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Abstract: Research on due date oriented objectives in the parallel machine environment is at best scarce compared to objectives such

as minimizing the makespan or the completion time related performance measures. Moreover, almost all existing work in this area is

focused on the identical parallel machine environment. In this study, we leverage on our previous work on the single machine total

weighted tardiness (TWT) and total weighted earliness/tardiness (TWET) problems and develop a new preemptive relaxation for the

TWT and TWET problems on a bank of unrelated parallel machines. The key contribution of this paper is devising a computationally

effective Benders decomposition algorithm for solving the preemptive relaxation formulated as a mixed integer linear program. The

optimal solution of the preemptive relaxation provides a tight lower bound. Moreover, it offers a near-optimal partition of the jobs

to the machines, and then we exploit recent advances in solving the non-preemptive single machine TWT and TWET problems for

constructing non-preemptive solutions of high quality to the original problem. We demonstrate the effectiveness of our approach with

instances up to 5 machines and 200 jobs.

Keywords: unrelated parallel machines; weighted tardiness; weighted earliness and tardiness; preemptive relaxation; Benders decom-

position; transportation problem; lower bound; heuristic.

1. Introduction The prevalence of actual manufacturing environments where a set of tasks has to be executed on a

set of alternate resources attests to the practical relevance of the parallel machine scheduling environment. For instance,

many production steps in semiconductor manufacturing feature unrelated parallel machines because existing machines

are augmented over time with machines of newer technology for ramping up production (Shim and Kim, 2007a). Another

setting observed in the inspection operations in semiconductor manufacturing creates the context for a recent work by

Detienne et al. (2011) on unrelated parallel machines with stepwise individual job cost functions. Several other industries,

such as the beverage, printing, and pharmaceutical industries, require processing steps performed by a set of parallel

machines (Biskup et al., 2008). Therefore, a thorough understanding of the trade-offs that govern the parallel machine

environment is fundamental for the successful operation in many different manufacturing settings.

The scheduling literature is often criticized for its emphasis on the single machine environment which is arguably

not encountered frequently in today’s complex shop floors. However, virtually every scheduling algorithm conceived

for multi-stage production systems does either generalize or depend upon the fundamental principles derived from

the basic single machine scheduling problems. A similar argument is valid for the parallel machine environment

as well. Decomposition algorithms devised for multi-stage systems, such as Lagrangian relaxation, Dantzig-Wolfe

reformulation, Benders decomposition, and the shifting bottleneck heuristic, give rise to either single- or parallel machine

scheduling subproblems that have to be solved many times in an iterative framework. The ultimate performance of such

decomposition approaches depends critically on our ability to solve these subproblems with a high solution quality in

short computational times. Moreover, from a theoretical perspective the study of parallel machines is the immediate

logical extension of single machine scheduling. For a given partition of the set of jobs over the set of machines, a parallel
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machine scheduling problem is just a collection of independent single machine scheduling problems. Therefore, parallel

machine scheduling problems are generally regarded as set partitioning problems where the complexity of calculating

the cost of a partition depends on the difficulty of the underlying single machine scheduling problem. Motivated by these

practical and theoretical considerations, our primary objective in this paper is to devise a fast and effective mathematical

programming based heuristic for two fundamental due date related objectives on unrelated parallel machines.

Most of the studies in the scheduling literature are typically concerned with developing algorithms for a single

objective function. The proposed approaches tend to be highly specialized and not easily extensible to other objectives

and settings. Ultimately, scheduling software is tailored to individual settings, and scheduling research is fragmented.

In this context, we emphasize that in this paper we attack two popular scheduling objectives TWT and TWET within a

single algorithmic framework. The TWT objective is a special case of the TWET objective; however, observe that TWET

is non-regular while TWT is regular. It is well-established that non-regular objectives give rise to new theoretical and

computational issues (Baker and Scudder, 1990, Kanet and Sridharan, 2000), and we point out that it is uncommon to

tackle both objectives simultaneously. Formally, we characterize the problems we consider as Rm//
∑

j π jT j (Rm-TWT)

and Rm//
∑

j π jT j + ǫ jE j (Rm-TWET) for minimizing the TWT and TWET on a set of m unrelated parallel machines,

respectively, following the three field notation of Graham et al. (1979) in classifying scheduling problems. The notation

Rm in the first field stands for a bank of m unrelated machines. The earliness and tardiness of job j are represented by E j

and T j, respectively, and ǫ j and π j are the associated unit weights. Both Rm-TWT and Rm-TWET are strongly NP-hard

because the strongly NP-hard single machine scheduling problem 1//
∑

π jT j (Lenstra et al., 1977) is a special case of

both of these problems. We next summarize briefly our motivation and main contributions in this paper.

The review of the related literature in Section 2 identifies the lack of strong lower bounds as a major impediment to

the development of exact algorithms and the performance analysis of heuristics for the TWT and TWET objectives in the

parallel machine environment. Shim and Kim (2007a) attack the unweighted version of Rm-TWT, and their B&B algorithm

does not scale beyond 5 machines and 20 jobs. In their concluding remarks, the authors state that “..., further research is

needed if one needs to solve problems of larger or practical sizes. One way may be to develop more effective or tighter

lower bounds since the lower bound used in the B&B algorithm suggested in this study does not seem to be very tight.”

More generally, in their effort to compute strong LP based bounds for a class of parallel machine scheduling problems with

additive objectives, van den Akker et al. (1999) observe that “additive objective functions pose a computational challenge

because it is difficult to compute strong lower bounds.” These comments provide a strong motivation for this study.

All promising existing results assume that the machines are identical and often exploit this fact in some way; e.g., by

aggregating the machine capacity constraints. Clearly, such approaches do not necessarily extend to or yield similar results

for unrelated parallel machines. In this paper, we set out to provide tight lower bounds and near-optimal solutions for the

TWT and TWET objectives in the unrelated parallel machine environment. To this end, we propose a new preemptive

relaxation that explicitly assigns jobs to specific machines. This preemptive relaxation generalizes and builds upon

the success of the related previous studies on the single machine weighted tardiness and weighted earliness/tardiness

scheduling problems (Bülbül et al., 2007, Pan and Shi, 2007, Şen and Bülbül, 2012, Sourd and Kedad-Sidhoum, 2003). The

resulting lower bound is tight, and perhaps more importantly, the job partition retrieved from the (near-) optimal solution

of the preemptive relaxation provides us with sufficient information to construct feasible non-preemptive schedules of

high quality for the original problem. That is, we recognize that the main practical difficulty of solving Rm-TWT and

Rm-TWET to (near-) optimality is determining a good job partition, and we directly incorporate this aspect of the problem

into our rationale for developing this particular relaxation. Once a job partition is available, we rely on recent advances

by Tanaka et al. (2009) and Tanaka and Fujikuma (2012) to solve m independent single machine TWT or TWET problems,

respectively, to construct a non-preemptive solution of high quality to the original unrelated parallel machine scheduling

problem. The downside of our preemptive relaxation is that it is formulated as a difficult mixed integer linear program.

A key contribution of this paper is devising a computationally effective Benders decomposition algorithm that can handle
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very large instances of this formulation. Here, the lazy constraint generation scheme of IBM ILOG CPLEX (2011) proves

instrumental for a successful implementation. Moreover, as we point out in the previous paragraph, both objectives TWT

and TWET are tackled successfully by the same algorithm.

In the next section, we review the related literature and put our work into perspective. We introduce and formulate the

proposed preemptive relaxation in Section 3 and then develop our solution approach based on Benders decomposition

in Section 4. This is followed in Section 5 by an extensive set of computational experiments. We conclude and discuss

potential future research directions in Section 6.

2. Review of Related Literature Early research on parallel machine scheduling is primarily concerned with the

makespan and total (weighted) completion time objectives (Cheng and Sin, 1990). We refer the reader to Pinedo (2008)

for a comprehensive discussion of the polynomially solvable cases and structural results of interest for these problems.

Some of the more recent and well-known examples of the papers that study NP-complete problems in this domain in-

clude van den Akker et al. (1999), Chen and Powell (1999b), Azizoglu and Kirca (1999a), and Azizoglu and Kirca (1999b).

Studies on due date related performance measures in the parallel machine environment commenced in earnest in the

1990’s and picked up more significantly during the last decade. In this review, we mainly restrict our attention to the

literature on parallel machine tardiness and earliness/tardiness scheduling problems with job dependent due dates. This

part of the literature creates the context for our study, and we provide a few important pointers otherwise. The great

majority of the existing studies on due date related performance measures assumes that the machines are identical, and

only a handful of papers consider the case of unrelated parallel machines. For most of the proposed exact approaches,

computational scalability remains an issue due to the lack of strong lower bounds. Therefore, we also specifically elab-

orate on the existing lower bounding methods for parallel machine scheduling problems with additive tardiness and

earliness/tardiness objective functions in order to justify our alternate lower bounding scheme introduced in Section 3.

See Table 3 in Online Supplement G.3 for a summary of the important points in this section.

The first exact approach for minimizing the total tardiness with distinct due dates on identical parallel machines is

due to Azizoglu and Kirca (1998). The authors integrate some dominance rules and a simple bounding technique into a

branch-and-bound (B&B) procedure for this problem Pm//
∑

j T j, where Pm in the first field indicates a set of m identical

parallel machines. The algorithm is able to handle instances with up to 15 jobs and 3 machines. The lower bound

of Azizoglu and Kirca belongs to a very common and simple set of lower bounds which rely on determining a lower

bound for the jth smallest job completion time C[ j], j = 1, . . . ,n, among the set of all feasible schedules. These lower

bounds on the completion times are then matched with the weights and the due dates in some appropriate order so that

the resulting expression yields a lower bound for the problem under consideration. Lower bounding techniques based

on such minimal completion times are developed or employed in several other papers with tardiness related objectives

(Koulamas, 1997, Liaw et al., 2003, Shim and Kim, 2007a,b, Souayah et al., 2009, Yalaoui and Chu, 2002). There is a

consensus in the literature that this class of lower bounds is not strong in general. Furthermore, in problems with

earliness/tardiness objectives the presence of unforced idle time renders similar lower bounding techniques invalid. For

the same problem Pm//
∑

j T j, Yalaoui and Chu (2002) devise another B&B scheme. The limit of this algorithm appears

to be 20 jobs and 2 machines within a time limit of 30 minutes. The series of papers by Liaw et al. (2003), Shim and Kim

(2007a), and Shim and Kim (2007b) develop a set of closely related optimal methods. Liaw et al. (2003) attack the problem

Rm//
∑

j π jT j of minimizing TWT on unrelated parallel machines. This study appears to be the first exact approach for this

problem. The lower bounding scheme is very similar to that in Azizoglu and Kirca (1999b) with a simple enhancement

based on the structure of the tardiness objective; however, the method does not scale beyond 4 machines and 18 jobs.

Shim and Kim (2007a) tackle the unweighted version Rm//
∑

j T j in the same machine environment. The proposed B&B

method employs some of the existing dominance properties in addition to new ones. The lower bounding technique

of Liaw et al. (2003) is adopted, and an alternate lower bound is obtained by reducing the original problem into a
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single machine problem by modifying the processing times appropriately and using a previously existing result for the

single machine total tardiness problem. The largest problem size that can be handled successfully within 1 hour is 5

machines and 20 jobs. In a similar work, Shim and Kim (2007b) address the problem Pm//
∑

T j, and instances with up

to 5 machines and 30 jobs are solved optimally within 1 hour. Jouglet and Savourey (2011) devise dominance rules and

filtering methods for the problem Pm/r j/
∑

j π jT j, where the notation r j in the second field indicates that the release dates

may be non-identical, and embed these into a B&B procedure along with an existing lower bound. The authors argue

that the lack of good lower bounds prevents them from solving instances with more than 20 jobs and 3 machines. All of

the optimal methods discussed so far base their lower bounding efforts on combinatorial arguments that rely on simple

properties of the scheduling objectives under consideration. The resulting bounds are generally loose. However, the most

promising lower bounds for parallel machine total (weighted) tardiness and earliness/tardiness problems are derived

through mathematical programming techniques. For instance, the LP relaxations of the set partitioning formulations of

common due date / common due window earliness/tardiness problems solved by column generation yield a prominent

class of tight lower bounds (Chen and Lee, 2002, Chen and Powell, 1999a). Bounds obtained from various relaxations

of time-indexed formulations are also popular in parallel machine scheduling. An arc-time-indexed formulation whose

LP relaxation is tackled by column generation is at the heart of the highly efficient branch-cut-and-price algorithm of

Pessoa et al. (2010) for Pm//
∑

π jT j. This study is by far the most successful exact algorithm to date on parallel machine

tardiness problems and delivers optimal solutions to instances with up to 100 jobs and 4 machines. Tanaka and Araki

(2008) apply Lagrangian relaxation to the time-indexed formulation of the problem Pm//
∑

T j in an effort to develop

tight lower bounds. Instances with up to 25 jobs and 10 machines are solved optimally. The average gap of the initial

lower bound is 2.4% for the instances not solved at the root node. Souayah et al. (2009) take on the weighted version

of the problem and study Pm//
∑

j π jT j. With a mix of combinatorial, mathematical programming, and Lagrangian

relaxation based lower bounds, about half of the instances with up to 35 jobs and 2 machines are solved to optimality

within 20 minutes. We refer the interested reader to the review paper Sen et al. (2003) where the tardiness literature on

multi-machine systems is briefly addressed as well. Following this discussion, two observations are due regarding the

state of the literature. First, there is a clear need for studying the tardiness related objectives in the unrelated parallel

machine environment; we can pinpoint only two studies which focus on the unrelated parallel machine environment.

Second, more than 20 to 30 jobs and a few machines seems to be generally beyond the reach for the existing exact methods,

attributed to the lack of strong lower bounds. We hope to provide a potential remedy to this issue in this paper.

Several heuristics have been proposed for minimizing the total (weighted) tardiness on identical parallel machines

and are reviewed in Online Supplement G.1. For unrelated parallel machines, we are aware of only three papers by

Zhou et al. (2007), Mönch (2008), and Lin et al. (2011) which focus on heuristics for Rm//
∑

j π jT j. The first two studies

rely on ant colony optimization and benchmark their algorithms against simple heuristics which makes it difficult to

evaluate the solution quality in absolute terms. Lin et al. propose a genetic algorithm and two simpler heuristics. The

genetic algorithm outperforms all others in the computational experiments and deviates from the optimal solution by

1.8% on average for small instances with 4 machines and 20 jobs. The heuristic that we develop in this paper is scalable to

large instances with up to 200 jobs and simultaneously produces both lower and upper bounds of high quality. As evident

from the discussion here, this is a significant edge over those in the literature, and we make a valuable contribution to

the (unrelated) parallel machine scheduling research with tardiness objectives.

To the best of our knowledge, no exact algorithm has been designed to date for the problem of scheduling a set

of independent jobs on a bank of unrelated parallel machines with the objective of minimizing the total (weighted)

earliness and tardiness. However, various studies investigate special cases of this problem – see Online Supple-

ment G.2. The most closely related works to our problem Rm-TWET are by Kedad-Sidhoum et al. (2008), Mason et al.

(2009), and M’Hallah and Al-Khamis (2012). Kedad-Sidhoum et al. experiment with various relaxations of the problem

Pm/r j/
∑

j π jT j + ǫ jE j by recognizing that the main difficulty in solving earliness/tardiness scheduling problems stems
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from the lack of strong lower bounds. The authors extend two classes of lower bounds originally proposed for the single

machine case to the identical parallel machine environment. Their discrete assignment-based lower bound is discussed

further in Section 3 because it is closely related to our preemptive lower bounding method for Rm-TWT and Rm-TWET.

Kedad-Sidhoum et al. report that the Lagrangian relaxation obtained by dualizing the machine capacity constraints in the

time-indexed formulation outperforms others, taking into account both the solution quality and gap. Tanaka and Araki

(2008) – discussed previously – employ the same Lagrangian relaxation for Pm//
∑

T j. The best bound attained by

solving the Lagrangian dual problem in these relaxations is equivalent to that provided by the LP relaxation of the

time-indexed formulation. However, solving the Lagrangian dual problem – generally by subgradient optimization – is

often computationally more efficient. We also attest to the rapidly increasing computational effort required to solve the

LP relaxation of the time-indexed formulation in Section 5. Kedad-Sidhoum et al. obtain upper bounds through a simple

local search. Experimental results attest to the quality of both the lower and upper bounds. The average optimality gap

attained for instances with up to six machines and 90 jobs is around 1.5%. However, we cite two good reasons for not

following a similar path to that of Kedad-Sidhoum et al. and Tanaka and Araki. First, the machine capacity constraints

in the time-indexed formulation may be aggregated in the identical parallel machine environment by defining a single

resource with a capacity of performing m jobs simultaneously, and this renders the number of dual variables in the

Lagrangian relaxation independent from the number of machines in the problem. This, however, is not possible for

Rm-TWT and Rm-TWET, and relaxing the machine capacity constraints – one for each combination of time period and

machine – would result in mH dual variables instead of just H. Consequently, solving the Lagrangian dual problem

would quickly become a formidable task with an increasing number of machines. Second, the solution retrieved from the

Lagrangian relaxation does offer little information on how to identify near-optimal job to machine assignments. The job

start times provided by the Lagrangian relaxation for a given set of dual multipliers form the basis for a dispatch rule in

Tanaka and Araki (2008); however, both these authors and Kedad-Sidhoum et al. need to devise independent heuristics

in order to obtain feasible solutions of high-quality for their original problems.

The moving block heuristic of Mason et al. (2009) for Pm//
∑

E j + T j is tested against an integer programming formu-

lation over instances with up to 40 jobs and 4 machines. The heuristic identifies feasible solutions which are on average

better than the incumbent for 20- and 40-job instances. Like Kedad-Sidhoum et al., M’Hallah and Al-Khamis tackle the

weighted version of the problem. Their integer programming formulation points out and corrects an error in that of

Mason et al. (2009). The limit of the formulation appears to be instances with no more than 20 jobs. In addition, several

new heuristics are introduced. The best performing contender turns out to be a hybrid heuristic which is benchmarked

against the lower and upper bounds of Kedad-Sidhoum et al. (2008). The hybrid heuristic improves some of the best

known solutions for the instances of Kedad-Sidhoum et al.; however, it yields slightly worse solutions on average. The

median gap of the hybrid heuristic ranges from 1.4% to 6.1% with respect to the lower bounds of Kedad-Sidhoum et al.

(2008) depending on the problem size. It is evident that there is a gap in the literature with respect to the parallel machine

earliness/tardiness scheduling problems with distinct due dates. To the best of our knowledge, our work provides the

first viable solution approach for the unrelated parallel machine environment in this context.

3. Problem Statement and Preemptive Relaxation We consider a bank of m unrelated parallel machines and n jobs,

which are all ready at time zero. Each job is processed on exactly one of the machines, where the processing of job j on

machine k requires an integer duration of pkj time units. The completion time of job j is denoted by C j. A due date d j – also

assumed to be integral – is associated with each job j, and we incur a cost π j per unit time if job j completes processing

after d j. Thus, the total weighted tardiness over all jobs is determined as
∑

j π jT j, where the tardiness of job j is calculated

as T j = max(0,C j − d j). For the problem Rm//
∑

j π jT j + ǫ jE j, the objective additionally penalizes the completion of job

j prior to its due date d j at a rate of ǫ j per unit time, where the earliness of job j is defined as E j = max(0, d j − C j). All

machines are available continuously from time zero onward, and a machine can execute at most one operation at a time.



Şen, Bülbül: A Preemptive Relaxation for Unrelated Parallel Machines
Sabancı University, c©June 26, 2014

6

An operation must be carried out to completion once started, i.e., preemption is not allowed.

In this section, we introduce our preemptive lower bounding scheme for Rm-TWT and Rm-TWET. We define two

primary design goals for our preemptive relaxation. The tightness of the lower bound is clearly a major concern. Equally

important is the information that can be extracted from the optimal solution of the preemptive relaxation to construct

feasible solutions of high quality for the original non-preemptive problem. We attain both of these goals – somewhat

more successfully for Rm-TWT than for Rm-TWET from a computational perspective – and demonstrate the effectiveness

of the proposed lower and upper bounds in Section 5.

A class of highly efficient lower bounds based on a particular preemption scheme was developed for single machine

tardiness and earliness/tardiness scheduling problems during the last decade (Bülbül et al., 2007, Şen and Bülbül, 2012,

Sourd and Kedad-Sidhoum, 2003). The key idea of these preemptive relaxations is to divide up jobs with integer

processing times into jobs of unit-length and associate a cost with the completion of each of these unit-length jobs. That

is, jobs may only be preempted at integer points in time. In this setting, the problem of solving the preemptive relaxation

is formulated as an assignment or a transportation problem, where the length of the planning horizon depends on the

magnitude of the due dates and the sum of the processing times. Therefore, the formulation size is pseudo-polynomial.

On the up side, the availability of very fast algorithms for the assignment and transportation problems does still render

this lower bounding technique viable. The formulation (TR) below is due to Kedad-Sidhoum et al. (2008), where the

original approach in the single machine environment is extended to m identical parallel machines.

(TR) minimize

n
∑

j=1

H
∑

t=1

c′jtx jt (1)

subject to

H
∑

t=1

x jt = p j, j = 1, . . . ,n, (2)

n
∑

j=1

x jt ≤ m, t = 1, . . . ,H, (3)

0 ≤ x jt ≤ 1, j = 1, . . . ,n, t = 1, . . . ,H. (4)

In the model (TR), the time period t represents the time interval (t − 1, t], and consequently in any optimal schedule all

jobs finish processing no later than in period H, where

H =


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n
∑
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k

(
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)

/m
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




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+ pmax + dmax for Rm-TWET.

(5)

The end of the planning horizon H is determined based on the following observation. For Rm-TWT with a regular

objective function, all machines are continuously busy until some time t′ ≤
⌈

∑n
j=1 maxk

(

p jk

)

/m
⌉

if at least m jobs are still

not completed. Therefore, after time t′ the remaining m − 1 jobs are finished in at most pmax = max j,k

(

p jk

)

time periods.

The end of the planning horizon may thus be set to the value in the first row of (5). An optimal solution of Rm-TWET,

on the other hand, may include unforced idleness, and the argument just described is only valid if we conservatively

assume that all jobs are started at dmax = max j d j. Clearly, pmax may be omitted from (5) in the case of a single machine.

If a unit job of job j is executed during the time interval (t − 1, t], the decision variable x jt assumes the value one, and

the objective is charged a cost of c′
jt
. The constraints (2) mandate that each job j receives p j units of processing. To observe

the machine capacities, constraints (3) require that no more than m unit jobs are processed simultaneously in a given

period. Note that the machine index is omitted from the processing times because they are all identical for a given job.

Furthermore, no integrality is imposed on the decision variables due to the total unimodularity of the constraint matrix

of (TR). The optimal objective function value of (TR) is a lower bound on that of Pm//
∑

j π jT j + ǫ jE j, as long as the
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objective function coefficients satisfy

t
∑

s=t−p j+1

c′js ≤ ǫ j(d j − t)+ + π j(t − d j)
+ j = 1, . . . ,n, t = p j, . . . ,H. (6)

That is, the total cost incurred in (TR) by any job that is scheduled non-preemptively is no larger than that in the original

non-preemptive problem (Bülbül et al., 2007). Naturally, the strength of the lower bound depends on the objective

coefficients c′
jt
, and this is where the existing works in the literature take different paths. For instance, the cost coefficients

of Sourd and Kedad-Sidhoum (2003) satisfy (6) as an equality. Bülbül et al. (2007) characterize and develop an expression

for the cost coefficients that are the best among those with a piecewise linear structure with two segments. For these cost

coefficients, (6) holds as a strict inequality for some values of t. For the one machine problem, these authors also show that

the lower bound retrieved from (TR) is no better than that provided by the LP relaxation of the time-indexed formulation.

Conversely, Pan and Shi (2007) prove the existence of a set of objective coefficients for (TR) so that the LP relaxation

of the time-indexed formulation and (TR) yield identical lower bounds. However, computing the values of these cost

coefficients is no less time consuming than solving the LP relaxation of the time-indexed formulation. We also note that

the empirical performance of the algorithms based on this set of relaxations is more than satisfactory (Bülbül et al., 2007,

Pan and Shi, 2007, Şen and Bülbül, 2012, Sourd and Kedad-Sidhoum, 2003). They strike a good balance between solution

quality and time.

Factoring in all arguments in this section, the set of preemptive relaxations discussed in the previous paragraph

emerges as a strong candidate for deriving strong lower bounds for our problems of interest Rm-TWT and Rm-TWET.

However, one hurdle remains in the pursuit of our second design goal of constructing non-preemptive solutions of

high quality directly based on the information retrieved from the optimal solution of the preemptive relaxation. In

the optimal solution of (TR), the unit jobs of job j cannot overlap in time, but they can be processed on different

machines. Consequently, no explicit assignment of the jobs to the machines is available. This is a major drawback

because it complicates the task of obtaining a non-preemptive feasible solution to the original problem. In the sequel, we

demonstrate that overcoming this difficulty allows us to attain good upper bounds in addition to good lower bounds.

The downside of (TR) is that the optimal solution does not guarantee that we can assign all unit jobs of a job to the same

machine. Such a requirement is incorporated in the following model (TR −A) at the expense of additional variables and

destroying the desirable polyhedral structure of the transportation problem. The binary variable y jk takes the value 1 if

job j is assigned to machine k, and is zero otherwise. In addition, the x−variables and the associated objective coefficients

are supplemented with a machine index k to allow us to assign a unit job of job j explicitly to machine k in period t.

(TR −A) minimize

n
∑

j=1

m
∑

k=1

H
∑

t=1

c′jktx jkt (7)

subject to

H
∑

t=1

x jkt = p jky jk, j = 1, . . . ,n, k = 1, . . . ,m, (8)

n
∑

j=1

x jkt ≤ 1, k = 1, . . . ,m, t = 1, . . . ,H, (9)

m
∑

k=1

y jk = 1, j = 1, . . . ,n, (10)

x jkt ≥ 0, j = 1, . . . ,n, k = 1, . . . ,m, t = 1, . . . ,H, (11)

y jk ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m. (12)

(TR −A) differs from (TR) in two main aspects. The capacity constraints (9) appear in a disaggregated form, and all

unit jobs of job j are performed on the same machine by constraints (8) and the job partitioning constraints (10). As

we hinted at earlier, the cost coefficients c′
jkt

are of critical importance for the strength of the lower bounds provided by
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the preemptive relaxation. In this research, we stick with the cost coefficients by Bülbül et al. (2007) given in (13) and

adapted in an obvious way to the unrelated parallel machine environment for two reasons. They empirically outperform

those by Sourd and Kedad-Sidhoum (2003) on average (Bülbül et al., 2007, Kedad-Sidhoum et al., 2008), and computing

the best set of cost coefficients for a given instance by the method of Pan and Shi (2007) is expensive.

c′jkt =



















ǫ j

p jk

[

(d j −
p jk

2 ) − (t − 1
2 )
]

for t ≤ d j, and
π j

p jk

[

(t − 1
2 ) − (d j −

p jk

2 )
]

for t > d j.
(13)

We next provide a proposition that the optimal solution of (TR −A) with the cost coefficients given above provides

a lower bound on the optimal objective function value of the original problem Rm-TWT or Rm-TWET. The result is a

corollary of Bülbül et al. (2007, Theorem 2.2), where the authors show that the cost coefficients in (13) satisfy (6). The

formal proof is in Online Supplement H.1.

Proposition 3.1 The optimal objective function value of (TR −A) with the cost coefficients given by equation (13) is a lower bound

on the optimal objective function value of the original non-preemptive problem Rm-TWT or Rm-TWET.

Our overall strategy for obtaining near-optimal feasible solutions and good lower bounds for Rm-TWT and Rm-

TWET is now clear. We first solve (TR −A), retrieve the job partition, and then build m individual machine schedules

independently. Several heuristics with excellent empirical performance are available for both 1//
∑

j π jT j and 1//
∑

j π jT j+

ǫ jE j to perform the latter task. However, in this work we rely on the recent powerful optimal algorithms of Tanaka et al.

(2009) and Tanaka and Fujikuma (2012) to handle the single machine problems as we mentioned in Section 1. Our

computational experiments in Section 5 ultimately support this decision. Thus, only one major challenge remains. The

formulation (TR −A) is a mixed integer programming problem that is time consuming to solve based on our preliminary

computational experiments. However, for a fixed job partition it decomposes into m independent LPs – m independent

transportation problems –, and these LPs are solved to optimality very efficiently. These observations suggest that

(TR −A) is amenable to Benders decomposition (Benders, 1962), and developing a Benders decomposition algorithm

with strengthened cuts for (TR −A) is our main methodological contribution in this paper.

One final remark is due before we delve into the specifics of our solution method for (TR −A). For Rm-TWT, the

formulation may be strengthened by the load balancing constraints (14) which assert that the workloads of two machines

cannot differ by more than pmax in an optimal solution of the original non-preemptive parallel machine scheduling

problem. Otherwise, we could transfer the final job on one of these machines to the other one without degrading the

objective function value. Note that similar concepts have been incorporated into various properties and dominance rules

elsewhere in the literature (Azizoglu and Kirca, 1999b, Theorem 1). However, for Rm-TWET with a non-regular objective

function, we can easily create instances for which no optimal solution satisfies (14).

−pmax ≤

n
∑

j=1

p jky jk −

n
∑

j=1

p jly jl ≤ pmax, k = 1, . . . ,m − 1, l = k + 1, . . . ,m. (14)

These cuts are added to the preemptive formulation (TR −A) when solving Rm-TWT and help speed up the solution

process for large instances.

4. Benders Decomposition Parallel machine scheduling problems have a partitioning and a scheduling component.

That is, if we assign jobs to machines by fixing the variables y jk, j = 1, . . . ,n, k = 1, . . . ,m, so that the constraints (10)

are satisfied, then the model (TR −A) decomposes into m independent transportation problems. We exploit this key

observation to design an algorithm based on Benders decomposition for solving (TR −A) efficiently. To this end, we

reformulate (TR −A) for a fixed y by replacing the right hand side of the set of constraints (8) by p jky jk and dropping the

set of constraints (10) and (12) from the model. In the resulting linear program
(

TR −A(y)
)

, u jk, j = 1, . . . ,n, k = 1, . . . ,m,

and vkt, k = 1, . . . ,m, t = 1, . . . ,H, are the dual variables associated with the set of constraints (8) and (9), respectively.
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The dual of
(

TR −A(y)
)

is then stated below, where the decomposition into m independent transportation problems is

made explicit:

z(y) =

m
∑

k=1

zk(y), (15)

where

(DSk) zk(y) = maximize

n
∑

j=1

p jky jku jk +

H
∑

t=1

vkt (16)

subject to u jk + vkt ≤ c′jkt, j = 1, . . . ,n, t = 1, . . . ,H, (17)

vkt ≤ 0, t = 1, . . . ,H, (18)

is the dual of the transportation problem (TRk) for machine k. In the sequel, (TRk) and (DSk) are also referred to as

the cut generation subproblem and the dual slave problem, respectively, by following the common terminology for Benders

decomposition.

Based on the objective function (16) of (DSk), we obtain the following restricted Benders master problem (RMP),

where C denotes the current number of times the cut generation subproblems (TRk), k = 1, . . . ,m, have been solved. The

optimal values of the dual variables u jk, j = 1, . . . ,n, k = 1, . . . ,m, and vkt, k = 1, . . . ,m, t = 1, . . . ,H, in round c of the cut

generation are represented by uc
jk

and vc
kt

, respectively. The auxiliary variable ηk indicates a lower bound on the total cost

incurred by the jobs assigned to machine k, and the objective function value
∑m

k=1 ηk of (RMP) is therefore a lower bound

on the optimal objective values of (TR −A) and the original non-preemptive scheduling problem Rm-TWT or Rm-TWET.

(RMP) minimize

m
∑

k=1

ηk (19)

subject to

m
∑

k=1

y jk = 1, j = 1, . . . ,n, (20)

ηk ≥

n
∑

j=1

p jkuc
jky jk +

H
∑

t=1

vc
kt, k = 1, . . . ,m, c = 1, . . . ,C, (21)

y jk ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m. (22)

Note that
(

TR −A(y)
)

is feasible and (DSk), k = 1, . . . ,m, is bounded for any y that satisfies the constraints (10). Therefore,

no feasibility cuts are required, and only optimality cuts are generated and added iteratively to (RMP) during the course

of the algorithm. Furthermore, the cut generation subproblem (TRk) for machine k includes all jobs and is solved by

considering the full length of the planning horizon. From a computational point of view, however, we are better off by

defining the set of jobs to be processed on machine k as Jk = { j | y jk = 1}, setting the last period of processing on machine

k – designated by Hk – as appropriate based on (5), and then solving a restricted version of (TRk) over these jobs and

time periods only. This restricted cut generation subproblem formulation and the corresponding dual slave problem are

referred to as (TRk − R) and (DSk − R), respectively. Obviously, the optimal solution of (TRk − R) may be extended to an

optimal solution of (TRk) trivially by setting x jkt = 0 for j ∈ Jk, t = Hk + 1, . . . ,H, and j < Jk, t = 1, . . . ,H. The relationship

between the optimal solutions of (DSk) and (DSk − R) and its implications for the dynamic generation of the constraints

(21) require a deeper discussion which is relegated to the next section.

In the multi-cut restricted master problem formulation (RMP) above, we approximate the objective function of (TR −A)

by estimating the cost accumulated on each machine separately as evident from the set of constraints (21). Alternatively,

we could have employed a weaker single-cut version of the restricted master problem by aggregating all m cuts generated

after solving (TRk), k = 1, . . . ,m, and replacing
∑m

k=1 ηk by a single variable η in the formulation as appropriate. The

single-cut version results in fast solution times for the restricted master problem at the expense of more iterations overall.

Ultimately, the trade-off between these two alternatives is only decided during the computations. In our preliminary
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testing, the cut generation algorithm based on (RMP) was clearly superior to that based on the single-cut version in terms

of speed. Thus, the rest of the paper is focused exclusively on (RMP). The pseudo-code of the cut generation procedure

is stated in Algorithm 1 in Online Supplement I.

4.1 Validity and Strengthening of the Benders Cuts The validity of Benders decomposition (Benders, 1962) de-

rives from the independence of the feasible region of the dual slave problem from the values of the integer vari-

ables. For a mixed integer programming problem of the form minimize
{

gx + hy : Gx +Hy ≥ b, x ∈ R+, y ∈ Z+
}

,

where all matrices and vectors have appropriate dimensions, the dual slave problem for a given y is stated as

maximize
{

wT(b −Hy) : wTG ≤ g, w ∈ R+
}

, where w is the vector of dual variables of appropriate size. In other words,

the dual slave problem is always solved over the same dual polyhedron
{

wTG ≤ g, w ∈ R+
}

, and only the objective func-

tion depends on the values of the integer variables. As a consequence, the maximum number of cuts to be generated is

bounded from above by the number of extreme points of the dual polyhedron. These issues need a closer look, however,

if we opt for solving (TRk − R) instead of (TRk) because this amounts to solving the dual slave problem over different

feasible regions every time and contradicts the basic pillar of Benders decomposition. Observe that a cut of the form

ηk ≥
∑

j∈Jk

p jku jky jk +

Hk
∑

t=1

vkt (23)

produced directly out of an optimal solution of (DSk − R) relies on the assumption that augmenting this solution trivially

with u jk = 0 for j < Jk and vkt = 0 for t = Hk+1, . . . ,H, is feasible with respect to (DSk). It is a simple matter to show that as

long as the optimal solution of (DSk − R) satisfies maxt=1,...,Hk
vkt = 0 (see Lemma 4.1), this augmented solution is feasible

with respect to (DSk) if we are solving an instance of Rm-TWT because the cost coefficients c′
jkt

are non-negative and

non-decreasing over time. However, the trivial augmentation is not necessarily feasible for every instance of Rm-TWET,

and (23) might therefore be an invalid Benders cut. To illustrate, consider an instance of Rm-TWET and assume that for

some assignment y of the jobs to the machines we solve (TRk − R) with Hk ≤ d j−1, where j < Jk and p jk > 1. In the trivially

augmented solution for (DSk), constraint (17) for job j and time period d j is violated because c′
jkd j
=
ǫ j

p jk

(

1
2 −

p jk

2

)

< 0 for

ǫ j > 0 and p jk > 1, and u jk + vkd j
= 0 + 0 ≤ c′

jkd j
does not hold. Therefore, we need a mechanism which can always extend

an optimal solution of (DSk − R) to an optimal solution of (DSk). Proposition 4.1 proves that the cut strengthening

procedure described next fulfills this goal. This ensures that the dual slave problem is always solved over the same

feasible region and the generated Benders cuts are valid.

Several papers in the literature report that a straightforward implementation of Benders decomposition yields a dismal

performance from a computational point of view (Fischetti et al., 2010, Magnanti and Wong, 1981, Üster and Agrahari,

2011, Van Roy, 1986, Wentges, 1996). This is often rooted in the primal degeneracy in the cut generation subproblem

which implies the existence of multiple optimal solutions to the dual slave problem. That is, possibly several alternate

cuts may be generated based on the same master problem solution, and the particular choice has a profound impact on

the computational performance. These concerns are also valid for us because the transportation problem suffers from

a well-known primal degeneracy. To address these issues, we initially adapted the generic Benders cut strengthening

method introduced recently by Fischetti et al. (2010) to our problem. These authors argue that identifying a small set

of constraints in the subproblem that allows us to cut the current master solution is of practical interest to enhance the

computational performance. To this end, they pose the cut generation subproblem as a pure feasibility problem and

look for a minimal infeasible subsystem of small cardinality. However, applying this technique to our problem does not

preserve the transportation problem structure in the cut generation subproblems. This results in substantially prolonged

subproblem solution times with ultimately uncompetitive overall performance for Benders decomposition. Instead, here

we follow an approach that is similar to those of Üster and Agrahari (2011), Van Roy (1986) to strengthen our Benders

cuts, which also resolves the issue pointed out in the previous paragraph regarding the validity of the cuts constructed

based on an optimal solution of (DSk − R). We reap great savings in solution time from this enhancement. In fact, our
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algorithm exhibits very poor convergence without this cut strengthening.

The key to showing the validity of our cut generation as well as strengthening the Benders cuts is to prove that we can

always augment an optimal solution of (DSk − R) to obtain a feasible solution of (DSk) with the same objective function

value. This would establish that the augmented solution is optimal for (DSk) because y jk = 0 for all j < Jk and vkt ≤ 0 for

all t = Hk + 1, . . . ,H (see Proposition 4.1). Compared to (21), the benefit is that we can produce a strengthened Benders

cut of the form

ηk ≥

n
∑

j=1

p jku′′jky jk +

H
∑

t=1

v′′kt (24)

from an optimal solution (u′′
k
,v′′

k
) of (DSk) so that u′′

jk
, 0 for j < Jk in general. We first need the following result to attain

our goal. The formal proof is in Online Supplement H.2.

Lemma 4.1 There exists an optimal solution (u′
k
,v′

k
) to (DSk − R) such that maxt=1,...,Hk

v′
kt
= 0.

Assume that we are given an optimal solution (u′
k
,v′

k
) of (DSk − R) which satisfies the property in Lemma 4.1 and a

corresponding Benders cut of the form (23). Clearly, we can always extend the planning horizon in (DSk − R) to 1, . . . ,H,

and augment this optimal solution with zeros as necessary and still preserve the optimality. Therefore, without loss of

generality assume that an augmented optimal solution (u′
k
,v′′

k
) is available to (DSk − R), where v′′

kt
= v′

kt
for t = 1, . . . ,Hk,

and v′′
kt
= 0 for t = Hk + 1, . . . ,H. Based on this augmented optimal solution, we next explain how an original Benders cut

of the form (23) is strengthened, and then prove that this strengthened cut corresponds to an optimal solution of (DSk)

and is therefore valid.

The variables u jk, j < Jk, do not appear in (DSk − R) and are implicitly assumed to be zero. Consequently, no term

appears on the right hand side of a Benders cut (23) for the jobs that are assigned to other machines in the current

restricted master solution y. However, y jk = 0 for all such jobs j < Jk, and we can produce a stronger cut by incorporating

y jk, j < Jk, into the right hand side of (23) with positive coefficients p jku′′
jk
, j < Jk, if possible. In order to compute a good

set of values u′′
jk
, j < Jk, we solve the following optimization problem for a given augmented optimal solution (u′

k
,v′′

k
) of

(DSk − R):

maximize
∑

j<Jk

p jku jk (25)

subject to u jk ≤ c′jkt − v′′kt, j < Jk, t = 1, . . . ,H. (26)

The constraints (26) are required to establish that the coefficients of the strengthened cut correspond to an optimal solution

of (DSk) – see Proposition 4.1. Clearly, (25)-(26) decomposes by job, and the optimal solution is determined as:

u′′jk = min

{

min
t=1,...,Hk

(c′jkt − v′′kt), min
t=Hk+1,...,H

c′jkt

}

, j < Jk. (27)

For an instance of Rm-TWT, the cost coefficients c′
jkt

are non-decreasing over t = 1, . . . ,H. In addition, we have

maxt=1,...,Hk
v′′

kt
= 0. Then,

min
t=1,...,Hk

(c′jkt − v′′kt) ≤ max
t=1,...,Hk

c′jkt ≤ min
t=Hk+1,...,H

c′jkt. (28)

Consequently, (27) simplifies to

u′′jk = min
t=1,...,Hk

(c′jkt − v′′kt), j < Jk, (29)

for Rm-TWT.

For Rm-TWET, we have to differentiate between two cases because the cost coefficients c′
jkt
, 1, . . . ,H, are not non-

decreasing over time:

u′′jk =



























min

(

min
t=1,...,Hk

(c′
jkt
− v′′

kt
), c′

jkHk+1

)

if Hk ≥ d j

min

(

min
t=1,...,Hk

(c′
jkt
− v′′

kt
), c′

jkd j

)

if Hk ≤ d j − 1



























, j < Jk. (30)
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Thus, the strengthened cut finally takes the form specified in (24), where u′′
jk
= u′

jk
for j ∈ Jk and u′′

jk
, j < Jk, is calculated

based on either (29) or (30), respectively, depending on whether we solve an instance of Rm-TWT or Rm-TWET. We next

prove that this augmented solution (u′′
k
,v′′

k
) is optimal for (DSk).

Proposition 4.1 The dual variables (u′′
k
,v′′

k
), which produce a strengthened Benders cut (24), are optimal with respect to (DSk).

Proof. Recall that (u′′
k
,v′′

k
) is constructed by augmenting an optimal solution (u′

k
,v′

k
) of (DSk − R) which satisfies the

property in Lemma 4.1. Therefore, u′′
jk
+ v′′

kt
≤ c′

jkt
, j ∈ Jk, t = 1, . . . ,Hk, and v′′

kt
≤ 0, t = 1, . . . ,Hk, hold automatically. In

addition, v′′
kt
, t = Hk + 1, . . . ,H, are set directly to zero. Therefore, we only need to verify that u′′

jk
+ v′′

kt
≤ c′

jkt
, j ∈ Jk, t =

Hk + 1, . . . ,H, and u′′
jk
+ v′′

kt
≤ c′

jkt
, j < Jk, t = 1, . . . ,H, to show the feasibility of (u′′

k
,v′′

k
) for (DSk). The latter inequalities are

enforced directly by the constraints (26). For the former, note that for any job j ∈ Jk the end of the planning horizon Hk is

larger than d j in both Rm-TWT and Rm-TWET. Then, by a similar argument that leads to (28), u′′
jk
≤ maxt′=1,...,Hk

c′
jkt′

and

we obtain u′′
jk
+ v′′

kt
= u′′

jk
≤ maxt′=1,...,Hk

c′
jkt′
≤ c′

jkt
for all time periods t = Hk + 1, . . . ,H, as desired.

The optimal objective function value of (DSk) is bounded from above by that of (DSk − R) because all constraints of

(DSk − R) are present in (17)-(18), y jk = 0 for j < Jk, and
∑H

t=Hk+1 vkt ≤ 0. This completes the proof since the objective

function value associated with (u′′
k
,v′′

k
) in (DSk) is clearly identical to that associated with the optimal solution (u′

k
,v′

k
) in

(DSk − R). �

The pseudo-code of our Benders decomposition scheme with the cut strengthening feature for solving (TR −A) is

stated in Algorithms 1-2 in Online Supplement I, and Proposition 4.1 proves its correctness. The cut strengthening

specified by the Steps 3-6 in Algorithm 2 has a pseudo-polynomial time complexity of O(nH) with an overall complexity

of O(mnH) for m machines. In practice, it is very fast.

In classical textbook applications of Benders decomposition, the current restricted master problem is solved to opti-

mality and then cuts generated based on this optimal solution are added to it before the restricted master problem is

re-optimized. This loop is repeated until the optimality gap of (RMP) – the expression
z(y)−

∑m
k=1 ηk

∑m
k=1 ηk

– is smaller than a

prespecified tolerance level, where the current optimal objective
∑m

k=1 ηk of (RMP) is a lower bound on that of (TR −A)

and z(y) is the objective value of a feasible solution of (TR −A). The primary drawback of this classical scheme is

that a new search tree is constructed every time the restricted master problem is solved (Rubin, 2011). Consequently,

valuable time may be expended toward re-evaluating the same nodes over and over again. In contrast, using the lazy

constraint technology offered by the state-of-the-art solvers allows us to execute the entire algorithm on a single search

tree (IBM ILOG CPLEX, 2011). In Step 11 of Algorithm 1, we invoke the lazy constraint callback routine for every candidate

incumbent solution. The callback routine either identifies a missing Benders cut violated by the candidate solution and

introduces it as a lazy constraint into the model or certifies the candidate as valid. Ultimately, no integer solution is

evaluated multiple times during the course of the algorithm. Moreover, labeling the generated cuts as lazy informs the

solver that most of such constraints are not expected to be active at the optimal solution. Thus, we fully exploit the

capabilities of the solver and allow it to apply the generated cuts as it deems necessary. The use of the lazy constraint

technology appears to be relatively rare in the operations research literature, and we hope that it will be employed more

frequently in the future given that it may unleash the power of a cut generation algorithm which seems impractical

otherwise.

5. Computational Results Outstanding among the accomplishments of this research is that both Rm-TWT with

a regular scheduling objective (see Section 5.1) and Rm-TWET with a non-regular scheduling objective (see Online

Supplement J.2) are tackled successfully by the exact same solution approach. For both problems, the overarching goal

of our computational study is to demonstrate that the proposed Benders-type method solves the preemptive relaxation

(TR −A) to (near-) optimality in short computation times and provides tight lower bounds as well as high quality job

partitions for the original problems. Very large instances of both problems are within the reach of our algorithm; however,
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we concede that the performance is somewhat better for Rm-TWT than for Rm-TWET.

The size of an instance is determined by the parameters m and n′ so that the number of jobs is set to n = mn′. For each

job j ∈ {1, . . . ,n}, the processing time p1 j on the first machine is randomly drawn from the discrete uniform distribution

U
[

pmin, pmax
]

. The processing times pkj for k ∈ {2, . . . ,m} are then created as max
(

1,
⌊

U [1 − θ, 1 + θ] p1 j

⌋)

. The earliness

weight per unit time ǫ j is generated from a discrete uniform distribution U [ǫmin, ǫmax], and the corresponding unit

tardiness weight is computed as
⌈

U
[

α, β
]

ǫ j

⌉

. For Rm-TWT, all unit earliness weights are then set to zero. We generate

the due dates by following a popular scheme in the literature (Liaw et al., 2003, Lin et al., 2011, Shim and Kim, 2007a).

The integral due date d j of job j is calculated as
⌊

U
[

P
(

1 − TF − RDD
2

)+
,P

(

1 − TF + RDD
2

)

]⌋

, where the tardiness factor TF

controls the tightness of the due dates and the due date range factor RDD determines their spread. P =
∑

j

∑

k pkj

m2 may be

considered as the average load per machine. The parameters of the instance generation procedure are summarized in

Table 1.

Table 1 Instance generation parameters.

m n′
[

pmin, pmax
]

θ [ǫmin, ǫmax]
[

α, β
]

TF RDD

{2, 3, 4, 5} {20, 30, 40} [25, 100] 0.25 [1, 10] [1.5, 3.0] {0.4, 0.6, 0.8, 1.0} {0.2, 0.4, 0.6}

There are 12 combinations of the TF, RDD values and for each combination, 5 instances are generated. Therefore, we

create 60 instances for each pair of m, n′ values and a total of 720 instance pairs. The instances in a pair are identical,

except that ǫ j = 0, j = 1, . . . ,n, in the Rm-TWT instance. This data generation scheme allows us to draw clear conclusions

about the relative difficulty of Rm-TWET with respect to Rm-TWT. As pointed out by Kedad-Sidhoum et al. (2008), the

motivation for the relatively large TF and small RDD values is that in most practical production environments the due

dates are not loose and not distant from each other. The rationale behind the selected
[

α, β
]

values reflects that the

earliness cost is typically regarded as a finished goods inventory holding cost and should be less than the cost of loss of

customer goodwill or a contractual penalty represented by the tardiness cost.

The computational results are obtained on a personal computer with a 3.80 GHz Intel Core i7 920 CPU with Hyper-

Threading enabled and 24 GB of memory running on Windows 7. Algorithms 1-2, which are collectively referred to

as (TR −A) - BDS in this section, were implemented in C++ using the Concert Technology component library of IBM

ILOG CPLEX 12.4. The cut generation procedure in Algorithm 2 is parallelized through the Boost 1.51 library. More

specifically, when a new integer feasible solution is identified in the search tree for (RMP), m threads are constructed

in the lazy constraint callback routine to solve (TRk), k = 1, . . . ,m, in parallel. Note that in the presence of a control

callback – such as the lazy constraint callback in (TR −A) - BDS – CPLEX applies a traditional branch-and-cut strategy by

switching off its dynamic search feature and operates in an opportunistic parallel search mode. Following the termination

of (TR −A) - BDS, we call the SiPS/SiPSi libraries (Tanaka and Fujikuma, 2012, Tanaka et al., 2009) to solve m single

machine problems for each job partition present in the final “solution pool” of CPLEX and obtain feasible solutions for

Rm-TWT and Rm-TWET. Note that the current CPLEX engine generates and keeps multiple feasible solutions in addition

to the optimal solution in a solution pool to help the user choose one that may fit criteria not represented explicitly in

the current model solved (IBM ILOG CPLEX, 2011). Furthermore, to promote the quality of the job partitions, the switch

MIPEmphasis in (TR −A) - BDS is set to 4 in order to urge CPLEX “to apply considerable additional effort toward finding

high quality feasible solutions that are difficult to locate” (IBM ILOG CPLEX, 2011).

To justify the use of the proposed Benders-type approach to solve (TR −A), we benchmark it against (TR −A) - CPX,

where the monolithic formulation (TR −A) is solved directly by invoking CPLEX. In this case, we let CPLEX decide whether

to apply its dynamic search by running it with the default parameter settings, except that the opportunistic parallel search

mode is turned on for a head-to-head comparison with (TR −A) - BDS. The relative gap tolerance parameter EpGap of

http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/
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CPLEX is set to 3% while solving (TR −A) by either (TR −A) - CPX or (TR −A) - BDS. In addition, to illustrate the value

of our approach in the absence of scalable alternate solution approaches for Rm-TWT and Rm-TWET in the literature and

be able to provide more accurate optimality gaps for our lower and upper bounds, we also solve a time-indexed integer

programming formulation for Rm-TWT and Rm-TWET via CPLEX under the default parameter settings. This formulation

is referred to as (TI) in the sequel and obtained from that in Kedad-Sidhoum et al. (2008) in a straightforward way

by augmenting the time-indexed variables with a machine index and imposing a machine capacity constraint for each

combination of machine and time period so that no more than one job is in process at any time instant on any machine. The

best lower bound retrieved from (TI) at termination provides an alternate lower bound for the original non-preemptive

problems, and the best available objective value at termination provides us with a benchmark for the non-preemptive

solutions we construct for Rm-TWT and Rm-TWET.

All formulations are solved within the same working memory limit of 15 GB (WorkMem=15,000). However, the memory

footprint of (TR −A) - BDS does not exceed a few gigabytes even for the largest instances with 200 jobs and 5 machines.

The maximum number of threads that CPLEX is allowed to use – governed by the parameter Threads – is seven for all

methods. The time limit parameter TiLim takes on the values 1800, 1800 and 600 seconds for (TI), (TR −A) - CPX, and

(TR −A) - BDS, respectively.

The next section reports the results obtained for Rm-TWT, and the results for Rm-TWET are relegated to Online

Supplement J.2. For ease of perusal, all tables employ a color formatting scheme so that the values of a performance

indicator ranging from better to worse are indicated with colors changing from green towards red.

5.1 Results for Rm-TWT Table 2 consists of 12 parts, one for each possible combination of n and m listed in the first

two columns. We report three types of percentage gaps in the table, labeled as “(TR −A) - BDS”, “LB Quality”, and

“Feasible Sol’n” in Columns 4–12. The average times needed to solve the preemptive relaxation (TR −A) to within 3%

of optimality by (TR −A) - CPX and (TR −A) - BDS are presented in Columns 13–18. The color formatting is applied

to these two sets of columns together to facilitate a head-to-head comparison. For each performance indicator, detailed

results for each possible combination of TF and RDD values are included. The TF values appear in the third column, and

the RDD values are specified in the column headers. All gaps larger than 100% are set to 100%, and the gap of a feasible

solution with a positive objective function value with respect to a lower bound of zero is assumed to be 100%. Each value

in the table represents an average over five instances based on our data generation scheme discussed previously.

The optimality gaps depicted in Columns 4–6 are retrieved from CPLEX at the termination of (TR −A) - BDS, where

CPLEX computes the optimality gap by taking the ratio of the best available lower bound to the objective value associated

with the best integer solution at termination and then subtracting this ratio from 1. These results indicate that (TR −A) -

BDS is able to solve the preemptive relaxation to the targeted precision of 3%. More specifically, (TR −A) - BDS

terminates due to the time limit of 600 seconds for only 22 instances out of a total of 720. The corresponding number for

(TR −A) - CPX is 47 with a time limit of 1800 seconds. The average (& median) gaps of (TR −A) - BDS and (TR −A) - CPX

for those instances that could not be solved within the specified time limits are 7.22% (& 4.05%) and 74.14% (& 100%),

respectively. Therefore, we conclude that the use of our Benders-type method for solving (TR −A) is well-justified.

The next three columns under “LB Quality” attest to the quality of the lower bound (LB) provided by (TR −A) - BDS

for the optimal objective value of Rm-TWT. For a given instance, the expression
(‘‘Best Integer’’−‘‘LB’’)

(‘‘Best Bound’’) provides an upper

bound on the gap of LB, where ‘‘Best Integer’’ and ‘‘Best Bound’’ are the objective function values associated with

the best feasible solution available – retrieved from either our approach or (TI) – and the best lower bound provided by

any one of the methods (TR −A) - CPX, (TR −A) - BDS, or (TI), respectively. For any n, m combination, the average LB

gap summarized across all TF and RDD values does not exceed 8.15%, and the average LB gap across all instances is just

5.64%. In fact, only 8% of the instances (58 instances) have an LB gap larger than 10%.

The following three columns under “Feasible Sol’n” present the average upper bounds on the optimality gaps attained
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Table 2 Results for Rm-TWT.

TF

RDD Percentage Gaps (TR −A) - Solution Times

(TR −A) - BDS LB Quality Feasible Sol’n CPX BDS

n m 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

40 2

0.4 1.3 1.6 0.5 3.0 7.5 13.2 1.6 4.5 6.3 2 3 10 2 2 3

0.6 2.0 2.2 2.2 2.8 3.5 6.4 1.0 1.8 2.2 4 3 4 2 2 3

0.8 2.5 2.6 2.4 2.8 3.6 3.7 0.8 0.6 0.6 6 5 5 1 1 3

1.0 2.4 2.1 2.2 2.3 2.4 2.3 0.5 0.5 0.8 6 6 5 1 1 1

60

2

0.4 2.2 1.8 1.6 3.5 5.3 9.5 0.9 2.0 5.0 8 7 11 5 7 10

0.6 2.4 2.4 2.6 3.3 4.4 5.7 0.9 1.3 1.7 15 12 11 5 7 18

0.8 2.7 1.7 2.5 3.1 2.7 4.4 1.2 0.6 1.2 21 19 17 3 6 9

1.0 2.2 2.8 2.8 1.9 2.2 2.5 0.6 1.2 1.0 24 25 24 2 2 2

3

0.4 2.4 2.1 1.4 5.0 9.3 42.9 1.9 3.6 36.8 20 60 215 2 4 4

0.6 2.7 2.7 2.8 3.8 5.0 8.7 1.5 1.7 3.0 32 30 36 1 2 12

0.8 2.8 2.8 2.6 3.1 4.3 4.8 1.4 0.9 0.9 40 40 36 1 2 3

1.0 2.6 2.5 2.5 2.2 2.6 3.2 0.8 0.6 0.8 41 44 41 1 1 1

80

2

0.4 2.0 2.2 2.0 3.0 5.0 11.6 1.1 2.0 6.8 15 12 44 8 17 20

0.6 2.2 1.4 2.6 2.9 2.8 4.2 1.0 1.1 0.9 33 27 30 10 21 36

0.8 2.9 2.3 2.7 3.3 3.0 4.3 1.5 0.7 1.1 52 56 44 3 9 10

1.0 2.2 2.4 2.3 1.6 2.7 2.7 1.1 0.4 0.6 69 63 59 3 6 7

4

0.4 2.7 2.6 1.2 6.8 10.4 38.0 3.7 5.0 36.6 42 295 1716 5 7 11

0.6 2.7 2.5 3.8 4.2 5.5 10.1 1.6 2.1 4.2 79 73 484 2 7 462

0.8 2.8 2.4 2.9 3.6 4.3 5.9 1.1 0.7 1.0 111 104 98 1 6 11

1.0 2.5 2.8 2.8 2.2 3.1 3.7 0.7 1.1 0.7 118 112 121 1 1 2

90 3

0.4 2.2 2.2 0.9 3.8 7.3 26.9 1.6 3.5 21.2 34 112 1030 5 11 28

0.6 2.6 2.8 2.9 3.3 4.3 6.3 1.2 1.4 2.1 93 87 93 2 5 24

0.8 2.6 2.5 2.6 3.3 3.8 4.5 1.1 0.9 1.2 122 121 117 2 3 5

1.0 2.6 2.4 2.4 2.1 3.0 3.2 1.2 0.8 1.0 148 142 138 2 2 2

100 5

0.4 2.7 2.7 2.8 7.3 13.7 20.0 6.2 13.3 20.0 104 1119 1800 6 13 125

0.6 2.7 2.8 5.9 4.2 5.7 12.8 2.9 4.6 9.3 149 168 883 4 15 601

0.8 2.6 2.8 3.1 3.7 4.9 6.5 2.3 3.5 4.9 235 182 242 2 15 308

1.0 2.5 2.5 2.8 2.8 3.3 4.3 1.4 1.9 2.7 253 233 235 2 2 3

120

3

0.4 2.5 1.9 1.1 3.7 6.5 42.5 2.3 5.8 42.5 48 66 1367 7 20 109

0.6 2.2 2.6 2.4 2.9 4.2 5.6 1.6 2.9 4.6 205 172 162 4 8 49

0.8 2.6 2.9 2.7 3.0 4.0 4.5 1.5 2.3 2.8 262 254 221 4 5 8

1.0 2.8 2.3 2.6 3.0 2.7 3.3 1.1 1.3 1.4 338 344 303 3 4 6

4

0.4 2.2 2.9 10.8 4.1 9.1 20.0 3.0 7.9 20.0 96 516 1816 13 18 135

0.6 2.7 2.6 3.1 3.6 4.4 7.4 2.4 2.8 5.9 205 209 327 4 18 225

0.8 2.5 2.5 2.9 3.2 4.1 5.0 1.9 2.6 3.2 316 315 287 3 6 16

1.0 2.7 2.7 2.7 3.0 3.2 3.7 1.4 1.6 2.3 346 326 291 2 3 3

150 5

0.4 2.5 2.9 0.0 5.2 10.0 0.0 4.0 9.0 0.0 216 1356 1527 19 35 18

0.6 2.7 2.7 3.8 3.7 4.6 8.8 2.1 3.3 6.6 380 379 804 5 39 415

0.8 2.6 2.7 2.9 3.3 4.3 5.5 1.8 2.8 4.1 683 646 600 4 11 48

1.0 1.3 2.5 2.4 1.6 3.1 3.5 0.8 1.7 2.3 752 713 653 5 4 4

Continued on next page. . .
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Table 2 continued. . .

TF

RDD Percentage Gaps (TR −A) - Solution Times

(TR −A) - BDS LB Quality Feasible Sol’n CPX BDS

n m 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

160 4

0.4 2.8 2.8 0.0 4.5 9.2 0.0 3.1 7.9 0.0 143 451 1361 9 40 29

0.6 2.7 2.9 2.9 3.3 4.2 6.4 1.6 2.7 4.8 429 302 704 6 11 176

0.8 2.6 2.2 2.6 3.1 3.3 4.3 1.6 2.2 2.8 713 742 668 5 9 12

1.0 2.0 2.0 2.6 2.2 2.4 3.3 0.9 1.1 1.8 934 836 851 5 6 6

200 5

0.4 2.5 3.4 0.0 4.5 12.3 0.0 3.3 10.8 0.0 345 1476 793 24 324 35

0.6 2.5 2.8 3.9 3.2 4.5 7.9 1.7 2.7 5.4 964 752 1327 11 33 510

0.8 2.6 2.7 2.7 3.1 3.9 4.6 1.9 2.2 3.0 1720 1708 1440 7 29 36

1.0 2.4 2.0 2.3 2.7 2.4 3.1 2.5 1.8 2.1 1803 1771 1719 7 9 9

by our non-preemptive feasible solutions. For a given feasible solution, an upper bound on the optimality gap is calculated

as
(‘‘OFV’’−‘‘Best Bound’’)

(‘‘Best Bound’’) , where ‘‘OFV’’ is the objective function value of the feasible solution. We do not include detailed

results about (TI) but note that the incumbent from (TI) is hardly competitive with the best feasible solution obtained

from (TR −A) - BDS, except for the 40-job instances. Moreover, even the LP relaxation of (TI) is not solved within half

an hour for instances with 100 or more jobs. The average (& median) optimality gaps over all instances solved are 3.55%

(& 1.73%) and 30.28% (& 10.20%) for (TR −A) - BDS and (TI), respectively. Perhaps more importantly, the proposed

approach delivers a robust performance and scales to very large instances. With the exception of a little over 4% of the

instances (31 out of 720), the optimality gap is always below 10%. The corresponding number for (TI) is 50% (181 out of

360).

The relatively higher gaps under “LB Quality” and “Feasible Sol’n” in Table 2 for TF= 0.4 stem from the small objective

function values associated with loose due dates. Even small errors result in large percentage gaps in this case. Note

that the objective function value of an instance with TF = 0.6, 0.8, and 1.0 is on average 7.5, 25.1, and 45.9 times larger,

respectively, compared to that of an instance with TF = 0.4. A second contributing factor here is the growing size of (TI)

with looser due dates. Frequently, even the LP relaxation is not solved within the allotted time for such instances, and

this results in smaller “Best Bound” values in general. In other words, the actual performance for TF = 0.4 is probably

better than what it appears to be.

The robustness of the quality of the feasible solutions obtained from our Benders-type approach is further illustrated in

Figures 1a–1b. The empirical distributions of the optimality gaps of the feasible solutions associated with (TR −A) - BDS

are plotted in these figures. The horizontal axes are in logarithmic scale to increase the readability of the graph. Note

that the median percentage gap for each curve corresponds to the 50% mark on the vertical axis, and the average gaps

are explicitly indicated. The curves are clustered and rise steeply. That is, the quality of the partitions retrieved from

(TR −A) - BDS is not particularly sensitive to the increasing number of jobs n′ per machine.

The solution time performance of (TR −A) - BDS is overwhelmingly superior to that of (TR −A) - CPX. Based on

the instances that are solved by both methods within the time limit, the ratio of the solution time of (TR −A) - CPX to

that of (TR −A) - BDS is 46.7 on average. Out of a total of 720 instances, only 35 of them take slightly more time to

solve for (TR −A) - BDS compared to (TR −A) - CPX. For both methods, instances with loose average due dates within

a relatively wide range are more problematic. However, tightening the due dates does also hurt the performance of

(TR −A) - CPX while it benefits that of (TR −A) - BDS. A detailed analysis of the empirical distributions of the solution

times of (TR −A) - BDS and (TR −A) - CPX is available in Online Supplement J.1.

Recall that we call the SiPS/SiPSi libraries (Tanaka and Fujikuma, 2012, Tanaka et al., 2009) to solve m single machine

problems for each job partition present in the final solution pool of CPLEX and obtain feasible solutions for Rm-TWT

http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/
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Figure 1 The empirical distributions of the optimality gaps of the upper bounds by (TR −A) - BDS for Rm-TWT.

and Rm-TWET following the termination of (TR −A) - BDS. We do not report detailed results for the sake of brevity,

but our use of an optimal algorithm to solve the single machine problems for a given job partition is well-justified.

Even for the five machine and 200 job instances, it takes an average of 2.31 seconds and no more than 6.96 seconds to

solve all single machine problems to optimality by the SiPS/SiPSi solver for all job partitions identified. This solver is

extremely fast; the time expended for a 40-job single machine instance is about 30 milliseconds. We emphasize that the

best solution of the preemptive relaxation does not necessarily produce the best non-preemptive solution for the original

problem. Therefore, the ability of locating many high-quality job partitions in the search tree is a critical advantage of

(TR −A) - BDS, which identifies on average 4.7 times more job partitions per instance compared to (TR −A) - CPX.

This characteristic may also prove useful in order to jump start a population based heuristic following the completion of

(TR −A) - BDS. In summary, coupled with its demonstrated ability to construct high-quality lower and upper bounds

for the original problem, the outstanding total solution time performance of our approach makes it a viable alternative

for tackling very large instances of Rm-TWT successfully.

We conclude this section with a brief discussion on the time-indexed formulation (TI). The main purpose of solving

(TI) in this paper is to incorporate the objective function value of the incumbent solution and the best lower bound

available at termination into the ‘‘Best Integer’’ and ‘‘Best Bound’’ values, respectively, so that we quantify the

gaps of our lower and upper bounds as accurately as possible. Otherwise, solving (TI) is not a scalable solution approach

for Rm-TWT as we discussed previously in this section. In addition, the LP relaxation of (TI) does also suffer from the

same scalability issue as a lower bounding method. We provide further specifics and settle this issue below.

On the one hand, the LP relaxations of time-indexed formulations are strong and provide very tight bounds. On

the other hand, however, the size of a time-indexed formulation grows with the length of the planning horizon and is

therefore pseudo-polynomial. From a computational perspective, the solution effort expended increases rapidly with

longer processing times, and CPLEX cannot solve the LP relaxation of (TI) or find any feasible solution within the time

limit of 1,800 seconds for the Rm-TWT (and Rm-TWET) instances with greater than 90 jobs. For the sake of completeness,

we benchmarked the lower bound produced by (TR −A) - BDS against the optimal objective function value of the LP

http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/
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relaxation of (TI). These two lower bounds do not dominate each other. There are instances in which the objective

value of the LP relaxation of (TI) is larger than that of (TR −A) and vice versa. The best lower bound retrieved from

(TR −A) - BDS at termination is on average 97.04% of the optimal objective value of the LP relaxation of (TI), computed

over 360 Rm-TWT instances with n ≤ 90. The corresponding figure for the Rm-TWET instances is 94.29%. Furthermore,

recall that (TR −A) - BDS terminates with a 3% relative optimality gap. Therefore, it is fair to state that the lower bounds

provided by (TR −A) - BDS and the LP relaxation of (TI) are of comparable quality. Ultimately, (TR −A) - BDS is the

clear choice as a lower bounding technique given its superior computational time performance and the high quality of

the non-preemptive schedules based on the solution of (TR −A) - BDS.

6. Conclusions and Future Research In this paper, we developed a new preemptive relaxation for unrelated parallel

machine scheduling problems with weighted tardiness and weighted earliness/tardiness objectives. The key property of

this relaxation is that it provides us with a tight lower bound and a set of high-quality job partitions that forms the basis

for the near-optimal non-preemptive solutions for the original problem. The relaxation itself is formulated as a difficult

mixed integer linear program, and a computationally effective Benders decomposition algorithm that can handle very

large instances of this formulation is a primary contribution of this paper. Our implementation employs state-of-the-

art computational features, such as the lazy constraint callback of IBM ILOG CPLEX (2011) and a parallelization of the

Benders subproblems via the Boost 1.51 library. Ultimately, we characterize our approach as a simple, non-parametric,

and easy to implement mathematical programming based heuristic with a further distinguishing property that it can

handle both a regular and a non-regular scheduling objective successfully with no additional customization. The results

for Rm-TWT are outstanding. While those for Rm-TWET are not on a par, we reckon that they are of high quality.

Initially, we also experimented with the identical parallel machine scheduling problems Pm//
∑

j π jT j and

Pm//
∑

j π jT j + ǫ jE j. However, the symmetry inherent in these problems results in many similar cuts and causes

(TR −A) - BDS to choke. One of the items in our future research agenda is exploring ways of enhancing our algorithm

to be able to handle the identical parallel machine environment.

A further goal is to embed (TR −A) - BDS into an optimal algorithm for Rm-TWT and Rm-TWET. Note that the

proposed preemptive relaxation can naturally handle branching decisions on the job to machine assignments.

Acknowledgments. We are grateful for the invaluable comments of the anonymous referees that helped us improve

the paper.
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Bülbül, Kerem, Philip Kaminsky, Candace Yano. 2007. Preemption in single machine earliness/tardiness scheduling. J Sched 10 271–292.

Chen, Zhi-Long, Chung-Yee Lee. 2002. Parallel machine scheduling with a common due window. Eur J Oper Res 136 512–527.

Chen, Zhi-Long, Warren B. Powell. 1999a. A column generation based decomposition algorithm for a parallel machine just-in-time

scheduling problem. Eur J Oper Res 116 220–232.

Chen, Zhi-Long, Warren B. Powell. 1999b. Solving parallel machine scheduling problems by column generation. INFORMS J Comput
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Appendix G. Online Supplement – Review of Related Literature

G.1 Tardiness Heuristics for Identical Parallel Machines Many of the heuristics developed for tardiness objectives

on identical parallel machines apply list scheduling based on some priority index and sometimes enhance the initial

schedule by local search. Yalaoui and Chu (2002) review several heuristics of this kind. An interesting deviation from the

mainstream here is the decomposition heuristic by Koulamas (1997). The author heuristically extends the well-known

decomposition principle valid for 1//
∑

T j to the problem Pm//
∑

T j with very good results. At each iteration, the position

of one job in the overall schedule is fixed, where the subproblems in the decomposition are solved by a fast and effective

heuristic for Pm//
∑

T j that observes the decomposition principle for the individual machine schedules. Furthermore,

a hybrid simulated annealing heuristic is devised which is outperformed by the decomposition heuristic based on the

solution quality and time trade-off. The results for 100-job instances indicate that the proposed heuristics are on average

about 10-11% away from optimality with respect to a lower bound. A recent list scheduling heuristic by Biskup et al.

(2008) for Pm//
∑

T j yields somewhat better results than those of Koulamas for large instances with up to 5 machines

and 200 jobs. An absolute assessment of the solution quality is not available due to the lack of a good lower bound

or a scalable exact method. For the weighted version, i.e., the problem Pm//
∑

π jT j, Armentano and Yamashita (2000)

design a tabu search heuristic. For evaluation purposes, they benchmark their feasible solutions against the Lagrangian

relaxation based lower bound by Luh et al. (1990). This lower bound is obtained by dualizing the machine capacity

constraints in an integer programming formulation of the problem, similar to that by Tanaka and Araki (2008) discussed

in the main text. In the original paper, Luh et al. include very limited computational experience, but the results of

Armentano and Yamashita (2000) for instances with up to 10 machines and 150 jobs are promising. For instances with

100 jobs, the average optimality gap with respect to the Lagrangian lower bound of Luh et al. (1990) is 8.14% which drops

to 5.80% for 150-job instances. On the flip side, Armentano and Yamashita report that computing the lower bound of

Luh et al. takes about 3 hours for 100- and 150-job instances.

G.2 Special Cases of Rm-TWET Here we discuss studies that investigate special cases of the problem of scheduling

a set of independent jobs on a bank of unrelated parallel machines with the objective of minimizing the total (weighted)

earliness and tardiness. In Chen and Powell (1999a), a set partitioning model of the problem Pm/d j = dl/
∑

j ǫ jE j + π jT j,

where dl stands for an unrestrictively large common due date, is obtained through Dantzig-Wolfe reformulation. The

linear programming (LP) relaxation of the set partitioning reformulation yields tight lower bounds, and instances with

up to 60 jobs and 6 machines are solved to optimality. In a related study Chen and Lee (2002), the authors extend their

approach by incorporating a common due date window and instances with up to 40 jobs and any number of machines are

solved to optimality within reasonable times. Rios-Solis and Sourd (2008) consider the same problem as Chen and Powell

(1999a), except that they allow for the common due date to be restrictively small. The main contribution of this work is

a pseudo-polynomial time dynamic programming algorithm that can identify the best schedule in an exponential-size

neighborhood of the current solution. Plateau and Rios-Solis (2010) is the only study available on common due date

problems in the unrelated parallel machine environment that designs an optimal algorithm. The authors develop convex

quadratic reformulations to solve both Rm/d j = dl/
∑

j ǫ jE j + π jT j and Rm/d j = dr/
∑

j ǫ jE j + π jT j exactly. For the first

problem, the approach is successful. Instances with up to 4 machines and 50 jobs are solved optimally in at most one

hour, and the bounds provided by the root relaxation are of high quality. However, the results for the latter restrictive

case are not satisfactory. For further information and additional references on the common due date problems, the reader

is referred to the survey paper by Lauff and Werner (2004) and the literature review in Rios-Solis and Sourd (2008).

G.3 Overview of the Literature on Rm-TWT and Rm-TWET
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Table 3 Summary of the important points in Section 2.

Paper Problem Method Main Results. [n, m]†, Time/Gap†.

Liaw et al. (2003) Rm//
∑

j π jT j Exact B&B. First exact approach. [18, 4].

Shim and Kim (2007a) Rm//
∑

j T j Exact B&B. Lower bound of Liaw et al. (2003) and an alternate one. [20, 5], 60

min.

Zhou et al. (2007) Rm//
∑

j π jT j Heuristic Ant colony optimization.

Mönch (2008) Rm//
∑

j π jT j Heuristic Ant colony optimization. ATC dispatching, decomposition heuristic.

Lin et al. (2011) Rm//
∑

j π jT j Heuristic Genetic algorithm and two simple heuristics. [20, 4], 1.8%.

Plateau and Rios-Solis (2010) Rm/d j = d/
∑

j π jT j + ǫ jE j Exact Convex quadratic formulation. d j = dr not satisfactory. [50, 4], 60 min.

Azizoglu and Kirca (1998) Pm//
∑

j T j Exact B&B. Dominance rules. Lower bound based on minimal completion times.

[15, 3].

Yalaoui and Chu (2002) Pm//
∑

j T j Exact B&B. [20, 2], 30 min.

Shim and Kim (2007b) Pm//
∑

j T j Exact B&B. Dominance rules. [30, 5], 60 min.

Tanaka and Araki (2008) Pm//
∑

j T j Exact Lagrangian relaxation to time-indexed formulation. [25, 10].

Souayah et al. (2009) Pm//
∑

j π jT j Exact Mix of lower bounds. [35, 2], 20 min.

Pessoa et al. (2010) Pm//
∑

j π jT j Exact Branch-cut-and-price. Arc-time-indexed formulation. Best to date. [100, 4].

Jouglet and Savourey (2011) Pm/r j/
∑

j π jT j Exact B&B. Dominance rules. [20, 3].

Koulamas (1997) Pm//
∑

j T j Heuristic Decomposition heuristic. [100, 8], ∼ 10%.

Armentano and Yamashita (2000) Pm//
∑

j π jT j Heuristic Tabu search. Lagrangian relaxation of Luh et al. (1990). [150, 10], 5%-10%.

Biskup et al. (2008) Pm//
∑

j T j Heuristic List scheduling. [200, 5].

Chen and Powell (1999a) Pm/d j = dl/
∑

j π jT j + ǫ jE j Exact Set partitioning formulation. Dantzig-Wolfe decomposition. [60, 6].

Chen and Lee (2002) Pm/ [d1, d2] /
∑

j π jT j + ǫ jE j Exact Extends Chen and Powell (1999a). Common due window. Column gener-

ation. [40, m].

Kedad-Sidhoum et al. (2008) Pm/r j/
∑

j π jT j + ǫ jE j Heuristic Lagrangian relaxation to time-indexed formulation. [90, 6], 1.5%.

Rios-Solis and Sourd (2008) Pm/d j = dr/
∑

j π jT j + ǫ jE j Heuristic DP algorithm to explore exponential-size neighborhood.

Mason et al. (2009) Pm//
∑

j T j + E j Heuristic Moving-block heuristic. [40, 4].

M’Hallah and Al-Khamis (2012) Pm//
∑

j π jT j + ǫ jE j Heuristic Two constructive and three meta-heuristics. [90, 6], 1.4%-6.4%.

Cheng and Sin (1990) “A State-of-the-Art Review of Parallel-Machine Scheduling”

Baker and Scudder (1990) “Sequencing with Earliness and Tardiness Penalties: A Review”

Kanet and Sridharan (2000) “Scheduling with Inserted Idle Time: Problem Taxonomy and Literature Review”

Sen et al. (2003) “Static Scheduling Research to Minimize Weighted and Unweighted Tardiness: A State-of-the-Art Survey”

Lauff and Werner (2004) “Scheduling with Common Due Date, Earliness and Tardiness Penalties for Multimachine Problems: A Survey”

†: Largest instance size tackled successfully and the associated time / optimality gap information if available.
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Appendix H. Online Supplement – Proofs

H.1 Proof of Proposition 3.1 Proof. Let S
P

represent a feasible schedule for problem (P) with a total cost of TC
(

S
P

)

.

The notation (P(y)) stands for problem (P) in which the jobs are assigned to the machines a priori, but the individual

machine schedules for this job partition y are to be optimized. An optimal schedule is denoted by an asterisk in the

superscript.

For any given fixed job partition y, both the original non-preemptive problems Rm-TWT and Rm-TWET – denoted

by (NP) – and the preemptive relaxation decompose into m independent single machine problems. Therefore, we have

TC
(

S∗
NP(y)

)

=
∑m

k=1 TC
(

S∗
NP(yk)

)

and TC
(

S∗
TR−A(y)

)

=
∑m

k=1 TC
(

S∗
TR−A(yk)

)

, where S∗
NP(yk)

and S∗
TR−A(yk)

stand for the optimal

non-preemptive and preemptive schedules on machine k under y, respectively. By Bülbül et al. (2007, Theorem 2.2),

TC
(

S∗
TR−A(yk)

)

≤ TC
(

S∗
NP(yk)

)

for k = 1, . . . ,m, and we have

TC
(

S∗
TR−A(y)

)

=

m
∑

k=1

TC
(

S∗
TR−A(yk)

)

≤

m
∑

k=1

TC
(

S∗
NP(yk)

)

= TC
(

S∗
NP(y)

)

.

This relationship is independent from y and does also hold for the optimal job partition y∗ which concludes the proof.

�

H.2 Proof of Lemma 4.1 Proof. Assume that an optimal solution (uk,vk) to (DSk − R) is available. The claim holds

trivially if there are idle periods in the schedule – which would typically be true for an instance of Rm-TWET – because

for any idle period t we have vkt = 0 due to complementary slackness. We set (u′
k
,v′

k
) = (uk,vk).

Otherwise, assume that there is no idleness in the schedule, i.e., Hk =
∑

j∈Jk
p jk. Define vmax

k
= maxt=1,...,Hk

vkt ≤ 0 and

construct a new solution u′
jk
= u jk− | v

max
k
|, j ∈ Jk, v′

kt
= vkt+ | v

max
k
|, t = 1, . . . ,Hk. Observe that (u′

k
,v′

k
) belongs to the

feasible region of (DSk − R) because

u′jk + v′kt = u jk− | v
max
k | +vkt+ | v

max
k |= u jk + vkt ≤ c′jkt, j ∈ Jk, t = 1, . . . ,Hk,

by the feasibility of (uk,vk) for (DSk − R), and v′
kt
= vkt+ | vmax

k
|≤ 0 for all t = 1, . . . ,Hk, by the definition of vmax

k
.

Furthermore, the objective function value associated with (u′
k
,v′

k
) is identical to that of (uk,vk):

∑

j∈Jk

p jky jku′
jk
+

Hk
∑

t=1
v′

kt
=

∑

j∈Jk

p jk

(

u jk− | v
max
k |

)

+

Hk
∑

t=1

(

vkt+ | v
max
k |

)

=
∑

j∈Jk

p jku jk− | v
max
k |

∑

j∈Jk

p jk +

Hk
∑

t=1

vkt+ | v
max
k | Hk

=
∑

j∈Jk

p jky jku jk +

Hk
∑

t=1

vkt.

Therefore, (u′
k
,v′

k
) is an alternate optimal solution, and maxt=1,...,Hk

v′
kt
= maxt=1,...,Hk

{

vkt+ | v
max
k
|
}

= 0 by the definition of

vmax
k

. �

Appendix I. Online Supplement – Benders Decomposition Algorithm with Cut Strengthening for (TR − A)
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Algorithm 1: Solving (TR −A) by Benders decomposition and lazy constraint generation.

// Initialization

1 Create (RMP) with (19), (20), (22). Add the load balancing constraints (14) for Rm-TWT;

2 repeat // To improve the initial objective value of (RMP).

3 Construct a feasible assignment y of jobs to m machines by some heuristic.

4 [cuts, z1(y), . . . , zm(y)] = generate cuts(y) ; // cuts is a collection of m cuts.

5 Add cuts to (RMP) as lazy constraints;

6 until some termination condition is satisfied; // We run a simple dispatch rule once.

// Main loop

7 Invoke CPLEX on (RMP);

8 repeat

9 Identify a new candidate incumbent solution y with an objective value of
∑m

k=1 ηk;

10 accept candidate = true;

11 [cuts, z1(y), . . . , zm(y)] = generate cuts(y) ; // cuts is a collection of m cuts.

12 for k = 1 to m do

13 if ηk < zk(y) then // y violates some of the missing Benders cuts.

14 Add cutsk to (RMP) as a lazy constraint, accept candidate = false;

15 end

16 until CPLEX determines that the relative optimality gap of the current incumbent is less than some threshold;

17 The best available job partition y∗ for (TR −A) is retrieved from CPLEX. If desired, the associated preemptive

machine schedules are obtained by solving (TRk − R) with y∗ for k = 1, . . . ,m.

Algorithm 2: Procedure generate cuts.

input : A feasible partition y of jobs to machines.

output: Returns zk(y) and the strengthened cuts of the form (24) for k = 1, . . . ,m.

1 for k = 1 to m do

2 Solve (TRk − R), retrieve zk(y) and the optimal solution (uk,vk) for the dual slave (DSk − R);

/* Calculate an alternate optimal solution (u′
k
,v′

k
) for (DSk − R) that satisfies Lemma 4.1 by

following the construction in the proof. */

3 vmax
k
= maxt=1,...,Hk

vkt;

4 if vmax
k
< 0 then u′

jk
= u jk− | v

max
k
|, j ∈ Jk, v′

kt
= vkt+ | v

max
k
|, t = 1, . . . ,Hk else (u′

k
,v′

k
) = (uk,vk);

// Construct an optimal solution (u′′
k
,v′′

k
) for (DSk).

5 v′′
kt
= v′

kt
, t = 1, . . . ,Hk, and v′′

kt
= 0, t = Hk + 1, . . . ,H;

6 u′′
jk
= u′

jk
, j ∈ Jk, and u′′

jk
, j < Jk, is calculated based on either (29) or (30), respectively, depending on whether we

solve an instance of Rm-TWT or Rm-TWET;

7 Generate and add (24) to cuts;

8 end
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Appendix J. Online Supplement – Computational Results

J.1 Analysis of the Solution Times of (TR − A) - BDS and (TR − A) - CPX for Rm-TWT The empirical distributions

of the solution times of (TR −A) - BDS and (TR −A) - CPX are plotted with solid and dashed lines in Figure 2, respectively.

Similar to those in Figure 1, the horizontal axes are in logarithmic scale. The performance of (TR −A) - CPX is adversely

affected by both an increasing number of machines m and an increasing number of jobs per machine n′ in an instance.

To make the former observation concrete, note that the percentage of the instances with n′ = 20 solved to optimality by

(TR −A) - CPX within 60 seconds is 100%, 88.3%, 6.7%, and 0% for m = 2, 3, 4, 5, respectively. In comparison, (TR −A) -

BDS obtains the optimal solution for 100%, 98.9%, 93.3%, and 82.8% of the instances with m = 2, 3, 4, 5, respectively, in

less than 60 seconds. Note that these latter numbers are aggregated over n′, including larger instances with n′ = 30, 40 as

well. Clearly, (TR −A) - BDS displays a significantly more stable performance. Finally, we note that the solution times of

(TR −A) - BDS are strongly correlated with the number of Benders cuts generated, as expected. The median percentage

of the active Benders cuts for the final node problem in the search tree is 86.4% with a corresponding average of 81.3%.

Solution Time

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

 

 

100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(a) m = 2

Solution Time

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

 

 

100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(b) m = 3

Solution Time

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

 

 

100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(c) m = 4

Solution Time

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

 

 

100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(d) m = 5

Figure 2 The empirical distributions of the solution times of (TR −A) - BDS and (TR −A) - CPX for Rm-TWT.
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J.2 Results for Rm-TWET Table 4 is structured identically to Table 2 and depicts the percentage gap and solution

time results for Rm-TWET. Unsurprisingly, both solving the preemptive relaxation and obtaining high-quality non-

preemptive solutions pose a more difficult challenge for Rm-TWET than for Rm-TWT. In general, the gaps are larger and

the solution times are longer than those in Section 5.1. However, in the grand scheme of things – also factoring in the

lack of scalable alternate algorithms for this problem in the literature – we attain pretty promising results for Rm-TWET

as well.

As before, the purpose of the figures presented under “(TR −A) - BDS” in Columns 4–6 is to argue the value of the our

approach for solving (TR −A). The number of instances not solved to within the targeted gap of 3% by (TR −A) - BDS

within 600 seconds is 159 out of a total of 720. The corresponding number for (TR −A) - CPX is 252 with a time limit of

1800 seconds. Moreover, the median gap of 8.3% for those instances that could not be solved within the specified time

limit by (TR −A) - BDS stands in stark contrast to the corresponding gap of 100% for (TR −A) - CPX. The respective

average gaps are 12.6% and 80.2%. We reckon that (TR −A) - BDS tackles the preemptive relaxation (TR −A) of Rm-

TWET successfully. In addition, observe that the monolithic formulation of (TR −A) with 200 jobs and 5 machines grows

too large for CPLEX, and even the root relaxation is not solved within the allotted time. Therefore, no results are reported

for (TR −A) - CPX for this instance size.

(TR −A) - BDS yields very good lower bounds for Rm-TWET. The average lower bound gap in Columns 7–9 is no

more than 14.75% for all n, m combinations with an average of 9.02% across all instances. The gap is in excess of 15% for

only 13% of the instances (93 instances).

The results on the optimality gaps of the non-preemptive solutions included under “Feasible Sol’n” in Table 4 certify

(TR −A) - BDS as a viable and scalable algorithm for solving large instances of Rm-TWET. As is the case with Rm-TWT,

even the LP relaxation of (TI) is not solved within half an hour for instances with 100 or more jobs. Among the smaller

360 instances, (TI) beats (TR −A) - BDS in 125 cases with an average improvement of 0.84%. For the other 235 instances,

(TR −A) - BDS outperforms (TI) by 40.17% on average. The optimality gap of the incumbent from (TI) is over 15% in

39% of these instances (142 instances) while (TR −A) - BDS does always keep the gap below the same threshold with the

exception of 5 instances. Even for the 360 larger instances with 100 or more jobs, the proposed Benders-type method finds

a feasible solution for the original problem with an optimality gap less than 15% in 86% of the cases (310 instances). The

behavior of (TR −A) - BDS with respect to the varying TF and RDD levels in Table 4 is consistent with our observations

for Table 2. The adverse effect of low TF and high RDD values on both the lower and upper bound quality persists with

the same underlying reasons explained in Section 5.1.

Table 4 Results for Rm-TWET.

TF

RDD Percentage Gaps (TR −A) - Solution Times

(TR −A) - BDS LB Quality Feasible Sol’n CPX BDS

n m 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

40 2

0.4 2.7 2.9 4.4 4.7 6.9 15.1 0.8 0.9 3.2 15 13 21 16 22 454

0.6 2.6 2.8 2.9 4.7 7.4 10.3 0.8 2.0 0.7 16 12 14 14 21 48

0.8 2.0 2.3 2.8 3.1 4.6 5.7 1.0 0.8 0.6 17 15 14 10 10 17

1.0 1.9 1.4 1.5 2.2 2.2 2.7 0.3 0.2 0.2 16 16 15 5 6 8

60

2

0.4 2.1 3.0 5.4 3.8 6.6 13.7 0.7 1.1 2.7 59 43 47 47 146 550

0.6 2.2 2.7 3.0 3.9 6.8 10.0 0.7 1.7 2.6 62 48 45 41 52 249

0.8 1.8 1.8 2.6 2.9 3.8 5.7 0.4 0.6 0.8 65 56 53 24 35 72

1.0 1.6 0.6 1.7 1.8 1.1 2.8 0.2 0.1 0.3 69 71 70 14 23 26

Continued on next page. . .
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Table 4 continued. . .

TF

RDD Percentage Gaps (TR −A) - Solution Times

(TR −A) - BDS LB Quality Feasible Sol’n CPX BDS

n m 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

3

0.4 2.6 3.0 10.1 5.3 8.1 17.4 1.5 1.3 2.3 121 219 384 17 207 601

0.6 2.9 2.9 6.0 5.0 7.9 17.9 1.4 2.3 5.3 199 183 382 6 20 541

0.8 2.0 2.6 2.9 3.4 5.7 7.0 0.9 0.8 1.1 256 216 211 3 9 18

1.0 2.4 2.4 2.6 2.4 2.7 4.3 0.7 0.7 0.8 231 237 232 2 2 5

80

2

0.4 2.1 2.8 6.6 3.5 5.6 13.3 0.9 1.1 2.6 198 156 118 68 142 588

0.6 2.0 2.7 3.1 3.1 5.4 7.9 0.5 1.5 1.7 194 140 143 47 74 328

0.8 1.9 1.7 2.6 2.6 3.1 5.0 0.4 0.5 1.0 210 198 155 35 51 70

1.0 1.9 1.0 1.0 2.0 1.5 1.9 0.3 0.2 0.3 227 224 204 19 33 39

4

0.4 2.9 5.9 31.2 5.8 12.1 50.7 2.8 4.9 20.6 433 647 1708 48 596 609

0.6 2.7 3.6 20.3 6.4 9.7 35.6 2.8 4.6 11.5 604 611 1947 23 324 605

0.8 2.4 2.8 3.0 4.2 6.2 8.2 1.1 1.9 1.5 628 526 644 17 31 426

1.0 2.8 2.1 2.7 3.1 3.1 4.6 1.0 0.9 1.4 773 685 680 10 8 18

90 3

0.4 2.7 3.7 15.2 4.6 8.3 27.3 1.9 3.3 8.6 439 495 920 16 335 606

0.6 2.1 2.8 6.6 4.0 6.8 15.7 1.2 3.0 5.3 721 595 757 13 120 605

0.8 2.8 2.7 2.6 3.9 5.0 5.9 0.8 1.6 1.9 800 716 578 10 11 43

1.0 2.7 2.4 2.2 2.7 3.4 3.4 1.0 0.9 1.0 739 691 669 8 10 11

100 5

0.4 3.1 9.6 34.6 6.1 16.9 57.9 4.2 10.5 30.9 1555 1805 1849 394 611 606

0.6 2.9 6.5 22.2 6.1 14.1 41.5 4.5 10.0 22.9 1498 1670 1804 99 601 600

0.8 2.6 3.0 6.2 4.7 6.5 12.0 3.4 5.1 7.4 1363 1111 1399 8 109 490

1.0 2.5 1.9 2.8 3.0 3.1 5.1 1.4 2.1 3.5 1614 1480 1382 3 4 16

120

3

0.4 2.4 3.0 11.5 3.8 6.6 20.9 2.5 5.0 12.0 1331 1053 978 33 376 601

0.6 1.9 2.9 5.0 3.2 6.5 12.8 2.0 4.9 9.2 1448 1098 1037 15 136 601

0.8 2.7 2.2 2.8 3.6 4.1 5.5 1.5 2.9 3.9 1679 1416 1103 9 13 55

1.0 2.7 2.4 2.2 2.9 3.0 3.2 1.3 2.0 1.8 1699 1726 1481 7 7 11

4

0.4 2.9 4.3 24.4 5.1 8.6 41.4 3.8 5.9 22.6 1710 1568 1819 64 601 601

0.6 2.6 3.5 12.2 4.6 8.6 24.8 4.3 6.5 15.6 1805 1691 1789 19 311 601

0.8 2.4 2.8 3.2 3.8 5.4 7.4 3.8 4.8 6.3 1812 1802 1692 9 56 244

1.0 2.7 2.5 2.3 3.2 3.4 3.9 3.0 3.4 3.6 1812 1806 1803 5 7 10

150 5

0.4 2.9 8.3 30.4 4.9 14.8 66.9 4.9 14.8 66.0 1895 1865 2093 154 601 602

0.6 2.9 4.8 17.3 5.2 10.8 36.0 5.2 10.8 36.0 1843 1986 1859 46 601 601

0.8 2.4 2.9 3.8 4.0 5.7 8.3 4.0 5.7 8.3 1858 1858 1850 13 83 507

1.0 2.5 1.9 2.1 3.0 2.8 3.6 3.0 2.8 3.6 1900 1822 1812 7 10 12

160 4

0.4 2.6 4.3 18.1 3.9 8.5 35.1 3.9 8.5 35.1 1880 1850 1819 78 489 601

0.6 2.1 3.0 10.6 3.6 6.6 22.7 3.6 6.6 22.7 1876 1836 1880 23 200 601

0.8 2.6 2.6 2.8 3.7 4.6 5.8 3.7 4.6 5.8 1907 1841 1843 15 41 138

1.0 2.1 2.6 1.8 2.5 3.3 3.0 2.3 3.3 3.0 1886 1844 1836 10 11 18

200 5

0.4 2.9 6.9 28.3 4.4 11.9 58.4 4.4 11.9 58.4 127 601 601

0.6 2.1 2.9 14.9 3.5 7.2 30.7 3.5 7.2 30.7 28 325 601

0.8 2.0 2.8 3.0 3.0 4.7 6.4 3.0 4.7 6.4 22 81 378

1.0 2.3 2.8 2.7 2.7 3.6 3.9 2.7 3.6 3.9 11 13 19

Figure 3 is the counterpart of Figure 1, where the empirical distributions of the optimality gaps of the feasible solutions

associated with (TR −A) - BDS are plotted. As previously, (TR −A) - BDS generally exhibits a robust behavior with

respect to varying values of n′ for a fixed m. The problem gets more challenging with an increasing number of machines,
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Figure 3 The empirical distributions of the optimality gaps of the upper bounds by (TR −A) - BDS for Rm-TWET.

and the percentage gaps associated with (TR −A) - BDS demonstrate a modest increase with increasing m. For instance,

for 70% of the instances with 2, 3, 4, and 5 machines, the gaps are less than 2%, 5%, 7%, and 11%, respectively.

The performance patterns observed for Rm-TWT pretty much carry over to Rm-TWET as well. The solution times of

(TR −A) - BDS are in general better than those of (TR −A) - CPX by a large margin. Based on the 399 instances that

are solved by both methods within their respective time limits, the ratio of the solution time of (TR −A) - CPX to that

of (TR −A) - BDS is 48.0 on average. Among these instances, only 52 of the relatively smaller instances with less than

90 jobs and generally large RDD values take longer for (TR −A) - BDS. As in Table 2, low TF and high RDD values

result in tough instances to handle for (TR −A) - BDS while instances with tight due dates are solved extremely well.

The empirical distributions of the solution times of (TR −A) - BDS and (TR −A) - CPX, plotted with solid and dashed

lines in Figure 4, respectively, reveal that the median solution times of (TR −A) - BDS are in the range from 11 to 125

seconds for all m, n′ combinations. (TR −A) - CPX features a much less robust behavior with a median solution time of 15

seconds for n′ = 20 and m = 2 that quickly increases to 220, 649, and 1589 seconds for n′ = 20 and m = 3, 4, 5, respectively.

Compared to those in Table 2, the computational effort expended is significantly more. To be specific, the median solution

times of (TR −A) - CPX for the Rm-TWET instances with 2, 3, 4, and 5 machines are 5, 7, 7, and 4 times of those for the

corresponding Rm-TWT instances, respectively. The respective ratios for (TR −A) - BDS are 11, 4, 6, and 8. The greater

planning horizons in the formulations are a primary factor here in addition to the inherent difficulty of Rm-TWET over

Rm-TWT. This difficulty is also reflected in the number of Benders cuts generated. (TR −A) - BDS needs to create 5.7

times more cuts for Rm-TWET compared to Rm-TWT, and the great majority of these cuts is not redundant. The median

percentage of the active Benders cuts for the final node problem in the search tree is 95.5% with a corresponding average

of 92.1%. Note that these numbers are higher than their counterparts for Rm-TWT.

The times expended to solve the single machine problems for a given job partition – omitted from Table 4 for the sake

of brevity – are more than satisfactory. The SiPS/SiPSi solver returns the optimal solution for a single machine TWET

problem in about 27, 110, and 305 milliseconds for instances with n′ = 20, 30, 40, respectively. These numbers translate

into 23 seconds on average to solve all single machine problems to optimality for a five machine and 200 job instance

http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/
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(c) m = 4
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Figure 4 The empirical distributions of the solution times of (TR −A) - BDS and (TR −A) - CPX for Rm-TWET.

with a maximum of 56 seconds. While these figures are greater than their counterparts for Rm-TWT, they still make up

for a small part of the total solution time. The time spent for calculating the non-preemptive solutions accounts for only

12.5% of the total solution time on average. Finally, we note that (TR −A) - BDS identifies on average 5.4 times more job

partitions per instance compared to (TR −A) - CPX, where the average number of partitions retrieved from the search

tree of (TR −A) - BDS is 14.4. As we discussed in Section 5.1, this is a critical advantage that improves the quality of the

best non-preemptive solution.
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