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ABSTRACT 

Cellulose is the most abundant biopolymer in nature. It has several usage areas in industry. 
The initial hydrolysis of cellulose is the rate determining step in cellulose degradation. Cel-
lulosomes are the complex structures composed of non-catalytic units and enzymes that 
take part in cellulose degradation. Cellulosomal units are attached via the interaction be-
tween cohesin and dockerin domains which are divided into three subclasses; type I, type II 
and type III. Development and rational design of novel cohesin and dockerin domains to 
enhance synergistic actions is very important research topic for biotechnological applica-
tions. In this aspect, accurate classification of the subunits and identification of key interac-
tion sites are of great importance for design purposes. 

In this thesis, we propose a multiple sequence alignment and information theory based clas-
sification method that identifies potential key interaction sites. Based on the multiple se-
quence alignments, the residues that are conserved only in one subclass are determined as 
the motifs. Classification performance of these motifs is determined using a majority voting 
based normalized scoring scheme. In addition, reduced amino acid alphabets are introduced 
to capture the similarities that are invisible in 20-letter alphabet.  

In this work, we classify cohesin sequences with 99% accuracy, 96% sensitivity and 97% 
specificity, on average. For dockerin, the sequences are classified with up to 95% accuracy. 
76% sensitivity and 92% specificity are observed on average. Potential interaction sites be-
tween cohesins and dockerins are determined from the correlated mutation analysis. 
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Özet 

Selüloz doğada en yaygın bulunan biyopolimerdir. Selülozun sanayide çok çeşitli kullanım 
alanları mevcuttur. Selülozun ilk hidrolizi, selüloz yıkımındaki hız beliryici basamaktır. 
Selülozom, katalitik olmayan birimlerden ve selüloz yıkımında rol alan enzimlerden oluşan 
kompleks bir yapıdır. Selülozomun yapısal birimleri birbirlerine kohezin ve dockerin 
bölgeleri arasındaki etkileşim ile bağlanır. Dockerin ve kohezin bölgeleri tip I, tip II ve tip 
III olmak üzere üç alt gruba ayrılır. Enzimler arasındaki sinerjik işleyişin artırılması 
amacıyla yeni kohezin ve dockerin bölgelerinin dizaynı ve geliştirilmesi biyoteknoloji 
uygulamaları için önemli araştırma konularından biridir. Bu çerçevede, dockerin ve kohezin 
alt gruplarının doğru bir biçimde sınıflandırılması ve anahtar etkileşim noktalarının 
tanımlanması dizayn çalışmaları için büyük önem arzetmektedir.  

Bu çalışmada, çoklu dizi hizalaması temelli ve potansiyel anahtar etkileşim noktalarını 
açığa çıkaran  bir sınıflandırma metodu tanıtıyoruz. Çoklu dizi hizalamalarını kullanarak, 
yalnızca bir alt grupta korunmuş aminoasitler ve lokasyonları motif olarak tanımlandı. 
Motiflere ait sınıflandırma performansları, çoğunluk oylaması temelli normalize edilmiş bir 
skor şeması kullanılarak belirlendi. Ayrıca, 20-harfli aminoasit alfabesinde görünmeyen 
benzerlikleri yakalamak için indirgenmiş aminoasit alfabeleri tanıtıldı.  

Bu çalışmada, kohezin dizileri %99’e varan oranda doğru sınıflandırıldı. Ayrıca, ortalama 
%96 hassasiyet ve %97 spesifiklik elde edildi. Dockerin dizileri %95’e varan oranda doğru 
sınıflandırılırken, ortalama %76 hassasiyet ve % 92 spesifiklik elde edildi. Potansiyel 
anahtar etkileşim noktaları ilintili mutasyon analizi kullanılarak tanımlandı.  
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Chapter 1 

INTRODUCTION 

1.1 Motivation 

Cellulose, a major component of the plant cellwalls, is the most abundant biopolymer in 

nature. Cellulose is constructed into a tightly packed and highly ordered structure, 

through extensive hydrogen bonding and van der Waals stacking interactions. Packed 

and ordered structure of cellulose, as well as its association with other structural poly-

mers make the cellulose considerably resistant to microbial degradation [1, 2].  

Cellulose as the most abundant biopolymer on Earth is additionally the most abundant 

renewable carbon and energy source in nature. Consequently, degradation of cellulose 

to smaller carbon compounds is an essential process for carbon cycle in nature [3]. In 

addition to its importance for nature, smaller carbon compounds gained considerable 

attention as alternative, environment friendly energy source [4]. In the modern age, bio-

refineries are being developed as a clean alternative to the fossil fuels and cellulose de-

gradation appears as a fundamental process to produce smaller carbon sources to be 

consumed in these biorefineries [5]. Besides, cellulosic compounds have an excessive 

potential to be benefited for several products in biotechnology based industries and for 

food applications [6]. In order to utilize this potential, several studies are being con-

ducted on the initial hydrolysis of cellulose, the rate-determining step for cellulose utili-

zation. For that purpose, cellulose degrading enzymes, their complexes and their work-

ing mechanism is an attractive research object [7]. 
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Cellulosome is an extra-cellular, large supramolecular complex that have been identi-

fied in several bacteria [8].  Enzymes that take a part in cellulose degradation (e.g cellu-

lases, hemi-cellulases) are assembled into cellulosomes with numerous other non-

catalytic integrating proteins, called scaffoldin. Scaffoldins interact with cellulosomal 

enzymes through their cohesin domain [9]. The dockerin domains from enzymes inte-

ract tightly with cohesins. In some bacteria, several scaffoldins form a complex in cellu-

losome, and their attachment to each other is also secured through dockerin-cohesin 

interactions. Cohesin and dockerin domains are divided into three distinguished classes: 

type I, type II and type III. The interactions between cohesin-dockerin domains are type 

specific, exhibiting no cross-reactivity [10].  

As stated above, cellulosomal subunits attract attention of scientists due to environmen-

tal problems, useful applications in industry and capacity of cellulose as an energy 

source. For example, designer cellulosome concept, the artificial enzymatic complex 

with increased degradation efficiency, is one of the hot topics in this area [11]. In this 

context, the efficiency of the complex is targeted by several different approaches. Ar-

tificial addition of cohesin and dockerin subunits to enzymes or scaffoldins to recruit 

enzymes of interest into cellulosome complex is applied several times, for different en-

zymes and different cohesin-dockerin interaction types [12]. In addition to the incorpo-

ration of enzymes into the cellulosome; development of novel cohesin and dockerin 

domains, and rational design or directed mutagenesis of cellulosomal components to 

enhance synergistic actions are hot research topics in designer cellulosome development 

[13]. At this point, accurate classification of the subunits and identification of key inte-

raction sites gain considerable importance.  

Analysis of dockerin-cohesin interactions holds key for both scientific and technologi-

cal purposes. The origins of the specificity between subclasses of cohesins and dock-

erins are still not clearly understood and this is a significant scientific interest in order to 

fully comprehend the cellulosome organizations. The limited structures of cohesin-

dockerin complexes provide an image, however this information does not reveal ade-

quate information to design novel cohesin-dockerin interactions [14-17]. At this junc-

ture, classification into subclasses (type I, type II and type III) and understanding of 

class specific key factors that governs the highly-specific dockerin-cohesin interaction 

appears to be a key challenge.  
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In this thesis, we propose a multiple sequence alignment and information theory based 

method for classification of dockerin and cohesin sequences. On the contrary of other 

computational approaches, this method allows identifying informative amino-acid resi-

dues in classes that are important for class specificity and also for their function; which 

comprise key-site candidates for interaction sites. In our method, the sequences includ-

ing in type I, type II and type III classes are aligned separately. Working on the consen-

sus sequences, the amino-acids conserved at a certain residue in one class but not in any 

other, are defined as motifs and given scores based on their specificity. Those motifs are 

then used to make classifications, calculating scores for test sequences. Utilization of 

Reduced Amino acid Alphabets to identify physiochemical conserved amino acids in-

creases the accuracy of classification for several other protein families, eliminating the 

errors caused by incompetence of multiple alignments. In addition, RAAAs facilitate 

the identification of physiochemical properties for cohesin-dockerin families that are 

important for family specific cohesin- dockerin interaction; thus enabling the under-

standing of the mechanism of interaction. In this study, four different reduced amino-

acid alphabets are introduced, in order to explore the effects of these RAAAs on the 

accuracy of classification. Subsequently, an HMM-based classification is carried out to 

compare out approach with a state-of-the-art classification method. Lastly, to identify 

key interaction sites between cohesions and dockerins for design purposes, we carry out 

correlated mutation studies in order to affirm the biological importance of detected key 

site candidates. 

              

1.2 Outline 

The organization of thesis as follows: Chapter 2 gives a brief biological background and 

an overview of computational methods that is used for protein classification. Methods 

that are used in this study are explained in detail, in Chapter 3. In Chapter 4, the results 

of the classification of cohesin and dockerin families along with the correlated mutation 

studies are presented. Lastly, Chapter 5 summarizes the conclusions and discusses fu-

ture works.  
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Chapter 2 

BACKGROUND AND RELATED WORKS 

2.1 Biological Background  

2.1.1 Proteins, Structure and Function 

A protein is composed of amino acids that are attached together by peptide bonds. In 

nature, there are 20 amino acids with distinct biochemical properties, such as polar, hy-

drophobic and charge characters. Amino acids are constituted by an amino group (-

NH2), a carboxyl group (-COOH), a side chain and a central carbon atom adhered to the 

mentioned groups. Except for side chains, the other components of the amino acids oc-

cur to be the same. Side chains, on the other hand, are the components that contribute to 

the distinct biochemical properties of amino acids [18].  

During the protein synthesis, carboxyl group of one amino acid and amino group of 

another form a peptide bond, producing a water molecule [19].  The amino acids joined 

together via peptide bonds form the primary structure of proteins. Concurrently, hydro-

gen bonds constructed between backbone atoms contribute to the formation of second-

ary structure elements, such as alpha (α) helices and beta (β) sheets [20].  

Following the secondary structure formation, the attractions between α-helices and β-

sheets arising from the side chains form a spatial arrangement. The peptide chain is 

folded into a 3-dimensional, biologically active state, named tertiary structure. Func-

tionally fundamental parts of proteins such as catalytic sites and binding sites are 
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formed by tertiary structures. Therefore, accurate folding of proteins into their 3D struc-

ture is of basic importance for their function [21].   

As stated above briefly, the interactions that induce 3-D folding are emanating from 

biochemical properties or amino acid side chains. H-bonds, van der Waals interactions, 

backbone angle preferences, electrostatic and hydrophobic interactions drive the protein 

into its 3-D functional structure. These interactions between amino acids are controlled 

by their side chain structure and properties, such as hydrophobicity, polarity or charges. 

Therefore, the distribution of hydrophobic and hydrophilic residues in a protein has 

great impact on the total tertiary structure of the protein [22]. Amino acids and their 

basic biochemical properties are summarized in Table 2.1 [18].  

 

Table 2.1 List of amino acids and their biochemical properties [18]. 

 

 

 

Amino Acid Abbreviations Hydropathy 
Index 

Polarity Charge 

 3 letter Single Letter    
Isoleucine Ile I 4.5 nonpolar neutral 
Valine Val V 4.2 nonpolar neutral 
Leucine Leu L 3.8 nonpolar neutral 
Phenylalanine Phe F 2.8 nonpolar neutral 
Cysteine Cys C 2.5 nonpolar neutral 
Methionine Met M 1.9 nonpolar neutral 
Alanine Ala A 1.8 nonpolar neutral 
Glycine Gly G -0.4 nonpolar neutral 
Threonine Thr T -0.7 polar neutral 
Tryptophan Trp W -0.9 nonpolar neutral 
Serine Ser S -0.8 polar neutral 
Tyrosine Tyr Y -1.3 polar neutral 
Proline Pro P -1.6 nonpolar neutral 
Histidine His H -3.2 polar positive 
Glutamic acid Glu E -3.5 polar negative 
Glutamine Gln Q -3.5 polar neutral 
Aspartic acid Asp D -3.5 polar negative 
Asparagine Asn N -3.5 polar neutral 
Lysine Lys K -3.9 polar positive 
Arginine Arg R -4.5 polar positive 
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2.1.2 Cellulose as a Structural Component 

Cellulose, a major component of the plant cellwalls, is the most abundant biopolymer in 

nature. Plant cellwalls are reinforced by the cross-linked structure of cellulose microfi-

brils, whose insoluble nature is ideal to secure structural stability [1, 23].  

The backbone structure of cellulose is consisted of unbranched  (1,4) β-linked D-

glucose [24].  Adjacent D-glucose units are flipped forming cellobiose, the structural 

repetitive unit of cellulose (Figure 2.1). Linear cellulose polymer exhibits a dense in-

termolecular bonding pattern. Accordingly, cellulose chains are  tightly packed  and 

organized in parallel generating  crystalline microfibrils [25]. Despite its bare chemical 

composition, microfibrils do incorporate less ordered, non-crystalline regions, as well as 

highly ordered crystalline region. Those amorphous parts are more susceptible to enzy-

matic degradation and generally featured on cellulose surface[26] [27].      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 The structure and the inter- and intra-chain hydrogen bonding pattern in cel-
lulose [8]. 
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Through extensive hydrogen bonding and van der Waals stacking interactions,  microfi-

brils are able to form non-covalent complexes which leads to tightly packed macrofi-

brillar structures [2] [1]. Those macrofibillar structures of cellulose are aligned by a 

matrix of hemicellulose and either lignin or pectin polysaccharides in cell wall construc-

tion. The volume fraction of these building blocks can vary based on  the specie, tissue 

type and differing growth patterns  [28].  

Tightly packed and highly ordered construction of cellulose, its association with other 

structural polymers and its insoluble nature makes the cellulose considerably resistant to 

microbial degradation. Although cellulose is formed by a single type of chemical bond 

and has a chemically simplistic structure, multiple enzyme systems are required for ef-

fective degradation [1, 25].  

 

2.1.2.1 Importance of Cellulose Degradation 

Cellulose, the most abundant biopolymer on Earth, is additionally the most abundant 

renewable carbon and energy source in nature,   with 180 million tons raw material ca-

pacity per year. Consequently,  degradation of cellulosic biomass is an essential process 

for carbon cycle and arousing interest as a bio-energy source [5].    

Carbon cycle, in general, can be summarized as fixation of carbon through photosynthe-

sis and formation of CO2 from those fixated carbon sources through combustion [3]. In 

order to metabolize cellulose to CO2, the crystalline cellulose has to be degraded enzy-

matically to yield cellobiose and then, converted to glucose by β-glucosidase [29]. Cel-

lulose, as a major carbon source and its recycling by microorganisms are therefore im-

perative in the carbon cycle [3, 4].  

In the modern age; as the fossil fuels will be exhausted in the near future and the earth is 

facing serious environmental problems like global warming; new alternative and envi-

ronment friendly energy sources has gained considerable importance [4]. Thence, biore-

fineries are being developed to use bio-fuel as an alternative energy source and conse-

quently, cellulose degradation appears as a fundamental process to produce smaller car-

bon sources to be consumed in those biorefineries [5, 30].   

Plants are being used widely in industrial fields to produce furniture, paints, fabrics, 

medicine, paper, food, bio-ethanol and several other products, yielding a cellulosic bio-
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mass as waste [30-32]. The accumulation of cellulosic waste arises as an environmental 

problem. However, more to the point, the cellulosic products labeled as “waste”, has an 

excessive potential to be benefited for recovery of several products in biotechnology 

based industries  and for food applications [6]. In order to utilize this potential, several 

researches are being conducted on microorganisms which can process cellulosic com-

pounds. For those microorganisms, the ability to degrade cellulose compounds to small-

er sugars effectively with minimum pre-processing is an important feature, forasmuch 

as, the mentioned applications mostly requires hydrolysis of cellulose initially [7]. On 

the ground that the initial hydrolysis of cellulose is the rate-determining step for cellu-

lose utilization; cellulose degrading enzymes, their complexes and their working me-

chanism become an attractive research object [5]. 

 

2.1.3 The Cellulosome Complex  

Several bacteria and fungi produce a variety of enzymes, called cellulases that catalyze 

degradation of crystalline cellulose, and thus, plant cellwalls. Heterogeneous, insoluble 

and recalcitrant nature of plant cellwalls complicates the process of degradation, even 

though a single type of chemical bond is being targeted by enzymes. For years, it is 

thought that several free cellulases work synergistically on that complex nature of crys-

talline cellulose, creating an enzyme system. Although this case is true for many aerobic 

microorganisms, the discovery of cellulosome complex broadened the knowledge about 

cellulase enzyme systems [8, 33]. 

In aerobes, numerous cellulase enzymes are either secreted to extracellular matrix or 

bound to the outer membrane. Even though the enzymes are not physically adhered, 

they act in strong synergy to degrade complex, crystalline cell wall cellulose [23]. In 

anaerobic microorganisms, however, cellulase enzymes are assembled into large, su-

pramolecular, surface-attached structures, called cellulosome. In cellulosome complex, 

a variety of cellulases and hemi-cellulases are tightly adhered to a central, multi-

modular, non-catalytic integrating protein, called scaffoldin [9, 17]. Scaffoldins interact 

with cellulosomal enzymes through a specific domain, named cohesin. Scaffoldins con-

tain numerous cohesin domains that interact with another specific type of domain from 

cellulosomal enzymes, named dockerin. The cohesin-dockerin interaction is the funda-
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mental molecular mechanisms that secures the integration of enzymes into the cellulo-

some complex [10].  

It is widely believed that the major function of cellulosome is to bring cellulases into 

close proximity to potentiate synergy between different catalytic components [34]. On 

the other hand, the synergy may be reduced due to conformational restrictions emanated 

from the physical association of enzymes within the complex structure of cellulosome. 

In order to address that question, several studies demonstrate that cellulosome ensemble 

has crucial conformational flexibility and congregating the enzymes induces approx-

imately threefold increase in synergy  [33].   

Cellulosome complex does not merely gather catalytic components to increase synergy, 

but also locates the enzymes in the vicinity of cellulosic compounds. Exhibition of en-

zyme complex on the cell surface is a remarkable feature that facilitates the efficient 

consumption of cellulosic products by microorganisms [34]. Additionally, scaffoldins 

possess a cellulose-specific carbohydrate-binding domain (CBD) for substrate targeting. 

In different species, however, the mechanism of carbohydrate-binding can show varia-

tions, such as a necessity of additional scaffoldins.  

 

2.1.3.1 Cellulosome Associated Elements 

Bacterial cellulosome systems display diversity among different species. Mainly two 

different cellulosome systems are differentiated, as simple and complex cellulosome 

systems [25]. In simple cellulosome systems, scaffoldins own a single CBD, several 

cohesin domains and one or more X modules, with unknown function. Dockerin-borne 

cellulosomal enzymes interact with the cohesin domains of scaffoldin and attached to 

the cellulosome complex [35, 36]. Scaffoldins in simple cellulosome systems are asso-

ciated with the cell surface; however, the exact molecular mechanism is unclear. Those 

types of scaffoldins are named as primary scaffoldins [37].  

Complex cellulosome systems, on the other hand; contain several scaffoldins that are 

attached to each other in different ways, constituting the complex form of the cellulo-

some. In those systems, one of the scaffoldins functions as a primary scaffoldin and 

recruit dockerin-borne cellulosomal enzymes into the complex. However, in contrast to 

the primary scaffoldins in simple cellulosome systems, those scaffoldins contain a dif-
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ferent type of dockerin subunit, in addition to its cohesin subunits [38, 39]. In order to 

tether the cellulosome complex to the cell surface, the additional dockerin subunit inte-

racts with cohesins from other scaffoldins. The scaffoldins that incorporates the cellulo-

some to the cell membrane are named as anchoring scaffoldins [40]. Moreover, various 

complex cellulosomes involve additional scaffoldins that enhance the number of com-

ponents in cellulosome, named adaptor scaffoldins [41].  

 

2.1.3.2 Dockerin and Cohesin Subunits in Cellulosomes 

As mentioned above, the cohesin-dockerin interaction is the fundamental key for the 

assembly of cellulosome complex.  In primary scaffoldins, cohesins exist as highly ho-

mologous repetitive units that dock the cellulosomal enzymes to the complex cellulo-

some [17]. Enzymes interact with scaffoldin through their dockerin domain. The exis-

tence of dockerin subunit is the major difference that distinguishes cellulosomal en-

zymes from non-cellulosomal ones [25].  

Additional anchoring or adaptor scaffoldins involved in the cellulosome are attached to 

the primary scaffoldin through cohesin-dockerin interactions [9]. However, the cohesin 

domains in those additional scaffoldins display a different character and do not interact 

with the dockerin domains from enzymes [10]. In this context, known cohesin and 

dockerin sequences are identified in three distinguished subgroups: type I, type II and 

type III. Several interaction studies demonstrate that cohesins and dockerins belonging 

in one subgroup only interact with dockerins and cohesins in that specific group. Put 

another way, there is no observed cross-reactivity between type I, type II and type III 

elements [35].   

 

2.1.3.2.1 Type I cohesin-dockerin Interaction 

The mechanisms of type I cohesin-dockerin interaction is revealed by several structural 

studies. The individual structures of dockerin and cohesins are also studied and provide 

noteworthy information about the interaction process.  In 1997, Shimon et al. defined 

type I cohesin modules by a jelly roll topology composed of nine β-strands fold in two 

β-sheets [42]. 
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Shortly after cohesin type I structure is determined, in 2001, Lytle et al. revealed the 

solution structure of type I dockerin domain, which is composed of three α-helices [17] . 

In detail, type I dockerin contains tandem duplication of a 22-residue sequence and he-

lices at the  N-terminal and C-terminal ends  are formed by this 22-residue repeats, in 

addition F-hand type calcium-binding motifs [43]. The structural conservation among  

the repeated segments is remarkable and thus, the N-terminal duplicated segment can be 

superimposed over the C-terminal duplicated segment, providing the structural basis for 

the dual mode of binding [44].   

Structural data of dockerin-cohesin in complex demonstrates that type I dockerins dis-

play two identical cohesin binding interfaces. Dockerin could be rotated 180° relative to 

its initial position, therefore; in one mode N-terminal helix (helix 1) concludes cohesin 

recognition and in the second binding mode, dockerin is flipped 180° relative to the 

cohesin and C-terminal helix (helix 3) dominates the ligand recognition [45]. In addi-

tion, presence of Ca+2 is essential for dockerin-cohesin interaction [45]. 

(a)                (b) 

 

 

 

 

 

 
 
 
 

Figure 2.2 (a) Internal symmetry of WT type I dockerin in complex with two Ca+2 ions 
from Clostridium thermocellum cellulosome (PDB code: 1 DAQ) (b) Type II cohesin-
dockerin interaction from Bacteroides cellolosolvens (PDB code: 2Y3N) 

 

2.1.3.2.2 Type II cohesin-Dockerin Interaction 

Structural studies on type II cohesin-dockerin interaction provides information about 

structures of type II cohesins and dockerins, as well as their complex state.  For cohe-
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sins, both type I and type II cohesins share the same overall topology whereas; type II 

cohesins have additional secondary structure elements.  These type II specific elements 

are thought to contribute to specificity of type II interaction [37]. Correspondingly, type 

II dockerin displays a considerable similarity with its type I counterpart with several 

varieties which contributes incisive specificity. As stated below, both helix-1 and helix-

3 in type I dockerin can interact with cohesin ligand, alternatively [16]. On the other 

hand, type II dockerins contact the entire length of cohesin surface with both of its he-

lices. In terms of interaction, the electrostatic surface potentials display variety between 

type I and type II interactions. The type II interacting interface is less charged than its 

corresponding type I region, exposing a more hydrophobic nature [33]. 

 

2.1.3.2.3 Type III Cohesin-Dockerin Interaction 

When the cellulosome assembly in Ruminococcus flavefaciens is identified, the phylo-

genetic analysis of scaffoldin ScaA and ScaB dockerins expresses a very divergent 

branch from type I and type II dockerins and classified as type III dockerins [46]. In the 

course of time, several structural studies demonstrated the distinct construction of type 

III cohesin-dockerin interaction. Despite its phylogenetic distinction, type III interaction 

is proved to be Ca+2 dependent; similar to type I and type II dockerin-cohesin complex-

es [15]. On the other hand, in contrast to type I and type II dockerins; type III dockerins 

lack 22 residue Ca+2 binding loop on the second F-hand motif; which is thought to con-

tribute discrepancies in Ca+2 binding characteristics and target specificity. Although, 

recently it is evidenced that Ca+2 binding induced similar structural transitions as in type 

I and type II; the exact structural and biophysical properties of type III cohesin-dockerin 

interaction is yet to be known [47]. 

 

2.1.3.2.4 Dockerin-Cohesin Interaction in Non-cellulosomal Systems 

For many years, cohesin and dockerin modules are thought to be elements of cellulo-

some complex. Thence, it is surprising when these domains are discovered in Archaeog-

lobus fulgidus, a microorganism that lacks cellulosome [48]. Several other researches 

prove that non-cellulosomal dockerin-cohesin domains existed in various other bacteria, 

archaea and in primitive eukaryotes. Interestingly, in about a quarter of the Archaea and 

60% of the Bacteria cohesins and dockerins do not co-exist as a pair, one or the other of 
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the module is missing and the exact role of the modules is these species is not very 

clearly known [14, 49]. 

 

2.1.3.3 Variety in Cellulosomal Systems in Different Bacteria 

In 1983, the cellulosome concept is first identified in a gram-positive bacterium, Clo-

stridium thermocellum [50]. To date, cellulosome systems in several other bacteria are 

revealed, exhibiting diversified cellulosome systems (Figure 2.3). Majority of the bacte-

ria with identified cellulosome systems belong to the genus Clostridium, which are 

anaerobic and gram-positive [51, 52]. 

 

2.1.3.3.1 Clostridium cellulovorans  

C. cellulovorans bacterium, possess a simple cellulosome system. Its scaffoldin named 

CbpA; contains 9 type I cohesin domains and it interacts with several enzymes, mostly 

glycoside hydrolases [53]. 

 

Figure 2.3 Simple cellulosome systems in different bacteria 
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2.1.3.3.2 Clostridium cellulolyticum  

C. cellulolyticum is another anaerobic bacterium that owns a simple cellulosome sys-

tem. Its scaffoldin is termed as CipC and it has the capacity to interact with up to 8 type 

I dockerin-borne cellulosomal enzymes [54, 55].  

 

2.1.3.3.3 Clostridium josui 

In, C. josui, a simple cellulosome system is organized around a scaffoldin protein 

named CipA, which bears six consecutive type I cohesin domains [56, 57]. 

 

2.1.3.3.4 Clostridium acetobutylicum 

C. acetobutylicum, a bacterium with a simple cellulosome system; holds a scaffoldin 

protein named CipA, which comprises five type I cohesin domains with the ability to 

bind different cellulosomal catalytic components [51].  

 

2.1.3.3.5 Clostridium thermocellum 

C. thermocellum, the first bacterium discovered to have a cellulosome system; features 

a complex cellulosome structure[50]. The primary scaffoldin called CipA, contains nine 

type I cohesin domains to recruit type I dockerin-borne enzymes into the cellulosome 

complex, in addition to its C-terminal type II dockerin domain. Through that type II 

dockerin domain, CipA interacts with several anchoring scaffoldins that attaches the 

cellulosome complex to the cell surface [12, 57] . C. thermocellum cellulosome includes 

three different type II cohesin bearing anchoring scaffoldins; SdbA, Orf2p and OlpB 

[16]. SdbA, Orf2p and OlpB, carries one, two and seven cohesin domains, respectively 

[58]. (Figure 2.4)  

 

 



15 
 

 

Figure 2.4 Complex cellulosome systems in Clostridium thermocellum. 
 

2.1.3.3.6 Acetivibrio cellulolyticus 

A.cellulolyticus is an anaerobic, gram-positive bacterium that displays a complex cellu-

losome assembly [38]. Its primary scaffoldin is named ScaA and tethers to cell surface 

via two different mechanisms. Through its C-terminal type II dockerin domain, ScaA 

can directly bind to ScaD scaffoldin; which is anchored to the cell surface via its SLH 

module. In addition to the two type II cohesins that interact with ScaA dockerin, ScaD 

also contains one type I cohesin module that can directly bind enzymes and recruit them 

to cell surface [59].  Alternatively, through type II cohesin-dockerin interaction, ScaA 

can bind to the ScaB adaptor protein, which is then attached to type I cohesins of ScaC 

anchoring scaffoldin [60]. (Figure 2.5, a) 

 

2.1.3.3.7 Bacteroides cellulosolvens 

B. cellulosolvens bacterium displays a complex cellulosome system and owns a primary 

scaffoldin named ScaA; which has 11 type II cohesin subunits to gather catalytic units 

into the cellulosome complex. Additionally, through its C-terminal type I dockerin sub-
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unit, ScaA interacts with ScaB; an anchoring scaffoldin that contains 10 type I cohesin 

domains. It is a unique example of  switched role of cohesin types [40]. (Figure 2.5, b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Complex cellulosome systems in different bacteria (a) Acetivibrio celluloly-
ticus (b) Bacteroides cellulosolvens 
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2.1.3.3.8 Ruminococcus flavefaciens 

R. flavefaciens displays two distinct mechanisms that localize dockerin-borne enzymes 

to the cell surface. In its complex cellulosome structure, a primary scaffoldin named 

ScaA, interacts with enzymes through its three type I cohesin domain. Alternatively, 

enzymes interact with only type I cohesin of ScaC and then, ScaC type I dockerin is 

bound to one of the ScaA cohesins [15]. Subsequently, ScaA-ScaC or ScaA-enzyme 

complex is localized to ScaB adaptor scaffoldin by the mediation of distinct type III 

cohesin-dockerin interaction. The enzyme-scaffoldin complex then is tethered to the cell 

surface via type III interaction of ScaB dockerin and cohesin of ScaE anchoring scaffol-

din [47, 61]. In addition to cohesin-dockerin interactions between enzymes and scaffol-

dins, another type III dockerin containing scaffoldin named cttA is adhered to ScaE. 

cttA has two CBD domains which coordinates the binding of cellulose, as not other 

scaffoldins comprise CBDs [62]. (Figure 2.6) 

   

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Complex cellulosome systems in R. flavefaciens[47] 
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2.2 Computational Background 

2.2.1 Computational Classification Methods 

In recent years, a huge number of new cohesins and dockerins are discovered and a 

large amount of protein sequences is now available in several databases. Structure and 

functional properties are veiled in mystery for majority of these newly identified pro-

teins [63]. Since the experimental characterization of proteins requires time, effort and 

is expensive; it is an important task for researchers in bioinformatics to develop compu-

tational methods to classify newly identified proteins and predict their function and 

structure [64, 65].  

Hidden Markov Models (HMM), which are extensions of Markov chains; are one of the 

tools commonly employed in protein classification. In biological context, based on mul-

tiple sequence alignments as training set, a HMM calculates similarity scores for new 

sequences given to the model [66]. In addition to HMM, Support Vector machines 

(SVM) are another distinguished technique utilized in classification. As an alignment 

free method, SVM classification tools analyze physicochemical properties of a protein 

from its sequence. In the presence of sufficient samples from a functional class, SVMs 

can be trained and classify new proteins against that class, even though the proteins are 

distantly related [67].   

Despite both HMM and SVM methods suggests highly accurate classifications tools, 

they are unable to determine key-site candidates for interaction. Intended to determine if 

a given sequence is a member of the training set, HMM techniques are very opaque and 

it fails to differentiate the key-site candidates [68]. SVMs on the other hand, do not in-

clude protein sequence in the classification method, but utilize physicochemical proper-

ties derived from dipeptide composition of proteins. In consequence, SVMs do not pro-

vide any information on key-site candidates [67]. Additionally, even though SVMs use 

physicochemical properties, it is impossible to precisely determine which physicochem-

ical properties are significant for interactions and functions [68].  

2.2.1.1 Frequently used Protein Classification Methods 

In this section, most widely used classification methods, profile HMMs and SVMs are 

explained in detail. 
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2.2.1.1.1 Profile Hidden Markov Models 

Hidden Markov Models (HMM) are one of the most-preferred protein classification 

methods. In general, hidden Markov models define probability distributions over a po-

tentially infinite number of sequences [69]. HMMs are extensions of Markov chains. In 

Markov chains, the choice of the next state is dependent on the current and all state 

transitions are known, revealing a unique path through the model. However, in hidden 

Markov models; the state sequence is not observed, it is hidden [70].  

HMMs are defined on a finite number of sets (s1 ,….,sn), including a begin state and an 

end state. In order to completely determine an HMM, there are two required sets of 

probabilities associated with the states: 

(1) The transition probability, Ti,j : For each pair of si, sj states of A, the probabil-

ity that A will be in the state of sj at time t+1, given that A is in the state of si 

at time t; where j=i+1,….,n. 

(2) The emission probability (output probability) E(x|j): For each state si, the 

probability that a particular output symbol is observed in that state. Emission 

probabilities are properties of only HMMs and not Markov chains. [71] 

A ‘profile’ is a primary structure model based on position specific residue scores and 

penalties for insertions or deletions. Profile methods use the information in either mul-

tiple sequence alignments of structures [72]. The existence of many free parameters in 

profile methods, such as setting residue scores and penalties, complicates these me-

thods. In order to overcome this kind of problems, hidden Markov models have been 

introduced to profile methods [73]. Profile hidden Markov models now facilitate several 

strong tools for protein classification and are employed by several databases [74]. 

Profile HMMs are probabilistic models that use multiple sequence alignments of a fami-

ly. Profile HMMs are trained on a representative set of multiple alignments from the 

family, known as seed alignments, to build an HMM profile [66]. For each column in 

the multiple alignments, match state models the distribution of allowed residues in the 

column, whereas insert and delete represents insertions of residues between that column 

and next. Afterwards, to determine if a new sequence is a member of this family or not, 

its probability to occur by chance is computed using HMM, named E-value. In the cases 

that E-value is less than a certain threshold, the new sequence is classified as a member 
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of the family [66, 73]. A schematic representation of profile HMMs is seen in Figure 

2.7. 

Figure 2.7 A small profile HMM representing the MSA of five sequences (right). The 
three columns are modeled by three match state (m1-m3), insert state (i0-i3) and delete 
state (d1-d3). Match and insert states have 20 emission probabilities shown as black 
bars. Delete states are mute states, with no emission probability. A begin and end state 
is represented (b,e). Arrows show state transition probabilities [21] 

 

2.2.1.1.2 Support Vector Machines 

Support vector machines (SVM) are one of the best discriminative protein classification 

methods. In brief, SVMs are algorithms that learn how to assign labels to objects [75]. 

In technical details, SVMs take the input space with nonlinear class boundaries and 

transforming the input to a new higher dimensional space; they create a linear model to 

find a plane that separate the positive and negative sets perfectly (Figure 2.8, a). The 

linear model created by SVMs after transformation is named the maximum margin 

hyperplane. The maximum margin hyperplane describes a straight line that gives the 

greatest separation between two, linearly-separable classes. (Figure 2.8, b). The in-

stances closest to the maximum margin hyperplane are then named as support vectors; 

which define the maximum margin hyperplane for learning. In order to avoid over fit-

ting, in other words too much decision flexibility, usually a few number of support vec-

tors are utilized for hyperplane construction [76, 77]. 

Unlike homology based methods, SVMs analyze physiochemical properties of a protein 

generated from its sequence, instead of directly analyzing sequence similarities. Before 

implementation of SVMs for protein classification, SVMs are used in fold recognition 
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successfully. Proteins in a specific class generally perform similar functions and thus, 

share common structural features essential for their function. The structural features 

directing protein folding are thus anticipated to contribute protein classification [78, 79].  

 

 

Figure 2.8 (a) The algorithm to find a boundary that maximizes the distance between 
groups. The input data in two-dimensions cannot be separated by a straight line. The 
two-dimensional space is transformed into a three dimensional space to separate the 
data using a hyperplane. (b) The data that are closest to the maximum margin hyper-
plane are called support vectors. A unique set of support vectors defines the maximum 
margin hyperplane for the learning problem [83].  

 
The residue properties of proteins might reveal function-related features and construc-

tion of an appropriate feature vectors is a key step for successful SVM based protein 

classification. SVM method utilizes feature vectors constructed from tabulated residue 

properties, such as amino acid composition, charge, hydrophobicity, normalized van der 

Waals volume, polarity, polarizability, secondary structure, solvent accessibility and 

surface tension [80, 81]. Independent of sequence similarity, this approach is capable of 

classifying distantly related proteins with low sequence homology as well as the highly 

similar related proteins [79].    

 
2.2.2 Biological Aspects of Protein Classification Problem 

In order to understand the biological processes, knowledge about the functions of pro-

teins is of great importance [67]. The recent revolutions in high-throughput  technolo-

gies facilitates to procure information  about the structure and  function  of biological 
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molecules [82]. Benefiting from the advantages of high-throughput technologies, sever-

al genome projects revealed a vast amount of sequences information for a large number 

of organisms. The rapid accumulation of sequence information lead the scientist to de-

velop new methods for protein function prediction from sequence because, the functions 

remain unknown for the majority of the newly identified sequences [64, 65]. 

Experimental characterization of protein functions is a valuable source to understand 

how these proteins function in a living organism. On the other hand, experimental me-

thods may be high-cost and time-consuming. Hence, several computational methods are 

developed for reliable and large-scale protein function annotation, cooperated with ex-

perimentally verified information [64, 65]. In order to obtain clues about the function 

and interactions of proteins, a meaningful classification linked to existing experimental 

knowledge is necessary.  

In brief, classification methods identify the similarities (homologies) between protein 

sequences and group them into particular classes. In technical terms, classification basi-

cally requires the collection of certain components. The first component required for 

classification is the elements to be classified such as protein function and structure. 

Subsequently, certain characteristics of these elements are defined to be used in classifi-

cation and based on these characteristics, a similarity or distance metric is derived. 

Another component in classification is the algorithms to generate metrics and build 

clustering and classification. Finally, interpretation of relationships between clusters; 

which is linked to the performance evaluation of the entire procedure terminates the 

classification process [82].  

Subfamily identification, division of dataset into subclasses, offers several advantages 

for classification methods. Existence of a structurally characterized member in a subfa-

mily enables to render an opinion about the structure and function for other members of 

the subfamily. Additionally, identification of known subfamilies facilitates the usage of 

support vector machines (SVM) and sequence based classification methods to classify 

indeterminate sequences into existing subtypes [65]. In order to perform sequence based 

subfamily classification, several statistical models that employ the information in mul-

tiple sequence alignments have been developed, such as profiles and hidden Markov 

models (HMMs) [83]. In addition, various SVM based discriminative classifiers that 

appoint unlabeled proteins into predefined subfamilies are designed [84]. The basic 
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principles of these approaches will be discussed precisely in the following parts of the 

thesis.   

 
2.2.2.1 Homology Detection Approaches 

In the classification problem, the methods to detect similarities between sequences can 

be divided into three basic groups: 

Pairwise Sequence Comparison Algorithms: The most popular sequence com-

parison methods in this group are BLAST and Smith-Waterman (SW). The SW algo-

rithm utilizes dynamic programming to produce an optimal local alignment between 

two sequences [85], whereas BLAST calculates a heuristic alignment score to approx-

imate SW [86].    

Generative Models: These models are trained on datasets and represent positive 

features of a protein family. Based on the extracted features, close homologs are added 

into a positive group and classified into that family. Profile HMM method is one of the 

most widely-known generative models [73, 87].    

Discriminative Classifiers: In this method, classifiers such as SVMs are trained 

on both positive and negative data to distinguish between classes [87, 88]. 

Based on different homology detection approaches, scientist develops several protein 

classification methods. 

 
2.2.3 Reduced Amino Acid Alphabets 

Reducing the 20-letter amino acid alphabet into a smaller number by grouping similar 

amino acids together is an effective approach utilized with protein classification me-

thods. A variety of such amino acid groupings called reduced amino acid alphabets are 

defined and tested for classification efficiency [68]. The utilization of RAAAs can also 

pinpoint key site candidates conserved in terms of amino acid property.  

As stated many before; functional, structural and many other biologically relevant in-

formation for the newly identified sequences can be inferred from the evolutionary re-

lated sequences by computational methods. For most of these methods, the sequence 
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alignment is a standard method. Even though the accuracy of the alignments is of signif-

icant importance, the substitution matrices used for alignment have considerable impact 

upon the reliability of the alignments [89, 90].  

Most of the popular substitution matrices such as PAM, BLOSSUM and GONNET are 

build based on sequence alignments and unfortunately, the accuracy of the alignments, 

and therefore the substitution matrices, become less reliable for the distantly related, 

low-sequence similarity sequences [91]. In an effort to dispose the problems resulting 

from sequence similarity issues, several solutions have been proposed by scientists. 

Amino acid grouping based on similarity is one of the major adopted solutions and the 

amino acid alphabets produced by these groupings are named ‘reduced amino acid al-

phabets’ (RAAA).  

The proper groupings of amino acids reveal the similarities which are invisible in the 

full 20-letter alphabet and ensure statistical significance in applications of protein bioin-

formatics, such as structure prediction, homology detection and functional classification 

[92]. However, the compression of amino acids also causes the loss of certain amount of 

information. Therefore, the balance between maximal conservation of information and 

statistical significance is of cardinal importance [93].    

A variety of amino acid grouping schemes is suggested utilizing different similarity 

measures. Groupings based on structural alignments and physiochemical properties are 

the most widely-used ones. Structural features of proteins from the same functional 

classes are more conserved than their sequences and the structural alignments are relia-

ble even for proteins in distant evolutionary relationships. Depending on the distribution 

of amino acids in structural units, several structure-based similarity matrices have been 

developed. Based on those similarities, different amino acid groupings have been pro-

posed such as GMBR, HSDM and SDM [91, 93].   

Amino acid groupings based on the physiochemical properties is another well-known 

approach adopted for RAAAs. During evolution, mutations that do not change physical 

and chemical properties of the amino acids are accepted, even in the conserved sites, 

since the function of the molecule is not disrupted by these mutations [94]. Numerous 

methods attempted to group amino acids based on their different physiochemical prop-

erties and various RAAAs are defined [95-97].   
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2.2.4 Correlated Mutations 

The positive Darwinian selection is a mode of natural selection that favors some alleles, 

on the contrary of negative selection that removes the lethal or disfavored alleles. De-

spite the rare occurrence of positive selection process; the fragments responsible for 

biologic activities such as reactive sites and interaction sites are more prone to positive 

selection [98] .    

The current model of positive selection assumes that positive mutations occur in an in-

terconnected manner. The changes occurring in the neighborhood are related to the 

positive mutations and generally, these interconnected changes reflect protein interac-

tions, biological activity and structurally significant units of the molecule. Therefore, 

the fixed mutations related with each other should occur concurrently [99]. The simul-

taneous occurrence of several mutations is known as correlated mutations. The relation-

ship between correlated mutations and the role of the involved sequences in protein-

protein contacts are demonstrated by several reports [100, 101].  

The correlated mutations phenomenon is not constrained with intra-protein residues and 

can be expanded to inter-protein interactions. On the interacting surfaces of proteins, the 

amino acid substitutions are more limited because of the functional and structural con-

straints. However, once a significant residue for interaction is changed, the effect of the 

functional constraints on the interaction surface can be counterbalanced by an additional 

mutation on a complementary residue. The coevolution of two proteins can lead high 

specificity and affinity [102]. 

Although the fundamental idea behind the concept of correlated mutations has a 

straightforward nature, establishing and quantifying is a challenging task. The methods 

proposed for correlated mutation studies are still not very diversified [102]. The most 

widely-known approaches for correlated mutation analysis include McBASC [103] , 

OMES [104], MI [105], Quartets [106], ELSC [107] two-state maximum likelihood 

methods [108].  
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Chapter 3 

METHODOLOGY 

3.1 Introduction 

Conserved residues in protein sequences are often found to be consequential for protein-

protein and protein-ligand interactions. In some cases, however, instead of a specific 

residue, some physiochemical properties of amino acids are conserved. Type I, type II 

and type III dockerin-cohesin interactions differ in terms of their interaction structure 

and conserved residues in one subclass can designate the mandatory residues for proper 

function and structure. In our approach, we benefit from conserved residues to classify 

dockerins and cohesins. In order to utilize the information present in conserved proper-

ties, several reduced amino acid alphabets are introduced. In this study, every step is 

conducted on each alphabet. At the initial stage, sequences in each subclass are aligned 

separately. In order to pinpoint the residues that serve as motifs, residues conserved 

only in one subclass but not in others are detected. All of the detected residues are 

ranked with a scoring function which measures the specificity for their subclass. Then, 

the residues with high distinguishing capacity are selected as motifs and used for classi-

fication. 

Another aspect of our study is to target candidate key residues for different types of 

dockerin-cohesin interactions. Each motif utilized for classification, are also treated as 

candidates for key interaction sites. It is reported many times that residues directly con-

tact in protein-protein interactions overlap with correlated mutation studies. In order to 

affirm the candidate key site residues, each subclass are surveyed for correlated muta-



27 
 

tions. Figure 3.1 depicts a schematic illustration of our method and each step is ex-

plained in detail, in the following sections.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 A schematic representation of the methodology. 

3.2 Data Collection 

All our experiments are performed on a set of proteins. Training and test data sets needs 

to be defined before implementing any algorithm. For both cohesin and dockerin se-

quences, training and test sets are prepared. All methods used in this work are trained on 

the training set at first, and their classification performance is tested against test sets. In 

these test sets, each sequence serve as a positive test sequence for its own class and neg-

ative test sequence for the other classes.  

In addition, a set of sequences with unknown subclass are classified using the proposed 

method. This set is independent of train and test sets and is not utilized for motif selec-

tion. 
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3.2.1 Data Sources 

Both dockerin and cohesin sequences used in this study are retrieved from UniProt 

KnowledgeBase (UniProtKB) database. UniProtKB is a database under UniProt, which 

is an extensive protein sequence and annotation data resource. UniProtKB provides a 

collection of sequences and functional information on proteins. UniProtKB is composed 

of two sections, UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. UniProtKB/TrEMBL 

entries are derived from computationally generated, hypothetical translation of coding 

sequences (CDS), whereas; UniProtKB/Swiss-Prot brings computed features and expe-

rimental results together providing high-quality, non-redundant protein sequences [109]. 

All available dockerin and cohesin sequences in UniProtKB are extracted in order to 

utilize in this study. After extraction, the sequences are divided into three, based on their 

types. At that point, we obtain three different datasets for both cohesins and dockerin 

sequences, named as type I, type II and type III.  

 
3.2.2 Training and Test Data  

Following the sequence extraction, training and test sets for each subclass (type I, type 

II, type III) are defined. Type I training and test sets for both dockerins and cohesins are 

defined by randomly dividing the type I datasets in 1:1 ratio. Thereby, cohesin type I 

train set contains 36 sequences and dockerin type I train set contains 68 sequences.  For 

cohesins, type II and Type III train and test sets are defined by the same way, and they 

include 22 and 5 sequences, respectively. For dockerins, since there are limited number 

of type II and type III sequences, train sets of these subtypes include 3 sequences. Since 

we have only 3 type II sequences, there is no type II test set and type III test set includes 

one sequence. Each training set is used as positive training set for its own class of pro-

teins, whilst the other training sets serve as negative training sets for that class.  

 
3.2.3 Data with Reduced Amino Acid alphabets 

Despite the availability of large number of possible amino acid sequences, the number 

of folds that proteins can hold is comparatively low. In some cases, sequences that dis-

play almost zero identity can adopt considerably similar structures. This degeneracy has 
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lead to development of reduced amino-acid alphabets; new sequence descriptions that 

have the capability to reveal structural similarities of dissimilar sequences [91].  

In general, reduced amino-acid alphabets can be defined as grouping of amino acids 

based on measures of their relative similarity. Peterson et al. compared the sensitivity 

and selectivity of several reduced amino-acid alphabets[92] . The top performing three 

RAAAs from this comparative work are selected to be utilized: GMBR, HSDM and 

SDM alphabets. In addition, Sezerman’s amino-acid grouping is also employed.  

GMBR alphabet is defined by Solis et. al, based on local structure coding behavior si-

milarities. Without regard to any physiochemical variables or multiple sequence align-

ment of homologous structures, GMBR alphabet is set solely according to the similari-

ties of amino-acid distributions in local structures [93]. Based on the relative propensi-

ties of amino-acids for structures, amino-acids are grouped into a four-letter alphabet, 

detailed in Table 3.1. 

Table 3.1 Amino acid groupings utilized in this study 

Alphabet Amino Acid Groups 
GMBR ATSQNDEKR HYFLIVMCW G P 
 A Y G P 

Sezerman A TS QN DE  KRH YF LIVM C W G P 
 A T Q D  K Y L C W G P 

SDM A TSQ N D EKR  YF LIVM C W G P 
 A T  N D E  Y L C W G P 

HSDM A T S Q N D EK R Y F LIV M C W G P 
 A T S Q N D E R Y F L M C W G P 

 

HSDM and SDM reduced alphabets are also defined by homologous structure align-

ments of proteins with low-sequence similarity; yet less amino-acid substitutions are 

introduced as compared to GMBR. The main difference between HSDM and SDM al-

phabets is their protein datasets that have been used for structural alignment. SDM al-

phabet is calculated based on the structural alignment of all protein sequences in their 

dataset. HSDM alphabet, on the other hand, is derived from the dataset after proteins of 

unclear evolutionary relationships are excluded [91]. Amino-acid groupings of HSDM 

and SDM alphabets are summarized in Table 3.1.  

In Sezerman alphabet, amino-acids are grouped according to their physical and chemi-

cal properties, unlike GMBR, HSDM and SDM alphabets, in which groupings are based 
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on structural alignment and propensities of amino-acids for different structural units 

[94]. The amino-acid grouping in Sezerman alphabet is detailed in Table 3.1. 

Following the decision of test and training datasets, the sequences are translated into 

each of the RAAAs explained above. The rest of the studies carried out in this thesis, 

are conducted on each of these alphabets, separately. 

 
3.3 Protein Classification 

The purpose of this thesis is mainly to classify dockerin and cohesin sequences into 

their subtypes and determine key site candidates for their interaction. To this end, we 

utilize a classification technique combined with RAAAs that targets key interaction site 

candidates. In this method, the residues that are conserved highly in one subclass but 

show slight conservation in others are identified as motifs and given scores according to 

their specificity among classes. These motif scores are then used to calculate a total 

score for each subclass to decide on a classification rule. These rules are applied to test 

sequences to classify them into subclasses.   

 
3.3.1 Motif Definition 

During evolution, the function of a protein is predominantly conferred by small parts 

that form the critical regions, like active sites and binding sites [110]. Those key resi-

dues are shown to be correlated with the most conserved amino acids in proteins. Pro-

teins have undergone several changes in their sequences throughout the time, however; 

maintenance of structural integrity and function entails conservation of the key residues, 

or at least their property. These highly conserved fragments with significant biological 

importance are called as ’motifs’ [111].  

Motifs have been wildly utilized for structure prediction and protein classification stu-

dies [65]. Motif based classification approaches have been shown to discriminate even 

between highly similar sequences [112]. In addition, single residue conservation in pro-

teins is often found to be significant for protein-protein interactions. Binding surfaces of 

proteins are subjected to strong selective pressure and therefore, conserved residues 

have been candidates for binding sites [113]. Despite their high classification efficiency, 

in motif-based classification methods, single residue conservations among classes may 
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be overlooked. In this thesis, as well as the correct classification of dockerin and cohe-

sin sequences, the key site candidates for the interaction are aimed to be determined. 

Therefore, conserved residues are increased in importance. In the frame of classifica-

tion, conserved single residues can also proffer suggestions simply because the cohesin-

dockerin subclasses are distinguished by diversities in interactions. On these grounds, 

we conduct our classification method on conserved single residues. As a matter of con-

venience, the conserved single residues will be referred as motifs throughout the thesis. 

 In order to determine motifs, sequences from each subclass of dockerins and cohesins 

are aligned separately. The consensus sequences of 70% conservation are then utilized 

for motif definition. The residues that present in the target subclass but not in others are 

defined as motifs for that specific subclass, for all amino acid alphabets.    

 
3.3.2 Motif Selection and Scoring 

In the method above, the residues conserved in only one subclass are defined as motifs. 

However, it is probable that a non-conserved residue is present in some sequences of a 

subclass, with conservation less than 70%. Hence, each motif owns a different specifici-

ty and low specificity motifs should be removed prior to classification. An ideal motif 

would be one that is observed in all sequences of its subclass and never occurred in se-

quences of others. In order to determine closeness of motifs to the ideal case, a scoring 

function that gives high scores to the motifs frequent in the target subclass and rare in 

others is applied, named Motif Specificity Score (MSS).  

Motif specificity score is composed of two parameters: Presence in Subclass and Sub-

class Specificity. Presence in Subclass is a measure of motif’s occurrence in target sub-

class. Presence of motif i in subclass j, PSi,j , is defined as: 

     (3.1) 

       

Where ni,j is the number of sequences containing motif i in subclass j and  Sj is the total 

number or sequences in subclass j.  
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The second parameter of motif specificity score, subclass specificity SSi, is in inverse 

proportion with the number of sequences containing motif i from other subclasses. SSi is 

defines as follows: 

      (3.2) 

Where ni,k denotes the number of motif i in the subclasses other than j and Sk is the total 

number of sequences in those subclasses. 

Following the calculation of PS and SS, MSS of motif i in subclass j is calculated as 

follows: 

    (3.3) 

The next step following the calculation of motif specificity scores is determination of a 

certain threshold value to filter motifs with high distinguishing capacity and utilize them 

for classification. The distribution of subclass specificity and motif specificity scores 

displays varieties between cohesin and dockerins. Hence, different threshold values are 

set. Selected motifs and their MSSs for each amino acid alphabet is provided in Appen-

dix A.  

 
3.3.2.1 Cohesin Sequences 

In the motif definition step, a threshold value for presence in subclass (PS) score is de-

fined, 70. A high percentage of motifs identified from cohesin sequences show perfect 

subclass specificity, with SSi, j value 1. Due to the presence of highest specificity level 

motifs, instead of defining a MSS threshold, different thresholds for PS and SS are set. 

The SS threshold is set to 1, indicating that motifs occurred only in the target subclass 

are used for classification of cohesin subclasses. 

 
3.3.2.2 Dockerin Sequences 

Unlike the maximum level subclass specificity of cohesin sequences, the number of 

motifs with maximum subclass specificity defined for dockerins is not sufficient for an 

accurate classification. In the case that a small number of motifs are set for prediction, 

on the other hand, the risk of misclassification increases. Therefore, the threshold value 
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for subclass specificity is set to a lower value, 0.9, to obtain higher number of motifs. 

The PS score threshold is again set as 70. 

 
3.3.3 Motif Based Classification 

Classification based on motifs is then implemented on the test set. Each of the se-

quences in the test set is first aligned to the profile alignment of the target subclass, sep-

arately. Subsequently, the sequences are inspected to expose whether the motifs of the 

target subclass are present or not. Based on the specificity scores of motifs occurred in 

the sequences, a Classification Score (CS) is defined for each test sequence, as follows: 

      

(3.4) 

   

In the numerator, MSSi, s indicates the motif specificity score of motif i in sequence s 

and N is the set of target subclass motifs present in sequence s. In the denominator, 

MSSi exhibits the motif specificity score of motif i where F is the set of all motifs for 

the target subclass. 

The division with the motif specificity score of all motifs for the target subclass func-

tions as a normalization step. Without normalization, the subclass with more number of 

total motifs can dominate the score, even if it is not the correct subclass. In order to 

avoid that kind of a misclassification, we add the division to our CS calculation. 

For each subclass, the CS values of test sequences are calculated and each test sequence 

is assigned to the subclass with the highest CS value. 

 
3.4 Classification with profile HMM 

In order to compare the performance of our method with state-of-the-art classification 

methods, a profile HMM classification is conducted on our test set. For each subtype, 

the process is repeated in 20 letter alphabet, for both cohesin and dockerin. 
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Sequence Alignment and Modeling (SAM) system software version 3.4 is utilized in 

this study. SAM is an implementation of profile HMM method for protein classifica-

tion. Unaligned positive train set sequences in FASTA format is provided as input. In 

order to obtain better probability distributions, Dirichlet mixture priors are used. Dirich-

let mixture priors are introduced to profile HMMs by Sjolander et al. [114]. In this me-

thod, multiple sequence alignment information  from databases are condensed into a 

mixture of Dirichlet densities over amino acid distributions and these densities are com-

bined with the observed amino acids to obtain more effective estimates of the expected 

amino acid distributions. The following commands and options are used for classifica-

tion: 

> buildmodel train_model -train trainset.fas -prior_library uprior.9comp -randseed 0 

Here, trainset.fas is the input file and uprior.9comp is the Dirichlet mixtures library. The 

model built by SAM is named as train_model and it is saved in train_model.mod file. 

The command randseed is for initial model length selection and setting it to 0 makes the 

program run reproducible.  

Following the construction of model, each test sequence is compared to each of the 

models, using the commands as follows: 

>hmmscore outfile -i train_model.mod -db testset.fas -sw 2 -calibrate 1 

The unaligned test sequences are available in FASTA format in testset.fas file. The out-

file parameter sets the name of the output file (outfile.dist). For each of the test se-

quences, E-values are calculated based on the model, given as train_model.mod and e-

values are contained in outfile.dist file. –sw parameter sets the type of the alignment and 

setting it to 2, we performed full local alignments of sequences to the model.  –calibrate 

parameter set to 1 to obtain better calibration of e-values. In order to complete classifi-

cation, a certain threshold for e-values is set and the sequences with the e-values lower 

than or equal to threshold is classified as a member or target subtype (positives). The 

sequences with e-values higher than the threshold are labeled as negatives of that target 

subtype.  The threshold for e-values is decided using the minimum error point approach, 

described in section 3.6.3. 
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3.5 Performance Analysis 

Classification performance of the methods is analyzed using various statistics. Firstly, 

cross-validation studies are conducted. Gini Index is introduced to observe how signifi-

cant the discrimination between type I, type II and type III scores is. The confidence 

level of scoring is then calculated. Minimum error point is utilized to define a threshold 

value for HMM classification and lastly; confusion matrix, accuracy rates, sensitivity 

and specificity values of classifications are analyzed to compare our method with pro-

file HMM.  

 
3.5.1 2-fold Cross-Validation 

2-fold cross-validation analysis is performed for all experiments in this study. For cross-

validation; using the same dataset, different train and test sets are defined randomly di-

viding the dataset into two, as described before. Differently, for dockerin type II set that 

has no test sequence, one of the sequences in train set is left outside from motif defini-

tion and treated as a test set in cross-validation studies. Therefore, the algorithm is 

trained and tested on different sets. This process is repeated twice. For rest of the thesis, 

the first study conducted is named as the study1, whereas the cross-validation studies 

are named as study2 and study3.  

 
3.5.2 Gini Index 

Gini index is a statistical approach that have been widely used in economy  to evaluate 

the distributional properties of income and wealth [115]. In biology, Gini index has 

been used for evaluation of computational classification methods to rate the weight of 

the features used for classification.  In summary, the Gini index measures the impuri-

ty/inequality of the samples that are split from a common parent node [115].  

A smaller Gini index implies higher purity, in other words, best separation between the 

nodes. In the case of equal distribution at a node, the Gini index gains the maximum 

value at 1-1/nc ,implying least differential information. nc is the number of classes at the 

mode. On the other hand, Gini index gets its minimum value, 0, where all information 

comes from only one node, implying the most differential information [116]. The Gini 

index is computed as follows: 
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    (3.5) 

     

Where p(j|t) is the relative frequency of class j at node t. Calculation of Gini index is 

demonstrated in Table 3.2. 

Table 3.2 Calculation of Gini Index 

Classes 
at the Node 

Values assigned 
to classes 

Calculation 

C1 5 p(C1)=5/5=1    p(C2)=0/5=0 
C2 0 Gini=1-p(C1)2-p(C2)2=1-1-0=0 

 

 
In our classification step, the type with the highest score is assigned as the type label of 

the target sequences. In an ideal case, the score of the unassigned types should be zero, 

since the sequence should have no motif residues other than its own type motifs. How-

ever, in some cases, the scores of the unassigned types for the target sequence are very 

close to the score of the assigned type. So, in order to determine how close they are to 

the ideal case, the Gini index for each test sequence is calculated after the classification. 

Scores for each type are handled as the classes at a node. In this way, Gini index estab-

lished how differential the type scores are.  

 
3.5.3  Confidence Intervals 

In classification problem, determining how close an estimate to the parameter being 

estimated is a crucial question. In this thesis, in order to address this question, confi-

dence intervals are introduced to our method.  

In statistics, a confidence interval for a population parameter is a range of values de-

fined with a certain confidence that the interval contains the unknown population para-

meter, the estimated range been calculated from the sample population. The confidence 

in this concept means the degree of certainty that the unknown parameter belongs to 

that population [117].  

Classes 
at the Node 

Values assigned 
to classes 

Calculation 

C1 7 p(C1)=7/10=0.7   p(C2)=3/10=0.3 
C2 3 Gini=1-p(C1)2-p(C2)2=1-0.49-0.09=0.42 
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In our classification method, in order to statistically infer how significant a classifica-

tion score can predict the subclass of the sequence, the confidence intervals of classifi-

cation scores with 99% confidence level are calculated. Following, the ratio of the test 

sequences with classification scores higher than the lower end point of the confidence 

interval are calculated. In order to determine the confidence intervals, the classification 

scores for training sequences are calculated. Subsequently, the confidence intervals are 

calculated based on the training set classification scores as the sample population, as 

follows: 

     (3.6) 

 

is the sample mean,  is the sample standard deviation, n is the sample size and 

lastly, T is a table value that depends on the confidence level, obtained from T-2 table, 

in  with degree of freedom n-1. As we used 99% confidence level, if the scores smaller 

than lower end point of the interval are not classified as a member of the target subclass, 

the probability of erroneously rejecting a sequence of the target subclass is no greater 

than 0.005.  

 
3.5.4 Minimum Error Point 

 Minimum error point (MEP) can be defined as the score threshold at what point a clas-

sifier makes the minimum mistakes, of both false positives and false negatives [84]. 

Each classifier outputs scores for their prediction. The test sequences are ranked accord-

ing to their prediction scores and prediction errors (FP+FN) are calculated as each score 

is treated as the threshold. The threshold level with the minimum number of errors is the 

minimum error point (MEP). MEP denotes the best case accuracy of a classifier.    

The minimum error point is calculated for profile HMM classification, to determine the 

threshold value for classification.  
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3.5.5 Confusion Matrix, Accuracy Rates, Sensitivity and Specificity Calculations 

Simply, confusion matrix is a 2x2 table, showing the number of accurate classification 

and errors, predicted by a classifier. As shown in Table 3.3, a confusion matrix is com-

posed of 4 elements: 

-True Positives (TP): Number of sequences that are truly predicted to belong to the tar-

get subclass. 

-False Positives (FP): Number of sequences that are falsely predicted to belong to the 

target subclass. 

-True Negatives (TN): Number of sequences that are truly predicted not to belong to the 

target subclass. 

-False Negatives (FN): Number of sequences that are falsely predicted not to belong to 

the target subclass. 

 Following the definition of confusion matrix elements, the accuracy rate is given 

by: 

     (3.7) 

 

Table 3.3 A confusion matrix and its elements: True Positives (TP), False Positives 
(FP), True Negatives (TN) and False Negatives (FN). 

 

 

 

  

 

 

In addition to the accuracy rates, sensitivity and specificity levels of classifications are 

calculated from confusion matrix. Sensitivity and specificity levels are calculated as 

follows: 

 Predicted Label 
 
 
 
Actual Label 

 + - 
 
+ 

 
True Positives (TP) 
 

 
False Negatives (FN) 

 
- 

 
False Positives (FP) 
 

 
True Negative (TN) 
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  (3.8) 

 

 

 (3.9) 

 

 

3.6 Correlated Mutations 

Correlated mutation studies are conducted using Coevolution Analysis using Protein 

Sequences (CAPS) software version 1.0. CAPS software measures the Coevolution be-

tween amino acids from the same protein (intra-molecular Coevolution) of from two 

functionally interacting, distinct proteins (inter-molecular Coevolution) [118].  

In this study, the inter-molecular coevolution between dockerin and cohesin domains is 

analyzed. The Caps.ctl file available in CAPS software includes the control parameters 

for analysis. The Co-evolution analysis parameter in Caps.ctl file is set to 1 to perform 

an inter-protein analysis. The Input file1 parameter is left as Groel.aln and Input file 2 

parameter is changed as Groel2.aln. Type of data 1 and Type of data 2 parameters is set 

to 0 to work on the amino acid alignments. The other parameters are left as default. 

Aligned cohesin and dockerin sequences are given to the software in FASTA format as 

input. The input files are named as Groel.aln and Groel2.aln, respectively. After the 

changes in caps.ctl file, the following command line is used to conduct the coevolution 

analysis: 

> perl caps.pl 

The output file created by the software is named as Groel.out. This study is conducted 

on the initial train sets of type I, type II and type III subclasses, separately.  
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Chapter 4 

RESULTS AND DISCUSSION 

As described in Chapter 3, our classification method is trained on different type I, type 

II and type III training sets, for cohesins and dockerins. For each train set, four different 

reduced amino acid alphabets are introduced to analyze effects of groupings in classifi-

cation. Test sets containing sequence from each subclass are used to test the perfor-

mance of the proposed method. Subsequently, correlated mutation studies are conducted 

on training sets. In this chapter, the results of the tests identifying dockerin and cohesin 

subclasses are discussed firstly. Following, the predictions for the sequences with un-

known subclasses are provided.  In the second section, the correlated mutation studies 

and their results are analyzed. 

 
4.1 Identification of Dockerin-Cohesin Subclasses 

To examine the performance of proposed classification method on different reduced 

amino acid alphabets, test sets in each alphabet containing sequences from each sub-

class are used.  In order to analyze the performance, 2-fold cross-validation studies are 

conducted and cases are named as study1, study2 and study3. 

 
4.1.1 Subclass Identification for Dockerin 

The classification method utilized in this study is applied to both cohesin and dockerin 

sequences, separately. In this section, classification and performance results for dock-

erin sequence are discussed. 
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4.1.1.1 Confusion Matrix and Accuracy Rates 

The confusion matrix of dockerin classification for each RAAA and each study is sum-

marized in Table 4.1. Type I sequences are generally classified accurately, however in 

some cases, they are misclassified as type III and in one case, a considerable number of 

type I sequences is classified as type II. Likely, type II and type III sequences are most-

ly misclassified to each other and type I. However, the proportion of the misclassified 

sequences does not show correlation between different RAAAs or different studies. 

Table 4.1 The confusion matrix of dockerin classification. In each section, rows 
represent different RAAAs and columns represent the cases; study 1, study 2 and study 
3, respectively.  

 

The accuracy rates for the proposed classification method on different studies of five 

different amino acid alphabets are listed in Table 4.2. It is noteworthy that the average 

accuracy levels of the method for all amino acid alphabets are higher than 90%. In order 

to examine the effect of different training and test sets on the classification method, 

cross-validation tests are conducted. Except the comparably low accuracy rates in 

study2, the individual accuracy rates are even higher than average rates. 
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Table 4.2 The accuracy rates and Gini index values of dockerin classification for differ-
ent amino acid alphabets and for cross-validation studies on different datasets. 

 

Among the five different amino acids alphabets utilized in this study, the average accu-

racy levels do not display drastic changes, as summarized in Table 4.2. In average, 20-

letter alphabet gives the higher accuracy level, 95% and with 94%, HSDM alphabet 

follows. However, if we disregard the low accuracy rates in the first cross-validation 

study, HSDM alphabet gives the highest accuracy rates, 97% and 100%. Following 

HSDM alphabet; 20-letter, GMBR and SDM alphabets give nearly the same accuracy 

rates, 96% and 97%, respectively. However, the accuracy rates do not display correla-

tion between different studies or RAAA, as in the confusion matrix values. 

Note that due to limited number of available type II and type III dockerin sequences, 

training sets of these subclasses are in small scale compared to type I train sets. Thence, 

it is discussible whether the motifs defined by these train sets reflect the true conserva-

tion for these subclasses. However, despite the uncertainty of type II and type III motifs, 

the method gives remarkably high overall accuracy levels, especially for type I predic-

tion. The specificity and sensitivity values based on confusion matrix are calculated and 

presented in Table 4.3.  

As seen in Table 4.3, Type I prediction for all amino acid alphabets gives high sensitivi-

ty. However, type I specificity values display drastic changes between different alpha-

bets and different studies. Since we have only one type II and type III test sequences, 

the sensitivity values may not be very reliable and expectedly, for both of the subclasses 

Proposed  
Method 

Accuracy Rate (%) 
Gini Index 

 20 letter GMBR HSDM SDM Sezerman 
Study 1  96% 

0.612  

96% 

0.553  

97% 

0.589  

96% 

0.574  

94% 

0.568  

Study 2  93% 

0.587 

76% 

0.651  

80% 

0.568  

87% 

0.579  

89% 

0.631  

Study 3  97% 

0.634  

97% 

0.631  

100% 

0.645  

98% 

0.644  

89% 

0.643  

Average  95%  
0.611  

90% 
0.611  

92% 
0.601  

94% 
0.599  

91% 
0.614  
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the average sensitivity rates are low. In addition, the sensitivity values are demonstrat-

ing significant differences between RAAAs and studies. For specificity however, type II 

and type III sequences give comparably high values and these values are relatively cor-

related between amino acid alphabets and studies.  

 
Table 4.3 Dockerin sensitivity and specificity values calculated from confusion matrix 
for type I, type II and type III prediction on five different amino acid alphabets. Differ-
ent colors represent different amino acid alphabets; 20-letter, GMBR, HSDM, SDM and 
Sezerman, respectively.  

 

In general, despite the relatively high specificity values of type II and type III sequences 

and relatively high sensitivity values of type I sequences; sensitivity and specificity 

scores are not correlated in any way. These incompatibilities are probably due to low 

number of train and test sequences in type II and type III subclasses.  

 
4.1.1.2 Gini Indexes 

In our classification methods, each of the type I, type II and type III classification scores 

(CS) are calculated for sequences in the test set and the subclass with the highest CS is 

assigned to the relevant sequence. In an ideal case, a sequence would have the highest 

possible score for its own subclass and zero score for the others. However, sequences do 

not behave ideally in reality and a sequence has classification scores for each subclass. 
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Under these circumstances, the prediction will be as reliable as the degree of variance 

between classification scores. In order to express the variety between scores, Gini in-

dexes are calculated for test sequences in each amino acid alphabet. 

In the ideal case, sequences would have a zero Gini index. In our case, a smaller Gini 

Index indicates a better variety between subclass scores. The results are displayed in 

Table 4.2. These Gini Index values indicate slightly more than a two-fold overall va-

riance.  

The Gini index values display mild changes however they are in the same range for dif-

ferent RAAA and studies in general. Nevertheless, the Gini index changes do not show 

correlation for RAAA or for different studies. 

 
4.1.1.3 Confidence Intervals  

In addition to the importance of variance between classification scores, it is also crucial 

to determine how well the score of the assigned type represents its subclass. In order to 

define borders for scores, confidence intervals based on train set scores are calculated at 

99% confidence level.  Then for each alphabet and each dataset, the rate of the se-

quences with classification scores higher than the lower limit of the 99% confidence 

interval is calculated. Summarized in Table 4.4, the ratios are not very high; implying 

that nearly half of the test sequences do not significantly represent Type I population 

created by train set.  

 
Table 4.4 The rate of the dockerin test sequences in 99% confidence intervals for all 
studies.   

 

Cross-validation studies show some variety, but sequence rates do not display signifi-

cantly high values. For amino acid alphabets, there is no correlation between different 

 Study1 Study2 Study3 

 Rate of sequences in 99% confidence interval 

20-letter 51% 47% 70% 

GMBR 65% 49% 52% 

HSDM 36% 56% 58% 

SDM 51% 43% 59% 

Sezerman 51% 41% 62% 
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studies. Thence, it is impossible to express whether any amino acid alphabet performs 

better in overall. 

 
4.1.1.4 Profile-HMM Classification 

In order to compare the proposed method with state-of-the-art classification methods, 

profile HMM classification is conducted on each dataset. Minimum error point test is 

applied to determine threshold values for HMM classification. Threshold values with 

error points and the accuracy rates for all datasets and all subclasses are denoted in Ta-

ble 4.5. 

 
Table 4.5 Profile HMM dockerin results for all subclasses and all studies are summa-
rized. Minimum Error Point (MEP) is the threshold value used for HMM classification. 
FP and FN errors and the accuracy rate at that threshold level are shown. 

 

In the case of type I prediction, HMM gives high accuracy rates and the accuracy rates 

on different studies are quite correlated. The accuracy rates of type II and type III 

classification show much more variance on different studies. This incompatibility is 

thought to arise from incompetent type II and type III motifs, as in the previous cases. 

The accuracy rates for Type I HMM prediction is higher than our method, however the 

accuracy rates of type II and type III HMM classification are not matching in different 

studies and give comparably low accuracy rates, as in the case of our proposed method. 

Specificity and sensitivity scores are calculated for HMM in Table 4.6. Sensitivity of 

HMM classification is generally higher than the sensitivity of the proposed method and 

  Study 1 Study 2 Study 3 
Type I  
Prediction 

MEP 7.17e-09 6.40e-05 9.20e-13 
FP 1 1 0 
FN 0 0 1 

Accuracy Rate 99% 99% 99% 
Type II 
Prediction 

MEP x 2.03e+01 4.71e-20 
FP x 17 0 
FN x 0 0 

Accuracy Rate x 76% 100% 
Type III 
Prediction 

MEP 8.02e-7 2.74e-05 2.85e-04 
FP 3 12 27 
FN 0 0 0 

Accuracy Rate 96% 83% 61% 
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they are correlated for each study. However, our method gives higher specificity in gen-

eral, compared to HMM. 

 

Table 4.6 Dockerin sensitivity and specificity values of HMM. Values are calculated for 
prediction of each subclass on different studies. 

 

 

4.1.2 Subclass Identification for Cohesin 

In this section, classification and performance results for cohesin sequences are dis-

cussed. 

 
4.1.2.1 Confusion Matrix and Accuracy Rates 

The confusion matrix of cohesin classification for each RAAA and each study is sum-

marized in Table 4.7. All sequences are generally classified accurately, however in a 

few numbers of cases, type II and type III sequences are classified as type I. Unlikely, 

type II and type III sequences display no misclassification between them. In addition, 

the results are in correlation with each other in different RAAAs and studies. 

The accuracy rates of the proposed classification method for studies on five different 

amino acid alphabets are listed in Table 4.8. It is noteworthy that the average classifica-

tion accuracy for all amino acid alphabets is higher than 97%. The accuracy levels for 

different studies in RAAAs show correlation.   

 

 

 Type I Type II Type III 

 Sensitivity 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Study 1 100 0 X X 100 96 
Study 2 100 50 100 75 100 83 
Study 3 99 100 100 100 100 61 
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Table 4.7 The confusion matrix of cohesin classification. In each section, rows represent 
different RAAAs and columns represent the cases; study 1, study 2 and study 3, respec-
tively.  

 

Table 4.8 The accuracy rates and Gini index of cohesin classification for different ami-
no acid alphabets and for different studies. 

 

Proposed  

Method  

Accuracy Rate (%)  

Gini Index  

 20 letter  GMBR  HSDM  SDM  Sezerman  

Study 1  100%  

0.545  

100%  

0.542  

100%  

0.539  

100%  

0.545  

100%  

0.540  

Study 2  98%  

0.497  

98%  

0.613  

96%  

0.617  

98%  

0.549  

98%  

0.558  

Study3  98%  

0.535  

98%  

0.598  

96%  

0.589  

96%  

0.579  

98%  

0.546  

Average  99%  
0.523  

99%  
0.584  

97%  
0.582  

98%  
0.558  

99%  
0.548  



48 
 

Among the five different amino acids alphabets, despite the HSDM and SDM alphabets 

perform slightly worse than the other alphabets, the accuracy levels are not vastly dif-

ferent, as summarized in Table 4.8.  

It is stated before that due to limited number of available type II and type III sequences, 

training sets of these subclasses are in small scale compared to type I train sets. Even 

though the number of available type II and type III cohesins are higher than dockerins, 

they still compose smaller portions compared to type I sequences. Thence, the question 

about the qualification of motifs to reflect the true conservation is also valid for cohesin 

sequences. Regardless of these problems, high classification accuracy levels are ob-

tained for each amino acid alphabet using the proposed method. Following, the specific-

ity and sensitivity levels of classification calculated from the confusion matrix are pre-

sented in Table 4.9.  

Table 4.9 Cohesin sensitivity and specificity values calculated from confusion matrix 
for type I, type II and type III prediction on five different amino acid alphabets. Differ-
ent colors represent different amino acid alphabets; 20-letter, GMBR, HSDM, SDM and 
Sezerman, respectively.  

 

 

In each study, on the contrary of the dockerin case, specificity and sensitivity scores are 

correlated. Specificity and sensitivity levels of HSDM and SDM alphabets show some 

variation in cross-validation studies, however, other alphabets produce the same values 
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for each case. In addition, sensitivity levels for prediction of type I and type II se-

quences are higher than the type III values. As stated in dockerin case, the relatively 

small dataset of type III sequences is the possible reason behind the low sensitivity lev-

el. However, the specificity levels for type III are comparably high, indicating the de-

fined motifs display great specificity despite the small size dataset. 

 
4.1.2.2 Gini Indexes 

The Gini index results for cohesin classification are displayed in Table. The Gini index 

levels are smaller than dockerin values, indicating that the scoring introduced by our 

method is more discriminative in cohesin test. Gini index values show correlation be-

tween RAAA and studies, corresponding to a more or less two-fold difference.  

 
4.1.2.3 Confidence Intervals 

For each alphabet and each dataset, the rate of the sequences with classification scores 

higher than the lower limit of the 99% confidence interval is calculated and summarized 

in Table 4.10. Compared to dockerin sequences, a very high percentage of the cohesin 

test sequences obtain scores in 99% confidence interval. These values indicate that most 

test set sequence represent their assigned subclass population created by the train set. 

The cross-validation studies are correlated in general. 

 
Table 4.10 The rate of the cohesin test sequences in 99% confidence intervals for all 
datasets.   

 

 

 

 Study 1 Study 2 Study 3 

 Rate of sequences in 99% confidence interval 

20-letter 85% 90% 89% 

GMBR 90% 91% 90% 

HSDM 87% 89% 90% 

SDM 87% 89% 89% 

Sezerman 87% 89% 89% 
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4.1.2.4 Profile-HMM Classification 

Profile HMM analysis is conducted on cohesin test set for type I, type II and type III 

prediction. The results are summarized in Table 4.11. In each study, profile HMM gives 

correlated results for all RAAAs. Type I sequences are predicted with 100% accuracy, 

where type II and type III sequences are predicted with an average of 99% accuracy. 

HMM performs slightly better than HSDM and SDM alphabet in our method, however 

for the other alphabets, they give the same accuracy rate as HMM. 

 
Table 4.11 Profile HMM cohesin results for all subclasses and all studies are summa-
rized. Minimum Error Point (MEP) is the threshold value used for HMM classification. 
FP and FN errors and the accuracy rate at that threshold level are shown. 

 

 
Table 4.12 Cohesin sensitivity and specificity values of HMM. Values are calculated for 
prediction of each subclass on different studies. 

 

  Study 1 Study 2 Study 3 
Type I  
Prediction 

MEP 7.66e-08 4.58e-12 5.48e-08 
FP 0 0 0 
FN 0 0 0 

Accuracy Rate 100% 100% 100% 
Type II 
Prediction 

MEP 0.00e+00 0.00e+00 1.48e-266 
FP 0 0 0 
FN 2 0 0 

Accuracy Rate 97% 100% 100% 
Type III 
Prediction 

MEP 6.88e-02 5.98e-101 1.07e-74 
FP 0 0 0 
FN 0 1 1 

Accuracy Rate 100% 98% 98% 

 Type I Type II Type III 

 Sensitivity 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Study 1 100% 100% 91% 100% 100% 100% 
Study 2 100% 100% 100% 100% 80% 100% 
Study 3 100% 100% 100% 100% 80% 100% 
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Sensitivity and specificity for type I HMM prediction gives the same values as our me-

thod, except for the HSDM and SDM alphabets that performs slightly worse than the 

other alphabets. For type II prediction, our method displays sensitivity and specificity 

higher than 99% that outperforms the sensitivity of HMM. For type III sequences, 

HMM gives nearly the same scores as our prediction method (Table 4.12). 

 

4.2 Classification of Sequences with Unknown Subclass 

The classification results of dockerin and cohesin sequences with unknown subclass are 

provided in Table B.1. The accuracy of this classification demands to be determined by 

future studies that will define the subclasses for the below sequences. 

 
4.3 Correlated Mutation Studies 

Correlated mutation studies are conducted on type I, type II and type III datasets, sepa-

rately. Type II and type III analysis do not express any correlated residues. We believe 

that the number of available type II and type III sequences is not enough to calculate 

evolutionary correlation. The correlated residues for type I sequences are summarized 

on Table 4.13. The residues highlighted in red demonstrate the positions at which the 

residues are defined as motifs in all alphabets and used for subclass prediction. In con-

sistence with our intuition, correlated residues for dockerin-cohesin type I interaction 

show overlaps with the defined motifs in this study. In Table 4.14, it is explained in 

detail which motif is identified in which alphabet.  

In this thesis, as well as classifying dockerin and cohesins into their subtypes, we aim to 

pinpoint possible key interaction sites. These highlighted residues are conserved among 

type I sequences and coevolve together. Thence, these residues can be defined as key 

site candidates for dockerin-cohesin interaction studies.  

In Figure4.1, the residues that are corresponding to the correlated motifs are shown on a 

known type I Clostridium Cellulolyticum dockerin-cohesin complex structure. Dockerin 

residues are represented in red, whereas cohesin sequences are represented in yellow.  
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Table 4.13 Correlated dockerin-cohesin residues. Values indicate positions in aligned 
form, whereas the values in brackets display the residues in unaligned form. The resi-
dues highlighted in red are the residues correlated with motifs utilized in this study. 

 

Dockerin Residues  Correlated Cohesin Residues  

4(4)   22(20)   

11(11)   82(68) (G)  

12(12)   47(44)         50(47)        107(90) (T, S, N, Q)     117(100) (A, S, T)  
124(103)     162(123)  

13(13) (G)  3(1)     5(3)(F, I, L, Y)   16(14)(I, V)  18(16)     20(18)(I, V)     25(23)(I, V)  

16(16)   20(18) (I, V)      25(23) (I, V)    117(100) (A, S, T)  

17(17) (S, A, I)  120(101)  

18(18)   21(19)  

23(23)   107(90) (T, S, N, Q)  

24(24) (R, K)  125(104)      149(111)  

25(25) (Q, R, K)  117(100) (A, S, T)  

27(27) (L, V, I)  3(1)   33(30)      149(111)   162(123)  

31(31) (I, L, F)  38(35) (L, I, V, Y)  

38(34) (F, L)  47(44)   76(63)       151(113)  

42(38)   37(34)   150(112)   

43(39)   76(63)  

44(40)   71(58)   150(112)   151(113)   

48(41)   150(112)  

51(44) (A)  94(79)   107(90) (T, S, N, Q)   114(97) (K,S)   

58(50) (G)  107(90) (T, S, N, Q)   120(101)   

60(52) (V, F, I, A)  20(18)(I, V)    25(23)(I, V)    47(44)        94(79)     114(97)(K,S)   162(123)  

62(54)   20(18)(I, V)  25(23)(I, V)  82(68)(G)  150(112)   151(113)    167(128)(V,I )  

 

 
Table 4.14 The motifs overlapping with correlated sites and the alphabets that these 
motifs are defined. D stands for dockerin and C stands for cohesin residues. 
 
 
Alphabets Motifs defined in the corresponding alphabets 
20-letter C82, D13, D24, D51, D58 
GMBR C5, C16, C20, C25, C38, C114, C117, C167, D13, D17, D24, D58 
HSDM C16, C38,C82, C167, D13, D24, D27, D51, D58, D60  
SDM C5, C16, C20, C25, C38, C82, C107, C167, D24, D58, D60 
Sezerman C5, C16, C20, C25, C38, C82, C107, C167, D13, D24, D25, D27, D51, 

D58, D60 
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Figure 4.1 Representation of motifs that overlap with correlated sites on a known struc-
ture of type I Clostridium Cellulolyticum dockerin-cohesin complex (PDB code: 2VN6) 
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Chapter 5 

CONCLUSIONS AND FUTURE PROSPECTS 

In this thesis, we propose a method to classify dockerin and cohesin sequences into their 

subclasses using conserved amino acid residues as motifs. The basic difference between 

dockerin and cohesin subclasses is their mode of interaction. In this thesis, as well as 

accurate subclass prediction, we aim to define the key interaction site candidates for 

each subclass for design purposes.  

In a multiple sequence alignment, even functionally or structurally critical amino acids 

can be substituted with physiochemical similar amino acids. Since we are working on 

conserved residues, we introduce reduced amino acid alphabets to catch these amino 

acids as motifs. We used four different reduced amino acid alphabets to analyze the 

effect of different groupings in our classification.  

We performed our prediction using classification scores that are calculated based on 

motif specificities. For cohesin sequences, we obtain high classification accuracy, high-

er than 97%. For 20 letter, GMBR and Sezerman alphabets, the accuracy is even higher, 

99%. Our method gives high sensitivity and specificity scores as well. 20 letter, GMBR 

and Sezerman alphabets gives the best sensitivity score, 100% and specificity score, 

96% for type I and type II subclass prediction. For type III prediction, all alphabets give 

80% sensitivity and 100%specificity scores. 

 For dockerins, on the other hand, the performance of the method drops. Accuracy rates 

are higher than 90% and 20 letter alphabet gives the best accuracy level with 95%; 

however, these scores are not correlated when different datasets are utilized. Sensitivity 

and specificity levels display drastic changes between different datasets and different 

amino acid alphabets. For HMM classification, the same pattern is observed. Type I 

sequences are classified with 91% accuracy; however this level drops to 61% for type 

III classification for example. On different datasets, the sensitivity and specificity levels 
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for HMM shows critical changes. Compared with high classification performance of 

cohesins, we consider the low number of type II and type III sequences as the source of 

this problem. This method has the potential for high performance classification as in the 

cohesin case, but for dockerin classification, it needs to be conducted on a dataset with 

more type II and type III sequences. 

There are several widely-known protein classification methods; however these methods 

do not reveal any key residue information. In our method, we define visible motifs that 

are conserved in only the target subclass. Since these motifs are subclass specific, we 

claim that they have the potential to act as key interaction sites. Therefore, we per-

formed correlated mutation studies between dockerin and cohesin sequences in order to 

approve our intuition. The motifs used in our method and coevolved residues of dock-

erins and cohesins show correlation, as expected. Thence, we propose the motifs over-

lapping with correlated mutation studies as key interaction site candidates.   
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Appendix A 

Motif, Positions and Motif Specificity Scores 

Table A.1 Motifs used in cohesin 20-letter alphabet classification with positions and 
MSSs. 

 

Position Motif MSS Position Motif MSS Position Motif MSS 

Type I 31 A 75 164 V 71 

16 V 79 33 Y 92 166 Q 75 
19 P 95 34 Q 100 164 V 71 
36 F 87 36 N 92 166 Q 75 
40 Y 92 38 K 100 166 Q 75 

41 D 97 39 Y 88 Type III 

45 L 89 40 D 96 7 W 100 
53 G 100 41 P 96 16 P 67 
73 F 87 52 G 88 17 G 100 
82 G 71 61 P 96 37 A 83 
87 L 89 65 G 92 38 G 83 
88 F 97 74 Y 96 40 Q 100 

100 I 100 77 T 75 41 F 100 
105 V 82 91 F 88 51 Y 100 
106 F 95 95 Y 100 60 Y 100 
111 F 76 98 L 83 61 G 83 
112 K 87 105 G 83 75 K 100 
165 G 95 111 G 100 78 F 83 

Type II 116 I 75 80 F 100 

8 D 96 118 F 100 103 V 100 
10 T 83 120 V 92 110 G 100 
15 G 100 146 G 100 113 Y 100 
16 D 88 152 W 100 132 V 67 
30 F 71 154 G 88       
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Table A.2 Motifs used in cohesin GMBR alphabet classification with positions and 
MSSs. 
 
 

Position Motif MSS Position Motif MSS Position Motif MSS 

Type I Type II 154 G 88 

1 Y 82 15 G 100 164 Y 75 

7 A 95 30 Y 100 Type III 

16 Y 95 33 Y 100 16 P 67 
19 P 95 36 A 96 17 G 100 
31 Y 97 41 P 96 18 A 100 
38 Y 97 52 G 88 38 G 83 
40 Y 100 61 P 96 41 Y 100 
45 Y 100 65 G 92 61 G 83 
53 G 100 66 A 96 98 A 67 
56 Y 100 74 Y 100 103 Y 100 
73 Y 100 104 A 92 110 G 100 
82 G 71 105 G 83 117 Y 100 
87 Y 89 111 G 100 132 Y 67 
101 A 97 120 Y 92 134 A 67 
105 Y 95 132 A 100 135 A 67 
111 Y 76 137 A 79       

164 A 95 146 G 100       

165 G 95 148 Y 88       

167 Y 84 152 Y 100       
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Table A.3 Motifs used in cohesin HSDM alphabet classification with positions and 
MSSs. 

 

Position Motif MSS Position Motif MSS Position Motif MSS 

Type I Type II 146 G 100 

16 L 95 7 L 88 149 L 71 

19 P 95 8 D 96 152 W 100 

31 L 95 10 T 83 154 G 88 

36 F 87 15 G 100 164 L 75 

38 L 79 16 D 88 166 Q 75 

40 Y 92 30 F 71 Type III 

41 D 97 31 A 75 7 W 100 

45 L 95 33 Y 92 16 P 67 

48 L 76 34 Q 100 17 G 100 

53 G 100 36 N 92 36 L 100 

56 L 100 38 E 100 37 A 83 

73 F 87 39 Y 88 38 G 83 

82 G 71 40 D 96 40 Q 100 

87 L 89 41 P 96 41 F 100 

88 F 97 52 G 88 51 Y 100 

105 L 95 61 P 96 60 Y 100 

106 F 95 65 G 92 61 G 83 

109 L 100 74 Y 96 75 E 100 

111 F 76 77 T 75 78 F 83 

112 E 87 91 F 88 80 F 100 

165 G 95 95 Y 100 103 L 100 

167 L 84 105 G 83 110 G 100 
      111 G 100 113 Y 100 
      118 F 100 132 L 67 
      120 L 92       
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Table A.4 Motifs used in cohesin SDM alphabet classification with positions and MSSs. 

 

Position Motif MSS Position Motif MSS Position Motif MSS 

Type I Type II 118 Y 100 

1 L 74 7 L 88 120 L 92 

16 L 95 8 D 96 139 T 71 

19 P 95 10 T 88 146 G 100 

31 L 97 15 G 100 149 L 100 

36 Y 87 16 D 88 152 W 100 

38 L 79 30 Y 71 154 G 88 

40 Y 100 31 A 75 164 L 75 

41 D 97 33 Y 92 Type III 

45 L 97 36 N 92 7 W 100 

48 L 76 38 E 100 16 P 67 

53 G 100 39 Y 100 17 G 100 

56 L 100 40 D 96 37 A 83 

73 Y 92 41 P 96 38 G 83 

82 G 71 52 G 88 40 T 100 

87 L 89 55 Y 71 41 Y 100 

88 Y 100 59 T 83 51 Y 100 

105 L 95 60 L 71 60 Y 100 

106 Y 95 61 P 96 61 G 83 

109 L 100 65 G 92 75 E 100 

111 Y 76 74 Y 100 80 Y 100 

112 E 87 95 Y 100 103 L 100 

165 G 95 104 T 79 110 G 100 

167 L 84 105 G 83 113 Y 100 
      111 G 100 132 L 67 
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Table A.5 Motifs used in cohesin Sezerman alphabet classification with positions and 
MSSs. 

 

Position Motif MSS Position Motif MSS Position Motif MSS 

Type I Type II 118 Y 100 

1 L 74 7 L 88 120 L 92 

16 L 95 8 D 96 139 T 71 

19 P 95 10 T 88 145 D 75 

31 L 97 15 G 100 146 G 100 

36 Y 87 16 D 96 149 L 100 

38 L 79 30 Y 71 152 W 100 

40 Y 100 31 A 75 154 G 88 

41 D 97 33 Y 92 164 L 75 

45 L 97 34 Q 100 166 Q 75 

48 L 76 36 Q 92 Type III 

53 G 100 38 K 100 7 W 100 

56 L 100 39 Y 100 16 P 67 

73 Y 92 40 D 96 17 G 100 

82 G 71 41 P 96 37 A 83 

87 L 89 52 G 88 38 G 83 

88 Y 100 55 Y 71 41 Y 100 

90 D 92 59 T 83 51 Y 100 

105 L 95 60 L 71 60 Y 100 

106 Y 95 61 P 96 61 G 83 

109 L 100 65 G 92 80 Y 100 

111 Y 76 74 Y 100 103 L 100 

112 K 87 95 Y 100 106 D 67 

165 G 95 104 T 79 110 G 100 

167 L 84 105 G 83 113 Y 100 
      111 G 100 132 L 67 
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Table A.6 Motifs used in dockerin 20-letter alphabet classification with positions and 
MSSs. 

 

Position Motif MSS Position Motif MSS Position Motif MSS 

Type I 73 L 78 55 I 100 

24 K 83 76 I 73 60 F 98 

28 L 71 Type II Type III 

54 N 71 27 F 100 45 T 100 

58 G 78 41 D 92 48 G 100 

64 D 100 46 G 100 67 D 100 

68 L 75 48 I 95       

 

Table A.7 Motifs used in dockerin GMBR alphabet classification with positions and 
MSSs. 

 

Position Motif  MSS Position Motif  MSS Position Motif  MSS 

Type I Type II 59 Y 95 

28 Y 92 17 Y 91 Type III 

58 G 78 36 Y 98 28 A 91 

71 Y 90 46 G 100 46 A 94 

72 Y 98 50 Y 94 48 G 100 

76 Y 78 54 Y 94 57 A 95 

79 Y 73 56 Y 98       

 

Table A.8 Motifs used in dockerin HSDM alphabet classification with positions and 
MSSs. 

 

Position Motif MSS Position Motif MSS Position Motif MSS 

Type I 72 L 97 56 L 100 

24 E 83 73 L 92 60 F 98 

28 L 86 76 L 78 Type III 

54 N 71 Type II 45 T 100 

58 G 78 27 F 100 48 G 100 

60 L 93 41 D 92 57 E 100 

64 D 100 46 G 100 67 D 100 
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Table A.9 Motifs used in dockerin SDM alphabet classification with positions and 
MSSs. 
 

Position Motif MSS Position Motif MSS Position Motif MSS 

Type I 71 Y 78 54 L 100 

24 E 93 72 L 98 56 L 100 

28 L 92 73 L 93 60 Y 98 

54 N 71 76 L 78 Type III 

58 G 78 Type II 45 T 98 

60 L 93 17 L 90 48 G 100 

64 D 100 27 Y 98 57 E 100 

67 L 71 41 D 92 67 D 100 

69 E 76 46 G 100       

70 E 78 50 L 94       

 

 

Table A.10 Motifs used in dockerin Sezerman alphabet classification with positions and 
MSSs. 

 

Position Motif MSS Position Motif MSS Position Motif MSS 

Type I 70 K 76 50 L 94 

24 K 93 71 Y 78 54 L 100 

28 L 92 72 L 98 56 L 100 

54 Q 71 73 L 93 60 Y 98 

58 G 78 76 L 78 Type III 

60 L 93 Type II 45 T 100 

64 D 100 17 L 91 46 D 100 

67 L 71 27 Y 98 48 G 100 

69 K 83 46 G 100 67 D 98 
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Appendix B 

Classification Results of Sequences with Unknown Subclass 

Table B.1 The classification results of dockerin and cohesin sequences with unknown 
subclass utilizing the method proposed in the thesis. 

 

sequences 20-letter GMBR HSDM SDM Sezerman 
Ac303238224   Type I type I Type I Type I Type I 
Ac303238225   Type I type I Type I Type I Type I 
Ac303238226   Type I type I Type I Type I Type I 
Ac303238253   Type III type I Type I Type I Type III 
Ac303238258   Type I type I Type I Type I Type I 
Ac303238264   Type I type I Type I Type I Type I 
Ac303238279   Type I type I Type I Type I Type I 
Ac303238386   Type I type I Type I Type I Type I 
Ac303238400   Type I type I Type II Type I Type I 
Ac303238468   Type I type I Type I Type I Type I 
Ac303238547   Type I type I Type I Type I Type I 
Ac303238632   Type I type I Type I Type I Type I 
Ac303238713   Type I type I Type I Type I Type I 
Ac303238767   Type I type I Type I Type I Type I 
Ac303238768   Type I type I Type I Type I Type I 
Ac303238773   Type I type I Type I Type I Type I 
Ac303238777   Type I type I Type I Type I Type III 
Ac303238778   Type I type I Type I Type I Type I 
Ac303238897   Type II  type II Type II Type II Type II 
Ac303238922   Type II  type II Type II Type II Type II 
Ac303238957   Type I type I Type I Type I Type I 
Ac303238961   Type I type I Type I Type I Type I 
Ac303238962   Type I type I Type I Type I Type I 
Ac303238963   Type I type I Type I Type I Type I 
Ac303238964   Type I type I Type I Type I Type I 
Ac303238965   Type I type I Type I Type I Type I 
Ac303238968   Type III type I Type I Type I Type I 
Ac303238981   Type I type I Type I Type I Type I 
Ac303239140   Type I type I Type I Type I Type I 
Ac303239155   Type I type I Type I Type I Type I 
Ac303239557   Type I type I Type I Type I Type I 
Ac303239704   Type I type I Type I Type I Type III 
Ac303239720   Type III type I Type I Type I Type I 
Ac303239731   Type I type II Type II Type II Type II 
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Ac303239811   Type III type I Type I Type I Type I 
Ac303239861   Type I type I Type I Type I Type I 
Ac303239871   Type III type I Type I Type I Type I 
Ac303239892   Type II  type I Type I Type I Type I 
Ac303239977   Type I type I Type I Type I Type I 
Ac303240010   Type I type I Type I Type I Type I 
Ac303240017   Type III type I Type I Type I Type I 
Ac303240086   Type I type I Type I Type I Type I 
Ac303240301   Type III type I Type I Type I Type III 
Ac303240314   Type I type I Type I Type I Type I 
Ac303240334   Type I type I Type I Type I Type I 
Ac303240350   Type I type I Type I Type I Type I 
Ac303240387   Type I type I Type I Type I Type I 
Ac303240398   Type I type I Type I Type I Type I 
Ac303240529   Type I type I Type I Type I Type I 
Ac303240580   Type II  type I Type I Type I Type I 
Ac303240605   Type I type I Type I Type I Type I 
Ac303240606   Type II  type II Type II Type II Type II 
Ac303240624   Type I type I Type I Type I Type I 
Ac303240716   Type III type I Type I Type I Type III 
Ac303240869   Type I type I Type I Type I Type I 
Ac303240877   Type III type I Type I Type I Type III 
Ac303241008   Type I type I Type I Type I Type I 
Ac303241016   Type III type I Type I Type I Type I 
Ac303241026   Type I type I Type I Type I Type I 
Ac303241027   Type I type I Type I Type I Type I 
Ac303241061   Type I type I Type I Type I Type I 
Ac303241098   Type I type I Type I Type I Type I 
Ac303241149   Type I type I Type I Type I Type I 
Ac303241211   Type III type I Type I Type I Type I 
Ac303241235   Type I type I Type I Type I Type I 
Ac303241236   Type I type I Type I Type I Type I 
Ac303241237   Type III type I Type I Type I Type III 
Ac303241300   Type I type I Type I Type I Type I 
Ac303241524   Type I type I Type I Type I Type I 
Ac303241536   Type I type I Type I Type I Type I 
Ac303241822   Type I type I Type I Type I Type I 
Ac303241877   Type I type I Type I Type I Type I 
Ac303241878   Type I type I Type I Type I Type I 
Ac303241889   Type I type I Type I Type I Type I 
Ac303242281   Type I type I Type I Type I Type I 
Ac303242294   Type I type I Type I Type I Type I 
Ac303242527   Type III type I Type I Type I Type I 
Ac303242528   Type III type I Type I Type I Type I 
Ac303242586   Type I type I Type I Type I Type I 
Ac303242589   Type I type I Type I Type I Type I 
Ac303242732   Type I type I Type I Type I Type I 
Ac303242895   Type I type I Type I Type I Type I 
Ac303242911   Type I type I Type I Type I Type III 
Ac303242986   Type I type I Type I Type I Type I 



74 
 

Ac303243005   Type I type I Type I Type I Type I 
Ac303243136   Type I type I Type I Type I Type I 
Ac31540575_gb_A   Type I type I Type I Type I Type II 
Ac6249561_gb_AA   Type II  type II Type II Type II Type II 
Ac63252967_emb_   Type I type I Type I Type I Type I 
c2782_256753117   Type II  type I Type I Type I Type I 
c2782_256753118   Type I type I Type I Type I Type I 
c2782_256753123   Type I type I Type I Type I Type I 
c2782_256753214   Type I type I Type I Type I Type I 
c2782_256753275   Type I type I Type I Type I Type I 
c2782_256753311   Type I type I Type I Type I Type I 
c2782_256753349   Type I type I Type I Type I Type I 
c2782_256753641   Type I type I Type I Type I Type I 
c2782_256754017   Type I type I Type I Type I Type I 
c2782_256754290   Type I type I Type I Type I Type I 
c2782_256754672   Type I type I Type I Type I Type I 
c2782_256754777   Type I type I Type I Type I Type I 
c2782_256754780   Type I type II Type I Type I Type I 
c2782_256754925   Type I type I Type I Type I Type I 
c2782_256755005   Type I type I Type I Type I Type I 
c2782_256755009   Type I type I Type I Type I Type I 
c2782_256755010   Type I type I Type I Type I Type I 
c2782_256755015   Type I type I Type I Type I Type I 
c2782_256755016   Type I type I Type I Type I Type I 
c2782_256755017   Type I type I Type I Type I Type I 
c2782_256755018   Type I type I Type I Type I Type I 
c2782_256755193   Type I type I Type I Type I Type I 
c2782_256755328   Type I type I Type I Type I Type I 
c2782_256755329   Type I type I Type I Type I Type I 
c2782_256755554   Type I type I Type I Type I Type I 
c2782_256755559   Type I type I Type I Type I Type I 
c2782_256755593   Type I type I Type I Type I Type I 
c2782_256755594   Type I type I Type I Type I Type I 
c2782_256755643   Type I type I Type I Type I Type I 
c2782_256755664   Type I type I Type I Type I Type I 
c2782_256755969   Type I type I Type I Type I Type I 
c2782_256756491   Type I type I Type I Type I Type I 
c2782_256756492   Type I type I Type I Type I Type I 
c2782_256756493   Type I type I Type I Type I Type I 
c2782_256756496   Type I type I Type I Type I Type I 
c2782_256756503   Type I type I Type I Type I Type I 
c2782_256756505   Type I type I Type I Type I Type I 
c2782_256756507   Type I type I Type I Type I Type I 
c2782_256756508   Type I type I Type I Type I Type I 
c2782_256756510   Type I type I Type I Type I Type I 
c2782_256756511   Type I type I Type I Type I Type I 
c2782_256756512   Type I type I Type I Type I Type I 
c2782_256756513   Type I type I Type I Type I Type I 
c2782_256756563   Type I type I Type I Type I Type I 
c2782_256756563   Type I type I Type I Type I Type I 
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c2782_256756949   Type I type I Type I Type I Type I 
c2782_256757051   Type I type I Type I Type I Type I 
c2782_256757052   Type I type I Type I Type I Type I 
c2782_256757053   Type I type I Type I Type I Type I 
c2782_256757054   Type I type I Type I Type I Type I 
c2782_256757068   Type I type I Type I Type I Type I 
c2782_256757078   Type I type I Type I Type I Type I 
c2782_256757159   Type I type I Type I Type I Type I 
c2782_256757445   Type I type I Type I Type I Type I 
c2782_256757446   Type I type I Type I Type I Type I 
c2782_256757448   Type I type I Type I Type I Type I 
c2782_256757449   Type I type I Type I Type I Type I 

 


