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ABSTRACT

One dimensional Dirac operators

(1 0\dy (7}
L = _— =
bc(v)y t <O _1) dr + U(x):% ) (y2 S [077"]

considered with L?-potentials

B 0 P(x) 2
v(x) = (Q(:l:) 0 ); P,Q € L*([0,7]),

and subject to regular boundary conditions be have discrete spectrum. In this thesis,
we study basic properties of Riesz bases, prove existence of Riesz bases consisting
of root functions of Dirac operators L;. subject to strictly regular be, find adjoint
operator (Ly.)*, find all self-adjoint be, and calculate some special self-adjoint ex-
tensions.



OZET

(1 0\dy _ (W
Lbc(v)y =1 (O _1) dx +U('T)y7 Y= (y2 , T E [0777-]

denklemiyle verilen,

(ot 7). Recrm)

L? potansiyeli ve regiiler sinir sartlariyla diisiiniilen, tek boyutlu Dirac operatériiniin
ayrik spektrumu vardir. Bu tezde, Riesz tabaninin genel ozelliklerini inceliyoruz,
gliclii regiiler sinir sartlariyla diigiiniilen Dirac operatorii Ly.'nin 6zvektorlerinden
olugan Riesz tabanimin varligim ispathiyoruz, eslenik operatorii (Ly.)*1 buluyoruz,
ozeslenik siir sartlarini belirliyoruz ve bazi 6zel 6zeslenik geniglemeleri hesapliyoruz.
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1 Introduction

The differential expression

sow=i(y O) Lot = (1),

is known as one dimensionsal Dirac operator. The matrix

@ =gt ")

is called Dirac potential. In this thesis, we consider Dirac operators Ly. on [0, 7]
with L? potentials, that is P,Q € L*([0,7]), and with domain

Dom (Lyc(v)) = {y = (zl) :y; and yo are absolutely continuous, y satisfies
2
the boundary conditions bc, and v,y € L*([0,7])} .

If v = 0, then Ly.(0) is denoted by LY and called the free Dirac operator. A regular
boundary condition be is given by the linear system of equations

y1(0) + by () + ayz(0) = 0,

dy1 (m) + cy2(0) + ya(7) = 0,
where bc — ad # 0. Moreover, be is called strictly regular if (b — ¢)? + 4ad # 0.

In the second section, we study the basic properties of Riesz bases. If (e,, v € I)
is an orthonormal basis in a Hilbert space H and A : H — H is an automorphism,
then the system (f,, v €T), f, = Ae,, is called a Riesz basis. Riesz bases are
unconditional bases. Moreover, Bari-Markus theorem is proven which states that
if (e,, n € N) is a Riesz basis in a Hilbert space H and (f,, n € N) is a minimal
system of vectors such that

)
D fn—enll? < o,
n=1

then (f,, n € N) is also a Riesz basis. Bari-Markus theorem will be used to show
the existence of a Riesz basis consisting of root functions of the Dirac operator Lj,..

In the third section, we study eigenvalues and eigenfunctions of Dirac operators.
Dirac operators subject to regular boundary conditions bc have discrete spectrum.
It is shown that for strictly regular be, every eigenvalue of the free Dirac operator is
simple and has the form )x%a = T, + k, where « = 1,2 and k € 27Z, and spectrum
consists only of eigenvalues. For each strictly regular bc, there is an N € 2N such
that

Sp(Ly) C Ry U | J (DU D),

[n|>N

where Ry is a rectangle containing 2N eigenvalues of L. and each of the discs
D2 = {z:]2=X, | <p=plbc)}, « = 1,2 and |n| > N, contains exactly one



simple eigenvalue of Lj.. Using this spectra localization of the operators L;. and
Bari-Markus theorem, it is shown that there is a Riesz basis which consists of eigen-
functions and (at most finitely many) associated functions.

In the fourth section, we show that the adjoint operator of Dirac operator Ly.(v)
subject to regular boundary conditions is Ly (v*), where boundary conditions bc*
given by the system

bg1(0) + g1(7) + dga(7) = 0
@g1(0) + g2(0) + ega(m) = 0,

o (59,

In the last two sections, we find the form of self-adjoint boundary conditions bc and
self-adjoint Dirac operators. Furthermore, we give a characterization of self-adjoint
extensions of an unbounded operator and we calculate some special self-adjoint
extensions.

and

2 Riesz bases

In this section, we give basic facts about bases. We define Riesz bases and give
some basic properties of Riesz bases. We consider only separable Hilbert spaces.
Definition 1. Let H be a Hilbert space. A system (e,, n € N) is called a basis in
H if

T = chen, Vee H (2.1)

n=1

where ¢, ’s are uniquely determined and the series converges in morm. If the se-
ries converges unconditionally, then (e,, n € N) is called an unconditional basis.
Moreover a basis is called orthonormal if it is an orthonormal system in H which
means

(€nsem) = Onm, Yn,m € N.

It is a general fact that there are orthonormal bases in every Hilbert space H.

Definition 2. Two systems (e,, n € N) and (fm,m € N) in H are called biorthog-
onal if

<€n7 fm> = 6n,m7 Vn,m € N.

Theorem 3. Assume that (f,, n € N) is a basis in a Hilbert space H. Then there
exists a unique family (ﬁ, n e N> in H such that

x:Z<x,f;>fm Ve € H,

n



where (f,, n € N) and (ﬁ, n € N) are biorthogonal.

Proof. Suppose (f,, n € N) is a basis in a Hilbert space H. Then

x_zcn fn7

where ¢, (.) are linear functions due to the uniqueness of expansion (??). Let

Pu(x) = ca(z) fn

and let
N
= Z k() fi
k=1
First we show that the projections Sy, N =1,2,--- | are uniformly bounded. Now
define

N

2ol

k=

I}y = sup

This norm is well-defined since ) ¢,(x)f,, converges. The fact that ||.||; is indeed

a norm in H easily follows from the fact that [.|| is a norm in H. We show that
(H,|.]l;) is a Banach space. Let (z,, n € N) be a Cauchy sequence in (H, ||.||,). Fix
€ > 0. Then there is p such that

N

> ler(rn) = culam)] fi

k=1

<eg, forn,m>pu,

|zn — mel = sup
N

which implies

N

Z [ek(zn) — cx(m)] fi

k=1

<e, VN, Vn,m > pu.

Then for every N € N and for every n,m > pu

llen (zn) — en(@m)] fnll =

Therefore
len(xn — )| < 2¢/ || fnll, for m,m > p.



So, for every N € N, (¢x(z,)) is a Cauchy sequence of numbers and converges, say

to cj. By definition of ||.||,,
|20 — T || < |2 — x|y <&, Vn,m > p.

Therefore x,, is a Cauchy sequence in (H, ||.||) and ||z, — z|| — 0 for some z in H.

Let m — oo. Then by the last inequality, we obtain
|zn — || <e, Vn>p. (2.2)

We know that

> lew(wn) = cxlwm)] f

k=1

<e, VN, Yn,m > pu.

Let m — oo. Then we obtain
N

[ck(xn) — i) frl| <e, VN, Vn > pu. (2.3)

k=1

Fix n > p. Then we have for every N € N|

N

N
Z cr () fr — Z kS
k=1

k=1

N
< +||$_xn||+ xn_zck(xn)fk
k=1

N N
S et~ 3 i
k=1 k=1

By (??) and (7?), the second and the fourth term on the right hand side are less

N
Z (@) fr — @
k=1

+

then e. Since (fx) is a basis, for large enough N, the first and the third terms are
also less than . Thus it follows that for large enough N

N N
() fe — ZCka < de.
k=1 k=1
N N N
Since Y cx(z)fr — x, it follows that »_ ¢ fr — =, that is @ = > ¢} fr. Hence
k=1 k=1 k=1
cx = cx(x) by uniqueness of ¢;. Since
N
[Ck(x”) - C:] fk <e, VN, Vn2>uy,
k=1

we obtain that for every n > pu,

N

[ck(zn) — ck(2)] fi

k=1

|n — x|, = sup = sup




So ||zn, — z||; = 0 as n — oo. Thus (H, ||.||,) is a Banach space.

By definition of ||.||;, we have

el < llzlly, Vo e H,
and this means that the identity operator

L= (H ) = (H 11D

is a continuous one to one mapping. So by Open Mapping Theorem, it has a

continuous inverse. So there is a constant ¢ > 0 such that
|z[l, <cllz||, Vze H.

Therefore
N

ch(l')fk

k=1

Sny(x) = <clz|, VN.

By this way, we have shown that Sy’s are uniformly bounded. Then
[1Pa(2)[| = [1Sn(z) = Sn-a ()| < I1Sn (@) + [[Sn-1(2)]| < 2¢]]].

So
[ Pn(@)[| = len(@)] || fnll < 2¢f|z]]

which implies

2c
len(2)] < 7= ll=]]-
" 1 fal
Hence ¢, (z) is continuous for n = 1,2, ---. By Riesz Representation Theorem, each

¢n(x) can be written in the form
Cn(x) = <x7ﬁ’b> )

where fn is a uniquely determined element in H. So every x € H can be written as

x = i<x,ﬁl> fn-

n=1

Since ¢,(fm) = Onm for n,m = 1,2,--- | ¢,’s and f,’s are biorthogonal systems.
And ¢,(fmn) = 0nm means that

Cn(fm) = <fm7]};L> = (5n,m-



Thus f,’s and f;’s are biorthogonal. Hence we have shown that for any basis

(fn, n € N) in H, there is a unique biorthogonal system (fn, n e N) in H such

that .
xzz<x,fn>fn, Vo € H.

n=1

[]

The bases that we consider are unconditional bases, so we don’t have convergence
problems related to order of the elements. Thus for practical uses we use countable
bases of the form (e, v € I') where I' is a countable set of indices, instead of bases
of the form (e,, n € N).

Let H be a Hilbert space and let (e,, v € I') be an orthonormal basis in H. If
A: H — H is an automorphism, then the system (f,, v € I') given by

f,=Aey, yeT (2.4
is also a basis in H. For every x € H, we have

= A (A7) = A (2 (Aa.c,) ) S (A ey =Y () 1

v v

Definition 4. A basis of the form (??) is called a Riesz basis.

So we have also showed that (f,) is a basis with its biorthogonal system

f,=(A""e, ~el. (2.5)

Riesz bases are unconditional bases since orthonormal bases are unconditional bases.

Lemma 5. Let Hy and Hy be two Hilbert spaces and let A : Hy — Hy be an

isomorphism. If (e,, v € I') is an orthonormal basis in Hy, then the system
fy=A4e,, veTl
is a Riesz basis in H.

Proof. Assume H; and H, are two Hilbert spaces and A : H; — Hs is an isomor-
phism. Let (e,, 7 € I') be an orthonormal basis in H;. Take any orthonormal basis
in Hs, say (¢, v € I'). Then the operator B : Hy — H; defined by

By =e,, Vyel.

Then B is clearly an isomorphism. Now take C': Hy — Hj given by C' = Ao B.

Then C'is an isomorphism and
Coy=fy,, Vyel.

Thus (f,, v € I') is a Riesz basis in Hs. O]



Recall that ¢*(T) is the space consisting of the generalized sequences (x., v € T')

such that
Z |2,* < oo.
.

We consider £2(T") equipped with the inner product
<$7 y> = Z x’yy_’yv
gl

where z = (z,, v €TI') and y = (y,, 7 €T).

Now we give a characterization of Riesz bases by the following theorem.

Theorem 6. Suppose that (f,, v €T') is a basis in H and <E, v e F) 15 its
biorthogonal system. Then (f,, v € I') is a Riesz basis if and only if

c<|fl<C vyer (2.6)

and
2 2 2
£ 117 < M [z]]7, (2.7)

mlel? < 3| (. 1)

for some positive constants ¢,C,m and M.

Proof. First let (f,, v € I') be a Riesz basis in H with its biorthogonal system
<J?;> v E F). Then there is an orthonormal basis (e,, v € I') in H and an automor-
phism A such that

Aley) = £y

Then we have
15 = [[Aes| < JAll and 1= [le,]| = [[A" £ || < [JATH 1A

which gives us .
o < A< AL (2.8)
JA=H] =

So we get (7?) with ¢ = HA—I*H and C = ||A]|. Also we have that

;K% AN e ILI = ;\(A‘%ew)IQwaHQ

< JAPPE (A e, e)* by (27)
Y

= A" A )’

< AP AT )

and



S (A e IAIP = SHA e )|

v

_ 2
> ﬁZI(A 'z,e)|” by (77)
= lA- 1||2 HA le
1
> ERTaP Il

since

|| = [|A~ Ax|| < [|A]| || A~ 2]

which means

gl s lal
1475l = 7
Combining these results, we get
: el < 37 (o EY AR < IR A, 29)
T An2 JY Y = 5 .
AP HAH »

—1112
> and M = [[A* A"

hich ??) withm = —1——
which proves (??) with m TATPTA

Now let (f,, v €I') be a basis in H and (ﬁ, v € F) be its biorthogonal system

such that (??) and (??) holds. Since I' is a countable set, we may think that
I'={y, 1= -+ }. With this enumaration, consider the operator B : £*(T') — H
given by

) = Zx%f%-
i=1

Let

N

Sy = Zx%f’}’i'

i=1

Then
<SN,};> =, i=1,2-- N

So by using (??) and (77?), we get that

BISwI? <3 Jon < K 1S,
Y

where k = m/C? and K = M/c*. By the same argument, we get that

N+M
EllSxen = SnlP < D o, [P =0 as N — oo

=N
since (z,) € £%2. So (Sy) is a Cauchy sequence in H. Since H is complete, (Sy) is
convergent to some s in H. Thus the series ) x., f,, converges which shows that B

is well-defined. -



Next we prove that B is continuous. Set
z=B((z,) = Zx%f%‘
i=1

Then by (??) and (?7?)

Ellzl® =k IB ((2)I° < Y le* = @)l < K NIB ()]

i=1

So B is continuous since

1B ((z)] < % 1)l

and B~! is continuous since

1B ()] > %E 1@)lle

Thus B is an isomorphism.

Let (e,, v € I') be the orthonormal basis in ¢* given by
ey(a) = 0y 0.

Then by definition of B,
Be,=f,, Vyel.

Thus (f,) is a Riesz basis by the previous lemma. O

Definition 7. A system (f,, n € N) is called minimal if

fj ¢m{fk}k¢j, \V/] € N.

Theorem 8. (Bari-Markus Theorem) Let (e,, n € N) be a Riesz basis in a Hilbert

space H and let (f,, n € N) be a minimal system of vectors such that

(o,
> lfa — eal® < o
n=1

Then (fn, n € N) is also a Riesz basis.

Proof. 1t sufficies to show that there is an isomorphism A such that A (e,) = f,.
Since (e,, n € N) is a Riesz basis, there is an isomorphism B and orthonormal basis
(¢n, n € N) such that B (¢,) = e,. So Ao B will be an isomorphism such that

BoA(¢n) = fn-



o0
For x = ) ey, set
n=1

Tx —an en — fn) -

The operator T is bounded since

1Tz = |3 2 (en— £)] < 3 2al len — fal
. 1/2 /o = 1/2
< (;mﬁ) (;wwﬁmﬁ <

n=1
where ¢ and M are coming from the inequalities (??),(??) and s> = . ||, — ea|*.
n=1

szl

Let (Ty, k € N) be the sequence of finite rank operators given by

[o.¢]
Tkx—g Tn(en — fn), forng T,
n=1

We have || T, — T'|| — 0 as k — oo, since

00 00
n=k+1 n=k+1

- /2 , o 1/2
2 2
< (Z rxnr) (z Hen—an>

~ 1/2
< Hxl!( > Hen—fn||2> ,

n=k+1
and Z llen — fnll” is a convergent series. Since T}, are finite-dimensional operators,

it follows that T is a compact operator.
Now consider the operator A =1 —T. A is invertible if 1 is not in the spectrum of
T. Let x € ker A, that is

(1-T)x=0, forz= anen.

Then it follows o
> wnfa=0,
n=1

which implies (since (f,, n € N) is a minimal system) that x, = 0 for every n,
hence x = 0. So 1 is not an eigenvalue of the operator 7. Recall that spectrum of
a compact operator contains only eigenvalues. Since 7" is a compact operator and 1
is not an eigenvalue of T, 1 is not in the spectrum of T'. Then A is invertible, so it

is an isomorphism. Hence (f,,, n € N) is also a Riesz basis. O

10



3 Riesz Basis of Root Functions of

Dirac Operator

In this section, we study the spectrum of free Dirac operator LY. subject to strictly
regular boundary conditions be. We show that the eigenfunctions of LY form a
Riesz basis in L?([0, 7], C?). Moreover, we show the existence of Riesz basis of root
functions of Dirac operator L. subject to strictly regular boundary conditions bc.

The differential expression

Lv)y =i (é _01> % + (Q?x) P ff)) ” (3.1)

is known as the one dimensional Dirac operator. The matrix v = ( Q?x) P(()x)) is
called the Dirac potential. In case v = 0, we write L = L(0) and call L° free Dirac
operator. A general boundary condition for the Dirac operator is given by a system

of two linear equations

a191(0) + byyi (m) + agy2(0) + baya(m) =0
c1y1(0) + diy1 () + c212(0) + daya(m) = 0. (3.2)

Of course, equivalent systems of the form (??) define one and the same be. Each
boundary condition is determined by the matrix of the coefficients of (77?)

aq b1 a9 bQ
(cl b dQ) | (33)
But if we multiply this matrix from the left by a 2x2 invertible matrix, we get

another matrix that determines the same be.

We may assign to every boundary condition bc of the form (?7?) a corresponding
operator LY as follows. Let

Dom (LY)) = {y = (g;) :y1 and yy are absolutely continuous, y satisfies
the boundary conditions be, and y}, y5 € L*([0,7])},

no-i(y %) (%)

Theorem 9. LY is a closed densely defined operator.

and let

Proof. Let

() E)~(0) () wrmae

This means that

BN~ 6) wroeer

11



So
(Faifi) +5 (fo) and (ga, ~ig, ) + (g, ha)
Since f,’s are measurable functions and f, Il f, fn converges to f in measure.

Then there is a subsequence f,, such that f,,(z) == f(z). Thus there exists ¢ €
[0, ] such that f,(c) — f(c). Now define

Then
| fulz) = fulc) — Hy(2)]? =

2
£ - thuto) )
= |10 =l
By this inequality, we get that
ful@) = fule) ™ Hi(a),
since f,, Ay m - And also fulx) = fule) 25 f(2) — f(c), so

()

Since we identify functions that are equal almost everywhere, we may think that

the previous equality holds for every = € [0, 7]. So

hy(z) = iH,(z) = if (z) a.e. (3.4)

We can similarly define Hy(x) := —1 [ ho(t)dt and get that

ho(x) = —ig (x). (3.5)

Since we identify functions that are equal almost everywhere and f,,’s are absolutely
continuous functions, we may think that f,(z) — f(x), Vo € [0,7]. So [ satisfies
be. Similarly g also satisfies be. So by (?77) and (?7?)

<f> € dom(L),) and L° <f> = <h1> .
g g hao

Thus we have shown that the graph of L), is closed, which means that L), is a closed

operator. O

12



Now we find the eigenvalues of the operator L° given by

oo (1 0\dy
L<y>_z<o ~1) dx

subject to a general boundary condition be of the form (?7?) with associated matrix
(?77). Let A;; denote the matrix given by i-th and j-th columns of the matrix (?77?).

If
LO =\ 7 — Y1 7
y=2Xy, ¥ <y2>

iy, =Ayi and  — iy, = Aye.

then

So each solution of the equation has the form

y k e—i)\x
y = <y;) = (,;em> (3.6)
for some constants k; and ky. Now if we let z = ™7

, we get
v (0) =k,  4(0) =k, w(m)=kiz™" and gy (7) = k2.

So if we use these initial conditions of y, we can see that y satisfies the boundary
conditions (?7?) iff (kq, ko) is a solution of the system of equations

a1k1 + blklz_l + CLQ]CQ + ka’QZ =0
Clkl + dlk’lz*l + CQk’Q + koQZ =0

or equivalently

k’l (CL1 + blzfl) + k’Q (CLQ + sz) =0
]{72 (C1 —+ dlzfl) —+ ]{72 (02 + dQZ) . (37)

So we have a non-zero solution y iff

a; + blz_l as + boz —0
c1 + dlz_l Co + doz -

& a1y + ardoz + b1z ey + bz Moz — crag — c1boz — diz ray — diz bz = 0,
=4 (a1d2 - bQCl) Z+ (bldg — dlbg + aicy — CL201> + (b102 - dlag) 2_1 =0.
If we multiply both sides by z, it is equivalent to the quadratic equation

| Ava] 22 + (| Ass| + [Azal) 2 + | Ags| = 0. (3.8)
The boundary condition (??) is called strictly regular if

|Aua| #£0, | Ass| #£0,  (|Aus] + [Aoa])® # 4] Ava] | Ass] (3.9)

13



hold. So if we have strictly regular boundary conditions, then the quadratic equation
(?7?) has two distinct roots, call z; and z,.

In the following, we consider only strictly regular boundary conditions. Now if we
multiply A;) with (??), we get that

A_l ay bl ag bg _ 1 bg —b2 aq bl a9 bQ _ 1 b a 0
14 C1 dl Co d2 a1d2 — b201 —C aq C1 dl (&) d2 0 d ¢ 1
where (Z Z) = A7} Ass.
So we found an equivalent system to the boundary condition (?7) given by
y1(0) + by () + ay>(0) = 0

This system is associated with the matrix (??). From now on we consider the
boundary conditions in the form (??) with matrices (??). So the conditions (?7?)
adjusted to this new form of the boundary conditions means that

| Ags| = bc — ad # 0 (3.12)
and
(JAs + Aoy|)? — 4| Ary| |Ags| = (¢ + b)* — 4(bc — ad)
= ¢® + 2bc + b — 4be + 4ad
= (b— )’ +4ad # 0. (3.13)
Now the system (??) becomes
k1 (1 + bz_l) + koa =0
kidz' + ky(c+2)=0 (3.14)
which means
(52 ) )=o) ()= e
And the quadratic equation (??) becomes
22+ (b+c)z+bc—ad=0. (3.16)

So from these equations, we get the following lemma.

b a
Lemma 10. The complex number —z is an eigenvalue of the matriz Asz = ( )
c

k
if and only if z is a root of the quadratic equation (??7). And also, (kl) 1S a non-
2

k
zero solution of (?7) if and only if ( ]16/2

) is an eigenvector of Asz corresponding
2

to the eigenvalue —z.

14



The quadratic equation (?7?) has two distinct nonzero roots z; and 2z correspond-
ing to the given strictly regular boundary condition. So the matrix Ass has two
distinct nonzero eigenvalues —z; and —z29 by the previous lemma. Let 7 and 75 be
chosen such that

2 = €i7r7'1, 29 = 6i7r7'2.
and
|Rei — Remy| <1, |Rer| <1.

Then '

n=e™ o AN=n4+k ke2Z
and '

Hm=e™ o N=n+k ke2Z
So the set

E:{Tl+]€,T2+]€; kE2Z} (317)
gives us all eigenvalues of LP.
Now let us fix eigenvectors (a1> and <ﬁ1) corresponding to eigenvalues —z; and

Q2 B2
—2z. Then these eigenvectors are linearly independent. Let us define

—1 ’ ’
ar B o Qy
= 7 7 . 318
(042 52) (51 /32) ( )
By the previous lemma, for each eigenvalue there is an eigenvector of L° of the form
(7?) with

]{Zl _[oazx . . ]{Zl . Blzl . .
(k2) = ( a ) ifA=mn+k, (k2> = ( 3, ) ifA=mn+k.

So all eigenfunctions of LY, with boundary conditions (??) are

—i(T1+k)z it (m—x) ,—ikx
zZi1ane aqe e
Cbl = {9011:7 ke 2Z}7 9011; = ( 1a21€7j(7'1+k)a: ) = ( ' i1 ik ) (319)

e e
and
) ) 5 22616—7;(7'2-1—/6):1: 61 67:T2(7T7.’£) etk
P = {‘% k€ QZ} P T ( B2ei(72+k)$ = ByeiTez ik . (3.20)

Theorem 11. The set ® = ' UD? is a Riesz basis in the space L? ([0, 7], C?) with
its biorthogonal system ® = @' U @2, where

T i (r—g) ,—ika
51 ~1 ~1 . et e
o' = {g}, ke2Z}, @ = ( L eagite ) , (3.21)
and o
! T (m—x) ,—ikx
P2 — {32 o [ BT e
o ={g}, ke2Z}, &= ( T iriegite > , (3.22)

oy, oy, 1, By are coming from (77).
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Proof. The system consisting of

e = (60 > el i= (eikm) , ke2Z (3.23)

forms an orthonormal basis in L? ([0, 7] ,C?). Now we construct an automorphism

on L*([0,7],C?) which maps this system to ®. Consider the operator given by

A L2 ([0,7],C2) = L (0,7],C2) (3.24)

T Al B8 (e
g ageznmf (.23) Bzem—gwg (ZE)

It is obvious that A maps the system in (?7) to ®. Now we show that A is bounded,
A~! exists and is also bounded.

Observe that for any a and b, we have
(a — b)2 =a’—2ab+1b*>>0 equivalently a®+ b* > 2ab

which gives
(a +b)* = a® 4 2ab + b* < 2a% + 2b%.

So if we use this inequality, we get
2 A ,
AN Z (e @) | (Beg - o)
9 e f (z) Pae'™g (x)

(oqe”l(“‘z)f (m—x ) H (516”2(”"”)9 (m— w))
« eznxf( ) 62ei72$ (

)
Of[|a| = I (r = ) + ool |77 | ()] da

2

2

IN IN
ERIN Do
A~

Now let
¢ = m[gtx] {le™*], ™|}, co:=max{|a],|oz],|B1],|B]} and &= 2cico.
xze|0,m

Then we have

f ™ 1/2
A < 20102(%f|f 7T—$|dl’+f|g |dx)
0

g
- (2] @ |+rg<>|)dx)1/2

161
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Thus we have shown that A is bounded. Let us find its inverse. Let

F
A / = :
g G
Then by definition of A, solving this equation is equivalent to solve the system

€™ f (z) 4 Bre’™g (v) = F (7 — )
e f () 4 B2e' g (z) = G (),

which can be written in the form
ar B e f (x) _ F(m—x)
ay P '™ q () G (v)
So by (?77) we get that

(e””f(x)) _ <a1 51)1 (F <w—x>) _ (a;m—x) + G <x>)
ity (1) ay P G () BiF (1 —x) + ByG(x) )

which gives us
= (F) _ (e‘mf"’ [\ F (1 — ) + a,G (x)]) .
¢) " \e ™ [BF (r — ) + GG (@)

So we found A~! and similar with the operator A, the inverse of A is also bounded.

Now only thing left is to calculate the biorthogonal system of ®. First we calcu-

late the adjoint operator of A~!. Only by using definitions, we get

1 F f — 1 [e-ing Oé/ T —1 Oél T x\dz
<A (G)<O)> 1 [0, F (m — 2) + 0y ()] F@)d

(F () aif (x - o) em=) 4 G (2) abf (2) €17 da
F\ (a0f (x = o) emie
G) '\ abf(@)em ’
(A—l)* f _ _llf(_ﬂ— — ) e/mir=a)
0 o f (1) e
Similarly the following equation holds

B <_19 (m— ) 6““"””)
of () ™"

which means



Since (A~1)" is linear

(A,I)* (f) _ <05_l1f(_71' — I) eiﬁ(ﬂ—x)> N (B_ig(_ﬂ- _ ZE) €i7'2(7r—ac)> |
9 ayf (x) e Bof () e

In view of (77), (?7) and (??) really gives the biorthogonal system of ® and ® is a
Riesz basis for L? ([0, 7], C?). We are done. O

Theorem 12. The spectrum of LY., considered with strictly reqular boundary con-

ditions be of the form (?7), consists only of its eigenvalues.

Proof. Assume ) is not an eigenvalue of L) . Since

(A= L) or =[N = ( + k)] oy,

we have
1 1 1

A— LY -
( bC) Pk A\ — (7_1 + k‘) Pk
where (. is an eigenvector of the form (??) and (7; + k) is the corresponding eigen-

value. Similarly

_ 1
A—LY) =
( bc) Pk )\—(TQ—FI{})S&M

for an eigenvector ? of the form (??) with corresponding eigenvalue (75 + k).
Let f € L? ([0, 7], C?). By using the previous theorem, we can write f as
F=> (" e+ 1),
ke2z
where f54 = (f @t) for i =1,2.

Now we can define the inverse by

A- 0 = -t (5 e )

ke2Z

— k1_ 1 k2 1
o kEZ22 (f —(T1+k) QDk + f A—(m2+k) SO]C)
Since this formula gives the algebraic inverse, it remains to show that this inverse

operator is bounded. But we have

0\~ 1 _ k, 1 k2 1
H()\ — Lbc) f” = k:eZQZ (f 1,\ e on + f® (21 k) ‘Pk) H
k11 k2 1 2
S i Y Hf et

, , /2 1/2
< k1 1 1 )
N <I<:EZQZHf H H%H) (kgzlA(Tﬁk)Q
, ) 1/2 1/2
+ k,2 2 ) < 1 )
(S hrrner) (S st

1/2 12
[(?;%'A ”+M|) <é§£'A( +k')

18

IN

AT A= LA




where A is the operator defined in (?77), and we get the last inequality by using
(7?). So it is only left to show the convergence of the series in the last part of the
equality.

For this fixed A, there is n € 27Z such that

[Re(A = (11 +n))| <1,
since |Re 71| < 1. This implies, for k # n
A= (n+k)|>|Re(A—=(ri+n)+n—Fk)|>|n—k|l —|Re(A— (11 +n))|

1
> [0~k ~12 3|0k,

since n, k are even numbers. Now for the first series, we get

1 1 1
> mmE S naoE T X i
Keaz, [A—=(T1+k)| [A=71—n] Kn [A=71—kK|

IA

1 1
ot 2 Ty

2
< L +3 2.
[A=71—n] Kn [n—k|

So we have shown that the first series is convergent. Similar argument proves that

the second series converges.

This proves the operator (A — Lgc)f1 is bounded if X is not an eigenvalue of L .
This means that spectrum of LY, only contains its eigenvalues. So the proof is
completed. O

Now we consider the spectra localization of the operators Ly. = L) + V, where
V' denotes the operator of multiplication by the matrix v(z) = ( O P(x)) We

Q(x) 0
subdivide the complex plane C into the strips

Hm:{zEC:—lgRe(z—m—ﬁ;TQ)gl}, m € 27,

and set
HY = | ) Hpn,

Im|<N

1+ T

RN:{z:x—l—it: T — Re

<N+1,\t|<N},
where N € 2N. Let
p:=min (1 —|[Re(m — )| /2, |1 — 72| /2),

and
Db ={ze€C:|lz—T1n—m| <p}, me2Z.
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It is known that (see [?], Theorem 12.) for each strictly regular bc, there is an
N € 2N such that
Sp(Lbc) C Ry U U (Drll U Di) .
In|>N
Moreover, each disc DS, a = 1,2, |n| > N contains exactly one simple eigenvalue of
Ly, while Ry contains 2N eigenvalues of L;.. Let us consider the Riesz projections
associated with Ly,

1 1
Sy = — (A=L)"d\, P, =

210 Jory 211 Jopg

A—=L)"d\, a=1,2, (3.25)

and let S} and P, be the Riesz projections associated with the free operator Lj,.
Next we use the following theorem (see [?], Theorem 15).

Theorem 13. Suppose Ly, and LY. are, respectively, the Dirac operator with an
L? potential and the corresponding free Dirac operator, subject to the same strictly
reqular boundary conditions bc. Then, there is an N € 2N such that the Riesz
projections Sy, Pn.o and S, Pfl)’a,n € 2Z,|n| > N,a = 1,2, associated with L and

L° are well defined by (?7), and we have

dim P, o = dim P}, =1, dim Sy = dim S} = 2N; (3.26)
0 2
Y || Paa =PI <00, a=12, (3.27)
[n|>N
If Sy(z) =0, P, =0 VYn,a=xz=0. (3.28)

Let ¢, o = 1,2 are unit eigenfunctions of the free Dirac operator LY such that
Lyeon = X3 0

where \j, ; = 7, +n. For [n| > N, set
Uy = Poaleh)-

Then W% are eigenvectors of the L. such that
Ly Uy = AW,

where XY € Dy/. By using the previous theorem, we obtain that

STNPE =2l = Y [Paale) = PLe)* < Y |Poa = Pl < 00

|n|>N |n|>N |n|>N

since ||p%]| = 1. Thus (U9, |n| > N, a = 1,2) forms a Riesz bases in its closed
linear span.
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We can write H = L?([0, 7], C?) as direct sum of the spaces (not orthogonal) H;
and H
H == HO @ H1
where
HQ = Ran(SN), H1 = RCL’I’L(]_ — SN)

By (?7), H; is the closed linear span of (V& |n| > N, a =1,2), so

(P |n| > N, a = 1,2) forms a Riesz basis in H;. Hy is a finite dimensional
invariant subspace . So we can choose a basis for Hy consisting of root functions of
Ly, corresponding to eigenvalues in Ry. Then the union of this chosen basis and
(U2, |n| > N, a =1,2) forms a Riesz basis in L?([0, 7], C?). Hence we have shown
the existence of Riesz basis consisting of root functions of L.

4 Adjoint of the Dirac operator

In this section, we find the adjoint operator of Ly.(v) subject to regular boundary
conditions.

We may assign to every boundary condition be of the form (?7?) a corresponding
operator Ly.(v) as follows. Let

Dom (Lp.(v)) = {y = (:zl) :y1 and y, are absolutely continuous, y satisfies
2
the boundary conditions be and y},v4 € L*([0,7])}.

=i )6 (e ) )

In the following we assume that P,Q € L*([0,7]). By C5°, we denote the set of
all infinitely differentiable functions ¢ such that supp(p) C (0, 7).

and let

Lemma 14. If f € L*([a,b]) and fqb'mda: =0, for every ¢ € C§°(|a,b]), then f

15 constant.

b
Proof. Fix ¢y € C5° such that [ ¢o(t)dt = 1. Let ¢ € C§° and let

c:/bw(t)dt.

Then

where



Observe that ¢ € C§°, so

which gives
Now let

So last equation means that

which also means

Thus f is constant. O

Theorem 15. Let Ly.(v) be the Dirac operator with boundary conditions bc given
by (??7). Then its adjoint operator (Ly.(v))* is Ly~ (v*) where boundary conditions

bc* given by the system

bg1(0) + g1(7) 4 dga(m) = 0
ag1(0) + g2(0) + cga(m) = 0,

(%)
vt = _ :
P 0

22
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h
91> € Dom ((Lye(v))"). Then there exists h = <h1> € L*([0,7],C?)
2

Proof. Let g =
()

such that

DA ) eomn

Since
()6 5 G (e D) () - ()
fo 0 =1/ \fy Q 0 fa —ify+Qf
we have
(e C-G)- Gy w
—ify + Qf1 92 fa ho
Therefore

%/ ([z‘fi(x) + P(w)fQ(x)} 91(z) + [—z’fé(m) + Q(x)fl(x)} 9 ;1;)> du

™

—~ [(h@h@ + L)

0

Let us define

T T

Hl(x):/hl(t)dt and  Hy(z )—/hg( )dt,

T

L) = [POn®d and b /Q oot

So if we plug in these functions in the last equation and do integration by parts, we

get that

s T

/ (i, (2)ga (@) — / (S (2) 0200z + fo(m) T

0 0

/f2

(T — AO)T(0) / f1(0) (@) dz

23



— SR - fi (O 0~ [ £ Faode+ o) ()~ O F0)- [ f3 (o) alildo.

This equality holds for every f € Dom (Ly.(v)). Since C§5° C Dom (Ly.(v)), we can
take f € C5°. Then fi(m) = fa(m) = f1(0) = f2(0) = 0. So we have

™

/[f{(x)(igl(fﬂ) — I(x) + Hi(2)) + fole)(~igs(2) — Li(2) + Ha(w))ldz = 0.

If we take fo(z) = 0 and use the previous lemma, we get

—ig1 — Iy + H; = constant.

And similarly if we take fi(x) = 0, we get
1go — I + Hy = constant.

By taking derivatives of the last two equations, it follows that

hy =ig, + Qg and  hy = —ig, + Pgy.

Thus we have found that

(L (U))* g1 _ hl _ igll‘i‘@gQ — 1 0 gll 4 0 @ g1
- 92 ha —igy + P 0 -1/ \ g VAV A

And also g; and g are absolutely continuous functions, since H; and H, are abso-

lutely continuous functions by their construction. Now, (??) becomes

() 1) () s
—ify +Qf1 92 g i+ o

Therefore

™

/ ([z’f{(a:) + P(:c)fz(x)} 91(2) + [—z’ fal@) + Q) f1<x)} g2(x)> e

0

™

= [ (3@)is0) + Qo] + o) [-i54(0) + Plio()] )

which gives us
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™

[ [i£1@n + Pa) @@ - if3(0)50E + Qo) ()] da

0

™

— [ [Fifi@si@) + A@QWRE + ifa)5E) + o) Pe)lz)) do.
0
By canceling the terms which appear on both sides, we get

™

/ (A@)9:@) + A@)9l@)) = (fa(2)ga() + folw)galw)) | dw =0,
which aloso can be written as

TR—T———

Finally by evaluating the integral, we get the equation

fi(m)gi(7) = f1(0)g1(0) = fo(m)g2() + f2(0)g2(0) = 0. (42)
We use boundary conditions bc of the form (?7). First we write f1(0) and fo(7) in
terms of fi(m) and f5(0), that is

f1(0) = =bfi(m) — af2(0)
fa(m) = =dfi(m) — cf2(0).

If we plug in these two equations in (?7), we get that

fi(m)gi(m) = (=bfi(w) — af2(0)) g1(0) — (=dfi () — cf2(0)) g2(m) + f2(0)g2(0) = 0.
Therefore

fi(7) |1 (7) + bg1(0) + dgor)| + 2(0) |ag1(0) + cga(m) + 92(0)] = 0.

And this identity holds for every f € Dom(L).(v)). We can find an f such that
fi(m) = 1 and f>(0) = 0. Similarly we can find an f such that fi(r) = 0 and
f2(0) = 1. So boundary conditions of the adjoint operator (Ly.(v))* are given by

the equations

bg1(0) + g1(m) + dga(m) = 0
ag1(0) + g2(0) + €ga(m) = 0. (4.3)
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Let bc* be the boundary conditions defined by (?7). It is associated with the matrix

b 10 d
a 01 ¢)’

so bc* is not in the canonical form (?7). In order to get that form, we multiply this

matrix from the left by
— p— 71 _ —_
b d 1 ¢ —d
@a¢)  be—da\-a b)’

c d
== (4.4)
0 ——2+ -t 1

be—da be—da

The system associated with this matrix gives us an equivalent system to (77).

and we get

So throughout this proof, we have also shown that
Dom((Ly.(v))*) = {y = <zl> : 41 and yp are absolutely continuous, y satisfies
2
the boundary conditions bc* and yi,y4 € L*([0,7])} .

where bc* is given by (?7) when be is of the form (??). And also bc* is equivalent to
the boundary condition associated with the matrix (?7).

Corollary 16. The operator Ly. is closed.
Proof. By the previous theorem, we have that
(Le(v))" = Lyes(v7),

and
(Lper (v7))" = Le= (v).

But we also have

Recall that we consider be given by the matrix (?7) and corresponding bc* is given

by the matrix (?77). We have

c d 7
_—— —= cb —da 1
det bc—ga b%—da ===
(bc — da) bc — da

" be—da  be—da

1 b a 0
0dec 1)

26

So bc** is given by the matrix



Then bc*™* and bce are given by the same matrix. Thus

Lye(v) = ((Lbe(v))")" = Lpers (v) = Lie(v)-

Hence Ly.(v) is a closed operator. O

Let L), be the free Dirac operator with domain

Dom(L3,) = { f= <§;) : f1, fo are absolutely continuous functions,

fis fa € L2(0,7]), £1(0) = fulm) = 0, £2(0) = folm) = 0}
The same argument that we use in the proof of Theorem 9 shows that Lg; is closed.
LY, is obviously a densely defined operator with this domain.
Now we find the adjoint of L3,. Exactly with the same calculations done for

finding adjoint of L., we can show that LY, is a symmetric operator.

Let g = (gl) € Dom((L,)*). Then for all f = (?) € Dom(LJ,), again by he
2 2

calculations done before, we obtain

Fi(m)gi () — £1(0)g1(0) — fo(m)ga(7) + £2(0)g2(0) = 0.

Since f € Dom(LY,), we have fi(0), fi(7), f2(0), f2(7) = 0. So the last equality
holds for any g € Dom ((Lg,)*). Thus adjoint of LY, is the free Dirac operator with
domain

Dom ((Lg,)*) = {y = (z;) - y1 and g, are absolutely continuous, y}, 3, € L*([0, W])} :

5 Self-adjoint Dirac Operators and Self-adjoint bc

In this section, we study self-adjoint boundary conditions and self-adjoint Dirac
operators.

Recall that a densely defined unbounded operator A is called self-adjoint if A =
A*, that is domA = domA* and A*f = Af for every f € DomA. So if A satisfies
some boundary conditions bc, then A* must also satisfy the same bc.

We have seen that if the boundary conditions of Ly.(v) is given by the matrix

1 b a 0
0 d c 1)’

then the boundary conditions bc* of (Ly.(v))* is given by the matrix




So if the operator Ly.(v) is self-adjoint, then

b [ _d
< a) _ | bc—da be—da
d c __a_ _b :
bec—da be—da

The determinants of these two matrices must be equal, that is

cb — da

A =bc—ad= 5
(bc—da)

which gives us

|A] = |bc — ad| = 1.

Therefore

\b|:'_6_’:]c| and ]a|:’—_ _
bc — da c

Since |A] =1, let ' ' ‘
A=¢eY a=pe™ and b= |be”,
for some «, 3,0 € [0,27) and p € RT. Then
bb + aa
A

|A| = |bc — ad| :‘ = [|p]* + |p*| = 1,

SO
b = /1= p*.

A=¢? a=pe™ and b=/1—p2e”, (5.1)

for some «, 3,0 € [0,27) and p € (0,1). Therefore

= DA = /1 — p2e?=h), (5.2)

= —aA = —pe'®=9), (5.3)

Then

Now assume that bc is given by the matrix (??) and a, b, c and d satisfies (?7), (?7?)
and (??7). Then the terms of the matrix (??) becomes

% A = T R0 — T 2 —
d .
= — _dA = i(a—0) 0 _ i ’
= pe e pe a
_ _dA B
—i:—aA:—( i ) =d, since a = —dA,
A A
b - A
i = bA = (C_) =¢, since b =—cA.
A A

Thus bc and bc* are equal which means bc is self-adjoint. By this argument the
following proposition holds.
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Proposition 17. Ifbc is a self-adjoint boundary condition given by the matriz (77),
then there are uniquely determined numbers o, 3,0 € [0,27] and p € (0,1) such that
(7?), (?7) and (??) hold. And conversely, if a,b,c,d are given by (??), (?7?) and
(??7), then the matriz (??7) determines self-adjoint boundary condition.

Thus if Ly.(v) subject to boundary conditions be given by the matrix (?7) is self-
adjoint, then ) = P and there are uniquely determined numbers «, 3,60 € [0, 27]
and p € (0,1) such that (??7),(??) and (?7) hold. And conversely, if Ly.(v) is subject

to boundary conditions be given by the matrix (??7) such that a,b,c,d are given by
(72),(77),(??7) and Q = P, then Ly.(v) is self-adjoint.

6 Self-adjoint Extensions

In this section, we give a characterization of self-adjoint extensions of an un-
bounded operator. Then we find all self-adjoint extensions of L, corresponding to
partial isometries which can be represented by real-valued matrices.

Definition 18. Let A be a closed symmetric operator. The deficiency subspaces of

A are the spaces
L, =ker (A" —i) = [ran (A +9)]",

L. =ker (A*+i) = [ran (A —i)]".
The deficiency indices of A are the numbers n, = dim L, and n_ = dim L_.

Definition 19. A partial isometry is an operator W such that for h in (ker W)L,

IWh| = ||h]|. The space (ker W)™ is called the initial space of W and the space
ran W is called the final space of W.

The following theorem is well-known(see [?], Theorem 2.17 or [?], Theorem X.2).

Theorem 20. Let A be a closed symmetric operator. If W is a partial isometry

with initial space in Ly and final subspace in L_, let
Dw={f+g+Wg: fedom(A),g € initial W} (6.1)
and define Ay on Dy by
Ay (f+9g+Wyg) = Af +ig—iWy. (6.2)

Then Aw is a closed symmetric extension of A. Conversely, if B is any closed

symmetric extension of A, then there is a unique partial isometry W such that

B = Aw as in (77).
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So this theorem gives one to one correspondence between closed symmetric ex-
tensions of a closed symmetric operator A and partial isometries with initial space
in L, and final space in L_. Moreover, it is known that if n, = n_, then the set of
self-adjoint extensions is in natural correspondence with the set of isomorphisms of
L, and L_, respectively(see [?], Theorem 2.20).

Now we find self-adjoint extensions of L{,. First we find the deficiency subspaces

of LY. Let f = <‘J]Z1) € ker((LJy)* +i). Then
2

ove g (i _ (0
Solving these two differential equations, we get that for some constants ¢; and ¢y
filz) =ce™" and fio(r) = coe”.

We choose fi(z) = c1€™ 7 instead of fi(x) = c;e™", since

- -
|e™ ]| = —/62(”_z)dx = —/ehdx = |le”] .
T T
0 0
So n_ = 2 since
L =ker((LY)* +1i) = (chex ,c1 and ¢y are constants}

T™T—X 0
— c (e 0 ) + ¢ (ex) ,c1 and ¢y are constants} .

Now let f = (fl) € ker((LJy)* —i). Then

f2
. . pl o 0
LO *—Z = Zfl/ Zfl):()
cator == (D7) = (0
Similarly solving these two differential equations, we get that for some constants c;
and cs

fi(z) = c1e® and fo(x) = coe™ ",

So n, = 2 since

X
L, =ker((LY)* —1i) = { (Ccé::v> ,c1 and ¢y are constants}
2
e’ 0
= C1 0 + C2 R ,c1 and co are constants p .
Consider the isometries between L, and L_. Since n_ = n, = 2, they can be

represented by 2x2 matrices. Let

= (0) = ()= () mav= (2)
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Then ||e!|| = ||€?|| = ||¢']] = ||¢?||. Let W : Ly — L_ be an isometry such that
We! = wi¢' + wy ¢?,

We? = wip¢' + w22¢2.

Further we identify W by its matrix representation
W = w11 Wiz _
Wa1  Wa2

Wi Wiz + WaWa = 0.

Since Wel LWe?, we have

W is an isometry, so ||[Wel|| = |le'|| and ||[IWe?| = ||e*|| which gives
lwi]? + |wa|* =1,

\w12|2 + |U}22|2 =1.

By the equations above, about the entries of W,
~1 .
w11 Wy _ w11 Wi2
Wiz Wag Wy W)
det 11 W21 et (11 W12} g
W12 Wa9 W1 W22

det W -detW =1 and |detW|=1.

which means

By the previous theorem, we have a self-adjoint extension By of L), corresponding
to each isometry W and

Dom(Bw) = {f +g+Wg: fe Dom(L),), g€ L+} )

Next we show that the functions in Dom(Byy) satisfy certain be = be(WW) that are
uniquely determined if given by the matrix of the form (?7). So next we look for a

1 b a 0
0 d ¢ 1

such that every h € Dom(Byy) satisfies the be defined by that matrix.
Let f € Dom(LY,) and g € L, such that

X
1 2 1€
= c1e + cpe” = _ .
g 0267'(' X

matrix

Then
Wg = cyWel + coWe?

and
frg+Wg=f+ci(e' +We') +cy(e? + We?).
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Let
k:=e'+We! = (

w1267l'7$
li=e4+We = . |-
e + wooe

e + wlleﬂ—a@
wglex ’

Since (f + g + Wg) € Dom(By ), it must satisfy the boundary conditions. Since
f € Dom(L).) and boundary conditions are given by linear equations, if we let
c1 = 1 and ¢, = 0, then k£ must satisfy the boundary conditions of By,. So

k‘l (O) + bk’l (7T) + Clk’Q(O) =0

dky () + cko(0) + ko(m) =0
which means
14 wne” + b(e’T + ’LUH) + awg = 0
d(e’r + wn) + cwoy + w21e’r =0.

Similarly if we take co = 1 and ¢; = 0, then [ must also satisfy the boundary
conditions of By. So

[1(0) + bly () + al2(0) =0
dly(m) + cl2(0) + lo(7) =0
which means
wige™ 4 bwyy + ae” 4 waeg) =0
dway + c(€" + waz) + 1 4 waese™ = 0.

By solving these equations for a, b, ¢, d, we get that

_wip(e’T —1)
= A ,
_’UJ21U)12€7r — (67r + w22)(1 + wne”)
A )
wuwgle” — (Gﬂ- + ’Ujll)(l + U}2267r>
A )
. W21 (627T — 1)

d=2\ 7
A Y

where A = W1 W12 — (€7r + wu)(e” + w22).
So for each isometry W, we found corresponding boundary conditions bc given by

the matrix
1 b a O
0 d ¢ 1

where a,b,c,d are uniquely determined by the equalities above and every h €
Dom(By) satisfy bc.

b:
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Now we consider the partial case where the entries of the matrix W are real
numbers. Then W can be written in the form

cosf sind
W= (— sin 6 cos@)

for some 6 € [0, 27), where det W = cos? § +sin? § = 1. Now if boundary conditions
of By are given by the matrix (??), then the numbers a, b, ¢, d becomes

_ sinf(e* — 1)

@A
b_2€7r+COSQ+COS(9€2W
- B :
c=b and d= —a
where A = —1 — e?™ — 2¢™ cos 6.

The boundary conditions given by the matrix (?7) where a, b, ¢, d are given by the
above equalities is self adjoint if bc — ad = 1, by the proposition about self-adjoint
boundary conditions. But

(2™ 4 cos 0(e2™ +1))* + sin? 0 (e2™ — 1)
(1 + €27 + 2e7 cos 6)?

be —ad =b*+a* =

4e*™ + 4e™ cos 0(e®™ + 1) + cos? (™ + 1)2 + sin? f(e?™ — 1)2
(e2™ +1)2 + 4e™ cos O(e?™ + 1) + 4e?7 cos? 0 '

Since

cos? 0(e?™+1)?+sin? §(e*™—1)? = e*™ cos? §+2¢°™ cos? f-+cos? O-+e*™ sin? §—2¢* sin? f+sin? 0
=™+ 1+ 2e*(2c0s’ 0 — 1),

we get

4e*™ + 4e™ cos 0(e*™ + 1) + 1 + ™ + 4e*™ cos? O — 2e*7

be — ad =
elm 4 2e2™ + 1 + 4e™ cos 0(e?™ + 1) + 4e?™ cos?

=1.

Thus the boundary conditions bc corresponding to the isometry W is self-adjoint.

Recall that the boundary condition given by the matrix (?77?) is strictly regular if
(b—c)? + 4ad # 0.

We have found the form of the boundary conditions bc of By, the self-adjoint
extension of L), which corresponds to an isometry W defined by a real-valued matrix.
If these boundary conditions are not strictly regular then

sin? @ (e271)?

(b—c¢)* +4ad = —4a* = A =0,
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which implies
sinf = 0.

So there are two cases, either § = 0 or § = 7. First case is that # = 0. Then the
matrix which gives the boundary conditions becomes

1 -1 0 0
0o 0 -1 1/
This boundary condition is called periodic since we have

yl(o) :yl(ﬂ),

y2(0) = 4a(7).

In the second case § = m. Then the matrix which gives the boundary conditions

becomes
1100
001 1)

This boundary condition is called anti-periodic since we have
y1(0) = =y (),

y2(0) = —ya(m).
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