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ABSTRACT

One dimensional Dirac operators

Lbc(v)y = i

(
1 0
0 −1

)
dy

dx
+ v(x)y, y =

(
y1
y2

)
, x ∈ [0, π]

considered with L2-potentials

v(x) =

(
0 P (x)

Q(x) 0

)
, P,Q ∈ L2 ([0, π]) ,

and subject to regular boundary conditions bc have discrete spectrum. In this thesis,
we study basic properties of Riesz bases, prove existence of Riesz bases consisting
of root functions of Dirac operators Lbc subject to strictly regular bc, find adjoint
operator (Lbc)

∗, find all self-adjoint bc, and calculate some special self-adjoint ex-
tensions.



ÖZET

Lbc(v)y = i

(
1 0
0 −1

)
dy

dx
+ v(x)y, y =

(
y1
y2

)
, x ∈ [0, π]

denklemiyle verilen, (
0 P (x)

Q(x) 0

)
, P,Q ∈ L2 ([0, π])

L2 potansiyeli ve regüler sınır şartlarıyla düşünülen, tek boyutlu Dirac operatörünün
ayrık spektrumu vardır. Bu tezde, Riesz tabanının genel özelliklerini inceliyoruz,
güçlü regüler sınır şartlarıyla düşünülen Dirac operatörü Lbc’nin özvektörlerinden
oluşan Riesz tabanının varlıǧını ispatlıyoruz, eşlenik operatörü (Lbc)

∗’ı buluyoruz,
özeşlenik sınır şartlarını belirliyoruz ve bazı özel özeşlenik genişlemeleri hesaplıyoruz.
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1 Introduction

The differential expression

L(v)y = i

(
1 0
0 −1

)
dy

dx
+ v(x)y, y =

(
y1
y2

)
,

is known as one dimensionsal Dirac operator. The matrix

v(x) =

(
0 P (x)

Q(x) 0

)
is called Dirac potential. In this thesis, we consider Dirac operators Lbc on [0, π]
with L2 potentials, that is P,Q ∈ L2([0, π]), and with domain

Dom (Lbc(v)) =

{
y =

(
y1
y2

)
: y1 and y2 are absolutely continuous, y satisfies

the boundary conditions bc, and y′1, y
′
2 ∈ L2([0, π])} .

If v ≡ 0, then Lbc(0) is denoted by L0
bc and called the free Dirac operator. A regular

boundary condition bc is given by the linear system of equations

y1(0) + by1(π) + ay2(0) = 0,

dy1(π) + cy2(0) + y2(π) = 0,

where bc− ad 6= 0. Moreover, bc is called strictly regular if (b− c)2 + 4ad 6= 0.

In the second section, we study the basic properties of Riesz bases. If (eγ, γ ∈ Γ)
is an orthonormal basis in a Hilbert space H and A : H → H is an automorphism,
then the system (fγ, γ ∈ Γ), fγ = Aeγ, is called a Riesz basis. Riesz bases are
unconditional bases. Moreover, Bari-Markus theorem is proven which states that
if (en, n ∈ N) is a Riesz basis in a Hilbert space H and (fn, n ∈ N) is a minimal
system of vectors such that

∞∑
n=1

‖fn − en‖2 <∞,

then (fn, n ∈ N) is also a Riesz basis. Bari-Markus theorem will be used to show
the existence of a Riesz basis consisting of root functions of the Dirac operator Lbc.

In the third section, we study eigenvalues and eigenfunctions of Dirac operators.
Dirac operators subject to regular boundary conditions bc have discrete spectrum.
It is shown that for strictly regular bc, every eigenvalue of the free Dirac operator is
simple and has the form λ0k,α = τα + k, where α = 1, 2 and k ∈ 2Z, and spectrum
consists only of eigenvalues. For each strictly regular bc, there is an N ∈ 2N such
that

Sp(Lbc) ⊂ RN ∪
⋃
|n|>N

(
D1
n ∪D2

n

)
,

where RN is a rectangle containing 2N eigenvalues of Lbc and each of the discs
Dα
n =

{
z :
∣∣z − λ0n,α∣∣ < ρ = ρ(bc)

}
, α = 1, 2 and |n| > N , contains exactly one

1



simple eigenvalue of Lbc. Using this spectra localization of the operators Lbc and
Bari-Markus theorem, it is shown that there is a Riesz basis which consists of eigen-
functions and (at most finitely many) associated functions.

In the fourth section, we show that the adjoint operator of Dirac operator Lbc(v)
subject to regular boundary conditions is Lbc∗(v

∗), where boundary conditions bc∗

given by the system

bg1(0) + g1(π) + dg2(π) = 0

ag1(0) + g2(0) + cg2(π) = 0,

and

v∗ =

(
0 Q
P 0

)
.

In the last two sections, we find the form of self-adjoint boundary conditions bc and
self-adjoint Dirac operators. Furthermore, we give a characterization of self-adjoint
extensions of an unbounded operator and we calculate some special self-adjoint
extensions.

2 Riesz bases

In this section, we give basic facts about bases. We define Riesz bases and give
some basic properties of Riesz bases. We consider only separable Hilbert spaces.

Definition 1. Let H be a Hilbert space. A system (en, n ∈ N) is called a basis in

H if

x =
∞∑
n=1

cnen, ∀x ∈ H (2.1)

where cn’s are uniquely determined and the series converges in norm. If the se-

ries converges unconditionally, then (en, n ∈ N) is called an unconditional basis.

Moreover a basis is called orthonormal if it is an orthonormal system in H which

means

〈en, em〉 = δn,m, ∀n,m ∈ N.

It is a general fact that there are orthonormal bases in every Hilbert space H.

Definition 2. Two systems (en, n ∈ N) and (fm,m ∈ N) in H are called biorthog-

onal if

〈en, fm〉 = δn,m, ∀n,m ∈ N.

Theorem 3. Assume that (fn, n ∈ N) is a basis in a Hilbert space H. Then there

exists a unique family
(
f̃n, n ∈ N

)
in H such that

x =
∑
n

〈
x, f̃n

〉
fn, ∀x ∈ H,
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where (fn, n ∈ N) and
(
f̃n, n ∈ N

)
are biorthogonal.

Proof. Suppose (fn, n ∈ N) is a basis in a Hilbert space H. Then

x =
∞∑
n=1

cn(x)fn,

where cn(.) are linear functions due to the uniqueness of expansion (??). Let

Pn(x) = cn(x)fn

and let

SN(x) =
N∑
k=1

ck(x)fk.

First we show that the projections SN , N = 1, 2, · · · , are uniformly bounded. Now

define

‖x‖1 := sup
N

∥∥∥∥∥
N∑
k=1

ck(x)fk

∥∥∥∥∥ <∞.
This norm is well-defined since

∑
n

cn(x)fn converges. The fact that ‖.‖1 is indeed

a norm in H easily follows from the fact that ‖.‖ is a norm in H. We show that

(H, ‖.‖1) is a Banach space. Let (xn, n ∈ N) be a Cauchy sequence in (H, ‖.‖1). Fix

ε > 0. Then there is µ such that

‖xn − xm‖1 = sup
N

∥∥∥∥∥
N∑
k=1

[ck(xn)− ck(xm)] fk

∥∥∥∥∥ < ε, for n,m ≥ µ,

which implies ∥∥∥∥∥
N∑
k=1

[ck(xn)− ck(xm)] fk

∥∥∥∥∥ < ε, ∀N, ∀n,m ≥ µ.

Then for every N ∈ N and for every n,m ≥ µ

‖[cN(xn)− cN(xm)] fN‖ =

∥∥∥∥∥
N∑
k=1

[ck(xn)− ck(xm)] fk −
N−1∑
k=1

[ck(xn)− ck(xm)] fk

∥∥∥∥∥
≤

∥∥∥∥∥
N∑
k=1

[ck(xn)− ck(xm)] fk

∥∥∥∥∥+

∥∥∥∥∥
N−1∑
k=1

[ck(xn)− ck(xm)] fk

∥∥∥∥∥ < 2ε.

Therefore

|cN(xn − xm)| < 2ε/ ‖fN‖ , for n,m ≥ µ.
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So, for every N ∈ N, (cN(xn)) is a Cauchy sequence of numbers and converges, say

to c∗N . By definition of ‖.‖1,

‖xn − xm‖ ≤ ‖xn − xm‖1 < ε, ∀n,m ≥ µ.

Therefore xn is a Cauchy sequence in (H, ‖.‖) and ‖xn − x‖ → 0 for some x in H.

Let m→∞. Then by the last inequality, we obtain

‖xn − x‖ ≤ ε, ∀n ≥ µ. (2.2)

We know that ∥∥∥∥∥
N∑
k=1

[ck(xn)− ck(xm)] fk

∥∥∥∥∥ < ε, ∀N, ∀n,m ≥ µ.

Let m→∞. Then we obtain∥∥∥∥∥
N∑
k=1

[ck(xn)− c∗k] fk

∥∥∥∥∥ ≤ ε, ∀N, ∀n ≥ µ. (2.3)

Fix n > µ. Then we have for every N ∈ N,

∥∥∥∥∥
N∑
k=1

ck(x)fk −
N∑
k=1

c∗kfk

∥∥∥∥∥ ≤
∥∥∥∥∥

N∑
k=1

ck(x)fk − x

∥∥∥∥∥+ ‖x− xn‖+

∥∥∥∥∥xn −
N∑
k=1

ck(xn)fk

∥∥∥∥∥
+

∥∥∥∥∥
N∑
k=1

ck(xn)fk −
N∑
k=1

c∗kfk

∥∥∥∥∥ .
By (??) and (??), the second and the fourth term on the right hand side are less

then ε. Since (fk) is a basis, for large enough N , the first and the third terms are

also less than ε. Thus it follows that for large enough N∥∥∥∥∥
N∑
k=1

ck(x)fk −
N∑
k=1

c∗kfk

∥∥∥∥∥ < 4ε.

Since
N∑
k=1

ck(x)fk → x, it follows that
N∑
k=1

c∗kfk → x, that is x =
N∑
k=1

c∗kfk. Hence

c∗k = ck(x) by uniqueness of ck. Since∥∥∥∥∥
N∑
k=1

[ck(xn)− c∗k] fk

∥∥∥∥∥ ≤ ε, ∀N, ∀n ≥ µ,

we obtain that for every n ≥ µ,

‖xn − x‖1 = sup
N

∥∥∥∥∥
N∑
k=1

[ck(xn)− ck(x)] fk

∥∥∥∥∥ = sup
N

∥∥∥∥∥
N∑
k=1

[ck(xn)− c∗k] fk

∥∥∥∥∥ ≤ ε.
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So ‖xn − x‖1 → 0 as n→∞. Thus (H, ‖.‖1) is a Banach space.

By definition of ‖.‖1, we have

‖x‖ ≤ ‖x‖1 , ∀x ∈ H,

and this means that the identity operator

I : (H, ‖.‖1)→ (H, ‖.‖)

is a continuous one to one mapping. So by Open Mapping Theorem, it has a

continuous inverse. So there is a constant c > 0 such that

‖x‖1 ≤ c ‖x‖ , ∀x ∈ H.

Therefore

SN(x) =

∥∥∥∥∥
N∑
k=1

ck(x)fk

∥∥∥∥∥ ≤ c ‖x‖ , ∀N.

By this way, we have shown that SN ’s are uniformly bounded. Then

‖Pn(x)‖ = ‖Sn(x)− Sn−1(x)‖ ≤ ‖Sn(x)‖+ ‖Sn−1(x)‖ ≤ 2c ‖x‖ .

So

‖Pn(x)‖ = |cn(x)| ‖fn‖ ≤ 2c ‖x‖ ,

which implies

|cn(x)| ≤ 2c

‖fn‖
‖x‖ .

Hence cn(x) is continuous for n = 1, 2, · · · . By Riesz Representation Theorem, each

cn(x) can be written in the form

cn(x) =
〈
x, f̃n

〉
,

where f̃n is a uniquely determined element in H. So every x ∈ H can be written as

x =
∞∑
n=1

〈
x, f̃n

〉
fn.

Since cn(fm) = δn,m for n,m = 1, 2, · · · , cn’s and fn’s are biorthogonal systems.

And cn(fm) = δn,m means that

cn(fm) =
〈
fm, f̃n

〉
= δn,m.
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Thus fn’s and f̃n’s are biorthogonal. Hence we have shown that for any basis

(fn, n ∈ N) in H, there is a unique biorthogonal system
(
f̃n, n ∈ N

)
in H such

that

x =
∞∑
n=1

〈
x, f̃n

〉
fn, ∀x ∈ H.

The bases that we consider are unconditional bases, so we don’t have convergence
problems related to order of the elements. Thus for practical uses we use countable
bases of the form (eγ, γ ∈ Γ) where Γ is a countable set of indices, instead of bases
of the form (en, n ∈ N).

Let H be a Hilbert space and let (eγ, γ ∈ Γ) be an orthonormal basis in H. If
A : H → H is an automorphism, then the system (fγ, γ ∈ Γ) given by

fγ = Aeγ, γ ∈ Γ (2.4)

is also a basis in H. For every x ∈ H, we have

x = A
(
A−1x

)
= A

(∑
γ

〈
A−1x, eγ

〉
eγ

)
=
∑
γ

〈
x,
(
A−1

)∗
eγ
〉
fγ =

∑
γ

〈
x, f̃γ

〉
fγ.

Definition 4. A basis of the form (??) is called a Riesz basis.

So we have also showed that (fγ) is a basis with its biorthogonal system

f̃γ =
(
A−1

)∗
eγ, γ ∈ Γ. (2.5)

Riesz bases are unconditional bases since orthonormal bases are unconditional bases.

Lemma 5. Let H1 and H2 be two Hilbert spaces and let A : H1 → H2 be an

isomorphism. If (eγ, γ ∈ Γ) is an orthonormal basis in H1, then the system

fγ = Aeγ, γ ∈ Γ

is a Riesz basis in H2.

Proof. Assume H1 and H2 are two Hilbert spaces and A : H1 → H2 is an isomor-

phism. Let (eγ, γ ∈ Γ) be an orthonormal basis in H1. Take any orthonormal basis

in H2, say (φγ, γ ∈ Γ). Then the operator B : H2 → H1 defined by

Bφγ = eγ, ∀γ ∈ Γ.

Then B is clearly an isomorphism. Now take C : H2 → H2 given by C = A ◦ B.

Then C is an isomorphism and

Cφγ = fγ, ∀γ ∈ Γ.

Thus (fγ, γ ∈ Γ) is a Riesz basis in H2.
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Recall that `2(Γ) is the space consisting of the generalized sequences (xγ, γ ∈ Γ)
such that ∑

γ

|xγ|2 <∞.

We consider `2(Γ) equipped with the inner product

〈x, y〉 =
∑
γ

xγyγ,

where x = (xγ, γ ∈ Γ) and y = (yγ, γ ∈ Γ).

Now we give a characterization of Riesz bases by the following theorem.

Theorem 6. Suppose that (fγ, γ ∈ Γ) is a basis in H and
(
f̃γ, γ ∈ Γ

)
is its

biorthogonal system. Then (fγ, γ ∈ Γ) is a Riesz basis if and only if

c ≤ ‖fγ‖ ≤ C, ∀γ ∈ Γ (2.6)

and

m ‖x‖2 ≤
∑
γ

∣∣∣〈x, f̃γ〉∣∣∣2 ‖fγ‖2 ≤M ‖x‖2 , (2.7)

for some positive constants c, C,m and M .

Proof. First let (fγ, γ ∈ Γ) be a Riesz basis in H with its biorthogonal system(
f̃γ, γ ∈ Γ

)
. Then there is an orthonormal basis (eγ, γ ∈ Γ) in H and an automor-

phism A such that

A(eγ) = fγ.

Then we have

‖fγ‖ = ‖Aeγ‖ ≤ ‖A‖ and 1 = ‖eγ‖ =
∥∥A−1fγ∥∥ ≤ ∥∥A−1∥∥ ‖fγ‖ ,

which gives us
1

‖A−1‖
≤ ‖fγ‖ ≤ ‖A‖ . (2.8)

So we get (??) with c = 1
‖A−1‖ and C = ‖A‖. Also we have that∑

γ

∣∣〈x, (A−1)∗ eγ〉∣∣2 ‖fγ‖2 =
∑
γ

|〈A−1x, eγ〉|2 ‖fγ‖2

≤ ‖A‖2
∑
γ

|〈A−1x, eγ〉|2 by (??)

= ‖A‖2 ‖A−1x‖2

≤ ‖A‖2 ‖A−1‖2 ‖x‖2 .
and
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∑
γ

∣∣〈x, (A−1)∗ eγ〉∣∣2 ‖fγ‖2 =
∑
γ

|〈A−1x, eγ〉|2 ‖fγ‖2

≥ 1
‖A−1‖2

∑
γ

|〈A−1x, eγ〉|2 by (??)

= 1
‖A−1‖2 ‖A

−1x‖2

≥ 1
‖A−1‖2

1
‖A‖2 ‖x‖

2 .

since

‖x‖ =
∥∥A−1Ax∥∥ ≤ ‖A‖∥∥A−1x∥∥

which means ∥∥A−1x∥∥ ≥ ‖x‖
‖A‖

.

Combining these results, we get

1

‖A−1‖2
1

‖A‖2
‖x‖2 ≤

∑
γ

∣∣∣〈x, f̃γ〉∣∣∣2 ‖fγ‖2 ≤ ‖A‖2 ∥∥A−1∥∥2 ‖x‖2 , (2.9)

which proves (??) with m = 1
‖A−1‖2‖A‖2 and M = ‖A‖2 ‖A−1‖2 .

Now let (fγ, γ ∈ Γ) be a basis in H and
(
f̃γ, γ ∈ Γ

)
be its biorthogonal system

such that (??) and (??) holds. Since Γ is a countable set, we may think that

Γ = {γi, i = 1, 2, · · · }. With this enumaration, consider the operator B : `2(Γ)→ H

given by

B ((xγ)) =
∞∑
i=1

xγifγi .

Let

SN =
N∑
i=1

xγifγi .

Then 〈
SN , f̃γi

〉
= xγi , i = 1, 2, · · · , N.

So by using (??) and (??), we get that

k ‖SN‖2 ≤
∑
γ

|xγi |
2 ≤ K ‖SN‖2 ,

where k = m/C2 and K = M/c2. By the same argument, we get that

k ‖SN+M − SN‖2 ≤
N+M∑
i=N

|xγi |
2 → 0 as N →∞

since (xγ) ∈ `2. So (SN) is a Cauchy sequence in H. Since H is complete, (SN) is

convergent to some s in H. Thus the series
∞∑
i=1

xγifγi converges which shows that B

is well-defined.
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Next we prove that B is continuous. Set

x = B ((xγ)) =
∞∑
i=1

xγifγi .

Then by (??) and (??)

k ‖x‖2 = k ‖B ((xγ))‖2 ≤
∞∑
i=1

|xγi |
2 = ‖(xγ)‖2`2 ≤ K ‖B ((xγ))‖2 .

So B is continuous since

‖B ((xγ))‖ ≤
1√
k
‖(xγ)‖`2 ,

and B−1 is continuous since

‖B ((xγ))‖ ≥
1√
K
‖(xγ)‖`2 .

Thus B is an isomorphism.

Let (eγ, γ ∈ Γ) be the orthonormal basis in `2 given by

eγ(α) = δγ,α.

Then by definition of B,

Beγ = fγ, ∀γ ∈ Γ.

Thus (fγ) is a Riesz basis by the previous lemma.

Definition 7. A system (fn, n ∈ N) is called minimal if

fj /∈ span {fk}k 6=j , ∀j ∈ N.

Theorem 8. (Bari-Markus Theorem) Let (en, n ∈ N) be a Riesz basis in a Hilbert

space H and let (fn, n ∈ N) be a minimal system of vectors such that

∞∑
n=1

‖fn − en‖2 <∞.

Then (fn, n ∈ N) is also a Riesz basis.

Proof. It sufficies to show that there is an isomorphism A such that A (en) = fn.

Since (en, n ∈ N) is a Riesz basis, there is an isomorphism B and orthonormal basis

(φn, n ∈ N) such that B (φn) = en. So A ◦ B will be an isomorphism such that

B ◦ A (φn) = fn.

9



For x =
∞∑
n=1

xnen, set

Tx :=
∞∑
n=1

xn (en − fn) .

The operator T is bounded since

‖Tx‖ =

∥∥∥∥ ∞∑
n=1

xn (en − fn)

∥∥∥∥ ≤ ∞∑
n=1

|xn| ‖en − fn‖

≤
(
∞∑
n=1

|xn|2
)1/2( ∞∑

n=1

‖en − fn‖2
)1/2

≤
√
M
c2
s ‖x‖ ,

where c and M are coming from the inequalities (??),(??) and s2 =
∞∑
n=1

‖fn − en‖2.

Let (Tk, k ∈ N) be the sequence of finite rank operators given by

Tkx =
k∑

n=1

xn(en − fn), for x =
∞∑
n=1

xnen.

We have ‖Tk − T‖ → 0 as k →∞, since

‖Tkx− Tx‖ =

∥∥∥∥ ∞∑
n=k+1

xn(en − fn)

∥∥∥∥ ≤ ∞∑
n=k+1

|xn| ‖en − fn‖

≤
(

∞∑
n=k+1

|xn|2
)1/2( ∞∑

n=k+1

‖en − fn‖2
)1/2

≤ ‖x‖
(

∞∑
n=k+1

‖en − fn‖2
)1/2

,

and
∞∑
n=1

‖en − fn‖2 is a convergent series. Since Tk are finite-dimensional operators,

it follows that T is a compact operator.

Now consider the operator A = 1− T . A is invertible if 1 is not in the spectrum of

T . Let x ∈ kerA, that is

(1− T )x = 0, for x =
∞∑
n=1

xnen.

Then it follows
∞∑
n=1

xnfn = 0,

which implies (since (fn, n ∈ N) is a minimal system) that xn = 0 for every n,

hence x = 0. So 1 is not an eigenvalue of the operator T . Recall that spectrum of

a compact operator contains only eigenvalues. Since T is a compact operator and 1

is not an eigenvalue of T , 1 is not in the spectrum of T . Then A is invertible, so it

is an isomorphism. Hence (fn, n ∈ N) is also a Riesz basis.
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3 Riesz Basis of Root Functions of

Dirac Operator

In this section, we study the spectrum of free Dirac operator L0
bc subject to strictly

regular boundary conditions bc. We show that the eigenfunctions of L0
bc form a

Riesz basis in L2([0, π],C2). Moreover, we show the existence of Riesz basis of root
functions of Dirac operator Lbc subject to strictly regular boundary conditions bc.

The differential expression

L(v)y = i

(
1 0
0 −1

)
dy

dx
+

(
0 P (x)

Q(x) 0

)
y. (3.1)

is known as the one dimensional Dirac operator. The matrix v =

(
0 P (x)

Q(x) 0

)
is

called the Dirac potential. In case v ≡ 0, we write L0 = L(0) and call L0 free Dirac
operator. A general boundary condition for the Dirac operator is given by a system
of two linear equations

a1y1(0) + b1y1(π) + a2y2(0) + b2y2(π) = 0

c1y1(0) + d1y1(π) + c2y2(0) + d2y2(π) = 0. (3.2)

Of course, equivalent systems of the form (??) define one and the same bc. Each
boundary condition is determined by the matrix of the coefficients of (??)(

a1 b1 a2 b2
c1 d1 c2 d2

)
. (3.3)

But if we multiply this matrix from the left by a 2x2 invertible matrix, we get
another matrix that determines the same bc.

We may assign to every boundary condition bc of the form (??) a corresponding
operator L0

bc as follows. Let

Dom (L0
bc) =

{
y =

(
y1
y2

)
: y1 and y2 are absolutely continuous, y satisfies

the boundary conditions bc, and y′1, y
′
2 ∈ L2([0, π])} ,

and let

L0
bc(y) = i

(
1 0
0 −1

)(
y
′
1

y
′
2

)
.

Theorem 9. L0
bc is a closed densely defined operator.

Proof. Let ((
fn

gn

)
, L0

(
fn

gn

))
−→

((
f

g

)
,

(
h1

h2

))
in L2([0, π],C2).

This means that((
fn

gn

)
,

(
if
′
n

−ig′n

))
−→

((
f

g

)
,

(
h1

h2

))
in L2([0, π],C2).

11



So (
fn, if

′

n

)
‖.‖−→ (f, h1) and

(
gn,−ig

′

n

)
‖.‖−→ (g, h2) .

Since fn’s are measurable functions and fn
‖.‖−→ f , fn converges to f in measure.

Then there is a subsequence fnk such that fnk(x)
a.e.−→ f(x). Thus there exists c ∈

[0, π] such that fn(c)→ f(c). Now define

H1(x) :=
1

i

x∫
c

h1(t)dt.

Then

|fn(x)− fn(c)−H1(x)|2 =

∣∣∣∣ x∫
c

(
f
′
n(t)− 1

i
h1(t)

)
dt

∣∣∣∣2
≤

(
π∫
0

∣∣f ′n(t)− 1
i
h1(t)

∣∣ dt)2

≤
(

π∫
0

∣∣f ′n(t)− 1
i
h1(t)

∣∣2 dt)( π∫
0

12dt

)
=

∥∥f ′n − 1
i
h1
∥∥2 π.

By this inequality, we get that

fn(x)− fn(c)
unif−→ H1(x),

since f
′
n

‖.‖−→ h1
i

. And also fn(x)− fn(c)
a.e.−→ f(x)− f(c), so

H1(x) = f(x)− f(c) a.e.

Since we identify functions that are equal almost everywhere, we may think that

the previous equality holds for every x ∈ [0, π]. So

h1(x) = iH
′

1(x) = if
′
(x) a.e. (3.4)

We can similarly define H2(x) := −1
i

x∫
c

h2(t)dt and get that

h2(x) = −ig′(x). (3.5)

Since we identify functions that are equal almost everywhere and fn’s are absolutely

continuous functions, we may think that fn(x) → f(x), ∀x ∈ [0, π]. So f satisfies

bc. Similarly g also satisfies bc. So by (??) and (??)(
f

g

)
∈ dom(L0

bc) and L0

(
f

g

)
=

(
h1

h2

)
.

Thus we have shown that the graph of L0
bc is closed, which means that L0

bc is a closed

operator.

12



Now we find the eigenvalues of the operator L0 given by

L0(y) = i

(
1 0
0 −1

)
dy

dx

subject to a general boundary condition bc of the form (??) with associated matrix
(??). Let Aij denote the matrix given by i-th and j-th columns of the matrix (??).
If

L0y = λy, y =

(
y1
y2

)
,

then
iy
′

1 = λy1 and − iy′2 = λy2.

So each solution of the equation has the form

y =

(
y1
y2

)
=

(
k1e
−iλx

k2e
iλx

)
(3.6)

for some constants k1 and k2. Now if we let z = eiλπ, we get

y1 (0) = k1, y2 (0) = k2, y1 (π) = k1z
−1 and y2 (π) = k2z.

So if we use these initial conditions of y, we can see that y satisfies the boundary
conditions (??) iff (k1, k2) is a solution of the system of equations

a1k1 + b1k1z
−1 + a2k2 + b2k2z = 0

c1k1 + d1k1z
−1 + c2k2 + d2k2z = 0

or equivalently

k1
(
a1 + b1z

−1)+ k2 (a2 + b2z) = 0

k2
(
c1 + d1z

−1)+ k2 (c2 + d2z) . (3.7)

So we have a non-zero solution y iff∣∣∣∣a1 + b1z
−1 a2 + b2z

c1 + d1z
−1 c2 + d2z

∣∣∣∣ = 0,

⇔ a1c2 + a1d2z + b1z
−1c2 + b1z

−1d2z − c1a2 − c1b2z − d1z−1a2 − d1z−1b2z = 0,

⇔ (a1d2 − b2c1) z + (b1d2 − d1b2 + a1c2 − a2c1) + (b1c2 − d1a2) z−1 = 0.

If we multiply both sides by z, it is equivalent to the quadratic equation

|A14| z2 + (|A13|+ |A24|) z + |A23| = 0. (3.8)

The boundary condition (??) is called strictly regular if

|A14| 6= 0, |A23| 6= 0, (|A13|+ |A24|)2 6= 4 |A14| |A23| (3.9)

13



hold. So if we have strictly regular boundary conditions, then the quadratic equation
(??) has two distinct roots, call z1 and z2.

In the following, we consider only strictly regular boundary conditions. Now if we
multiply A−114 with (??), we get that

A−114

(
a1 b1 a2 b2
c1 d1 c2 d2

)
=

1

a1d2 − b2c1

(
b2 −b2
−c1 a1

)(
a1 b1 a2 b2
c1 d1 c2 d2

)
=

(
1 b a 0
0 d c 1

)
(3.10)

where

(
b a
d c

)
= A−114 A23.

So we found an equivalent system to the boundary condition (??) given by

y1(0) + by1(π) + ay2(0) = 0

dy1(π) + cy2(0) + y2(π) = 0. (3.11)

This system is associated with the matrix (??). From now on we consider the
boundary conditions in the form (??) with matrices (??). So the conditions (??)
adjusted to this new form of the boundary conditions means that

|A23| = bc− ad 6= 0 (3.12)

and

(|A13 + A24|)2 − 4 |A14| |A23| = (c+ b)2 − 4(bc− ad)

= c2 + 2bc+ b2 − 4bc+ 4ad

= (b− c)2 + 4ad 6= 0. (3.13)

Now the system (??) becomes

k1
(
1 + bz−1

)
+ k2a = 0

k1dz
−1 + k2 (c+ z) = 0 (3.14)

which means (
1 + b/z a
d/z c+ z

)(
k1
k2

)
=

(
z + b a
d c+ z

)(
k1/z
k2

)
= 0. (3.15)

And the quadratic equation (??) becomes

z2 + (b+ c) z + bc− ad = 0. (3.16)

So from these equations, we get the following lemma.

Lemma 10. The complex number −z is an eigenvalue of the matrix A23 =

(
b a

d c

)

if and only if z is a root of the quadratic equation (??). And also,

(
k1

k2

)
is a non-

zero solution of (??) if and only if

(
k1/z

k2

)
is an eigenvector of A23 corresponding

to the eigenvalue −z.
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The quadratic equation (??) has two distinct nonzero roots z1 and z2 correspond-
ing to the given strictly regular boundary condition. So the matrix A23 has two
distinct nonzero eigenvalues −z1 and −z2 by the previous lemma. Let τ1 and τ2 be
chosen such that

z1 = eiπτ1 , z2 = eiπτ2 .

and
|Re τ1 −Re τ2| ≤ 1, |Re τ1| ≤ 1.

Then
z1 = eiπλ ⇔ λ = τ1 + k, k ∈ 2Z

and
z2 = eiπλ ⇔ λ = τ2 + k, k ∈ 2Z.

So the set
E = {τ1 + k, τ2 + k; k ∈ 2Z} (3.17)

gives us all eigenvalues of L0.

Now let us fix eigenvectors

(
α1

α2

)
and

(
β1
β2

)
corresponding to eigenvalues −z1 and

−z2. Then these eigenvectors are linearly independent. Let us define(
α1 β1
α2 β2

)−1
:=

(
α
′
1 α

′
2

β
′
1 β

′
2

)
. (3.18)

By the previous lemma, for each eigenvalue there is an eigenvector of L0 of the form
(??) with(

k1
k2

)
=

(
α1z1
α2

)
if λ = τ1 + k,

(
k1
k2

)
=

(
β1z1
β2

)
if λ = τ2 + k.

So all eigenfunctions of L0
bc with boundary conditions (??) are

Φ1 =
{
ϕ1
k, k ∈ 2Z

}
, ϕ1

k :=

(
z1α1e

−i(τ1+k)x

α2e
i(τ1+k)x

)
=

(
α1e

iτ1(π−x)e−ikx

α2e
iτ1xeikx

)
(3.19)

and

Φ2 =
{
ϕ2
k, k ∈ 2Z

}
, ϕ2

k :=

(
z2β1e

−i(τ2+k)x

β2e
i(τ2+k)x

)
=

(
β1e

iτ2(π−x)e−ikx

β2e
iτ2xeikx

)
. (3.20)

Theorem 11. The set Φ = Φ1 ∪Φ2 is a Riesz basis in the space L2 ([0, π] ,C2) with

its biorthogonal system Φ̃ = ϕ̃1 ∪ ϕ̃2, where

Φ̃1 =
{
ϕ̃1
k, k ∈ 2Z

}
, ϕ̃1

k :=

(
α
′
1e
iτ1(π−x)e−ikx

α
′
2e
iτ1xeikx

)
, (3.21)

and

Φ̃2 =
{
ϕ̃2
k, k ∈ 2Z

}
, ϕ̃2

k :=

(
β
′
1e
iτ2(π−x)e−ikx

β
′
2e
iτ2xeikx

)
, (3.22)

α
′
1, α

′
2, β

′
1, β

′
2 are coming from (??).
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Proof. The system consisting of

e1k :=

(
eikx

0

)
, e2k :=

(
0

eikx

)
, k ∈ 2Z (3.23)

forms an orthonormal basis in L2 ([0, π] ,C2). Now we construct an automorphism

on L2 ([0, π] ,C2) which maps this system to Φ. Consider the operator given by

A : L2
(
[0, π] ,C2

)
→ L2

(
[0, π] ,C2

)
(3.24)

A

(
f

g

)
:=

(
α1e

iτ1(π−x)f (π − x)

α2e
iτ1xf (x)

)
+

(
β1e

iτ2(π−x)g (π − x)

β2e
iτ2xg (x)

)
.

It is obvious that A maps the system in (??) to Φ. Now we show that A is bounded,

A−1 exists and is also bounded.

Observe that for any a and b, we have

(a− b)2 = a2 − 2ab+ b2 ≥ 0 equivalently a2 + b2 ≥ 2ab

which gives

(a+ b)2 = a2 + 2ab+ b2 ≤ 2a2 + 2b2.

So if we use this inequality, we get

∥∥∥∥∥A
(
f

g

)∥∥∥∥∥
2

=

∥∥∥∥∥
(
α1e

iτ1(π−x)f (π − x)

α2e
iτ1xf (x)

)
+

(
β1e

iτ2(π−x)g (π − x)

β2e
iτ2xg (x)

)∥∥∥∥∥
2

≤ 2

∥∥∥∥∥
(
α1e

iτ1(π−x)f (π − x)

α2e
iτ1xf (x)

)∥∥∥∥∥
2

+

∥∥∥∥∥
(
β1e

iτ2(π−x)g (π − x)

β2e
iτ2xg (x)

)∥∥∥∥∥
2
 .

≤ 2
π

(
π∫
0

[
|α1|2

∣∣eiτ1(π−x)∣∣2 |f (π − x)|2 + |α2|2 |eiτ1x|
2 |f(x)|2

]
dx

)
+ 2
π

(
π∫
0

[
|β1|2

∣∣eiτ2(π−x)∣∣2 |g (π − x)|2 + |β2|2 |eiτ2x|
2 |g(x)|2

]
dx

)
.

Now let

c1 := max
x∈[0,π]

{∣∣eiτ1x∣∣ , ∣∣eiτ2x∣∣} , c2 := max {|α1| , |α2| , |β1| , |β2|} and c̃ = 2c1c2.

Then we have∥∥∥∥∥A
(
f

g

)∥∥∥∥∥ ≤ 2c1c2

(
1
π

π∫
0

|f (π − x)|2 dx+
π∫
0

|g (x)|2 dx
)1/2

= c̃

(
1
π

π∫
0

(
|f (x)|2 + |g (x)|2

)
dx

)1/2

= c̃

∥∥∥∥∥
(
f

g

)∥∥∥∥∥ .
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Thus we have shown that A is bounded. Let us find its inverse. Let

A

(
f

g

)
=

(
F

G

)
.

Then by definition of A, solving this equation is equivalent to solve the system

α1e
iτ1xf (x) + β1e

iτ2xg (x) = F (π − x)

α2e
iτ1xf (x) + β2e

iτ2xg (x) = G (x) ,

which can be written in the form(
α1 β1

α2 β2

)(
eiτ1xf (x)

eiτ2xg (x)

)
=

(
F (π − x)

G (x)

)
.

So by (??) we get that(
eiτ1xf (x)

eiτ2xg (x)

)
=

(
α1 β1

α2 β2

)−1(
F (π − x)

G (x)

)
=

(
α
′
1F (π − x) + α

′
2G (x)

β
′
1F (π − x) + β

′
2G (x)

)
,

which gives us

A−1

(
F

G

)
=

(
e−iτ1x

[
α
′
1F (π − x) + α

′
2G (x)

]
e−iτ2x

[
β
′
1F (π − x) + β

′
2G (x)

]) .
So we found A−1 and similar with the operator A, the inverse of A is also bounded.

Now only thing left is to calculate the biorthogonal system of Φ. First we calcu-

late the adjoint operator of A−1. Only by using definitions, we get〈
A−1

(
F

G

)
,

(
f

0

)〉
= 1

π

π∫
0

e−iτ1x
[
α
′
1F (π − x) + α

′
2G (x)

]
f (x)dx

= 1
π

π∫
0

(
F (x)α

′
1f (π − x) eiτ1(π−x) +G (x)α

′
2f (x) eiτ1x

)
dx

=

〈(
F

G

)
,

(
α
′
1f (π − x) eiτ1(π−x)

α
′
2f (x) eiτ1x

)〉
,

which means (
A−1

)∗(f
0

)
=

(
α
′
1f (π − x) eiτ1(π−x)

α
′
2f (x) eiτ1x

)
.

Similarly the following equation holds

(
A−1

)∗(0

g

)
=

(
β
′
1g (π − x) eiτ2(π−x)

β
′
2f (x) eiτ2x

)
.
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Since (A−1)
∗

is linear

(
A−1

)∗(f
g

)
=

(
α
′
1f (π − x) eiτ1(π−x)

α
′
2f (x) eiτ1x

)
+

(
β
′
1g (π − x) eiτ2(π−x)

β
′
2f (x) eiτ2x

)
.

In view of (??), (??) and (??) really gives the biorthogonal system of Φ and Φ is a

Riesz basis for L2 ([0, π] ,C2). We are done.

Theorem 12. The spectrum of L0
bc, considered with strictly regular boundary con-

ditions bc of the form (??), consists only of its eigenvalues.

Proof. Assume λ is not an eigenvalue of L0
bc. Since(

λ− L0
bc

)
ϕ1
k = [λ− (τ1 + k)]ϕ1

k,

we have (
λ− L0

bc

)−1
ϕ1
k :=

1

λ− (τ1 + k)
ϕ1
k,

where ϕ1
k is an eigenvector of the form (??) and (τ1 + k) is the corresponding eigen-

value. Similarly (
λ− L0

bc

)−1
ϕ2
k :=

1

λ− (τ2 + k)
ϕ2
k,

for an eigenvector ϕ2
k of the form (??) with corresponding eigenvalue (τ2 + k).

Let f ∈ L2 ([0, π] ,C2). By using the previous theorem, we can write f as

f =
∑
k∈2Z

(
fk,1ϕ1

k + fk,2ϕ2
k

)
,

where fk,i = 〈f, ϕ̃ik〉 for i = 1, 2.

Now we can define the inverse by

(λ− L0
bc)
−1

(f) = (λ− L0
bc)
−1
( ∑
k∈2Z

(
fk,1ϕ1

k + fk,2ϕ2
k

))
:=

∑
k∈2Z

(
fk,1 1

λ−(τ1+k)ϕ
1
k + fk,2 1

λ−(τ2+k)ϕ
2
k

)
.

Since this formula gives the algebraic inverse, it remains to show that this inverse

operator is bounded. But we have∥∥∥(λ− L0
bc)
−1
f
∥∥∥ =

∥∥∥∥ ∑
k∈2Z

(
fk,1 1

λ−(τ1+k)ϕ
1
k + fk,2 1

λ−(τ2+k)ϕ
2
k

)∥∥∥∥
≤

∑
k∈2Z

∥∥∥fk,1 1
λ−(τ1+k)ϕ

1
k

∥∥∥+
∑
k∈2Z

∥∥∥fk,2 1
λ−(τ2+k)ϕ

2
k

∥∥∥
≤

( ∑
k∈2Z

∥∥fk,1∥∥2 ‖ϕ1
k‖

2

)1/2( ∑
k∈2Z

1
|λ−(τ1+k)|2

)1/2

+

( ∑
k∈2Z

∥∥fk,2∥∥2 ‖ϕ2
k‖

2

)1/2( ∑
k∈2Z

1
|λ−(τ2+k)|2

)1/2

≤

[( ∑
k∈2Z

1
|λ−(τ1+k)|2

)1/2

+

( ∑
k∈2Z

1
|λ−(τ2+k)|2

)1/2
]
‖A‖ ‖A−1‖ ‖f‖
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where A is the operator defined in (??), and we get the last inequality by using

(??). So it is only left to show the convergence of the series in the last part of the

equality.

For this fixed λ, there is n ∈ 2Z such that

|Re (λ− (τ1 + n))| ≤ 1,

since |Re τ1| ≤ 1. This implies, for k 6= n

|λ− (τ1 + k)| ≥ |Re (λ− (τ1 + n) + n− k)| ≥ |n− k| − |Re (λ− (τ1 + n))|

≥ |n− k| − 1 ≥ 1

2
|n− k| ,

since n, k are even numbers. Now for the first series, we get∑
k∈2Z

1
|λ−(τ1+k)|2

= 1
|λ−τ1−n|2

+
∑
k 6=n

1
|λ−τ1−k|2

≤ 1
|λ−τ1−n|2

+
∑
k 6=n

1
(|n−k|−1)2

≤ 1
|λ−τ1−n|2

+
∑
k 6=n

22

|n−k|2 .

So we have shown that the first series is convergent. Similar argument proves that

the second series converges.

This proves the operator (λ− L0
bc)
−1

is bounded if λ is not an eigenvalue of L0
bc.

This means that spectrum of L0
bc only contains its eigenvalues. So the proof is

completed.

Now we consider the spectra localization of the operators Lbc = L0
bc + V , where

V denotes the operator of multiplication by the matrix v(x) =

(
0 P (x)

Q(x) 0

)
. We

subdivide the complex plane C into the strips

Hm =

{
z ∈ C : −1 ≤ Re

(
z −m− τ1 + τ2

2

)
≤ 1

}
, m ∈ 2Z,

and set
HN =

⋃
|m|≤N

Hm,

RN =

{
z = x+ it :

∣∣∣∣x−Reτ1 + τ2
2

∣∣∣∣ < N + 1, |t| < N

}
,

where N ∈ 2N. Let

ρ := min (1− |Re (τ1 − τ2)| /2, |τ1 − τ2| /2) ,

and
Dµ
m = {z ∈ C : |z − τm −m| < ρ} , m ∈ 2Z.
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It is known that (see [?], Theorem 12.) for each strictly regular bc, there is an
N ∈ 2N such that

Sp(Lbc) ⊂ RN ∪
⋃
|n|>N

(
D1
n ∪D2

n

)
.

Moreover, each disc Dα
n , α = 1, 2, |n| > N contains exactly one simple eigenvalue of

Lbc, while RN contains 2N eigenvalues of Lbc. Let us consider the Riesz projections
associated with Lbc

SN =
1

2πi

∫
∂RN

(λ− L)−1 dλ, Pn,α =
1

2πi

∫
∂Dαn

(λ− L)−1 dλ, α = 1, 2, (3.25)

and let S0
N and P 0

n,α be the Riesz projections associated with the free operator L0
bc.

Next we use the following theorem (see [?], Theorem 15).

Theorem 13. Suppose Lbc and L0
bc are, respectively, the Dirac operator with an

L2 potential and the corresponding free Dirac operator, subject to the same strictly

regular boundary conditions bc. Then, there is an N ∈ 2N such that the Riesz

projections SN , Pn,α and S0
N , P

0
n,α, n ∈ 2Z, |n| > N,α = 1, 2, associated with L and

L0 are well defined by (??), and we have

dimPn,α = dimP 0
n,α = 1, dimSN = dimS0

N = 2N ; (3.26)∑
|n|>N

∥∥Pn,α − P 0
n,α

∥∥2 <∞, α = 1, 2, (3.27)

If SN(x) = 0, Pn,α = 0 ∀n, α⇒ x = 0. (3.28)

Let ϕαn, α = 1, 2 are unit eigenfunctions of the free Dirac operator L0
bc such that

L0
bcϕ

α
n = λαn,0ϕ

α
n,

where λαn,0 = τα + n. For |n| > N , set

Ψα
n = Pn,α(ϕαn).

Then Ψα
n are eigenvectors of the Lbc such that

LbcΨ
α
n = λαnΨα

n,

where λαn ∈ Dα
n . By using the previous theorem, we obtain that∑

|n|>N

‖Ψα
n − ϕαn‖

2 =
∑
|n|>N

∥∥Pn,α(ϕαn)− P 0
n,α(ϕαn)

∥∥2 ≤ ∑
|n|>N

∥∥Pn,α − P 0
n,α

∥∥2 <∞
since ‖ϕαn‖ = 1. Thus (Ψα

n, |n| > N, α = 1, 2) forms a Riesz bases in its closed
linear span.
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We can write H = L2([0, π],C2) as direct sum of the spaces (not orthogonal) H1

and H0

H = H0 ⊕H1

where
H0 = Ran(SN), H1 = Ran(1− SN).

By (??), H1 is the closed linear span of (Ψα
n, |n| > N, α = 1, 2), so

(Ψα
n, |n| > N, α = 1, 2) forms a Riesz basis in H1. H0 is a finite dimensional

invariant subspace . So we can choose a basis for H0 consisting of root functions of
Lbc corresponding to eigenvalues in RN . Then the union of this chosen basis and
(Ψα

n, |n| > N, α = 1, 2) forms a Riesz basis in L2([0, π],C2). Hence we have shown
the existence of Riesz basis consisting of root functions of Lbc.

4 Adjoint of the Dirac operator

In this section, we find the adjoint operator of Lbc(v) subject to regular boundary
conditions.

We may assign to every boundary condition bc of the form (??) a corresponding
operator Lbc(v) as follows. Let

Dom (Lbc(v)) =

{
y =

(
y1
y2

)
: y1 and y2 are absolutely continuous, y satisfies

the boundary conditions bc and y′1, y
′
2 ∈ L2([0, π])} .

and let

Lbc(v)y = i

(
1 0
0 −1

)(
y
′
1

y
′
2

)
+

(
0 P (x)

Q(x) 0

)(
y1
y2

)
.

In the following we assume that P,Q ∈ L2([0, π]). By C∞0 , we denote the set of
all infinitely differentiable functions ϕ such that supp(ϕ) ⊂ (0, π).

Lemma 14. If f ∈ L2([a, b]) and
b∫
a

φ
′
f(x)dx = 0, for every φ ∈ C∞0 ([a, b]), then f

is constant.

Proof. Fix φ0 ∈ C∞0 such that
b∫
a

φ0(t)dt = 1. Let ψ ∈ C∞0 and let

c =

b∫
a

ψ(t)dt.

Then

ψ(x)− cφ0(x) = φ
′
(x),

where

φ(x) =

x∫
a

(ψ(t)− cφ0(t))dt.
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Observe that φ ∈ C∞0 , so
b∫

a

φ
′
(t)f(t)dt = 0.

Since ψ(x)− cφ0(x) = φ
′
(x), we get

b∫
a

[ψ(t)− cφ0(t)]f(t)dt = 0,

which gives
b∫

a

ψ(t)f(t)dt = c

b∫
a

φ0(t)f(t)dt.

Now let

d =

b∫
a

φ0(t)f(t)dt.

So last equation means that

b∫
a

ψ(t)f(t)dt = d

b∫
a

ψ(t)dt,

which also means

b∫
a

ψ(t)[f(t)− d]dt = 0, ∀ψ ∈ C∞0 .

Since C∞0 is dense in L2 ([0, π]), we have

f(t)− d = 0.

Thus f is constant.

Theorem 15. Let Lbc(v) be the Dirac operator with boundary conditions bc given

by (??). Then its adjoint operator (Lbc(v))∗ is Lbc∗(v
∗) where boundary conditions

bc∗ given by the system

bg1(0) + g1(π) + dg2(π) = 0

ag1(0) + g2(0) + cg2(π) = 0,

and

v∗ =

(
0 Q

P 0

)
.
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Proof. Let g =

(
g1

g2

)
∈ Dom ((Lbc(v))∗). Then there exists h =

(
h1

h2

)
∈ L2 ([0, π] ,C2)

such that〈
L

(
f1

f2

)
,

(
g1

g2

)〉
=

〈(
f1

f2

)
,

(
h1

h2

)〉
, ∀f =

(
f1

f2

)
∈ Dom (Lbc(v)) .

Since

L

(
f1

f2

)
= i

(
1 0

0 −1

)(
f
′
1

f
′
2

)
+

(
0 P

Q 0

)(
f1

f2

)
=

(
if
′
1 + Pf2

−if ′2 +Qf1

)
,

we have 〈(
if
′
1 + Pf2

−if ′2 +Qf1

)
,

(
g1

g2

)〉
=

〈(
f1

f2

)
,

(
h1

h2

)〉
. (4.1)

Therefore

1

π

π∫
0

([
if
′

1(x) + P (x)f2(x)
]
g1(x) +

[
−if ′2(x) +Q(x)f1(x)

]
g2(x)

)
dx

=
1

π

π∫
0

(f1(x)h1(x) + f2(x)h2(x))dx.

Let us define

H1(x) =

x∫
0

h1(t)dt and H2(x) =

x∫
0

h2(t)dt,

I1(x) =

x∫
0

P (t)g1(t)dt and I2(x) =

x∫
0

Q(t)g2(t)dt.

So if we plug in these functions in the last equation and do integration by parts, we

get that

π∫
0

(if
′

1(x)g1(x))dx−
π∫

0

(if
′

2(x)g2(x))dx+ f2(π)I1(π)− f2(0)I1(0)−
π∫

0

f
′

2(x)I1(x)dx

+f1(π)I2(π)− f1(0)I2(0)−
π∫

0

f
′

1(x)I2(x)dx
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= f1(π)H1(π)−f1(0)H1(0)−
π∫

0

f
′

1(x)H1(x)dx+f2(π)H2(π)−f2(0)H2(0)−
π∫

0

f
′

2(x)H2(x)dx.

This equality holds for every f ∈ Dom (Lbc(v)). Since C∞0 ⊂ Dom (Lbc(v)), we can

take f ∈ C∞0 . Then f1(π) = f2(π) = f1(0) = f2(0) = 0. So we have

π∫
0

[f
′

1(x)(ig1(x)− I2(x) +H1(x)) + f
′

2(x)(−ig2(x)− I1(x) +H2(x))]dx = 0.

If we take f2(x) = 0 and use the previous lemma, we get

−ig1 − I2 +H1 = constant.

And similarly if we take f1(x) = 0, we get

ig2 − I1 +H2 = constant.

By taking derivatives of the last two equations, it follows that

h1 = ig
′

1 +Qg2 and h2 = −ig′2 + Pg1.

Thus we have found that

(Lbc(v))∗

(
g1

g2

)
=

(
h1

h2

)
=

(
ig
′
1 +Qg2

−ig′2 + Pg1

)
= i

(
1 0

0 −1

)(
g
′
1

g
′
2

)
+

(
0 Q

P 0

)(
g1

g2

)
.

And also g1 and g2 are absolutely continuous functions, since H1 and H2 are abso-

lutely continuous functions by their construction. Now, (??) becomes〈(
if
′
1 + Pf2

−if ′2 +Qf1

)
,

(
g1

g2

)〉
=

〈(
f1

f2

)
,

(
ig
′
1 +Qg2

−ig′2 + Pg1

)〉
, ∀f ∈ Dom(Lbc(v)).

Therefore

π∫
0

([
if
′

1(x) + P (x)f2(x)
]
g1(x) +

[
−if ′2(x) +Q(x)f1(x)

]
g2(x)

)
dx

=

π∫
0

(
f1(x)

[
ig
′
1(x) +Q(x)g2(x)

]
+ f2(x)

[
−ig′2(x) + P (x)g1(x)

])
dx,

which gives us
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π∫
0

[
if
′

1(x)g1(x) + P (x)f2(x)g1(x)− if ′2(x)g2(x) +Q(x)f1(x)g2(x)
]
dx

=

π∫
0

[
−if1(x)g

′

1(x) + f1(x)Q(x)g2(x) + if2(x)g
′
2(x) + f2(x)P (x)g1(x)

]
dx.

By canceling the terms which appear on both sides, we get

π∫
0

[(
f
′

1(x)g1(x) + f1(x)g
′
1(x)

)
−
(
f
′

2(x)g2(x) + f2(x)g
′
2(x)

)]
dx = 0,

which also can be written as

π∫
0

[
d

dx

(
f1(x)g1(x)

)
− d

dx

(
f2(x)g2(x)

)]
dx = 0.

Finally by evaluating the integral, we get the equation

f1(π)g1(π)− f1(0)g1(0)− f2(π)g2(π) + f2(0)g2(0) = 0. (4.2)

We use boundary conditions bc of the form (??). First we write f1(0) and f2(π) in

terms of f1(π) and f2(0), that is

f1(0) = −bf1(π)− af2(0)

f2(π) = −df1(π)− cf2(0).

If we plug in these two equations in (??), we get that

f1(π)g1(π)− (−bf1(π)− af2(0)) g1(0)− (−df1(π)− cf2(0)) g2(π) + f2(0)g2(0) = 0.

Therefore

f1(π)
[
g1(π) + bg1(0) + dg2π)

]
+ f2(0)

[
ag1(0) + cg2(π) + g2(0)

]
= 0.

And this identity holds for every f ∈ Dom(L0
bc(v)). We can find an f such that

f1(π) = 1 and f2(0) = 0. Similarly we can find an f such that f1(π) = 0 and

f2(0) = 1. So boundary conditions of the adjoint operator (Lbc(v))∗ are given by

the equations

bg1(0) + g1(π) + dg2(π) = 0

ag1(0) + g2(0) + cg2(π) = 0. (4.3)
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Let bc∗ be the boundary conditions defined by (??). It is associated with the matrix(
b 1 0 d
a 0 1 c

)
,

so bc∗ is not in the canonical form (??). In order to get that form, we multiply this
matrix from the left by (

b d
a c

)−1
=

1

bc− da

(
c −d
−a b

)
,

and we get (
1 c

bc−da − d
bc−da 0

0 − a
bc−da

b
bc−da 1

)
. (4.4)

The system associated with this matrix gives us an equivalent system to (??).

So throughout this proof, we have also shown that

Dom((Lbc(v))∗) =

{
y =

(
y1
y2

)
: y1 and y2 are absolutely continuous, y satisfies

the boundary conditions bc∗ and y′1, y
′
2 ∈ L2([0, π])} .

where bc∗ is given by (??) when bc is of the form (??). And also bc∗ is equivalent to
the boundary condition associated with the matrix (??).

Corollary 16. The operator Lbc is closed.

Proof. By the previous theorem, we have that

(Lbc(v))∗ = Lbc∗(v
∗),

and

(Lbc∗(v
∗))∗ = Lbc∗∗(v).

But we also have

((Lbc(v))∗)
∗

= Lbc(v).

Recall that we consider bc given by the matrix (??) and corresponding bc∗ is given

by the matrix (??). We have

det

(
c

bc−da − d
bc−da

− a
bc−da

b
bc−da

)
=

cb− da(
bc− da

)2 =
1

bc− da
.

So bc∗∗ is given by the matrix (
1 b a 0

0 d c 1

)
.
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Then bc∗∗ and bc are given by the same matrix. Thus

Lbc(v) = ((Lbc(v))∗)
∗

= Lbc∗∗(v) = Lbc(v).

Hence Lbc(v) is a closed operator.

Let L0
00 be the free Dirac operator with domain

Dom(L0
00) =

{
f =

(
f1
f2

)
: f1, f2 are absolutely continuous functions,

f
′

1, f
′

2 ∈ L2 ([0, π]) , f1(0) = f1(π) = 0, f2(0) = f2(π) = 0
}
.

The same argument that we use in the proof of Theorem 9 shows that L0
00 is closed.

L0
00 is obviously a densely defined operator with this domain.

Now we find the adjoint of L0
00. Exactly with the same calculations done for

finding adjoint of Lbc, we can show that L0
00 is a symmetric operator.

Let g =

(
g1
g2

)
∈ Dom((L0

00)
∗). Then for all f =

(
f1
f2

)
∈ Dom(L0

00), again by he

calculations done before, we obtain

f1(π)g1(π)− f1(0)g1(0)− f2(π)g2(π) + f2(0)g2(0) = 0.

Since f ∈ Dom(L0
00), we have f1(0), f1(π), f2(0), f2(π) = 0. So the last equality

holds for any g ∈ Dom ((L0
00)
∗). Thus adjoint of L0

00 is the free Dirac operator with
domain

Dom
(
(L0

00)
∗) =

{
y =

(
y1
y2

)
: y1 and y2 are absolutely continuous, y′1, y

′
2 ∈ L2([0, π])

}
.

5 Self-adjoint Dirac Operators and Self-adjoint bc

In this section, we study self-adjoint boundary conditions and self-adjoint Dirac
operators.

Recall that a densely defined unbounded operator A is called self-adjoint if A =
A∗, that is domA = domA∗ and A∗f = Af for every f ∈ DomA. So if A satisfies
some boundary conditions bc, then A∗ must also satisfy the same bc.

We have seen that if the boundary conditions of Lbc(v) is given by the matrix(
1 b a 0
0 d c 1

)
,

then the boundary conditions bc∗ of (Lbc(v))∗ is given by the matrix(
1 c

bc−da − d
bc−da 0

0 − a
bc−da

b
bc−da 1

)
.
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So if the operator Lbc(v) is self-adjoint, then(
b a
d c

)
=

(
c

bc−da − d
bc−da

− a
bc−da

b
bc−da

)
.

The determinants of these two matrices must be equal, that is

∆ = bc− ad =
cb− da(
bc− da

)2 ,
which gives us

|∆| = |bc− ad| = 1.

Therefore

|b| =
∣∣∣∣ c

bc− da

∣∣∣∣ = |c| and |a| =
∣∣∣∣− d

bc− da

∣∣∣∣ = |d| .

Since |∆| = 1, let
∆ = eiθ, a = ρeiα and b = |b| eiβ,

for some α, β, θ ∈ [0, 2π) and ρ ∈ R+. Then

|∆| = |bc− ad| =
∣∣∣∣bb+ aa

∆

∣∣∣∣ =
∣∣|b|2 + |ρ|2

∣∣ = 1,

so
|b| =

√
1− ρ2.

Then
∆ = eiθ, a = ρeiα and b =

√
1− ρ2 eiβ, (5.1)

for some α, β, θ ∈ [0, 2π) and ρ ∈ (0, 1). Therefore

c =
b

∆
= b∆ =

√
1− ρ2 ei(θ−β), (5.2)

d = − a
∆

= −a∆ = −ρei(θ−α). (5.3)

Now assume that bc is given by the matrix (??) and a, b, c and d satisfies (??), (??)
and (??). Then the terms of the matrix (??) becomes

c

∆
= c∆ =

√
1− ρ2 ei(β−θ)eiθ =

√
1− ρ2 eiβ = b,

− d
∆

= −d∆ = ρei(α−θ)eiθ = ρeiα = a,

− a
∆

= −a∆ = −(−d∆)

∆
= d, since a = −d∆,

b

∆
= b∆ =

(c∆)

∆
= c, since b = c∆.

Thus bc and bc∗ are equal which means bc is self-adjoint. By this argument the
following proposition holds.
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Proposition 17. If bc is a self-adjoint boundary condition given by the matrix (??),

then there are uniquely determined numbers α, β, θ ∈ [0, 2π] and ρ ∈ (0, 1) such that

(??), (??) and (??) hold. And conversely, if a, b, c, d are given by (??), (??) and

(??), then the matrix (??) determines self-adjoint boundary condition.

Thus if Lbc(v) subject to boundary conditions bc given by the matrix (??) is self-
adjoint, then Q = P and there are uniquely determined numbers α, β, θ ∈ [0, 2π]
and ρ ∈ (0, 1) such that (??),(??) and (??) hold. And conversely, if Lbc(v) is subject
to boundary conditions bc given by the matrix (??) such that a, b, c, d are given by
(??),(??),(??) and Q = P , then Lbc(v) is self-adjoint.

6 Self-adjoint Extensions

In this section, we give a characterization of self-adjoint extensions of an un-
bounded operator. Then we find all self-adjoint extensions of L0

00, corresponding to
partial isometries which can be represented by real-valued matrices.

Definition 18. Let A be a closed symmetric operator. The deficiency subspaces of

A are the spaces

L+ = ker (A∗ − i) = [ran (A+ i)]⊥ ,

L− = ker (A∗ + i) = [ran (A− i)]⊥ .

The deficiency indices of A are the numbers n+ = dim L+ and n− = dim L−.

Definition 19. A partial isometry is an operator W such that for h in (kerW )⊥,

‖Wh‖ = ‖h‖. The space (kerW )⊥ is called the initial space of W and the space

ranW is called the final space of W .

The following theorem is well-known(see [?], Theorem 2.17 or [?], Theorem X.2).

Theorem 20. Let A be a closed symmetric operator. If W is a partial isometry

with initial space in L+ and final subspace in L−, let

DW = {f + g +Wg : f ∈ dom (A) , g ∈ initial W} (6.1)

and define AW on DW by

AW (f + g +Wg) = Af + ig − iWg. (6.2)

Then AW is a closed symmetric extension of A. Conversely, if B is any closed

symmetric extension of A, then there is a unique partial isometry W such that

B = AW as in (??).
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So this theorem gives one to one correspondence between closed symmetric ex-
tensions of a closed symmetric operator A and partial isometries with initial space
in L+ and final space in L−. Moreover, it is known that if n+ = n−, then the set of
self-adjoint extensions is in natural correspondence with the set of isomorphisms of
L+ and L−, respectively(see [?], Theorem 2.20).

Now we find self-adjoint extensions of L0
00. First we find the deficiency subspaces

of L0
00. Let f =

(
f1
f2

)
∈ ker((L0

00)
∗ + i). Then

((L0
00)
∗ + i)f =

(
if
′
1 + if1

−if ′2 + if2

)
=

(
0
0

)
.

Solving these two differential equations, we get that for some constants c1 and c2

f1(x) = c1e
π−x and f2(x) = c2e

x.

We choose f1(x) = c1e
π−x instead of f1(x) = c1e

−x, since

∥∥eπ−x∥∥ =
1

π

π∫
0

e2(π−x)dx =
1

π

π∫
0

e2xdx = ‖ex‖ .

So n− = 2 since

L− = ker((L0
00)
∗ + i) =

{(
c1e

π−x

c2e
x

)
, c1 and c2 are constants

}
=

{
c1

(
eπ−x

0

)
+ c2

(
0
ex

)
, c1 and c2 are constants

}
.

Now let f =

(
f1
f2

)
∈ ker((L0

00)
∗ − i). Then

((L0
00)
∗ − i)f =

(
if
′
1 − if1

−if ′2 − if2

)
=

(
0
0

)
.

Similarly solving these two differential equations, we get that for some constants c1
and c2

f1(x) = c1e
x and f2(x) = c2e

π−x.

So n+ = 2 since

L+ = ker((L0
00)
∗ − i) =

{(
c1e

x

c2e
π−x

)
, c1 and c2 are constants

}
=

{
c1

(
ex

0

)
+ c2

(
0

eπ−x

)
, c1 and c2 are constants

}
.

Consider the isometries between L+ and L−. Since n− = n+ = 2, they can be
represented by 2x2 matrices. Let

e1 =

(
ex

0

)
, e2 =

(
0

eπ−x

)
, φ1 =

(
eπ−x

0

)
and φ2 =

(
0
ex

)
.
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Then ‖e1‖ = ‖e2‖ = ‖φ1‖ = ‖φ2‖. Let W : L+ → L− be an isometry such that

We1 = w11φ
1 + w21φ

2,

We2 = w12φ
1 + w22φ

2.

Further we identify W by its matrix representation

W =

(
w11 w12

w21 w22

)
.

Since We1⊥We2, we have
w11w12 + w21w22 = 0.

W is an isometry, so ‖We1‖ = ‖e1‖ and ‖We2‖ = ‖e2‖ which gives

|w11|2 + |w21|2 = 1,

|w12|2 + |w22|2 = 1.

By the equations above, about the entries of W ,(
w11 w21

w12 w22

)−1
=

(
w11 w12

w21 w22

)
.

So

det

(
w11 w21

w12 w22

)
det

(
w11 w12

w21 w22

)
= 1

which means
detW · detW = 1 and |detW | = 1.

By the previous theorem, we have a self-adjoint extension BW of L0
00 corresponding

to each isometry W and

Dom(BW ) =
{
f + g +Wg : f ∈ Dom(L0

00), g ∈ L+

}
.

Next we show that the functions in Dom(BW ) satisfy certain bc = bc(W ) that are
uniquely determined if given by the matrix of the form (??). So next we look for a
matrix (

1 b a 0
0 d c 1

)
such that every h ∈ Dom(BW ) satisfies the bc defined by that matrix.
Let f ∈ Dom(L0

00) and g ∈ L+ such that

g = c1e
1 + c2e

2 =

(
c1e

x

c2e
π−x

)
.

Then
Wg = c1We1 + c2We2

and
f + g +Wg = f + c1(e

1 +We1) + c2(e
2 +We2).
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Let

k := e1 +We1 =

(
ex + w11e

π−x

w21e
x

)
,

l := e2 +We2 =

(
w12e

π−x

eπ−x + w22e
x

)
.

Since (f + g + Wg) ∈ Dom(BW ), it must satisfy the boundary conditions. Since
f ∈ Dom(L0

bc) and boundary conditions are given by linear equations, if we let
c1 = 1 and c2 = 0, then k must satisfy the boundary conditions of BW . So

k1(0) + bk1(π) + ak2(0) = 0

dk1(π) + ck2(0) + k2(π) = 0

which means
1 + w11e

π + b(eπ + w11) + aw21 = 0

d(eπ + w11) + cw21 + w21e
π = 0.

Similarly if we take c2 = 1 and c1 = 0, then l must also satisfy the boundary
conditions of BW . So

l1(0) + bl1(π) + al2(0) = 0

dl1(π) + cl2(0) + l2(π) = 0

which means
w12e

π + bw21 + a(eπ + w22) = 0

dw21 + c(eπ + w22) + 1 + w22e
π = 0.

By solving these equations for a, b, c, d, we get that

a =
w12(e

2π − 1)

∆
,

b = −w21w12e
π − (eπ + w22)(1 + w11e

π)

∆
,

c =
w12w21e

π − (eπ + w11)(1 + w22e
π)

∆
,

d =
w21(e

2π − 1)

∆
,

where ∆ = w21w12 − (eπ + w11)(e
π + w22).

So for each isometry W , we found corresponding boundary conditions bc given by
the matrix (

1 b a 0
0 d c 1

)
where a, b, c, d are uniquely determined by the equalities above and every h ∈
Dom(BW ) satisfy bc.
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Now we consider the partial case where the entries of the matrix W are real
numbers. Then W can be written in the form

W =

(
cos θ sin θ
− sin θ cos θ

)
for some θ ∈ [0, 2π), where detW = cos2 θ+ sin2 θ = 1. Now if boundary conditions
of BW are given by the matrix (??), then the numbers a, b, c, d becomes

a =
sin θ(e2π − 1)

∆
,

b =
2eπ + cos θ + cos θe2π

∆
,

c = b and d = −a

where ∆ = −1− e2π − 2eπ cos θ.
The boundary conditions given by the matrix (??) where a, b, c, d are given by the

above equalities is self adjoint if bc − ad = 1, by the proposition about self-adjoint
boundary conditions. But

bc− ad = b2 + a2 =
(2eπ + cos θ(e2π + 1))

2
+ sin2 θ (e2π − 1)

2

(1 + e2π + 2eπ cos θ)2

=
4e2π + 4eπ cos θ(e2π + 1) + cos2 θ(e2π + 1)2 + sin2 θ(e2π − 1)2

(e2π + 1)2 + 4eπ cos θ(e2π + 1) + 4e2π cos2 θ
.

Since

cos2 θ(e2π+1)2+sin2 θ(e2π−1)2 = e4π cos2 θ+2e2π cos2 θ+cos2 θ+e4π sin2 θ−2e2π sin2 θ+sin2 θ

= e4π + 1 + 2e2π(2 cos2 θ − 1),

we get

bc− ad =
4e2π + 4eπ cos θ(e2π + 1) + 1 + e4π + 4e2π cos2 θ − 2e2π

e4π + 2e2π + 1 + 4eπ cos θ(e2π + 1) + 4e2π cos2 θ
= 1.

Thus the boundary conditions bc corresponding to the isometry W is self-adjoint.

Recall that the boundary condition given by the matrix (??) is strictly regular if

(b− c)2 + 4ad 6= 0.

We have found the form of the boundary conditions bc of BW , the self-adjoint
extension of L0

00 which corresponds to an isometryW defined by a real-valued matrix.
If these boundary conditions are not strictly regular then

(b− c)2 + 4ad = −4a2 = −4
sin2 θ (e2π−1)

2

∆2
= 0,
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which implies
sin θ = 0.

So there are two cases, either θ = 0 or θ = π. First case is that θ = 0. Then the
matrix which gives the boundary conditions becomes(

1 −1 0 0
0 0 −1 1

)
.

This boundary condition is called periodic since we have

y1(0) = y1(π),

y2(0) = y2(π).

In the second case θ = π. Then the matrix which gives the boundary conditions
becomes (

1 1 0 0
0 0 1 1

)
.

This boundary condition is called anti-periodic since we have

y1(0) = −y1(π),

y2(0) = −y2(π).
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