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Abstract— Control design plays an important role in wind en-

ergy conversion systems in achieving high efficiency and perfor-

mance. In this study, hardware-in-the-loop (HIL) simulations are 

carried out to design a maximum power point tracking (MPPT) 

algorithm for small vertical axis wind turbines (VAWTs).  Wind 

torque is calculated and applied to an electrical motor that drives 

the generator in the HIL simulator, which mimics the dynamics of 

the rotor. To deal with disturbance torques in the HIL system, a 

virtual plant is introduced to obtain an error between the speeds 

in the HIL system and virtual plant. This error is used by a pro-

portional-integral (PI) controller to generate a disturbance torque 

compensation signal. The MPPT algorithm is tested in the HIL 

simulator under various wind conditions, and the results are com-

pared with numerical simulations. The HIL simulator successfully 

mimics the dynamics of the VAWT under various wind conditions 

and provides a realistic framework for control designs. 

Keywords—Hardware in the loop; maximum power point 

tracking; vertical axis wind turbine, inertia emulation; disturbance 

torque compensation 

I.  INTRODUCTION 

Renewable energy systems are very popular due to increasing 

energy demand in the developing world, the climate-change 

threat and diminishing reserves of fossil fuels. The widespread 

use of wind energy is enabled in part by horizontal axis wind 

turbines (HAWTs) even though they were invented later than 

VAWTs, which are viable alternatives in the small scale use of 

wind energy as they are omnidirectional and have simpler de-

signs than HAWTs [1,2]. Moreover, VAWTs can be used as 

portable generators in rural areas and connected to local micro 

grids and storage devices. Cost effective system design of 

VAWTs bears utmost importance for their ubiquitous deploy-

ment.    

Power electronics is used to control and regulate the torque 

and speed of wind turbines in order to maximize the power out-

put [3].  For VAWTs with fixed pitch angles, extracted wind 

power can be characterized by a power coefficient, which is a 

function of the rotor angular velocity and wind velocity and de-

noted by Cp [4]. For a particular wind velocity, the turbine needs 

to be driven at the optimal rotor speed to operate the system at 

maximum power [5]. Variants of the maximum power point 

tracking (MPPT) algorithms are present in the literature and can 

be classified into two categories [6]: MPPT based on knowledge 

of rotor dynamics, and MPPT based on an iterative incremental 

search. In order to reduce the cost of small-scale applications, a 

sensorless MPPT method is preferred for the optimum opera-

tion of the system in terms of energy efficiency since knowledge 

of the turbine parameters and measurement of the wind and ro-

tor speeds are not required [7,8].   

Hardware-in-the-loop (HIL) simulations have numerous ad-

vantages over numerical, i.e. only software based, simulations 

in testing the performance of power electronic components and 

control designs in controlled experiments under realistic condi-

tions [9]. The effects of generator parameters, the sampling pe-

riod of control units, thermal effects and other disturbances are 

observed directly in HIL simulations [10]. Types of HIL designs 

are discussed in detail by Bouscayrol [10]; here we employ a 

mechanical level HIL simulator to study the efficiency of MPPT 

algorithms in the control of a permanent magnet generator that 

is used in a small-scale VAWT. In order to ensure the fidelity 

of the simulator, the static and dynamic characteristics of the 

HIL simulator must be the same as the characteristics of the real 

system [11].  

The motor in the HIL simulator can deliver the wind torque 

and inertial torque of the rotor with the help of a compensation 

torque and by calculating the speed derivative as previously re-

ported by [11-13]. However, for an accurate estimation of the 

speed derivative, a low-pass filter (LPF) may be necessary to 

eliminate the measurement noise. Moreover, filtering the speed 

or its derivative introduces delays which impede accurate mim-

icking of the VAWT system and successful implementation of 

the control algorithm. In order to alleviate the difficulties asso-

ciated with delays, one can propose a closed-loop observer to 

calculate the derivative of the angular velocity and reject the 

noise as in [14], or alternatively, estimation of the speed deriv-

ative and the use of the LPF can be eliminated by using the sim-

ilarity between the real system and the HIL system dynamics as 

described in Section II-B. In this work, electromechanical com-

ponents in the HIL simulator are tested at steady-state and tran-

sient conditions to confirm the accurate representation of the 

small VAWT, then the MPPT algorithm is applied to study the 

effects of the sampling period and current increments. Compar-

isons are presented between the HIL simulations (HILS) and 

numerical simulations based on a power coefficient curve and 

the dynamics of the rotor.   
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II. METHODOLOGY 

A. Aerodynamic Model of the VAWT 

The available wind power of a VAWT of radius R and length L 

is given by: 

 
3Rwind p wP C L Uρ=  (1) 

where ρ is the air density, Uw is the wind speed, Cp is the power 

coefficient, which is a function of tip speed ratio, λ, which is 

given by: 
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where ωr is the rotor angular velocity. In this study, a λ – Cp 

curve that is obtained by using a computational fluid dynamics 

simulation is employed (Fig. 1). 

 

Fig. 1. λ – Cp curve of the VAWT. 

The wind torque, Twind, is calculated from (1) and the angular 

velocity of the rotor, ωr: 
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The dynamic model of the wind turbine can be represented by 

 r
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where Jr is the equivalent inertia of the rotor, Tgen is the genera-

tor torque on the rotor, Trf is the rotor friction torque, which is 

assumed to be proportional to ωr by a coefficient B as follows: 

 rf r
T B= ω    (5) 

Parameters of the VAWT model are given in Table I.  

TABLE I. Wind Turbine Model Parameters 

Wind Turbine Model Parameters 

Parameter Description Value Unit 

Jr Moment of inertia of the rotor 2 kg-m2 

R  Radius of the rotor 0.5 m 

L  Length of a blade 1 m 

B Friction coefficient 0.02 Ns/rad 

ρ Air density 1.2 kg/m3 

B. Hardware-In-the-Loop (HIL) System  

Schematic representation of the VAWT and HIL systems 

are shown in Fig. 2. The HIL system consists of a permanent 

magnet synchronous motor (PMSM) (Femsan 5F100810001), a 

motor drive (TDE Macno, Mopde B-6.8A) and a gear box (Yil-

maz Reduktor MN002 – B07) to reduce the velocity of the mo-

tor that mimics the wind-driven rotor under arbitrary wind con-

ditions. Additionally, a permanent magnet synchronous gener-

ator (PMSG) which is also considered for actual VAWT system, 

and a programmable electronic load (Agilent N3306A) as the 

power sink are employed in the HIL system. As an interface 

between software (MATLAB/Simulink) and hardware, dSpace 

(DS1104) controller card is used.  

 

Fig. 2 (a) Representation of VAWT system in real world, (b) HIL simulation 

system.  

The rotor dynamics of the VAWT system in Fig. 2(a) is 

given by (4). The same dynamic behaviour can be mimicked by 

the HIL system with the equation of motion at the motor side: 

 m
m m load

d
J T T

dt

ω
= −   (6) 

where Tm is the motor torque, ωm is the rotational speed of the 

motor shaft, Jm is the equivalent inertia at the motor side of the 

gear box, and the total load torque, Tload is given by: 
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T
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Γ
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where Tgen is the torque of the generator, Γ is the gear ratio and 

Thf is the friction torque, which corresponds to the friction in all 

components including the gear box, generator and motor. The 

rotational speed of the generator, ωgen, is linked to the motor 

speed by (8). 

 
m

gen

ω
ω =

Γ
  (8) 

Assuming that the VAWT does not have a gear box and the gen-

erator is directly coupled to the rotor, the rotational speed of the 



 

rotor is the same as the rotational speed of the generator in the 

HIL system, i.e., ωr = ωgen. Thus, the behaviour of the VAWT 

system can be mimicked by the HIL simulator with the appro-

priate motor torque Tm, which is applied as a reference torque in 

the HIL simulator and calculated from (4), (6), (7), and (8) as 

follows: 

 ( )m

m load wind gen rf

w

J
T T T T T

J

Γ
= + − −   (9) 

The block diagrams of the VAWT system and the HIL sys-

tem are given in Fig. 3 where the motor is the actuator and used 

for mimicking the rotor dynamics in the HIL system. As shown 

in Fig. 3 and from(9), the load torque, Tload, is employed in the 

reference motor torque calculation, and Tload is calculated by us-

ing the generator torque, Tgen, and friction torque, Thf, as in (7). 

Consequently, if the generator and friction torques in the HIL 

system are known, a perfect cancelation of Tload can be 

achieved. In this way, the generator angular velocity, ωgen, be-

haves in the same way as in the VAWT system. However, nei-

ther the generator nor the friction torques are easy to obtain pre-

cisely. For permanent magnet synchronous machines, there is a 

cogging torque, furthermore, the relation between the current 

and torque is not purely linear [15]. Furthermore, nonlinear fric-

tion torque may lead to difficulties. Compensation for the fric-

tion torque can be achieved by model-based or non-model-

based methods as described in [16]. 

 

Fig. 3. Block diagram of the VAWT dynamics, HIL System and reference mo-

tor torque calculation.  

In the non-model-based compensation approach, the friction 

torque is treated as a disturbance for the system and can be com-

pensated by the disturbance observer (DO) [17]. Derivatives of 

the angular velocity can be filtered in the DO to eliminate the 

noise, which influences the derivatives dramatically. A high 

gain LPF provides a fast disturbance rejection performance. 

However, if a low-cost sensor (resolver) is used to measure the 

speed, relatively large noise at low speeds limits the gain, intro-

duces a delay, and distorts the characteristics of the system. 

Hence, the disturbance torque cannot be fully compensated in a 

robust manner. Several approaches to deal with this problem are 

proposed in literature: rapid disturbance changes in DO struc-

tures are discussed and a virtual plant model-based control is 

proposed to deal with disturbance torques in [18]; in addition to 

a virtual-plant disturbance compensator a friction-model-based 

feed-forward compensator is proposed in [19].   

In this study, not only the friction torque, but also the devi-

ations from the linear relationship between the torque and the 

current on the generator side and all other external effects are 

treated as disturbances. First, the friction torque is obtained by 

using curve-fitting for the load-free motor torque and speed 

measurements. Then, the generator torque, Tgen, in the HIL sys-

tem is obtained from the motor and friction torques for a given 

speed and current, and the torque constant is obtained. Moreo-

ver, the virtual-plant model is used to obtain the error between 

the actual speed and the speed in the virtual-plant model. The 

virtual plant is identical with the dynamic model of the wind 

turbine expressed by (4). This equation is applied in the virtual 

plant block to determine the rotor speed as a function of the total 

torque in the lack of external effects. The difference between 

the speed generated by the virtual plant (ω*
gen) and the actual 

speed (ωgen) is the error that is used to generate the disturbance 

compensation torque by a PI based controller as shown in the 

block diagram in Fig. 4. Consequently, the friction and genera-

tor torques are calculated by linear relationships while the devi-

ations are handled by the disturbance compensation torque, 

Tcomp. Especially for low speeds and high load torques, and the 

start-up phase of the HIL system, deviations are relatively 

higher than the nominal operation point of the motor, generator 

and gear box. The torque-disturbance compensator ensures that 

the HIL simulator mimics the VAWT system successfully.  

 
Fig. 4. Model following controller with a PI based disturbance compensator 

structure in the HIL system. 

The results of the numerical (i.e. software-only) and the HIL 

simulations for a step change in the wind velocity are compared 

to confirm that the HIL simulator mimics the VAWT accu-

rately. For this test, the generator torque is set to a value pro-

portional to the speed, Tgen = 0.1ωgen with the purpose of observ-

ing the dynamic effects only.  

In Fig. 5, top plot shows the wind speed; the middle plot 

shows the generator speed obtained from numerical and the HIL 



 

simulations; the bottom plot shows the error in the speed, which 

is the difference between the virtual plant and actual speeds in 

the HILS. Results confirm that the HIL simulator is capable of 

emulating the rotor inertia and mimicking the overall VAWT 

system. Parameters of the PI controller are given in Table II. 

 
Fig. 5 The comparison of HIL and numerical simulations rotational speed re-

sponses for a step up and down wind speed.  

TABLE II. PARAMETERS OF THE PI-CONTROLLER IN THE COMPENSATOR 

Parameters of PID Controller and MPPT 

Parameter Description Value Unit 

KP Proportional gain 0.05 - 

KI Integral gain 0.02 - 

 

C. Power Electronics 

In the HIL simulator, a PMSG and a passive diode rectifier are 

used as in the suggested VAWT system for electromechanical 

energy conversion. The passive diode rectifiers have disad-

vantages such as causing high harmonic currents, generator 

torque fluctuations and increasing the resistive loss, however 

they are low-cost and robust, and do not need a controller. In 

the PMSG-rectifier structure, output voltage is proportional to 

the rotor speed of the generator [20]. The highest output voltage 

prevails when the load current is zero, and the voltage output 

decreases as the current increases.  

To determine how much the voltage drops for a given cur-

rent and the generator speed, PMSG and the rectifier are mod-

eled by a transformation from the 3-phase model to an equiva-

lent DC machine model. In [21] and [22], a simplified DC 

equivalent model is proposed for PMSG-rectifier structure. The 

PMSG-rectifier model and the simplified equivalent DC model 

are shown in Fig. 6. In addition to the resistive voltage drop, 

armature reaction in the generator and overlapping currents in 

the rectifier during commutation intervals are also taken into 

account for the voltage drop calculations in this model. A rela-

tion is obtained between the 3-phase AC RMS values and DC 

potentials.  

 

Fig.  6. PMSG-Rectifier and its simplified DC model. 

In Fig. 6, Es is electromotive force (EMF), Ls is phase induct-

ance, Rs is the phase resistance of the PMSG, Idc and Vdc are the 

average values of the DC current and voltage, respectively; Esdc, 

Ldc, Rdc represents the correspondence values between the 3-

phase AC model and the equivalent DC model. Rover term is 

added to the model to represent the average voltage drop due to 

the current commutation in the 3-phase passive diode bridge 

rectifier. This voltage drop from the current commutation is also 

explained in detail in [23]. The resistance, Rover, is calculated as 

follows: 

 
3
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where p is the number of pole pairs of the PMSG. For positive 

values of Vdc, ωgen and Idc, Vdc can be calculated as follows [21], 

[22]: 

 ( )
2

2 ( )
dc sdc gen dc dc dc over dc

V E p L I R R Iω= + − +   (11) 

A simple test is carried out to verify the voltage drop model 

by running the PMSG with different speeds and currents. Ac-

cording to Fig. 7, the DC model predicts the actual voltage drop 

in the PMSG very well. The model variables for the PMSG-

rectifier circuit and its DC equivalent model are provided in Ta-

ble III. 

TABLE III. PMSG AND DC MODEL VALUES 

Variable PMSG DC Model 

Flux φs 3 6 /dc s=φ φ π   

EMF s s genE pφ ω=  3 6 /sdc sE E π=   

Inductance Ls 
218 /dc sL L π=   

Resistance Rs 
218 /dc sR R π=   

φs = 0.106 Vs/rad,   p = 6,    Ls  = 3.3 mH,      Rs = 1.7 Ω 

III. MAXIMUM POWER POINT TRACKING 

In order to operate the VAWT at optimal power, the gener-

ator torque, Tgen, must be adjusted to balance the wind torque at 

the optimal rotor speed. The generator torque is proportional to 

the load current by a factor called the torque constant, Kt, which 

is obtained as 1.3 A/N-m here: 

 gen t dc
T K I=   (12) 



 

 
Fig.  7. DC voltages with respect to the load current under different speed of 

PMSG that are represented by different colors. Solid lines represent the nu-

merically calculated values, the circles show the experimental results. 

The DC voltage of the PMSG-rectifier structure, Vdc, is a 

function of the generator speed, ωgen, and the current, Idc, as 

given in (11). Therefore, for each torque and generator speed 

pair, there is a unique pair of generator current and voltage, Idc   

and Vdc. The output power, Pdc, is the product of the DC voltage 

and current, and may have a different maximum than the maxi-

mum power from the wind due to voltage and current charac-

teristics of the generator and the power electronic circuit. There-

fore, the overall characteristics of the system must be taken into 

account to find the maximum output power point of the VAWT 

system. 

The plots of the wind and output power versus the rotor 

speed for a wind velocity of 8 m/s are shown in Fig. 8, where 

the maximum output power, Pdc,max, realizes for different speed 

than the maximum wind power, Pwind,max. The loss is relatively 

high in the low-speed / high-torque operating conditions for the 

PMSG, and hence Pdc,max attains a maximum value for higher 

rotor speed than the speed at Pw,max. Obviously, losses and the 

efficiency characteristics result lower power output than the 

maximum available wind power.  

In order to obtain the maximum power point, a control 

method is implemented based on an iterative tracking algorithm. 

The MPPT algorithm does not require the measurements of the 

wind velocity and the rotor speed. The incremental search for the 

optimum power output is based on the voltage and current meas-

urements as described in [24]. The MPPT algorithm relies on the 

fact that the power output does not vary with voltage at the max-

imum point, i.e., the derivative of the power with respect to the 

voltage is zero: 

( )
0 0dc dc dc dc dc dc

dc dc

dc dc dc dc dc

dP d V I dI dV V
I V

dV dV dV dI I
= = + = ⇒ + =  (13) 

According to (13), relative change in the voltage must be 

positive if the relative change in current is negative at the max-

imum power point or vice versa. Therefore, the MPPT algo-

rithm incrementally increases or decreases the current and com-

pares with the change in the voltage to obtain the maximum 

power. The flowchart of the MPPT algorithm is presented in 

Fig. 9.  

 

Fig.  8.  Wind power Pwind, wind torque Twind and electrical output power Pdc 

with respect to the rotational speed under 8 m/s wind speed.  The power and 
the torque are associated with the left y-axis and the right y-axis respectively.  

 

Fig.  9.  Flow chart of the MPPT algorithm.  

The algorithm starts with measuring the DC voltage and cur-

rent, then it calculates the change in the voltage for a preset in-

crement (K > 0) in the current. If the change in the voltage is 



 

positive, it continues to increase the current until the voltage 

change is zero or negative; otherwise it decreases the current 

until the maximum power is reached.  The sampling period of 

the control unit, Tc, is an important parameter that influences the 

performance of the algorithm significantly. The current step 

size, K, and the sampling period, Tc, need to be tuned to obtain 

fast response and small fluctuations around the target operating 

conditions.  

IV. RESULTS 

In this study, the proposed MPPT algorithm has been tested 

in the HIL simulator for step and sinusoidal wind conditions. 

Simulations are carried out by setting the sampling period of the 

HIL simulator to 1 ms. A parametric study is carried out to an-

alyze the effects of the sampling period of the control unit (Tc) 

and the current increment size (K) on the energy output. Conse-

quently, the parameters which provide the best performance in 

terms of energy output are determined as Tc = 0.2 s, K = 0.5 A. 

 First, the MPPT algorithm is tested for a step change in the 

wind velocity, which is depicted with respect to time in the top 

plot in Fig. 10. Corresponding plots for the generator (rotor) 

speed, ωgen, electrical output power Pdc, current, Idc and the DC 

voltage Vdc, are also shown in Fig. 10. Numerical simulations 

and HIL simulator results agree well. Simulations predict 

slightly higher currents, lower rotor speeds and voltage outputs 

than the HIL simulator, but power outputs of both simulations 

are close. Fluctuations due to the MPPT algorithm are present 

in the current and the voltage in both simulations, however, 

slightly larger in the HIL simulations than in the numerical 

ones. Results are summarized in Table IV.  

TABLE IV . COMPARISON OF ELECTRICAL OUTPUT POWERS UNDER DIFFERENT 

WIND SPEED 

 Electrical output power Pdc under step change in steady state  

Wind 
Speed 
[m/s] 

Theoretically Calcu-

lated Power [W] 

Numerical (Software-
only) Simulation  

Power [W] 

HILS 
 Power [W] 

6  36.75 32 – 33  25 - 40 

8  78.46 70 – 71  65 - 86 

10  137.7 129 – 133  110 – 150  

 

Although the average measured power in the HILS is less 

than the calculated power in the numerical simulation, the HILS 

power oscillates and occasionally reaches higher power values 

than the theoretical maximum power values by using the kinetic 

energy stored in the rotor. In the HIL system, the MPPT algo-

rithm generates a reference current to track its optimal value. 

However, tracking the reference current does not cease at the 

optimum value, and continues with overshoots and undershoots. 

During this time, energy stored in the inertia is extracted, and 

hence higher instantaneous power outputs than the theoretical 

maximum are observed. 

 The MPPT algorithm is also tested for a sinusoidal wind ve-

locity with frequencies of 0.1 Hz and 0.05 Hz, and the results 

are represented in Fig. 11.  Results indicate that the HIL simu-

lator and the numerical model agree well. In both cases, the 

MPPT algorithm leads to a power generation with a slight phase 

difference between the wind and the power output signals. 

 

Fig.  10.  Numerical simulation and HILS results for the step down and up 

wind speed. 

V. CONCLUSION  

The HIL system performs satisfactorily, emulates the over-

all VAWT system realistically, and allows controlled experi-

ments for ideal wind conditions which are difficult to obtain in 

actual experiments with the turbine. The HIL simulations are 

especially useful to test the performance of power electronic 

components and control designs. According to the HIL simula-

tions, the electrical properties of the PMSG generator and recti-

fiers may lead to lower power outputs than the available power 

in the wind. As a part of future work, alternative generators can 

be tested to obtain ideal generator for a given rotor and wind 

conditions. Moreover, active rectification can be carried out to 

mitigate the harmonics which have no contribution to the active 

power and decreases the efficiency in the case of a passive rec-

tifier. 

For the control design, we implemented the MPPT algo-

rithm and observed that power fluctuations in the HIL simulator 

are higher than the ones observed with the numerical model. 

The algorithm leads to overshoots and undershoots, which cor-

respond to use and storage of the kinetic energy in the rotor due 

to delay introduced by the sampling time of the algorithm. 



 

Adaptive increments in current and sampling times can be used 

for power tracking with smaller fluctuations and faster re-

sponses.   

 

Fig.  11.  Numerical simulation and HILS results for the sinusoidal wind 
speed.  
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