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Abstract—Hydrodynamic cavitation is an effective and alter-
native treatment method in various biomedical applications such
as kidney stone erosion, ablation of benign prostatic hyperplasia
tissues and annihilation of detrimental cells. In order to effectively
position the orifice of bubbly cavitating flow generator towards
the target and control the destructive cavitation effect, cone
angle of multi-phase bubbly flow and distributions of scattered
bubble swarms around main flow must be determined. This paper
presents two vision based solutions to determine these quantities.
3D Gaussian modeling of multi-phase flow and edge slopes of
cross-section are used to estimate the cone angle in a Kalman
filter framework. Scattered bubble swarm distributions around
main flow were assumed as a normal distribution and analyzed
with the help of covariance matrix of the bubble position data.
Hydrodynamical cavitating bubbles were generated from 0.45
cm long micro probe with 152µm inner diameter under 10 to
120 bars pressures and monitored via Particle Shadow Sizing
technique. Proposed methods enabled to quantize the increasing
inlet pressure effect on bubbly cavitating multi-phase flow.

I. INTRODUCTION

Sudden pressure drop down below the vapor pressure of
the liquid results in vaporization and bubble generation. This
phenomenon is called hydrodynamic cavitation. Generated
bubbles in lower inlet pressure, may collapse when they are
subjected to atmospheric pressure. Highly destructive shock
waves are generated by the collapse of cavitation-caused
bubbles. Continuous collision of solid surfaces and generated
bubbles leads to cavitation erosion.

Destructive effect of hydrodynamic cavitation is normally
undesirable and must be minimized in machines closely in-
teract with liquids such as ships’ propellers and hydraulic
turbines [1]. Turning destructive effect into an advantage is
possible in many biological and biomedical applications. In
[2], hydrodynamic cavitation is used as a tool in kidney
stone erosion. Prostate cells are killed and benign prostatic
hyperplasia tissue is ablated by hydrodynamic cavitation in
[3].

Several research studies in the past dealt with extraction of
visual information by processing microscopic images and esti-
mation of several important parameters associated with the un-
derlying physical phenomenon [4], [5], [6]. Visualization and
investigation of micro scale hydrodynamic cavitation requires
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high-speed micro imaging techniques. Since Particle Image
Velocimetry provides only velocity fields accurately by using
laser as illumination source [7], LED is replaced with laser and
particle shadow velocimetry is presented in [8]. Simultaneous
velocity measurement and interface tracking in multi-phase
flows through circular microchannels of 500µm diameter are
investigated with the help of micro particle shadow velocimetry
[9]. In addition to various visualization techniques, there exist
several promising visual processing methods to investigate
micro-nano scale bubbles in literature. [10] simulates the
rising bubble as an ellipsoid consisting of two semi-ellipsoids
up-down and 3D reconstruction of single rising bubble is
implemented to describe the dynamic characteristic of bubbly
flow. [11] proposes a two step method: contour segmentation
and segment grouping for recognizing overlapping elliptical
bubbles. In [12], an image analysis method is developed to
analyze bubble size distributions between 2mm and 10mm.

In this paper, we present vision based solutions to require-
ments of bubbly cavitating flow usage in several biomedical
applications. In order to position the orifice of bubbly flow
generator effectively, Kalman filter based virtual cone angle
estimation is presented. To control the destructive cavitation
effect, scattered bubble swarms distributions around the main
flow is analyzed by utilizing the covariance matrix of bubble
positions data.

The organization of the paper is as follows: In Section
II, the requirement of cone angle estimation and necessity of
the determination of scattered bubble swarm around the main
flow are mentioned and two proposed solutions are explained.
In Section III, Particle Shadow Sizing setup is introduced
as micro imaging technique. In Section IV, results related to
cone angle estimation and scattered bubble swarm analysis are
presented. Finally, paper is concluded with some remarks in
Section V.

II. PROBLEM STATEMENT AND PROPOSED SOLUTIONS

During the process of hydrodynamic cavitation, multi-
phase bubbly flow forms a virtual cone which starts with the
orifice and extends through the flow. Soon after the orifice
of hydrodynamic cavitation generator probe, scattered bubbles
around main spray flow are observed. These initial bubbles
are considered as the most destructive ones, since they have
just originated and have not lost much speed in liquid yet.
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To manipulate the orifice of bubbly cavitating flow generator
precisely and control the destructive effect of newborn bubbles
and to estimate their operational area, generated virtual cone
angle and scattered bubble distributions around main flow have
to be determined.

A. Cone Angle Estimation

To estimate virtual cone angle, several image preprocessing
steps and 3D Gaussian modeling are utilized. For robust
estimation of the angle, a Kalman filter is also employed.
Details of these procedures are provided below.

1) Image Preprocessing: Visualization of droplets individ-
ually after 11mm far from the orifice is possible as in Fig. 1(a),
when inlet pressures (Pi) varies from 10 to 60 bars. Above 60
bars inlet pressures, observable droplets’ sizes decrease under
increasing pressures and small size droplets are monitored as
thin fibers as in Fig. 1(b).

Fig. 1. (a)Detected droplets (Pi=10 bars) (b)Thin fiber visualization of small
size droplets (Pi= 120 bars)

Estimation of virtual cone’s angle from a single instance
frame can be unreliable due to the highly dynamic motion
of cavitating flow. Therefore, a representative 3D structure of
multi-phase bubbly flow is constructed for all pressure levels.
This structure for the flows below 60 bars inlet pressure is
obtained via super-imposition of detected individual droplets
after a series of pre-processing techniques were applied.

Since droplets contain liquid and air in some portion inside,
sparkles and reflections may occur during the visualization of
their shadows. In unprocessed original images, droplets cannot
be distinguished from background easily due to shadows,
noises and undesired particles. Acquired data must be purified
from the noises and enhanced for accurate droplet detection.

Pre-processing starts with contrast increment to make fore-
ground to be distinguishable from background. If acquired
image histogram values are very close to each other, it can still
prevent the accurate droplet detection, so histogram equaliza-
tion enhances the contrast by transforming the values of the
image in the color map of indexed image. Before applying a
final threshold to the image ‘morphological opening’ opera-
tion, which is the dilation of the erosion of the image by a
structuring element, is applied to get smoother and more dis-
tinguishable image. After applying Otsu’s thresholding method
[13], obtained binary image is labelled via connected compo-
nent analysis. With the help of droplet shapes’ eccentricities,
labelled regions are filtered to eliminate non-droplet abnormal
shapes.

2) 3D Gaussian Modeling: After suitable droplet regions
are extracted, their binary mask frames are superimposed
consecutively and from blue to red image is constructed.

Obviously red regions represents the points where droplets
exist more. This 2D gradient image encouraged to construct the
3D representation. Finally when all frames are superimposed,
with the intuition of 3D representation, droplet flow cross-
section can be modeled as Gaussian distribution (Fig. 4).

For inlet pressure levels higher than 60 bars, in each frame
small size droplets are already monitored as superimposed.
With the intuition of the process in lower pressure levels,
after applying similar pre-processing steps, 3D representation
of each frame was indeed a Gaussian distribution as expected
(Fig. 2). Here Z-axis of the structure is determined by the
intensity values of preprocessed shadow images where brighter
intensities indicate the denser droplets regions.

Fig. 2. 3D structure at higher inlet pressure levels

Below 60 bars inlet pressure, superimposition based struc-
ture’s Gaussian properties are utilized to determine appropri-
ate cross-sectional planes. Planes parallel to x-y plane and
intersect with z plane are created to calculate the angle of
droplet flow. It is observed that above Zmax and below Zmin
levels, cross sectional area does not contain meaningful data.
Gaussian function has remarkable data between the σ and 2σ
as its nature, these levels are also related to the mean (µ) and
standard deviation (σ) of the Gaussian function such that

Zmax = f(µ∓ σ) (1)

Zmin = f(µ∓ 2σ) (2)

High fidelity side edges in cross-section of 3D structure at
Z level are used to calculate the cone angle where

f(µ∓ σ) ≤ Z ≤ f(µ∓ 2σ) (3)

Cross-sectional image at Z level contains only edge points
of flow, so best lines are fitted to these points by minimizing
the sums of squares of perpendicular distances (geometric
distance) from the data points to the line (Fig. 3).

The equation of the best line in polar coordinates is written
as:

sin(α)x− cos(α)y = ρ (4)

where ρ and α are the distance of the line from the origin and
the angle between the line and positive x axis respectively.
Slope of the line can be written from the line equation as:
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Fig. 4. Super-imposition of droplet masks

Fig. 3. Detected flow edges and best line fitting

m = − sin(α)

−cos(α)
= tan(α) (5)

Cross-section of 3D Gaussian shape gives left and right
edge points, so two different lines are fitted. Angle between
these two lines, i.e. cone angle, can be calculated as:

θ = arctan
( m1 −m2

1 +m1m2

)
(6)

where m1 and m2 are the slopes of the lines and m1 > m2.

3) Kalman Filter Estimation: To estimate the cone angle
more accurately, various cross-sections are taken at several Z
levels of superimposed structure. Above 60 bars inlet pressure,
instinctively acquired Gaussian structure is utilized in each
frame and unlike lower inlet pressures, Z level is decided as
constant which obeys (3). To increase the accuracy, in each
frame cone angle is calculated. Since small size droplet based
thin fibers form very noisy 3D structure, there exist sudden
changes in angle calculations and it’s seen that some of them
are outliers. To prevent abrupt changes in angle calculations
and estimate the angle by using the video sequence, the
ubiquitous Kalman filter is implemented.

Cone angle (θ) of the flow is considered as the state, and
angle calculations are taken as measurements. Thus, state and
measurement models can be written as:

θ(k + 1) = θ(k) + w(k) (7)

z(k) = θ(k) + v(k) (8)

where θ(k) is the state of the process, w(k) is the process
noise, z(k) is measurement and v(k) is the measurement noise.

Process and measurement noises are modeled by additive zero
mean Gaussian white noise with constant covariances Cw and
Cv . The optimal state (i.e. cone angle) can be estimated by
the following celebrated Kalman filter [14] algorithm:

θ̂(k + 1|k) = θ̂(k) (9)

P (k + 1|k) = P (k) + Cw (10)

K(k + 1) = P (k + 1|k)
(
P (k + 1|k) + Cv

)−1

(11)

θ̂(k+1) = θ̂(k+1|k)+K(k+1)
(
z(k+1)−θ̂(k+1|k)

)
(12)

P (k + 1) =
(
I −K(k + 1)

)
P (k + 1|k) (13)

where θ̂(k+1|k) is the state prediction at time k+1 given all
measurements and estimations up to time k, θ̂(k) is the optimal
state at time k. P (k + 1|k) and P (k + 1) are a priori and a
posteriori covariance matrices associated with predicted and
updated state estimates. z(k+1) is the measurement, i.e. cal-
culated angle from frame k+1, taken at time k+1. Covariance
of process noise (Cw) is initialized as 0.01 and covariance of
the measurement noise (Cv) is determined experimentally from
calculated angles. To initialize the Kalman filter, the optimal
state estimate is initialized with θ̂(0) = 0 and a posteriori
covariance is initialized as P (0) = 50. Results of Kalman
filter show that estimations are highly smoothed versions of
the calculated angles from images.

B. Scattered Bubble Swarm Analysis

Since acquired shadow images may contain noises and
disturbances, simple pre-processing steps are applied to en-
hance the contrast of image and purify from the noises to
distinguish newborn bubbles. Cleaned images are thresholded
and labeled via connected component analysis (Fig. 5(b)).
Segmented regions are clustered according to area, circum-
ference and centroid properties. The orifice of the probe and
main spray flow can be easily distinguishable in these clusters
and eliminated. Obtained final image contains only scattered
bubble clusters around main flow (Fig. 5(c)).

From 10 to 120 bars inlet pressure level, experiment is
repeated and scattered bubbles are extracted. Their distribution
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Fig. 5. (a) Exit from the orifice (b) Pre-processed and labelled image (c)
Scattered bubbles around main flow

increases close to main flow and forms two peak Gaussian
distributions.

To characterize the distributions of these bubbles, modeling
the left and right side of bubbles separately as normal distri-
bution and investigation of semi-axis length of ellipse based
on covariance matrix is proposed (Fig. 6).

Fig. 6. Scattered bubbles detection and distribution modeling

Axes magnitudes of an ellipse which represents the distri-
bution of bubble centroids, mainly depends on variance of the
data. If the axes of this ellipse, parallel to x-y, then equation
can be written in terms of standard deviations as:

( x
σ1

)2
+
( y
σ2

)2
= s (14)

s is the scale of ellipse, which is related to confidence level
according to Chi-Square likelihood [15].

Since bubble distributions can be correlated due to multi-
phase flow, the ellipse may not be x-y axis aligned and non-
zero covariance may exist. Semi-axis lengths and directions
of the ellipse can be determined with eigenvalues and eigen-
vectors of covariance matrix. Major and minor axis lengths
corresponds to square root of largest and smallest eigen-
values (λmax,λmin) of covariance matrix respectively, while
their directions are determined by corresponding eigenvectors
(vmax,vmin). Angle between major axes and horizontal axes
can be calculated from the largest eigenvector as:

β = arctan
(vmax(y)
vmax(x)

)
(15)

Finally, points on the ellipse can be generated or plotted
with the center point (mean of the distributed data) [Xµ, Yµ]

T

and θ ∈ [0, 2π) as:[
Xe

Ye

]
=
[
cos(β) −sin(β)
sin(β) cos(β)

][√
λmaxcos(θ)√
λminsin(θ)

]
+
[
Xµ

Yµ

]
(16)

III. EXPERIMENTAL SETUP

Particle Shadow Sizing (PSS) setup (Fig. 7) involves a
double shutter high speed CMOS camera (Phantom v310,
a trademark of Vision RESEARCH) with 10,000 fps, K2
DistaMax long-distance microscope, Power LED Backlight
Illumination Unit, Timing System of PSS to adjust the syn-
chronization of component, LED power and trigger unit and
PC.

Fig. 7. Experimental setup configuration

Bubbly cavitating flow generator consists of compressor
as a pressure source, high pressure container for deionized
(DI) water which is also connected to liquid container to keep
the input pressure high and guide the fluid through the micro
orifice, micro filter for filtering the particles larger than 15 µm,
pressure gauge and flow meter to measure the pressure and
finally micro probe which includes 4.5mm short microchannel
with 152 µm inner diameter.

Fig. 8. Flow at different initial pressures was recorded in 4 segments

Experiments are performed with various inlet pressure
levels from 10 bars to 120 bar, outlet pressure level is fixed to 1
atm. Since imaging system can monitorize a narrow area such
as 4.5mm × 6.1 mm, flow is recorded in 4 different segments
as in Fig. 8.

IV. RESULTS

A. Cone Angle Estimations

For inlet pressure Pi < 60 bars, angles are estimated at
several cross-sectional area of 3D Gaussian structure. Results
in Fig. 9 show that with Pi = 10 bars pressure, virtual cone
angle can be estimated around 2.1 degrees. Increasing the Pi
pressure, leads to increase in cone angle as well. 30 bars inlet
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Fig. 9. Estimated cone angles with different inlet pressure (10,30,50 bars)

pressure forms around 3.3 degrees cone angle, whereas the
angle is around 3.5 degrees with 50 bars inlet pressure.

With inlet pressure above 60 bars, Kalman filter results
show that estimations are highly smoothed versions of the
calculated angles from images Fig.10. Average of estimations,
exhibit the same behaviour as lower inlet pressures. Increasing
pressure above 60 bars to 120 bars, estimated angles reached
up to 13 degrees.

Fig. 10. Estimated cone angle with inlet pressure Pi=80, Pi=100 and Pi=120
bars respectively

Finally, all estimated angles from various inlet pressures
from 10 to 120 bars are gathered and showed in Fig.11. Results
show that, cone angle of bubbly flow changes with proportional
to inlet pressure from 2 to 14 degrees.

Fig. 11. Estimated angles through 10 to 120 bar inlet pressures

B. Scattered Bubble Distributions

Distribution results of scattered bubbles (Fig 12) show that
scattered bubble population is increased with the increasing
inlet pressure. These distributions form two-peak Gaussian
distributions (Fig. 13). Each peak is investigated seperately
by covariance matrix of distributed bubble positions. During
experiments with inlet pressures between 10 bars to 120 bars,
detected bubble areas vary from 30 µm to 2 mm.

TABLE I. MAJOR - MINOR AXES PROPERTIES OF BUBBLE
DISTRIBUTIONS

Major Major Minor Minor
Inlet Semi-Axes Semi-Axes Semi-Axes Semi-Axes

Pressure Left Right Left Right
(bar) (mm) (mm) (mm) (mm)

10 1.9430 1.1114 0.3593 0.1858
20 1.6254 1.1174 0.6497 0.4076
30 1.4965 1.1947 0.5549 0.4339
40 1.4188 1.2654 0.4781 0.3747
50 1.3949 1.3383 0.4399 0.3616
60 1.3574 1.3464 0.4031 0.2945
70 1.3545 1.3610 0.4064 0.2909
80 1.3470 1.3600 0.4673 0.3243
90 1.3520 1.3953 0.4385 0.3484
100 1.3784 1.3633 0.4535 0.2575
110 1.3223 1.3969 0.5870 0.3168
120 1.3754 1.3575 0.5558 0.2888

Semi-axes lengths of ellipses obtained from covariance
matrices (Table 1) show that major axes lengths are more
determinative than minor axes lengths, since they are along
the motion of bubbles. When the left major semi-axes lengths
increase, corresponding right ones decrease because of the
oscillation of bubbly flow generator.

In general, major axes lengths can be considered as de-
creasing on the average, which shows that more stationary
clusters are generated around main flow. Additionally, after a
certain pressure level (Pi > 50), major and minor axes lengths
do not change dramatically. Scattered bubbles are distributed
around main flow in the same way but amount of bubbles are
increasing (Fig.14).
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Fig. 12. Scattered bubbles distributions around main flow with different inlet pressure from 10 to 120 bars

Fig. 13. Obtained two-peak Gaussian distributions

Fig. 14. Scattered bubble counts

V. CONCLUSION

We have now presented two vision based methods to quan-
tify the increasing inlet pressure effect on bubbly cavitating
multi-phase flow. First, using a 3D Gaussian model along with
recursive filtering, i.e. Kalman filter, angle of the virtually
obtained cone is estimated, which is a requisite to position the
orifice of bubbly cavitating flow generator during biomedical
applications. Second, distributions of scattered bubble swarms
around main flow is analyzed with the covariance matrix of
bubble positions data. Particle shadow sizing technique is
implemented to extract morphological properties of bubbles.
Experiments were performed with various inlet pressures from
10 bars to 120 bars and detected bubble diameters varies from
30 µm to 2 mm. Experimental results verify performance of
the proposed vision based solutions.
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