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Abstract  

The Electric Vehicle Routing Problem with Time Windows (E-VRPTW) is an extension 

to the well-known Vehicle Routing Problem with Time Windows (VRPTW). Different 

from VRPTW, the fleet in E-VRPTW consists of electric vehicles (EVs) which have a 

limited driving range due to their battery charge capacities. Since the battery charge 

level decreases proportional to the distance traveled, an EV may need to visit recharging 

stations to have its battery recharged in order to be able to continue servicing the 

customers along its route. The recharging may take place at any battery level and after 

the recharging the battery is assumed to be full. Recharging time is proportional to the 

amount charged. The number of stations is usually small and the stations are dispersed 

in distant locations, which increases the difficulty of the problem. In this thesis, we 

propose an Adaptive Large Neighborhood Search (ALNS) method to solve this 

problem. ALNS is based on the destroy-and-repair framework where at any iteration the 

existing feasible solution is destroyed by removing some customers and recharging 

stations from their routes and then repaired by inserting the removed customers to the 

solution along with the stations when recharging is necessary. Several removal and 

insertion algorithms are applied by selecting them dynamically and adaptively based on 

their past performances. The new solution is accepted according to the Simulated 

Annealing criterion. Our approach combines the removal and insertion mechanisms 

from the literature with some new mechanisms designed specifically for E-VRPTW. To 

test the performance of the proposed ALNS we use the instances and benchmark results 

presented in by Schneider et al (2014). Our computational results show that the 

proposed method is effective in finding good solutions in reasonable amount of time.   
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PROBLEMİ İÇİN BİR UYARLANABİLİR  

GENİŞ KOMŞULUK ARAMA YÖNTEMİ 

 

Merve Keskin 
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Tez Danışmanı: Doç. Dr. Bülent Çatay 
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araç rotalama 

Özet 

Zaman Pencereli Elektrikli Araç Rotalama Problemi (E-ZARP), çokça bilinen Zaman 

Pencereli Araç Rotalama Problemi (ZARP)’nin genişletilmiş bir biçimidir. ZARP’den 

farklı olarak, E-ZARP’de filo, batarya şarj kapasitesinden dolayı sınırlı sürüş menziline 

sahip elektrikli araçlardan (EA) oluşmaktadır. Batarya şarj seviyesi, alınan yol ile 

orantılı bir şekilde azaldığından dolayı EA, rotasındaki müşterilere hizmet vermeyi 

sürdürebilmek için, bataryasını şarj etmek amacıyla rotasının herhangi bir yerinde, şarj 

istasyonuna uğramak durumunda kalabilir. Şarj işlemi herhangi şarj seviyesinde 

olabilmekte ve şarj işleminden sonra bataryanın tam şarj olduğu kabul edilmektedir. 

Şarj süresi, şarj edilen miktar ile doğru orantılıdır. İstasyon sayısı genellikle az olup 

istasyonlar uzak noktalarda konumlanmışlardır. Bu da problemin zorluk derecesini 

arttırmaktadır. Bu tezde, belirtilen problemi çözmek için bir Uyarlanabilir Geniş 

Komşuluk Arama Yöntemi (UGKA) önerilmiştir. UGKA yöntemi, boz-onar sistemine 

dayanmaktadır. Olurlu çözüm, bazı müşteri ve istasyonların rotalarından çıkarılmaları 

ile bozulmakta, çıkarılan müşterilerin, şarj işlemi de gerekli ise istasyonlar ile beraber 

çözüme tekrar eklenmeleri ile onarılmaktadır. Birçok çıkarma ve ekleme algoritması 

kullanılmış ve bu algoritmalar yöntem içinde, geçmiş performansları baz alınarak 

dinamik ve uyarlanabilir bir şekilde seçilmiştir. Elde edilen yeni çözüm Benzetilmiş 

Tavlama kriterine gore kabul edilmiştir. Bizim yaklaşımımız, literatürde var olan 

çıkarma ve ekleme algoritmaları ile E-ZARP için özel olarak tasarlanmış yeni 

mekanizmaları birleştirmektedir. Önerilen UGKA’nın performansını test etmek için, 

Schneider et al. (2014)’de sunulan örnekler ve sonuçlar kullanılmıştır. Sonuçlarımız, 

önerilen yöntemin, makul süreler içinde iyi sonuçlar bulmada etkili olduğunu 

göstermiştir.  
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Chapter 1  

Introduction  

Transportation systems account for about 20-25% of global energy consumption and 

CO2 emissions. Road transport is a major contributor with 75% share. 95% of the 

world's transportation energy comes from fossil fuels, mainly gasoline and diesel 

(www.epa.gov). Transport accounts for 63% of fuel consumption and 29% of all CO2 

emissions in the EU. 45% of the goods are moved by trucks and road transport is 

predicted to grow by 33% in 2030 (http://ec.europa.eu). In the US, about 28% of total 

greenhouse gas (GHG) emissions are transport related. (www.epa.gov). 75% of the 

domestic freight is moved by trucks and the freight volume is expected to grow by 39% 

in 2040 (www.bts.gov). 

Transportation will continue to be a major and still growing source of GHGs. Hence, 

governments are considering new environmental measures and targets for reducing 

emissions and fuel resource consumptions. The US Administration aims at cutting the 

overall GHG emissions 17% below 2005 levels by 2020 and has recently established the 

toughest fuel economy standards for vehicles (http://www.whitehouse.gov). The EU 

targets 80–95% reduction of GHGs below 1990 levels by 2050, where a reduction of at 

least 60% is expected from the transport sector. The European Commission aims at 

reducing the transport-related GHG emissions to around 20% below their 2008 level by 

2030. The use of conventionally fuelled cars will be reduced by 50% in urban transport 

by 2030 and phased out by 2050. City logistics in major European urban centers will be 

CO2-free by 2030 (White Paper on Transport, 2011).  

The targets set by governments and the new regulations imposed encourage the usage of 

alternative fuel vehicles (AFV) such as solar, electric, biodiesel, LNG, CNG vehicles. 

http://ec.europa.eu/
http://www.bts.gov/
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Many municipalities, government agencies, non-profit organizations and private 

companies are converting their fleets to include AFVs, either to reduce their 

environmental impact voluntarily or to meet new environmental regulations (Erdoğan 

and Miller-Hooks, 2012).  

In a world where environmental protection and energy conservation are growing 

concerns, the development of electric vehicle (EV) technology has taken on an 

accelerated pace to fulfill those needs. Concerning the environment, EVs can provide 

emission-free urban transportation. Even taking into account the emissions from the 

power plants needed to fuel the vehicles, the use of EVs can still significantly reduce 

global air pollution.  

EV is a vehicle which moves with electric propulsion. EVs may be classified as battery 

electric vehicles (BEV), hybrid electric vehicles (HEV), and fuel-cell electric vehicles 

(FCEV) (Chan, 2002). They include electric trains, airplanes, boats, motorcycles, 

scooters and spacecrafts. In the thesis, we refer to EV as a road vehicle such as a truck 

or van. A fleet of EVs can be used in a variety of transport needs such as public 

transportation, home deliveries from grocery stores, postal deliveries and courier 

services, distribution operations in different sectors. 

Although EVs enable emission-free logistics services, operating an EV fleet has several 

drawbacks: (i) low energy density of batteries compared to the fuel of combustion 

engined vehicles; (ii) EV often have long recharge times compared to the relatively fast 

process of refueling a tank; and (iii) the scarcity of public charging stations (Touati-

Moungla and Jost, 2011). Under these limitations, routing an EV fleet arises as a 

challenging combinatorial optimization problem among the Vehicle Routing Problems 

(VRPs). 

In this thesis, we address the Electric Vehicle Routing Problem with Time Windows (E-

VRPTW). The problem was introduced by Schneider et al. (2014) as an extension to the 

Green Vehicle Routing Problem (G-VRP) of Erdoğan and Miller-Hooks (2012). G-VRP 

concerns “green” vehicles which run with biodiesel, liquid natural gas, or CNG and 

have a limited driving range. Hence, the vehicles may need refueling along their route. 

Refueling is fast; however, the stations for these fuels are scarce. E-VRPTW is a variant 

of the classical VRPTW where the vehicles may need to visit stations to have their 

batteries recharged in order to continue their route, as in G-VRP. Recharging operation 
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may take a significant amount of time, especially when compared to relatively short 

fueling times of gasoline. Furthermore, unlike gasoline stations recharging stations are 

dispersed at distant locations, which significantly affects the route planning. 

To solve this challenging problem, we propose an Adaptive Large Neighborhood 

Search (ALNS) approach. Our approach combines the ALNS schemes presented in 

Ropke and Pisinger (2006a, 2006b), Pisinger and Ropke (2007) and Demir et al. (2012) 

with new algorithms specific to E-VRPTW. We address the distance minimization 

objective as well as the hierarchical objective approach where minimizing the number 

of vehicles (routes) is the primary objective and minimizing total travel distance is the 

secondary. Our results show that the ALNS algorithm is effective in finding good 

quality solutions and improves some of the best-known solutions in the literature. 

The remainder of the thesis is organized as follows: Chapter 2 reviews the related 

literature. Chapter 3 describes the problem and gives the mathematical model. The 

proposed ALNS is presented in Chapter 4 and the computational study is provided in 

Chapter 5. Finally, Chapter 6 concludes the thesis with some remarks and directions for 

future research. 
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Chapter 2 

Literature Review 

There are relatively few publications on optimization problems related to alternative 

fuels. Some works concentrate on finding the energy shortest path from a given origin to 

a destination. Artmeirer et al. (2010) studied this problem within a graph-theoretic 

context and proposes extensions to general shortest path algorithms that address the 

problem of energy-optimal routing. They formalize energy-efficient routing in the 

presence of rechargeable batteries as a special case of the constrained shortest path 

problem and present an adaption of a general shortest path algorithm that respects the 

given constraints. Wang and Shen (2007) developed a model that minimizes the number 

of tours and total deadhead time hierarchically. There is a constraint which limits the 

travel time of every vehicle after being recharged. The recharging durations, time 

windows and vehicle capacities are not considered. A multiple ant colony algorithm was 

developed to solve the problem.  

Wang and Cheu (2012) investigated the operations of an electric taxi fleet. Their model 

minimizes total distance travelled under the recharging constraints and maximum route 

time. Charge of the battery is consumed with a given rate per traveled distance and can 

be replenished at the recharging stations. Recharging times are assumed to be fixed and 

after charging the battery becomes full. They construct an initial solution using one of 

the nearest-neighbor, sweep and earliest time window insertion heuristics and improve 

it using Tabu Search (TS). They also suggested three different charging plans which 

provide different driving ranges and compare the results against the full charging 

scheme. 
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Omidvar and R. Tavakkoli-Moghaddam (2012) addressed an AFV routing problem with 

time-windows and proposed a mathematical model that minimizes total costs associated 

with the vehicles, distance travelled, travel time and emissions. The refueling times are 

constant and the depot is considered as an alternative fuel station. They developed 

Simulated Annealing (SA) and Genetic Algorithm (GA) approaches and compared their 

performances. 

Conrad and Figliozzi (2011) introduced the Recharging Vehicle Routing Problem 

(RVRP), a new variant of the VRP where the EVs are allowed to recharge at the 

customer locations they visit. The model has dual objectives: the primary objective 

minimizes the number of routes or vehicles whereas the secondary objective minimizes 

the total costs associated with the travel distance, service time and vehicle recharging 

which is a penalty cost if recharging is performed. Charging is done while servicing the 

customer and charging time is taken as a parameter which is a constant value. The 

battery level departing from a customer depends on the choice of normal charging or 

fast charging. In the fast charging case the battery is charged to a specified level such as 

80% of battery capacity.  

Worley et al. (2012) addressed the problem of locating charging stations and designing 

EV routes simultaneously. The objective is to minimize the sum of the travel costs, 

recharging costs, and costs of locating recharging stations. A solution method is not 

proposed and left as future work. 

Erdoğan and Miller-Hooks (2012) considered the routing of AFVs within the context G-

VRP and formulated the mathematical model. The model aims at minimizing the total 

distance travelled where the length of the routes is restricted. Fuel is consumed with a 

given rate per traveled distance and can be replenished at the alternative fuel stations 

(AFVs). Refueling times are assumed to be fixed and after refueling the tank becomes 

full. The model does not involve time windows and vehicle capacity constraints. 

Erdoğan and Miller-Hooks (2012) proposed two heuristics to solve the G-VRP. The 

first is a Modified Clarke and Wright Savings (MCWS) algorithm which creates routes 

by establishing feasibility through the insertion of AFSs, merging feasible routes 

according to savings values, and removing redundant AFSs. The second is a Density-

Based Clustering Algorithm (DBCA) based on the cluster-first and route-second 

approach. DBCA forms clusters of customers such that every vertex within a given 
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radius contains at least a predefined number of neighbors. Subsequently, the MCWS 

algorithm is applied on the identified clusters. To test the performance of these two 

heuristics, they designed two sets of problem instances. The first consists of 40 small-

sized instances with 20 customers while the second involves 12 instances with up to 500 

customers. 

Schneider et al. (2014) introduced the E-VRPTW where the customers are associated 

with time windows and the vehicles have capacity and driving range constraints. The 

recharging duration is proportional to the battery usage when arriving at the station and 

the battery is fully recharged when departing from the station. To solve this problem, 

Schneider et al. developed a hybrid metaheuristic that combines the Variable 

Neighborhood Search (VNS) algorithm with TS. They tested the performance of the 

proposed method on newly designed benchmark instances for E-VRPTW as well as on 

test instances of related problems, namely the Green VRP (G-VRP) and the Multi-

Depot VRP with Inter-Depot Routes (MDVRPI). 

 

ALNS was introduced by Ropke and Pisinger (2006a) as an extension of the Large 

Neighborhood Search (LNS) framework put forward by Shaw (1998). Ropke and 

Pisinger (2006b) developed a unified ALNS heuristic for a large class of VRP with 

Backhauls. Pisinger and Ropke (2007) improved this heuristic with additional 

algorithms and showed that the proposed framework gives competitive results in 

different VRP variants. Different implementations of ALNS include the resource-

constrained project scheduling problem (Muller, 2009), scheduling of technicians and 

tasks in a large telecommunication company (Cordeau et al., 2010), lot-sizing problem 

with setup times (Muller et al., 2010), and consultation timetabling problem at Danish 

high schools (Kristiansen et al., 2013). Within the VRP framework, ALNS is used for 

solving, the Pick-up and Delivery Problem (PDP) where requests can be transferred 

between vehicles during their trip (Masson et al., 2012), Capacitated Vehicle Routing 

Problem (CVRP) which minimizes the sum of arrival times at customers (Ribeiro and 

Laporte, 2012) and the Pollution-Routing Problem (PRP) (Demir et al., 2012).  
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Chapter 3 

Problem Description and Formulation 

In this chapter, we first describe the E-VRPTW and then provide its 0-1 mixed-integer 

linear programming model. 

3.1. Problem Description 

Similar to the classical VRPTW, E-VRPTW concerns a set of customers with known 

demands, delivery time windows and service durations. It constructs routes that begin 

with the depot and end at the depot. Different from VRPTW, the deliveries are 

performed by a homogeneous fleet consisting of EVs with fixed loading capacities and 

limited cruising ranges. While the vehicle is traveling, the battery charge level decreases 

proportionally with the distance traversed. So, the vehicle may need to visit a recharging 

station and have its battery recharged in order to be able to continue servicing customers 

along its route. The number of stations is usually small and the stations are dispersed in 

distant locations, which complicates the problem. There is one depot and it can also be 

used as a recharging station. Recharging may take place at any battery level and after 

the recharging the battery is assumed to be full. The recharge duration is proportional to 

the recharge quantity. Each vehicle departs from the depot with a full battery and 

returns to the depot at the end of its route before the due date. 

Figure 3.1 illustrates a sample problem involving 10 customers and 4 stations and 

shows the optimal solution. In this figure, D refers to the depot. The customer set is 

𝐶 =  𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶8, 𝐶9, 𝐶10  and the station set is 𝑆 =  𝑆1, 𝑆2, 𝑆3, 𝑆4 . 

S1 is the depot.  
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Figure 3.1: A sample network of 10 customers and the routes at the optimal solution 

There are three routes in the optimal solution. EV1 services C1 and C2, returns to the 

depot with its initial charge. EV2 visits S2 after servicing C4 and has its battery 

recharged before visiting C5 and C3. On the other hand, EV3 is recharged once in S4 

and twice in S3, first after servicing C9 and next after servicing C7 on its way back to 

D. As it can be seen from this example, a station (S3) can be visited multiple times by 

the same or different vehicles and a station is not necessarily visited (S5). 

3.2. 0-1 Mixed Integer Linear Programming Formulation 

In this section, we provide the mathematical model of E-VRPTW formulated in 

Schneider et al. (2014). Let 𝑉 =  1,… ,𝑁  denote the set of customers and 𝐹 denote the 

set of recharging stations. Since a recharging station may be visited more than once 

depending on the route structure, we must create 𝐹′which is the set of dummy vertices 

generated to permit several visits to each vertex in the set 𝐹 . Vertices 0 and 𝑁 + 1 

denote the depot and every route starts at 0 and ends at 𝑁 + 1. Let 𝑉 ′ be a set of vertices 

with 𝑉 ′ = 𝑉 ∪ 𝐹′. In order to indicate that a set contains the respective instance of the 

depot, the set is subscripted with 0 or 𝑁 + 1. Hence 𝑉0
′ = 𝑉 ′ ∪  0  and 𝑉𝑁+1

′ = 𝑉 ′ ∪

 𝑁 + 1 . Now we can define the problem on a complete directed graph 𝐺 = (𝑉0,𝑁+1
′ , 𝐴) 

with the set of arcs 𝐴 =    𝑖, 𝑗    𝑖, 𝑗 ∈ 𝑉0,𝑁+1
′ , 𝑖 ≠ 𝑗  where 𝑉0,𝑁+1

′ =  0 ∪ 𝑉𝑁+1
′ . Each 

arc is associated with a distance 𝑑𝑖𝑗  and travel time 𝑡𝑖𝑗 . The battery charge is consumed 

at a rate of 𝑕 and every traveled arc consumes 𝑕 × 𝑑𝑖𝑗  of the remaining battery. Each 

vertex 𝑖 ∈ 𝑉 ′  has positive demand 𝑞𝑖 , service time 𝑠𝑖  and time window  𝑒𝑖 , 𝑙𝑖 . All EVs 
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have a load capacity of 𝐶 and battery capacity of 𝑄. At a recharging station, the battery 

is charged at a recharging rate of 𝑔. The decision variables, 𝜏𝑖 , 𝑢𝑖  and 𝑦𝑖  keep track of 

the arrival time, remaining cargo level and remaining charge level at vertex 𝑖 ∈ 𝑉0,𝑁+1
′ , 

respectively. The binary decision variable 𝑥𝑖𝑗    takes value 1 if arc  𝑖, 𝑗  is traversed and 

0 otherwise.  

min    𝑑𝑖𝑗 𝑥𝑖𝑗                                                                                                        (1)𝑖∈𝑉0
′

𝑗 ∈𝑉𝑁+1
′  ,𝑖≠𝑗

  

 𝑥𝑖𝑗𝑗 ∈𝑉𝑁+1
′  ,𝑖≠𝑗 = 1           ∀𝑖 ∈ 𝑉                                                                                        (2)  

 𝑥𝑖𝑗𝑗 ∈𝑉𝑁+1
′  ,𝑖≠𝑗 ≤ 1         ∀𝑖 ∈ 𝐹′                                                                                         (3)  

 𝑥𝑖𝑗𝑖∈𝑉0
′  ,𝑖≠𝑗 =  𝑥𝑗𝑖𝑖∈𝑉𝑁+1

′ ,𝑖≠𝑗       ∀𝑗 ∈ 𝑉 ′                                                                         (4)  

𝜏𝑖 + 𝑥𝑖𝑗  𝑡𝑖𝑗 + 𝑠𝑖 − 𝑙0 1 − 𝑥𝑖𝑗  ≤ 𝜏𝑗            ∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑁+1
′ , 𝑖 ≠ 𝑗                      (5)  

𝜏𝑖 + 𝑥𝑖𝑗 𝑡𝑖𝑗 + 𝑔 𝑄 − 𝑦𝑖 −  𝑙0 + 𝑔𝑄  1 − 𝑥𝑖𝑗  ≤ 𝜏𝑗     ∀𝑖 ∈ 𝐹′, ∀𝑗 ∈ 𝑉𝑁+1
′ , 𝑖 ≠ 𝑗   (6)  

𝑒𝑗 ≤ 𝜏𝑗 ≤ 𝑙𝑗         ∀𝑗 ∈ 𝑉0,𝑁+1
′                                                                                                  (7)  

0 ≤ 𝑢𝑗 ≤ 𝑢𝑖 − 𝑥𝑖𝑗 𝑞𝑖 + 𝐶 1 − 𝑥𝑖𝑗         ∀𝑖 ∈ 𝑉0
′ , ∀𝑗 ∈ 𝑉𝑁+1

′  ,    𝑖 ≠ 𝑗                             (8) 

0 ≤ 𝑢0 ≤ 𝐶                                                                                                                              (9) 

0 ≤ 𝑦𝑗 ≤ 𝑦𝑖 − 𝑥𝑖𝑗  𝑑𝑖𝑗𝑕 + 𝑄 1 − 𝑥𝑖𝑗     ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝑉𝑁+1
′ ,   𝑖 ≠ 𝑗                           (10) 

0 ≤ 𝑦𝑗 ≤ 𝑄 − (𝑑𝑖𝑗𝑕)𝑥𝑖𝑗    ∀𝑖 ∈ 𝐹0
′ , ∀𝑗 ∈ 𝑉𝑁+1

′  ,   𝑖 ≠ 𝑗                                                   (11)                                                           

𝑥𝑖𝑗 ∈  0,1      ∀𝑖 ∈ 𝑉0
′ , ∀𝑗 ∈ 𝑉𝑁+1

′  ,   𝑖 ≠ 𝑗                                                                           12  

 

The objective function (1) minimizes total travelled distance. Constraints (2) and (3) 

handle the connectivity of customers and visits to recharging stations, respectively. The 

flow conservations constraints (4) enforce that the number of outgoing arcs equals to the 

number of incoming arcs at each vertex. Constraints (5) and (6) ensure the time 

feasibility of arcs leaving the customers (and the depot) and the stations, respectively. 

Constraints (7) enforce the time windows of the customers and the depot. In addition, 

constraints (5)-(7) eliminate the sub-tours by maintaining the schedule feasibility with 

respect to time considerations. Constraints (8) and (9) guarantee that demand of all 
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customers are satisfied and constraints (10) and (11) make sure that the battery level is 

never negative. Finally, (12) define the binary decision variables. 

If the objective function is to minimize the number of vehicles, it is formulated as 

follows: 

𝑚𝑖𝑛  𝑥0𝑗

𝑗∈𝑉𝑛+1
′  

                                                                                                                      (1′) 
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Chapter 4 

Solution Methodology 

In this chapter, we present the details of ALNS proposed for solving E-VRPTW. 

4.1. Proposed Adaptive Large Neighborhood Search Approach 

The ALNS approach proposed in this study includes the following five types of 

algorithms: 

 𝐴𝐶𝑅 : 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚𝑠 

 𝐴𝐶𝐼: 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚𝑠 

 𝐴𝑆𝑅 : 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚𝑠 

 𝐴𝑆𝐼 : 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚𝑠 

 𝐴𝑈 : 𝑈𝑝𝑑𝑎𝑡𝑒 𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚𝑠 

It combines the strengths of the ALNS heuristics introduced by Ropke and Pisinger  

(2006a,  2006b),  Pisinger  and  Ropke  (2007),  and  Demir  et  al.  (2012) by 

introducing new removal, insertion and station removal, insertion algorithms specific  to 

this problem. The main components of the heuristic can be stated as follows: 

o General Flow: The algorithm begins with an initial solution and iteratively 

improves it by removal and insertion mechanisms. The current feasible solution is 

destroyed by removing some customers and stations from their routes and then 

repaired by inserting the removed customers and necessary stations to the solution 

in an intelligent way. Let 𝑆𝐶  be the current feasible solution at the beginning of a 

new iteration. At each iteration a customer removal algorithm 𝑐𝑟𝑎  and an update 

algorithm 𝑢𝑎  is selected. Then the customers identified by the customer removal 
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algorithm are removed from 𝑆𝐶  in the update phase. Depending on 𝑢𝑎  some stations 

may also be removed from 𝑆𝐶 . At the end of the update phase, we have another 

feasible solution 𝑆1.  Then a customer insertion algorithm 𝑐𝑖𝑎  is selected and each 

removed customer is inserted into 𝑆1 according to the insertion algorithm. Let the 

feasible solution after the customer insertion be called 𝑆2. If there have been 𝑁𝑆𝑅  

iterations since last station removal-insertion procedure is applied, then it should be 

applied again. A station removal algorithm 𝑠𝑟𝑎  is selected and the identified stations 

are removed from 𝑆2  and we obtain a solution called 𝑆3 . 𝑆3  may be infeasible in 

terms of charge. If this is the case, then a station insertion algorithm 𝑠𝑖𝑎  is selected 

and 𝑆3 is made feasible by inserting stations according to the selected algorithm. Let 

𝑆4  denote this feasible solution. If there have been 𝑁𝑅𝑅  iterations since the last 

execution of the route minimization procedure, then it should be applied again. In 

this procedure, only route removal algorithms are used in the customer removal 

phase. Then the customers identified by the customer removal algorithm are 

removed from 𝑆4. Let us denote this partial feasible solution by 𝑆5. Since all the 

customers of a route or routes are removed from the solution we do not need an 

update phase which updates the features of the remaining customers and stations in 

the routes that are changed after the removal process. Then a customer insertion 

algorithm 𝑐𝑖𝑎  is selected and each removed customer is inserted into 𝑆5 according to 

the insertion algorithm. Let the feasible solution after the customer insertion be 

called 𝑆6 . If there has been 𝑁𝑆𝑅  iterations since last station removal-insertion 

procedure is applied, then it should be applied again to the solution 𝑆6. This route 

minimization procedure is applied in a loop which lasts for 𝜏 iterations. Then the 

algorithm continues with regular customer removal and insertion algorithms. The 

whole procedure is repeated until the maximum number of iterations is reached.  

If the objective is to minimize the total distance, the general framework remains 

same; however, we do not apply the route minimization procedure and slightly 

modify some of the insertion algorithms and new solution acceptance criteria. 

 

o Adaptive Scoring: Each algorithm has a score which measures how well the 

algorithm has performed recently. High scores correspond to a successful heuristic. 

We let the entire search last 𝑁 iterations. Then we divide the entire search into a 

number of segments which is a part of the search consisting of a number of 
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iterations. Let 𝜋𝑎  be the score of algorithm a. 𝜋𝑎  value of all algorithms is set to 

zero at the beginning of each segment. If a new best solution is found in an iteration 

of a segment, then 𝜋𝑎values of corresponding algorithms are increased by 𝜎1 . If 

customer removal, update and insertion were carried out in that iteration, then 𝜋𝑎  

values of 𝑐𝑟𝑎 ,  𝑢𝑎 ,  𝑐𝑖𝑎  algorithms are increased. Since we do not know which 

algorithm has yielded the improvement, we increase the score of all algorithms used 

at that iteration. If station removal and insertion were carried out in that iteration, 

then the same procedure is applied to 𝑠𝑟𝑎 , 𝑠𝑖𝑎  algorithms used. Similarly, if route 

minimization is operated in that iteration, this procedure is applied to 𝑟𝑟𝑎  and 𝑐𝑖𝑎  

algorithms used. If a better solution is found in an iteration of a segment, then 

𝜋𝑎 values of corresponding algorithms are increased by 𝜎2  similar as above. 

Nevertheless, if a worse solution is found in an iteration of a segment and it is 

accepted by SA mechanism, then 𝜋𝑎values are increased by 𝜎3. If a worse solution 

is found but not accepted, then only the number of selections of algorithms used in 

that iteration are increased by 1. Their scores stay the same since they do not 

contribute to an improvement. The same scoring is applied if a solution with the 

same objective function is found. 

o Adaptive Weight Adjustment: At the end of each segment, new weights of 

algorithms are calculated using total score during the last segment. Let 𝑤𝑎,𝑗  and 𝜃𝑎,𝑗  

represent the adaptive weight of the algorithm and the number of times the 

algorithm has been selected during segment 𝑗 = 1,2…∆  respectively. Initially all 

weights are equal to 1, i.e. 𝑤𝑎,1 = 1  ∀𝑎 ∈ 𝐴. At the end of segment j, scores are 

updated as in (13): 

𝑤𝑎,𝑗+1 = 𝑤𝑎,𝑗  1 − 𝑟 + 𝑟
𝜋𝑎

𝜃𝑎,𝑗
 

𝑟 ∈  0,1  is the reaction factor that controls how quickly the weight adjustment 

mechanism reacts to changes in the effectiveness of the algorithms. If r is 0, we do 

not use update mechanism and weights stay at their initial values. If r is 1, then the 

weight of previous segment has no effect on the new weight; only the score decides 

the weight of the current segment. Apparently, if an algorithm is not used in the 

previous segment, then its 𝜋𝑎  value will be 0 and the new weight is determined by 

the first term in the formula. 
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Because there are 2 types of removal-insertion algorithms (customer and station), 

their adaptive weight adjustment will also be done at different intervals. Number of 

segments is different for station removal and insertion algorithms. Hence, their 

weight updates are done with different intervals.  

o Adaptive Selection: All algorithms are selected by a roulette-wheel mechanism 

independent from each other. Each of them has a selection probability which is 

dependent to the adaptive weight of the algorithm. Given k algorithms with 𝑙 =

1…𝑘, let 𝑝𝑎
𝑠  denote the selection probability of algorithm a during segment s. This 

is calculated as follows: 

                      𝑝𝑎
𝑠 =

𝑤𝑎 ,𝑠

 𝑤 𝑙,𝑠
𝑘
𝑙=1

 

 

o Acceptance and Stopping Criteria: A simple acceptance criterion would be to 

accept only solutions that are better than the current solution. However, this may 

cause getting trapped in a local minimum. Instead, we use a criterion from 

Simulated Annealing that accepts some worse solutions according to a probability. 

The probability of accepting a worse solution 𝑆𝑇  is calculated as: 

𝑝 = 𝑒
− 𝑓 𝑆𝑇 −𝑓 𝑆𝐶  

𝑇  

where 𝑆𝐶  is the current solution and 𝑇 > 0 is the temperature. Temperature starts at 

𝑇𝑠𝑡𝑎𝑟𝑡 . Similar to Ropke and Pisinger (2006a), 𝑇𝑠𝑡𝑎𝑟𝑡  is dependent on the problem 

and it is set in such a way that 𝑆𝑇  is accepted with probability 0.5 if it is 𝜇 (start 

temperature control parameter) percent worse than 𝑆𝐶 . The temperature is decreased 

every iteration using the expression 𝑇 = 𝑇 × 𝜀  where 0 < 𝜀 < 1  is a parameter 

called cooling rate. 

If the objective is distance minimization, we always accept the solution with lower 

total distance value. If the new solution has the same or worse distance value, then 

simulated annealing is applied to determine accepting the new solution or not. 
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When we solve the problem with the hierarchical objective function, we accept the 

new solution if: 

 It uses less number of vehicles than the previous solution or, 

 It uses the same number of vehicles with the previous solution but the 

total distance traveled is shorter. 

We do not accept the solution if it requires more vehicles than the previous solution. 

We apply the SA procedure if the new solution uses the same number of vehicles 

but its total distance is longer. 

4.2. Customer Removal & Insertion Mechanism 

4.2.1. Customer Removal Algorithms 

In the first step of the algorithm, the current solution is destroyed by removing 𝑞 

customers from the solution according to different rules and adding them in a removal 

list ℒ. 𝑞 is determined randomly using a uniform distribution and the removal rule 𝑐𝑟𝑎  is 

selected in an adaptive manner from the set of algorithms; 𝐴𝐶𝑅 . The generic structure of 

a customer removal procedure is given in Algorithm 1. 

 

Firstly, the number of customers which will be removed is determined. It is dependent 

to total number of customers and selected randomly between 𝑛𝑐  and 𝑛𝑐 . Then, the 

selected rule is applied to the current feasible solution and 𝑞 customers are selected and 

added to the removal list ℒ. In Figure 4.1a we see a feasible route. In Figure 4.1b C6 is 

removed from the route and in Figure 4.1c, C4 is also removed from the solution. 



 

16 
 

Figure 4.1: An illustration of a customer removal process. 

 

We use 10 customer removal algorithms. The first eight are adapted from Ropke and 

Pisinger (2006a, 2006b), Pisinger and Ropke (2007), and Demir et al. (2012) and the 

last two are inspired from Emeç et al. (2013). 

1. Random Removal: This algorithm simply selects q customers randomly. This 

random selection helps diversifying the search. 

2. Worst Distance Removal: This algorithm calculates the cost of a customer as 

𝑔𝑗 =  𝑑𝑖𝑗 + 𝑑𝑗𝑘   where 𝑑𝑖𝑗 is the distance between 𝑗  and 𝑖 ∈ 𝑁  which is the 

preceding node of 𝑗 and 𝑑𝑗𝑘  is the distance between j and k which is the successing 

node of 𝑗 in the corresponding route. If 𝑈 is the ordered list of customers in this 

way, then the algorithm selects the customer 𝑗∗ = 𝑈  𝜆𝜅     from 𝑆𝐶  where 𝜆 ∈  0,1  

is a random number and 𝜅 ≥ 1 is a parameter called worst removal determinism 

factor which introduces randomness in the selection of customers in order to avoid 

choosing the same customers over and over again. This selection continues until q 

customers are chosen. This algorithm aims to make as much distance saving as 

possible with removal of customers with high deviation. 

3. Worst Time Removal: This algorithm calculates time deviations of customers as 

𝑔𝑗 =  𝜏𝑗 − 𝑒𝑗   where 𝜏𝑗  is the service start time and 𝑒𝑗  is the early time window of 

customer j. Customers are ordered in non-increasing order of their time deviation. If 

𝑂  is the ordered list of customers in this way, then the algorithm selects the 

customer 𝑗∗ = 𝑂  𝜆𝜅    from 𝑆𝐶 . Selecting in this way continues until q customers 

are chosen. The idea behind this algorithm is to prevent long waits before going to a 

customer or delayed service starts by removing customers with high deviation.  
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4. Shaw Removal: The logic behind this algorithm which was introduced by Shaw 

(1998) is to remove customers that are similar to each other and therefore easy to 

change hence generating better solutions. If we choose customers which are 

different from each other, then we may gain worse solutions because we may only 

be able to insert the customers at their original positions or at some worse positions 

due to not finding any other proper positions to insert. The similarity of two 

customers i and j is defined with the relatedness measure 

𝑅 𝑖, 𝑗 = 𝜙1𝑐𝑖𝑗 + 𝜙2 𝜏𝑖 − 𝜏𝑗  + 𝜙3𝜔𝑖𝑗 + 𝜙4 𝑞𝑖 − 𝑞𝑗   

Where 𝜙1 − 𝜙4 are Shaw parameters.  

 

The similarity of customers increases when 𝑅 𝑖, 𝑗  decreases. The algorithm firstly 

selects a customer randomly and adds it to the list. Then, other customers are sorted 

in non-decreasing order of their relatedness measures with the previous selected 

customer. If O is the ordered list, then algorithm selects the customer 𝑗 =

𝑂  𝜆𝜂  𝑂    where 𝜆 ∈  0,1  is a random number and 𝜂 ≥ 1  is a determinism 

parameter which introduces some randomness in the selection of the customers, i.e. 

low value of 𝜂 corresponds to much randomness. This procedure is repeated until 𝑛𝑐  

customers are selected. 

5. Proximity Based Removal: This algorithm is a special case of Shaw Removal 

which selects customers that are related in terms of the distance between them. Only 

difference is the parameter values which are taken as 𝜙1 = 1,   𝜙2 = 𝜙3 = 𝜙4 = 0. 

Figure 4.2 illustrates the mechanism of this algorithm. 
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Figure 4.2: Proximity Based Removal. a) Feasible solution before removal,        

b) Partial solution after removal 

6. Time Based Removal: This algorithm is another special case of Shaw Removal and 

selects customers which are similar in terms of their service beginning times. Only 

difference is the parameter values which are taken as  𝜙2 = 1,   𝜙1 = 𝜙3 = 𝜙4 = 0. 

7. Demand Based Removal: This algorithm is again a special case of Shaw Removal 

and chooses customers which are similar in terms of their demands. Only difference 

is the parameter values which are taken as  𝜙4 = 1,   𝜙1 = 𝜙2 = 𝜙3 = 0. 

8. Zone Removal: This algorithm is based on removal of nodes in a predefined area in 

the Cartesian coordinate system in which nodes are located (Demir et al., 2012). 

Firstly, the corner points of the area are specified by the maximum and minimum x 

and y coordinates of the customers, stations and the depot. Then the whole region is 

horizontally split up into smaller areas which are zones, according to the number of 

zones which is a parameter. At the end, each customer and station belong to a zone. 

The algorithm chooses a zone randomly and selects all customers in this zone. If 

that zone does not contain any customer, then another zone is selected randomly. 

Let ℤ =  𝑍1, 𝑍2, … 𝑍𝑘   be the set of randomly selected zones and 𝑛𝑐
𝑍 = 𝑛𝑐

𝑍1 +

𝑛𝑐
𝑍2 + ⋯+ 𝑛𝑐

𝑍𝑘   be the number of customers in these zones where 𝑍𝑘  represents the 

𝑘𝑡𝑕  randomly selected zone for which 𝑛𝑐
𝑍  becomes firstly greater than or equal to 

𝑛𝑐 . The algorithm selects all customers in the zones 𝑍 ∈ ℤ \ 𝑍𝑘  . Furthermore, if the 

number of customers in zone 𝑍𝑘  is greater than the remaining number of customers 

to be removed, it means all customers from that zone cannot be selected. Then the 

customers which belong to zone 𝑍𝑘  are sorted in non-decreasing order of their 

distance to the center of zone 𝑍𝑘 . Then  𝑛𝑐 −  𝑛𝑐
𝑖𝑘−1

𝑖=1    many closest customers are 

selected. Figure 4.3a illustrates the zones and the distribution of customers in the 

zones and Figure 4.3b shows the destroyed solution which will be obtained in the 
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update step of ALNS with zone removal algorithm. Here the customers in zone 5 are 

removed from the feasible solution. After the removal, the routes 2 and 3 (with 

dense dashed and dashed lines, respectively) are changed. 

Figure 4.3: Zone Removal. a) Feasible solution before removal, b) Partial solution 

after removal 

 

9. Multiple Random Route Removal: This operator randomly chooses 𝑟 routes and 

removes all the customers in those routes. 𝑟  is a parameter and depends on the 

number of routes in the current solution. It is determined randomly between 10% 

and 𝑚𝑟% of total number of routes.  

10. Multiple Greedy Route Removal: This operator removes some routes in a greedy 

way. 𝑟 is determined in the same way with Multiple Random Route Removal. The 

number of customers in each route is identified and then the route which has the 

least number of customers is removed from the solution. This continues until 𝑟 

routes are removed. This operator helps to distribute the customers in shorter routes 

into other routes in an attempt to reduce the total distance traveled. The process is 

illustrated in the Figure 4.4. Let us assume that 𝑟 is 2, then firstly the customers in 

the route whose arcs are shown with dense dashed line will be removed because that 

route has the least number of customers. Then the customers in the route whose arcs 

are shown with dashed line will be removed due to having fewer customers than the 

other route. 
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Figure 4.4: Multiple Greedy Route Removal. a) Feasible solution before 

removal, b) Partial solution after removal 

 

4.2.2. Update Algorithms 

After identifying the customers to be removed from the current feasible solution, those 

customers should be removed and the corresponding routes must be updated because at 

some nodes, the arrival charge, time and capacity features of some nodes will change 

with the removal of some customers. Those operations are done in the update 

procedure. Unlike the classical VRPTW, there may be stations in some routes due to 

charge constraint. Hence, in some cases, it might be useful to remove not only the 

customer but also the predecessor or successor station of the customer. We introduce 

three update procedures which are Remove Customer Only (RCO), Remove Customer 

with Predecessor Station (RCwPS), Remove Customer with Successor Station 

(RCwSS). Since route removal algorithms remove all customers and stations from the 

selected routes, update phase is not necessary when those algorithms are used at the 

removal step. 

 

1. Remove Customer Only: RCO removes only the customers in the removal list 

from their routes. However, if the predecessor and successor of a customer are the 

same stations, then after the removal of that customer, two identical stations become 

successive in the route which is an unnecessary situation. Hence, this is checked in 

the update operation and if such a case occurs, one of those stations is also removed 

from the solution. Additionally, if the depot is used as a station in a route, after 

removal of intermediary customers, the depot which the vehicle begins or ends its 

route with and the depot which is used as a station become successive likewise. In 
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this situation, the depot which is used as station is removed from the solution. After 

the removal operation, the arrival time, arrival charge, capacity, departure time and 

departure charge of the customers and stations in the route are recalculated 

according to the new sequence. In order to decrease computational time by 

eliminating unnecessary operations, only customers and stations which come after 

the position of removed customer are considered since other nodes are not affected 

by the removal operation and the features of the vehicle at those nodes stay the 

same. In some cases, after removal of customers, the destroyed route may become 

infeasible in terms of charge. We need to make this route feasible again because in 

the next step the removed customers will be inserted to the routes and if the route 

stays infeasible, then during the insertion of customers, we need to insert additional 

stations which will increase the cost. Hence, Best Station Insertion algorithm is 

applied to make it feasible. The pseudo code of this algorithm is given in 

Algorithm2. 

 

2. Remove Customer with Predecessor Station: RCwPS does not only remove the 

customer in the removal list but it also removes the preceding station if any. The 

idea behind this removal is that the station which precedes the removed customer 

may be relevant to the customer. In other words, the station before the removed 

customer may have been located there in order to make the vehicle enough charged 

to go to the removed customer. Hence, with the removal of that customer, the station 

may become redundant because there would be enough charge to connect other 

customers. Under this assumption, if there is a station before the removed customer, 
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the algorithm removes it and then recalculates the arrival time, arrival charge, 

capacity, departure time and departure charge of the customers and stations at the 

nodes according to the new sequence. Like in previous procedure, only the nodes 

after the removed customer or station –if there is- are considered in order to 

eliminate unnecessary operations. Figure 4.5 shows a route before and after 

removing the customer C4 and the station before C4 from the route.  

Figure 4.5: Removing customers and their predecessor stations. a) Feasible 

solution before removal, b) Partial solution after removal 
 

Like in the Algorithm 2, if a route becomes infeasible after removal of some 

customers and stations, then we will call Best Station Insertion algorithm to make it 

feasible. The pseudo code of this algorithm is given in Algorithm 3. 
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3. Remove Customer with Successor Station: RCwSS removes the customer in the 

removal list along with the succeeding station, if any. The idea is similar to RCwPS. 

The station after the removed customer may have been located there in order to 

make the vehicle enough charged to go from the removed customer. However, with 

the removal of that customer, the station may become redundant because there 

would be enough charge to connect other customers. After the removal process, 

arrival time, arrival charge, capacity, departure time and departure charge of the 

customers and stations in the route are recalculated according to the new sequence. 

Also in this algorithm, only the nodes after the removed customer are considered in 

order to eliminate unnecessary operations. Figure 4.6 illustrates the removal 

operation of customer C3 and the station after C3. 

Figure 4.6: Removing customers and their successor stations. a) Feasible 

solution before removal, b) Partial solution after removal 

 

Also in this algorithm, if a route becomes infeasible after removal of some 

customers and stations, then we will apply Best Station Insertion algorithm to make 

it feasible. 

 

4.2.3. Customer Insertion Algorithms 

After removing some customers from the current feasible solution, we need to repair the 

solution by reinserting the customers in the removal list to the partial feasible solution. 

The first four algorithms, Greedy Insertion, Zone Insertion, Regret-2 Insertion and 

Regret-3 Insertion are adopted from Ropke and Pisinger (2006a), Pisinger and Ropke 

(2007), and Demir et al. (2012). The last one, Time Based Insertion is newly proposed. 

 

1. Greedy Insertion: This algorithm simply inserts customers to their best position in 

the fleet and the customer which has the least cost is chosen among others and 
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inserted first. The cost criteria 𝑐𝑖  is determined for all customers in the removal list 

as follows: Customer i is inserted to a position j in route k and if this insertion does 

not violate time windows of any customer, the increase of the total distance of that 

route is calculated as 𝑓𝑖𝑗𝑘 . If that insertion is feasible in time but infeasible in charge 

then a station should also be inserted into that route. If this is the case, the Greedy 

Station Insertion algorithm is used to find a station which will make the route 

feasible. After inserting a station, the cost of this insertion is calculated as the 

increase of the total distance after the insertion of that customer and corresponding 

station. After trial of all positions in the route, the position which has the minimum 

distance increase is determined and a cost 𝑓𝑖,𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗  𝑓𝑖𝑗𝑘   is assigned to 

customer i for route k. If the customer cannot be inserted into route k, then we set 

𝑓𝑖,𝑘 = ∞ . After analyzing all routes, the cost of opening a new route for that 

customer is also considered because that customer may not be inserted to any 

position in the existing routes. The cost of opening a new vehicle is just the multiple 

of the distance from depot to the customer if a vehicle can service that customer 

without visiting a station. If a station is needed to complete the route, then the whole 

distance including the station is considered as the new route opening cost. The 

position which increases the objective function the least is the one that has  𝑐𝑖 =

𝑚𝑖𝑛𝑘 𝑓𝑖,𝑘   for customer i. After analyzing all customers, the customer which has 

the  𝑚𝑖𝑛𝑖 𝑐𝑖   is selected to be inserted to its minimum cost position. If this insertion 

requires a station insertion, then the corresponding station is also inserted to the 

predetermined position in the route. Moreover, if the position which has 𝑚𝑖𝑛 𝑐𝑖   is 

in a new route, then a new vehicle is opened and added to the fleet. After the 

insertion is performed, that customer is removed from the removed customers list 

and arrival time, arrival charge, capacity, departure time and departure charge of the 

vehicle in which the insertion is performed are recalculated according to the new 

sequence. On the other hand, only the nodes after the removed customer are 

considered in order to eliminate unnecessary operations. Then, 𝑓𝑖,𝑘  values of 

remaining customers for the selected route are recalculated because the route is 

changed due to the insertion of the previous customer. Thus, the insertion costs and 

insertion places would be different. Furthermore, if a new route is opened in the 

previous iteration, then insertion costs 𝑓𝑖,𝑘  where k is the new route are calculated 

for remaining customers. After updating the costs of remaining customers, the 
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customer which has the minimum 𝑐𝑖  is selected to be inserted to its minimum cost 

position again and until all removed customers are inserted, this procedure is 

repeated. Pseudo code of the Greedy Insertion is given in Algorithm 4. 

 

2. Regret-k Insertion: Greedy heuristic often postpones the placement of customers 

which are expensive to insert to the last iterations because it always selects the 

customer with the least cost. The regret heuristics try to circumvent this problem by 

incorporating a kind of look-ahead information when selecting the customer to 

insert (Ropke  and  Pisinger,  2007a). Let ∆𝑓𝑖
𝑘  denote the change in the objective 

function value incurred by inserting customer i into its 𝑘𝑡𝑕  best position in all 

routes. For example, ∆𝑓𝑖
2 corresponds to the change in the objective function value 
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incurred by inserting customer i into its second best position. If an insertion requires 

a station insertion due to charge infeasibility, then the increase in the objective 

function is calculated with the station insertion like in the greedy insertion. After 

calculating ∆𝑓𝑖
𝑘  values for all customer in the removal list, the heuristic chooses the 

customer i which has 𝑎𝑟𝑔𝑚𝑎𝑥𝑖  ∆𝑓𝑖
𝑘 − ∆𝑓𝑖

1 . Then the customer is inserted to its 

minimum cost position. After an insertion is performed, the route to which a 

customer is inserted is updated by means of time, capacity and charge. Only the 

nodes after the removed customer are considered in order to eliminate unnecessary 

operations. Then, ∆𝑓𝑖
𝑘 − ∆𝑓𝑖

1 values of remaining customers for the changed route 

are recalculated because the route is changed due to the insertion of the customer. 

Thus, the insertion costs and insertion places would be different. Furthermore, if a 

new route is opened, then insertion costs to the new route are calculated and 

considered in the recalculation of ∆𝑓𝑖
𝑘 − ∆𝑓𝑖

1 values for the remaining customers. 

Finally, the procedure is repeated for remaining customers in the removal list until 

all customers are inserted to the solution.  

 

3. Zone Insertion: This algorithm inserts customers in a time based manner. The logic 

behind this algorithm is leaving enough space for future insertions by selecting the 

insertions according to time windows instead of distance. Firstly, the routes which 

pass through each zone are determined. For instance, the route 1 in the Figure 4.7 

(with solid arcs) passes through zones 1, 2, 3 and 4 whereas the route 2 (with dense 

dashed arcs) passes through zones 4, 5, ... 𝑛𝑍 . Moreover, zone 1, 2 and 3 only have 

the route 1 whereas zone 4 has routes 1, 2 and 3 (with dashed arcs).  

 

Figure 4.7: Routes in the zones 
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After determining route distribution among the zones, a customer is selected 

randomly from the removal list. Then it is inserted to the positions in the routes 

which pass through the zone in which that customer is located and the customer 

which has the least insertion cost is chosen among others and is inserted first. For 

instance, if the first customer of the red route is selected, insertions to all routes will 

be considered. However, if the first customer of brown route is selected, then 

insertions to red and brown routes will be considered. The cost criteria 𝑐𝑖  is 

determined for all customers as follows: When customer i is inserted to a position j 

in route k and if this insertion does not violate time windows of any customer, the 

time delay of the inserted customer is calculated as 𝑓𝑖𝑗𝑘 = 𝑚𝑎𝑥 0, (𝜏𝑖 − 𝑒𝑖) . This 

expression stands for the waiting time of customer i when it is inserted to the 

position j in the route k. If that insertion is feasible in time but infeasible in charge 

then a station should also be inserted to that route. If this is the case, Greedy Station 

Insertion algorithm is used to find a station which will make the route feasible. After 

inserting a station, cost of this insertion is calculated as mentioned above. After trial 

of all positions in the route, the position which has the minimum waiting time is 

determined and a cost 𝑓𝑖,𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗  𝑓𝑖𝑗𝑘   is assigned to customer i for route k. If 

the customer cannot be inserted route k, then we set 𝑓𝑖,𝑘 = ∞ . Then the position 

which yields least waiting time is determined as having 𝑐𝑖 = 𝑚𝑖𝑛𝑘 𝑓𝑖,𝑘   and 

customer i is inserted to that position. If this insertion requires a station insertion, 

then the corresponding station is also inserted to the predetermined position in the 

route. In some cases, any position may not be found for those routes. For such 

customers, Greedy Insertion algorithm is applied instead of Zone Insertion. After the 

insertion is performed, that customer is removed from the removed customers list 

and arrival time, arrival charge, capacity, departure time and departure charge of the 

customers and stations in the route are recalculated according to the new sequence. 

Again, only the nodes after the removed customer are updated in order to eliminate 

unnecessary operations. 

After the insertion, route k may pass through a new zone. Hence, if the updated 

route passes through a new zone, new route distribution is determined for those 

zones. Then another customer from the list is selected randomly and the above 

procedure is repeated until all removed customers are inserted. 
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4. Time Based Insertion: This algorithm combines greedy insertion with the logic of 

zone insertion. It inserts customers to their best position in the fleet and the 

customer which has the least cost is chosen among others and inserted first. Here, 

the cost criteria 𝑐𝑖  is the waiting time of the customer 𝑖 as in Zone Insertion. All 

other steps of the algorithm are the same as those in the Greedy Insertion. 

 

In customer insertion algorithms, assigning a customer to a new route costs the total of 

distance from depot to that customer and the distance from that customer to the depot. 

This is valid for distance minimization objective. If we solve the problem with 

hierarchical objective function, then we need to assign a big cost to the new route in 

order to motivate decreasing number of vehicles. 

 

4.3. Station Removal & Insertion Mechanism 

After customer removal and insertion, the first part of the ALNS framework is 

completed. In the second part, we will destroy the current feasible solution by removing 

recharging stations because stations are the crucial part of this problem. Hence, 

changing their positions in the visit sequence of a route may also improve the solution. 

Between a pre-determined number of iterations, a station removal and insertion 

procedure is applied. The number of stations to be removed 𝑛𝑠  is determined in a 

similar fashion to q. Firstly, the total number of stations in the current solution is 

calculated. Then 𝑛𝑠  is selected randomly between 10% and 40% of total number of 

stations. There are three types of station removal algorithms which are Worst Distance, 

Worst Charge Usage and Random Station Removal. 

 

4.3.1. Station Removal Algorithms 

 

1. Random Station Removal: This algorithm simply selects 𝑛𝑠 stations randomly and 

removes them from the current feasible solution. This random selection contributes 

diversification of the search. 

2. Worst Charge Usage Station Removal: The main idea of this algorithm is to 

increase the efficiency of usage of the stations. We want the number of stations to 

be as small as possible because going to a station causes an increase in distance. 

Hence, a vehicle should go to a station at its minimum charge level. In other words, 

a vehicle should go to a station if it does not have enough charge to travel any other 
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customer. From this point of view, it would be reasonable if we remove those 

stations to which a vehicle goes with high charge level. Firstly, the arrival charge of 

the vehicle for each station in the fleet is examined and added to a list, i.e. List1. 

After analyzing all stations, List1 is ordered in non-increasing order of charge levels 

which are found as indicated above. Then the algorithm removes the station which 

has the first value in the List1. If the number of stations in the whole fleet is smaller 

than or equal to 𝑛𝑠, then all the stations in the solution are removed. For the other 

case, the above procedure is repeated until 𝑛𝑠  stations are selected and removed 

from the current solution. With this algorithm, it is expected that a new station 

which causes less distance increase is inserted to the route. Hence, the utilization of 

stations increases while distance decreases. Pseudo code of this removal operation is 

given in Algorithm 5. 

 

3. Worst Distance Station Removal: This algorithm is similar to the worst distance 

customer removal. Costs of the stations are calculated as 𝑔𝑗 =  𝑑𝑖𝑗 + 𝑑𝑗𝑘   where 𝑑𝑖𝑗  

is the distance between 𝑗 and 𝑖 ∈ 𝑁 which is the preceding node of 𝑗 and 𝑑𝑗𝑘  is the 

distance between j and k which is the successing node of 𝑗 in the corresponding 
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route and added to a list, i.e. List1. Then List1 is sorted in non-decreasing order and 

the station which has the highest cost 𝑗∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗∈𝑁 𝑔𝑗    is removed from the 

solution. This process is repeated until 𝑛𝑠 stations are removed. This algorithm aims 

to decrease total distance by removing stations with high distance deviation. 

 

4.3.2. Station Insertion Algorithms 

After removing some stations, the solution may become charge infeasible. In order to 

make infeasible routes feasible, station insertion algorithms are used. These algorithms 

insert stations to the infeasible routes. The difference with customer insertion 

algorithms is that the algorithm does not necessarily insert the stations which are 

removed in the station removal phase. Because stations are always available and 

assumed to be infinitely many, any station can be inserted throughout the algorithm. 

There are three station insertion mechanisms. 

At the beginning of all station insertion algorithms, feasibility of destroyed routes is 

checked. A destroyed route may have become infeasible in terms of charge, time or 

both of them. We can explain these situations through the following figures: 

 

D C1S2 C2 C3S2 D

D C1 C2 C3S2 D

Feasible route before station removal

Time infeasible route after station removal

 

Figure 4.8: Simple illustration of a station removal process. 

Consider the route shown in Figure 4.8. After the removal of station S2 which is before 

C1, arrival times of C1 and C2 will either be the same (if arrival time of C1 is earlier 

than its early arrival time) or earlier than the former case due to elimination of charging 

and traveling time of the station. However, the arrival charge of the vehicle at S2 which 

is after C2 will be smaller because the vehicle did not visit a station like before. That 

means charging will be longer and arrival time to C3 will be later. If that time is later 

than the late arrive time of C3, then the vehicle is late for C3 which means the route is 

infeasible in time. In order to accomplish this situation, we need to insert a station or 

stations before the node of which arrival time is later than its late arrive time. 
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Figure 4.9: Routes before and after station removal 

 

Figure 4.9 illustrates how the charge infeasibility may occur after the station removal. 

Features of C1 and C2 will be the same after the removal.  However, departure charge 

at C2 may not be enough to travel from C2 to C3. Or it may arrive to C3 but not have 

enough charge to return Depot. In order to overcome this situation, we need to insert a 

station or stations before the node of which arrival charge is smaller than 0.  

 

At the beginning of the station insertion, we need to discard time infeasibility. Firstly, 

we identify the node whose arrival time is greater than its early arrive time. Then we 

insert the stations beginning from the position just before that node. We insert the 

stations beginning with the nearest station for the corresponding position. If the nearest 

station does not make the route feasible, then we continue trying with further stations 

until we obtain feasibility. If any station for the position between C1 and C2 still does 

not make the route feasible, we repeat the same operations for the preceding positions 

until feasibility is satisfied.  

 

1. Greedy Station Insertion: This station insertion algorithm inserts stations in a 

greedy manner. Firstly, the algorithm identifies the node which has the first negative 

arrival charge in the route. Then it inserts the nearest station to the position just 

before the negative node. If the arrival charge of the node which has the first 

negative arrival charge becomes positive and time window feasibility of all nodes in 

the route does not violated, then this station is inserted to that position. If that station 

does not make the arrival charge of that node positive or violates time windows, 

then the previous positions are investigated until a proper station is found. We are 

looking at the positions between the negative node and the first station before that 

node. If there is no station before that node, we look at the positions between that 
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node and the depot at the beginning of the route. We restrict the positions in this 

way because we can make the arrival charge of that node positive by inserting only 

to the previous positions. And because vehicles are fully charged at a station, it is 

useless to look at the positions before a station; the vehicle will leave that station 

fully charged anyway. In addition, since we did not check the route feasibility while 

analyzing the stations, that insertion may not make the whole route feasible. If there 

are any nodes which have negative arrival charge, then the procedure is repeated for 

the new negative charged node until the whole route become charge feasible. The 

pseudo code of this algorithm is given in Algorithm 6. 

2. Best Station Insertion: This algorithm tries to insert the best station in terms of 

distance in order to make the arrival charge of the first negative charged node 

positive. Firstly, the algorithm inserts the nearest station to the position just before 

the first negative charged node. If this insertion makes the arrival charge of the 

negative charged node positive and does not violate time window feasibility of all 

nodes in the route, then the increase of the total distance of the route is added to a 

list i.e. List1. This distance increase is kept for comparing the stations and selecting 

the best one. Then the previous position is analyzed likewise and this backward 

investigation continues until we reach a station.  

Then List1 is sorted in non-decreasing order and the insertion which has the smallest 

distance increase, first in List1, is performed. After the insertion, arrival time and 

charge, departure time and charge information of the station inserted and the 

customers which are after the insertion position are updated accordingly. Since we 

did not check the route feasibility while analyzing the stations, that insertion may 

not make the whole route feasible. Thus, if it is the case, the node which has the first 

negative charge is again identified and the algorithm is reoperated in the same 

manner until all nodes have positive arrival charge. 
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3. Greedy Station Insertion with Comparison: This algorithm is a more forward 

looking version of the greedy station insertion. While greedy station insertion 

performs insertion to the first position of which a feasible station is found, this 

algorithm also analyzes the previous position of that position. Firstly, the nearest 

station for the position just before the negative arrival charged node is inserted to 

that position. If the arrival charge of the node which has the first negative arrival 

charge becomes positive and time window feasibility of all nodes in the route is not 

violated, the distance increase of this insertion is kept. Then the same procedure is 

applied to the previous position. After that, those two stations are compared in terms 

of distance increase and the better one is selected for insertion. After the insertion, 

arrival time and charge, departure time and charge information of the station 

inserted and the customers which are after the insertion position are updated 

accordingly. Since we did not check the route feasibility while analyzing the 

stations, that insertion may not make the whole route feasible. Thus, if it is the case, 

the node which has the negative charge is again identified and the algorithm is 

reoperated in the same manner until all nodes have positive arrival charge. 

This algorithm works like above if the stations for the first and second positions are 

feasible. In other words, if the nearest station for the first position is not feasible, 

then we assume that the cost of inserting a station in the first position ∞. Hence, the 

nearest station of the previous position will have less cost compared to ∞ and it will 

be inserted. The same rule is valid when the station of the first position is feasible 

and the station of the previous position is not. Then insertion cost in the second 

position will be ∞  and the station of the first position will be inserted. 

Consequently, in those cases, this algorithm works like greedy station insertion. 

 

In some cases, those station insertion algorithms are not able to make the whole route 

feasible. It may occur because the route might have destroyed too much and algorithms 

cannot find a feasible station because instead of looking all stations in the station list, 

we look the nearest stations for each position. Hence, a proper sequence may not have 

been found by those stations. If this is the case, we cancel the removal process for this 

route and reinsert the stations which are removed in the station removal step. 
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Figure 4.10 illustrates a possible improvement after the station removal and insertion in 

a route. 

C1 C2

C3

C4

C5

C6

S1

a) Feasible solution b) Improved feasible solution

D
S2

C1 C2

C3

C4

C5

C6

S1

D
S2

Figure 4.10: Improvement after station removal and insertion operations 

 

 

The generic structure of the algorithm for the hierarchical objective is given in 

Algorithm 7. The algorithm for distance minimization objective is very similar and is 

provided in Appendix C. 
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Chapter 5 

Computational Experiments 

In this chapter, we perform computational experiments to validate the performance of 

the proposed ALNS approach. We first tune the parameters using a subset of instances 

and determine their values separately for the distance minimization and hierarchical 

objectives. Then we test the performance of the proposed ALNS using the 36 small and 

56 large instances generated by Schneider et al. (2014) based on the well-known 

VRPTW instances of Solomon. The large set involves three main problem classes 

where 100 customers and 21 recharging stations are clustered (C), randomly distributed 

(R), and both clustered and randomly distributed (RC) over a 100×100 grid. Each set 

has also two subsets, type 1 and type 2, which differ by the length of the time windows 

and the vehicle capacity. The small set includes three subsets of 12 problems with 5, 10 

and 15 customers in each subset, respectively. 

The battery capacity is set to the maximum of the following two values: (i) the charge 

needed to travel 60% of the average route length of the best known solution to the 

corresponding VRPTW instance; and (ii) twice the amount of battery charge required to 

travel the longest arc between a customer and a station. This procedure ensures that 

instances with geographically disperse and remote customers stay feasible. Furthermore, 

the instances guarantee that recharging stations have to be used. For the sake of 

simplicity, the consumption rate is assumed 1.0 and the recharging rate g is set so that a 

complete recharge requires three times the average customer service time of the 

respective instance. 
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The algorithm is coded on Java programming language and all experiments are 

performed on an Intel Core i7 processor with 3.40 GHz speed and 16 GB RAM, and 64-

bit Windows 7 operating system. 

5.1. Parameter Tuning 

We adopted a tuning methodology similar to that of Ropke and Pisinger (2006a). We 

selected six large problems and performed ten runs for each parameter by considering 

the initial values as described in Ropke and Pisinger (2006a, 2006b), Pisinger and 

Ropke (2007), and Demir et al. (2012). For the new parameters, we determined a 

selection of reasonable values inspiring from Ropke and Pisinger (2006a). We omitted 

C1 and C2 problem classes since they usually converge to same solutions for different 

parameter values and do not provide much information about the contribution of the 

parameter value on the solution quality. Consequently, we selected the instances R107, 

RC101, RC104, RC105, R205 and RC205 for parameter tuning. 

At each step, we allow one parameter to take a number of predefined values while the 

rest of the parameters are kept fixed. For each parameter, we run the heuristic ten times 

on the tuning instances and we select the value that gives the least average deviation 

from the best achieved solution. After a parameter value is determined, its value is fixed 

and this procedure is repeated for the remaining parameters until all parameters have 

been tuned. The details of the parameter setting, tuning sequence, deviations and final 

values are given in Appendix A. 

Although many parameters take different values we observe that the score of the worse 

solution (𝜎3 ) is greater than the score of the better solution ( 𝜎2)  which allows 

diversification by rewarding non-improved solutions as in Ropke and Pisinger (2006a) 

and Demir et al. (2012). 

Ropke and Pisinger (2006a) set the number of iterations to 25,000 and noted that 

additional runtime had minor contribution to the solution quality. Our convergence 

analysis showed similar results. So, we also performed 25,000 iterations. 

In addition, 𝑛𝑐  and 𝑛𝑐  are taken as 0.1 𝑁  and 0.4 𝑁  in Ropke and Pisinger (2006a). 

We also use those values, did not include them in the parameter tuning. 
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5.2. Experimental Study on Small Instances 

We solve all small instances to optimality by CPLEX. ALNS is run for 25 times for 

each instance and it was able to find the optimal solutions. We give the optimal results 

for distance minimization case in the Appendix B. Results for hierarchical objective 

case given in Schneider et al. (2014) include optimal solutions and upper bounds 

obtained in 7200 seconds. However, we solved all of them optimally and proved that 

those upper bounds are optimal. ALNS also successfully found those results. 

 

5.3. Experimental Study on Large Instances 

5.3.1. Hierarchical Objective Function Case 

5.3.1.1. Numerical Results 

We compare our solutions on large instances with the results reported by Schneider et al 

(2014) in Table 5.1. Schneider et al. (2014) presented the best solution found using (i) 

the hybrid VNS and TS with an SA acceptance criterion (denoted as VNS/TS), (ii) 

VNS/TS only accepting improving solutions, (iii) pure TS as well as the best known 

solution they observed throughout all computational study including the parameter 

tuning. The first column denotes the instance. The second and third columns report the 

best solutions, i.e. the number of vehicles (#Veh) and total distance (TD), found by 

Schneider et al. (2014) throughout all experiments they performed while the results 

achieved by ALNS for the hierarchical objective denoted by ALNS (Hier) are given in 

the following columns. The column “#Rech” reports the total number of recharges in 

the best solution found. The column “∆TD” shows the percentage difference between 

the distance in Schneider et al. (2014) and that found by ALNS (a negative value 

implies improvement). The following four columns compare the best solutions found by 

VNS/TS (the best method among the three algorithms) to those of ALNS after all the 

parameters of the two approaches were tuned. Note that Schneider et al. (2014) 

performed 10 runs while ALNS was run 25 times with fixed parameters. The last 

column gives the average computational time in minutes. Finally, “#Better” and 

“#Better or Same” at the bottom of the table denote the number of instances in which 

ALNS showed better performance and better than or same performance, respectively, 

compared to Schneider et al (2014).  
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 Table 5.1: ALNS results for hierarchical objective function 

 

  

 
Best in All Computational Tests  

 

Best with Fixed Parameters 

  

 
Schneider et al. ALNS (Hier)  ∆TD 

(%) 

VNS/TS ALNS (Hier) ∆TD 

(%)  Problem #Veh TD #Veh TD #Rech #Veh      TD #Veh     TD t (min) 

c101 12 1053.83 12 1053.83 8 0.00 12 1053.83 12 1053.83 0.00 1.28 

c102 11 1056.47 11 1056.12 9 -0.03 11 1057.16 11 1056.12 -0.10 2.28 

c103 10 1041.55 11 1001.81 7 - 10 1041.55 11 1002.60 - 4.18 

c104 10 979.51 10 951.57 7 -2.85 10 980.82 11 969.46 - 7.02 

c105 11 1075.37 11 1075.37 9 0.00 11 1075.37 11 1080.85 0.51 1.51 

c106 11 1057.87 11 1057.65 9 -0.02 11 1057.87 11 1057.65 -0.02 1.71 

c107 11 1031.56 11 1031.56 9 0.00 11 1031.56 11 1031.56 0.00 1.80 

c108 10 1100.32 11 1015.68 8 - 10 1100.32 11 1015.68 - 2.17 

c109 10 1036.64 11 993.77 9 - 10 1051.84 11 1004.36 - 2.97 

c201 4 645.16 4 645.16 4 0.00 4 645.16 4 645.16 0.00 3.12 

c202 4 645.16 4 645.16 4 0.00 4 645.16 4 645.16 0.00 16.61 

c203 4 644.98 4 644.98 4 0.00 4 644.98 4 644.98 0.00 38.18 

c204 4 636.43 4 636.43 4 0.00 4 636.43 4 636.43 0.00 74.21 

c205 4 641.13 4 641.13 3 0.00 4 641.13 4 641.13 0.00 8.42 

c206 4 638.17 4 638.17 4 0.00 4 638.17 4 638.17 0.00 18.42 

c207 4 638.17 4 638.17 4 0.00 4 638.17 4 638.17 0.00 21.63 

c208 4 638.17 4 638.17 4 0.00 4 638.17 4 638.17 0.00 27.41 

r101 18 1670.80 18 1679.06 23 0.49 18 1672.55 19 1659.47 - 2.42 

r102 16 1495.31 17 1480.10 19 - 16 1535.81 17 1480.10 - 3.00 

r103 13 1299.17 14 1269.20 17 - 13 1299.64 14 1269.20 - 3.45 

r104 11 1088.43 12 1071.89 11 - 11 1088.43 12 1073.75 - 4.29 

r105 14 1461.25 15 1383.29 19 - 14 1473.59 15 1428.10 - 2.65 

r106 13 1344.66 14 1276.33 18 - 13 1344.66 14 1276.33 - 3.13 

r107 12 1154.52 12 1148.43 14 -0.53 12 1154.52 12 1148.62 -0.51 3.48 

r108 11 1050.04 11 1051.59 13 0.15 11 1065.89 11 1067.32 0.13 4.88 

r109 12 1294.05 13 1214.72 14 - 12 1294.05 13 1246.65 - 3.87 

r110 11 1126.74 12 1097.89 12 - 11 1143.52 12 1104.72 - 2.51 

r111 12 1106.19 12 1109.14 15 0.27 12 1124.06 12 1111.86 -1.09 2.49 

r112 11 1026.52 11 1038.74 14 1.19 11 1026.52 12 1045.42 - 3.20 

r201 3 1264.82 3 1265.67 7 0.07 3 1264.82 3 1325.90 4.83 10.36 

r202 3 1052.32 3 1052.32 3 0.00 3 1052.32 3 1055.48 0.30 25.83 

r203 3 895.91 3 895.54 4 -0.04 3 912.86 3 895.54 -1.90 40.78 

r204 2 790.57 2 780.98 3 -1.21 2 790.57 3 720.51 - 65.74 

r205 3 988.67 3 987.36 3 -0.13 3 988.67 3 987.36 -0.13 17.39 

r206 3 925.20 3 922.70 3 -0.27 3 925.20 3 925.37 0.02 27.79 

r207 2 848.53 2 850.80 2 0.27 2 852.73 2 851.75 -0.11 38.98 

r208 2 736.60 2 736.12 2 -0.07 2 736.60 2 736.12 -0.07 160.85 

r209 3 872.36 3 871.22 4 -0.13 3 872.36 3 876.54 0.48 27.82 

r210 3 847.06 3 843.65 3 -0.40 3 847.06 3 846.96 -0.01 43.03 

r211 2 847.45 3 761.56 1 - 2 866.21 3 761.56 - 46.81 

rc101 16 1731.07 16 1731.07 17 0.00 16 1731.07 16 1757.09 1.50 1.26 

rc102 15 1554.61 15 1551.69 17 -0.19 15 1554.61 15 1552.58 -0.13 1.77 

rc103 13 1351.15 13 1351.73 14 0.04 13 1353.55 13 1365.91 0.91 2.12 

rc104 11 1238.56 11 1232.45 13 -0.49 11 1249.23 12 1232.91 - 2.90 

rc105 14 1475.31 14 1473.24 16 -0.14 14 1483.38 14 1499.42 1.08 1.65 

rc106 13 1437.96 14 1414.99 15 - 13 1440.19 14 1425.64 - 1.75 

rc107 12 1279.08 12 1283.05 14 0.31 12 1275.89 12 1304.89 2.27 2.33 

rc108 11 1209.61 11 1209.11 14 -0.04 11 1238.81 12 1231.89 - 2.80 

rc201 4 1444.94 4 1446.84 4 0.13 4 1447.20 4 1453.87 0.46 5.52 

rc202 3 1412.91 3 1450.34 6 2.65 3 1412.91 4 1243.55 - 12.08 

rc203 3 1073.98 3 1069.27 5 -0.44 3 1078.28 3 1082.04 0.35 23.76 

rc204 3 885.35 3 887.76 4 0.27 3 889.22 3 892.15 0.33 79.69 

rc205 3 1321.75 3 1277.60 6 -3.34 3 1321.75 4 1158.72 - 13.12 

rc206 3 1190.75 3 1221.07 4 2.55 3 1191.13 3 1223.10 2.68 12.86 

rc207 3 995.52 3 1001.33 4 0.58 3 995.52 3 1003.01 0.75 32.44 

rc208 3 837.82 3 841.34 5 0.42 3 838.03 3 844.23 0.74 44.24 

#Better 

  
17 

 

 

   
10 
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The results in Table 5.1 show that ALNS performs better in type 2 problems where the 

time windows are wider and vehicle capacities are larger. In these problems, the number 

of routes is small and each vehicle visits many customers along its route. In addition, 

the run times of type 1 problems are significantly shorter. These problems involve 

narrow time windows and the feasible region is smaller; hence, converging to a solution 

is faster. However, ALNS fails to reach the number of vehicles found by VNS/TS in 

many instances, in particular in r1 problems. Overall, ALNS improves the BKS of 17 

problems. In these problems, the number of vehicles is usually same as in Schneider et 

al. (2014) and the improvement is in the distance. Better solutions are shown as bold 

and underlined while the same solutions are shown as bold in the table.  Schneider et al. 

(2014) did not give any details of the computational effort and only reported an overall 

average run time of 15.34 minutes on an Intel Core i5 processor with 2.67 GHz speed 

and 4 GB RAM, operating Windows 7 Professional. The computation time of ALNS is 

18 minutes on the average. 

Table 5.1 also shows that on the average each vehicle visits a station for recharging. In 

addition, recharging is more frequent in r- and rc- type problems compared to the c- 

type problems where the average number of recharges is less than 1 (0.75 in c1 and 0.97 

in c2 problems). There is no significant difference between type-1 and type-2 problems 

in terms of the number of recharges; nevertheless, the recharges are slightly more 

frequent in type-2 problems where the time windows are wider. 
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5.3.1.2. Analysis of the ALNS Algorithms 

In this section, we investigate the utilization of the removal and insertion algorithms. 

We record the number of times that the algorithms are selected in a run and take the 

average of 25 runs for 56 large instances. This average value indicates the number of 

times that an algorithm is selected throughout the search. Figure 5.1 shows the 

percentage usage of customer removal algorithms compared to each other. 

Figure 5.1: Average usage of customer removal algorithms 

 

We see that route removal algorithms are used much more than others. There may be 

two reasons of this situation. Firstly, only route removal algorithms are used during the 

route minimization procedure which is performed for 4 times (4,000 iterations) 

throughout the search. Secondly, route removal algorithms are more likely to contribute 

decreasing the number of vehicles. Hence, they are awarded more than others meaning 

that their scores will be higher and their selection probabilities will be greater. On the 

other hand, demand based removal is used least among removal algorithms. 
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Figure 5.2: Average usage of update algorithms 

 

Figure 5.3: Average usage of customer insertion algorithms 

Figure 5.2 shows that all three of the update algorithms are frequently utilized with 

ROC slightly more than the other two. According to Figure 5.3, regret2 and regret3 

insertions correspond to 75% of the algorithms used for reinsertion of removed 

customers to the solution whereas zone and time based insertions are rarely utilized. 
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Figure 5.4: Average usage of station removal algorithms 

Figure 5.5: Average usage of station insertion algorithms 

The results regarding the station removal usage statistics reported in Figure 5.4 show 

that the worst distance station removal algorithm is most commonly used with a 58% 

share whereas the random removal is not very effective (less than 5% utilization). On 

the other hand, Figure 5.5 illustrates that all three station insertion algorithms are 

equally used throughout the search. 
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5.3.2. Distance Minimization Case 

5.3.2.1. Numerical Results 

Table 5.2 shows the results of proposed ALNS for each instance. The notation is similar 

to that used in Table 5.1. ALNS (Dist) refers to the ALNS implementation minimizing 

the distance traveled. As in the previous case, we performed 25 runs with fixed 

parameters. We also provide the best results of hierarchical objective case for 

comparison.  

The values in Table 5.2 show that the total distances are usually shorter than the 

distances observed in the hierarchical objective case while the numbers of vehicles used 

are greater (see the values in bold). This is an expected result considering the objective 

functions addressed in the two ALNS implementations and is an indicator of their 

effectiveness. On the other hand, in the four instances (see the values underlined) we 

observe that the distance minimizing ALNS found solution with longer distance and 

greater number of vehicles. This is an unexpected result which, we think, shows that a 

solution with a shorter travel distance is only achievable if the number of vehicles is 

reduced. This phenomenon also differentiates the E-VRPTW from the VRPTW. In 

addition, we see that the numbers of vehicles used are significantly more in the r2 and 

rc2 problem sets as expected due to wider time windows.  
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Table 5.2: ALNS results of distance minimization objective 

 
Best in All Computational Tests Best with Fixed Parameters 

Problem ALNS (Dist) ALNS (Hier) ALNS (Dist) ALNS (Hier) 

 
#Veh TD #Veh TD #Veh TD #Veh TD 

c101 12 1053.83 12 1053.83 12 1053.83 12 1053.83 

c102 12 1022.58 11 1056.12 12 1022.58 11 1056.12 

c103 11 1001.81 11 1001.81 11 1002.60 11 1002.60 

c104 10 951.57 10 951.57 11 969.46 11 969.46 

c105 12 1033.93 11 1075.37 12 1033.93 11 1080.85 

c106 12 1027.25 11 1057.65 12 1027.25 11 1057.65 

c107 12 1025.63 11 1031.56 12 1025.63 11 1031.56 

c108 11 1015.68 11 1015.68 11 1019.45 11 1015.68 

c109 11 993.77 11 993.77 11 1000.75 11 1004.36 

c201 4 645.16 4 645.16 4 645.16 4 645.16 

c202 4 645.16 4 645.16 4 645.16 4 645.16 

c203 4 644.98 4 644.98 4 644.98 4 644.98 

c204 4 636.43 4 636.43 4 636.43 4 636.43 

c205 4 641.13 4 641.13 4 641.13 4 641.13 

c206 4 638.17 4 638.17 4 638.17 4 638.17 

c207 4 638.17 4 638.17 4 638.17 4 638.17 

c208 4 638.17 4 638.17 4 638.17 4 638.17 

r101 20 1646.07 18 1679.06 20 1657.92 19 1659.47 

r102 19 1466.94 16 1505.53 19 1466.94 17 1480.10 

r103 14 1266.45 13 1320.65 15 1270.21 14 1269.20 

r104 12 1071.89 12 1071.89 12 1073.19 12 1073.75 

r105 15 1383.29 15 1383.29 17 1394.63 15 1428.10 

r106 14 1276.33 14 1276.33 15 1290.81 14 1276.33 

r107 12 1148.43 12 1148.43 13 1160.75 12 1148.62 

r108 11 1051.59 11 1051.59 12 1053.92 11 1067.32 

r109 14 1223.17 11 1233.28 14 1223.17 13 1246.65 

r110 12 1097.89 12 1097.89 12 1108.43 12 1104.72 

r111 12 1109.14 12 1109.14 12 1122.76 12 1111.86 

r112 11 1038.74 11 1038.74 12 1045.42 12 1045.42 

r201 7 1100.27 3 1265.67 7 1105.14 3 1325.90 

r202 6 994.35 3 1052.32 6 994.35 3 1055.48 

r203 5 864.32 3 895.54 5 864.32 3 895.54 

r204 3 720.82 2 780.98 3 720.82 3 720.51 

r205 6 950.45 3 987.36 4 955.17 3 987.36 

r206 5 896.61 3 922.70 5 896.61 3 925.37 

r207 4 800.48 2 850.80 4 800.48 2 851.75 

r208 3 706.81 2 736.12 3 706.81 2 736.12 

r209 4 856.13 3 871.22 4 856.13 3 876.54 

r210 5 833.08 3 843.65 5 833.08 3 846.96 

r211 3 761.56 3 761.56 4 765.60 3 761.56 

rc101 17 1730.26 16 1731.07 17 1733.61 16 1757.09 

rc102 16 1551.61 15 1551.69 16 1551.61 15 1552.58 

rc103 13 1351.43 13 1351.43 14 1353.68 13 1365.91 

rc104 12 1227.05 11 1232.45 12 1232.91 12 1232.91 

rc105 14 1473.24 14 1473.24 15 1493.03 14 1499.42 

rc106 14 1414.99 14 1414.99 14 1423.27 14 1425.64 

rc107 12 1283.05 12 1283.05 12 1300.10 12 1304.89 

rc108 12 1208.31 11 1209.11 12 1208.31 12 1231.89 

rc201 9 1257.83 4 1446.84 9 1257.83 4 1453.87 

rc202 7 1142.15 3 1450.34 7 1142.15 4 1243.55 

rc203 6 956.78 3 1069.27 6 956.78 3 1082.04 

rc204 5 829.72 3 887.76 5 829.72 3 892.15 

rc205 6 1071.62 3 1277.60 6 1071.62 4 1158.72 

rc206 6 1073.33 3 1221.07 6 1073.33 3 1223.10 

rc207 6 928.52 3 1001.33 6 928.52 3 1003.01 

rc208 5 799.75 3 841.34 5 799.75 3 844.23 
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5.3.2.1. Analysis of the Algorithms 

Figure 5.6 shows that the Proximity based, Shaw, random, time based and worst time 

removal algorithms are the most preferred customer removal algorithms while multiple 

route removal algorithms are the least chosen algorithms by the search. Different from 

the hierarchical objective case, usage of the multiple route removal algorithms are not 

frequently utilized in the distance minimization case as the reduction of the number of 

vehicles is not the primary objective. Since the other figures show similar behavior to 

the ones illustrated in the previous sections, we omitted them here. 

Figure 5.6: Customer Removal Algorithms Usage 
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Chapter 6 

Conclusion and Future Research 

In this thesis, we proposed an ALNS framework for solving E-VRPTW. We addressed 

the problem using both the hierarchical and distance minimization objectives. Some of 

the existing mechanisms are adopted from the literature whereas new mechanisms 

specific to E-VRPTW were developed to handle the visits to recharging stations. 

Furthermore, we proposed new mechanisms for customer removal and insertion. The 

general framework of the ALNS is same for both objective cases. However, new 

procedures were attempted to decrease the number of vehicles. 

We used the instances generated by Schneider et al. (2014) to validate the performance 

of the proposed ALNS. We first solve the small instances by CPLEX. For hierarchical 

objective, we cannot obtain the optimal solutions of some instances in 7200 seconds. 

For those we make the comparison with the best integer results of 7200 seconds. Then 

we observe that our algorithm is also able to find the optimal solutions for distance 

minimization objective. For hierarchical objective, we obtained all optimal and best 

integer solutions of 7200 seconds with ALNS. For large instances, we benchmarked our 

results with those of Schneider et al. (2014) and reported new best known solutions in 

19 instances. Since the results for the distance minimization objective are not 

comparable, we reported our results as benchmarks for future studies. 

In this study, we assumed that the battery of the vehicle is fully charged at the 

recharging station. This assumption might be unnecessarily restrictive in real-world. For 

instance, when the vehicle visits a station near the end of its route, full charge may not 

be needed for the vehicle to return to the depot. A similar situation may exist between 

two recharges. Saving from recharging time may allow the vehicle to catch the time 
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window of otherwise unvisited customer, thus, may improve the solution. So, further 

research on this topic may focus on considering different recharging schemes such as 

quick charge, medium charge, full charge options as well as allowing the variable 

recharge, i.e. recharge as you need. The latter case is more general; however, solving 

the new problem may be significantly more difficult as it will involve determining the 

charge amount at each station as well. 
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Appendix A: Parameter tuning details 

In this part, we provide tuning sequence of the parameters which are used in the 

proposed ALNS algorithms.   

For the hierarchical objective (distance minimization) case, for each parameter value, 

we take the average of the number of routes (total distances) of 10 runs for each 

instance which are selected for parameter tuning. Then we take the average of those 

instance specific values and determine the deviation from the best solution for that 

parameter value. The value which has the lowest deviation is selected and fixed.  

The first column in Table A.1 (Table A.2) shows the parameters tuned in the 

hierarchical objective (distance minimization) case. The second column gives the initial 

value of the parameter and the corresponding deviation whereas the following columns 

provide the range of parameter values and the observed deviations. The sequence from 

top to bottom in the tables is the tuning sequence. 
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Table A.1: Parameter tuning details for hierarchical objective case 
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Table A.2: Parameter tuning details for distance minimization case  
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Appendix B: Optimal Solutions of Small Instances of Schneider et al. (2014) 

In Table B.1, results of 25 runs for small instances are given for distance minimization 

case. “#Veh” and “TD” denote the number of vehicles and total distance traveled, 

respectively. 

Table B.1: Results for small instances 

Instance #Veh TD Instance 

   

#Veh TD Instance 

   

#Veh TD 

c101-5 3 247.15 c101-10 3 393.76 c103-15 4 371.7 

c103-5 2 165.67 c104-10 2 273.93 c106-15 3 275.13 

c206-5 2 236.58 c202-10 2 243.2 c202-15 3 376.79 

c208-5 1 158.48 c205-10 2 228.28 c208-15 2 300.55 

r104-5 2 136.69 r102-10 3 249.19 r102-15 5 413.93 

r105-5 2 156.08 r103-10 3 202.85 r105-15 4 336.15 

r202-5 1 128.78 r201-10 3 217.67 r202-15 2 358.00 

r203-5 1 179.06 r203-10 1 218.21 r209-15 2 293.20 

rc105-5 3 238.05 rc102-10 4 423.51 rc103-15 4 397.67 

rc108-5 2 253.93 rc108-10 3 345.92 rc108-15 3 370.25 

rc204-5 1 176.39 rc201-10 3 310.06 rc202-15 2 394.39 

rc208-5 1 167.98 rc205-10 2 325.98 rc204-15 2 310.58 
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Appendix C: The generic structure of the ALNS algorithm for distance 

minimization case 
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