
MICA: MicroRNA Integration for Active Module Discovery

Ayat Hatem
Dept. Computer Science

University of Massachusetts
Lowell

Lowell, MA
ayat_hatem@uml.edu

Kamer Kaya
Sabanci University

Faculty of Engineering and
Natural Sciences
Istanbul, Turkey

kaya@sabanciuniv.edu

Jeffrey Parvin
Dept. Biomedical Informatics

The Ohio State University
Columbus, OH

Jeffrey.Parvin@osumc.edu

Kun Huang
Dept. Biomedical Informatics

The Ohio State University
Columbus, OH

Kun.Huang@osumc.edu

Ümit V. Çatalyürek
Dept. Biomedical Informatics
Dept. Elect. and Comp. Eng.

The Ohio State University
Columbus, OH

umit@bmi.osu.edu

ABSTRACT
A successful method to address disease-specific module dis-
covery is the integration of the gene expression data with the
protein-protein interaction (PPI) network. Although many
algorithms have been developed for this purpose, they focus
only on the network genes (mostly on the well-connected
ones); totally neglecting the genes whose interactions are
partially or totally not known. In addition, they only make
use of the gene expression data which does not give the com-
plete picture about the actual protein expression levels. The
cell uses different mechanisms, such as microRNAs, to post-
transcriptionally regulate the proteins without affecting the
corresponding genes’ expressions. Due to this complexity,
using a single data type is definitely not the correct way
to find the correct module(s). Today, the unprecedented
amount of publicly available disease-related heterogeneous
data encourages the development of new methodologies to
better understand complex diseases.

In this work, we propose a novel workflow Mica, which,
to the best of our knowledge, is the first study integrating
miRNA, mRNA, and PPI information to identify disease-
specific gene modules. The novelty of the Mica lies in many
directions, such as the early modification of mRNA expres-
sion with microRNA to better highlight the indirect depen-
dencies between the genes. We applied Mica on microRNA-
Seq and mRNA-Seq data sets of 699 invasive ductal carci-
noma samples and 150 invasive lobular carcinoma samples
from the Cancer Genome Atlas Project (TCGA). The Mica
modules are shown to unravel new and interesting depen-
dencies between the genes. Additionally, the modules ac-
curately differentiate between the case and control samples
while being highly enriched with disease-specific pathways
and genes.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
In complex diseases, genes interact via pathways and mod-

ules to function. Additionally, the interaction patterns in
such diseases change based on the cell type and the cell sur-
rounding conditions [8]. A well-structured characterization
and analysis of gene modules have been intriguing, espe-
cially for extremely heterogeneous diseases. Cancer is such
a disease: the derivative tissue differs for many cancer types
which can have many subtypes. Identifying a biologically
valid module is important for each cancer type and sub-
type since this information can be very useful to help the
diagnosis and improve the treatment and its success rate
significantly [2].

Arguably, one way to identify modules is to look for (denser)
gene clusters in biological networks. The accuracy and ben-
efits of this approach can be significantly improved by the
integration of various data to better highlight these gene
modules [40]. Following this idea, various module extrac-
tion techniques have been proposed, e.g., [26, 15, 54]. These
dense modules are called active modules since the gene ex-
pression data, which is dynamically changing, is integrated
with the static PPI network. Hence, these modules are ac-
tive in certain cells or conditions. Many algorithms have
been developed to better make use of the network and/or
other types of data, e.g., genotypic data, as well [27, 29]. Al-
though the algorithms based on gene expression signatures
have proven to be flexible and useful for certain diseases,
they do not provide a be-all and end-all solution. Today,
we have heterogeneous data that can be used to boost the
accuracy, but many of the existing algorithms cannot ex-
ploit heterogeneity. Besides, they are usually restricted only
to the (possibly well-connected) proteins/genes in the net-
works while ignoring the genes whose interactions are not
discovered yet.

MicroRNAs (miRNAs) are small non-coding RNAs used
by the cell to post-transcriptionally regulate gene expres-
sion levels [16]. They inhibit protein synthesis by either
stopping the protein translation or by performing mRNA



degradation. miRNAs constitute an important inhibition
technique that has been shown to be very important in dif-
ferent diseases, specifically, in cancer progression [28]. For
instance, miRNAs were found to be differentially expressed
in breast cancer in addition to successfully classifying estro-
gen and progesterone receptors, and HER2/neu status [4].
Additionally, many techniques have been proposed to ex-
tract miRNA-mRNA interactions that are specific to differ-
ent cancer types [31, 58]. Hence, using miRNAs for active
module discovery is a promising technique to increase the
accuracy and success rate of the cancer treatments.

Many works that integrate miRNA and mRNA data as-
sume that the miRNA effect on the mRNA can be detected
by examining gene expression values [23, 59]. However,
the protein expression levels can be significantly affected
by the miRNA without having any apparent effect on the
gene expression levels [1]. Cun and Frölich suggested an-
other miRNA-mRNA integration method that overcomes
the above problem [12]. Basically, they integrated the PPI
and miRNA-target gene networks into one heterogenous net-
work. The network is then further used to prioritize the dif-
ferent genes. However, by focusing only in prioritizing genes
through the PPI network, it is hard to detect the active gene
modules (having indirect dependencies) connected via genes
that are not in the PPI network or have no change in their
expression at mRNA level.

Even though the techniques using gene expression levels
provide valuable information, they do not show the whole
picture. In this work, we exploit another miRNA and mRNA
interaction, the inhibition of protein translation, rather than
mRNA degradation. We believe that if the gene expression
levels are adjusted based on the corresponding miRNAs’ ex-
pression levels more interesting gene-gene dependencies can
be unraveled. We propose a workflow Mica which employs
heterogeneous data sources and adopts independent com-
ponent analysis [25] to extract active modules. Similar to
Cun and Frölich, we propagate the effect of differentially
expressed miRNA into its experimentally validated target-
mRNA. Such a propagation is valid since if a miRNA is
active, its target genes could be active too [35]. These de-
pendencies are then mapped back to the PPI network to
extract the connected modules.

The contribution of our work lies in many direction, in-
cluding (1) the less dependence of Mica on the used PPI
network, (2) the generation of different modules for differ-
ent disease subtypes, (3) the enrichment of Mica modules
with disease-specific pathways and genes; for invasive lobular
carcinoma, they are enriched with breast cancer genes, such
as BRCA1, and important pathways such as the pathways
in cancer pathway with ERRB2, MYC, and RB1 genes, and
(4) the accurate classification of case and control samples.

The rest of the paper is organized as follows: In the next
section, we briefly explain how the miRNAs and genes in-
teract with each other and describe the tools used in Mica.
Section 3 described the proposed workflow and Section 4 de-
scribes our experimental setting and evaluates the results.
Section 5 concludes the paper.

2. BACKGROUND

2.1 miRNA-mRNA interactions
There are three types of interactions between a group of

miRNAs and a target gene; synergetic, complementary, and

additive. A synergetic effect implies that all the miRNAs af-
fecting the gene must be expressed together in order to have
mRNA degradation or protein inhibition [9]. Rather, miR-
NAs can act complementary by requiring only one out of the
miRNA set to be expressed [9]. In an additive interaction,
each miRNA alone has an effect while the overall effect is
increased if multiple miRNAs are expressed [52].

To propagate the effect of the differentially expressed miRNA
into its experimentally validated target-mRNA, a mathe-
matical model which can take synergetic, complementary,
and additive behaviors into account at the same time is
needed. Both synergetic and complementary behaviors im-
ply that we must have a complete picture of the activity of
all miRNAs affecting a certain gene. However, due to the
lack of data, such a model would be harder to build. There-
fore, in our paper, we build our mathematical model based
on the additive type of interactions.

2.2 Independent Component Analysis
Independent Component Analysis (ICA) is a famous tech-

nique used to solve the Blind Source Separation problem:
Given an input with multiple, linearly mixed sources, it dis-
tinguishes the sources by minimizing their statistical depen-
dencies [25]. It has been used in the literature to cluster
different genes together or for sample classification, e.g., [38,
50, 45, 44]. In the context of gene expression, ICA de-
composes an input expression into its possible expression
modes [38]. For an n×m gene expression matrix X, where
rows and columns correspond to genes and samples, respec-
tively, ICA decomposes X into

XT = A× S (1)

such that S is a `× n matrix for ` ≤ m. The rows of S are
(statistically) as independent as possible and correspond to
the components. The columns correspond to the genes and
the entry Scg is the gene g’s contribution to the compo-
nent c. A is an m × ` matrix where its rows correspond
to samples. The entry Asc shows the component c’s contri-
bution to sample s. Many approximation algorithms have
been proposed to efficiently find A and S, e.g., fastICA [24],
JADE [6], and InfoMax [3]. fastICA tries to identify non-
Guassian components under the assumption that Gaussian
components represent the noise. This algorithm can stuck
in a local minima, hence multiple iterations, thus multiple
estimates can be necessary [18, 10].
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Figure 1: Mica: The workflow starts with integrating
miRNA and mRNA data by adjusting the mRNA data using
the miRNA data. Then, ICA is applied on the resulting new
gene-expression matrix. Finally, for each independent com-
ponent obtained by ICA, the largest connected module from
the PPI network is extracted using the significant genes in
the component.

3. THE MICA WORKFLOW
Mica consists of three main parts as shown in Figure 1:

3.1 Data integration
The miRNA and gene expression data are usually inte-

grated using correlation-based methods with the assumption
that the miRNA effect on mRNA should be apparent on the
gene expression level. Rather than the suppression of the
gene expression, the inhibition of the protein translation can
also be used. Traditional approaches cannot exploit this ef-
fect. Our novel integration scheme uses miRNA expression
levels to adjust the gene expression. Hence, if a gene is af-
fected by an miRNA at the inhibition level, the proposed
integration makes the effect visible on the expression level.
To do this, for each sample s, we first compute

βg,s =
|
∑
{r: r affects g, Zr,s<0} Zr,s |∑
{r: r affects g, Zr,s>0} Zr,s

(2)

where Zr,s is the z-score of miRNA r in sample s that is
experimentally verified to affect gene g. It is calculated by

Zr,s = (xr,s − µr)/σr (3)

where xr,s is the expression level of miRNA r in sample
s, and µr and σr are the mean and standard deviation of
r’s expression level across all the control samples. In (2),
the miRNAs are divided into two groups since they affect
a gene differently. In general, when an miRNA r is down-
regulated, i.e., has a negative z-score, then the expression of
g will increase. On the other hand, when r is up-regulated
then the expression of g will decrease. Accordingly, the final
gene expression is calculated as

e′g,s = βg,s × eg,s (4)

where eg,s and e′g,s are the original and adjusted expression
levels of gene g in sample s.

For data integration, (4) is applied to each gene-sample
pair. To avoid noise, only the miRNAs with an absolute
z-score at least tR in more than 10% of the samples are
kept. Additionally, βg,s must be > tR or < 1

tR
in order

to modify eg,s, i.e., allowing only the group of significantly
up-regulated or down-regulated miRNAs to change eg,s.

A more accurate gene adjustment equation can be ob-
tained by using miRNA, mRNA, and protein expression val-
ues for the same set of samples. However, to the best of our
knowledge, with the current available technology, there is
not enough miRNA, mRNA, and protein expression data
for the same set of samples. Therefore, we believe that the
above simple adjustment equation while including only sig-
nificantly up(down)-regulated genes would be sufficient for
our current study.

As mentioned above, miRNAs can affect the genes in a
synergetic, complementary, or additive way. Our integra-
tion equation (4) is additive i.e., the gene expression level
will be affected more if several miRNAs affect it (additive).
Yet, when only a single miRNA is active, it will still af-
fect the expression level. At the end, our goal is to better
highlight the dependencies between the genes rather than
finding exact protein expression values; there are many un-
known factors affecting the actual protein expression.

3.2 ICA on gene expression values
After data integration, the adjusted gene expression val-

ues are fed to ICA for which the R version of fastICA is
used [24]. To avoid local minimas and unreliable indepen-
dent component estimates, we follow the method proposed
by Chiappetta et al. [10]: we run fastICA κ times and
store the estimates at each run. Then, the Pearson cor-
relation coefficients between the components from different
estimates are computed to distinguish the most similar ones.
We construct a k-partite similarity graph G = (V,E) where
V = V1 ∪ · · · ∪ Vκ is the set of all components returned by
ICA and Vi is the set of components obtained in the ith run.
The edge set E contains an edge (c, c′) between two com-
ponents from different runs if their Pearson correlation is at
least 0.9. To obtain the final component set, we partition G
to its maximally connected subgraphs. For each connected
subgraph C of G with at least κ vertices, we construct a
representative component by computing the average of the
rows corresponding to the vertices in C.

An important ICA parameter is the number of compo-
nents ` to be generated. A näıve method is setting ` = m,
the number of samples, which is not useful in our case, since
when ` is large, ICA will probably return uninteresting,
subcomponent-type structures [37]. We follow another ap-
proach [44] based on an earlier method [20]. We first apply
Singular Value Decomposition (SVD) to the original gene
expression matrix to reduce the dimensionality. We do the
same for a randomly permuted version of the same matrix.
The actual variance obtained from each SVD component
is used to draw a curve of the information gain. A simi-
lar curve is also generated for the randomly permuted case.
The optimal number of components would be the point of
intersection of these two curves, i.e., when the information
obtained from the random components is higher than the
information obtained from the actual components.



The matrices S and A generated by ICA can be used
to determine which genes are significant in each component
and which components are significant in each sample, re-
spectively. There are different options to pick the signifi-
cant components, e.g., [46, 10]. Here we used a variant of
the correlation method [45]; the Wilcoxon signed-rank test
is used to calculate a p-value for each component based on
its weight distribution over the case and control samples in-
stead of computing the Pearson correlation. The Bonferroni
correction method is then used to correct the p-value. The
results of such a step are the components showing a signif-
icant change in weight distribution in the cases compared
to control samples. We further classify which component
weight per sample is causing such a high p-value by com-
puting the component µ and σ values from its weights in
the control samples. We then compute the z-score for each
component-case sample pair. Hence, a component is sig-
nificant for a case if the corresponding z-score is at least a
threshold tC .

To find the component-related genes, we use the z-score
threshold based method [46, 50] which is very effective in
returning the important genes for each component C. Ba-
sically, the z-score for each gene in C is computed from the
µ and σ of all of the genes’ weights inside C. Then for each
C, the genes with a z-score at least tG are considered to be
a member of C.

3.3 Connected module extraction
The connected PPI modules are extracted by mapping the

set of member genes in each component to the PPI network
and extracting the largest connected module. If there is no
connected module or if the largest one is not large enough the
threshold tG used to pick the member genes for each compo-
nent is relaxed to allow more connectivity. However, as the
results will show, each component yields a large connected
module in PPI. In addition, recent studies also showed that
the components generated by ICA (or similar techniques)
are either highly enriched in the PPI network [59] or highly
enriched with signaling pathways [50].

Each component we found after the second step is ex-
pected to generate a connected module. It is crucial to de-
fine a scoring function to determine which module is the
most important one. Here, we define the importance of a
module from the importance of the genes inside the mod-
ule. In more details, a module containing many genes with
high Zc,g values in a component c would be more important
than another module containing many genes with low Zc,g.
Although a large module is preferable, we do not want the
modules to be too large. Therefore, after determining the
member genes in each component c, the following scoring
function is used:

scr(c) =
∑
g∈c

Zc,g/
√
|c| (5)

where |c| is the number of member genes in c. We used
√
|c|

instead of |c| since we still want to give a higher score to a
larger module. A gene g will have a high Zc,g value if it is
significant for c. Therefore, a module with many important
genes is considered important. Albeit the simplicity of the
scoring method, we believe that it would be sufficient to
distinguish the modules with the most important genes.

4. EXPERIMENTAL RESULTS
We implemented our workflow Mica in R and used the

available implementation of fastICA. To demonstrate the ef-
fectiveness of the proposed workflow, i.e., the added benefits
of the early integration of microRNA datasets, we compared
the modules obtained by Mica against the ones obtained us-
ing ICA and DEGAS [54], using the original gene expression
values. However, we excluded Cun and Frölich [12] method
from the comparison since it depends on using microarray
datasets while we focus here on RNA-Seq datasets. DEGAS

is a set-cover based algorithm efficient in detecting dysreg-
ulated pathways. It tries to detect a module with at least k
differentially expressed (DE) genes shared between most of
the samples. We tuned the DEGAS parameters to detect the
best module according to the size measure provided by the
tool, which is the probability of randomly obtaining a mod-
ule with k genes. We set the maximum number of modules
for DEGAS to 5, yet it returned a single module. In the fol-
lowing, DEGAS, ICA, and Mica output modules are referred
to as degas, ica, and mica, respectively.

We used two datasets for two breast-cancer subtypes: in-
vasive lobular carcinoma (ILC) and invasive ductal carci-
noma (IDC). Both datasets are from TCGA (https://tcga-data.
nci.nih.gov/tcga/) and contain RNA-Seq and miRNA-Seq
data. We used two different subtypes to understand how dif-
ferent techniques are able to detect modules specific to each
subtype.

The ILC dataset has 106 control samples and 153 case
samples. All of the 259 samples have gene expression in-
formation. Out of the 153 cases, only 150 contain miRNAs
expression data as well. Therefore, only the 150 cases are
used in our experiments. The IDC dataset shares the 106
control samples with the ILC. It also has 714 case samples
with gene expression information, however, only 699 case
samples having miRNA expression information are used.

The PPI network used for the module extraction was ob-
tained from the BioGRID (http://thebiogrid.org) database
(rel. 3.2.104). It contains 139, 539 unique interactions be-
tween 18, 170 proteins. The experimentally validated miRNA-
target interactions are obtained from miRTarBase (rel. 4.5) [22].
The number of runs κ for ICA is set to 100 while tR is set
to 4, and tC and tG are set to 2 to keep only the potentially
important values.

The module qualities are verified using pathway, GO, and
disease ontology (DO) enrichment analyses and by also look-
ing for evidences in the literature. Enrichment analyses are
performed using ReactomePA [56], FunDo [41], and clus-
terProfiler [57]. A complete set of results and information
about the components are available at http://bmi.osu.

edu/hpc/software/mica. Here, we only show the highest
scoring components and the most significant results.

4.1 Results on ILC data
Both Mica and ICA generated seven modules. However,

the Mica modules are meaningfully different from ICA ones.
Table 1 shows the number of covered samples, component
size, the number of member genes in the PPI network, the
size, and the score of the largest and top scored modules. In
general, there is a large connected module in the PPI net-
work. Mica modules have higher scores than ICA modules
in addition to being more common.

We also used DEGAS on the ILC dataset for comparison
purposes. The degas module consists of 347 genes with 730



Table 1: Size of the modules obtained using Mica and ICA.
# is the component number, S is the number of samples a
component covers, |c| is the size of the component, |c|ppi is
the number of genes that are both in the component and the
PPI network, N , E, and scr(c) are the number of nodes,
number of edges, and scores, respectively, for the largest
connected module in the PPI.

(a) ICA

# S |c| |c|ppi N E scr(c)
1 55 754 657 221 348 39.43
2 18 34 31 2 1 3.35
3 54 279 267 103 143 25.33
4 28 703 641 274 510 50.70
5 4 542 448 116 141 28.80
6 7 349 320 116 337 26.68
7 2 204 176 30 29 12.81

(b) Mica

# S |c| |c|ppi N E scr(c)
1 103 501 475 164 272 55.63
2 49 284 242 21 21 12.71
3 67 1007 879 339 585 49.51
4 30 455 446 283 506 52.41
5 68 931 876 541 1535 66.91
6 9 889 752 253 354 46.04
7 3 790 738 410 1297 51.04

interactions and 200 DE genes. The quality, i.e., the module
size p-value, is 0.19 which can be considered large. We tried
different options for DEGAS to get a better module, however,
this is the best we could get.

4.2 Statistical analysis of the components
The first step is to ensure that the Mica components,

hence the active modules, are not random. Therefore, our
null hypothesis is that the t-score computed for each com-
ponent from its weight across the case and control samples
in A can be random. We generated 1, 000 matrices by ran-
domly permuting the modified gene expression values across
the case and control samples. Afterwards, we applied Mica
on these matrices and computed the t-score for the ran-
dom components. For each 1, 000 runs, we only kept the
max/min t-score value. Finally, we generated the random t-
score distribution and compared our actual t-scores against
it. The random t-score distribution and the components’
t-scores are shown in Figure 2(a). Clearly, the components
cannot randomly gain high t-scores (i.e., p-value = 0): the
null hypothesis is rejected.

4.3 Classification using the modified and orig-
inal gene expression data

To show that the modified gene expression data can bet-
ter differentiate between case and control, we compared the
predication accuracy of Mica modules on the modified data,
and ICA and DEGAS modules on the original data. For Mica
and ICA, a Support Vector Machine (SVM) is trained on
each module separately, where the module genes are used
as the input features. Afterwards, a uniform voting is per-
formed between the modules to understand how the mod-
ules collectively affect the classification performance (since
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Figure 2: Performance evaluation of Mica modules. a)
Mica modules’ t-scores in comparison to t-scores from ran-
dom runs. b) Mica, ICA, and DEGAS prediction performance.

DEGAS has one module, no voting is required). A 10-fold
cross validation is performed to better understand the pre-
diction performance of the modules. The same 10-subsets
were used for Mica, ICA, and DEGAS. The results are shown
in Figure 2(b). In general, Mica and ICA obtain a better
classification accuracy than DEGAS with Mica being more
stable across different runs and almost obtaining an AUC
value of 1.

4.4 Active modules analysis
Here we analyze the genes in each module, the overlap

between the modules, and the top enriched GO terms. Sur-
prisingly, there is no large overlap among Mica, ICA, and
DEGAS; degas overlaps with 12% of mica5, and ica4 over-
laps with 17% of mica6. However, there are similarities in
the top GO annotations (i.e., corrected p-value < 10−15).
Among them: translational elongation in ica6 and mica7,
positive regulation of biological process in ica4 and mica6,
cellular macromolecule metabolic process in mica1 and de-

gas, and organelle organization in mica4 and degas. The
top different ones include protein transport in ica1, cardio-
vascular system development and extra cellular matrix orga-
nization in ica5, response to endoplasmic reticulum stress
in mica2, RNA processing in mica3, and cell cycle and cell
cycle process in mica5.
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Figure 3: Overlap between important pathways enriched in
both Mica and ICA modules. Orange is for Mica, blue is
for ICA, and green for genes in both. A) Pathways in cancer
(mica1 and ica5), B) Protein processing in ER (mica2 and
ica1), C) Ribosome (mica7 and ica6 ).

We performed pathway enrichment to see how the active
modules are enriched with important pathways. The results
are shown in Table 2. Similar to GO annotations, com-
mon pathways among Mica, ICA, and DEGAS exist: both
degas and mica5 are enriched with the cell cycle pathway,
however, the p-value for degas is much smaller than the p-
value in mica5. Remarkably, mica5 is enriched with more
cell cycle-related pathways, e.g., the cell cycle, mitotic, and
check points pathways, with BRCA1 common among most
of them. BRCA1 mutations lead to genetic instability and
deficiency in different cell cycle phases [13]. Additionally, its
absence results in breast cancer formation.

Pathways that are highly enriched in both Mica and ICA

modules include the pathways in cancer, ribosome, and pro-
tein processing in endoplasmic reticulum pathways. Figure 3
shows the overlap between Mica and ICA on those pathways.
The pathways in cancer pathway is enriched in both mica1

and ica5. Remarkably, mica1 contains key breast cancer
genes including ERBB2, MYC, RB1, and NFKB1. Addi-
tionally, mica1 is more common across the samples than
ica5. ERBB2 is a growth factor receptor over-expressed in
breast cancer and related to tumor aggressiveness and re-
sistance to chemotherapy [43]. RB1 is mutated in breast
cancer [19] while NFKB1 has a major rule in invasive breast
cancer [33]. MYC is a multifunctional protein that plays
a role in cell cycle progression and cellular transformation.
MYC amplification is found to be frequent in breast can-
cer that is often more associated with the metastatic tu-
mor version [47]. The protein processing in endoplasmic
reticulum (ER) pathway is another interesting one that is
enriched in both mica2 and ica1. The ER is an essen-

Table 3: The components obtained by ICA and Mica. #
is the component number, S is the number of samples a
component covers, |c| is the size of the component, |c|ppi is
the number of genes that are both in the component and the
PPI network, N and E are the number of nodes and edges,
respectively, for the largest connected module in the PPI,
and scr(c) is the score of the largest connected module.

(a) ICA

# S |c| |c|ppi N E scr(c)
18 87 897 849 391 775 61.95
21 123 744 669 303 522 61.43
30 513 675 649 454 1851 83.63

(b) Mica

# S |c| |c|ppi N E scr(c)
7 296 400 374 147 234 61.78
15 336 317 267 42 47 59.76
33 245 289 280 138 297 79.69
42 544 682 633 348 1063 66.97
63 242 243 230 101 188 66.43

tial organelle involved in many important functions such
as protein folding and secretion. In cancer cells, the un-
folded protein response (UPR) and ER-associated degrada-
tion (ERAD) pathways, which are parts of the protein pro-
cessing in ER pathway, are both activated to help in the
survival and the metastasis of the cancer cells [51]. Surpris-
ingly, EDEM1 and SEL1L in mica2 are important parts of
the ERAD component in addition to being deregulated in
cancer cells [51].

Since mica1, mica2, ica1, and ica5 contain interesting
pathways, we performed DO enrichment analysis on them
using FunDO [41]. The top enriched diseases, after Bonfer-
roni correction, are: cancer (2.11 × 10−21) and breast can-
cer (1.11 × 10−4) in mica1, cancer (1.15 × 10−3) in mica2,
cancer (2.34× 10−12) in ica5, and cancer (6.2× 10−5) and
Melanoma (1.1× 10−4) in ica1. Clearly, mica1 is the most
related module to cancer in general and breast cancer, in
specific.

4.5 Results on IDC data
Invasive ductal carcinoma is a famous breast cancer sub-

type. In the literature, IDC and ILC act differently and have
different sets of DE genes [60, 55]. Yet we expect to find
common pathways between them, even though each path-
way might include different sets of genes [53].

Similar to ILC, we used the dataset with ICA and Mica
to see how different the output is when the miRNA data is
added. As shown in Table 3, there is a significant difference
between ICA and Mica modules. In addition, Mica pro-
duced 66 modules while ICA produced 35 modules (only the
important modules are shown in the table). We analyzed the
highest scoring modules for each method, i.e., with a score
≥ 60, namely, ica18, ica21, and ica30 from ICA and mica7,
mica15, mica33, mica42, and mica63 from Mica. By com-
paring the ICA and Mica modules, we found that the most
similar ones are mica42 and ica30; with 266 common genes
existing in both. The remaining Mica and ICA modules do
not have any large overlap.

A further examination of mica42 and ica30 shows that
both contain BRCA1, BRCA2, BRIP1, BLM, RAD51, UBE2C,



Table 2: Pathway enrichment analysis for Mica, ICA, and DEGAS modules on the ILC dataset.

Database Pathway MICA ICA DEGAS
% pval Net % pval Net % pval

Reactome Cell Cycle, Mitotic 18.48 1.19 × 10−21 mica5 11.53 7.79 × 10−3

Cell Cycle 19.96 7.30 × 10−19 mica5 14.12 7.32 × 10−3

Mitotic M-M/G1 phases 13.31 3.75 × 10−18 mica5

Extracellular matrix organization 21.55 5.25 × 10−15 ica5

Molecules associated with elastic fibres 9.48 3.27 × 10−09 ica5

Integrin cell surface interactions 11.21 2.02 × 10−07 ica5

Translation 24.13 8.66 × 10−14 ica5

GTP hydrolysis and joining of the 60S ribosomal sub-
unit

21.55 2.74 × 10−13 ica6

Peptide chain elongation 18.10 9.89 × 10−11 ica6

Nonsense Mediated Decay Independent of the Exon
Junction Complex

18.10 1.71 × 10−10 ica6

KEGG Pathways in cancer 15.24 1.05 × 10−04 mica1 14.66 2.59 × 10−03 ica5

Protein processing in endoplasmic reticulum 52.38 4.65 × 10−11 mica2 12.22 1.10 × 10−08 ica1

Osteoclast differentiation 8.70 1.85 × 10−06 mica6

Complement and coagulation cascades 4.74 1.62 × 10−03 mica6

Ribosome 7.07 1.76 × 10−10 mica7 17.24 3.34 × 10−14 ica6

ECM-receptor interaction 11.21 3.83 × 10−07 ica6
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Figure 4: mica15 module. The red nodes are in the Hemostasis pathway.

and CKS2. BLM and RAD51 genes have a tumorigenic sig-
nificance [14], UBE2C and CKS2 are DE genes in IDC [39],
and BRCA1, BRIP1, and BRCA2 are known breast cancer
mutated genes (http://cancer.sanger.ac.uk/cancergenome/
projects/census/). On the other hand, mica42 only con-
tains TOP3A, HMG20B, RAD51C, CDC6, and U2AF1. HMG20B
interacts directly with BRCA2. The inhibition of the inter-
action between HMG20B and BRCA2 leads to tumor pro-
gression [32]. TOP3A and BLM interact with RMI1 form-
ing a complex that is very important in genome stability [7].
The mutations in this complex increase the breast cancer
risk [5]. RAD51C is also found to be mutated in breast
cancer [34]. The de-regulation of CDC6 poses a serious risk
of carcinogenesis [36] while U2AF1 is a splicing factor pro-
tein that is mutated in cancer [17].

The degas module on IDC data contains 386 genes with
1, 056 interactions and 190 DE genes. Based on the qual-
ity, the module has a p-value of 0, i.e., it cannot be ran-
domly generated. There are 105 common genes exist in de-

gas, ica30, and mica42 including BRIP1, RAD51, BLM,
UBE2C, and CKS2. However, degas did not contain other
cancer related genes including BRCA1, BRCA2, XRCC1,
XRCC2, and RRM2. Additionally, none of the genes that
exclusively exist in mica42 also exist in degas.

In addition, we performed classification analysis on the
modules and datasets to ensure that the adjusted gene ex-
pression data better correlate with the disease behavior.
Similar to the ILC dataset, a SVM is trained on the top
scoring modules obtained from each tool separately. Then a
10-fold cross validation is performed using the original data

for ICA and DEGAS and modified gene expression data for
Mica. The three tools had a similar performance with Mica
having the least error of 0.0013. The error for ICA and DEGAS

was 0.0038 and 0.0063, respectively.
To better evaluate ICA, DEGAS, and Mica modules, we

performed pathway enrichment analysis as shown in Ta-
ble 4. There are many common pathways among mica42,
mica30, and degas such as cell cycle, Tolemere maintenance,
and DNA strand elongation. However, mica42 alone is en-
riched with the p53 signaling pathway. Interestingly, there
are many important pathways enriched in mica15 which are
not enriched in any other modules, including the comple-
ment and coagulation cascades, platelet degranulation, and
Hemostasis pathways. All of these pathways are part of the
cell’s hemostatic system which is important in facilitating
the metastatic potential of breast cancer [30]. Addition-
ally, a proteomic-based study has shown the complement
and coagulation pathway to be DE in IDC [49]. Figure 4
shows mica15 genes. The APOA1 gene in mica15 is found
DE in IDC samples versus control samples in a proteomic
study [42]. In addition, mutations in this gene lead to poor
outcome for post-surgery breast cancer patients [21]. Other
interesting genes in mica15 are GADD45A, GADD45B, and
GADD45G, which are found down-regulated in cancer [11].
They are stress sensor genes activated in response to cell
stress and DNA damage. Interestingly, they are considered
as potential therapeutic targets in cancer [11].

The results of the DO enrichment analysis are shown in
Table 5. In general, Mica and ICA modules are significantly
enriched with cancer and breast cancer than DEGAS, with



Table 4: Pathway enrichment analysis for ICA, DEGAS, and Mica.

Database Pathway MICA ICA DEGAS
% pval Name % pval Name % pval

KEGG Complement and coagulation cascades 42.86 1.17 × 10−23 mica15

DNA replication 6.32 6.68 × 10−17 mica42 5.51 1.13 × 10−18 ica30

Mismatch repair 3.16 5.53 × 10−07 mica42 3.30 1.11 × 10−10 ica30

Homologous recombination 2.59 3.57 × 10−04 mica42 2.64 6.97 × 10−06 ica30

p53 signaling pathway 3.45 7.86 × 10−03 mica42

Spliceosome 6.60 8.20 × 10−04 ica21

Reactome Platelet degranulation 21.43 6.66 × 10−08 mica15

Platelet activation, signaling and aggregation 23.81 9.16 × 10−06 mica15

Hemostasis 30.95 6.80 × 10−05 mica15

mRNA Processing 10.14 1.52 × 10−04 mica33 6.93 2.45 × 10−04 ica21

Cell Cycle, Mitotic 32.76 3.86 × 10−52 mica42 31.28 4.26 × 10−64 ica30 17.62 4.74 × 10−13

Resolution of Sister Chromatid Cohesion 12.07 1.57 × 10−22 mica42 11.45 9.46 × 10−28 ica30 6.74 2.29 × 10−07

Leading Strand Synthesis 3.45 6.05 × 10−13 mica42 2.64 1.40 × 10−11 ica30

Polymerase switching 3.45 6.05 × 10−13 mica42 2.64 1.40 × 10−11 ica30

DNA Repair 8.62 3.75 × 10−12 mica42 8.15 2.16 × 10−14 ica30

DNA Replication Pre-Initiation 6.90 2.29 × 10−11 mica42 5.51 8.67 × 10−10 ica30 4.4 7.74 × 10−05

M/G1 Transition 6.90 2.29 × 10−11 mica42 5.51 8.67 × 10−10 ica30 4.40 7.74 × 10−05

Telomere Maintenance 5.17 2.68 × 10−07 mica42 4.41 4.87 × 10−07 ica30 3.63 1.01 × 10−03

Post-transcriptional Silencing By Small RNAs 1.79 1.49 × 10−06 ica18

Pre-NOTCH Transcription and Translation 2.05 1.77 × 10−05 ica18

p53-Independent G1/S DNA damage checkpoint 2.59 8.80 × 10−03

Table 5: DO enrichment analysis for ICA, DEGAS, and Mica.

name DO Corrected p-value
mica7 cancer 5.38 × 10−7

mica15 liver cancer, systematic
infection,

4.67×10−9, 1.16×10−8,

metastatic to brain 6.66 × 10−8

mica33 cancer 5.2 × 10−5

mica42 cancer, breast cancer 6.21×10−35, 5.72×10−7

mica63 cancer 2.30 × 10−4

ica18 breast cancer, cancer 4.59×10−6, 6.21×10−35

ica21 cancer 1.36 × 10−5

ica30 cancer, breast cancer 2.78×10−33,1.96×10−6

degas cancer, breast cancer 1.78×10−14, 3.14×10−4

Mica better enriched with them than ICA. Additionally,
mica15 is enriched with metastatic to brain disease.

5. CONCLUSION
In this work, we proposed a new workflow, Mica, that

successfully integrates miRNA data, mRNA data, and PPI
network in a novel way to obtain active modules which can
serve as powerful biomarkers. Experimental results show
that Mica modules are more disease-related while unravel-
ing new gene-gene dependencies which are hidden via exist-
ing techniques. Albeit the simplicity of the proposed work-
flow, Mica successfully includes many novel ideas, including
the adjustment of the gene expression levels with the miRNA
expression to mimic the protein expression levels, and the
integration of non-network genes to include possible missing
dependencies. To the best of our knowledge, this is the first
study that integrates miRNA, mRNA, and PPI network for
active module discovery. Furthermore, Mica provides infor-
mation regarding which modules are active in which set of
samples, hence, making it easier to understand the disease
behavior for different patients.

Mica modules obtained from the IDC and ILC datasets
are different, suggesting that Mica can be further used to
generate disease specific modules and hence distinguish be-
tween the different diseases. Still, there are some pathways
common between IDC and ILC, such as the cell cycle path-

way with BRCA1 and BRCA2 retrieved with Mica in both
datasets.

Further improvements for Mica can add more value and
more understanding for the results. For instance, it may
be more beneficial to extract smaller sub-modules of 10–20
genes that can be further used as an effective biomarker.
Additionally, each module can be broken into smaller ones
and each can be considered as a possible pathway. Hence,
we can further understand how the different pathways in-
teract together. A possible method to extract such smaller
submodules would be by extracting the densest subgraph
in each module. Pathway extraction can also benefit from
adding directionality information to the PPI network.

In addition to the mentioned improvements, Mica cur-
rently depends on experimentally validated interactions which
could generate biases in the results. However, with the ad-
vancement in the high throughput sequencing technology
and with the increase in the reported protein expression data
(e.g., CPTAC https://cptac-data-portal.georgetown.edu/

cptacPublic/), Mica can be further improved to include
non-experimentally validated microRNA-target genes in ad-
dition to building more accuate models representing the re-
lation between the proteins and miRNAs [48]. As usual, the
most important step is to carry wet lab experiments to val-
idate the obtained results and to further transfer our study
from being a theoretical work to actually be a part of the
cancer treatment process.
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