%

WorstCharge,
37.47%

WorstDistance,
58.07%

Figure 5.4: Average usage of station removal algorithms

Station Insertion Algorithms Usage

BestWithComp
33.40%

Greedy
32.06%

Best, 34.54%

Figure 5.5: Average usage of station insertion algorithms

The results regarding the station removal usage statistics reported in Figure 5.4 show
that the worst distance station removal algorithm is most commonly used with a 58%
share whereas the random removal is not very effective (less than 5% utilization). On
the other hand, Figure 5.5 illustrates that all three station insertion algorithms are

equally used throughout the search.
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5.3.2. Distance Minimization Case
5.3.2.1. Numerical Results

Table 5.2 shows the results of proposed ALNS for each instance. The notation is similar
to that used in Table 5.1. ALNS (Dist) refers to the ALNS implementation minimizing
the distance traveled. As in the previous case, we performed 25 runs with fixed
parameters. We also provide the best results of hierarchical objective case for

comparison.

The values in Table 5.2 show that the total distances are usually shorter than the
distances observed in the hierarchical objective case while the numbers of vehicles used
are greater (see the values in bold). This is an expected result considering the objective
functions addressed in the two ALNS implementations and is an indicator of their
effectiveness. On the other hand, in the four instances (see the values underlined) we
observe that the distance minimizing ALNS found solution with longer distance and
greater number of vehicles. This is an unexpected result which, we think, shows that a
solution with a shorter travel distance is only achievable if the number of vehicles is
reduced. This phenomenon also differentiates the E-VRPTW from the VRPTW. In
addition, we see that the numbers of vehicles used are significantly more in the r2 and

rc2 problem sets as expected due to wider time windows.
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Table 5.2: ALNS results of distance minimization objective

Best in All Computational Tests Best with Fixed Parameters

Problem ALNS (Dist) ALNS (Hier) ALNS (Dist) ALNS (Hier)

#Veh TD| #Veh TD| #Veh TD| #Veh TD
cl01 12 1053.83 12 1053.83 12 1053.83 12 1053.83
c102 12 1022.58 11 1056.12 12 1022.58 11 1056.12
c103 11 1001.81 11 1001.81 11 1002.60 11 1002.60
cl04 10 951.57 10 951.57 11 969.46 11 969.46
cl105 12 1033.93 11 1075.37 12 1033.93 11 1080.85
cl106 12 1027.25 11 1057.65 12 1027.25 11 1057.65
cl107 12 1025.63 11 1031.56 12 1025.63 11 1031.56
c108 11 1015.68 11 1015.68 11 1019.45 11 1015.68
c109 11 993.77 11 993.77 11 1000.75 11 1004.36
c201 4 645.16 4 645.16 4 645.16 4 645.16
€202 4 645.16 4 645.16 4 645.16 4 645.16
c203 4 644.98 4 644.98 4 644.98 4 644.98
c204 4 636.43 4 636.43 4 636.43 4 636.43
€205 4 641.13 4 641.13 4 641.13 4 641.13
€206 4 638.17 4 638.17 4 638.17 4 638.17
c207 4 638.17 4 638.17 4 638.17 4 638.17
€208 4 638.17 4 638.17 4 638.17 4 638.17
ri0l 20 1646.07 18 1679.06 20 1657.92 19 1659.47
ri02 19 1466.94 16 1505.53 19 1466.94 17 1480.10
r103 14 1266.45 13 1320.65 15 1270.21 14 1269.20
ri04 12 1071.89 12 1071.89 12 1073.19 12 1073.75
r105 15 1383.29 15 1383.29 17 1394.63 15 1428.10
r106 14 1276.33 14 1276.33 15 1290.81 14 1276.33
r107 12 1148.43 12 1148.43 13 1160.75 12 1148.62
r108 11 1051.59 11 1051.59 12 1053.92 11 1067.32
r109 14 1223.17 11 1233.28 14 1223.17 13 1246.65
r110 12 1097.89 12 1097.89 12 1108.43 12 1104.72
rill 12 1109.14 12 1109.14 12 1122.76 12 1111.86
rll2 11 1038.74 11 1038.74 12 1045.42 12 1045.42
r201 7 1100.27 3 1265.67 7 1105.14 3 1325.90
r202 6 994.35 3 1052.32 6 994.35 3 1055.48
r203 5 864.32 3 895.54 5 864.32 3 895.54
r204 3 720.82 2 780.98 3 720.82 3 720.51
r205 6 950.45 3 987.36 4 955.17 3 987.36
r206 5 896.61 3 922.70 5 896.61 3 925.37
r207 4 800.48 2 850.80 4 800.48 2 851.75
r208 3 706.81 2 736.12 3 706.81 2 736.12
r209 4 856.13 3 871.22 4 856.13 3 876.54
r210 5 833.08 3 843.65 5 833.08 3 846.96
r211 3 761.56 3 761.56 4 765.60 3 761.56
rcl01 17 1730.26 16 1731.07 17 1733.61 16 1757.09
rcl102 16 1551.61 15 1551.69 16 1551.61 15 1552.58
rcl103 13 1351.43 13 1351.43 14 1353.68 13 1365.91
rcl04 12 1227.05 11 1232.45 12 1232.91 12 1232.91
rcl05 14 1473.24 14 1473.24 15 1493.03 14 1499.42
rcl06 14 1414.99 14 1414.99 14 1423.27 14 1425.64
rcl07 12 1283.05 12 1283.05 12 1300.10 12 1304.89
rc108 12 1208.31 11 1209.11 12 1208.31 12 1231.89
rc201 9 1257.83 4 1446.84 9 1257.83 4 1453.87
rc202 7 1142.15 3 1450.34 7 1142.15 4 1243.55
rc203 6 956.78 3 1069.27 6 956.78 3 1082.04
rc204 5 829.72 3 887.76 5 829.72 3 892.15
rc205 6 1071.62 3 1277.60 6 1071.62 4 1158.72
rc206 6 1073.33 3 1221.07 6 1073.33 3 1223.10
rc207 6 928.52 3 1001.33 6 928.52 3 1003.01
rc208 5 799.75 3 841.34 5 799.75 3 844.23
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5.3.2.1. Analysis of the Algorithms

Figure 5.6 shows that the Proximity based, Shaw, random, time based and worst time
removal algorithms are the most preferred customer removal algorithms while multiple
route removal algorithms are the least chosen algorithms by the search. Different from
the hierarchical objective case, usage of the multiple route removal algorithms are not
frequently utilized in the distance minimization case as the reduction of the number of
vehicles is not the primary objective. Since the other figures show similar behavior to

the ones illustrated in the previous sections, we omitted them here.

Customer Removal Algorithms Usage

Zone Random

10.42% 11.98%

MultipleRouteRandom
5.91%

WorstTime

MultipleRouteGreedy 11.64%
6.41%
DemandBased 7
0,
7.44% Shaw
11.98%
TimeBased,
11.94%

WorstDistance,

ProximityBased 10.28%

12.00%
Figure 5.6: Customer Removal Algorithms Usage
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Chapter 6

Conclusion and Future Research

In this thesis, we proposed an ALNS framework for solving E-VRPTW. We addressed
the problem using both the hierarchical and distance minimization objectives. Some of
the existing mechanisms are adopted from the literature whereas new mechanisms
specific to E-VRPTW were developed to handle the visits to recharging stations.
Furthermore, we proposed new mechanisms for customer removal and insertion. The
general framework of the ALNS is same for both objective cases. However, new

procedures were attempted to decrease the number of vehicles.

We used the instances generated by Schneider et al. (2014) to validate the performance
of the proposed ALNS. We first solve the small instances by CPLEX. For hierarchical
objective, we cannot obtain the optimal solutions of some instances in 7200 seconds.
For those we make the comparison with the best integer results of 7200 seconds. Then
we observe that our algorithm is also able to find the optimal solutions for distance
minimization objective. For hierarchical objective, we obtained all optimal and best
integer solutions of 7200 seconds with ALNS. For large instances, we benchmarked our
results with those of Schneider et al. (2014) and reported new best known solutions in
19 instances. Since the results for the distance minimization objective are not

comparable, we reported our results as benchmarks for future studies.

In this study, we assumed that the battery of the vehicle is fully charged at the
recharging station. This assumption might be unnecessarily restrictive in real-world. For
instance, when the vehicle visits a station near the end of its route, full charge may not
be needed for the vehicle to return to the depot. A similar situation may exist between

two recharges. Saving from recharging time may allow the vehicle to catch the time
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window of otherwise unvisited customer, thus, may improve the solution. So, further
research on this topic may focus on considering different recharging schemes such as
quick charge, medium charge, full charge options as well as allowing the variable
recharge, i.e. recharge as you need. The latter case is more general; however, solving
the new problem may be significantly more difficult as it will involve determining the
charge amount at each station as well.
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Appendix A: Parameter tuning details

In this part, we provide tuning sequence of the parameters which are used in the
proposed ALNS algorithms.

For the hierarchical objective (distance minimization) case, for each parameter value,
we take the average of the number of routes (total distances) of 10 runs for each
instance which are selected for parameter tuning. Then we take the average of those
instance specific values and determine the deviation from the best solution for that

parameter value. The value which has the lowest deviation is selected and fixed.

The first column in Table A.1 (Table A.2) shows the parameters tuned in the
hierarchical objective (distance minimization) case. The second column gives the initial
value of the parameter and the corresponding deviation whereas the following columns
provide the range of parameter values and the observed deviations. The sequence from

top to bottom in the tables is the tuning sequence.
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Table A.1: Parameter tuning details for hierarchical objective case

Parameters Parameter Settings and Corresponding Deviations for Hierarchical Objective Case
7, Valpe & 0 2 4 g 12 14 16 18 20
Deviation  0.33 (.42 (.42 0.43 (.40 (.42 0.42 0.37 .33 (.42
Ny Walpe 300 30 104 150 200 250 350 400 450 500
Deviation .33 0.53 .52 0.40 .40 0.37 .33 0.33 .33 0.32
Valpe (.35 0.05 0.1 0.15 2 0.25 0.3 0.4 043 05
? Deviation .60 0.33 .62 0.60 0.50 .53 .33 0.33 .57 .53
Walpe 33 3 14 20 25 30 35 40 45 30
% Deviation  0.50 0.57 .50 0.35 .53 .58 .58 0.57 .53 0.53
a5 Valpe 3 & g 12 13 15 21 24 27 30
Deviation .33 0.33 .35 0.57 .53 0.533 0.50 0.62 0.53 0.57
Walpe 0.3 1 3 5 7 g 11 13 15
“1 Deviation 0.35 0.53 .58 0.50 .60 0.57 0.352 0.52 .63
& Valpe g 025 1 3 5 7 11 13 15
: Deviation (.35 .43 0.48 0.55 0.535 .53 .35 0.62 0.53
Walpe 11 0.13 1 3 3 7 g 13 15
®s Deviation .52 0.57 .50 0.30 .53 0.53 0.30 0.48 .53
®s Valpe 3 0.25 1 2 3 4 5 6 7 g
Deviation .33 0.51 .53 0.62 (.60 0.52 .35 0.37 .52 0.533
£ Walpe 0.55%4 0999 05951 05992 098993 05954 09995 095997 05998 0.599%
Deviation  0.33 0.52 .53 0.30 0.57 0.53 0.48 0.52 0.53 0.58
i Valpe 0.4 0.05 .1 0.15 0.2 0.23 0.3 035 045 5
Deviation  0.38 0.50 .52 0.60 .52 .58 .62 0.60 .63 .63
K Walpe 6 1 2 3 4 3
Deviation  0.3§ 0.48 .33 0.33 .33 (.50
Valpe 12 2 4 6 3 10
! Deviation .35 0.57 .57 .38 .33 0.48
ng Walpe 15 3 7 g 11 13 19 21 25 30
Deviation  0.52 (.60 .55 0.33 0.37 (.60 .33 0.51 .57 (.60
Ny Valpe 50 10 20 30 40 &0 0 a0 o0 100
Deviation .38 0.51 .62 0.55 0.535 0.52 .33 0.37 .53 .62
Ny Walpe 3500 1000 1500 2000 2500 3000 4000 4500 3000 3500
Deviation  0.3§ 0.50 .58 0.60 .33 (.60 .60 0.62 .52 0.33
m, Valpe 0.4 0.3 0.5 0.6
Deviation  0.50 0.55 .52 0.37
Nr Walpe 3000 2000 2500 3000 3500 4000 4500 3500 G000 6300
Deviation  0.60 0.55 .63 0.32 0.33 .53 .33 0.37 051 0.55
T Valpe 1000 750 1250 1504 1750 2000 2250 2500 2750 3000
Deviation 0,47 .58 .52 0.30 .50 0.533 0.33 0.35 .57 .53




Table A.2: Parameter tuning details for distance minimization case

Paramestar Parameter Settings and Corresponding Deviations for Distance Minimization Case

L Value 14 0 2 4 & g 12 16 18 20
Deviation <0.30 2643 2431 2377 1875 2097 2033 2162 2003 2463

News ~ Valoe 50 100 150 200 250 a0 350 400 450 500
Deviation 2104 2178 2240 2252 2543 2085 2301 2441 2239 26359
p Value 025 005 0.1 0.15 02 0.3 0.35 04 045 0.3
Deviation 2322 2693 2652 2585 23573 2483 2199 2200 2451 2418
7y Value 30 5 10 20 25 33 33 40 45 50
Deviation 1823 1871 2033 2202 2131 1724 1770 2316 1965 2177
gy Value 21 3 5 9 12 13 15 24 27 30
Deviztion 2322 1953 2012 2306 2190 2127 2170 2374 2088 2401
Py Valpe 0.5 1 3 5 7 g 11 13 13
Devistion 1868 2123 2178 2565 2043 2160 24435 2145 2222
iy Valus 3 023 1 5 7 9 11 13 13
Deviation 2124 2063 1957 2064 1956 1763 2024 2006 23.00
bs Value 13 0.15 1 3 5 7 9 11 15
Deviation 23.51 2609 2341 2554 2450 2250 2378 2238 2341
b, Valpe g 0.25 1 2 3 4 5 5 7 9
Devistion 20.65 2173 2072 2112 2160 2107 2103 2306 2306 21.07
< Value 0.9997 0999 (9991 09992 09993 00004 (0925 (0006 0.0093 0.9909
Deviation 2003 20072 28789 2770 2466 2327 2237 1987 2920 12701
[z Value 0.1 005 015 0.2 0.25 0.3 0.35 0.4 0.45 0.3
Deviation 2421 2025 2358 2115 2124 2221 23353 1926 2038 2311
K Valpe & 1 2 3 4 3
Deviation 21.46 22.84 23351 2346 2222 2174
n Value 10 2 4 6 8 12
Deviation 2342 2260 2159 2082 2120 1951
ny Value = 5 7 11 13 1= 15 21 23 30
Devistion 2481 2335 2382 237% 2375 2109 2250 2244 2341 2212
Neg Valpe 2 10 30 40 0 60 70 20 o0 100
Deviation 2193 2621 2421 2517 2022 2393 2313 2092 22.80 22.99
News ~ Value 4500 1000 1500 2000 2500 3000 3500 4000 5000 5500
Deviation 25.14 2500 2390 2399 2250 2492 2147 22.88 23597 2580
m, Value 0.4 03 0.3 0.6
Deviztion 20,73  23.58 2076  21.83
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Appendix B: Optimal Solutions of Small Instances of Schneider et al. (2014)

In Table B.1, results of 25 runs for small instances are given for distance minimization
case. “#Veh” and “TD” denote the number of vehicles and total distance traveled,

respectively.

Table B.1: Results for small instances

Instance #Veh TD Instance #Veh TD Instance #Veh TD

c101-5 3 247.15]¢101-10 3 393.76 | c103-15 4 371.7
c103-5 2 165.67 | c104-10 2 273.93|c106-15 3 275.13
c206-5 2 236.58 | c202-10 2 243.2 | c202-15 3 376.79
c208-5 1 158.48 | c205-10 2 228.28 | c208-15 2 300.55
r104-5 2 136.69 | r102-10 3 249.19 | r102-15 5 413.93
r105-5 2 156.08 | r103-10 3 202.85]r105-15 4 336.15
r202-5 1 128.78 | r201-10 3 217.67 | r202-15 2 358.00
r203-5 1 179.06 | r203-10 1 218.21)r209-15 2 293.20
rc105-5 3 238.05 | rc102-10 4 423.51|rc103-15 4 397.67
rc108-5 2 253.93 | rc108-10 3 345.92 | rc108-15 3 370.25
rc204-5 1 176.39 | rc201-10 3 310.06 | rc202-15 2 394.39
rc208-5 1 167.98 | rc205-10 2 325.98 | rc204-15 2 310.58
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Appendix C: The generic structure of the ALNS algorithm for distance

minimization case

Algorithm §: ALNS algorithm for distance minimization

mnput: Aqg, Acp, Agg, Agp Ny Nggyry, Npyros I, £

output: The best solution §,__.

1 Generate an initial solution 5, by using Greedy insertion algorithm
2 Initialize selection probabilities pZ, . pg; . v5., . %, - P, foreach cr, € Agg,
ci, EApy, ST, € Aep, Si, E Agy, U, E Ay
3 Initialize T and T, .., by using f(5,)and u
4 Let j be the outermost iteration counter initialized as j « 1
5 Let S, S, S,
6 while j< N; do
7 Select a customer removal algorithm cr, € A, with probability p_,_
8 Select an update mechanism u, € Ay with probability p,;_
9 (Generate 5, by applying cr, and u_to S,
10 Select a customer insertion algorithm ci,, € A, with probability p7;
11 Generate 5, by applying ci_to 5,
12 if f(5,)<f(5;) then
13 | 5.5,
14 else
-(rlsr)-risc))
15 Let p=e¢ T
16 Generate a random number ¢ € [0,1]
17 if 9 <p then
18 L | 5.«5

19 if f(5;)<f(5;) then
20 L5, <5,
21 if j=0(modNgy,,) then
| Update the probabilities v ro: ngrf F'ia using the adaptive weight procedure
Update the current temperatureas T « T.&
Increase the counteras j « j+ 1

e T Y L
EEN L
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25 if j=0(modNy) then

26 Select a station removal algorithm sr, € Az with probability p_.

27 Generate 5, by applying sr, to 5,

28 if S;isinfeasible then

29 Select a station insertion algorithm si; € Ag; with probability p;

30 Generate 5, by applying si_ to 5

31 F.ecall the steps 12 — 20 with 5, instead of 5,

32 if j=0(modNg,,) then

33 Update the probabilities p j"‘f pji-ﬂ using the adaptive weight procedure
34 Fecall steps 23 — 24

35 end while
36 Return Sg

59



