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Abstract. The use of appearance and shape priors in image segmen-
tation is known to improve accuracy; however, existing techniques have
several drawbacks. Active shape and appearance models require land-
mark points and assume unimodal shape and appearance distributions.
Level set based shape priors are limited to global shape similarity. In this
paper, we present a novel shape and appearance priors for image seg-
mentation based on an implicit parametric shape representation called
disjunctive normal shape model (DNSM). DNSM is formed by disjunc-
tion of conjunctions of half-spaces defined by discriminants. We learn
shape and appearance statistics at varying spatial scales using nonpara-
metric density estimation. Our method can generate a rich set of shape
variations by locally combining training shapes. Additionally, by study-
ing the intensity and texture statistics around each discriminant of our
shape model, we construct a local appearance probability map. Experi-
ments carried out on both medical and natural image datasets show the
potential of the proposed method.

1 Introduction

The use of prior information about shape and appearance is critical in many
biomedical image segmentation problems. These include scenarios where the ob-
ject of interest is poorly differentiated from surrounding structures in terms of
its intensity, the object and the background have complex, variable appearances
and where a significant amount of noise is present. Active shape models (ASM)
and its extension active appearance models (AAM) [1] are powerful techniques
for segmentation using priors. However, the explicit shape representation used in
these models has some drawbacks. Annotating landmark points with correct cor-
respondences across all example shapes can be difficult and time consuming. The
extensions of the technique to handle topological changes and segment multiply-
connected objects are not straightforward. Moreover, ASM and AAM use linear
analysis tools such as principal component analysis (PCA), which limits the do-
main of applicability of these techniques to unimodal densities. To overcome the
limitations of ASMs, level set based shape priors were proposed [2, 3]. Because
of their implicit nature, level set methods can easily handle topological changes.
However, due to their non-parametric nature the use of shape priors in level-set
segmentation framework has limited capability. For example, during segmenta-
tion using level set based shape priors, the candidate shapes are forced to move
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towards the globally similar training shapes without any consideration for any
local shape similarity [2,3]. In addition, the region based shape similarity metrics
used in shape prior computations do not always correspond to the true shape
similarity observed by humans [2, 3]. Finally, appearance statistics in level sets
framework is usually limited to a simple use of global histograms [4], and its
extension to full appearance models is not straightforward.

We use an implicit and parametric shape model called Disjunctive Normal
Shape Models (DNSM) [5], which were previously used for interactive segmen-
tation, to construct novel shape and appearance priors. DNSM’s parametric
nature allows the use of a powerful local prior statistics, while its implicit na-
ture removes the need to use landmark points. The major contributions of this
paper include new global and semi-local shape priors for segmentation using
DNSM (Section 3), and a new local appearance model for image segmentation
that includes both texture and intensity (Section 4). We describe the overall
segmentation algorithm that uses the proposed priors in Section 5. Section 6
uses ISBI 2013 prostate central gland segmentation and MICCAI 2012 prostate
segmentation datasets, and reports state-of-the-art results on both challenges.

2 Disjunctive Normal Shape Model

DNSMs approximate the characteristic function of a shape as a union of convex
polytopes which themselves are represented as intersections of half-spaces. Con-
sider the characteristic function of a D-dimensional shape f : RD → B where
B = {0, 1}. Let Ω+ = {x ∈ RD : f(x) = 1} represent the foreground region.

Ω+ can be approximated as the union of N convex polytopes Ω+ ≈
⋃N
i=1 Pi.

The ith polytope is defined as the intersection Pi =
⋂M
j=1Hij of M half-spaces.

The half-spaces are defined as Hij = {x ∈ RD : hij(x)}, where hij(x) = 1 if∑n
k=1 wijkxk ≥ 0, and hij(x) = 0 otherwise. Therefore, Ω+ is approximated by⋃N
i=1

⋂M
j=1Hij and equivalently f(x) is approximated by the disjunctive normal

form
∨N
i=1

∧M
j=1 hij(x) [6]. Converting the disjunctive normal form to a differ-

entiable shape representation requires the following steps. First, De Morgan’s
rules are used to replace the disjunction with negations and conjunctions which
yields f(x) ≈

∨N
i=1

∧M
j=1 hij(x) = ¬

∧N
i=1 ¬

∧M
j=1 hij(x). Since conjunctions of

binary functions are equivalent to their product and negation is equivalent to
subtraction from 1, f(x) can also be approximated as 1−

∏N
i=1(1−

∏M
j=1 hij(x)).

The final step for obtaining a differentiable representation is to relax the dis-
criminants hij to sigmoid functions (Σij), which gives

f(x) = 1−
N∏
i=1

1−
M∏
j=1

1

e
∑D+1

k=1 wijkxk

 , (1)

where x = {x, y, 1} for 2-dimensional (2D) shapes and x = {x, y, z, 1} for 3-
dimensional (3D) shapes. The only free parameters are wijk which determine the
orientation and location of the sigmoid functions(discriminants) that define the



3

half-spaces. The level set f(x) = 0.5 is taken to represent the interface between
the foreground (f(x) > 0.5) and background (f(x) < 0.5) regions. DNSMs can
be used for segmentation by minimizing edge-based and region-based energy
terms when no training data are available [5]. The contributions of this paper
are the construction of shape and appearance priors for the DNSM from training
data and their use in segmentation.

3 DNSM Shape Priors

In this section, we describe how a DNSM shape prior can be constructed from
a set of training shapes and used in the segmentation of new images. The set of
parameters W = {wijk} of the DNSM are used to represent shapes; therefore,
shape statistics will be constructed in this parameter space. In order to obtain
pure shape statistics it is important to first remove the effects of pose variations
(scale, rotation, and translation) in the training samples using image registra-
tion [7]. Then, the DNSM can be fit to the registered training shapes by choosing
the weights that minimize the energy

E(Wt) =

∫
x∈Ω

(f(x)− qt(x))2dx + η
∑
i

∑
r 6=i

∫
x∈Ω

gi(x)gr(x)dx (2)

where gi(x) =
∏M
j=1

1

e
∑D+1

k=1
wijkxk

represents the individual polytopes of f(x),

qt(x) is the ground truth (1 for object and 0 for background) of the tth training
sample and η is a constant. The first term fits the model to the training shape,
while the second term minimizes the overlap between the different polytopes. An
η value of 0.1 is experimentally found to be sufficient to avoid the overlapping
of the polytopes. We have found that a common initialization for all training
shapes together with the second term is sufficient to keep the correspondence
between the discriminants and polytopes across the training shapes. Figure 1(d-
f) shows the correspondence achieved between the polytopes across the shapes
in (a-c).This is an advantage over ASMs which can require manually placed
landmark points to ensure correspondence. Another reason for minimizing the
overlap between polytopes will be further discussed in Section 4. We minimize
(2) using gradient descent to obtain Wt.

One of the major limitations of level set based shape priors is that the similar-
ity between the candidate and training shapes are computed only globally [2,3].
Since no local shape similarity is considered, these approaches can not generate
shape variations by locally combining training shapes. For instance, in Fig. 1, let
shapes (a) and (b) be the training samples, and we want to segment the shape
in (c). Since shape (c) is not in the training set, segmentation using global shape
prior can only move the candidate shape towards the globally similar training
sample. However, if shape similarities are considered locally at smaller spatial
scales, then the hand positions of shape (c) are similar to shape (a), and the leg
positions are similar to shape (b). Therefore, evaluating the similarity between
shapes at semi-local scale, as will be defined in the next paragraph, helps to
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segment shape (c) in our example, by combining training shapes (a and b) at
locations that are locally more similar to the candidate shape.

(a) (b) (c) (d) (e) (f)

Fig. 1. (a)-(c) are shapes from walking sil-
houettes dataset [3]. (d)-(f) show the non-
overlapping polytopes(N=15) for shapes
in (a)-(c) respectively, using DNSM. Each
color corresponds to 1 polytope.

Let a given shape be represented
by N polytopes and M discriminants
per polytope using DNSM. Let us
also assume that semi-local regions
are represented by a single polytope
(see Fig. 1(d-f)). We make this as-
sumption for explanation purposes. It
can be relaxed so that the semi-local
region can be of any size. We will
study the shape priors of each poly-
tope independently by decoupling the entire shape in to N semi-local regions
(polytopes). We can write the probability density function of the candidate’s ith

polytope shape, represented by the weight Wi, given the discriminant parame-
ters of the training shapes for the corresponding polytope Wi

t as

p(Wi) =
1

T

T∑
t=1

K(d(Wi,Wi
t), σi) (3)

where T is the total number of training shapes, K is a Gaussian kernel of standard
deviation σi, d(Wi,Wi

t) is the ith polytope shape similarity distance between
the candidate shape and tth training sample. We define the distance between
two polytopes as

d(Wi,Wi
t) =

M∑
j=1

D+1∑
k=1

(∣∣∣∣∣ Wijk

WikA
−

Wt
ijk

Wt
ikA

∣∣∣∣∣
)

(4)

where Wijk is kth weight of the jth discriminant of the ith polytope, and WikA
is the average of the kth weight across all discriminants in ith polytope. This
normalization is necessary because the bias weights are typically much larger
than the other weights. The shape energy for the ith polytope is defined as the
negative logarithm of (3). During segmentation, the update to the discriminant
weights, wijk of the ith polytope, is obtained by minimizing the polytope shape
energy using gradient descent

∂EShape,i

∂wijk
=

1

p(Wi)nσi2

T∑
t=1

K(d(Wi,Wi
t), σi)(wijk − wijkt). (5)

Equation (5) shows that at local maxima, the candidate polytope shape is
a weighted average of the corresponding polytope training shapes, where the
weight depends on the similarity between the polytope of the candidate shape
and that of the given training sample. Therefore, in the semi-local region rep-
resented by a given polytope, the shape prior term forces that part of the seg-
mented image to move towards the semi-locally closest plausible shapes. The
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global shape prior used in level set based techniques [2, 3] can be seen as a spe-
cial case, where all polytopes are used together in (3). To use the global prior in
our model, we let (4) be the distance between full parameter vectors d(W,Wt).

4 DNSM Appearance Priors

Histograms of the global appearances of the object and background are com-
monly used in image segmentation. However, medical objects usually have spa-
tially varying intensity distributions. In this section, we construct a local appear-
ance prior using DNSM. The first step in appearance training is representing the
training shapes with DNSM using (2). Then, each pixel in the region of interest is
assigned to its closest discriminant plane using point-to-plane distance. In order
to have a proper local appearance prior, the different polytopes should cover non
overlapping regions, which is achieved by the second term in (2), as can also be
seen from Fig. 1(d-f). During training, two separate histograms are built for each
discriminant: one for the foreground pixels and the other for background pixels.
That is, for a shape represented by M×N DNSM, there will be 2×M×N differ-
ent intensity histograms. In addition to intensity, eight features (energy, entropy,
correlation, difference moment, inertia, cluster shade, cluster prominence, and
Haralick’s correlation) that summarize the texture of a given image are obtained
using grey-level co-occurrence matrix texture measurements [8].

During segmentation, our goal is to compute the probability that the current
pixel, with intensity I and texture vector T , belongs to the foreground region,
based on the local appearance statistics obtained during the training. For each
pixel, we first find its nearest discriminant ij, and then use the appearance
statistics of that particular discriminant to compute the probability that the
pixel belongs to the foreground

S(x) =
HijObjct

(I)

HijObjct
(I) +HijBackgrd

(I)
+ β

HijObjct
(T )

HijObjct
(T ) +HijBackgrd

(T )
(6)

where Hij refer to the normalized intensity and texture histograms for fore-
ground and background regions for discriminant ij. β is a constant value be-
tween 0 and 1, and it controls how much the texture term contributes to the
appearance prior. See Fig. 2(b) for an example of appearance probability map
obtained from both intensity and texture for central gland. The energy from
appearance term, EAppr(W), for the segmentation is then given as

EAppr(W) =

∫
x∈Ω

(S(x)− f(x))2dx (7)

where f(x) is the level set value given as in (1), and S(x) is given in (6). During
segmentation, the update to the discriminant weights, wijk from the appearance
prior is obtained by minimizing (7) using gradient descent, which is given as

∂EAppr

∂wijk
= −2 (S(x)− f(x))

∏
r 6=i

(1− gr(x)) gi(x) (1−Σij(x))xk (8)
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5 Segmentation Algorithm

The segmentation is achieved by minimizing the weighted average of the shape
and appearance prior energy terms. By applying gradient descent on the com-
bined energy, the update to the discriminants wijk is then given as

wijk ← wijk − α
∂EShape

∂wijk
− γ

∂EAppr

∂wijk
(9)

where
∂EShape
∂wijk

and
∂EAppr
∂wijk

are as given in (5) and (8) respectively. α and

γ are constants that determine the level of contributions from the shape and
appearance priors. The steps involved in the segmentation algorithm can be
summarized as follows:

1. Preprocessing: Intensity normalizations by histogram matching(for MRI).
2. Pose Estimation: The image of the appearance term (7), see Fig. 2(b), is

used to find the approximate pose (location and size) of the object. This
step improves segmentation accuracy, while also decreasing the number of
iterations required to reach the final result.

3. Gradient Descent: Starting from the initial pose obtained in step 2 above,
one gradient descent iteration involves: a) update the weights using the ap-
pearance prior term (8); b) register the current shape to the aligned training
shapes [7]; c) update the weights using the shape prior term (5); d) register
the current shape to its original pose. Note that registration of the current
shape to the training shapes and back to its original pose are required for
computation of the shape and appearance priors, respectively.

6 Experiments

Prostate Central Gland Segmentation: We use the NCI-ISBI 2013 Chal-
lenge - Automated Segmentation of Prostate Structures [9] MRI dataset to eval-
uate the effect of our shape priors. Automated segmentation of the central gland
in MRI is challenging due to its variability in size, shape, location, and its sim-
ilarity in appearance with the surrounding structures. Figure 2 shows one slice
of the original MR image, the local appearance probability map, and the seg-
mentation results with and without shape priors. Local appearance prior is used
in the experiments of this section. Table 1 compares our segmentation algo-
rithm using global and semi-local shape priors, with the top performing results
from the NCI-ISBI challenge. Our algorithm shows a larger improvement over
the 1st ranked result, compared to the improvement of the 1st rank over the
2nd rank [9] result, on both mean distance and DICE measurements. The table
also shows that the semi-local shape prior outperforms the global shape prior.
Full Prostate Segmentation: We use the MICCAI PROMISE2012 challenge
dataset to compare the local and global appearance priors. The semi-local shape
prior is used here since it was shown to provide better accuracy in the previous
experiment. Since the prostate has two distinct regions, the central gland and
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(a) (b) (c) (d)

Fig. 2. Central gland segmentation: a) MRI section; b) Local appearance probability
map (the brightness corresponds to the probability of the point to be a central gland);
c) Segmentation results with and without shape prior in blue and red respectively;
green is the ground truth. d) Result in (c) overlaid on the MRI and zoomed in.

Table 1. Central gland segmentation quantitative results

Method Mean DICE Mean distance

DNSM: Local Appearance + No Shape Prior 75.2 2.13
DNSM: Local Appearance + Global Shape 82.7 1.32
DNSM: Local Appearance + Semi-Local Shape 83.8 1.28
Atlas: Rusu et al. [9] 82.1 1.58
Interactive: RUNMC [9] 80.8 1.83

the peripheral region, a single global histogram is suboptimal. Learning local
appearance at different parts of the prostate during training improves accuracy,
as shown in Table 2. Our approach performs comparably to or better than the
best results from the challenge participants. Figure 3 shows sample segmentation
result for one slice using local and global appearance priors.

(a) (b) (c) (d)

Fig. 3. Prostate segmentation: a) MRI section; b) Section of global appearance prob-
ability map; c) Local appearance probability map. d) Segmentation results with local
and global appearance priors in blue and red respectively; green is the ground truth.

7 Conclusion

In this paper we presented shape and appearance priors based image segmen-
tation using DNSM shape representation. Because of the implicit parametric
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Table 2. Prostate segmentation quantitative results

Method Mean DICE

DNSM: Semi-Local Shape + Global Appearance 84.1
DNSM: Semi-Local Shape + Local Appearance 88.6
DNSM: No Shape + Local Appearance 79.5
AAM: Vincent et al. [10] 88.0
Interactive: Malmberg et al. [10] 85.8

nature of DNSM, we are able to learn the shape priors at semi-local and global
scales. From the experiments we have seen that semi-local shape priors give
better segmentation results. DNSMs also allow us to model appearance locally
or globally. Our experimental results show that learning appearance statistics
at small local neighborhoods give better results. Finally, our method is able to
outperform state-of-the-art techniques in central gland and full prostate seg-
mentations. Possible extensions of our work include, coupled segmentation of
multiple objects and the joint modeling of shape and appearance.
Acknowledgments: This work is supported by NSF IIS-1149299, NIH 1R01-
GM098151-01, TUBITAK-113E603 and TUBITAK-2221
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