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I also would like to thank TÜBİTAK for providing the necessary financial support for

my graduate education1.

I am grateful to my committee members Mustafa Ünel, Müjdat Çetin, Hakan Erdoğan,
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Abstract

In the last decade, CAD (Coronary Artery Disease) has been the leading cause of death

worldwide [1]. Extraction of arteries is a crucial step for accurate visualization, quantifi-

cation, and tracking of pathologies. However, coronary artery segmentation is one of the

most challenging problems in medical image analysis, since arteries are complex tubular

structures with bifurcations, and have possible pathologies. Moreover, appearance of blood

vessels and their geometry can be perturbed by stents, calcifications and pathologies such

as stenosis. Besides, noise, contrast and resolution artifacts can make the problem more

challenging. In this thesis, we present a novel tubular structure segmentation method

based on an intensity-based tensor that fits to a vessel, which is inspired from diffusion

tensor image (DTI) modeling. The anisotropic tensor inside the vessel drives the segmen-

tation analogously to a tractography approach in DTI. Our model is initialized with a

single seed point and it is capable of capturing whole vessel tree by an automatic branch

detection algorithm. The centerline of the vessel as well as its thickness is extracted. We

demonstrate the performance of our algorithm on 3 complex tubular structured synthetic

datasets, and on 8 CTA (Computed Tomography Angiography) datasets (from Rotterdam

Coronary Artery Algorithm Evaluation Framework) for quantitative validation. Addition-

ally, extracted arteries from 10 CTA volumes are qualitatively evaluated by a cardiologist



expert’s visual scores.
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Özet

Son on yılda, KAH (Koroner Arter Hastalığı) dünya çapında önde gelen ölüm ne-

denlerinden biri olmuştur [1]. Patolojilerin doğru görselleştirilmesi, ölçme ve izleme için

arterlerin çıkarımı çok önemli bir adımdır. Ancak, arterler karmaşık dallı borumsu yapıya

sahip olduklarından ve olası patolojiler taşıyabileceklerinden koroner arter bölütlemesi

tıbbi görüntü analizinde en zorlu sorunlardan biridir. Bunun yanında, stentler, kalsifikasy-

onlar ve stenoz gibi patolojiler kan damarlarının görünümünü ve geometrisini bozabilirler.

Ayrıca, gürültü, kontrast ve çözünürlük yapay olguları sorunu daha zorlu yapabilirler. Bu

tezde, Difüzyon Tensör Görüntüleme (DTG) modellerinden ilham alan, damara uygun,

imge yeğinliğine dayanan yeni bir borumsu yapı bölütleme yöntemi sunulmaktadır. Damar

içerisindeki yönbağımlı tensör, bölütlemeyi, DTG içerisindeki bir traktografi yaklaşımına

benzer kılmaktadır. Modelimiz tek bir tohum noktasıyla başlatılır, ve otomatik dallanma

algılama algoritmasıyla tüm damar ağacını yakalama yeteğine sahiptir. Damarın merkez

çizgisinin yanısıra kalınlığı da bulunur. Niceliksel sağlama için algoritmamızın perfor-

mansını 3 karmaşık borumsu yapıdaki sentetik datada, ve 8 BTA (Bilgisayarlı Tomografi

Anjiyografi) datasetinde gösterdik. Bunun yanısıra, 10 BTA hacminden çıkarılan arterler

kardioloji uzmanı tarafından niteliksel olarak verilen görsel skorlarla değerlendirildi.
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Chapter 1

Introduction

”So the heart is the beginning of life, the Sun of the Microcosm, even as the Sun

deserves to be called the heart of the world; for it is the heart by whose virtue and

pulsation the blood is moved, perfected, made apt to nourish, and is preserved from

corruption and coagulation; it is the household divinity which, discharging its function,

nourishes, cherishes, quickens the whole body, and is indeed the foundation of life, the

source of all action.”

—William Harvey, 1628

1.1 Medical Motivation

It is widely accepted that coronary heart disease is the leading cause of death world-

wide. According to the statistics of WHO in 2004 [1], coronary heart diseases (CHD)

kill approximately 7.2 million people, which accounts for 12.2% of all deaths worldwide.

The most common cause for CHD, coronary artery disease (CAD), is typically caused by

excessive accumulation of plaques and fats within arteries, which restrict blood flow inside

the heart.

Recently, advanced imaging techniques improve the early detection, diagnosis and

treatment of coronary heart diseases. Often, experts having high quality visualization

systems are less probable to make wrong diagnosis. Additionally, visual models of the ar-

teries are used in presurgical and interventional medical navigation systems for diagnosis

of disease, and for better treatment options.
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1.1.1 Anatomy of Heart

The heart [13] is a vital organ, which beats, each day, 100,000 times in average, pumping

about 2,000 gallons (7,571 liters) of blood to the human body. Heart has 4 chambers. The

upper chambers are called the left and right atria, and the lower chambers are called the

left and right ventricles. The blood is forced to be pushed from left ventricle through the

aortic valve and into human body. To feed myocardium (heart muscle) with oxygen and

nutrients, approximately 5% of the blood is supplied from coronary arteries to the heart

muscle, which is responsible for the pumping functionality of the heart and can vary from

person to person. The coronary arteries consist of two main arteries, which originate from

the coronary ostium (root of aorta): the right (RCA) and left coronary arteries (LCA).

The left coronary artery (LM - left main) system bifurcates into the circumflex artery

(LCX) and the left anterior descending artery (LAD). Left coronary artery supplies blood

for left ventricle and right coronary artery feeds right ventricle. Figure 1.1 depicts four

chambers (Left and Right Atria; Left and Right Ventricles) and coronary arteries (RCA,

LAD (LM), LCX, LAD) of the heart. Arteries (blood vessels) surrounding the heart are

shown by red.

Figure 1.1: Illustration of the heart and coronary arteries, source: Coronary Anatomy and

Blood Flow, Richard E. Klabunde.

2



1.1.2 Coronary Artery Disease

It is clear that CHD is a fatal disease. As the most common cause of CHD, coronary

artery disease (CAD) typically begins when the inner walls of the coronary arteries are

damaged because of multiple risk factors such as high cholesterol, high blood pressure,

diabetes and smoking. Plaque (see Figure 1.2), which consists of cholesterol, calcium,

and other substances in the blood, accumulates excessively on the damaged inner walls of

the coronary arteries, which causes atherosclerosis, or hardening of the arteries [14]. Over

a period of time, plaque begins to completely block the oxygen and nutrient-rich blood

flow to the heart, which causes heart muscle cells to die and myocardial infarction or heart

attack at the end.

Figure 1.2: Illustration of normal artery with normal blood flow (left) and an artery with

plaque buildup (right), source: Atherosclerosis, Heathwise, Incorporated.

1.1.3 Coronary Artery Imaging

Angiography is a minimally invasive medical test, which is a way of visualizing blood

vessels. Angiography uses one of three imaging technologies and, in some cases, a radio-

opaque contrast agent is injected (iodinated dyes) to highlight major blood vessels in

the images. Angiography is performed using invasive and non-invasive techniques. Inva-

sive techniques [15]: (i) X-rays with catheters; (ii) Intravascular Ultrasound (IVUS), and
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Optical Coherence Tomography (OCT) and non-invasive techniques [16]: (i) Magnetic

Resonance Imaging (MRI); (ii) Computed Tomography (CT) are the imaging techniques

that can be used to visualize coronary arteries.

1.1.3.1 Invasive Imaging Modalities

Invasive techniques [15] include X-ray angiography, IVUS and OCT, which use catheters

(a thin plastic tube) with contrast agents and imaging sensors in order to access the desired

location inside the blood vessels. X-ray angiography (catheter angiography) (see Figure

1.3) has been used as a gold standard for diagnosis of coronary lesions for many years. It

provides an image of arteries with high resolution. X-ray angiography [15] is performed by

inserting a catheter, which is usually inserted into the groins or forearm. Once the catheter

is advanced to one of the main coronary arteries, a contrast agent is injected through the

tube and images are acquired using sufficient dose of ionizing radiation (x-rays). In X-ray

angiography, the contrast agent is mostly needed in large doses, which can cause allergic

reactions in human body. There are more drawbacks as the operation may take several

hours. Furthermore, although the vessels are three-dimensional (3D), the acquired image

is only two-dimensional (2D) projection of the vessels.

Figure 1.3: Illustrations of Left: catheter angiography, source: Catheter angiography,

Healthwise, Incorporated (2008); Right: coronary angiograms of whole coronary tree,

source: Coronary Angiography, Swanson Gately.
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Despite limitations of X-ray angiography, it is commonly used as a guiding tool during

vascular interventions. However, for high resolution plaque imaging catheter-based IVUS

and OCT techniques [2](see Figure 1.4) are utilized in arterial vascular imaging, which

allow real-time cross-sectional view of the lumen (interior of artery), the vessel wall and

the atheosclerotic plaques. OCT and IVUS are similar as they both use a catheter, which

has an imaging sensor on the tip of the catheter and advance to the desired location to

acquire images. The main difference comes from collecting signals; as IVUS collects signals

from reflected ultrasound beams and OCT collects signals from reflected infrared beams.

OCT and IVUS technologies currently provide detailed plaque content imaging, however

through a 2D cross-sectional view of the arteries.

Figure 1.4: A coronary artery cross-section from OCT (C) and IVUS (D) images [2].

Arrows indicate the calcified plaque regions inside the vessel.

1.1.3.2 Non-invasive Imaging Modalities

Due to the limitations and drawbacks of invasive techniques, non-invasive imaging

techniques [16] have also become popular recently. CTA and MRA are the widely used

non-invasive modalities at present, which provide 3D volume imaging as compared to

acquired 2D projection of vessels in X-ray angiography, IVUS and OCT.

Magnetic Resonance Angiography (MRA) [16] is an imaging technique, which is based

on MRI (Magnetic Resonance Imaging), used for blood vessels visualization, especially

5



the motionless arteries of the neck, brain (Figure 1.5), and the legs in order to detect

stenosis (abnormal narrowing), aneurysms (vessel wall dilatations) on the arteries. MRA

has several drawbacks as: i) it is less successful in coronary arteries visualization, since

the heart has cardiac motion; ii) it is more costly compared to other techniques; iii) it has

lower resolution; and iv) it has longer scan times. However, there are several advantages of

MRA over invasive catheter angiography; i) MRA is non-invasive (no need for catheter),

ii) it is safer, since patient is not exposed to any ionizing radiation, and iii) Contrast agent

used for MRI is less toxic than those used for invasive angiography.

Figure 1.5: Visualization of the blood vessels inside the brain using MRA, source: MR

Images Produced at MARIARC, Liverpool University, UK.

Computed Tomography Angiography (CTA, cardiac CT, cardiac CAT) [16] (see Figure

1.6) is a non-invasive imaging technique, which uses advanced CT technology and produces

high resolution images of moving heart and arteries. It is a widely used technique in cardiac

imaging, since it provides physicians visualization of 3D heart and arterial anatomy, as well

as plaque or calcium deposits in the artery walls. In addition, CTA image acquisition is

faster than the other techniques (typically takes less than a minute). During CTA, beams

of x-rays are generated from an X-ray source, which rotates around a volume of interest

of the patient’s body. From several different angles, attenuated x-ray beams are picked

up by detectors in the scanner to obtain projection images, from which, 3D attenuation

volumes, i.e the CTA image is reconstructed. Although it is not as safe as MRA, it is safer

6



than invasive techniques since duration of exposition is much less. In this thesis, CTA

is the imaging modality of interest because of several mentioned advantages over other

modalities.

Figure 1.6: Top: Anatomical planes (axial, sagittal and coronal) [3] are shown inside the

brain. Bottom: Cardiac CTA images. Arrows indicate LCA in (a) axial view; (b) sagittal

view; (c) coronal view.

1.2 Contributions

The complex tubular structures of arteries due to branchings and pathologies make

the segmentation of coronary arteries a tough problem in medical image analysis. The

structures of arteries become even more complex with stents, calcifications and patholo-

gies such as stenosis. Besides anatomical artifacts, several imaging artifacts occur during

acquisition such as noise, contrast and resolution artifacts, which make the problem more

challenging. In this thesis, we aim to extract coronary arteries from Computed Tomogra-
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phy Angiography (CTA) scans and create geometric model of arteries, which may be used

as a medical navigation system to detect possible anomalies on arteries.

To achieve this goal, we design a novel tubular structure segmentation method, which

constructs an intensity-based tensor that fits to a vessel, which is inspired from diffusion

tensor image (DTI) modeling1 [17]. The thesis makes several contributions, which can be

summarized as follows:

• The anisotropic tensor inside the vessel drives segmentation analogously to a trac-

tography approach in DTI.

• We develop an unsupervised branch clustering method, which can automatically

locate multiple branchings on complex tree structures.

Beside several contributions, our approach provide many advantages, where major two

advantages can be expressed as follows:

• Our approach is capable of finding the vessel orientation, centerline (central lumen

line) and its thickness, i.e. vessel lumen diameter, at the same time.

• The vessel extraction is initialized with a single seed point and an entire coronary

artery tree can be captured by an automatic branch detection algorithm.

1.3 Thesis Outline

This thesis is organized as five chapters including the Introduction chapter. In Chapter

2, a background on state-of-the-art literature on vascular segmentation techniques and

diffusion tensor imaging (DTI) are presented. Proposed tubular structure segmentation

method is presented in Chapter 3. The experimental results are provided in Chapter 4.

In the last chapter, the conclusions and future work are presented.

1A preliminary version of this work is published at ”The MICCAI’11 Workshop on Computing and

Visualization for (Intra)Vascular Imaging (CVII)” [17].
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Chapter 2

Background on Vasculature Segmentation and DTI

2.1 A Brief Review on Vasculature Segmentation Algorithms

Recent developments in imaging technology lead to acquisition of high resolution med-

ical images. Combination of modern mathematical and imaging techniques motivated

generation of computer-aided image processing algorithms to delineate anatomical struc-

tures in high resolution images. These algorithms, called image segmentation algorithms,

play a vital role in numerous biomedical imaging applications such as diagnosis assis-

tance, treatment, quantification of volumes, localization of pathology, study of anatomical

structures, surgery planning, and tracking/monitoring of diseases. [18, 19, 20].

Various approaches depending on different classification schemes were proposed as so-

lutions to the problem of segmentation. However, there is no standard segmentation tech-

nique that works for all variety of image applications. The commonly used segmentation

methods include [21, 22]:

• Active Contours;

• Split and Merge;

• Mean shift and Mode finding;

• Normalized cut;

• Graph cuts and Energy based methods, and so on.

These algorithms can work well on various problems. On the other hand, delineation

of vascular structures from inhomogeneous volumes such as these involved in as CT is
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problematic, since the intensities inside vessels such as coronary arteries, have variations

and noise. Furthermore, since the anatomy of vasculatures (arrangement of blood vessels

in body) can vary from person to person, it is hard to create an atlas, which can guide

the segmentation process.

Segmentation of vascular structures is a fundamental step for accurate visualization

and quantification of pathologies on vessels. Unfortunately, the segmentation still heav-

ily relies on manual operations. Thus, it can take several hours for the physicians to do

manual segmentation for a single MRA or CTA dataset. For this purpose, various sophis-

ticated vascular segmentation algorithms are developed. This chapter reviews algorithms

developed for segmenting vasculature, especially coronary arteries segmentation from CTA

images.

In the first part of this chapter, first, we discuss several filtering approaches. Second,

various vessel centerline extraction schemes, which basically can be divided into four, as

follows: thresholding and region growing; morphology; minimal-path techniques; model-

based approaches, are explained. It should be noted that there are other criteria that can

be chosen in order to classify existing algorithms such as: it is automatic or manual; is

based on centerline or whole-vessel segmentation; is a general segmentation method or an

organ specific segmentation method, etc. The following text describes only a small part

of the existing methods for each category. There are several crucial approaches based on

ridge traversal [23], gradient vector flow [24] and probabilistic tracking [25], which are not

explained in this text. Once and for all, we discuss about the branch detection techniques,

and we conclude vasculature segmentation review part of this chapter.

In the second part, we present DTI in order to give the insight of a tensor model we will

develop, which is inspired from the DTI tensor model. First, MRI (Magnetic Resonance

Imaging), which is the core of DTI, then DTI is explained respectively.

2.1.1 Filtering

Some of the vessel segmentation algorithms use filters to segment vascular structures, or

only use them as a prefilter for vessel enhancement before segmentation. Most well-known

filtering techniques are subtraction, Hessian-based, non-linear diffusion, and flux-based
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filtering.

Subtraction filtering is one of the simplest technique used for filtering. It removes

undesired structures in either of two ways: subtracting a template (mask) image from

the image to be processed, which is mostly used to enhance blood vessels by removing

undesired bone or soft tissue structures from an image; subtracting certain structures

such as the heart in an image.

2.1.1.1 Hessian Based Filtering

The second filtering method, Hessian-based filtering is the most popular vessel en-

hancement technique in the literature, which is based on the analysis of eigenvectors and

eigenvalues of the Hessian matrix. Hessian-based filters calculate 2nd order derivatives

of the image at each voxel in order to build the Hessian matrix H . The eigenvalues λ1,

λ2 and λ3 and eigenvectors v1 , v2 and v3 are found by a matrix eigen decomposition of

H , which is computed at each voxel. The eigenvalues and eigenvectors are then used to

determine whether the voxel belongs to a tube-like structure.

Koller et. al. [26] were the first to propose to analyse the Hessian matrix to produce

“vesselness” measure. Frangi et. al. [12] introduced the vesselness measure based on

eigenvalues extracted from the Hessian matrix in a multiscale fashion. The vesselness

measure can be analysed based on the hypothesis that the ideal tubular-structure in a 3D

image satisfies three criteria:

1) |λ1| ≈ 0;

2) |λ1| � |λ2|;

3) |λ2| ≈ |λ3|.

where the eigenvalues are ordered as |λ1| ≤ |λ2| ≤ |λ3|.

Table 2.1 summarizes the relations that must hold between the eigenvalues of the

Hessian for the detection of different structures.

In the case of bright vessels on a dark background such as blood vessels on CTA images,

the eigenvalues (λ1, λ2, λ3) appear to be λ1 ≈ 0, λ2 ≈ λ3 < 0 and |λ1| � |λ2|.

Hessian-based filtering is extended by [12] in a multi-scale framework and multi scale
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Table 2.1: List of possible patterns in 2D and 3D, depending on the value of the eigenvalue.

H: high, L: low, +/- indicate the sign of the eigenvalue [12].

2D 3D orientation pattern

λ1 λ2 λ1 λ2 λ3

L L L L L noise, no preferred direction

L L H- plate-like structure (bright)

L L H+ plate-light structure (dark)

L H- L H- H- tubular structure (bright)

L H+ L H+ H+ tubular structure (dark)

H- H- H- H- H- blob-like structure (bright)

H+ H+ H+ H+ H+ blob-like structure (dark)

vesselness measure at voxel x in an image is expressed as:

V (x ) = max
σ

v(x , σ), σ ∈ [σmin, σmax] (2.1)

where v represents a vesselness response, σ indicates the scale of Gaussian derivatives

to calculate Hessian matrix. v is calculated in a range of [σmin, σmax], where calculated

maximum vesselness response for each voxel results in a vessel enhanced image:

v(x, σ) =

(1− exp
(
−RA

2

2α2

)
)exp

(
−RB

2

2β2

)
(1− exp

(
− S2

2c2

)
) if λ2 ≤ 0 and λ3 ≤ 0,

0 otherwise

(2.2)

In Eq. (2.2), RA is able to discriminate tubular structures from plate-like structures, RB

mainly differentiates blob-like structures from other structures and also favors tubular

structures, and S penalizes random background noise, which are mathematically defined

as follows:

RA =
|λ2|
|λ1|

, RB =
|λ1|√
|λ2λ3|

, S =

√∑
1≤i≤3

λ2
i (2.3)

α, β and c are constants that control the balance between the three terms. Typically,

α = 0.5, β = 0.5, and c = 10 for the vessels on CTA images.

Following the multi-scale vessel enhancement idea, several algorithms have been pro-

posed in literature [27, 28, 12, 29, 30], which are based on the eigen-analysis of the Hessian
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matrix H .

2.1.1.2 Non-linear Diffusion Filtering

Another popular filtering technique, non-linear diffusion filtering [31, 32] aims to en-

hance an image by removing noise without removing significant parts of the image as

edges, lines and flow-like structures. As compared to the Hessian-based filters, these fil-

ters consider the direction of the neighbouring voxels as well as the local direction. As

multiscale Hessian-based vessel enhancement filters, diffusion filters create scale-space of

images by convolving the image with a Gaussian filter in different σ values.

In scale space theory, the diffusion equation is expressed as

∂tu = div(D∇u) (2.4)

where ∇u indicates concentration gradient, and u : Rm → R, e.g. here u is a 3D image

function with m = 3. D : Rm → Rm×m represents the diffusion tensor of dimension m,

which controls the diffusion flow. When D is identity, Eq. ( 2.4) becomes heat equation

as ∂tu = div(∇u) = 4u.

Multidimensional flux-based anisotropic diffusion filtering is proposed by Krissian et.

al. [33]. The diffusion flux is decomposed in a 3D orthogonal basis that depicts the

directions of principal curvature, effectively enabling enhancement of contours as well

as diffusion along the contour. The diffusion function associated to each vector of the

basis depends on the first order derivative of the intensity in this direction, instead of the

traditional norm of the smoothed gradient. This may pose a problem along the central

axis as the gradient vanishes at these points, possibly leading to undesired behaviour.

Manniesing et. al. [4] proposed a method to enhance vascular structures within the

framework of scale space theory. They combined a smooth vessel filter which is based on

an analysis of the eigensystem of Hessian, with a non-linear anisotropic diffusion scheme.

The amount and orientation of the diffusion depend on the local vessel-likeness. They

applied the Vessel enhancing diffusion (VED) to patient and phantom data and compared

to linear, regularized Perona-Malik, edge and coherence enhancing diffusion. The method

performs better than most of the existing techniques [12, 31, 32] in visualizing vessels in
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varying radii and in enhancing vessel appearance. A diameter study on phantom data

shows that VED least affects the accuracy of diameter measurements. It is shown that

using VED as a preprocessing step improves level set based segmentation of the cerebral

vasculature, in particular segmentation of the smaller vessels of the vasculature. In Figure

2.1 the shrinkage effect of the vesselness filter [12] can be observed clearly. As compared

to vesselness filter, the shrinkage effect is not present in VED (arrows 1 and 3). Shrinkage

appears because of increasing deviation from a tube like structure when approaching the

boundaries of the vessel. Furthermore, VED has better performance with respect to

background blurring (arrows 2 and 4).

Figure 2.1: A comparison between the VED and Frangi’s vesselness filter. The original

data is shown in the left figure, the result of VED in the middle figure and the result of

Frangi’s vesselness filtering in the right figure. Arrows indicate points of interests [4].

Although the VED filter improves the vessel enhancement, there still exist some gaps

on discontinuities in 3D-images of tubular structures. Risser et. al. [34] present an

algorithm, which merges discontinuities in 3-D images of tubular structures presenting

undesirable gaps. The algorithm proposed aims at closing the gaps on the discontinuities.

This algorithm is based on the skeletonization of the segmented network followed by a

14



tensor voting method. It permits to merge the most common kinds of discontinuities

found in microvascular networks. It is relatively fast as compared to the VED filter.

2.1.1.3 Other Filtering Methods

Law and Chang [35] proposed a curvilinear structure detector, called Optimally Ori-

ented Flux (OOF), which finds an optimal axis on which image gradients are projected

in order to compute the image gradient flux. The computation of OOF is localized at

the boundaries of local spherical regions. The main advantage of OOF is its robustness

against the disturbance induced by closely located adjacent objects. Moreover, the ana-

lytical formulation of OOF introduces no additional computation load as compared to the

calculation of the Hessian matrix which is widely used for curvilinear structure detection.

Lesage et. al. [36] proposed geometric and appearance flux-based vessel enhancement

model with two features for 3D vascular tracking. The first one, Flux, is formulated as the

measure of inward gradient flux through a local circular cross-section. The second one,

MFlux, introduces a non-linear component to reduce false positive responses in situations

such as step-edges. They compared the cardiac CT data to a selection of published vessel

dedicated features. They showed that MFlux induces a particularly discriminative re-

sponse landscape, which is a desirable property for tracking purposes on such large search

spaces.

2.1.2 Vasculature Segmentation Algorithms

Vasculatures are the arrangement of blood vessels, which include blood vessels, coro-

nary artery, neurovascular structures, and so on. To the best of our knowledge, several

reviews have been published to segment vasculatures in literature [37, 38, 39, 40, 41, 42, 43].

The first most general and extensive vasculature segmentation survey was published by

Kirbas and Quek [37], where they extensively categorized existing methods with respect

to their mathematical framework. Other existing reviews focus on specific applications as

Peripheral CTA (Felkel et. al. [38]), MRA (Suri et. al. [39, 40]). A more comprehensive

review was published by (Buhler et. al. [41]), which covers skeletonization algorithms

and visualization techniques. In the most recent review on vascular segmentation, Lesage
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et. al [42] presented their analysis on three axes: (i) models (prior assumptions made on

the target vessels, e.g. elongation and hyper-intensity); (ii) image features ( estimate the

models on the image, e.g local intensity curvatures); (iii) extraction schemes (algorithmic

core of a vascular segmentation method).

2.1.2.1 Thresholding and Region Growing

Thresholding approaches segment images by partitioning image intensities. It is sim-

ple and mostly effective on the images that have contrast in the structures. Advanced

thresholding techniques use expectation maximisation [6] or adaptive region growing [44],

and similar algorithms. Thresholding is mostly used as a preprocessing. It has several

disadvantages as: it does not take into account the spatial characteristics of an image and

it is very sensitive to noise and intensity inhomogeneities, which often occur in medical

images.

Region growing approaches initialize from a seed point, then incrementally recruit

voxels based on some criteria. These criteria are mostly based on intensity similarity and

spatial proximity. The major drawbacks of region growing are: it requires user-selected

seed points and it is very sensitive to noise and intensity variations.

2.1.2.2 Morphology

Another approach for vessel segmentation is provided by mathematical morphology,

which analyses images or objects by their interaction with shapes. Morphological operators

are applied to images with basic shapes called structuring elements; they were first defined

for binary images, then extended to grey-level images. Erosion and dilation are the two

main operations for constructing morphological operators, such as openings, closings and

hit-or-miss transforms. A precise definition of morphological operators can be found in

[45].

In particular, mathematical morphology operators that have been involved in vessel

segmentation methods include: watershed transform [46, 47], grey-level hit-or-miss trans-

form [48], or connected filtering based on component-trees [49, 50]. The usefulness of such

operators is justified by their intrinsic capacity to model morphological information, and
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then to enable anatomical knowledge-guided approaches. Bouraoui et. al. [51] presented

an algorithm, which relies on the blur grey-level hit-or-miss transform with an extension

of the blur binary hit-or-miss transform [52].

The advantage of morphology based vessel segmentation algorithms is that they are

mostly automatic. However, surrounding structures around the vessel can be detected as

vessel and they do not perform well for noisy images.

2.1.2.3 Minimal Path Techniques

Deschamps and Cohen [53, 54, 55] reformulate the problem of centerline extraction

as a problem of finding the minimal paths in 3D images. The minimal path technique

proposed by Cohen et al. [56] captures the global minimum curve of an active contour

model’s energy between two points initiated by the user. By defining the image as an

oriented graph characterized by its cost function (or potential), the centreline extraction

problem turns to be an optimisation problem. This provides the global minimum of

the energy function, which avoids the local minima problem as in deformable models.

The minimal path approach has several advantages over existing methods such as finding

global minima, fast computation, and ease of implementation. Unfortunately, there also

exist some disadvantages of minimal path techniques as: vessel boundary extraction is

mostly difficult, the path given by minimal path techniques does not always give a correct

centerline and minimal path technique only provides a trajectory, does not give information

about the vessel boundary and local width.

Minimal path techniques are commonly employed in interactive frameworks, requiring

the start and end points for each vessel. Some works have proposed the definition of

termination criteria to automatically stop the path propagation and relax the need for

end points. For instance, Gulsun and Tek [57] proposed such criteria through heuristic

thresholds.

Li and Yezzi [5] proposed a new variant of the traditional, purely spatial minimal path

technique by incorporating an additional non-spatial dimension into the search space.

They modeled the vessel as a 4D curve (after adding the extra dimension for the 3D

image), which consists of three spatial coordinates and extra non-spatial dimension, which
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describes the thickness at the corresponding 3D point (see Figure 2.2). Thus, each 4D

point represents a sphere in 3D space, and the vessel is obtained as the envelope of the

family of spheres traversed along this 4D curve. Li and Yezzi created potentials, which

forces the spheres on the detected path to be tangential to the vessel boundary. The

centerline of the path is then extracted by tracing the center points of the estimated family

of 3D spheres. However, since Li and Yezzi [5] proposed isotropic metrics for potentials,

they did not take into account the vessel orientation.

Figure 2.2: A tubular surface is represented as the envelope of a family of spheres with

continuously changing center points and radii [5].

To improve this method, Mohan et. al. [58] suggest a minimal path algorithm by using

the 4D minimal path model of Li and Yezzi [5]. As they added the extra dimension to the

3D spatial coordinates (the radius dimension), they associated to the path an anisotropic

potential related to the Finsler metric. An important contribution of Mohan et. al. is

that they considered the orientation of the vessel in their energy function.

Benmansaour and Cohen [59] proposed an interactive vessel segmentation method,

which is also based on the minimal path formulation and anisotropic enhancement. Their

minimal path formulation is inspired from Li and Yezzi’s 4D Curves [5], but they take

into account the vessel orientation by considering anisotropic metrics. Their anisotropic
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metric is based on the Optimally Oriented Flux (OOF), introduced by Law and Chung

[35], by using its scalar function as well as its orientation, which makes the propagation

faster along the vessel’s centreline for exact scale (radius).

2.1.2.4 Model-based Techniques

In model-based approaches, explicit vessel models are applied to extract the vascula-

ture. We divide model-based approaches into three categories: (1) Deformable models, (2)

Parametric models, (3) Tubular/Cylinder Model. In the next subsections, each category

is discussed and the techniques in each category are explained briefly.

Deformable models:

Deformable model approaches have been applied to three dimensional vascular segmen-

tation. In such methods, an initial boundary estimate is deformed iteratively to optimize

an energy function which depends both on image information and on the smoothness of

the surface. One such algorithm is called snakes (active contours). Another volumetric

deformable model approach is based on a level-set representation, which is independent of

parametrization of the evolving surface model.

Level Set technique is proposed by Osher and Sethian [60], which is based on an implicit

surface that evolves according to geometric and image-based forces in order to adapt to

structures in the image. Its main idea is to represent evolving curves as the zero level set of

a higher dimensional level set function. The first major advantage of the level set method

is that it does not suffer from a parametrization problem, since it is implicit. The second

one is, while the level set function evolves over time, its zero level set changes topology; it

can split and merge or form sharp corners. Therefore, the level set is useful in segmenting

inhomogeneous vascular objects as blood vessels. However, sometimes the level set can

leak when it does not contain geometrical constraints in the level set function evolution.

For more details, refer to [61]. Figure 2.3 depicts the segmentation of a vessel using a

level set function implemented in [6].

There are several level-set based algorithms proposed [62, 63, 64] for vasculature seg-

mentation. For instance, Lorigo et. al [62] proposed Curves technique with a two level-set
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Figure 2.3: Level set segmentation [6]. (a) Initial contour; (b) after 150 iterations; (c)

after 600 iterations; (d) after 1600 iterations.

scheme, which has principle of evolving a 1D curve on a 3D domain. Curves evolves a

width-limited surface, called ε-levelset. A new energy term constrains the lowest curvature

of this surface, which is proved to show the vessel’s principal direction.

Blood vessels are challenging structures to segment due to the branching and thinning

as well as the decrease in image contrast from the root of the vessel to their thin branches.

It causes leakages, when the image intensity is used alone to guide the deformable models

where the image information is ambigious. To address this problem, Nain et. al. [7]

presented a deformable segmentation method for vessels using an implicit deformable

model with a soft shape prior. They combined image statistics and shape information

to derive a region-based active contour that segments tubular structures and penalizes

leakage. Figure 2.4 shows their coronary artery segmentation results for a CTA dataset.

Tubular/cylinder and elliptical cross-sectional models:

Friman et. al. [65] proposed a tubular tracking algorithm based on 3D template

matching, called Multiple Hypothesis Tracking (MHT) framework, which is used to tra-

verse difficult vessel passages such as pathologies and areas of low constrast. The algorithm
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Figure 2.4: Segmentation of coronary arteries from CTA data [7]. Left: Initial - deformable

model based only on image intensities, the artery leaks into aorta; Middle: Deformable

model based on image intensities and shape prior (after 400 iterations - artery is discon-

necting from aorta); Right: Deformable model based on image intensities and shape prior

(after 800 iterations - the artery totally disconnected from aorta).

starts from an initial point given on the centerline, a search tree is built by recursively

evaluating possible vessel continuations. Sometimes MHT can terminate earlier; in this

case, a minimal path algorithm based on Fast Marching is needed to fill the gaps between

newly initialized points and terminated points. The vessel template model presented in

[65] has a flatter vessel profile than the Gaussian profile used in [66], and provides flexible

central position, radius and orientation adjustment. Worz et. al. [8] proposed tubular

vessel models of varying sizes using a Gaussian smoothed 3D cylinder, since the 2D cross-

sections of medium and large sized vessels is plateau-like (see Figure 2.5) and cannot be

accurately represented by a 2D Gaussian profile.

Although circular models are widely used to represent vessel cross-sectional shapes,

sometimes the circular models are insufficient in representing non-circular sections. Tyrell

et. al. [9] proposed a cylindroidal superellipsoid model to represent complex vasculature

in 3D images. This model locally describes the vessel in combination with a constant

intensity appearance model. (See Figure Figure 2.6)

21



Figure 2.5: Intensity plots of orthogonal 2-D slices; Left: a thin vessel in the pelvis, Center:

the artery iliaca communis, and Right: the aorta; Top: 2D cross-section from MR images,

Middle: Intensity profile of slices, Bottom: 2-D sections of generated 3-D images using the

new cylindrical intensity model [8].

2.1.3 User Interaction

Creating a robust fully automatic vessel extraction algorithm is one of the most chal-

lenging and ongoing problems in literature. Most methods require some user interaction at

least for the final verification of results. According to the amount of interaction, methods

can be classified into three categories: fully automatic, semi-automatic, or interactive.

Fully automatic algorithms require only the input data and do not need any user

interaction during the segmentation process, e.g. [67]. On the other hand, interactive

algorithms require user guidance during the segmentation process, e.g [68], which can

be time-consuming and rely on the skill of users. Semi-automatic algorithms [7] mostly

require start and end points for each branch to start the segmentation. Contrary to the

interactive methods, semi-automatic methods mostly do not need any user interaction dur-

ing the segmentation process. Most of the segmentation algorithms are semi-automatic or
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Figure 2.6: Superellipsoid models with varying parameter ε1 [9]. Left: ε1 = 1.0 ; Middle:

ε1 = 0.75 ; Right: ε1 = 0.25.

interactive, which require various levels of interaction to start and guide the segmentation.

2.1.4 Branch Detection

Fully automatic vessel extraction algorithms as [67, 24] implicitly deal with branching.

Interactive methods mostly do not handle branching, since user interaction is provided

for every branch. Some semi-automatic methods explicitly represent bifurcations [69] or

others perform vascular tree connection after finding the branches [58]. For instance,

Mohan et. al. [58] suggested a K-means clustering algorithm with an assumption that

vessels have at most two branches to be separated. Li et. al. [70] proposed to use a 4D

interactive key point searching scheme. After the key points are located, iteratively, the

branches are identified by finding structures between all adjacent key point pairs.

2.2 DTI (Diffusion Tensor Imaging)

Our novel vasculature segmentation technique is based on an intensity-based tensor

model that represents a vessel, which utilized ideas from diffusion tensor image (DTI)

modeling. In order to give the insight of our method, DTI is briefly presented in this part

of the chapter. First, MRI (Magnetic Resonance Imaging), which is the core of DTI, is

explained.

2.2.1 Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) is a non-ionizing technique with excellent soft

tissue contrast. However, it is a much slower technology than other imaging techniques
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as ultrasound, and computed tomography (CT), since the scan times range between 3-10

minutes. MRI is mainly used in the brain diseases, spinal cord disorders, musculoskeletal

damage; also, in angiography, and cardiac imaging.

According to classical theory of MRI, source of the MRI signal is nucleus of hydrogen,

which spins and causes a magnetic field, called, magnetic moment (see Figure 2.7). Owing

to the influence of external magnetic field, nuclei produce a secondary move, called preces-

sion (see Figure 2.8). The frequency of precession is directly proportional to strength of

external magnetic field. In an ordinary environment, magnetic moments of each nucleus

are jumbled about in all directions, so that the sum of all magnetic moments, called net

magnetization vector (NMV), is approximately zero. However, in an external magnetic

field magnetic field of protons are aligned either parallel or anti-parallel to the direction

of external magnetic field [10].

Figure 2.7: Magnetic moment of a proton, source: ”Basic Physics of Nuclear Medicine/

MRI & Nuclear Medicine”, wikibooks.

Since radio frequency (RF) signals of the nuclei with even numbered particles cancel

each other, only the nuclei having odd atomic mass number contribute to MR signal.

There are various active elements such as hydrogen (1H), fluorine (19F), phosphorous

(31P), nitrogen (15N), and sodium (23Na). Hydrogen is the element used in MRI due to

having a single proton with a large magnetic moment, and existing in large numbers inside

human body .

The frequency or speed of precession of the nuclei in a specific external magnetic field

strength is expressed using Larmor equation as ω0 = γB0, where γ is the gyromagnetic
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Figure 2.8: Precession [10].

Figure 2.9: Illustration of magnetic moment applied; Left: before; Right: after.

ratio and the precessional frequency of a specific nucleus at 1 T and has units of MHz/T.

As it is constant, precessional frequency ω0 is directly proportional to the strength of

external magnetic field B0.

Resonance is defined as the energy transition that occurs when an object is excited

with a frequency the same as its own. In MRI, resonance could be induced by applying

radio frequency pulses, because the precession frequency of the hydrogen (42.57 MHz/T)

nuclei is low and it carries small amount energy similar to radiowaves [10]. MR signal is

detected using this technique, that is, applied RF pulses cause a change in the NMV, and

this change induces a voltage in the receiver coils. In order to construct an anatomical

image, sequences of RF pulses called pulse sequences are used to excite protons.

25



2.2.2 Diffusion Tensor Imaging (DTI) basics

MRI diffusion is based on random thermal (Brownian) motion of water molecules.

In the presence of strong diffusion gradients, MR signal is decreased as a result of the

dephasing of spin coherence [71]. If spins do not make any movement, gradient pulses

cancel out each other; meanwhile, moving spins experience phase shift. Therefore, signal

attenuation occurs in normal tissues with random motion, and high signal appears in

restricted diffusion [10].

The amount of attenuation depends on the amplitude and direction of applied diffusion

gradient. In order to produce diffusion weighted images, magnetic field gradients (diffusion

gradients) are applied in certain directions. Strength of diffusion weighting is described

by b factor, a parameter that is determined by the shape of diffusion gradient. For the

Stejskal-Tanner spin echo sequence (see Figure 2.10), the equation of the sequence is

expressed as follows:

b = γ2G2δ2

(
∆− δ

3

)
(2.5)

where b value is determined by duration δ, G is the strength of gradient pulses, and ∆ is

defined as the time interval between two gradients and γ is the gyromagnetic ratio [71].

Figure 2.10: Diffusion weighted Spin Echo Pulse Sequence.

The MR signal loss due to strong diffusion gradients could be expressed as in Eq.

2.6, where S is the measured diffusion weighted signal, S0 is the signal without diffusion

gradient, b is diffusion weighting factor, and D is diffusion constant which is also known

as apparent diffusion coefficient (ADC).

26



S = S0e
−bD (2.6)

For water at 37◦C diffusion constant D is approximately 3.210−3mm2/s. Diffusion

constant may represent the isotropic diffusion for which the diffusion is the same in all

directions. However, for a tissue oriented in certain directions such as white matter tracts

in the human brain, diffusion is not the same in all directions, thus, the diffusion is

anisotropic.

Diffusion is represented mathematically with a 2nd rank, 3 by 3 symmetric tensor (Eq.

2.7), which corresponds to an ellipsoid in three-dimensional (3D) space:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 . (2.7)

In the case of 3× 3 diffusion tensor representation, Eq. 2.6 reexpressed as Eq. ( 2.8),

where b0 = γ2G2δ2
(
∆− δ

3

)
and g is the gradient direction in three-dimensional space:

S = S0e
−b0g TDg (2.8)

The most essential information that DTI provides is the orientation of the greatest

diffusion at each voxel. It assumes that the largest principal axis of the diffusion tensor

aligns with the dominant fiber (white matter tract) orientation in an MRI voxel. In

order to find the principal direction of the diffusion tensor, tensor is diagonalized. The

eigenvector corresponds to the largest eigenvalue represents the principal direction of the

diffusion tensor.

Degree of anisotropy (DAI) of diffusion is measured in different ways. The most widely

used DAI is FA (fractional anisotropy) [72], which range from 0 (isotropic) to 1 (fully

anisotropic) and is expressed as:

FA =

√
3

2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

, (2.9)

where λ1, λ2 and λ3 are the eigenvalues of the diffusion tensor D , and λ̄ = 1
3

∑3
i=1 λi.
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The vessel orientation can be represented better by using red, green, blue (rgb) color

channels and weighting the FA with the x, y, z components of principal direction of the

tensor, where red color indicates left-to right direction, green anterior-posterior direction

and blue represents the superior-inferior direction [72] (See Figure 2.11 for anatomic

planes and orientations). Figure 2.12 depicts B0 image (no diffusion gradients), FA and

color-FA maps respectively.

Figure 2.11: The human body can be divided into 3 major planes: coronal dividing the

body into anterior and posterior parts, transverse (axial) dividing the body into superior

and inferior parts, and sagittal dividing the body into right and left parts. These planes can

be moved to any position in the body and are typically used for the tomographic imaging

techniques, such as MRI and CT, source: Anatomy tutorial, University of Minnesota.
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Figure 2.12: Left: B0 (DTI without gradient); Middle: FA image; Right: Color-FA image.

2.2.2.1 DTI Tractography

DTI Tractography generates fiber tract trajectories in white matter. The conventional

white matter tractography reconstructs the pathways of white matter tracts by starting

from a seed voxel and tracing down the trajectory in a voxel-by-voxel manner along the

principal eigenvector in each voxel. At each voxel, the principal eigenvector v1 , which is

the one corresponding to the largest eigenvalue λ1 generated by the decomposition of the

diffusion tensor, is aligned with the mean fiber direction in that voxel.

Streamline Tractography (SLT) is the original method of DTI tract estimation and

has become a reference of comparison for newer tractography algorithms. Basic Euler’s

method SLT algorithm is one of the most well-known tractography algorithms in literature

[73, 74, 75]. SLT uses the principal eigenvector orientation to compute a Euler’s method

approximation to the parameterized tract c (s):

c (s1) = c (s0) + αt (s) ≈ c (s0) + αv1 (s) (2.10)

In Eq. ( 2.10), c (s) is computed using piecewise linear steps of size α in the direction

of the principal eigenvector of the tract. Because the principal eigenvector approximates

the true local tangent, t (s), to the tract curve, tract propagation occurs in both collinear

tangent directions approximated by v1 (s). Tract propagation is subject to stopping cri-

teria which include but are not limited to curvature, torsion, and local anisotropy metrics

such as fractional anisotropy.
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2.3 Summary

A review of the works on coronary artery segmentation is presented in the first part of

the Chapter. The algorithms, which are surveyed, are mostly for static and high-quality

CTA or MRA images. Our aim is to give an intuition about different methodologies used

for vasculature segmentation, since a few of these methods form the basis of our work.

Recently, creating anisotropic metrics or models has become more popular in vessel

extraction. Along this line, we design a novel tubular structure segmentation method,

which constructs a plate-like tensor from image intensity measurements to conform vessel

cross-sections. Then, motivated by diffusion tensor imaging (DTI) tract following methods,

a tractography-like vessel segmentation method is proposed in this thesis. In the second

part of this chapter, background on DTI (Difffusion Tensor Imaging) and its principles

are given, since DTI forms the basis of our tensor model.
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Chapter 3

Vessel Tractography using an Intensity Based Tensor Model

We propose an intensity based tensor model, which is well suited for tubular structures

as vessels, by its use of a 4D curve representation, which is inspired from Li and Yezzi’s

work [5]. They proposed a 4D curve representation for the vessel-like tubular structures,

which has four parameters (X , r), where X = (x, y, z) denotes a centerline point, and r

denotes a radius. Each 4D point defines a sphere in 3D space, the path between two 4D

points is found by solving a minimal path problem. At the end, the vessel is obtained by

connecting the consecutive spheres, where the diameter of the sphere, 2r, for each 4D point

defines the vessel lumen thickness, and the pathway connecting the center of the spheres

represents the vessel centerline. Although the method they presented is innovative, their

potential metric is isotropic, and, the vessel orientation is not taken into account in this

method.

Our novel contributions are three-fold: (1) to bring an anisotropy metric to the poten-

tial model by involving potential measurements from intensity at various spatial directions

and using them in a linear least squares tensor fitting to estimate a rank 2 tensor; (2) to

adapt brain white matter tractography idea for vessel tractography, for the first time to

our knowledge; (3) to design a new tubular bifurcation detection algorithm.

Flowchart of the overall algorithm is given in Figure 3.1. The flowchart can be sum-

marized as follows:

(a) The algorithm is initialized with a user defined point Pn around the centerline; at the

same time, Pn is added to centerline point list, ListP ;

(b) A point Pn is popped from ListP , and set as SeedP ;
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(c) Tensors are estimated in a range of radius, and the tensor with the true radius r

and the direction of the vessel are estimated at point Pn by tensor fitting. Then,

tractography is started along the direction of the vessel, v ;

(d) The point Pn is centralized and updated;

(e) The branches around Pn are searched and detected, and branch coordinates are added

to the ListP ;

(f) If the mean of the sphere centered at Pn with radius r is above a given threshold,

new point Pn+1 is tracked, and the algorithm continues from (b);

(g) If the mean of the sphere centered at Pn with radius r is below a given threshold,

tract reaches the end of the vessel. The steps after (b) are executed after setting

SeedP to Pn whether the negative direction of the v for the Seedp has not been

carried out; otherwise, if the list Pn is not empty, new seed point SeedP is selected,

and the algorithm starts from (b).

3.1 Image preprocessing

Vessel calcifications are not part of the vessel lumen, for this reason, they are eliminated

before the vessel tractography algorithm is applied. The images are prepared for segmen-

tation using a thresholding technique by setting the voxel intensity for vessel calcifications

equal to the intensity of the myocardial tissue tmyo, which is expressed mathematically as

follows:

Ĩ(x ) =

I(x ) if I(x ) ≤ tcalc,

tmyo if I(x ) > tcalc

(3.1)

where Ĩ(x ) indicates the preprocessed image produced from the original image I(x ) with

x ∈ R3. The thresholds are fixed to tmyo = 950 and tcalc = 1700, which are set in [65].
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Initialization: 
Initialize starting point Pn (n=0), and add Pn to the 

point Listp

Set dir=forward, Pn =pop(ListP),  SeedP=Pn

Tensor Fitting:
Fit tensor at Pn ,

estimate v: vessel direction, r: radius

Centralization: 
Pn = centralize(Pn)

P satisfies the Set r to radius list Listr , Pn centerline No

Branch Detection: 
Listbranch=searchBranch(Pn),  ListP=push(Listbranch) 

Pn satisfies the  
stopping 
criteria?

r , n 
coordinates list to Listc and track next point 

Pn+1 = Pn + αv

Yes

No

Is dir forward 
?

Is ListP empty 
?

No No

Set dir=backward, Seedp to Pn Output: Listc , Listr 

Yes Yes

Figure 3.1: Flowchart of the vessel tractography algorithm.

3.2 Intensity Based Tensor Fitting

Our vessel model is constructed as follows:

Ĉ (u) = (c (u), r(u)) , Ĉ ∈ R4 , u ∈ [0, L] (3.2)

where c (u) represents the location on a vessel centerline in R3, r(u) ∈ [rmin, rmax] repre-

sents the radius of a sphere centered at c (u), and L is the length of the vessel. A sphere

can be defined at a centerline coordinate point x s ∈ R3 as: sph = (x s, r). A cylinder

along each sampled orientation v is defined as cyl = (disk(x d, r,v ), h), where x d is de-

fined as a point in R2, v is an orientation vector in R3, which also indicates the normal
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vector of the disk, and h = 3r is defined as the height of the cylinder (Figure 3.2). The

orientation vectors are specified by dense sampling over a unit sphere S2. Each potential

measurement Mi at a given direction g i is an image based feature, which is modeled ac-

cording to the intensity properties of the vessel. The potential is based on a difference

between the intensity mean µΩ1 of the sphere Ω1 and intensity mean µΩ2 of the region Ω2,

where Ω1 = sph and Ω2 = cyl− sph, and calculated along each orientation vector defined

on S2.

Cyl1

g1
h

r

h

g3
g2

Cyl3
lCyl2

(a) Measurements model: Each Cyli is characterized by the

direction vector g i, the height h, and the disk centered at

point x d with radius r.

�2

�1

(b) Cylinder model; (c) Orientations on the sphere∗;

∗Figure from BioImage Suite Tool, Yale University School of Medicine

Figure 3.2: Illustrations of the measurement model, cylinder model, and orientations on

unit sphere.
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The sketch in Figure 3.2 illustrates the measurement model, a sphere and the cylin-

ders around the sphere in different orientations. Figure 3.2(a) depicts three different

orientations g 1, g 2, g 3 and the cylinders located along these orientations. The regions Ω1

and Ω2 are shown in Figure 3.2(b). The unit orientations on S2 are illustrated in Figure

3.2(c). For instance, a few of the sample orientation vectors on the unit sphere are given

by:

g i =


0.135

−0.986

0.098

 , or g i =


0.650

−0.463

−0.603

 , or g i =


−0.206

0.662

0.720

 , . . . (3.3)

Formally, Mi is expressed as follows:

Mi = (µΩ1 − µΩ2)
2 (3.4)

and measurement orientations are defined as a matrix:

G =
[
g 1 g 2 · · · g m

]
(3.5)

where g i = [g
ix giy giz]

T is the column vector for each measurement orientation and m

is the number of orientations on S2. Mi can be modelled as Mi = g Ti Dg i using a 3 × 3

tensor, which is a symmetric (semi)positive definite matrix:

D =


dxx dxy dxz

dyx dyy dyz

dzx dzy dzz

 . (3.6)

After the measurements M m×1 are calculated for all orientations, the tensor D is calcu-

lated by a least squares fitting as explained next.

To solve for D from Mi = g Ti Dg i, i = 1, . . . ,m equations, we can simply stack the

components of D since D is a symmetric matrix, as:

d =
[
dxx dyy dzz dxy dxz dyz

]T
(3.7)

and reconstruct the equation as

Mi = Hid , (3.8)
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where H i is the ith row of the matrix constructed as:

H =


g2
1x

g2
1y

g2
1z

2g1xg1y 2g1xg1z 2g1yg1z
...

...
...

...
...

...

g2
mx g2

my g2
mz 2gmxgmy 2gmxgmz 2gmygmz

 (3.9)

In matrix form, Eq. 3.8 becomes M = Hd . Linear least squares fitting is applied to

solve for d as:

d = (H TH )−1H TM . (3.10)

Once d is obtained, we construct the vesselness tensor D , simply as in Eq. ( 3.6).

3.2.1 Vessel Lumen Thickness Estimation:

To estimate the final tensor D , which describes the direction of the vessel and the

radius of the sphere, the tensor D r is calculated ∀r ∈ [rmin, rmax] at a point inside the

vessel. When the diameter of the sphere is below or above the vessel lumen thickness, the

measurements Mi become lower. The Mi thus becomes largest with the sphere which is

tangent to the vessel and, hence the radius of the sphere is detected as:

r̂ = argmax
r

‖D r‖ ,∀r ∈ [rmin, rmax] (3.11)

where ‖·‖ denotes 2-norm of the matrix Dr . That is, the norm of the tensor in Eq. 3.11

happens to be largest when the sphere fits to the vessel boundary. Estimated tensor D is

equal to D r̂. After the tensor D is computed, it is decomposed into its eigenvalues and

eigenvectors using SVD(Singular Value Decomposition): D = V λV T , where {λ1, λ2, λ3}

are the eigenvalues and V = [v 1,v 2,v 3] are the eigenvectors of the tensor. Hence, v 3

represents the smallest eigenvector of the tensor. In Figure 3.3(a), a synthetic Y-shaped

vessel data [76] at a constant thickness is shown. Norm of the tensor is plotted as a

function of sphere radius in Figure 3.3(b). For instance, the norm at radius 3 becomes

maximum for a specific voxel chosen from the centerline of the synthetic vessel.

The tensor D consists of two major eigenvectors, so it becomes a planar ellipsoid

as shown in Figure 3.4. Shape of the tensors on the centerline are more planar and

have bigger norm than the others. In addition, when the radius is smaller or larger than
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(a) 60×60×60 synthetic vessel volume with

a constant radius of 3.

(b) Norm of the tensor D r for a voxel on the

centerline of the synthetic data, for a range of

radius r.

Figure 3.3: Example of vessel lumen thickness estimation.
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the true radius, the norm of the tensor becomes lower. Similarly, since the intensity

distribution changes less along the vessel direction, the measurements taken through this

direction becomes lower, and this tends to have smallest eigenvector in vessel direction.

The smallest eigenvector of the tensor D thus happens to show ultimately the vessel

orientation.

Several anisotropy metrics may be used to measure the anisotropy of a tensor D .

One of the most common way of measuring the anisotropy is fractional anisotropy (FA)

[72] which ranges from 0 (isotropy) to 1 (maximum anisotropy), and can be expressed as

follows:

FA =

√
3

2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

, (3.12)

where λ̄ denotes the mean of the three eigenvalues. The vessel orientation can be mapped

by using (red, green, blue)=(rgb) color channels by weighting the FA with the components

of v 3 = (vx, vy, vz) where red color indicates left-to right direction, green anterior-posterior

direction and blue represents the superior-inferior direction (See Figure 3.5-Right) . In

Figure 3.5-Left, a color-FA map represents the v3 vector orientation of the synthetic Y

dataset with the constant radius (r = 3) over the volume. Along the straight part of

the vessel, the color representation of the tensors is green, since vessel orientation, v3, is

through anterior-posterior direction. In the diagonal part, the color indicator becomes the

mix of green and red due to diagonally oriented vectors v3. Tensor colors change on the

edges as compared to the tensors along the centerline of the vessel, since the tensors on

the edges start to become perpendicular to the tensors on the centerline, thus, the shape

of the tensors become tubular along the edges of the vessel (See Figure 3.4).

3.3 Vessel tractography

We define a vessel tractography, which traces the centerline of a vessel using the inten-

sity based tensor D , inspired by the DTI tractography that uses a diffusion tensor. Vessel

tractography starts with a user defined initial seed point. The seed point is preferably

selected at the center of one of the cross sections of the vessel. The tract, i.e. the 3D

centerline, starts to propagate along the positive and negative directions of the eigenvector
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(a) radius is 2

(b) radius is 3 (true radius)

(c) radius is 4

Figure 3.4: Estimated tensors for 60× 60× 60 synthetic vessel volume.
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Figure 3.5: Left: Color-FA map of the estimated tensors (radius 3) for the 60 × 60 × 60

synthetic vessel volume; Right: Color Hue, Red: Left-Right, Green: Anterior-Posterior,

Blue: Superior-Inferior direction.

corresponding to the smallest eigenvalue of the planar tensor. For all spatial coordinates

along the tract, the tensor is calculated as explained in Section 3.2. Minor vector of the

tensor is obtained and a new tract coordinate c (un) is calculated by adding the v 3 vector

(v 3 describes the principal orientation of the vessel which is the smallest eigenvector of

the tensor at c (un−1)) to the current coordinate c (un−1). To avoid tract aberrations, a

streamline tractography (SLT) [74] method is preferred. SLT uses the vessel orientation

by weighting it with α to compute Euler’s method approximation to the parametrized

tract c (u) as follows:

c (un) = c (un−1) + α
dĉ (u)

du
→ c (un) ≈ c (un−1) + αv 3 (3.13)

where c (u = 0) is the seed point, and 0 ≤ un ≤ L, L is the length of the vessel. The tract

is computed using a piecewise linear step in the direction of v 3. Tract propagation occurs

in both collinear tangent directions approximated by v 3 (See Figure 3.6).

The tractography algorithm continues till pre-defined convergence criteria are satisfied:

• First convergence criterion is the mean intensity ratio between the spherical region of

the seed and that of the current coordinate c (un−1). The sphere centered at the seed
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c(un-1)

c(un)

v3

Figure 3.6: Illustration of the vessel tractography: Centerline of the vessel (black) is shown

by gray. Extracted vessel tract until the current coordinate c (un−1) is depicted by (navy

blue). On the distal part of the tract (turquoise); minor vector of the planar tensor, v 3,

current location, c (un−1), and how the tract is obtained by adding the v 3 direction to the

current location c (un−1) are shown.

point is defined as sph1 = (c seed, rseed) and sphere at the current coordinate c (un−1)

is sph2 = (c (un−1), r), and the regions are specified as Ω1 = sph1 and Ω2 = sph2

. If the ratio β1 = µΩ2/µΩ1 is below a given threshold (Ithresh1), this implies that

the tract reaches the end of the vessel and the tractography stops at this point (See

Figure 3.7).

• Second termination criterion is defined from the ratio β2 = µΩ3/µΩ2 where Ω3 =

sph3 − sph2 and sph3 = (c (un−1), 2r). When c (un−1) reaches the origin (coronary

ostium) or the end of artery, β2 is assumed to be approximately 1. β2 is used both

to force tract to stop at the end of vessel and to prevent the tract to diverge toward
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regions around the vessel (See Figure 3.8).

• Third criterion, which stops the tract when the radius r at point c (un−1) reaches to

r = rmax, is used to avoid divergence of the vessel tract to surrounding blob regions.

ΩΩ1

cseed
rseed

Ω2

c(un‐1) r

Figure 3.7: Illustration of the regions (spheres) Ω1 and Ω2.

3.3.1 Centralization

Sometimes a tract or a centerline of the vessel can aberrate because of the effects of

tensor perturbation. In this case, a centralization procedure should be applied to the

tract. First, a multiplanar reconstruction method (MPR) (Eq. 3.14) is applied at the

coordinate c (un−1) to find a projection slice which has v 3 as its normal vector. Then, v 1

and v 2 define the reconstructed plane. The MPR plane image is defined as

Iprj(i, j) = I(c (un−1) + (i− xc)v 1 + (j − yc)v 2) (3.14)
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Ω3

C(un-1)r

Ω2

r

Figure 3.8: Illustration of the regions (spheres) Ω2 and Ω3.

where I is the original image to be projected, Iprj is the projection image and xc, yc are

the coordinate centers of the Iprj. After the subregion or projected plane around the

coordinate through v 1 and v 2 is calculated, then an r × r (the radius is found during

tensor fitting) kernel is applied on this plane to find the coordinate which is the center of

a maximum brightness region.

This plane is chosen to be large enough to involve the vessel boundaries and surround-

ings near the vessel, but not very large to compromise other structures around the vessel.

Typically, it is chosen as 40×40 in image coordinates. Let (x′, y′) represent the coordinates

of the maximum brightness point, which is found in the following way:

(x′, y′) = argmax
x,y

∑
i,j∈N(x,y)

Iprj(i, j), (3.15)

where the neighbourhood function N(x, y) is expressed as:

N(x, y) = {(i, j)|(x− i)2 + (y − j)2 ≤ r2}. (3.16)

Then the corresponding point in the original image is defined as

c ′ = c (un−1) + (x′ − xc)
v 1

2
+ (y′ − yc)

v 2

2
(3.17)
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where c ′ is the centralized point, which is the corrected centerline coordinate.

3.4 Branch Detection - Unsupervised Clustering

In order to extend our vessel tractography model to tubular trees, we developed a

branch detection method. It is inspired from the Mohan et. al. work [10], which was

based on an assumption that vessels have at most two branches to be separated. Their

algorithm checks the surrounding regions around the center coordinate c (un−1) and cluster

them in a supervised way via a K-means clustering.

We propose an unsupervised clustering method, which is capable of detecting any

number of branchings from a parent coordinate. In our method, we assume that the

branches of the vessel tree have similar intensity distributions with the main branch. We

search the branches on a spherical surface around the current coordinate in a
5

3
π field of

view, which avoids the branch candidates that are already processed (See Figure 3.9).

Branch candidate coordinates are calculated as:

c (i) = c (un−1) + 2rg i, g i ∈ g (3.18)

where g represents orientations on S2 as defined in Section 3.2.

The intensity mean of the sphere, µsph1 , centered at the potential branch coordinate,

c (i), is defined with a sphere sph1 = sph(c (i), r), and the intensity mean of the sphere,

µsph2 , centered at the seed, c seed is expressed with sph1 = (c seed, rseed). Intensity mean

ratio, Ithresh, is applied for the potential branch candidates using µsph1Ithresh >= µsph2 .

When the potential branch candidate has a mean intensity lower than µsph1Ithresh, the

tensor fitting is applied at that coordinate. Direction of the vectors are used as a cluster

classifier in our method. If v 3 of the tensor of the potential branch coordinate is not in

the direction of the current path, v 3 and its coordinate is put into a new cluster or to an

already existing cluster as follows:

(i) When the vector v 3 is closer to the directions in one of the previously formed clusters,

it is inserted into an appropriate cluster with its corresponding coordinate;

(ii) When the vector v 3 has a distinct orientation, a new cluster is constructed, and this

vector is added with its corresponding coordinate to that cluster.
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Detected branch coordinates and orientation vectors are stacked into clusters in a 2r

voxel distance away from the first coordinatethat detected branches, cfirst (See Figure

3.9). Then, coordinate mean of each cluster is calculated and labelled as a branch coor-

dinate. The proposed branch detection algorithm is summarized in Algorithm 1. The

algorithm is based on the assumption that the vessel displays greater intensity than struc-

tures surrounding the vessel that have a size similar to that of a vessel. We perform branch

detection step each time the current point c (un−1) moves significantly, i.e. when there is

is 1 voxel difference between its last location where a branch check was performed.

Algorithm 1 Branch Detection algorithm - Unsupervised Clustering Method

1: Input: Sample N directions gi, ∀i ∈ (1, N) uniformly off the sphere S2, current

coordinate c (un−1), µseed intensity mean of the sphere centered at cseed with radius

rseed, mean threshold Ithresh, angle thresholds Athresh1 , Athresh2 and ClC (clusters of

branch coordinates), ClV (clusters of orientation vectors). The clusters are cleared at

the beginning of each tractography.

2: Output: Updated ClC , ClV .

3: Threshold the g Ti v 3 < cos(Athresh1) with angle threshold Athresh1 to avoid searching

the branches in the previously processed voxels.

4: Find a branch candidate c (i) using Eq. 3.18.

5: Eliminate the candidate coordinate coordinate c (i), if it is labelled as processed (the

coordinates already processed are labelled by a spherical mask with the estimated r).

6: Apply the tensor fitting as explained in Section 3.2; find r(i) (radius), v (i) (vessel

direction) and µ(i) (mean of the sphere with radius r(i) centered at c (i)) of the tensor

for c (i).

7: Eliminate the candidate coordinate c (i) for:

8: a) v i that has overlap with the parent vector v 3;

9: b) r = rmax;

10: c) µ(i) < µseed Ithresh
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11: if ClC or ClV is empty then

12: Create a new cluster in ClV and insert v (i) to that cluster.

13: Create a new cluster in ClC and insert c (i) to that cluster.

14: else

15: Search for all vectors in each ClV .

16: if v i has a similar orientation with the vectors in each ClV (Athresh2 is chosen as

angle criteria) then

17: Insert v i to an appropriate cluster in ClV .

18: Insert c i to an appropriate cluster in ClC .

19: else

20: Create a new cluster for v i and c i; insert them to ClV and ClC .

21: end if

22: end if
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c(un-1)

2r

2r

cfirst

π/3

Figure 3.9: Illustration of branch detection algorithm, where the tractography direction is

shown by black arrow, the estimated path until the current coordinate is depicted by green,
5

3
π sphere cut with radius 2r centered at c(un−1) is illustrated by orange, the coordinate

that first detects one or more branches is shown by a blue sphere, and referred to as cfirst.

In addition, 2r voxel distance for stacking of detected branches from cfirst is shown in the

sketch.
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Chapter 4

Experimental Results

In this section, we first give a quantitative validation of the performance of our method

on 3 synthetic vascular image volumes, and 8 CTA Rotterdam coronary segmentation

challenge [77, 11] volumes with known ground truth. Next, we evaluate our method

qualitatively and apply it to extract the coronary arteries from 10 CTA volumes. For each

case, a single seed point is selected from each tree, then entire vessel tree is segmented

automatically.

The parameters of the algorithm are fixed over all experiments as follows:

• tmyo = 950 and tmyo = 1700 are used in preprocessing step for calcium level thresh-

olding;

• 24 unit directions on S2 are used for tensor fitting;

• 128 unit directions on S2 are used for branch detection;

• The radius range is selected between 0.25 and 4 mm in tensor fitting;

• Maximum intensity projection plane dimensions are selected as 40× 40;

• The angle threshold, Athresh1 , is chosen as
5π

3
;

• The angle threshold, Athresh2 , is chosen as
π

9
;

• Algorithm’s termination ratios β1 and β2 are chosen as 0.25 and 0.85;

• Ithresh, ratio of intensity mean of the spheres in branch detection is set to 0.85.
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To decrease the run-time of our program, the radius range 0.25 and 4 mm is applied

for the seed coordinate. By finding the radius r at the end of tensor fitting, radius

range is selected between r− 3 and r + 3, which prevents to check unnecessary radius for

further coordinates in tensor fitting. Moreover, radius dependency results in a smoother

path, since the radius range gets narrower in tensor fitting, and the radius becomes more

dependent on the radius of the previous coordinate.

The proposed vessel tractography algorithm is fully implemented in C++ environment,

using Qt [78] and VTK [79] libraries for visualization.

4.1 Quantitative Validation

For the synthetic validation, the datasets are obtained from the work of Hamarneh

and Jassi’s [80], which simulate volumetric images of vascular trees and generate the

corresponding ground truth segmentations. We used 4 different quantitative measures for

the synthetic validation as TP (True Positive), FN (False Negative), FP (False Positive)

and OM (Overlap Measure) between the estimated vessel map and the ground truth vessel

map, which are defined as follows:

TP =
NB ∩NR

NR

(4.1)

FN =
NR −NB ∩NR

NR

(4.2)

FP =
NB −NB ∩NR

NR

(4.3)

OM = 2
NB ∩NR

NB +NR

(4.4)

where NR is the number of reference ground truth voxels, and NB is the number of voxels

detected by our algorithm in synthetic data. OM means overlap metric, which is a Dice

similarity coefficient that approaches a value of 1.0 for results that are very similar and is

near 0.0 when they share no similarly classified voxels.

Table 4.1 shows TP, FN, FP and OM rates for the three synthetic vascular datasets.

We obtained high TP and OM ratios between 93% and 96%.

Figures 4.1, 4.2, 4.3 depict Hamarneh and Jassi’s [80] three synthetic vascular dataset,

and the results of our algorithm on the dataset. Each top frame shows the 3D model and
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Table 4.1: Segmentation results of our method on synthetic vascular images

Rate (%) Data 1 Data 2 Data 3

TP 94.30 94.77 96.13

FN 5.7 5.23 3.87

FP 8.45 4.88 4.76

OM 93.03 93.76 95.70

sample cross-sections of the reference dataset. The user selects a single seed, which is

shown with a yellow sphere, from one of the branches. Then, the entire tree is extracted

automatically by our method. The branch coordinates that are found during the execution

of our algorithm are shown on the left figure by red spheres. Extracted centerlines of the

datasets are shown by green. Vessel trees with radial thickness are shown by pink on the

right.

Recently, attempts at evaluating and comparing the performance of various algorithms

for coronary artery centreline extraction from a common CTA data set have been proposed

in the Rotterdam Coronary Artery Algorithm Evaluation Framework [77, 11]. As part of

the 2008 MICCAI workshop 3D Segmentation in the Clinic: A Grand Challenge II”,

a coronary artery tracking competition has been started. Due to lack of ground-truth

segmentation, it is essential to generate a reference standard from multiple manually an-

notated datasets, which is an exhaustive task for the experts. One of the contributions

of the works of [77, 11] is the design of a reference standard for vessel tracking data with

multiple observers using the weighted averaging of 3D open curves, which in the end has

become a standardized evaluation methodology for the quantitative evaluation of coro-

nary artery centreline extraction algorithms [11]. The works involved in the coronary

segmentation challenge are summarized in [11].

The major contributions of this work are defining measures for the evaluation of coro-

nary artery centreline extraction algorithms as illustrated in Figure 4.4. There are 32

datasets presented in this framework, where 24 of data are for testing, and 8 of them are

for training and the corresponding reference standard centerlines for the training data are
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made publicly available. Four vessels are selected for annotation, where the first three

vessels are always the right coronary artery (RCA), left anterior descending artery (LAD),

and left circumflex artery (LCX). The fourth vessel is selected from the large side branches

of these main coronary arteries. 37.5% of the datasets have good quality of images, 37.5%

are moderate, and 25% are poor of quality. Additionally, all datasets consist of a level

of calcium presence. According to the amount of interaction, methods are classified into

three categories: fully automatic, semi-automatic or interactive. Most algorithm attempts

on this challenge [11] are interactive methods, which need more than one seed per vessel.

Accuracy and overlap scores for the segmented vessels are calculated as described in

[11]. There are three overlap scores: Overlap (OV), Overlap until first error (OF) and

Overlap with > 1.5 mm vessel (OT). These scores measure the overlap between the

segmented centerlines and a ground truth centerline derived from manual segmentations

by human experts. Mathematically, overlap measures are defined as follows:

OV =
‖TPMov‖+ ‖TPRov‖

‖TPMov‖+ ‖TPRov‖+ ‖FNov‖+ ‖FPov‖
, (4.5)

OF =
‖TPRof‖

‖TPRof‖+ ‖FNof‖
, (4.6)

OT =
‖TPMot‖+ ‖TPRot‖

‖TPMot‖+ ‖TPRot‖+ ‖FNot‖+ ‖FPot‖
. (4.7)

A point on the centerline to be evaluated is marked as true positive TPRov if the distance to

at least one of the connected points on the evaluated centerline is less than the annotated

radius and false negative FNov otherwise. A point is marked as true positive TPMov if

there is at least one connected point on the reference standard at a distance less than the

radius defined at that reference point, and it is marked as false positive FPov otherwise.

TPMof is the number of true positive points on the reference before the first error. The

first error is defined as the first FNov point when traversing from the start of the reference

standard to its end, while ignoring false negative points in the first 5 mm of the reference

standard, since sometimes it is hard to define the beginning of artery, and it is not of

critical importance. TPMot and TPRot denote the number of true positive points until the

diameter of 1.5 mm, which is assumed to be clinically relevant. FNot and FPot denote
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the number of false negative and false positive points respectively. ‖·‖ represents the

cardinality of set of points.

The scores are scaled so that 0 indicates complete failure, 50 corresponds to a result

within the human inter-observer variability, and 100 is a perfect result. The overlap scores

for our algorithm, and for each of the 8 training datasets are presented in Table 4.2. Nearly

complete segmentation of the target vessels, more than 97% are on average segmented.

This leads to high overlap scores, with an average of 76 for the OV score, i.e., significantly

better than the human inter-observer variability.

The accuracy scores evaluate the distance to the ground truth centerline. The scores

are: Average distance (AD), Average distance inside vessel (AI) and Average distance

to the clinical relevant part of a vessel (AT). The distances and the scores are shown

in Table 4.3. The average distance to the ground truth centerline is 0.44 mm, and we

obtained 31.2 for average AD score. A summary of all scores are presented in Table

4.4. Comparison of our algorithm, VET (Vessel Tractography), with the top 8 methods

(for further information about the methods, see [81]) in Rotterdam challenge are shown

in Table 4.5. Our algorithm ranks the 5th among 18 methods using only the training

data for all. For further official evaluation, the results on Rotterdam test datasets will be

submitted to the organizers of the evaluation framework.

In general, we used one seed per vessel tree, for the very low resolution and narrowing

cases, we applied more seeds. In average, we used 3-4 seed per dataset. Thus, we need

much less user interaction than other methods as shown in the last column of Table 4.5.

Our method is fast, since it is a centerline-based method. The runtime of our algorithm

with 3D visualization is∼9 minutes for a complete CTA vessel tree from a volume of typical

size with 512 × 512 × 441 voxels. We also added an option to our vessel tractography

program for single branch extraction (without branch detection), which takes between

∼1-2 minutes. See the Table 4.5 for the runtime comparison with other methods. Figures

4.5, 4.6, and 4.7 show visualizations for the results of training dataset 1, 2 and 6 from

Rotterdam coronary artery database.
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Table 4.2: Average overlap per dataset

Dataset nr. OV OF OT

% score % score % score

0 96.7 69.5 80.2 67.9 96.7 60.9

1 97.9 59.87 90.5 45.9 97.9 48.9

2 98.6 84.0 95.6 74.5 98.5 74.3

3 91.6 81.6 72.2 63.0 91.8 78.9

4 96.2 72.3 67.6 45.6 99.4 74.7

5 98.8 80.7 58.5 52.1 98.8 71.0

6 99.8 85.9 99.2 74.5 99.9 85.5

7 97.1 74.4 66.1 58.8 97.1 73.6

Avg. 97.1 76.0 78.7 60.3 97.5 71.0

4.2 Qualitative Validation

Next, we used our method to extract the coronary arteries from CTA volumes of 10

patients from Yeditepe University Hospital. The results are shown on Table 4.6. For a

qualitative evaluation; the cardiologist expert in our project team1 gave scores (0-5) to

RCA (Right Coronary Artery), LM (Left Main), LAD ( Left Anterior Descending) and

LCX (Left Circumflex Artery) by considering the length, thickness and centerline of each

artery.

We obtained high qualitative scores for each dataset. Extracted arteries for CTA

datasets for all 10 patients are depicted in Figures 4.8 and 4.9. Our model finds the

thickness for each coordinate along the centerline, thus, we can find the exact location of

narrowings. Therefore, our method is capable of finding the stenosis along the arteries.

According to the cardiologist expert’s view, possible abnormal narrowings along the ar-

teries in Figures 4.8, 4.9 can be because of stenosis. Blue arrows in the images of Patient

4, 5, 6, 7 and 9 indicate the sample narrowings.

1Prof. Dr. Muzaffer Degertekin, Cardiology Dept., Yeditepe University Hospital, Istanbul.
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Table 4.3: Average accuracy per dataset

Dataset nr. AD AI AT

mm score mm score mm score

0 0.48 32.4 0.44 33.2 0.48 24.9

1 0.52 31.7 0.37 32.5 0.52 31.7

2 0.39 26.9 0.36 27.1 0.39 26.8

3 0.64 31.2 0.40 33.3 0.61 31.3

4 0.33 29.3 0.31 29.9 0.31 29.9

5 0.43 36.4 0.40 36.8 0.43 36.4

6 0.34 24.7 0.34 24.7 0.34 24.6

7 0.34 37.0 0.31 38.0 0.35 35.3

Avg. 0.44 31.2 0.37 32.0 0.43 30.1

Table 4.4: Summary

Measure % / mm score

min. max. avg. min. max. avg.

OV 69.7% 100.0% 97.1% 38.8 100.0 76.0

OF 9.9% 100.0% 78.7% 4.91 100.0 60.3

OT 70.6% 100.0% 97.5% 35.3 100.0 71.0

AD 0.26mm 1.31mm 0.43mm 22.3 46.7 31.2

AI 0.22mm 0.49mm 0.37mm 22.3 49.1 31.9

AT 0.26mm 1.19mm 0.43mm 6.28 46.7 30.1
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(a) Sythetic vascular dataset1; Top: Volume ren-

dering; Bottom: slices from 3 orthogonal views.

(b) Extracted centerline is indicated by green, de-

tected branch coordinates by red, and seed point

by yellow;

(c) Extracted surface (pink) surrounds centerline,

which provides the radius information of the ves-

sel at each centerline point.

Figure 4.1: Extracted vessel tree from the 101× 101× 101 synthetic vascular dataset1.
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(a) Sythetic vascular dataset2; Top: Volume ren-

dering; Bottom: slices from 3 orthogonal views.

(b) Extracted centerline is indicated by green, de-

tected branch coordinates by red, and seed point

by yellow;

(c) Extracted surface (pink) surrounds centerline,

which provides the radius information of the ves-

sel at each centerline point.

Figure 4.2: Extracted vessel tree from the 101× 101× 101 synthetic vascular dataset2.
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(a) Sythetic vascular dataset3; Top: Volume ren-

dering; Bottom: slices from 3 orthogonal views.

(b) Extracted centerline is indicated by green, de-

tected branch coordinates by red, and seed point

by yellow;

(c) Extracted surface (pink) surrounds centerline,

which provides the radius information of the ves-

sel at each centerline point.

Figure 4.3: Extracted vessel tree from the 101× 101× 101 synthetic vascular dataset3.
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Figure 4.4: Illustration of different quantities for the analysis of vessel segmentation,

adopted from [11]. The reference standard is illustrated as the horizontal line in the

middle with annotated radius depicted as the grey region. The metrics used to evaluate

the segmented coronary path are labelled above and below the reference standard. For

further details on the metrics, see [11]

.

Table 4.5: Comparison of top 8 methods with our method, VET, participated in Rotter-

dam challenge

Method AI OF OT OV Run time User interaction

mm score % score % score % score (per dataset) (per vessel)

MHT 0.24 47.9 94.6 83.2 99.5 90.0 99.3 91.6 6 min. 2 - 5

SR 0.25 49.6 73.4 64.6 96.0 81.8 95.5 77.7 22 min. 2.2

TR 0.28 43.8 68 52.9 92.8 68.3 92.2 68.4 30 min. 3

BMP 0.31 37.7 86.1 77.2 97.7 83.0 97.6 82.3 4 min. 2 (S, E)

VET 0.37 31.9 78.7 60.3 97.5 71.0 97.1 76.0 8 - 10 min. 3 - 4 (per data)

CRA 0.26 46.3 76.1 54.2 88.2 60.7 86.8 55.0 4 - 6 min.

VC 0.32 40.0 69.7 56.8 94.4 70.3 93.7 64.4 5 min.

DFMF 0.31 40.5 78.3 60.3 93.0 67.3 89.2 52.2 4 - 8 min.

KBMP 0.41 30.4 92.7 85.3 98.1 89.4 98.1 88.1 7 hrs 1 (E)
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(a) Visualization of the ground truth (orange) and corresponding vessel

trees (pale green) segmented by proposed framework.

(b) Visualization of centerline of the ground truth (purple) and corre-

sponding vessel trees (green) segmented by proposed framework.

Figure 4.5: Visualization of the result from experiments for quantitative validation using

the Rotterdam cardiac data set # 1.
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(a) Visualization of the ground truth (orange) and corresponding vessel

trees (pale green) segmented by proposed framework.

(b) Visualization of centerline of the ground truth (purple) and corre-

sponding vessel trees (green) segmented by proposed framework.

Figure 4.6: Visualization of results from experiments for quantitative validation using the

Rotterdam cardiac data set # 2.
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(a) Visualization of the ground truth (orange) and corresponding vessel

trees (pale green) segmented by proposed framework.

(b) Visualization of centerline of the ground truth (purple) and corre-

sponding vessel trees (green) segmented by proposed framework.

Figure 4.7: Visualization of results from experiments for quantitative validation using the

Rotterdam cardiac data set # 6.
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Table 4.6: Visual scores of our method on 10 CTA datasets from Pt 1 to Pt 10

Pt 1 Pt 2 Pt 3 Pt 4 Pt 5 Pt 6 Pt 7 Pt 8 Pt 9 Pt 10

RCA 5 5 5 5 5 5 5 4 5 5

LM 5 5 5 5 5 5 5 5 4.5 5

LAD 5 5 5 5 4.5 4.5 5 4 4.5 5

LCX 4 5 5 5 5 4.5 5 4 5 5
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(a) Left: patient 1, Right: patient 2

(b) Left: patient 3, Right: patient 4

(c) Left: patient 5, Right: patient 6

Figure 4.8: Visualization of extracted arteries from CTA volumes of patient # 1 to 6.
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(a) Left: patient 7, Right: patient 8

(b) Left: patient 9, Right: patient 10

Figure 4.9: Visualization of extracted arteries from CTA volumes of patient # 7 to 10.
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Chapter 5

Conclusions and Future Work

In this thesis, we presented a model for extraction of coronary arteries from Computed

Tomography Angiography (CTA) scans, and created a visual model of arteries, which may

be used as a virtual medical navigation tool to detect possible anomalies on arteries. For

this purpose, we designed a fast and novel tubular structure segmentation method, which

constructs an intensity-based tensor that traces a vessel, and used it in a tractography

framework, inspired from DTI field.

In this direction, we introduced our tensor based segmentation method, where we

brought a DTI tractography approach to centerline extraction of the tubular structures

by constructing an intensity based tensor model. We described computations of the vessel

orientation, centerline (central lumen line) and its thickness at the same time. We demon-

strated how an entire coronary tree can be captured by the proposed automatic branch

detection algorithm.

For the experiments and validations, we first quantitatively validated our algorithm

on three complex synthetic vascular datasets, where we obtained high overlap ratios

94.2%±1.9. We also quantitatively evaluated our method on the training datasets of

Rotterdam Coronary Artery database [81], which provides a framework where several al-

gorithms can be compared with the others, and obtained also high overlap ratio as 97% in

average. In the qualitative experiments of our work, a cardiologist expert gave scores(0-5)

to LM (Left Main), LAD (Left Anterior Descending), LCX (Left Circumflex), and RCA

(Right Coronary Artery) coronary arteries in 10 CTA datasets according to the length,

thickness and centerline of each artery. We obtained high scores for each dataset. Ad-
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ditionally, as our method finds the thickness for each coordinate along the centerline, we

were able to visualize the vessel surface, and show any abnormalities, such as stenosis,

along the arteries.

Future directions of our work include:

• Single tensor models are not sufficient in junctions, a multiple-tensor model [82] can

be created to handle the junction problems (See the sketch in Figure 5.1);

• New potential measurement can be proposed to represent possible vessel intensity

distributions;

• New vessel models, i.e instead of cylinder, can be proposed e.g cone, half ellipsoid;

• High-contrasted MRA of peripheral vessels would also be a potential application of

this method.

Figure 5.1: Sample sketches for the junction problem. Edges of the vessels are shown

with green color. Black circle depicts the junction coordinate. Red ellipsoid indicates the

single tensor fitting at the junction coordinate, where single tensor is insufficient for the

representation of the junction. Purple ellipsoids illustrates the result of multiple-tensor

fitting.
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