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Abstract

We propose the use of causality-based formal representation and automated
reasoning methods from artificial intelligence to endow multiple teams of robots
in a factory, with high-level cognitive capabilities, such as optimal planning and
diagnostic reasoning. We present a framework that features bilateral interaction
between task and motion planning, and embeds geometric reasoning in causal
reasoning. We embed this planning framework inside an execution and monitoring
framework and show its applicability on multi-robot systems. In particular, we
focus on two domains that are relevant to cognitive factories: 1) a manipulation
domain with multiple robots working concurrently / co-operatively to achieve a
common goal and ii) a factory domain with multiple teams of robots utilizing
shared resources.

In the manipulation domain two pantograph robots perform a complex task
that requires true concurrency. The monitoring framework checks plan execution
for two sorts of failures: collisions with unknown obstacles and change of the
world due to human interventions. Depending on the cause of the failures, re-
covery is done by calling the motion planner (to find a different trajectory) or the
causal reasoner (to find a new task plan). Therefore, recovery relies on not only
motion planning but also causal reasoning.

We extend our planning and monitoring framework for the factory domain
with multiple teams of robots by introducing algorithms for finding optimal de-
coupled plans and diagnosing the cause of a failure/discrepancy (e.g., robots may
get broken or tasks may get reassigned to teams). We show the applicability of
these algorithms on an intelligent factory scenario through dynamic simulations
and physical experiments.

1ii
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Abstract

Bu tezde, bir fabrikada bulunan birden fazla robot takimlarinin yapay zekasi,
nedensellik tabanli sekillendirme gosteriminin kullanimi ve otomatik akil yiiriitme
yontemleri ile, eniyilenmis planlama ve teshissel akil yiiriitme gibi yiiksek seviye
biligsel becerileri kazandirmak iizere ele alinmigtir. Sundugumuz mimari, gérev
ve hareket planlama arasinda iki-yonli etkilesim saglamakta ve geometrik akil
yiiriitmeyi mantiksal akil yiiriitme ile birlestirmektedir. Bu planlama mimarisini,
icra ve takip mimarisinin i¢ine yerlestirip, uygulanabilirligini ¢oklu robot sistem-
leri iizerinde gosteriyoruz. Ozellikle, biligsel fabrikalarla ilgili iki problem iize-
rinde odaklaniyoruz: 1) ¢oklu robotlarin es zamanli olarak / igbirligi yaparak ortak
gorev i¢in ¢alistig1 bir manipiilasyon problemi ve ii) birden fazla robot takiminin
ortak kaynak kullanimini degerlendirdigi bir fabrika problemi.

Manipiilasyon probleminde, iki pantograf robot, gercek eszamanlilik isteyen
karigik bir gorevi gerceklestirmektedirler. Takip mimarisi planin icrasini iki tip
hata i¢in kontrol etmektedir: bilinmeyen engellerle carpisma ve diinyanin harici
bir miidahale (6rnegin insan miidahalesi) sonucu de8ismesi. Hatanin sebebine
dayanarak, hareket planlama (farkli bir yoriinge bulmak icin) veya mantiksal akil
yiiriitiicii (yeni bir gorev plani1 bulmak i¢in) ¢agrilarak kurtarma yapilmaktadir.
Bu sebeple, kurtarma hem hareket planlamaya hem de mantiksal akil yiiriitmeye
dayanmaktadir.

Onerdigimiz planlama ve takip etme mimarisini, eniyilenmis ayrismis plan-
lar ve hatanin/celigkinin (6rnegin, robotlarin bozulmasi veya takimlar i¢in yeni
gorevler belirlenmesi) sebebini bulmak adina; birden fazla robot takimlarina sahip
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fabrika problemleri i¢in genellestiriyoruz. Bu algoritmalarin uygulanabilirligini,
zeki bir fabrika senaryosu iizerinde dinamik benzetimler ve fiziksel deneyler iize-
rinde gosteriyoruz.
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Chapter 1

Introduction

New approaches for automated fabrication of customized products become highly
demanded since conventional manufacturing and assembly systems fall short of
responding to ever increasing market demands for customized and variant-rich
products in a cost effective manner. The cognitive factory concept [1,2] is such
a paradigm shift that promises significant advantages over conventional manufac-
turing by balancing the efficiency and flexibility demands in automation, while
simultaneously achieving a high-degree of reliability. In particular, cognitive fac-
tories aim to endow manufacturing system with high-level reasoning capabilities
in the style of cognitive robotics, such that these systems become capable of plan-
ning their own actions, reconfiguring themselves to allow fabrication of a wide
range of parts and to react to change in demands, detecting failures during exe-
cution, diagnosing the cause of these failures and recovering from such failures.
Since cognitive factories can plan their own actions and self-reconfigure, they can
rapidly respond to changing customer needs and customization requests, demon-

strating the necessary flexibility, while maintaining cost-effectiveness compared



to human workshops. Moreover, thanks to fault-awareness, diagnostic reasoning
and failure recovery features of cognitive factories, these systems enable a high-
degree of reliability comparable to those of mass production systems.

Manipulation planning, automatic generation of robot motion sequences for
manipulation of movable objects among obstacles to achieve a desired goal con-
figuration, is an indispensable process in realizing cognitive factories. Manipu-
lation planning problems involve objects that can only move when picked up by
robots and the order of pick-and-place operations for manipulation may matter
to obtain a feasible kinematic solution [3]. Therefore, geometric reasoning and
motion planning alone are not sufficient to solve these problems; planning of ac-
tions such as the pick-and-place operations need to be integrated with the motion
planning problem.

On the other hand, once a collision-free plan with its trajectory is computed
with such a hybrid approach, its execution in a dynamic world may lead to fail-
ures due to incomplete knowledge (e.g., unknown obstacles) or uncertainties (e.g.,
human interventions). For a successful execution of an hybrid plan in a dynamic
world, detecting failures and deciding how to recover from such failures are nec-
essary.

To this end, we present a generic and modular planning and execution frame-
work for a cognitive factory that involves complex manipulation tasks performed
concurrently / cooperatively by multiple robots. The monitoring framework checks
plan execution and depending on the cause of the failures, recovery is done by
calling the motion planner (to find a different trajectory) or the causal reasoner
(to find a new task plan). Therefore, recovery relies on not only motion planning

but also causal reasoning. Then, we extend this framework for a cognitive factory



that involves complex tasks performed by multiple teams of robots by efficiently
using the shared resources. We focus on two crucial aspects of a cognitive factory
setting with multiple teams of robots: planning and decision-making for recon-
figurable networked robots for efficient use of shared resources (e.g., workforce,
time, product components) and execution monitoring and diagnostic reasoning for
fault-tolerance (e.g., preventing action failures and recovering from failures when
they occur).

We propose the use of a causality-based formal representation (e.g., action
language €'+ [4]) and automated reasoning methods and tools (e.g., the causal
reasoner CCALC [5]) from artificial intelligence to endow multi-robot systems in
a factory, with such high-level cognitive capabilities. In particular, we introduce
novel algorithms for finding optimal decoupled plans and execution monitoring
framework for recovering from failures due to uncertainties or incomplete knowl-
edge, and for diagnosing the cause of a failure/discrepancy (e.g., robots may get
broken or tasks may get reassigned to teams). To be able to coordinate networked
robots and diagnose and handle failures in a dynamic setting, we embed these al-
gorithms modularly in a generic execution and monitoring framework that allows
reusability of computed plans in case of failures. The proposed generic framework
is applied, in particular, to cognitive factory scenarios.

Our cognitive factory framework possesses core characteristics of a reconfig-
urable manufacturing system. In particular, the approach not only increases the
speed of responsiveness of manufacturing systems to unpredicted events, such as
sudden market demand changes or unexpected machine failures, but also facili-
tates a quick production launch of new products and flexible customization of ex-

isting products in the product family. Reasoning about its resources, the proposed



approach adjusts itself to provide exactly the functionality and production capac-
ity needed, maximizing the system productivity with the available resources. In
that sense, our work plays an important role towards Cognitive Technical Systems
(CTS)—systems “that know what they are doing” [6].

To the best of our knowledge, there is no framework comparable to ours as
a whole in the context of cognitive factories. However, there are contributions
in the literature that are relevant to sub-components of our framework. For in-
stance, in [7] a method is presented that integrates a global planning system with
the domain specific machining planning system of [8] and an ad-hoc perception
mechanism. In particular, the manufacturing domain is represented in PDDL and
a classical planner is utilized to find a sequence of actions to reach the goal. The
main role of the global planner is to augment the local machining plans with
transportation and handling operations. The perception system is used for inspec-
tion of machined parts and triggers re-planning of the global planner when faulty
parts are detected. Unlike our framework, this approach does not consider opti-
mal planning for multiple teams of robots, cooperation of robots/teams, efficient
use of resources, or diagnostic reasoning. Furthermore, in our study we utilize a
highly expressive causality-based representation and reasoning formalism (action
language %'+ ) that can handle concurrent actions by multiple agents, nondeter-
ministic effects, multi-valued actions/fluents, additive fluents for reasoning about
shared resources, state/transition constraints, and changes that do not involve ac-
tions (e.g., ramifications of actions), defaults, etc. Along with the capabilities
of the causal reasoner (CCALC), our approach substantially extends the classes of
problems that can be solved. In particular, we can solve not only planning but also

prediction/postdiction and diagnosis problems using the same domain description.



There are recent contributions in the literature that are relevant to cognitive
factories but not covered within the scope of this study. The readers are referred to
the special issue of Advanced Engineering Informatics [9] on cognitive factories
and the review article [10] for aspects of cognitive factories that complements our
framework. The approaches for generative CNC machining planning using shape
grammars and for automated fixture design to enable autonomous fabrication of
customized part geometries [8], methods that enable human-robot cooperation
in a cognitive factory setting [11], and the model-based approach that computes
success probabilities of plans utilizing online observations [12] can be listed as
representatives of these interesting contributions.

Execution monitoring framework for manipulation planning is an important
part of cognitive factories, and there are several studies within this scope, even
though they are not generalized to cognitive factories. In most plan execution
monitoring systems in robotics and Al, the idea is to detect plan failures by com-
paring the measured outputs with the estimated outputs of the system, and to re-
cover from these failures. Consider, for instance, the execution monitoring system
PLANEX [13] used in SHAKEY, the procedural reasoning system (PRS) [14] used
in the mobile robot FLAKEY, the reactive action packages system [15] used in
the mobile robot CHIP, Livingstone control architecture [16] used in NASA’s first
New Millennium spacecraft, the execution monitoring system [17] on board with
the mobile robot XAVIER [18], and the rationale-based monitoring system [19]
applied in various domains. (See [20] for a survey of execution monitoring for
robotics.)

Some of the more recent systems, such as [17,21-27], follow an alternative ap-

proach by lifting execution monitoring to a higher-level where monitoring condi-



tions are specified declaratively, failures are detected and classified/diagnosed by a
reasoner, and a recovery from such failures is done, possibly by the same reasoner,
considering temporal constraints. In particular, some of them describe execu-
tion monitoring in a logic-based framework for reasoning about actions, in which
a planning problem can be formulated and solved. For instance, [25] and [27]
describe execution monitoring in the situation calculus [28], which makes them
applicable to Golog programs [29]. In [24], the authors describe execution moni-
toring in the fluent calculus [30] for FLUX programs [31]. [23] studies monitoring
in a general action representation framework in second-order propositional logic,
applicable in various reasoning systems such as CCALC. [21] and [26] describe
monitoring conditions in a temporal logic formalism and check their correctness
by a progression algorithm or model checker.

Some of these systems focus more on detecting faults (e.g., [23]), while some
of them focus more on plan repair or failure recovery (e.g., [22,32-35]). Some
systems monitor the execution of the whole plan and some monitor some parts of
the plan (e.g., PRS monitors “intentions” that can be viewed as subplans). Some
systems check the observed real-world state with the estimated real-world state at
every time step, whereas some systems perform this check from time to time and
some systems monitor some world states only (e.g., the rationale-based monitor-
ing system) and in particular undesirable behavior (as in [17]).

As for failure recovery, some of these systems use a set of precompiled recov-
ery procedures to recover from failures (as in PRS), some of them replan from
the current state to reach the goal, and some of them backtrack to an earlier state
(e.g., “point of failure”) that caused the failure and do replan from that point on

(e.g., [22]). For instance, in case of an execution failure, PLANEX continues to



execute the parts of the plan that are independent; if there is no such independent
part, a new plan is generated. IPEM [32] integrates partial-order planning with
plan execution: it starts with an incomplete plan and tries to reduce the “flaws”
(i.e., a list of things to be done, such as “unexecuted action”, to complete the plan)
at each step. XRFM [36] provides the continual modification of plans during their
execution, using a rich collection of failure models and plan repair strategies: it
projects a default plan into its possible executions, diagnoses failures of these pro-
jected plans by classifying them into a taxonomy of predefined failures, and then
revises the default plan by following the pointers from the predefined failures to
predefined plan repair strategies.

Finally, several alternative approaches have been proposed for modeling of
cognitive manufacturing systems. In particular, in [37] the use of structured reac-
tive controllers and transformational modeling are advocated, while in [38] hier-
archical hybrid modeling and control are proposed as a viable solution. Note that,
none of these approaches are comparable to our system, since they attack different

challenges and emphasize different aspects of modeling of cognitive factories.



1.1 Contributions

We have introduced a new approach to manipulation planning and execution mon-
itoring for multiple teams of robots that aim to complete a common goal in an

optimal way. The contributions of this thesis can be summarized as follows:

e Execution monitoring for a team of robots. We have introduced a novel
planning and execution monitoring framework for robotic manipulation plan-
ning. This framework can handle failures due to unknown obstacles or hu-
man intervention: when the plan fails, the failure is diagnosed using the
sensor information; depending on the cause of the failure, the execution
monitoring agent modifies the planning problem and asks the causal rea-
soner to find a different plan (e.g., that does not collide with a recently
discovered obstacle). This execution monitoring framework has been im-
plemented on a physical setup with two pantograph robots. The robots have

to work together to complete the manipulation task.

e Embedding high-level diagnostic reasoning in execution monitoring. We
have integrated high-level diagnostic reasoning in the framework above to
recover from failures (e.g., broken robots) which can not be detected by

SENSors.

e Decoupled planning for multiple teams of robots. In a cognitive factory,
each team has its own (manipulation) task. To facilitate the use of shared
resources (e.g., robots), we have introduced a decoupled planning algorithm
to find an overall optimal plan so that all the tasks of the teams are completed

in minimum number steps. In this partially distributed algorithm, every



team plans for its own task, and a central agent communicates with every

team orchestrating a more efficient use of shared resources.

e Execution monitoring for multiple teams of robots. We have extended the
execution monitoring framework above to multiple teams of robots, where
an optimal decoupled plan is found by the help of a central agent as de-
scribed above. According to this extension, when a team fails executing its
own plan, then the overall decoupled plan is modified by the central agent
accordingly. We have used the physics simulator Gazebo to implement cog-

nitive painting factory environment with multiple teams of robots.

1.2 Outline

In this thesis, a new approach for execution and monitoring framework is sug-
gested for multiple teams of robots. Chapter 2 explains our high level represen-
tation formalism % +and casual reasoner CCALC. In chapter 3, we present our
execution and monitoring framework for a single team of robots. Then we ap-
plied this framework on an assembly planning problem. In chapter 4 we extend
our approach for multiple teams of robots and introduce a diagnosis algorithm for
errors that we can not identify by sensor information. Last chapter concludes the

thesis and suggests future work to develop this approach.



Chapter 2

Representation and Reasoning for a

Dynamic Domain

We describe dynamic domains using the high-level representation formalism €'+ [4],

and perform reasoning tasks in this domain using the causal reasoner CCALC [5].

2.1 Action Description Language ¢+

We describe action domains in the action description language %4+, by “causal
laws.” Let us give a brief description of the syntax and the semantics of €' +; we
refer the reader to [4] for a comprehensive description.

We start with a (multi-valued propositional) signature that consists of a set &
of constants of two sorts, along with a nonempty finite set Dom(c) of value names,
disjoint from o, assigned to each constant c. An atom of ¢ is an expression of the
form ¢ = v (“the value of ¢ is v”’) where ¢ € ¢ and v € Dom(c). A formula of

is a propositional combination of atoms. If ¢ is a Boolean constant, we will use ¢

10



(resp. —c¢) as shorthand for the atom ¢ = True (resp. ¢ = False).

A signature consists of two sorts of constants: fluent constants and action con-
stants. Intuitively, fluent constants denote “fluents” characterizing a state; action
constants denote “actions” characterizing an event leading from one state to an-
other. A fluent formula is a formula such that all constants occurring in it are
fluent constants. An action formula is a formula that contains at least one action
constant and no fluent constants.

An action description is a set of causal laws of three sorts. Static laws are of
the form

caused F if G (2.1)

where F' and G are fluent formulas. Action dynamic laws are of the form (2.1)
where F' is an action formula and G is a formula. Fluent dynamic laws are of the
form

caused F if G after H (2.2)

where F' and G are as above, and H is a fluent formula. In (2.1) and (2.2) the part
if G can be dropped if G is True.

The meaning of an action description can be represented by a “transition sys-
tem”, which can be thought of as a labeled directed graph whose nodes correspond
to states of the world and edges to transitions between states. Every state is rep-
resented by a vertex labeled with a function from fluent constants to their values.
Every transition is a triple (s,A,s’) that characterizes change from state s to state s’
by execution of a set A of primitive actions.

While describing action domains, we can use some abbreviations. For in-

stance, we can describe the (conditional) direct effects of actions using expres-

11



sions of the form

c causes F if G (2.3)

which abbreviates the fluent dynamic law

caused F if True after c NG

expressing that “executing c at a state where G holds, causes F.”

We can formalize that F' is a precondition of ¢ by the expression

nonexecutable c if —F 2.4)

which stands for the fluent dynamic law

caused False if True after ¢ \ —F.

Similarly, we can prevent the execution of two actions ¢ and ¢’ by the expression

nonexecutable ¢ A ¢’.

Similarly, we can express that F" holds by default by the abbreviation

default F'.

We can represent that the value of a fluent F' remains to be true unless it is caused

to be false, by the abbreviation

inertial F.

12



Notation: L ranges over {/1,/2} and a ranges over action constants.
Action constants: Domains:

toggle(L) Boolean
Fluent constants: Domains:
up(L) Boolean
open Boolean

Causal laws:
toggle(L) causes up(L) if —up(L)
toggle(L) causes —up(L) if up(L)

caused open if up(I1) Aup(12)

inertial open, —open
inertial up(L),—up(L)

exogenous a

Figure 2.1.1: The suitcase domain described in C+.

Example — Suitcase domain

Consider, for instance, the suitcase domain introduced in [39]: there is a suitcase

with two latches /1 and /2; when these two latches are up then the suitcase auto-

matically opens. There are three propositional fluents: up(L), where L is 1 or 12,

and open; up(L) holds iff latch L is up, open holds iff the suitcase is open. There

is an action of toggling a latch L denoted by roggle(L). If a latch is down (resp.

up) then it becomes up (resp. down) after toggling it. We can describe this domain

in the action description language 6+ by the causal laws presented in Fig. 2.1.1.

The first two lines of causal laws describe the direct effects of toggling the latches.

The third line describes the indirect effects of toggling. The commonsense law of

inertia is expressed by the next two lines. The last line expresses that actions are

€exogenous.
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2.2 CCALC

The Causal Calculator (CCALC) [5] is a reasoning system, that performs rea-
soning tasks over an action domain description represented in a fragment of ¢+
described above. To present formulas to CCALC, conjunctions A, disjunctions V,
implications D, negations — are replaced with the symbols & (or &&)), ++, —»,
and - respectively. In most of the action descriptions, fluents are inertial and ac-
tions are exogenous; therefore, CCALC allows us to include this information at the
very beginning of the action description while declaring fluent constants and ac-
tion constants. For instance, the suitcase domain represented in ¢+ in Fig. 2.1.1
is presented to CCALC as in Fig. 2.2.1.

In addition CCALC provides two facilities to be used in action domain de-
scriptions: external predicates/functions and action attributes. External predi-
cates/functions are not part of the signature of the domain description (i.e., they
are not declared as fluents or actions). They are implemented as functions in some
programming language of the user’s choice, such as C++, and embedded in casual
laws. External predicates take as input not only some parameters from the action
domain description (e.g., the locations of robots) but also detailed information that
is not a part of not the action domain description (e.g., geometric models). They
are used to check externally some conditions under which the causal laws apply, or
compute externally some value of a variable/fluent/action. For instance, suppose
that the external predicate collision (X,Y,X1,Y1) (implemented in C++)
checks whether the path between (X,Y) and (X1,Y1) collides with an obsta-
cle. Then we can express that there is no state at which the endpoints of a payload

are located at (X, Y) and (X1,Y1l) where collision (X,Y,X1,Y1) holds:
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caused false
if xpos(rl)=X1l & ypos(rl)=Y1l &
Xpos (r2)=X2 & ypos(r2)=Y2

where collision(X1,Y1l,X2,Y2).

In addition, an external predicate can accomplish some other tasks as “side-effects.”
For instance, while checking whether a robot located at (X, Y) collides with an-
other robot at (X1, Y1), the external predicate collision (X, Y,X1,Y1l) can
form a database keeping which locations lead to a collision and which locations
do not. Then this database can be reused in the future.

Another useful feature of CCALC is its ability to represent “attributes of ac-
tions” that allows us to talk about various special cases of actions. Consider, for
instance, the action of “a robot R picking a payload”. We can enforce that a robot

R cannot pick a payload while moving by a causal law like

nonexecutable move (R) & pick (R).

However, when we want to specify some effects of these actions, we need to
consider special cases of them. For instance, to express the effect of picking a
payload, it may be useful to consider where the robot is picking the payload at.
To express the effect of moving, it may be useful to consider in which direction
and by what number of steps the robot is moving the payload. To denote these
special cases of actions, we declare their attributes. For instance, for pick, we
introduce an attribute pickpoint (as a function that returns which endpoint)

after we declare pick as an exogenous action:

pick (robot) :: exogenousAction;

15



:— sorts
latch.

:— oObjects
11, 12 :: latch.

:— variables
L :: latch.

:— constants

up (latch), open :: inertialFluent;
toggle (latch) :: exogenousAction.
% effects of toggling

toggle (L) causes up (L) if —-up(L).
toggle (L) causes -up(L) if up(L).

suitcase is open if
both of the latches are open
caused open if up(ll) & up(l2).

%
%

Figure 2.2.1: The suitcase domain described in the language of CCALC.

pickpoint (robot)

attribute (endpoint) of pick;
and describe its effect (“robot R is holding a payload at its endpoint P”):

pick (R) causes holding(R,P)

if pickpoint (R)=P.

By this way, additional special cases of an action can be defined without having
to modify the definitions of more general actions. Note that such a representation

of actions by special cases is a form of “hierarchical” representation of actions.
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Once such an action domain description is given, we can perform various rea-
soning tasks via "queries" in an action query language, like the variation of the
action query language 2 [40]. For instance we can present a query to CCALCas

follows:

:— query
maxstep :: 2;
O: —up(ll), -up(l2), -open;

maxstep: open.

The query above describes the initial state at time step 0, and the last line
describes the goal condition at time step maxstep=2.

Given a domain description and a query, CCALC checks whether the query is
satisfied by the domain description (in the sense of satisfiability planning of [41])

as follows:

1. it transforms the causal laws into a propositional theory I'p, via “causal

logic” [4],
2. it transforms the query into a propositional theory I'p,
3. it checks whether I'p UT'p is satisfiable;
4. if I'p UT'p is unsatisfiable, it returns No;

5. otherwise, it returns Yes and presents an example extracted from a satisfying

interpretation for I'p UI'p.

The transformations in the first two steps are different: the one in 1) is based on

literal completion, whereas the one in 2) is based on a simpler procedure (see [4]
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for a detailed description). Such a difference allows one to check the satisfiabil-
ity of other queries (for instance, for replanning) without executing the first step
again. Step 3) is done automatically by a state-of-the-art SAT solver, such as
MINISAT [42] or its parallel variant MANYSAT [43].

CCALcallows us to compute shortest plan as well. To find a shortest plan, we

modify the query above (let us label the modified query as ‘Query 1°):

:— query
label :: 1; % Query 1
maxstep :: O..infinity;

O: —up(1ll), -up(l2), -open;

maxstep: open.

With this query, CCALC successively tries to find a plan of lengthmaxstep=0, 1, ..

For Query 1, CCALC finds a shortest plan for maxstep=1 where both latches

are toggled at time step O:

0:
ACTIONS: toggle(1l1l) toggle (12)
1:

CCALC can also show the complete history of this plan, including state informa-

tion, if prompted:

0: -up (11) —-up (12) —-open
ACTIONS: toggle(ll) toggle(1l2)

1: up (11) up (12) open

18
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We can add some constraints to a planning problem specified as a query. For
instance, we can ensure that CCALCfinds the shortest plan, as shown in the fol-

lowing query:

:— query
label :: 2; % Query 2
maxstep :: O..infinity;

O: -up(1ll), -up(l2), -open;
maxstep: open;
[/\T | T<maxstep —>>

(=(T: up(12)) ->> —(T: toggle(1l1l)))].
With this modification, CCALC finds the following shortest plan instead:

O: -—up(ll) -up(l2) -open
ACTIONS: toggle(12)
1: up (12) —up (11) —open
ACTIONS: toggle (11)

2: up(ll) up (12) open

2.3 Why %+ and CCALC?

We have decided to use the action description language 4+ to describe action
domains due to its expressivity: we can formalize not only effects and precon-
ditions of actions, but also state/transition constraints and changes that do not

directly involve actions; we can represent not only deterministic effects but also
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nondeterministic effects of actions. Also ¥+ allows concurrency, unless specified
otherwise via nonexecutability constraints.

We envision agents (robots) in a framework that has the capability of solving
not only planning problems but also other reasoning tasks; since we aim endowing
agents (robots) with various kinds of high-level reasoning mechanisms (such as
prediction, postdiction, diagnosis, reasoning about shared resources, etc.) in the
sense of cognitive robotics [44]. The action description language %+, with the
query language defined above, provides a common language for all these reason-
ing tasks, and thus allows us to setup such a framework.

CCALC can answer queries about a domain description represented in €+
with respect to a reasoning task described in the query language above. There-
fore, it allows us to solve different sorts of reasoning problems mentioned above
(possibly with temporal constraints). Being able to add domain-specific temporal
constraints as part of queries, for instance, allow us to do intelligent replanning to
find different and “better” plans, as explained in the following sections.

Due to its modular structure and generic implementation, CCALC allows us
to use various kinds of search engines to answer queries: CCALC supports SAT
solvers such as MINISAT and the parallel SAT solvers like MANYSAT; the user
can choose which search engine to use for answering which query. Due to well-
studied relations between action languages and Answer Set Programming (ASP) [45],
as in [46], we can also use efficient ASP solvers instead of SAT solvers, as in [47].

CCALC also supports external predicates/functions that can be implemented in
some programming language of the user’s choice. These predicates/functions are
important, for instance, in embedding low-level geometric reasoning in high-level

reasoning, as explained in the following sections.
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CCALC has other useful features/utilities as well: it supports additive fluents
(to talk about the total effect of concurrently executing actions on numeric-valued
fluents that denote shared resources), macros (to define complex notions suc-
cinctly, in some ways similar to “derived predicates”), attributes (to talk about
special cases of actions). For more information about CCALC, we refer the reader

to [4].

21



Chapter 3

Assembly Planning With Multiple
Robots

Many existing planning and execution monitoring frameworks for robotic manip-
ulation consider the classical 3-layer robot control architecture (Fig. 3.1.1) based
on the observe-plan-act cycle, as discussed in Introduction. The idea is to compute
a discrete task plan, and then to find continuous trajectories for the task plan, and
then to execute these trajectories. If the execution of the plan fails, then the task
planner is asked to replan. We extend this 3-layer architecture by making use of

high-level causal reasoning at each level of the architecture as much as possible.
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/ Domain Description / / Planning Problem /

/

A\ /

Compute a Task Plan

|

Obtain a Continuous Trajectory
for each Task

A

PLANNING

Replan

MOTION PLANNING

Y

Execute the Plan

EXECUTION

Figure 3.1.1: Classical 3-layer robot control architecture for planning, execution
and monitoring.

3.1 A Planning and Execution Monitoring Frame-

work for Multiple Robots

We consider robotic manipulation problems with multiple robots. Our aim even-
tually is to compute a complete continuous trajectory for each robot to reach a
common goal in an optimal way, considering the possibility of concurrent exe-
cutions of actions by multiple robots; and to ensure that the robots execute this
plan robustly, considering the possibility of failures due to incomplete knowledge
(such as unknown obstacles) or uncertainty (such as human intervention). We
embed knowledge representation and automated reasoning in each level of the

classical 3-layer robot control architecture (Fig. 3.1.2), in such a way as to tightly
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Figure 3.1.2: Proposed framework for planning, execution and monitoring.

integrate these layers.
Let us describe our execution and monitoring framework shown in Fig. 3.1.2
in more detail. We start with an action domain description and a planning problem

description in the input language of CCALC, geometric models in VRML, and
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kinematic relations as a C++ program.

e A description of geometric models include specifications of the geometry

of robots, payloads, and other objects (e.g., obstacles) in the environment.

e Kinematic relations between robot end-effector configurations and robot

joint configurations are implemented as functions in C++.

e An action domain description is a set of causal laws that express precon-
ditions and direct effects of actions of robots, causal relations that do not
involve these actions directly (e.g., ramifications), and state and transition
constraints. These causal laws may include external predicates expressing
conditions that involve geometric reasoning (as shown in Section 2) so that

geometric models are also taken into account while a task plan is computed.

e A planning problem description is a set of formulas that express an initial
state (or a set of initial states, in case of uncertainty), goal conditions, and

temporal constraints.

Given an action domain description and a planning problem, first we com-
pute an optimal plan (a sequence of actions) (Ao, ...,A,) and its complete history
(including intermediate states) (So,A0,S1,---,Sn,An,Sp+1) using CCALC. The
computed plan may involve concurrent execution of actions by multiple robots;
so each A; is a set of primitive actions. The optimality of a plan can be defined in
terms of its length (the value of n) or the total cost of actions; in the following, we
consider the former. Next, given a discrete plan and its history, and considering the
given geometric models and kinematic relations, a collision-free trajectory 7 for

each robot (if one exists) is computed by our motion planner, based on Rapidly
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exploring Random Trees (RRT) [48]. Initially 7" is empty. For each transition
(Si,A;,Si+1) in the given history, the motion planner tries to compute a continuous
trajectory 7;. If such a transition 7; is found then it is appended to the end of 7'.

If the motion planner fails to find a continuous trajectory for a transition, we
identify the cause of that failure. There maybe various kinds of failure with dif-
ferent causes. Depending on the cause of the failure, we modify the planning
problem by adding domain-specific temporal constraints to avoid similar sorts of
failure, as shown in Section 2. Afterwards, the modified planning problem is
solved by CCALC, generating a different optimal task plan.

It is important to emphasize here two types of relations between different kinds
of problem solving. First, the bilateral interaction between causality-based rea-
soning and motion planning: the causal reasoner guides the motion planner by
finding an optimal task-plan; if there is no feasible kinematic solution for that
task-plan then the motion planner guides the causal reasoner by modifying the
planning problem with new temporal constraints. Second, the embedding of ge-
ometric reasoning in causal reasoning: while computing a task-plan, the causal
reasoner takes into account geometric models and kinematic relations by means
of external predicates implemented for geometric reasoning (e.g., to check some
collisions); in that sense the geometric reasoner guides the causal reasoner to find
feasible kinematic solutions. In the following, we illustrate these two aspects of
our approach in more detail.

Once such a trajectory is computed, we can ensure that the robots follow this

trajectory robustly by monitoring its execution.
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3.1.1 Execution Monitoring

To ensure that a plan is executed safely without failure in a dynamic setting, we
need to monitor its execution in systematic way, like in Algorithm 3.

According to this algorithm, if there is a plan failure, then first the cause of the
failure is identified. Afterwards, depending on the cause of the failure, a recovery
from the failure is achieved. For instance, suppose that a failure is detected during
the execution of an action A; at state S; at time step i of a plan with the history

(S0,A40,51,-..,An,Sp+1). There are basically three type of failure:

o Unknown obstacles: If this failure is due to some unknown obstacle, then
the robots shall go to a “safe” state (possibly the immediate previous state,
State S;), call the motion planner with a new configuration to obtain a feasi-
ble trajectory IT for the rest of the plan (with the history (S;,A;,Si+1,-..,An,Snr1))s
and, if there is such a feasible trajectory computed by the motion planner,

continue with the execution of this trajectory.

o Intervention: If the observed state is different than the expected state, then
the robots shall go to a safe state and ask for a new hybrid plan from this

state.

e Diagnosis: If the states are not changing as expected, and the failure can
not be detected based on sensor information, then the cause of failure is

detected by reasoning with the diagnosis algorithm (see Algorithm 4).

Note that these failures are generic, and our approach can be extended to solve

any similar failures.
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3.2 Example: Two Robots and Multiple Payloads

Consider two robots and multiple payloads on a platform. The payloads can be
manipulated by the end effectors of the robots. In particular, the end-effector of
each robot can pick (hold and elevate) or drop (release) the payload at one of its
end points. None of the robots can carry the payload alone; the robots have to
pick the payload at opposite ends. Since a payload is elevated from the platform
when the robots are holding it, the payload can not collide with the other pay-
loads. However, collisions between payloads may occur if a payload is dropped
on top of another one and such collisions are not permitted. Similarly, other types
of collisions (robot-robot, payload-obstacle and robot-obstacle) are not permitted
either.

Initially, a configuration of the payloads on the platform is given (e.g., as in
Fig. 3.4.1(a)). The goal is to reconfigure the payloads in an optimal manner (by
minimum number of steps). This problem requires payloads to be picked and
placed a number of times before they can be positioned into their final config-
uration. Due to the constraint that a payload can be carried by two robots only
and due to the optimality of the plan, this problem requires true concurrency.
Another challenge, meanwhile, is to avoid collisions of the payloads with each
other. Also, other sorts of failure may occur while executing the plan, due to in-
complete knowledge (such as unknown obstacles) or uncertainty (such as human
intervention); in such cases, the robots should be able to recover from the failure

if possible.
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3.3 Embedding Geometric Reasoning in Action Do-

main Descriptions

Let us first describe the action domain of the example above, in the input language
of CCALC (i.e., the action description language %' +).

We view the platform as a grid. We represent the robots by the constants r1
and r2. We denote the payloads by nonnegative integers, and denote the endpoints
of a payload i by the nonnegative integers 2i and 2i — 1.

We characterize each robot by its end-effector, and describe its position by a
grid point: the location (X, Y) of a robot R is specified by two functional fluents,
xpos (R) =X and ypos (R) =Y. Similarly, the location (X, Y) of an end point
P1 of the payload is specified by two fluents, xpay (P1) =X and ypay (P1) =Y.
Movements of a robot R in some direction D are described by actions of the form
move (R, D). Each such action has an attribute that specifies the number of steps
to be taken by the robot. In addition, we denote the actions of picking and drop-
ping a payload by pick (R) and drop (R); the former action has an attribute
that specifies at which endpoint the robot picks the payload.

In the following, suppose that R denotes a robot, P1 and P2 denote the end
points of a payload, N and N1 range over nonnegative integers 1, ..., maxN, and
D and D1 range over all directions, up, down, right, left. Also suppose that

X1, X2,Y1, Y2 range over integers 1, ..., maxXY.

3.3.1 Representing Actions and Change

We describe the preconditions and the effects of the actions as in [49]. For in-

stance, we describe the direct effect of a robot’s picking a payload, by the causal
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laws

pick (R) causes holding (R, P)

if pickpoint (R)=P.

These causal laws express that, after a robot R picks a payload at its endpoint P,
the robot is holding it at its endpoint P.

One of the preconditions of the action of a robot R’s picking a payload at
its endpoint P is that “R should not be holding P”’; otherwise, the action is not

executable. This is expressed by the causal laws

nonexecutable pick(R) if holding(R,P).

We can also express conditions on the concurrent executability of actions. For

instance, two robots R and R1 cannot pick a payload at the same endpoint:

nonexecutable pick(R) & pick(R1)

if pickpoint (R)=pickpoint (R1) & R@<R1.

A robot R cannot pick a payload while moving:

nonexecutable move (R,D) & pick (R).

In addition to causal relations that involve actions, as in the preconditions and
direct effects of actions above, we can also express causal relations that do not
involve actions directly. For instance, if a robot R is holding a payload P1, then

the location of the payload is the same as the location (X1, Y1) of the robot.
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caused xpay (P1l)=X1

if holding(R,P1l) & xpos(R)=X1l.
caused ypay (P1l)=Y1

if holding(R,P1l) & ypos(R)=Y1.

Such causal laws allow us to reason about ramifications of actions without de-
scribing them: whenever a robot moves then the payload it holds moves as its
indirect effect.

Finally, we can add state/transition constraints to ensure some conditions. For

instance, we can prohibit states where the robots hold different payloads:

caused false
if holding(R1,P1l) &
holding (R2,P2) &
R1Q@<R2 & P1\=P2

where -samePayload(P1l,P2).

where samePayload (P1,P2) describes that the endpoints P1 and P2 belong
to the same payload. Such causal laws allow us to reason about qualifications of

actions without describing them: the robots cannot pick different payloads.

3.3.2 Embedding Geometric Reasoning in Causal Laws

We can embed geometric reasoning in such an action domain description in two
ways: using state constraints and using external predicates.

Let us first consider collisions of payloads with each other. We can identify
the conditions under which payloads collide with each other, provided that the ori-

entations and the lengths of the payloads, as well as the positions of their leftmost
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bottom endpoints are given. For instance, consider two payloads K1 and K2 of
length 1engthP on the board, whose orientations are vertical. Suppose that the
left bottom endpoints of these payloads are (minXP (K1), minYP (K1)) and
(minXP (K2) ,minYP (K2) ). Then these payloads collide with each other if
abs (minYP (K1) -minYP (K2) ) =<lengthP. Once such collision conditions

are identified, we can prevent them:

caused false
if orientationP (Kl)=v &
orientationP (K2)=v & K1@<K2 &
-beingCarried (K1) &
-beingCarried(K2) &
minXP (K1) =minXP (K2) &

abs (minYP (K1) -minYP (K2) ) <lengthP.

Similarly, we can identify conditions for collisions between payloads with differ-
ent orientations, and add causal laws to prevent such cases.

Next let us consider collisions between the robots, or between a robot and
obstacles. To detect this sort of collisions, we need to know the geometric mod-
els and kinematic relations; however, such detailed information is not represented
at the high-level (otherwise, if we could represent it, the domain description and
thus the planning problem would be too large for the causal reasoner). Fortu-
nately, CCALC supports external predicates (as explained in Section 2). For in-
stance, we check whether a robot located at (X1, Y1) collides with another robot
at (X2,Y2), by an external predicate collision (X1,Y1l,X2,Y2) imple-
mented as a C++ program. Then we can add causal laws to ensure that the robots

do not collide with each other:
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caused false
if xpos(rl)=X1l & ypos(rl)=Y1l &
Xpos (r2)=X2 & ypos(r2)=Y2

where collision(X1,Y1l,X2,Y2).

While checking whether a robot located at (X1, Y1) collides with another robot
at (X2, Y2), the external predicate col1lision (X1,Y1,X2,Y2) forms adatabase
keeping which locations lead to a collision and which locations do not. This

database can be reused in the future.

3.4 Bilateral Interaction between Causal Reasoning

and Motion Planning

With the action domain description and the external predicate above, CCALC
combines causal reasoning with geometric reasoning to compute task plans with-
out robot-robot or robot-obstacle collisions. For instance, consider the environ-
ment in Fig. 3.4.1. Suppose that initially the robots r1 and r2 are at (1, 1)
and (9, 9) respectively; the first payload is located at (3,2) and (8, 2); the
second payload is located at (8, 5) and (3, 5); the third payload is located at
(9,3) and (9, 8). The goal is to move the payloads to the following locations:
first payload to (3, 2) and (3, 7); the second payload to (6, 7) and (6,2);
the third payload to (9, 8) and (9, 3). This planning problem can be described

in the language of CCALC by means of a “query” as follows:

¢

:— query % Query 1

maxstep:: 0 ..infinity;
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0: %

% robot 1

xpos (rl)=1

% robot 2

xpos (r2)=9,

o)

xpay (1) =3,

XpaY(2)28r

xpay (3) =8,
xpay (4)=3,
xpay (5) =9,
xpay (6)=9,

¢

maxstep: %
xpay (1) =3,
xpay (2)=3,
xpay (3) =6,
xpay (4) =6,
xpay (5) =9,
xpay (6) =9,

o

Initial

% endpoints

% endpoints

% endpoints

state

, ypos(rl)=1,

(1 and 2)
ypay (1) =2,
ypay (2) =2,

(3 and 4)
ypay (3) =5,
ypay (4) =5,

(5 and 6)
ypay (5) =3,
ypay (6) =8;

ypos (r2) =9,

of payload 1

of payload 2

of payload 3

Goal conditions

ypay (1) =2,

ypay (2) =17,

ypay (3)=7,
ypay (4)=2,
ypay (5) =8,
ypay (6) =3,

% endpoints of payload 1

% endpoints of payload 2

% endpoints of payload 3

% robots must not be holding any payloads
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[/\R /\P | -holding(R,P)].

This query, Query 1, asks for a plan with the minimum number of time steps.

CCALC then computes the following plan (Plan 1) of length 27 for this problem:

0: move(rl, up, steps=3)
move (rl, left, steps=1l)

move (r2, down, steps=4)

13: pick(rl, pickpoint=1l)
pick (r2, pickpoint=2)

14: move(rl, down, steps=2)
move (rl, right, steps=2)
move (r2, up, steps=3)

move (r2, left, steps=2)

26: drop(rl)

drop (r2)

Note that each step of the plan involves concurrent execution of a set of primitive
actions. For instance, at time step 13, both robots pick the opposite endpoints
1 and 2 of the payload 1 at the same time. At time step 14, the robot r1 moves
down by two units and right by two units at the same time (note that this concurrent
action essentially describes a diagonal move of the robot); meanwhile, the robot
r2 moves up by three units and left by two units.

For instance, consider the transition (S3,A3,S4) from the history of Plan 1:
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3: holding(rl,4), holding(r2,3),
xpos (rl)=3, ypos(rl)=5,
xpos (r2)=8, ypos(r2)=5,
move (rl, down, steps=3)
move (rl, right, steps=1l);
4: xpos(rl)=4, ypos(rl)=2,

Xpos (r2)=8, ypos(r2)=5,...;

where the end-points of the second payload (that the robots are holding) are at
(3,5) and (8, 5). The motion planner cannot find a continuous trajectory for
this transition since the payload collides with an obstacle at Step 4 (third kind of

failure). Then, Query 1 is modified by adding a constraint as follows:

:— query % Query 2

maxstep :: O..infinity;
O: ...; % Initial states
maxstep: ...; % Goal conditions

)

% Constraints
T<maxstep —>>
—((T: holding(rl,4)) &&
(T: holding(r2,3)) &&
(T: xpos(rl)=4) && (T: xpos(r2)=8) &&

(T: ypos(rl)=2) && (T: ypos(r2)=5)).

to ensure that CCALC does not consider S4 as a possible state. Then, after two

more tries, CCALC computes a different plan (Plan 2) without such a failure. The
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complete task plan is presented in Appendix A.

0O: move(rl, up, steps=1)
move (rl, right, steps=1)
move (r2, down, steps=2)
move (r2, right, steps=1)

1: move(rl, up, steps=3)
move (rl, right, steps=1)
move (r2, down, steps=2)
move (r2, left, steps=2)

2: pick(rl, pickpoint=4)
pick (r2, pickpoint=3)

3: move(rl, down, steps=1l)
move (rl, right, steps=3)
move (r2, up, steps=2)

move (r2, right, steps=2)

26: drop(rl)

drop (r2)

Thus, for each action of this plan, the motion planner can find a continuous

collision-free trajectory (Fig. 3.4.1).
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Figure 3.4.1: (a) presents the initial state, while (b)—(f) illustrate the execution of
Plan 2. Colors red and blue are associated with Robots 1 and 2. Circles indicate
the positions of the robot end-effectors and circles’ labels denote the time steps.
Solid red and blue lines denote the trajectories of robot end-effectors. Green,
red and magenta lines denote Payloads 1-3. Black disks represent the obstacles.
For instance, at Step 3, end-effectors of Robots 1 and 2 are located at (3, 5)
and (8,5) respectively, and robots hold Payload 2. At Step 4, end-effectors
of Robots 1 and 2 are located at (6, 4) and (10, 7), still holding Payload 2.
Trajectory of Payload 2 moving from Step 3 to 4 is depicted in brown.

3.5 Case Studies

We have tested the applicability and effectiveness of our planning and monitoring
framework using two pantograph robots (two degrees-of-freedom planar parallel
manipulators) to perform a complex manipulation task that requires concurrent
execution of actions. In particular, we used symmetric wooden sticks with metal

tips as payloads. To enable pick and drop actions, we equipped the end-effectors
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of the pantograph robots with linear servo motors with magnetic tips acting out
of plane. The magnetic tip of the linear servo motors can pick (hold and elevate)
a payload at one of its end points. Similarly, the payload can be dropped by re-
tracting the magnetic tip inside its case. The robots were closed loop controlled
at 100 Hz to ensure robust trajectory tracking of their end-effectors. The con-
trollers of the robots have been implemented on a PC-based control architecture,
that compromises of a PCI I/O card and a workstation, simultaneously running
RTX real-time operating system and Windows XP SP2.

In the following, we present three sample scenarios in this setting. Scenario
1 involves no failures due to incomplete knowledge (such as unknown obstacles)
or uncertainty (such as human interventions). Scenario 2 involves a collision of a
payload (while being carried) with an unknown obstacles. Scenario 3 involves a

human intervention that changes the position of a payload.

Scenario 1 — No surprises

Consider the example from the previous section, where Plan 2 is a collision-free
plan. Fig. 3.4.1 depicts the experimentally recorded trajectories of the robots
during this plan execution, Fig. 3.5.1 shows the snapshots of the plan execution.
Fig. 3.4.1(a) depicts the initial configuration while the first six steps of the plan
execution are shown in Fig. 3.4.1(b). Observe that the successful completion of
this plan necessitates payloads to be picked and dropped a number of times before
they can be arranged to their final configuration. For instance, the robots first pick
Payload 2 and drop it to an intermediate location (Fig. 3.4.1(b)), then move Pay-
load 3 to an intermediate location (Fig. 3.4.1(c)), then place Payloads 1 and 3 into

their goal positions (Fig. 3.4.1(d) and (e)), and finally move Payload 2 to its final

39



position (Fig. 3.4.1(f)).

Scenario 2 — Unknown obstacles

Suppose that there is an obstacle outside of the grid but just next to the points
(0, 6) and (0, 7), and that the robots do not know about the presence of this ob-
stacle. Suppose also that the robots are executing Plan 2. Experimentally recorded
trajectories of the robots is given in Fig. 3.5.2 and the snapshots of plan execution
are presented in Fig. 3.5.3. At time step 14, there is an action failure because
the payload collides with the unknown obstacle (Fig. 3.5.2(a)). Following Algo-
rithm 3, the robots identify the cause of this failure as “unknown obstacles”, goes
back to a safe state, in this case the previous state S;4, and calls the motion planner
with an updated configuration (Fig. 3.5.2(b)). The motion planner finds a different
trajectory for the transition (S14,A14,S;5) that does not collide with the unknown
obstacle. After the robots follow this new trajectory they continue with execution

of the rest of the task plan as computed earlier (Fig. 3.5.2(c)—(e)).

Scenario 3 — Human interventions

Suppose that the robots are executing Plan 2 and at time step 24, someone changes
the position of Payload 3. The experimentally recorded trajectories for this sce-
nario are shown in Fig. 3.5.4, the snapshots of plan execution are given in Fig. 3.5.5.
In particular, when intervention takes place at time step 24 (Fig. 3.5.4 (a)), follow-
ing Algorithm 3, the robots identify the cause of this failure as “human interven-
tion”, goes back to a safe state, in this case the previous state S»3, and calls the task

planner with a new initial state (Fig. 3.5.4 (b)). The task planner finds a different
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task plan, Plan 3, (and its corresponding trajectory) from that point on to reach the

goal:

O: move(rl, left, steps=3)
move (r2, left, steps=3)

1: move(rl, down, steps=l)
move (rl, left, steps=1l)
move (r2, down, steps=1)
move (r2, left, steps=1l)

2: pick(rl, pickpoint=6)
pick (r2, pickpoint=5)

3: move(rl, right, steps=3)
move (r2, right, steps=3)

4: drop(rl)
drop (r2)

5: move(rl, up, steps=1)
move (rl, right, steps=1)
move (r2, up, steps=1)
move (r2, right, steps=1l)

6: pick(rl, pickpoint=4)
pick (r2, pickpoint=3)

7: move(rl, down, steps=3)
move (rl, left, steps=2)
move (r2, down, steps=3)
move (r2, left, steps=2)

8: move(rl, up, steps=1l)
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move (rl, left, steps=2)

move (r2, up, steps=1l)

move (r2, left, steps=2)
9: drop(rl)

drop (r2)

The robots follow Plan 3 and its corresponding trajectory to reach the goal

state (Fig. 3.5.4 (c)-(d)).

3.6 Discussion

In this chapter we have presented a modular framework to monitor the execution
of a plan computed with hybrid planning approach. The main contributions of this

chapter can be summarized as follows:

Hybrid plan repair/recovery relative to failures. The planning and moni-
toring framework introduced in this chapter considers two sorts of failures
that may take place in robotic manipulations, and decides for a recovery or
plan repair based on the kind of failure. Unlike many existing approaches
to monitoring, plan repair or recovery from failures does not only rely on

motion planning but also causal reasoning as well.

Temporal monitoring conditions. Due to the use of a causal reasoner, the ex-
ecution monitoring framework can specify some monitoring conditions as
temporal constraints while asking for a new task plan once human interven-

tion is detected. In that sense, execution monitoring is lifted to high-level.
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We have illustrated the usefulness of this approach with a physical implementation
of a problem that involves two robots working for a common goal. We have

considered three scenarios of plan execution:

No surprises. The robots have a complete knowledge of the environment

and nothing unexpected occurs in the domain while a plan is being executed.

Collisions with unknown obstacles. The robots do not have a complete
knowledge of the obstacles in the environment and thus collide with such

an unknown while executing a plan.

Human interventions. While the robots are executing a plan, a human inter-

venes and change the locations of some payloads.

In each scenario, we have shown how the robots find and execute a plan using our

plan execution and monitoring algorithm.
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Algorithm 1 TASK&MOTION_PLAN
Input: Action domain description &, and planning problem &7 with the initial
state(s) S and the goal G
while true do
plan, P < Compute a shortest task plan P of length n (within a history H =
(S0,A0,S1, -5 Sn,An,Sn+1), where Sop = S and S, = G) using CCALC with
2 and &7 (if there is such a plan);
if —plan then
return false;
T :=(); //Initially the trajectory is empty
trajectoryFound := true;
i:=0;
while trajectoryFound do
(Si,Ai,Si+1) < Extract from H the next transition;
// Compute a trajectory 7 for (S;,A;, Siy1), if one exists
trajectoryFound, w <— MOTION_PLAN(S;,S;+1);
if —trajectoryFound then
& < Identify the cause of the failure and modify the planning problem
& accordingly;
else
T < Append wto T;
if A; is the last action then
return true,P,H,T;
1++;
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Algorithm 2 MOTION_PLAN
Input: Initial state S and goal state G
/I C, t, d denote the configuration space, a specified timeout and a specified
distance
s < Find initial configuration in C that corresponds to S;
g < Find goal configuration in C that corresponds to G;
V:={(s,1),(g,2)}; // The roots of Tree 1 and Tree 2
E :=0; // Empty set of undirected edges in these trees
connected := false;
while —connected and the timeout 7 is not exceeded do
p < Sample a random point in C;
if p is collision-free then
p1 < Find the closest point to p in V with label 1;
P2 < Find the closest point to p in V with label 2;

fori=1,2do
qi <+ Find the point in V with a distance of d from p; in the direction of
p;

if the path connecting p; ad g; is collision-free then
V:=VU{{qgi,i)}; // Expand Tree i with g;
E:=EU{{piqi}};
if both the path connecting p and p1, and the path connecting p and p2 are
collision-free then
V:=VU{(p,_)}; // Add p with an arbitrary label
E:=EU{{p,p1},{p,p2}}; // Connect the two trees
connected := true;
if connected then
7 < Extract the trajectory from (V,E);
return true,m;
else
return false; // No trajectory
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Algorithm 3 EXECUTE&MONITOR
Input: An action domain description &, a planning problem &7 with the initial
state(s) S and the goal G
// Find a task plan P with history H and trajectory I1
planFound, P, H, I1 + TASK&MOTION_PLAN(Z,%?);
if —planFound then
Abort; // no plan to execute
executionCompleted := false;
while —executionCompleted do
(S,A,S’) < Extract from H the next transition;
4 < Extract from IT the trajectory for (S,A,S’);
failureDetected <— Execute A by following w4 at the current state S, and
meanwhile check for any interventions or unknown obstacles;
if —failureDetected then
if A is the last action of P then
executionCompleted := true;

else
I < Find a set of possible safe states close to S;
if / == 0 then

Abort; // no solution
else if S € I then
Go back to state S;
failureCause < ldentify the cause of the failure;
if failureCause is “Unknown Obstacle” then
trajectoryFound,I1 <— Find a new trajectory for the rest of the plan P
starting from S
if —trajectoryFound then
& <« ldentity the cause of the failure and modify the planning
problem & accordingly by adding temporal constraints;
EXECUTE&MONITOR(Z,27);
else if failureCause is “Human Intervention” then
& < Modity the planning problem & accordingly by adding tem-
poral constraints;
EXECUTE&MONITOR(Z,2);
else
Pick a safe state S in I;
& < Modify the planning problem & accordingly by adding temporal
constraints and setting the initial state as S”;
EXECUTE&MONITOR(Z, £);
return ; // plan successfully executed




o' nitial State

Figure 3.5.1: Snapshots of execution of Plan 2. Note that the camera is rotated
90° counterclockwise with respect to the trajectory plots in Fig. 3.4.1 for a less
occluded view.
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(a) Collision with an unknown obstacle
9

(b) Backtracking to a safe state
of [

26727

t 2 3 4 5 6 7 8 9 10

(c) Execution of new motion plan

Figure 3.5.2: (a)—(e) present execution of Plan 2 from step 11, where there is
an unknown obstacle (green disk) just outside the workspace, next to the points
(0,6) and (0, 7), interfering with the motion of the robots. Colors red and
blue are associated with Robots 1 and 2. Circles indicate the positions of the
robot end-effectors and circles’ labels denote the time steps. Solid red and blue
lines denote the trajectories of robot end-effectors. Green, red and magenta lines
denote Payloads 1-3. Black disks are the known obstacles, while the green disk
represents the unknown obstacle. At Step 14, there is an action failure because
the payload collides with the unknown obstacle (Fig. 3.5.2 (a)). In (b) the robots
identify the cause of failure and backtrack to a safe state. A new motion plan is
found and executed in (c). The execution of rest of the plan is presented in (d)—(e).
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Figure 3.5.3: Snapshots of execution of Plan 2, starting from time step 14. At time
step 14, the payload collides with the obstacle. Note that the camera is rotated
90° counterclockwise with respect to the trajectory plots in Fig. 3.5.2 for a less
occluded view.
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Figure 3.5.4: (a)—(d) present execution of Plan 2 from step 22. Colors red and
blue are associated with Robots 1 and 2. Circles indicate the positions of the
robot end-effectors and circles’ labels denote the time steps. Solid red and blue
lines denote the trajectories of robot end-effectors. Green, red and magenta denote
Payloads 1-3. Black disks represent known obstacles. At Step 24, there is a
human intervention and the position of Payload 3 is changed (Fig. 3.5.4 (a)). In
(b) the robots identify the cause of failure and replan accordingly. A new task plan
and corresponding trajectories are found and executed in (c)—(d).
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Figure 3.5.5: Snapshots of execution of Plan 2, starting from time step 23. At time
step 24, there is a human intervention: someone changes the position of Payload 3.
After putting Payload 2 to a safe position, the robots continue with the execution
of the new task plan, Plan 3. Note that the camera is rotated 90° counterclockwise
with respect to the trajectory plots in Fig. 3.5.4 for a less occluded view.
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Chapter 4

Cognitive Factories With Multiple
Teams Of Robots

So far, we have discussed execution and monitoring of a plan by a single team of
robots. Now, consider multiple teams of robots, possibly sharing some resources,
trying to achieve a common goal. This problem is more challenging: On the one
hand, each team tries to complete its task as early as possible. On the other hand,
all the teams try to use the shared resources as efficiently as possible so that all the
tasks for all teams are completed as soon as possible. One approach to solve such
a problem would be to model the whole domain (including all the workspaces
of all teams) as a single planning problem and employ a planner to find optimal
plans. Then, the execution and monitoring framework presented in the previous
section can be utilized without any modifications. However, as the problem size
gets larger, solving the planning problem and monitoring the execution of the

overall plan becomes computationally intractable.
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4.1 A Planning and Execution Monitoring Frame-
work For Multiple Teams of Robots

We introduce a novel framework, shown in Fig. 4.1.1, where each team au-
tonomously finds its own plan and monitors its execution, and where a central
agent ensures optimality of the overall plan by orchestrating efficient use of shared

resources through communication with the teams.

Central Agent

)
I o
2 %
/ G’/&r

Figure 4.1.1: Decoupled planning, execution and monitoring framework

Suppose that the goal is to complete all the assigned tasks of all the teams in a
minimum number of steps, under the assumption that teams can exchange robots.
For a plan length £, a team is a lender if it can complete its task on its own in k
steps; a borrower if it can not complete its task on its own in k steps. Assuming
that a team can not lend a robot and borrow a robot in a plan and that a team can
not lend or borrow more than one robot, we design an intelligent algorithm that

finds an optimal decoupled plan by efficiently using the shared resources. This
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algorithm relies on the following three sorts of queries (asked to each team) to

decouple plans and to orchestrate robot exchanges among the teams:
e Can the goal be achieved in k steps, without any robot exchanges?
e Can the goal be achieved in k steps, while lending a robot before step kg?
e Can the goal be achieved in k steps, while borrowing a robot after step ko?

In decoupled planning, the goal is to match each borrowing team with a differ-
ent lending team so that the matched teams agree on lend/borrow times. Let
lend; denote the time step at which Team i can lend a robot (i.e., Team i answers
the first query above affirmatively for k = lend;). Let borrow; denote the time
step at which Team j can borrow a robot (i.e., Team j answers the second query
above affirmatively for k = borrow;). Let transport denote the transportation de-
lay. Then, there is a matching between the lending team and the borrowing team,
if lend; + transport < borrow ;. Based on this observation, the optimal decoupled
planning algorithm uses binary search for each team to find valid lend/borrow
times. Details of this algorithm are discussed in [50].

Once a decoupled plan is found, each team starts its own plan and monitors its
execution. When a failure is detected, then the central agent is asked to coordinate

replanning.

4.2 A Cognitive Painting Factory Scenario

Consider a Painting Factory with multiple teams of robots, where each team is lo-
cated in separate workspace and each workspace produces different colored boxes.

To complete the task each box should be painted, waxed and stamped in every
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workspace. The teams are heterogeneous. Each team is composed of two types
robots with different capabilities: worker robots and a single carrier robot.

Worker robots can move horizontally and change their end-effectors to com-
plete different tasks such as painting, waxing or stamping. Carrier robots can
move both horizontally and vertically, and push or pull the worker robots to make
them move vertically. Each workspace is depicted as a grid and contains an assem-
bly line along one of the walls to carry the boxes and a pit stop area where worker
robots can change their end-effectors. To make more efficient use of shared re-
sources, teams can exchange robots: a team can give a worker robot at any step
through their pit stop and another team can receive it through its pit stop after a
transportation delay. While executing the task, the robots may be broken, or a
new task (e.g., the number of boxes may be increased due to a new order) may be
assigned to teams.

The teams act as autonomous cognitive agents; therefore, each team makes
its own plan to complete its own designated task. Given the initial state of each
workspace and the designated tasks for each team (e.g., how many boxes of which
colors to paint), the goal is for all the teams to complete these tasks in a minimum
number of steps. Since teams can lend or receive worker robots from other teams
and each team makes its own plan, we use the proposed optimal decoupled plan-
ning algorithm to reach this goal.

During a plan execution, if any unexpected event occurs, as mentioned above,
the goal is to diagnose the cause of the failure or discrepancy, and find an opti-
mal (decoupled) plan for recovery. We propose to reach this goal by means of a

diagnosis algorithm.
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4.3 High Level Representation of the Factory

We represent a cognitive factory in the high-level action language ¢+ [4], which
is a logic-based formalism based on causality. We can describe preconditions
and (conditional) effects of actions, as well as indirect effects of actions and
static/dynamic constraints with this language. Also we can describe true concur-
rency (where actions cannot be serialized) and nondeterministic effects of actions
(where we are not sure about the outcome of an action).

Consider, for instance, a painting factory where each workspace is viewed as
a grid. Let us represent the carrier robot by the constant c1; n worker robots by
the constants wl, w2 ... wn; and each one of b boxes with a distinct number in
{1,...,b}.

We consider the following fluents to represent this factory:

e The robots are supposed to be located at grid squares; therefore, the loca-
tion of a robot R is specified by two functional fluents, xpos (R) =X and

ypos (R) =Y.

e The boxes are supposed to be located in some order on the assembly line;
therefore, the location L of a box B on the assembly line is specified by a

single fluent 1inePos (B) =L.

e The status of a box B is denoted by the functional fluent workDone (B) =WS
where wWs stands for a work stage: O—unprocessed, 1—painted, 2—waxed,

3—stamped.

e A newly painted box is wet and it has to be left to dry before it can be

waxed; to formalize this transition constraint, we need a relational fluent
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wetpaint (B) to show that box B is wet.

e The functional fluent endEf fector (W) =E denotes that the worker robot w
has the end-effector £; the value of E denotes the role of the worker relative

to the work stage: 1—painter, 2—waxer, 3—stamper.

e The carrier robot needs to attach to and detach from the worker robots, to
be able to push or pull them along the vertical axis. Therefore, we need
a relational fluent attached (C, W) to express that the carrier robot C is

attached to the worker robot Ww.

e For robot exchanges between teams, we consider a relational fluent bench (W)
to describe that a worker robot W is at the bench area and ready for an ex-

change.

We also consider the following actions:

e A robot R (which may be a worker W or carrier C) can move in the direction

D by one unit; we denote this action by move (R, D).

e A worker robot W can perform the following actions: swapEndEffector (W, E)—
changing its end-effector to E, workOn (W, B) —working on a box B to pro-

ceed to the next work stage.

e A carrier robot can perform the following actions: attach (C, W) —attaching
to a worker robot W, detach (C)—detaching from the worker robot it is at-
tached to, push (C) —pushing the worker robot (it is attached to) vertically
by one unit, pull (C)—pulling the worker robot (its is attached to) vertically

by one unit.
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e In addition to the actions of robots in a team, there is also the action of

shifting the assembly line, denoted by 1ineshift.

e For robot exchanges between teams, we introduce two actions, namely
giveRobot (W) which puts w to the bench (W needs to be in the pit stop
area first) and takeRobot (W, X, Y) which takes w from the bench and puts

itat (X,Y) in the pit stop area.

In €+, we describe actions and change by “causal laws.” Consider, for in-
stance, the action workoOn (W, B) . We formalize by the following causal law that
this action, as its direct effect, increments the work stage ws of a box B if the

worker robot W is working on B:

workOn (W, B) causes workDone (B)=WS

if workDone (B)=WS-1.

The action workOn (W, B) denotes painting if the current work stage is 0, i.e.,
workDone (B) =0. Therefore, we formalize that painting a box B causes the box

to have wet paint, by the causal law

workOn (W, B) causes wetpaint (B)

if workDone (B)=0.

We can describe change that does not directly involve an action of a robot. For

instance, we formalize that a box with wet paint gets dry, by the causal law
caused -wetpaint (B) after wetpaint (B).

We describe preconditions of actions by causal laws as well. For instance, we

describe that a robot W cannot work on a box B that still has wet paint, as follows:
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nonexecutable workOn (W,B) if wetpaint (B).

and that a worker robot W can work on a box B only if the worker has the appro-

priate end-effector for the next work stage, as follows:

nonexecutable workOn (W, B)

if endEffector (W)=WS & workDone (B) \=WS-1.

Similarly, we can express that a worker robot can work on a box if it is right next
to the assembly line and it is aligned with the box, that the worker robots do not
move vertically, that a worker robot swap its end-effector only if it is in the pit
area, and other preconditions of the worker’s actions. We can also formalize the
preconditions of a carrier’s actions: A carrier attaches to a worker only if it is right
on top of it; a carrier can not push/pull a robot it is not attached to it.

Concurrent actions are allowed unless specified otherwise. For instance, we
can express that a carrier cannot detach and pull at the same time by the causal

law
nonexecutable detach(C) if pull(C).

Similarly, we prevent the following concurrent actions: A worker cannot work
on a box while the line is shifting; the pushing/pulling carrier robot and the
pushed/pulled worker robot cannot be involved in any other action; and a mov-
ing robot cannot attach or detach or work on a box.

Once an action domain is described by a set of causal laws as shown above,
we can present it to CCALC and ask CCALC “queries” about the existence of
plans or the causes of observed failures. CCALC transforms the given domain

description and the query into a set of propositional formulas, calls a SAT solver
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(e.g., MANYSAT [43]) to find a model of these formulas, and extracts an answer
to the given query from this model. For more detailed information about CCALC,

we refer the reader to [4,5].

4.4 Causality-Based Reasoning for Finding Optimal
Decoupled Plans for Multiple Teams of Robots

One of the reasoning tasks that each team of robots should be able to perform is
planning. A plan of length k is a sequence (Ao, ...,A;_1) of (concurrent) actions.
Here each A; is a set of elementary actions. If A; is empty then it corresponds to
“waiting”’; otherwise, A; characterizes the concurrent execution of the elementary

actions it contains.

Planning Problem. Given an action domain description &, an initial state s, a goal

g, and a nonnegative integer k, find a plan of length at most k.

We can present a planning problem to CCALC by means of “queries”. For
instance, the following query asks for a plan whose length is at most 100, for a

team with one worker (w1) and one carrier (c1):

- query
maxstep :: 100;
0: % INITIAL STATE
% no robot is attached to another
[/\C /\W |-attached(C,W)],
% no block has wetpaint
[/\B | —-wetpaint (B)=0],

o)

% worker is at (1, 3)
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xpos (wl)=1, ypos(wl)=4,
% carrier is at (1,1)
xpos (cl)=1, ypos(cl)=1,

[o)

% boxes are not yet processed
[/\B | linePos (B)=B+linelength],
[/\B | workDone (B)=0];

maxstep: %GOAL

o

% boxes are painted
linePos (maxBox) =0,

[/\B | workDone (B)=3].

If we replace maxstep :: 100 withmaxstep :: 18..100, then the query
asks for a shortest plan whose length is at least 18 and at most 100. In that case,
with the domain description whose parts are briefly explained above in the previ-
ous section, CCALC finds a shortest plan of length 29 in 10 CPU seconds using

the parallel SAT solver MANYSAT.

4.5 Diagnostic Reasoning in a Cognitive Factory

In the painting factory domain, a robot may get broken and thus may not succeed
attaching to another robot or working on the boxes. We assume that a global
sensor can detect if robots are attached/detached (but cannot detect which robot is
broken), and the work stage. Once such discrepancies (‘“‘exceptions”) are noticed,
the goal is to find their possible causes (i.e., which robots can be broken) so that an
external agent (e.g., human or some other robot) can inspect the possibly broken
robots and repair them. To take into account such discrepancies, we modify the

domain description, and introduce an algorithm that computes minimal diagnoses
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by means of asking CCALC prediction queries with temporal constraints over the

modified domain description.

4.5.1 Modifying the Domain Description: Exceptions

We introduce a new fluent broken (R) to describe that a robot R may get broken

at any step:

caused broken (R)

if broken(R) after -broken (R).

and then we modify the causal laws describing the effect of attach (C, W) as

follows:

attach(C,W) causes attached(C, W)

if -broken(C) & -broken (W).

Similarly, we modify the causal laws describing the effects of detach (C) and

workOn (W, B).

4.5.2 Finding Minimal Diagnosis

Suppose that after a sequence (Ao, ...,A,) of (concurrent) actions is executed at a
state S, a discrepancy is observed between the expected state (with respect to the
domain description) and the observed state S’ (obtained by sensors). In the paint-
ing domain, the causes of such discrepancies are due to broken robots; therefore,
we can identify possible diagnoses by sets of possibly broken robots. We can find

the set C of all minimal sets of at most k broken robots by Algorithm 4.
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Algorithm 4 DIAGNOSE

Input: A state s, a sequence A, ...,A, of actions executed at s, an observed state s', a
nonnegative integer k
Output: Current state for a team, potentially updated by robot breakdown information
R < set of unbroken robots at state s;
C <+ set of sets of at most k candidate robots to explain the anomalies, empty initially;
m := n; holds := false;
while m > 0 and C = 0 do
// Find minimal sets of at most k possibly broken robots, assuming that actions
Ay, ...,A;, are completely executed
i=1;
while i < kand C=0do
for all set r of i robots in R do
s, +— modify s’ by making robots in r broken;
holds < check if executing Ay, ...,A,, (and possibly a subset of each action in
Amst,-.-,Ay) at s results in s,;
if holds then
C:=CU{r};
i++;
m——;
x < inspect the sets of robots in C to find the broken robots, and modify the state s’ by
specifying the broken robots;
return x;

In the presence of qualification constraints, failure of some actions may pre-
vent the execution of upcoming actions, leading to an unexpected state. For in-
stance, if a carrier fails to attach to a worker (since the carrier is broken), the
carrier cannot push the worker to the assembly line. Therefore, to be able to find
a diagnosis for a discrepancy, the outer while loop of Algorithm 4 considers cases
where only the first m =n,n—1,...,1 actions are completely executed. Then, the
inner while loop of Algorithm 4 checks (through a query to CCALC) for every
subset r of at most i = 1,2, ..., k robots whether the execution of Ay, ...,A,, of ac-
tions at S leads to S’ where the robots in r are broken. If CCALC returns a positive

answer to the query, then two important information becomes available: 1) an ex-
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planation as to when the robots in » may have got broken during the execution of
these actions, 2) which actions in A, 1, ...,A, are executed.

For instance, consider the execution of a single concurrent action attach (c1,w3),
workOn (w3, 2) at a state where c1 is not attached to w3 and Box 2 is waxed (i.e.,
stage is 2). After this action is executed, we observe an unexpected state where
c1 is not attached to w3 and Box 2 is stamped (i.e., stage is 3). To find a minimal
diagnosis, Algorithm 4 checks whether a single robot might be broken (n = 1,

k =1) by a CCALC query. For the carrier robot c1, the query looks like:

maxstep :: 1;
0: —attached(cl,w3), workDone (2)=2,
0: attach(cl,w3), workOn (w3,2),
-[\/ V_A | V_A\=attach(cl,w3) &
V_A\=workOn (w3,2)1]1;

[

maxstep: % observed state
broken(cl), —-attached(cl,w3),

workDone (2) =3

Here the two lines before the observed state description express that no other ac-
tion V_A is executed in addition to attach (c1, w3) and workon (w3, 2). CCALC
returns a positive answer with an explanation that the robot c1 might be broken
initially. Note that, to a similar query for the worker robot w3, CCALC returns a
negative answer (otherwise work stage would not have changed); therefore, w3 is
not broken.

It is important to note here that, since broken robots are viewed and formulated

in the domain description as “exceptions”, specifying these exceptions in queries
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does not lead to inconsistencies, due to the nonmonotonic semantics of 4 +.
Here is another example. Consider the execution of attach (cl,w3) and

lineShift followed by push (cl) at a state where c1 is not attached to w3.

After the execution, it is observed that c1 is still not attached to w3. Algorithm 4

finds a minimal diagnosis of k = 1 robot, by the query

maxstep :: 2;
0: —-attached(cl,w3), ...;
0: attach(cl,w3), lineShift,
-[\/ V_A | V_A \=attach(cl,w3) &
V_A \=lineshift];
1: =[\/ V_A | V_A \= push(cl)];

[}

maxstep: % current observed state

broken (cl), -—-attached(cl,w3),

for which CCALC returns a scenario that not only hints that c1 is broken but also
shows that push (c1) is not executed.
Note that in a workspace with x robots, DIAGNOSE checks O(n x x) such

queries.

4.5.3 Repairing as part of Replanning

Once broken robots are identified by Algorithm 4 as part of our execution and
monitoring algorithm, an external agent can repair them. For that, we modify
the domain description further by introducing a new action repair (R) to repair
broken robots R. The preconditions and effects of this action are described by

causal laws, including the following
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repair (R) causes -broken (R).

nonexecutable repair(R) 1if -broken(R).

We also add causal laws to ensure that a robot does not perform any other actions
while being repaired, or when it is broken.

With the modified domain description, the execution and monitoring algorithm
can ask CCALC to compute a plan to reach the goal from the observed state S’
where discrepancy is detected. Here, we also specify the broken robots as part of

S’ so that they get repaired as part of replanning.

4.6 Embedding Diagnostic Reasoning in an Execu-

tion Monitoring Framework

Let us demonstrate how our diagnosis algorithm and optimal decoupled planning
algorithm can be embedded effectively in an execution and monitoring frame-
work.

Algorithm 5 presents the overall execution and monitoring algorithm. First,
for each team 7, INIT tries to compute a plan Px|i] of length at most kx; if such
a plan is computed (i.e., the team may be able to spare a robot) then the team
is designated as a lender; otherwise, it is designated as a borrower. After that,
Algorithm 5 tries to find an overall plan with minimum number of steps, calling
FIND_OPTIMAL_PLAN; if such a plan is found, then it is executed by the teams.
During the execution, if a discrepancy is detected between the observed state of the
world and the expected state, then Algorithm 5 tries to diagnose the cause of the

discrepancy in terms of minimum number of broken robots, calling DIAGNOSE.
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If one of the robots is found as broken, then Algorithm 5 asks CCALC for a new
plan that may include repair of the broken robot. Otherwise, the algorithm asks

CCALC for a new plan from the observed state.

Algorithm 5 EXECUTE&MONITOR WITH DIAGNOSIS
Input: An action domain description &, a nonnegative integer k, n planning problems
P, P,..., P, (one for each team) with initial states si,ss,...,5, and goal states
g1,82,---,8n, and a transportation delay ?;
Output: Achieve the goals of all teams in minimum time steps
// Let X be a tuple consisting of a plan length kx; and, for each team i, a plan Px|i]
of length kx, team role rolex|[i], and lower and upper bounds, Ix[i] and ux[i], on the
earliest/latest lend/borrow times.
kx :=k;
for all teams i do
Px [i],rolex[i],lx [i], 1756 [l] — INIT(.@, kx, <@X[i]);
while kx > 0 do
X + FIND_OPTIMAL_PLAN(Z, &, %,,..., Py, t4,X);
replan := false;
while —replan N kxy > 0 do
kX = kX — 1;
for all teams i do
Aj,ci,ei,0; < extract from Px[i] the actions to be executed, the current state, the
expected state after A; and the observed state after A;;
Ix[i],ux|i], rolex[i] +— update the bounds and roles;
updated := false;
if [} 7é e then
updated = true;
S; < DIAGNOSE(@, L@i,ci,oi);
if new order of boxes then
updated := true;
;< modify the planning problem;
if updated then
replan := true;
s; +— obtain the current state
Py [i},rolex [i],lx [i],ux [l] — INIT(.@,kx, y,’);

Consider, for instance, four teams: Team 1 has 1 worker and has to paint 4

boxes, Team 2 has 3 workers and has to paint 5 boxes, Team 3 has 2 workers and
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Figure 4.6.1: Snapshots for three consecutive states (Steps 16—18) of plan execution for
workspaces. The pink assembly line is along the north wall; the pit stop area is marked
by P; the squares are the boxes (1: unprocessed, 2: painted and wet, 3: painted and dry, 4:
waxed, 5: stamped); the large robot is the carrier, it can be attached (a) or unattached (u);
the triangles are the workers, which can have different end-effectors (2: painter, 4: waxer,
5: stamper); the benched robots are either white (ready to be given to another team) or
black (still in the transportation delay).

has to paint 4 boxes, and Team 4 has 1 worker and has to paint 3 boxes. For ky =
k =1, no plan is found for any of the teams (by INIT). Then FIND_OPTIMAL_PLAN
finds an optimal decoupled plan of length 27. According to this plan, Team 1
completes its tasks in 27 steps with a help received at Step 13. While this plan
of length 27 is being executed, at Step 16, the carrier of Team 4 (c1) tries to
attach to the worker w1, but fails. This discrepancy is detected at Step 17 (i.e.,
attached(cl,wl) is not observed). DIAGNOSE (with m = 26 and k = 1) in-
fers that c1 is broken (as explained in the first example of Section 4.5.2), and

returns the observed state s, by adding the information about the broken robot.
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Since a discrepancy is detected during the execution Team 2’s plan, the cur-
rent states of other teams are also obtained for the purpose of decoupled re-
planning. During replanning, no plan is found for Team 2 to complete the re-
maining job in 10 steps, causing it to become a borrowing team. The other 3
teams on the other hand are lenders: Teams 2 and 3 were lenders in the origi-
nal plan, and they continue to be lenders; Team 1 was a borrower in the orig-
inal plan, however after borrowing a robot at Step 13, it became self-sufficient
and is also treated as a lender for the replan. There is a free robot sent to the
bench by Team 3 before the failure. Under these conditions, an overall decou-
pled plan of length 10 is found. According to this plan, Team 4 repairs the
carrier immediately (Step 17) and receives the robot from the bench next (Step
18). This plan is executed without any unexpected events; therefore, all tasks of
the teams are completed at Step 27. Table 4.6.1 and Figure 4.6.1 show some of
these actions and their executions. A video of this sample run is provided also at
http://krr.sabanciuniv.edu/cogrobo/demos/cogfactory.
Examples in which the new orders arrive for teams are handled via replanning

in Algorithm 5. Such examples are not included in text due to space restrictions.

Table 4.6.1: List of actions for all teams

Table 4.6.1

l “ Team 1 Team 2 Team 3 Team 4
0 move(w1,right) move(w1,right) move(w1,right) move(w1,right)
lineShift move(w3,right) move(w2,right) lineShift
move(cl,right) move(cl,right)
lineShift lineShift
1 move(w1,right) move(w1,right) move(w1,right) lineShift
lineShift move(w2,right) move(w2,right)
lineShift move(cl,right)
attach(cl,w3)
2 lineShift move(w2,right) move(w1,right) move(w1,right)
push(cl) move(cl,right) lineShift
lineShift lineShift

Continued on Next Page. ..
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Table 4.6.1 — Continued

“ Team 1 Team 2 Team 3 Team 4
3 workOn(w1,1) push(cl) workOn(w1,1) move(w1,right)
workOn(wl1,1) lineShift
4 move(w1,right) lineShift move(w2,right) workOn(w1,3)
lineShift detach(cl) move(cl,right)

lineShift

5 workOn(w1,3)

move(w2,left)
move(cl,down)

workOn(w1,2)

move(w1,right)
move(w2,right)
move(cl,up)

lineShift

move(wl,left)

move(cl,up)

6 move(w1,right) move(w1,right) workOn(w1,4) workOn(w1,2)
workOn(w3,1) attach(cl,w2)
attach(c1,w2)

7 move(w3,right) move(w1,left) move(w,left)
push(cl) push(cl)
workOn(w1,3)

8 move(cl,right) move(w1,right) workOn(w1,3) workOn(w1,1)

workOn(w1,4)

workOn(w2,1)
workOn(w3,2)

workOn(w2,4)
detach(cl)

9 move(w1,left)

move(w3,left)
pull(cl)
workOn(w1,4)

move(w1,left)

move(w?2,left)

move(w1,left)

move(cl,right)

10 move(w1,left)

move(w3,left)

workOn(w1,2)

swapEndEffector(w1,2)

push(cl) workOn(w2,3)
lineShift
11 workOn(w1,2) workOn(w1,5) move(w1,left) move(w1,right)
workOn(w2,2) move(w2,left)
giveRobot(w3)

12 move(w1,left)

move(w1,left)

move(w1,left)

workOn(w2,2)

workOn(wl,1)

13 move(w1,left)
takeRobot(w2,1,2)

move(w1,left)

pull(cl)

move(w2,left)

giveRobot(w1)

move(w1,left)

14 move(cl,up)
swapEndEffector(w1,2)

move(w1,left)

workOn(w2,1)

swapEndEffector(w1,3)

15 move(w1,right)

move(w2,right)

move(wl,left)

move(w2,left)

move(w1,right)

move(cl,up)

16 workOn(w1,1)
attach(cl,w2)

swapEndEffector(w1,2)

swapEndEffector(w2,3)

workOn(w1,1)

attach(cl,wl)

17 move(w1,right)
push(cl)

move(w1,right)

lineShift

move(w2,right)

move(w1,left)

repair(cl)

18 workOn(w1,2)
workOn(w2,1)

workOn(w1,3)

workOn(w2,1)

move(cl,down)
lineShift
takeRobot(w2,1,2)
swapEndEffector(w1,2)

19 lineShift move(w1,right) lineShift move(w1,right)
push(cl) move(w2,right)
20 workOn(w1,3) workOn(w1,4) workOn(w2,2) workOn(w1,2)
workOn(w2,2) workOn(w2,3) attach(c1,w2)
21 lineShift lineShift lineShift move(w1,right)

Continued on Next Page. ..
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Table 4.6.1 — Continued

l “ Team 1 Team 2 Team 3 Team 4
push(cl)
22 workOn(w1,4) workOn(w1,5) workOn(w2,3) workOn(w1,3)
workOn(w2,3) workOn(w2,4) workOn(w2,2)
23 lineShift lineShift lineShift lineShift
24 workOn(w2,4) workOn(w2,5) workOn(w2,4) workOn(w2,3)
detach(cl)
25 lineShift lineShift lineShift lineShift
detach(cl) detach(cl)
26 lineShift lineShift lineShift lineShift

4.6.1 Dynamic Simulation of the Cognitive Painting Factory

We have implemented a simulation of the cognitive painting factory domain in
the dynamic simulation environment Gazebo. The robots and decoupled planning
algorithms are implemented in Robot Operating System (ROS), utilizing custom
codes written in C++ and Python codes. The simulated cognitive factory domain
is presented in Figure 4.6.2.

For the dynamic simulation, we have replaced all the robots with KUKA
youBot holonomic mobile manipulator depicted in Figure 4.6.3. Since all robots
can move along horizontal and vertical direction, no carrier robots are employed.
However, to preserve the challenges of the previously studied cognitive painting
factory domain, in each workspace we have assigned a different role to one of the
mobile platforms. In particular, one robot in each team is designated as a charg-
ing station and all other robots (workers) are required to meet and dock with the
charger robot as their batteries become drained. Hence, in the new scenario the
carrier robot is replaced with a charger robot, while the attach / detach actions
are replaced with dock / undock actions. An example execution of a plan in the

dynamic simulator is presented in Fig. 4.6.4
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Figure 4.6.2: Cognitive painting factory with multiple teams of KUKA youBots

Figure 4.6.3: KUKA youBot holonomic mobile manipulator
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Figure 4.6.4: Execution of an example plan for one team in dynamic simulation
Gazebo
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Chapter 5

Conclusions

We introduced a new approach for execution and monitoring of a manipulation
planning problem and have illustrated the usefulness of this approach with a phys-
ical implementation of a problem that involves two robots working for a common

goal. We have considered three scenarios of plan execution:

No surprises. The robots have a complete knowledge of the environment

and nothing unexpected occurs in the domain while a plan is being executed.

Collisions with unknown obstacles. The robots do not have a complete
knowledge of the obstacles in the environment and thus collide with such

an unknown while executing a plan.

Human interventions. While the robots are executing a plan, a human inter-

venes and change the locations of some payloads.

In each scenario, we have shown how the robots find and execute a plan using our

plan execution and monitoring algorithm.
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Then we expand this approach for multiple teams of robots and introduced
two algorithms utilizing the formalisms, methods and tools of causal reasoning
to endow multiple teams of self-reconfigurable robots with high-level reasoning
capabilities. We introduce a system which is capable of decoupled planning and
execution monitoring of multiple teams of robots. In addition this system can
diagnose the errors which can not be detected by sensors, and computes minimal
diagnoses for failures in terms of number of broken robots.

We have shown the applicability and usefulness of these algorithms, embedded
in a generic execution and monitoring framework, in a cognitive painting factory
scenario, which provides a good case study towards future intelligent factories.

As a part of future work, we plan to extend our planning and monitoring frame-
work to handle probabilistic data obtained by sensor fusion. We may also develop
the domain description to handle probabilistic occasions to make the framework

more useful for unstructured environments.
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Appendix A

The Task Plan for Query 2 of the

Manipulation the Planning Problem

0O: move(rl, up, steps=1)
move (rl, right, steps=1)
move (r2, down, steps=2)
move (r2, right, steps=1)

1: move(rl, up, steps=3)
move (rl, right, steps=1)
move (r2, down, steps=2)
move (r2, left, steps=2)

2: pick(rl, pickpoint=4)
pick(r2, pickpoint=3)

3: move(rl, down, steps=1l)
move (rl, right, steps=3)

move (r2, up, steps=2)
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move (r2,
move (rl,
move (r2,
drop(rl)
drop (r2)
move (rl,
move (rl,
move (r2,
move (r2,
pick(rl,
pick(r2,
move (rl,
move (rl,
move (r2,
move (r2,
move (rl,
move (rl,
move (r2,
10: drop(rl)
drop (r2)
11: move(rl,
move (rl,
move (r2,
move (r2,

12: pick(rl,

right, steps=2)
right, steps=4)
up, steps=2)

down, steps=1)
left, steps=1)
down, steps=1l)
left, steps=1)

pickpoint=5)
pickpoint=6)
down, steps=1l)
left, steps=3)
down, steps=3)
right, steps=1)
up, steps=3)
left, steps=2)

left, steps=1l)

down, steps=3)

left, steps=1l)
down, steps=3)
left, steps=1)

pickpoint=1)
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13:

14:

15:
16:

17:

18:

19:

20:

pick(r2,
move (rl,
move (rl,
move (r2,
move (r2,
move (rl,
move (rl,
move (r2,
move (r2,
drop (rl)
move (rl,
move (rl,
move (r2,
move (r2,
move (rl,
move (r2,
pick(rl,
pick(rz,
move (rl,
move (rl,
move (r2,
move (r2,
move (rl,
move (rl,

move (r2,

pickpoint=2)
down, steps=2)
right, steps=3)
up, steps=3)
left, steps=2)
up, steps=2)
left, steps=3)
up, steps=2)
left, steps=3)
drop (r2)

up, steps=3)
right, steps=2)
up, steps=1)
right, steps=1)
right, steps=4)
down, steps=3)
pickpoint=6)
pickpoint=5)
down, steps=1l)
right, steps=1)
up, steps=2)
right, steps=2)
down, steps=1)
left, steps=1)

up, steps=1)
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21:

22

23:

24 :

25:

26:

move (r2,
drop (rl)
drop (r2)
move (rl,
move (rl,
move (r2,
move (r2,
pick(rl,
pick(rz,
move (rl,
move (r2,
move (rl,
move (rl,
move (r2,
move (r2,
drop (rl)
drop (r2)

right,

up,
right,
up,
right,

steps=3)

steps=1)

steps=1)

steps=1)

steps=1)

pickpoint=4)

pickpoint=3)

left,
left,
down,
left,
down,

left,

steps=3)
steps=3)
steps=2)
steps=1)
steps=2)

steps=1)
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