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Abstract—We consider the development of a synthetic aper-
ture radar (SAR) image reconstruction method that decomposes
the imaged field into a sparse and a low-rank component. Such
a decomposition is of interest in image analysis tasks such as
segmentation and background subtraction. Conventionally, such
operations are performed after SAR image formation. However
image formation methods may produce images that are not well
suited for such interpretation tasks since they do not incorpo-
rate interpretation objectives to the SAR imaging problem. We
exploit recent work on sparse and low-rank decomposition of
matrices and incorporate such a decomposition into the process
of SAR image formation. The outcome is a method that jointly
reconstructs a SAR image and decomposes the formed image
into its low-rank background and spatially sparse components.
We demonstrate the effectiveness of the proposed method on both
synthetic and real SAR images.

Keywords—Synthetic aperture radar (SAR), image reconstruc-
tion, low-rank sparse matrix decomposition

I. INTRODUCTION

Decomposing an image or signal into two or more parts
has found use in many image analysis problems such as back-
ground subtraction, denoising, and segmentation [1]. These
methods are used for supporting later stages of analysis
such as object recognition. Therefore, the accuracy of the
decomposition affects the performance of these inference or
decision making tasks. Decomposing sparse objects and the
background of the scene is one of the typical problems for the
above mentioned applications. Recently, there has been interest
in this decomposition problem, where the background of the
scene is assumed to be a low-rank matrix. Besides, recent
pieces of work have reported that under very mild conditions,
decomposition of low-rank and sparse components (LRSD)
from partial or corrupted measurements is possible [2]. The
LRSD model has been used in many applications including
face recognition [3] and background subtraction [4]. LRSD has
also been used as a prior term in inverse problems in imaging,
such as medical image reconstruction [5].

Synthetic aperture radar (SAR) imaging applications also
involve the above mentioned interpretation tasks such as object
recognition and object tracking. These applications usually
require high resolution images for accurate decision or in-
terpretation. Thus, image formation of SAR data comes into
prominence. In general, SAR image formation and further
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image analysis are performed in a decoupled fashion. Inter-
pretation methods are applied to the SAR image after SAR
image formation has been completed. Current SAR systems
achieve image formation by using Fourier transformation-
based algorithms [6], [7]. These purely data-driven conven-
tional image formation algorithms are simple and efficient.
However, they suffer from noise, speckle, limited-resolution,
and sidelobe artifacts due to the limited bandwidth of the
SAR systems. Such artifacts and limitations pose challenges
for further interpretation tasks.

Recent years have witnessed the incorporation of sparsity
as prior information into the SAR image formation problem
to cope with the shortcomings of the conventional methods.
These sparsity-driven methods [8], [9] assume that the under-
lying reflectivity field admits sparsity in a particular domain
and have been shown to offer better reconstruction quality
as compared to conventional methods. In particular, analysis-
based models, such as in [8] enhance point-based and region-
based structures by imposing sparsity on the features of the
reflectivity, whereas synthesis-based models [9] represent the
reflectivity field sparsely with a dictionary by imposing spar-
sity on the coefficients of representation through a dictionary.
However both models only enhance predefined features of the
reflectivity field hence they may suppress non-smooth regions
and patterns involved in the scene which are useful for further
analysis tasks and can be represented as low-rank structures.
Thus, these methods may also produce an unsuitable image
for interpretation methods since the higher level objectives of
the interpretation stage are not used in the formation process.

A SAR image that is potentially better suited to the higher-
level inference goals might be formed by adding information
about these objectives into the SAR imaging problem. In this
work, we integrate the LRSD framework into the SAR imaging
problem. The proposed method has two advantages. Firstly, we
decompose sparse components and low-rank background in the
SAR scene while reconstructing the SAR image. Therefore,
for SAR applications, the proposed method provides two
additional images along with a composite SAR image: a sparse
image which contains sparse objects in the scene and the
low-rank background image. Secondly, the proposed method
may essentially perform partial image analysis during the
reconstruction phase, if for example the application involves
segmentation of the sparse objects, or subtraction of the
background from the SAR scene.



II. PRELIMINARIES

In this section we present the mathematical observation
model for spotlight-mode SAR and review recent develop-
ments on the decomposition of matrices into their sparse and
low-rank components.

A. SAR Observation Model

The SAR imaging problem is an inverse problem in which
the reflectivity field is to be reconstructed from backscattered
observations. SAR collects the returned signals from this field
as it traverses its flight path. In spotlight-mode SAR, return
signals for every aperture position are collected by a radar
sensor which is continuously steered to the ground patch. After
some pre-processing steps, the relationship between the return
signals for a given angle θ and the complex-valued reflectivity
field f(x, y) becomes:

rθ(t) =

∫∫
x2+y2≤r2

f(x, y)e−jK(t)(x cos θ+y sin θ)dxdy (1)

where r is the radius of the reflectivity field, and K(t) is the
radial spatial frequency. These return signals are called phase
histories and each return corresponds to a limited slice from the
2D Fourier transform of the reflectivity field f(x, y) at angle
θ. We can stack all phase history samples and reflectivity field
samples to obtain the following model:

g = Hf + n (2)

where H represents the observation model in (1) and n is
measurement noise. This inverse problem is ill-posed since
both the bandwidth of the SAR system and aperture positions
are limited.

B. Low-rank Sparse Decomposition (LRSD)

Decomposing a matrix A into its low rank D and sparse
S components has been of interest in recent years. For the
imaging problem, this can be considered as decomposing an
image into the low-rank background and sparse part. Sparse
part may consist of the dominant point objects in the image.
In particular low-rank sparse matrix decomposition can be
expressed as:

min
D,S

rank(D) + λ ‖S‖0 s.t. A = D + S (3)

where λ balances the two constraints. Note that the rank
minimization problem is NP-hard and involves minimizing the
number of nonzero singular values. Recent pieces of work [10],
[11] however have proved that the nuclear norm , defined as

‖F‖∗ =

r∑
i=1

σi(F ) (4)

can, under certain conditions, be used as a surrogate convex
form of the rank minimization constraint. After this relaxation,
the resulting convex optimization problem of LRSD is given
by

min
D,S

‖D‖∗ + λ ‖S‖1 s.t. A = D + S (5)

Several efficient solutions have been proposed for the Aug-
mented Lagrangian form of the problem using gradient descent

algorithms [12], [13]. This framework has recently found use
in image processing applications and some preliminary ideas
have been reported for SAR imaging as well [14], [15].

III. PROPOSED METHOD

In order to exploit the LRSD framework in SAR image
reconstruction, the vectorized form of the SAR image f ∈ CN
should be converted to the matrix form. The image form of this
vector with size

√
N×
√
N can be used as a matrix. However,

low-rank assumption of a complete SAR image is unrealistic
and may provide inefficient results. Therefore, we use a patch-
based method for constructing the matrix form of the SAR
image. Let R be the linear operator that constructs a patch-
based matrix from the image. Image patches fi ∈ C

√
n×
√
n are

obtained from the image by using a sliding window starting
from top-left of the image to the bottom-right. Note that, for
the sake of simplicity and with a slight abuse of notation,
we use fi for both the matrix and the vectorized forms of the
image patches. Vectorized form of these patches form columns
of the patch-based matrix. The patch-based matrix F ∈ Cn×K
has the form of

F =

[
f1 f2 . . . . fK

]
(6)

where K depends on the sliding distance and the size of
the patches. This matrix can be deconstructed to recover the
original image. Note that if the sliding distance is smaller
than

√
n, there will be overlapping patches and F will contain

repeated entries for the same pixels. We take mean of these
values in the process of deconstructing F to reconstruct the
image f . This patch-based method has been used in [16] for
small target detection. SAR reflectivities, which are complex-
valued, usually exhibit random phase, which should be taken
into account in imposing sparsity and low-rank structure to the
complex-valued SAR scene. Thus, we represent the magnitude
of the SAR image with this matrix F such that F = R(|f |).
The reconstruction process can be expressed as |f | = R∗(F ).
Let B and S be the patch-based image for the low-rank
background and the sparse part, respectively. Thus, the SAR
observation model can be expressed as

g = HΘR∗(B + S) + n (7)

where the diagonal matrix Θ contains the exponentiated phases
of the reflectivity field. Using this notation, the proposed
LRSD-based SAR imaging problem can be expressed as
follows:

B̂, Ŝ, Θ̂ = arg min
B,S,Θ

‖g −HΘR∗(B + S)‖22 + λb ‖B‖∗ + λs ‖S‖1
s.t. |Θ(i,i)| = 1 ∀i

(8)
where λb and λs are regularization parameters. The first term
enforces the data fidelity, the second term enforces the matrix
to be low-rank and the third term enforces sparsity. It is
not straightforward to solve this problem with current LRSD
methods since it involves the data fidelity term. Therefore, we
use variable splitting by introducing a variable F such that
F = B + S. The resulting constrained optimization problem



takes the following form:

F̂ , B̂, Ŝ, Θ̂ = arg min
F,B,S,Θ

‖g −HΘR∗(F )‖22 + λb ‖B‖∗ + λs ‖S‖1
s.t F = B + S

s.t. |Θ(i,i)| = 1 ∀i
(9)

In the image domain, S represents the image that contains
sparse components, B represents the approximately low-rank
background image, and F represents the composite image.
The proposed method enforces the low-rank constraint to the
patches of the image. This enforces that small regions of the
background are correlated. The augmented Lagrangian form
of this problem can be expressed as follows:

L(F,B, S,Θ, Z) = ‖g −HΘR∗(F )‖22 + λb ‖B‖∗ + λs ‖S‖1
+ 〈Z,F −B − S〉+

β

2
‖F −B − S‖2F

s.t. |Θ(i,i)| = 1 ∀i
(10)

where Z is the Lagrange multiplier, and β > 0 penalizes the
violation of the constraint. We use alternating direction method
of multipliers (ADMM) [17] for the solution of the problem.
In particular, we introduced an auxiliary variable F in order to
solve for B and S separately. We minimize the problem over
one variable while keeping the other variables fixed.

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

There are five different variables to be solved for:
F,B, S, Z,Θ. For each iteration, each of these variables is
solved for by keeping the other variables fixed by using
ADMM. Below, we describe the process of updating each of
these variables for a generic (k + 1)

st iteration.

Solution of the Sparse Matrix S(k+1)

This step solves for the sparse matrix S while keeping
the other variables fixed. Dropping the constant terms, the
subproblem of interest takes the form of

S(k+1) = arg min
S
λs ‖S‖1 +

〈
Z(k), F (k) −B(k) − S

〉
+
β

2

∥∥∥F (k) −B(k) − S
∥∥∥2

F

(11)

This problem is equivalent to the well-known LASSO problem
and can be solved via soft thresholding. The soft thresholding
operator can be expressed as follows:

C̃ε(S) =

 S − ε if S > ε
S + ε if S < −ε
0 otherwise

(12)

and the solution of the problem is S(k+1) = C̃λs
β

(F (k) −B(k) +

Z(k)

β
).

Solution of the Low-rank Matrix B(k+1)

In this step, we update the low-rank matrix B. The sub-
problem for this step is

B(k+1) = arg min
B

λb ‖B‖∗ +
〈
Z(k), F (k) − S(k+1) −B

〉
+
β

2

∥∥∥F (k) − S(k+1) −B
∥∥∥2

F

(13)

This subproblem involves nuclear norm minimization and its
subgradient computation can be done through singular value

(a) (b) (c)

(d) (e) (f)

Fig. 1. Results of the synthetic scene experiment with L = 0.71. (a)
Original scene. (b) Conventional reconstruction MSE = 0.0310. (c) Point-
region enhanced regularization MSE = 0.0015. (d) The low-rank component
produced by the proposed approach. (e) The sparse component produced by
the proposed approach (f) The composite image MSE = 0.0008.

thresholding [18]. In particular the soft thresholding operator
is applied on the singular values of the matrix. The solution
of this problem can be expressed as follows:

S(k+1) = UkC̃λb
β

(Σk)V Tk (14)

where UkΣkV
T
k is the singular value decomposition of the

matrix F (k) − S(k+1) + Z(k)

β . Both singular value threshold-
ing and soft thresholding are element-wise operations. Thus,
these operations are computationally efficient except for the
computation of the singular value decomposition.

Solution of the Patch-based Matrix F (k+1)

In this step, we update the patch-based matrix F for the
following subproblem.

F
(k+1)

= arg min
F

∥∥∥g −HΘ
(k)
R

∗
(F )
∥∥∥2
2

+
〈
Z

(k)
, F − S(k+1) − B(k+1)

〉
+
β

2

∥∥∥F − S(k+1) − B(k+1)
∥∥∥2
F
(15)

This subproblem is quadratic and can be solved analytically.
Taking the derivative with respect to F and equating it to zero
gives the following equation.(

2
(
HΘ(k)R∗

)H (
HΘ(k)R∗

)
+ βI

)
F (k+1)

=

(
2
(
HΘ(k)R∗

)H
g + β

(
B(k+1) + S(k+1)

)
− Z(k)

) (16)

We solve this problem with a few conjugate gradient steps.

Solution of the Phase Matrix Θ(k+1)

For this solution we introduce a vector p consisting of the
diagonal elements of the phase matrix Θ. The corresponding
subproblem is

p̂ = arg min
p

∥∥∥g −HM̃p|
∣∣∣2
2

+ λp

N∑
i=1

(|pi| − 1)2 (17)

where M̃ is the diagonal matrix consists of the elements of
R∗(F (k+1)) and λp is Lagrange multiplier. This problem is
similar to the phase update step involved in [9]. We solve this
problem through a fixed point algorithm.
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Fig. 2. Results of the real SAR scene experiments with L = 0.9 (a-f) and 0.77 (g-l). First experiment: (a) Reference image conventionally reconstructed from
full data. (c) Conventional reconstruction. (e) Point-region enhanced regularization. (b) The low-rank component produced by the proposed approach. (d) The
sparse component produced by the proposed approach (f) The composite image produced by the proposed approach. Second experiment: (g) Reference image
conventionally reconstructed from full data. (i) Conventional reconstruction. (k) Point-region enhanced regularization. (h) The low-rank component produced by
the proposed approach. (j) The sparse component produced by the proposed approach (l) The composite image produced by the proposed approach.

Lagrange Multiplier Update and Continuation

We update the Lagrange multiplier Z at each iteration with
step size β. In particular, Z is updated as follows:

Z(k+1) = Z(k) + β(F (k+1) −B(k+1) − S(k+1)) (18)

Note that when the value of β is high, the ALM form of the
optimization problem approaches the constrained version of
the problem in (9). However, large value of β leads to slow
convergence of the algorithm. Thus, we use a continuation
strategy for β. In particular, we start with small β and at
each iteration we increase β slowly. These iterative steps are
run until the convergence criterion ‖

|F |(k+1)−|F |(k+1)‖
F

‖|F |(k)‖
F

< δx is
satisfied.

V. EXPERIMENTAL RESULTS

We present experimental results evaluating the performance
of the proposed method using both synthetic scenes and real

SAR scenes from the TerraSAR-X [19] dataset. We provide
quantitative results on the synthetic scene experiments. In
the experiments we used a band-limited Fourier transform as
our forward model H . We display the sparse part, the low-
rank background part and the composite image produced by
the proposed approach. We compare the performance of the
proposed method with conventional reconstruction methods
and point-region enhanced regularization method [8] with
respect to mean squared error (MSE).

A. Synthetic Scene Experiment

We use a 64 × 64 synthetic scene for the first set of
experiments. We compose a synthetically constructed sparse
scene and a low-rank background scene. The composite scene
is presented in Fig. 1(a). Note that, the composite image can
be seen as man-made metallic scatterers on natural terrain.
Uniformly distributed random phase between [−π, π] is added
to the composite image. We add Gaussian noise to the phase



history data generated using a band-limited Fourier transform
operator as mentioned above. We aim to reconstruct an es-
timate of the low-rank background, the sparse part and the
composite image based on these phase histories. We present
synthetic scene experiment results for L = 0.71 in Fig. 1
where L is the available data ratio. In particular L = Na

Nd
where Na is the number of available data samples and Nd is
the number of phase history samples in full-bandwidth data.
The proposed method provides an accurate composite image
as compared to the other methods. Furthermore, it produces an
accurate sparse part and a low-rank background for potential
further interpretation. As an example, if the task of the SAR
application is detection of these sparse parts, the sparse part
from the proposed method can be used for such analysis.
Point-region enhanced regularization provides comparable re-
construction results yet it suffers from artifacts and fails to
provide an efficient reconstruction for the background of the
image.

B. Real SAR Scene Experiments

We now present experimental results on real SAR scenes
obtained from the TerraSAR-X dataset. In the first experiment
we use SAR data that have been collected in a staring spotlight
mode with 0.85 m range and 0.35 m azimuth resolution. We
use 128× 128 SAR data for the experiments. The test image
contains a water treatment facility in Egypt (Fig. 2(a)). Note
that this image contains repeating objects. For an appropriate
selection of patch size, columns of the patch-based matrix will
be similar to each other implying that the patch-based matrix
is low-rank. Therefore, the patch-based low-rank component
in our approach enforces that small regions in the image are
similar. Thus, this test image is a good candidate for the
LRSD framework. Available data ratio is set to L = 0.9 for
this experiment. Reconstruction results are shown in Fig. 2(a-
f). The proposed method appears to effectively decompose
the background and the sparse part of the SAR scene and
it provides a similar reconstruction result with point-region
enhanced regularization. The sparse part contains the point
scatterers around the repeating objects and the background
part enhances these repeating objects. Each of these two
components/layers could be useful for scene analysis and
interpretation.

In the second experiment, we have used SAR data collected
in a spotlight mode with 3.75 m range and 3.69 m azimuth
resolutions. Image size is 128 × 128. The test image covers
a region in Toronto containing roads and small houses (Fig.
2(g)). Note that, these structures exhibit similarity as in the
case for the first experiment hence low-rank background can
be enforced on these structures. We consider an available data
ratio of L = 0.77 for the second experiment. Reconstruction
results are shown in Fig. 2(g-l). The proposed method captures
the sparse scatterers in the sparse part and the low-rank
structures are well preserved in the low-rank background image
as compared to the point-region enhanced regularization and
conventional methods. In particular, note that, the background
part preserved the road and small repeating objects in the
scene.

VI. CONCLUSION

We have proposed a framework for SAR image formation
based on a low-rank and sparse decomposition of the scene to

be imaged. Most of the imaging applications involving SAR
images require background subtraction or segmentation for
better interpretation of the image. Thus, we have proposed
a SAR image reconstruction framework that separates back-
ground from sparse regions in the process of reconstructing
the SAR image. Such an approach integrated into image
formation may offer benefits over a post-processing approach
aimed at such image decomposition. We have shown that
this approach provides accurate reconstruction performance as
compared to existing reconstruction methods. Moreover, sep-
arating background from sparse regions may facilitate further
SAR image analysis. In our work we enforce sparsity on the
SAR image directly. In future work sparsity can be imposed in
a different domain through the use of sparsifying transforms
or a representation dictionary. Moreover, the proposed LRSD-
based SAR image reconstruction framework can potentially be
used in different SAR imaging scenarios such as wide-angle
and moving target imaging.
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