
Economic Theory19, 737–746 (2002)

A class of multipartner matching markets
with a strong lattice structure

Ahmet Alkan

Sabanci University, 81474 Tuzla, Istanbul, TURKEY
(e-mail: alkan@sabanciuniv.edu)

Received: May 5, 2000; revised version: January 25, 2001

Summary. For a two-sided multipartner matching model where agents are given
by path-independent choice functions and no quota restrictions, Blair [7] had
shown that stable matchings always exist and form a lattice. However, the lattice
operations were not simple and not distributive. Recently Alkan [3] showed that
if one introduces quotas together with a monotonicity condition then the set of
stable matchings is a distributive lattice under a natural definition of supremum
and infimum for matchings. In this study we show that the quota restriction can be
removed and replaced by a more general condition namedcardinal monotonicity
and all the structural properties derived in [3] still hold. In particular, although
there are no exogenous quotas in the model there is endogenously a sort of
quota; more precisely, each agent has the same number of partners in every
stable matching. Stable matchings also have thepolarity property (supremum
with respect to one side is identical to infimum with respect to the other side)
and a property we callcomplementarity.
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1 Introduction

In the original college admissions problem (Gale and Shapley [8]), it was assumed
that each college had a strict ordering on the set of all of its acceptable applicants
and a quota giving the maximum number it could admit. In [7], Blair considered a
broad generalization of this model where there could be multiple partners on both
sides, preferences were given by rather general (path-independent) choice func-
tions that do not necessarily respect any ordering on individuals, and there were
no quota restrictions. He showed that the set of stable1 matchings is nonempty
and has the structure of a lattice under the common preferences of all agents on
any one side the market. However, the lattice operations were not simple and
not distributive. In [3], Alkan showed that if one reintroduces quotas along with
a monotonicity condition then the set of stable matchings is a distributive lattice
under a natural definition of supremum and infimum for matchings.2

In this study we show that the quota restriction can be removed and replaced
by a more general condition that we callcardinal monotonicity and all the struc-
tural properties derived in [3] still hold. In particular, we have the somewhat
surprising result that although there are no exogenous quotas in the model there
is endogenously a sort of quota; more precisely, each agent has the same number
of partners in every stable matching.

The main condition that choice functions obey here in this paper, as in Alkan
[3] and Blair [7], is path-independence, mentioned above, which requires that
what is chosen from the union of any two setsT , T ′ is identical to what is chosen
from the union ofT and the choice fromT ′. We begin our paper by giving some
properties of preferences (on partner-sets) revealed by path-independent choice.
The derivation of our results on stable matchings makes use of these properties
and is substantially different than that in Alkan [3].

Our results on stable matchings have the following summary:The set of sta-
ble matchings in any two-sided market with path-independent cardinal-monotone
choice functions is a distributive lattice under the common preferences of all
agents on any one side of the market. The supremum (infimum) operation of the
lattice for each side consists componentwise of the join (meet) operation in the
revealed preference ordering of associated agents. The lattice has the polarity,
unicardinality and complementarity properties.

The polarity property refers to the fact that the supremum of stable matchings
with respect to one side of the market coincides with their infimum with respect
to the other side. The unicardinality property is our name for the property we

1 By stable, in this paper, we mean individually rational and pairwise stable. We are tacitly
assuming that coalitions of bigger size cannot form. The stable set and core need not be the same
otherwise; see Sotomayor [16].

2 Alkan [2] and Baiou and Balinski [5] had previously noted some special properties that stable
multipartner matchings have when preferences are given by an ordering on individuals. Among the
related recent literature, we also cite Martinezet al [13] on many-to-one matching on a domain that
is essentially the same as in Alkan [3] and Martinezet al [14] that gives an algorithm to find the set
of all stable matchings on the path-independent domain.
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mentioned earlier that each agent has the same number of partners in every stable
matching.

The property we name complementarity is associated with the fact that, for
each agent, the union (intersection) of any two stable partners-sets coincides
with the union (intersection) of their join and meet; in other words, the join
(meet) of any two stable partner-sets is the complement of their meet (join)
from their union, united with their intersection. Complementarity is an interest-
ing property in that, given an arbitrary pair of partner-sets, their join does not
necessarily contain their intersection, their meet is not necessarily contained in
their union and, moreover, their join and meet together do not necessarily cover
their union. It is worth mentioning that complementarity takes on a simple form
when preferences are given by an ordering on individuals. On this domain, as it
was shown by Alkan [2], given any two stable partner-sets, one is always their
join and the other their meet, so that stable partner-sets in fact form a chain.3

The complementarity property may be seen as the extension of this fact to the
path-independent cardinal-monotone domain where stable partner-sets now form
a distributive lattice for each agent.

Let us mention that it is the polarity property which is at the root of our
findings. The unicardinality and complementarity properties each follow from
polarity. We use polarity (but neither unicardinality nor complementariness) also
in showing that stable matchings form a lattice. Our proof of distributivity makes
use of complementarity and a result in abstract lattice theory (which is the only
outside fact used in the paper.)

An implication of the distributivity property worth mentioning is that, for any
agent, stable partner-sets partition into levels of desirability. Consequently, the
notion of sex-equal stable matchings, that Gusfield and Irving [9] had suggested
for monogamous matching, may be well-defined for multipartner matching on
the path-independent cardinal-monotone domain. Relatedly, it seems that the
algorithmic task of tracing the set of all stable matchings would be considerably
simpler on this domain in comparison to the path-independent domain undertaken
in Martinezet al [14].

Our results may in factall fail to hold if agents’ choice functions are path
independent but not cardinal monotone, as one would see upon inspecting the
examples in Blair [7]. We give here, in the last section of the paper, a simple
example where polarity fails to hold and the supremum (infimum) of a pair of
stable matchings is not stable (individually rational). We also give an example
to note the extent to which our model here is broader than the one in Alkan [3].

2 Basic definitions

A choice function on a setU is a mapC : 2U −→ 2U such thatC (T ) ⊂ T for
all T ⊂ U . (Notation:T ⊂ U includes the possibility thatT = U .)

3 This property was first shown by Roth and Sotomayor [15] for many-to-one matchings.
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A matching market (M , W ; CM , CW ) consists of two finite sets of agents
M , W , saymen andwomen, where each manm is described by a choice function
Cm on W and each womanw by a choice functionCw on M . A matching is a
mapµ : M ∪ W −→ 2W ∪ 2M such that

µ(m) ⊂ W , µ(w) ⊂ M ,

andm ∈ µ(w) if and only if w ∈ µ(m) for all m, w.
Notation: For any S ⊂ M and m /∈ S , we write m �w S to meanm ∈

Cw(S ∪ m). We denoteS
w

the union ofS with all m such thatm /∈ Cw(S ∪ m).
We call S

w
the closure of S underCw.

A matchingµ is individually rational if Cm (µ(m)) = µ(m), Cw(µ(w)) = µ(w)
for all m, w and pairwise stable if w �m µ(m) implies m �w µ(w), in other
words, if

w �m µ(m) implies m ∈ µ(w)
w
.

(For simplicity, we shall henceforth writeµ(w) for µ(w)
w

.)
We call a matchingstable if it is individually rational and pairwise stable.

3 Preliminaries: path independent choice
and the revealed preference lattice

Let C be a choice function on a setU . We call any subsetS of U a (feasible or
acceptable)partner-set if S is in the range ofC , namely if S = C (T ) for some
T ⊂ U . We denote byA the set of all partner-sets.

The revealed preference binary relation� over A is defined by

S � S ′ if and only if C (S ∪ S ′) = S .4 (1)

We note that� is antisymmetric sinceC (T ) is unique for allT .
We assume throughout thatC satisfies the axiom ofconsistency,

C (T ) ⊂ T ′ ⊂ T implies C (T ′) = C (T ), (2)

and the axiom ofsubstitutability,

a ∈ C (T ) implies a ∈ C (T ′ ∪ a) for T ′ ⊂ T . (3)

As is well known and easily confirmed, consistency and substitutability in con-
junction are equivalent to the axiom ofpath independence,5

C (C (T ) ∪ T ′) = C (T ∪ T ′) for all T , T ′.

In particular,C (C (T )) = C (T ) for all T , namely,C is idempotent. Equiva-
lently, C (S ) = S for all S in A, i.e., � is reflexive. One also sees easily that

4 This relation� was used in Blair [7].
5 This equivalence was first noted by Aizerman and Malishevsky [1]. Consistency and substi-

tutability are also known as respectively the AizermanOutcast Condition andHeritage Condition.
The latter is also known as Chernoff’s condition or Sen’s Propertyα.
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� is transitive.6 Thus� is a partial order onA. In fact, C (S ∪ S ′) is the least
upper bound of S , S ′ for all S , S ′ in A.7 In other words,A is a semilattice
under thejoin operation∨ given by

S ∨ S ′ = C (S ∪ S ′). (4)

Since{A,�} has a minimum element, namely the empty set, it follows that
A is endowed with ameet (greatest lower bound) operation∧ as well. Thus
{A,∨,∧} is a lattice.

The lemma below identifies the meet operation. Take anyS , S ′ ∈ A and
consider their closuresS , S ′ underC .

Lemma 1 S ∧ S ′ = C (S ∩ S ′).

Proof. We show thatC (S ∩ S ′) is the greatest lower bound ofS , S ′: By path
independenceC (C (S ∩ S ′) ∪ S ) = C ((S ∩ S ′) ∪ S ) = C ((S ∩ S ) ∪ (S ′ ∩ S )) =
C (S ∪ (S ′ ∩ S )) = C (S ) = S , i.e., S � C (S ∩ S ′). Likewise S ′ � C (S ∩ S ′).

Now let S ′′ be any lower bound forS , S ′. Then, C (S ∪ S ′′) = S hence
S ′′ ⊂ S ∪S ′′ ⊂ S ; likewiseS ′′ ⊂ S ′; henceS ′′ ⊂ S ∩S ′. By path independence,
therefore,C (C (S ∩S ′)∪S ′′) = C ((S ∩S ′)∪S ′′) = C (S ∩S ′). ThusC (S ∩S ′) �
S ′′. �


Remark The properties of{A,�} mentioned above are known and there is
a growing literature related to path-independent choice lattices: See Alkan [4],
Johnson and Dean [10], Koshevoy [11], Monjardet [12]. We remark that{A,�}
is isomorphic to the collection of “closed sets”K =

{
S ⊂ U | S ∈ A

}
par-

tially ordered by inclusion. Given this isomorphism, Lemma 1 follows from the
fact that intersection of closed sets are closed sets.

We use the following two lemmas in our study of stable matchings.

Lemma 2 S ∩ S ′ ⊂ S ∧ S ′.

Proof. Take a ∈ S ∩ S ′. By path independenceS = C (S ) so a ∈ C (S ). Also,
sinceS ⊂ S , a ∈ S . By substitutability,a ∈ C (S ∩ S ′). Lemma 1 then implies
a ∈ S ∧ S ′. �


Lemma 3 (S ∨ S ′) ∩ (S ∧ S ′) ⊂ S ∩ S ′.

Proof. If a ∈ S ∨S ′ = C (S ∪S ′) ⊂ S ∪S ′ thena ∈ C (S ′∪a) by substitutability,
namely,a /∈ S ′ − S ′. This proves (S ∨ S ′) ∩ (S ∩ S ′) ⊂ S ∩ S ′. Now note that,
by Lemma 1,S ∧ S ′ ⊂ S ∩ S ′. �


6 Proof. If S � S ′ andS ′ � S ′′ for anyS , S ′, S ′′ ∈ A, thenC (S ∪S ′′) = C (C (S ∪S ′)∪S ′′) =
C (S ∪ S ′ ∪ S ′′) = C (S ∪ C (S ′ ∪ S ′′)) = C (S ∪ S ′) = S , thusS � S ′′.

7 Proof. SupposeS ′′ � S , S ′′ � S ′. By path independenceC (C (S ∪ S ′) ∪ S ′′) = C (S ∪ S ′ ∪
S ′′) = C (S ∪ C (S ′ ∪ S ′′)) = C (S ∪ S ′′) = S ′′ thusS ′′ � C (S ∪ S ′).
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4 Main results: cardinal monotonicity
and the lattice structure of stable matchings

Let (M , W ; CM , CW ) be any matching market. Given any two matchingsµ1, µ2,
we define their malesupremum as the matchingµM where

µM (m) = µ1(m) ∨m µ2(m),

and their maleinfimum as the matchingµM where

µM (m) = µ1(m) ∧m µ2(m),

for everym. Female supremum and infimum are defined analogously.
Let µ1, µ2 be any two stable matchings.

Lemma 4 µM (m) ⊂ µW (m) for all m.

Proof. Take anyw ∈ µM (m) = Cm (µ1(m) ∪ µ2(m)) ⊂ µ1(m) ∪ µ2(m). If w is in
both µ1(m) andµ2(m), then m is in µ1(w) ∩ µ2(w), so m ∈ µW (w) by Lemma
2, hencew ∈ µW (m). Say

w ∈ µ2(m) − µ1(m).

But then,w �m µ1(m) by substitutability, som ∈ µ2(w) ∩ µ1(w) by stability,
thereforem ∈ µ1(w)∧w µ2(w) by Lemma 2. Thusm ∈ µW (w) sow ∈ µW (m). �


We will assume from this point on that the choice functionC of each agent
is cardinal monotone in the sense that

|C (T ′)| � |C (T )| for all T ′ ⊂ T .

Our first proposition below says that male supremum and female infimum
of stable matchings are identical; so are, of course, female supremum and male
infimum by symmetry. We will refer to this property as thepolarity property.

Proposition 5 µM = µW .

Proof. By cardinal monotonicity,|µW (w)| � |µW (w)| for all w. (To see this,
let T ′ = µW (w), T = µW (w) ∪ µW (w), then note thatT ′ ⊂ T and Cw(T ′) =
µW (w), Cw(T ) = µW (w).) So

|µW | =
∑

w

|µW (w)| �
∑

w

|µW (w)| = |µW | . (5)

By Lemma 4, on the other hand,|µM | � |µW | , |µW | � |µM | so |µM | � |µW | �
|µW | � |µM | � |µM | hence

|µM | = |µW | = |µW | = |µM | . (6)

So, by Lemma 4,µM = µW . �
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We now continue the proof of Proposition 5 above and obtain our second
proposition below which we will refer to as theunicardinality property of stable
matchings.

Proposition 6 Each agent is matched with the same number of partners in every
stable matching.

Proof. Let w be any agent. From (5) and (6),

|µW (w)| = |µW (w)| . (7)

Now consider the pair of matchingsµW , µ1. Note thatµW is the infimum andµ1

the supremum of this pair. By (7), then,|µW (w)| = |µ1(w)| . Similarly |µ2(w)| =
|µW (w)|. Thus

|µ1(w)| = |µW (w)| = |µW (w)| = |µ2(w)| . (8)

�

We next show that, on the set of stable partner-sets for each agent, join and

meet are complements in the sense that

µW (w) = (µ1(w) ∩ µ2(w)) ∪ ((µ1(w) ∪ µ2(w)) − µW (w)),

µW (w) = (µ1(w) ∩ µ2(w)) ∪ ((µ1(w) ∪ µ2(w)) − µW (w)).

This property, which we namecomplementarity, follows directly from the propo-
sition below.

Proposition 7 µW (w) ∩ µW (w) = µ1(w) ∩ µ2(w) and µW (w) ∪ µW (w) = µ1(w) ∪
µ2(w) for any agent w.

Proof. If m ∈ µW (w) then by polaritym ∈ µM (w) so w ∈ µM (m) ⊂ µ1(m) ∪
µ2(m) thusm ∈ µ1(w) ∪ µ2(w). ThusµW (w) ⊂ µ1(w) ∪ µ2(w). Hence

µW (w) ∪ µW (w) ⊂ µ1(w) ∪ µ2(w). (9)

So

|µW (w)| + |µW (w)| − |µW (w) ∩ µW (w)| � |µ1(w)| + |µ2(w)| − |µ1(w) ∩ µ2(w)| .
(10)

From (8) now |µW (w) ∩ µW (w)| � |µ1(w) ∩ µ2(w)| and consequently from
Lemma 3

µW (w) ∩ µW (w) = µ1(w) ∩ µ2(w). (11)

So (10) and therefore (9) must both be equations. Thus

µW (w) ∪ µW (w) = µ1(w) ∪ µ2(w). (12)

The proposition follows from (11) and (12). �

Proposition 8 The set of stable matchings is a lattice under the supremum and
infimum operations for each side of the market.
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Proof. We show that, for each side of the market, the supremum and the infimum
of stable matchings are themselves stable matchings. By polarity and symmetry,
it suffices to show thatµM is stable.

By idempotencyCm (µM (m)) = µM (m) for all m and, by polarity in addition,
Cw(µM (w)) = Cw(µW (w)) = µW (w) = µM (w) for all w. ThusµM is individually
rational.

It remains to show thatµM is pairwise stable. To this end, take any pairmw
such thatw �m µM (m). That is,

w /∈ µM (m) (13)

andw ∈ Cm (Cm (µ1(m) ∪ µ2(m)) ∪ w). By path independencew ∈ Cm (µ1(m) ∪
µ2(m) ∪ w). In particular,w is not in µ1(m) ∪ µ2(m) (otherwisew ∈ µM (m))
so by substitutabilityw �m µ1(m) andw �m µ2(m). By stability, therefore,m
belongs to the set

T = µ1(w) ∩ µ2(w).

Recall Cw(T ) = µW (w) by Lemma 1 whilem /∈ µM (w) = µW (w) by (13) and
polarity. By path independence and polarity, therefore,m /∈ Cw(T ) = Cw(T ∪
m) = Cw(Cw(T ) ∪ m) = Cw(µW (w) ∪ m) = Cw(µM (w) ∪ m), which saysm ∈
µM (w), provingµM is pairwise stable. �


Proposition 9 The supremum and infimum operations for each side of the market
are distributive on the set of stable matchings.

Proof. We need to show that the join and meet operations are distributive on the
set of stable partner-sets for each agent. Letw be any agent,µ, µ′, µ′′ be any
three stable matchings and denoteS = µ(w), S ′ = µ′(w), S ′′ = µ′′(w). We will
show that∨

w ,∧w are distributive onS , S ′, S ′′.
By Proposition 8,S , S ′, S ′′ lie in a lattice. Therefore, using a fact from lattice

theory, namely Corollary to Theorem II.13 in Birkhoff ([6])), the operations
∨

w
,∧

w are distributive onS , S ′, S ′′ if (and only if)

S ′ = S ′′

in case

S ∨w S ′ = S ∨w S ′′ andS ∧w S ′ = S ∧w S ′′. (14)

So supposeS , S ′, S ′′ satisfy (14). Then (S ∨w S ′) ∪ (S ∧w S ′) = (S ∨w S ′′) ∪
(S ∧

w S ′′) and (S ∨w S ′) ∩ (S ∧w S ′) = (S ∨w S ′′) ∩ (S ∧w S ′′). Consequently
S ∪ S ′ = S ∪ S ′′ by (12) andS ∩ S ′ = S ∩ S ′′ by (11). ThusS ′ = S ′ ∪ (S ′ ∩ S ) =
S ′ ∪ (S ′′ ∩ S ) = (S ′ ∪ S ′′) ∩ (S ′ ∪ S ) = (S ′ ∪ S ′′) ∩ (S ′′ ∪ S ) = S ′′ ∪ (S ′ ∩ S ) =
S ′′ ∪ (S ′′ ∩ S ) = S ′′. �


The theorem below is our summary of Propositions 5–9.
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Theorem 10 The set of stable matchings in any two-sided market with path-
independent cardinal-monotone choice functions is a distributive lattice under
the common preferences of all agents on one side of the market. The supremum
(infimum) operation of the lattice for each side consists componentwise of the
join (meet) operation in the revealed preference ordering of associated agents.
The lattice has the polarity, unicardinality and complementarity properties.

5 Two examples

In this section we illustrate the difference between the class of matching markets
studied here with those in Blair [7] and Alkan [3] by giving two examples
respectively.

In our first example choice functions are path independent but not all cardinal
monotone. We exhibit a pair of stable matchings for which polarity does not hold
and the supremum (infimum) is not stable (individually rational).

Consider a market with five agentsA, B , C , D , E on one side and six agents
a, b, c, d , e, z on the other.A choosesa if all candidates are available and (in
violation of cardinal monotonicity) he choosescz if all but a are available; that
is a and cz are A’s best and second-best teams respectively. The matrix below
expresses this and the best and second-best partner-sets for the others. It also
says thatz ’s third-best partner-set isE .

A B C D E a b c d e z
a b c d z C D A B E A
cz dz a b e A B C D − B
− − − − − − − − − − E

It is routine and simple to check that the two matchings whereA, B , C , D , E
are matched respectively withcz , b, a, d , e anda, dz , c, b, e are both stable and
that their male supremum is given bya, b, c, d , e while their female infimum is
given by a, bz , c, d , e. In particular, the two matchings are not identical; thus,
polarity does not hold. Also, the male supremum is unstable as it is blocked by
the pairEz .8 We further note that the male infimum of the original matchings,
given bycz , dz , a, b, c, is not individually rational asz would disassociate with
B .

Before giving the second example, let us mention that in Alkan [3], choice
functions are assumed to bequotafilling in the sense that they are path indepen-
dent and they choose a certain fixed number of partners whenever there are at
least as many candidates. In particular, a set of partners is a (feasible) partner-set
for a quotafilling agent if and only if it has cardinality less than or equal to some
fixed quota. On this domain, stable partner-sets happen to be all full-quota or all
identical. A partner-set that is full-quota is of coursemaximal in the sense that it
is not a proper subset of any partner-set. We provide the simple example below

8 One may check that the supremum of the two stable matchings labelled M1 and M2 in Example
5.2 given by Blair [7] is also unstable.
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to show that, on the broader domain of the present paper, an agent may have
several stable partner-sets none of which is maximal.

Consider a market with three agents on each side, namelyA, B , C anda, b, c,
where all agents butA are monogamous and have their top two choices as stated
in the table below:

B C a b c
b c B A C
a − A B −

Agent A would choose the partner-sets{a, c}, {a}, {a, c}, {b, c}, {a}, {b}, {c}
given the set of potential partners{a, b, c}, {a, b}, {a, c}, {b, c}, {a}, {b}, {c}
respectively. One easily sees that this choice function is path independent and car-
dinal monotone but not quotafilling (as it chooses∗∗block{a, c} given{a, b, c}
but only {a} given {a, b}.) One also sees easily that this market has two stable
matchings in which the agentsA, B , C are matched witha, b, c and b, a, c re-
spectively. We note that the two stable partner-sets thatA has, namely{a} and
{b}, are both not maximal (as they are proper subsets of the partner-sets{ac}
and{bc} respectively.)
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