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ABSTRACT 

 

Zinc (Zn) is an essential trace element for all organisms.  Cereal-based diets 

typically do not provide an adequate source for Zn nutrition of human beings, 

particularly when cereals are cultivated on Zn-deficient soils. This study investigates the 

potential of wild emmer wheat (Triticum turgidum L. subsp. dicoccoides) for better Zn-

uptake, translocation and mobilization (retranslocation). These traits can be further 

utilized in breeding new genotypes with enriched grain Zn concentration. Solution 

culture experiments were conducted with selected wild emmer wheats (TTD 172, 24-39, 

TD 153, TD 531, TD 678, TTD 96, TTD 21, TTD 27, TD 536, TD 510) along with 

cultivated modern wheats (Triticum turgidum L. subsp. durum genotypes, Sarıçanak 98 

and Balcalı 2000) for a comparison of findings. Genotypes tested at early growth stage 

showed large differences in root Zn uptake and in mobilization (retranslocation) from 

older leaves into roots and young parts of shoots. The differences found in root uptake 

and leaf mobilization of Zn among the genotypes were not related to the differences in 

seed concentrations of those genotypes used in the experiments. These results indicate 

that genotypic variation in seed Zn concentrations among and within the modern and 

wild tetraploid wheat genotypes seem to be not related to the differences in root Zn 

uptake rate or Zn mobilization rate from older leaves during the early growth stage 

under given conditions. It is concluded that for better understanding and 

characterization of genotypic variation in differential accumulation of Zn in seeds, an 

increasing attention should be paid to the i) mobilization ii) phloem transport and iii) 

seed deposition of Zn during late (generative) growth stage of plants. 
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ÖZET 

 

Çinko bütün organizmalar için eser miktarda gerekli olan bir elementtir. Tahıla 

dayalı beslenme şekilleri, özellikle bu tahıllar Zn bakımından eksik topraklarda 

yetiştirilmi şse, insan sağlığı için gerekli olan yeterli düzeyde Zn’yi genellikle 

sağlayamamaktadır. Bu çalışma yabani makarnalık buğdayın (Triticum turgidum L. 

subsp. dicoccoides) daha iyi Zn-alınım, taşınım ve tekrar taşınım konusundaki 

potansiyelini araştırmak için yapılmıştır. Bu özellikler ileride tane Zn konsantrasyonu 

bakımından zengin yeni buğday türlerinin oluşturulmasında kullanılabilir. Bu çalışmada 

yabani makarnalık buğday genotipleri TTD 172, 24-39, TD 153, TD 531, TD 678, TTD 

96, TTD 21, TTD 27, TD 536 ve TD 510 kullanılmış olup bulguları karşılaştırmak için 

de modern makarnalık buğday (Triticum turgidum L. subsp. durum) çeşitleri olan 

Sarıçanak 98 and Balcalı 2000 ile su kültürü denemeleri yapılmıştır. Erken büyüme 

evresinde test edilen genotipler kök Zn alınımı ve yaşlı yapraklardan köke ve yeşil 

aksamdaki genç dokulara Zn taşınımı için büyük farklılıklar göstermiştir. Zn’nin kökten 

alınımı ve yapraktan tekrar taşınımı için genotipler arasında bulunan farklar deneylerde 

kullanılan genotiplerin tohumlarındaki Zn konsantrasyonları ile ilişkili değildir. Bu 

sonuçlar gösteriyor ki verilen koşullarda ve erken büyüme safhasında tohumdaki Zn 

konsantrasyonun modern ve yabani tetraploid buğday genotipleri arasındaki genotipik 

varyasyonu kök Zn alınımı ve Zn’nun yaşlı yapraklardan tekrar taşınım oranına bağlı 

gözükmemektedir. Özet olarak, tanede Zn birikiminde görülen genotipik farkların daha 

iyi anlaşılması ve karakterize edilmesi için gerekli önem i) tekrar taşınıma, ii) floemde 

taşınıma ve iii) Zn’nun geç (jeneratif) büyümü safhasında tanede birkimine verilmelidir.  

. 

Anahtar Kelimeler: Zn, yabani makarnalık buğday, durum buğdayı, dicoccoides, Zn-65 
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1. INTRODUCTION 

 

 

There are 14 essential minerals for optimum growth and development of plants 

and 12 of them are utilized by humans (Grusak and DellaPenna, 1999). Zinc is an 

essential micronutrient that is required for all known organisms. It is involved in 

catalytic processes of more than 300 enzymes and known to play significant role in 

gene expression, cell development and replication (Hambidge, 2000). Zinc also works 

with transcriptional regulatory proteins to stabilize them (Fox and Guerinot, 1998).  

 

The UN report in 2004 underlines that micronutrient undernourishment affects 

more than half of the population on the world and the risk groups are preschool 

children, women at reproductive age and elderly people (Diaz, et al., 2003). Zinc 

deficiency is responsible for 800 000 child deaths per year (Micronutrient Initiative, 

2006). Severe Zn deficiency symptoms are generally observed in rural and urban 

populations with low-income due to high consumption of the plant food based diets. 

The most affected regions on the world are Africa, Asia, and Latin America where the 

low-income limits the diversification of diet. In addition to dietary diversification, 

malnutrition due to Zn deficiency can be overcome by fortification of foods, 

supplementation with pharmaceutical products and biofortification of food crops with 

Zn. Biofortification is the process of generating micronutrient-rich crop varieties by 

conventional breeding methods, and it is where advances in technology meets with 

agricultural research to improve the food security and to enhance the quality of life.  
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The generation of biofortified crop genotypes requires the identification of 

efficient genotypes with enhanced micronutrient contents, the optimization of this 

genotypes for higher yield and for better tolerance to the environmental factors, so that 

new varieties deployed to farmers would be adopted (Ortiz-Monasterio, et al., 2007). 

 

Although biofortification of crops with Zn requires the reveal of the underlying 

mechanisms of Zn uptake and translocation, it is still uncertain whether ion channels or 

divalent cation carrier are the predominant element of Zn uptake and the link between 

uptake and metabolic energy transduction has not been shown yet (Kochian, 1993).  

 

The focus on genetic research for increased grain Zn accumulation would yield 

valuable outcomes and greatly contribute to conventional breeding efforts. However, 

there is still much to be understood about the physiological mechanisms involved in Zn 

accumulation, remobilization, partitioning and senescence. These mechanisms are often 

required to be studied in combination due to the fact that there is still no consensus on 

which mechanism is of greater importance for higher grain deposition. Nutrient solution 

culture is a convenient medium to study possible differences in uptake, transport and 

mobilization of Zn among different plant species and genotypes of the Triticum family. 

However, solution culture omits the interaction between root and soil and findings of 

hydroponic experiments often need to be confirmed by pot and field experiments. 

 

The aim of this study is to evaluate the potential of wild emmer as a genetic 

source in biofortification of cultivated wheat with by elucidating the responses of 

selected wild emmer wheats to Zn uptake, translocation and along with commercial 

durum wheat cultivars under low or adequate Zn supply. Zn uptake, translocation and 

mobilization of 10 wild Triticum diccocoides and 2 modern wheat cultivars were 

investigated. Radiolabeled Zn (i.e. 65ZnCl2) was employed to measure nmol 

concentrations of Zn in uptake and mobilization experiments by gamma counting.  

Additionally, Zn status of plants was determined by total Zn analysis by ICP-OES 

following acid digestion.  
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2. OVERVIEW 

 

 

2.1 Zinc as an essential transition metal 

 
 

Zinc is one of the most important micronutrients required for both plants and 

human beings (Marschner, 1995; Alloway, 2001). In contrast to many other 

physiologically important metals like iron and copper, Zn is colorless and diamagnetic 

transition metal which makes it difficult to detect and trace with simple spectroscopic 

methods. In addition, although Zn is involved in catalytic processes of more than 300 

enzymes and more than 200 3D structures of proteins interacting with zinc are resolved 

(Andreini et al., 2008), the wide distribution of Zn among diverse proteins and enzymes 

causes a decline in Zn concentration and the dilute concentration of Zn makes it much 

more difficult to study (Maret, 2001).  

 
 
 
2.1.1 Physical and chemical properties of zinc 

 
 

In enzymes, Zn is one of the most abundant metal ions after Mg (Andreini et al., 

2008). It is a group II transition metal and found as a highly stable and redox-inert ion at 

+2 oxidation state. With a radius of 0.74 Ǻ and electrostatic affinity to negatively 

charged species, Zn plays role in many active centers of various enzymes having 

negatively charged residues.  
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Due to its higher electron affinity and strong Lewis acid character, it helps to 

create hydroxide ions for substrate attack. In addition to its role in generating the 

nucleophile, Zn polarizes P-O and C-O bonds of substrate and enhances the reaction by 

making substrates more electrophilic (Vallee and Auld, 1990). 

 
 

The versatile coordination chemistry of Zn enables it to perform substrate 

binding and change in coordination geometry and number. The active centers 

containing Zn are generally accompanied by immobile N and O donors and mobile S 

donors which work in accordance with Zn’s coordination numbers between 4 and 6 

(Benini et al., 2004). Filled 3d shell of Zn results in kinetically labile coordination 

sphere which increases the turnover rates of Zn containing enzymes.  

 

 

 

2.1.2 Biochemical properties of zinc 

 

 

The steochemistry of Zn enables it to bind many proteins and enzymes and the 

three primary Zn-binding sites are structural, catalyic and cocatalytic (Auld, 2001); the 

enzyme examples for these sites are alcohol dehydrogenases, carbonic anhydrases and 

superoxide dismutases, respectively. The binding properties of Zn differ from site to 

site. For structural functions, Zn generally prefers four ligands which is generally a 

cysteine amino acid. For catalytic sites, a water molecule and a histidine are required 

and the other sites are occupied by any other S, N or O donors. In the cocatalytic sites 

for Zn, except from Cys, both histidine (His) accomponied by a water molecule and 

aspartic acid (Asp) or glutamic acid (Glu) can be found (Maret, 2005). 
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Fig. 2.1: Zinc binding sites in enzymes (Auld, 2001): catalytic (thermolysin (Matthews, 
1988)), structural (alcohol dehydrogenase (Eklund & Branden, 1987)), cocatalytic 
(Aeromonas proteolytica aminopeptidase (Chevrier et al. 1994)). The letters C, D, E and 
H refers to the aminoacids, cysteine, aspartic acid, glutamic acid and histidine, 
respectively. 

 

 

 

2.1.3 Proteins interacting with zinc 

 

 

According to nomenclature of International Union of Biochemistry and 

Molecular Biology, the enzyme families are grouped into six classes: oxidoreductases, 

transferases, hydrolases, lyases, isomerases, ligases and all six enzyme families have Zn 

binding members.  

 

Carbonic anhydrase is discovered in 1940 as a first enzyme with Zn binding 

capability (Keilin et al.,1940) and the discovery of Zn enzymes continued with 

carboxypeptidase in 1954 (Vallee & Neurath, 1954). Due to its unique biochemical 

properties, Zn presents in the center of many enzymes’ active sites. One of the largest 

group of Zn enzymes are Zn proteases such as endopeptidase thermolysin (Matthews, 

1988), interstitial collagenase matrixin (Springman et al., 1990) and neurotoxins from 

Clostridium tetani and Clostridium botulinum (Giampietro & Montecucco, 1995). Zinc 
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cations are also found in binuclear form at the active centers of many Zn 

aminopeptidases like Methionyl aminopeptidase of E. coli. (Wilcox, 1996). 

 

 

  

Figure 2.2 :  Zinc at active sites of carbonic anhydrase and aminopeptidasea) a) 
Amino acid residues and hydrogen bonds at the active center of human CA II (Coleman, 
1967). b) The binuclear Zn complex at the active center of leucyl aminopeptidase 
(Sträter et al., 1995). 

 

 
The binding site for Zn is not limited with enzymes, DNA/RNA binding 

proteins, membrane lipids are the preferred binding sites of Zn. Zinc finger domain 

containing proteins which function as the regulatory proteins of transcription, site-

specific modifications and chromatin structure are the largest class of Zn-binding 

proteins (Klug, 1999). 

 
 
 

2.2 Zinc in human health 

 

 

 

Zinc is an essential micronutrient for human health and well being. The first Zn 

related deficiency syndrome was published by Prasad et al. in 1961. In their publication, 

adolescent nutritional dwarfism that had been observed in mid-eastern countries was 
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associated with malnutrition in diet and Zn was pronounced as the major etiological 

factor of that syndrome. After being pronounced as an etiological factor, Zn was 

recognized as an important micronutrient for human nutrition.  

 

In 1973, Barnes and Moynahan discovered an autosomal recessively inherited 

disease acrodermatitis enteropathica which is a rare disease with ZIP4 transporter defect 

in intestinal cells (Wang et al., 2002) and the patients cannot absorb Zn from their daily 

diets. After the discovery of Zn deficiency syndrome and disorders, in 1974, the Food 

and Nutrition Board of the US National Academy of Sciences declared Zn as an 

essential nutrient however more than three decades later of declaration over 30% of 

world population is suffering from zinc deficiency particularly in developing countries 

whose diets mainly constituted by cereal based food and soils with low zinc availability 

such as Turkey (Cakmak et al, 1999a), India, and Australia (Alloway, 2009). According 

to WHO, infants, young children and pregnant women are the predominant risk groups 

for Zn deficiency (WHO, 2006).  

 

 

2.2.1 Zinc deficiency 

 
 

One of the widespread micronutrient deficiencies in soil is Zn deficiency. The 

soil having insufficient plant available Zn for the optimum growth of plants is named as 

Zn deficient-soil. It is shown that 30% of cultivated soils on world and 50% of 

cultivated soils in Turkey and India are Zn-deficient (Sillanpää, 1990; Cakmak et al., 

1996). The widespread problem with Zn deficiency in soils has been also reported in 

China and Western Australia. Calcareous soils with high pH, sandy soils and soils 

fertilized with high-phosphorous containing fertilizers are susceptible to Zn deficiency 

(Marschner, 1995). Although rye and pea species are considered more tolerant to Zn 

deficiency in soils, wheat, rice, maize are vulnerable to Zn deficiency (Chapman, 1966). 

The critical level of DTPA extractable Zn for wheat is found 0.75 mg kg–1 and 

corresponding level separates Zn deficient soils form non-deficient soils (Bansal et al., 

1990).   
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Micronutrient deficiency is common among 40% of world’s population (Graham 

and Welch, 1996). Zinc deficiency, one of the important micronutrient deficiencies, is 

also widespread in human populations especially in developing countries due to the 

high consumption of cereal-based products.  In addition to low levels of Zn in cereals; 

especially for ones cultivated in Zn deficient soils, the amounts of phytic acid is very 

high in cereals. Phytic acid is a compound which reduces bioavailability of Zn 

(Hambidge, 2000).  

 

In humans, the deficiency of Zn causes malabsorption syndrome, growth 

retardation, loss of appetite, immune dysfunction and infections on systemic level 

(Prasad, 1993). However in particular skin lesions, decreased wound healing, chronic 

liver disease, chronic renal disease and acrodermatitis are associated with Zn deficiency 

(Barnes & Moynahan, 1973). Acrodermatitis is a severe disease that can be lethal in the 

absence of treatment and related symptoms are alopecia, diarrhea, weight loss, reduced 

immune function, and neuropsychological instability (Aggett, 1983).  

 
 

Decreased nerve conduction, neurophysiciatric disorders, mental lethargy and 

neurosensory disorders are the neurobiological outcomes of Zn deficiency. Infertility, 

retarded genital development, hypogonadism, thymic athropy are the other symptoms 

caused by inadequate Zn levels in human body (Prasad, 1993).  

 

As a 2B element on periodic table, the counterparts of Zn are Cd and Hg. The 

toxicity of Cd and Hg are mainly due to their potential for displacement of Zn from its 

binding sites. Therefore, the deficiency of Zn is highly correlated with vulnerability to 

toxicity and carcinogenicity of its counterparts. The study by Costello and Franklin 

(Costello and Franklin, 1998) showed a lower prostate cancer development rate in men 

with moderate to high intake of Zn than men with low Zn intake. The elevated risk for 

prostate cancer can be caused by the suppressed immunological response (Delafuante, 

1991). Zinc also plays role in activation of p38 and potassium channels which trigger 

cell death (Truong-Tran et al., 2001).  
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2.2.2 Zinc toxicity 

 

 

Although Zn is an essential micronutrient for humans, it should be noted that it 

is also a heavy metal which can be toxic in higher doses of intake. Recommended 

dietary allowance (RDA) for Zn is 11 mg/day for men, 8 mg/day for women, 2–3 

mg/day for infants, 5–9 mg/day for children (Trumbo et al., 2001). The LD50 dose of 

Zn intake is determined as 27 g Zn/day (ATSDRDTEM, 2005). However, as emetic 

dose of Zn is 225–400 mg, intake of 27 g Zn per day is likely impossible (Brown et al., 

1964).  

 

There is one case that is reported about death due to Zn intake more than lethal 

dose. The woman who took 28 g of Zn in the form of Zn sulfate developed tachycardia, 

hyperglycemia and died in five days due to hemorrhagic pancreatitis and renal failure 

(Fox, 1989). A recent study by showed that excess Zn sufficiency causes imbalance in 

Zn/Cu ratios resulting in cardiac abnormalities (Sanstead, 1995).  

 

The symptoms immediately observed after uptake of toxic amounts of intake are 

nausea, vomiting, abdominal pain, lethargy, anemia, and dizziness (Porea et al., 2000). 

In contrast to studies concluding that Zn behaves as a neuromodulator (Tekada, 2000), 

Choi et al. showed that Zn can also behave as a neurotoxin (Choi et al., 1988). 

Naturally, the blood-brain barrier prevents the accumulation of toxic Zn in brain, 

however there is also one report that 12 g of metallic Zn swallowed by a boy caused 

lethargy and focal neurological deficits 3 days after intake (Murphy, 1970).  

 

 

2.2.3 Strategies to manage human zinc deficiency 

 

 

Several strategies have been developed and used for improvement of Zn 

deficiency in humans. These strategies can be classified in two groups i) dietary-based 

and ii) plant-based strategies where the letter one will be covered in part 2.3.2.  
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In humans, Zn deficiency symptoms start to be observed when the plasma Zn 

levels decrease to the range of 12-16 mg/100 ml. For the treatment usually an oral (220 

mg/day) or intravenous (80 mg/day) Zn administration helps to eliminate the deficiency 

symptoms. However, this type of medical intervention is only limited to acute 

symptoms (Jeejeebhoy, 2007). 

 

For dietary interventions, oral Zn supplements and Zn enrichment on foods can 

be used. Addition of micronutrients in the chemical form can be used to help target 

populations at increased risk. However constant supplementation, distribution and 

delivery of these chemicals are required for successful results. Based on a study 

conducted by World Bank in 1994, the average cost of Zn supplementation as Zn sulfate 

is US$25.7 per kg and additional costs like monitoring and analysis of Zn status will 

increase the average cost per person (WB, 1994). The physical and chemical forms of 

the supplementation should be addressed properly, the dosage should be managed and 

the supplementation frequency, toxicity and interference with other nutrients for every 

target group should be investigated (Plum et al., 2010).  

 

2.3 Zinc in plants 

 

 

Plants require various nutrients for healthy growth and reproduction. Zinc is one 

of the essential micronutrients. For adequate growth, typical leaf Zn concentration of 

most crop species is should be more than 15-20 mg Zn kg-1 DW (Marschner,1995). 

Although Zn is required in small amounts, Zn is crucial for biochemical reactions like 

photosynthesis (Randal and Bouma, 1973), sucrose biosynthesis (Singh and Gangwar, 

1974; Shrotri et al., 1980), heat tolerance (Graham and McDonald, 2001). Zinc is also 

particularly important for structural and functional integrity of biological membranes, 

detoxification of reactive oxygen species and function and stability of number of 

proteins. (Broadley et al., 2007) 
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As Zn play essential roles in metabolic processes, the deficiency of Zn in plants 

results in observable symptoms. The characteristics of Zn deficiency in plants are 

dieback (necrosis on root apex), mottle leaf (spatial heterogeneous or interveinal 

chlorosis), bronzing (reddish-brown shade development), rosetting (auxin deficiency-

like responses), goblet leaves (inward leaf lamina curling), little leaf (leaf size 

reduction) (Broadley et al., 2007). 

 

In the following sections the routing of Zn from root uptake to seed deposition is 

explained. The potential of wild emmer wheats for biofortification of cultivated wheats 

with Zn is also discussed in light of the current literature.  

 

 

2.3.1 Zinc uptake, translocation and remobilization 

 

 

The transport of Zn from soil to seed starts at the rhizosphere zone where roots 

interact with the soil components (i.e. air, water, dissolved minerals and organic matter). 

Despite the studies with Arabidopsis showing that ZIP family Zn transporters play role 

in Zn uptake from rhizosphere (Grotz et al., 1998) and Zn deficiency upregulates two 

transcription factors for bZIP family (Assuncao et al., 2010),  the uptake of Zn from 

roots are not well understood.  The chemical familiarity and common transport 

mechanims between Zn and Cd (Grant et al., 1998) enabled to show that Zn is the 

competitive inhibitor of Cd uptake by ZIP transporters (Pence et al., 2000) and there is a 

shared uptake mechanism between Zn, Cu, Mn, Cd (Ramesh et al., 2003). Therefore, 

ZIP family proteins play role in the transport of not only Zn but also other 

micronutrients as well as Cd.   

 

Following uptake by roots, micronutrients are transferred to shoot system which 

is a rate limiting step for micronutrient translocation to seeds (Palmgren et al.,2008). It 

is shown that there is a physiological difference in root-to-shoot micronutrient tranfer 

mechanisms between high grain Cd and low grain Cd species (Hart et al., 2006). As Cd 



12 
 

resembles to Zn in transport and protein interactions and Zn and Cd are loaded onto the 

xylem by similar mechanisms, difference between physiological root-to-shoot transfer 

mechanisms for Zn-efficient and Zn-inefficient species are anticipated (Uraguchi et al., 

2009). FRD3, FPN1, HMA2, HMA4, HMA5, and MTP3 genes are found to participated 

in translocation of metal micronutrients into xylem or across the root-shoot junction 

(Durrett et al., 2007; Courbot et al., 2007; Andres-Colas et al., 2006; Papoyan and 

Kochian, 2004; Arrivault et al., 2006). The functions of P1B ATPase a transition metal 

pump, was elucidated  (Williams and Mills, 2005), it is shown that products of HMA 

genes of P1B ATPase family pump Zn and Cd pericycle to xylem vessels and facilitate 

xylem loading (Wong & Cobbett, 2009). Hanikenne et al. corroborated this findings 

showing that Zn hyperaccumulator Arabidopsis halleri had multiple copies of HMA4 

gene and elevated expression due to the multiple copies of that gene elevates Zn 

translocation from root to shoot (Hanikenne, 2008). MTP3 were proved to be implicated 

in root to shoot loading of Zn in Fe deficiency (Arrivault et al., 2006). 

 

Transpirational tension is the driving force of micronutrient transport to leaves in 

shoot xylem.  Transpiration in glumes of wheat enables micronutrients to be carried in 

seed covering tissues however the unloading of nutrients from xylem followed by leaf 

uptake is not well understood. Similar to root uptake of Zn, xylem unloading of 

micronutrients is associated with ZIP gene expressions (Wintz et al., 2003) esp. COPT 

genes (Pozo et al., 2010). Elevated expression of Znt1 and Znt5 genes are observed in 

hyperaccumulator T. caerulescens, compared to nonaccumulator T. arvense (Pence et 

al., 2000; Hammond et al., 2006). It is also shown that Znt1 gene is highly expressed in 

Zn accumulating cells (Küpper & Kochian, 2010). Studies with T. caerulescens and A. 

halleri showed that MTP1 genes of cation diffusion facilitator (CDF) family which are 

responsible for heavy metal tolerance in shoot tissues and Zn sequestering in vacuoles 

(Desbrosses-Fonrouge et al., 2005) are highly expressed in Zn accumulating shoots 

(Becher et al., 2004).  

 

A single vascular bundle connects seed to maternal tissue and the bundle lasts at 

the seed covering tissues without direct connection to seeds (Thorne, 1985). The 

transfer of micronutrients from seed covering tissues into the seed requires movement 
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of micronutrients from xylem to phloem despite the presence of apoplastic space 

between maternal and filial tissues behaving as a physical obstacle and absence of 

transpirational tension. Both movement of Zn from older leaves to younger leaves or 

roots and from glumes into seed has been established and uneven distributed expression 

of HMA, ZIP, MTP, Nramp, NAS, and YSL genes are observed in laser capture 

microdissection studies on barley grain vascular bundle, aluerone, endosperm, and 

embryo parts (Tauris et al., 2009). The uneven distribution of gene expressions suggests 

the specific roles of different cell types in micronutrient transport into the seed (Waters 

& Sankaran, 2011). Genes those are responsible for zinc uptake, translocation and 

remobilization are summarized on Fig 2.3 (Waters & Sankaran, 2011).  

 

Fig. 2.3: Model of wheat plant showing the genes contributing in Zn translocation to the 
seed: 1, uptake from the rhizospere; 2, xylem loading; 3, root-to-shoot transfer; 4, 
distribution to the leaves or seed-covering tissues; 5, phloem loading for movement to 
seed; 6, loading into the seed. (Waters & Sankaran, 2011) 

 

Phytosiderophores (PS) are organic compounds that are released into the 

rhizosphere and they form complexes with ferric iron (Fe3+) in order to facilitate the 

uptake of Fe3+. It is shown that PS can serve not only for Fe3+ but also for Zn2+and Cu2+ 

(Treeby et al., 1989) and uptake of Zn2+ is also facilitated by PS (Wirén et al., 1996). 

PSs are not directly chelates Zn but the deficiency of Zn in the soil triggers iron 
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deficiency-induced phytosiderophore strategy to obtain Zn. Zinc is transported by this 

complex across root plasma membrane (Wiren et al., 1996). 

 Nicotianamine (NA) is a potential phloem chelator and binds Cu, Co, Fe (II), Fe 

(III), Mn, Ni and Zn (Higuchi et al., 1999). Nicotianamine is thought to play role in 

trafficing of metals these metals within the plant (Hell & Stephan et al., 1996). The 

overexpression of NA results in high Zn and Fe concentrations in developing seeds 

(Masuda et al., 2009). The study performed by Klatte et al. (2009) demonstrated that 

NA synthase mutants of Arabidopsis resulted in low concentrations of Fe in seeds and 

high concentration in leaves therefore NA is a critical micronutrient chelator playing 

role in micronutrient homeostasis by translocating micronutrients within vegetative 

fractions and by transporting them into seeds (Klatte et al., 2009).  

 

The transport of micronutrient-NA complex by yellow-stripe like (YSL) proteins 

is revealed in maize and barley (Uena et al., 2009) and double mutant of these proteins 

are characterized to have decline in viability followed by decreased Fe, Zn and Cu 

concentration in seed  showing that YSL proteins play role in micronutrient translocation 

between plant organs (Waters et al., 2006). In addition to YSL proteins, upregulated 

OPT3 expression in Fe-deficiency studies on Arabidopsis suggests another inter-organ 

transport mechanism but the chelators and their ligands are not revealed yet (Wintz et 

al., 2003).  

 

An existence of co-transport mechanism involving nitrogen and micronutrients 

are suspected after the observation that elevated N availability increased Zn 

translocation to wheat grain and thus seed Zn concentration while Zn availability 

remained unaffected (Kutman et al., 2010, Erenoğlu et al., 2011). Prior to this finding,  

Haydon and Cobbet (2007) have revealed that unspesific oligopeptides and certain 

amino acids play role in Zn transport as phloem chelators.   

 

Nutrient remobilization is an important physiological process in senescence and 

grain filling. During senescence, which is the last state of leaf development, different 

types of nutrients (sugars, amino acids etc.) are transported to the grain. In wheat, 70-
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80% of N and P and 40-50% of S in grain comes from senescing leaves by 

remobilization (Zhao et al., 1999). Rubisco (ribulose-1,5-biphosphate 

carboxylase/oxygenase) presents the major fraction of nitrogen in the chloroplasts 

where most of the organic nitrogen exists. Hence, at the beginning of senescence a 

decline in chloroplast stromal proteins takes place (Krupinska and Humbeck, 2004). 

Several hydrolytic enzymes are up regulated in senescing leaves to degrade leaf proteins 

to peptides and amino acids (Gepstein, 2004). It has been stated that expression levels 

of several classes of proteases (such as aspartic, serine, cysteine and metalloproteases) 

increased in senescing leaves (Fischer, 2010; Guo et al, 2004; Jukanti et al, 2008). NAC 

is shown to be one of the important genes in senescence, and NAC transcription factor 

accelerates senescence, enhances nutrient remobilization from leaves to developing 

grains and improves seed protein, Zn, Fe content in wheat (Uauy et al.,2006).  

 

 

 

2.3.2 Biofortification strategies to increase zinc content of cereal grains 

 

 

Approximately, a third of world’s population suffers from Fe deficiency, in 

addition to 2 billion people suffering from Zn deficiency (Xiaoxi & Wu, 2007) and 1 

billion people suffering from Se deficiency (Combs, 2001). The deficiencies are 

generally originated by consuming diets rich in staple foods but poor in fruits, 

vegatables, fish and animal products. However, increasing the consumption of nutrient 

rich products in daily diets, supplementation with nutrients and food fortification are not 

practical solutions to ameliorate the current deficiency status of world’s whole 

population (Bouis, 2003; Timmer; 2003). In last decade, another solution for 

malnutrition is proposed (Graham & McDonald, 2001). The process of increasing the 

bioavailable content of essential nutrients in edible portions of cultivated crop species 

via agronomic interventions or genetic selection is called biofortification (White and 

Broadley, 2005). Biofortification is more amenable than traditional interventions due to 

the needless of uninterrupted investments, safe delivery systems, proper social 

infrastructure (White and Broadley, 2005). Fertilization, classical and molecular 
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breeding are the basic agricultural strategies to increase bioavailable nutrient content of 

crop species. 

 

 

2.3.2.1  Zinc Fertilization 

 

 

The availability of Zn in the soil for root uptake varies with soil moisture, soil 

pH, organic matter and CaCO3 content of soil (Cakmak et al., 2010). Therefore, the 

bioavailability of Zn in soil affects directly root uptake and indirectly grain Zn 

concentration. Fertilization with Zn is a common and practical solution to correct soil-

born Zn deficiency. There are a number of reports showing dramatic increases in yield 

as well as Zn concentration in the edible parts of crops by Zn fertilization (Peck et al., 

2008; Rengel et al., 1999). Zinc fertilizers can be applied as foliar or soil application 

and it is shown that ZnSO4 is a suitable form of Zn for fertiization and it effectively 

helps to increase grain Zn concentration in wheat (Yılmaz et al., 1997).  

 

It is shown that foliar Zn applications are more powerful than soil applications in 

increasing grain Zn concentration. The combination of soil N or late Zn application with 

foliar Zn application was resulted in grain Zn concentration increase from 23 to 55 mg 

kg-1, from12 to 29mg kg-1, respectively (Cakmak et al., 2010). In addition to increased 

grain Zn concentration, reduced grain P and phytic acid concentration was also 

observed (Yılmaz et al., 1997). The reduction in antinutrients has also additive effect on 

bioavailability of Zn for humans.  

 

As it is proposed that minimum 10 mg kg-1 Zn concentration increase in grain 

should be offered in order to have measurable biological impact (Pfeiffer and 

McClafferty, 2007), the effect of soil Zn applications combined with late foliar Zn 

fertilization could be a promising method for biofortification of grains with Zn (Cakmak 

et al., 2010). In genetic biofortification (plant breeding) attention is paid to Zn-rich wild 
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wheats to be exploited in breeding programs. Triticum dicoccoides is shown to be one 

of the highly promising wild wheat for improvements in grain Zn concentration 

(Cakmak et al., 2000). 

  

 

2.3.2.2 Classical and molecular plant breeding 

 

 

Classical and molecular plant breeding are powerful tools for increasing the 

grain Zn content of wheat. Screening of large germplasms for high seed zinc content 

constitutes the primary step of classical breeding studies. Selected genotypes are then 

crossed with high yielding, disease resistant and stress tolerant genotypes to ensure an 

optimum grain yield under contrasting regimes.  

 

Phosphorus in seeds are stored as phytic acid  (myo-inositol-1,2,3,4,5,6-hexa-kis-

phosphate) and it constitutes 1-2% of seed dry weight. Phytic acid is known to having 

role in limiting bioavailabilty of Zn due to the its binding capacity to nutritionally 

important micronutrients such as calcium, iron and zinc (Sandstrom & Sandberg, 1992; 

Raboy, 2002). The study with volunteers having only low phytic acid containing maize 

in their diets showed enhanced Zn absorption (Adams, et al., 2002).  The generation of 

new varities with grains containing “low phytate” may be useful to ameliorate human 

malnutrition (Raboy,2001). However recent studies pointed out that phytate is 

associated with enhanced seedling vigor and decreased aflotoxin activity and plays role 

in lower colon cancer rates (Grases et al., 2000; Morris, 1986). Thus, increasing grain 

Zn concentration rather than decreasing phytate activity seems to be more 

advantageous. In a bioavailability study using rats fed with wheat containing 

radioactivelly labeled Zn, it was shown that the negative effect of increased phytate 

content is not great enough to diminish the positive effects of increased grain Zn content 

(Welch, et al. 2005). Additionally, genotypes rich in Zn were supplied more 

bioavailable Zn to rats which again underlines that the biofortified genotypes may be 

the solution to overcome Zn deficiency (Welch, et al. 2005). 
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Another plant breeding approach to increase grain Zn would be to increase the 

grain protein content, because grain protein is suggested to be a sink for Zn (Persson et 

al., 2009). The increase in grain Zn and Fe concentrations with the help of N supply and 

synergetic effect of Zn and N supply on grain Zn concentration was demonstrated (Shi 

et al., 2010, Kutman et al., 2010). By N fertilization, enhancement in grain protein 

content can alleviate Zn status of grain by increasing the amount of available proteins in 

grains behaving as a sink for Zn deposition (Kutman et al., 2011). 

 

According to Kutman et al. (2010), foliar applications of Zn and urea during 

grain-filling did not overcome N and Zn deficiency dependent yield loses. However, 

early publications demonstrated that foliar Zn and urea applications result in 

enhancement in grain Fe and Zn concentration (Varga and Svecnjak 2006, Yilmaz et al 

1997). Soil or foliar Zn application accompanied by soil N fertilization was found to be 

very effective in increasing grain Zn concentration (Kutman et al., 2010). Therefore, 

wheat genotypes with higher grain protein content or genotypes responding N nutrition 

effectively should be adressed in breeding programs.     

 

Breeding approaches are long term solutions for generating Zn-rich grains. 

However, the search for appropriate parents as a genetic source , crossing and back-

crossing efforts, the persistence of new traits and the preference of new varieties over 

older ones are the restrictions for breeding approaches (Cakmak, 2008). Molecular plant 

breeding strategies are engaged with selecting desirable traits responsible for high grain 

Zn concentration using molecular biology tools and with various genetic modifications 

on present varieties by inserting those traits to increase seed Zn concentration. The 

genes that were described in section 2.3.1 and visualized on Figure 2.3 are the potential 

candidates for selection.  
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2.4 Wild emmer wheat (Triticum diccocoides) as a potential germplasm for high 
grain zinc 

 
 
 
The most widely grown crops in the world are maize, wheat, rice and barley. 

Triticum (wheat) and Hordeum (barley) are the members of Triticeae tribe, the Poaceae 

subfamily of grass family. Among four crops, wheat cultivation ranks second after 

maize. Triticum diccocoides, the wild progenitor of wheat was the most important staple 

crop in Fertile crescent since early Neolithic sites until early Bronze Age and its 

importance remained till our age as a most important staple crop in Europe and West 

Asia. 

 

The wheat is descended from small-grained grasses that are grown on Fertile 

Crescent in the Middle Asia. The first natural hybridization occurred between 10000 

and 40000 years ago and the first ancestors of wheat are accepted as Triticum urartu 

which is wild einkorn wheat and a grass related to Aegilops speltoides which is a wild 

goat grass. However second ancestor became extinct. The hybridization of first 

ancestors created Triticum diccocoides which is known as wild emmer or emmer wheat. 

The wild emmer is the first cultivated wheat, however, another hybridization of 

Triticum diccocoides resulted in Triticum durum which is the modern durum wheat used 

in pasta making. The second hybridization of Triticum diccocoides occured with 

Aegilops tauschii created Triticum aestivum which later descended to the modern 

species of wheat used in bread making.  

 
It has been reported that there exists genotypic differences in micronutrient use 

efficiency of crops which results from differences in uptake, transport and utilizations of 

nutrients (Rengel, 2001). Recently, the search for genetic traits of micronutrient-rich 

crops had yielded a potential gene. On chromosome 6B of Triticum turgidum ssp. 

dicoccoides was proven to be associated with grain protein (Joppa and Cantrell, 1990) 

and Zn and Fe concentrations (Cakmak et al.,2004). The gene GpcB1 on 6BS is shown 

to regulate senescence and thus affect the concentration of Fe and Zn in the grain (Uauy 

et al., 2006). 
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 Zn deficiency is one of the major problems threatening human population 

causing growth retardation, mental lathergy, immune dysfunction and infertility 

(Prasad, 1993). Although a diversified diet contains adequate levels of Zn for human 

health, the use of inherently low Zn containing cereals as a major food source especially 

in non-developed and developing countries causes the continuity of that major problem. 

Dietary-based and plant-based strategies are two solutions for managing Zn deficiency. 

The high cost and necessity for continuing effort in dietary-based interventions makes 

plant-based strategies more promising and more affordable. Fertilization, classical and 

modern breeding are the plant-based methods to solve Zn deficiency problem. However, 

as a short-term solution, fertilization is rapid but expensive and laborious. For long-term 

solutions, new varieties with enhanced nutrient content should be generated via classical 

or modern breeding methods. With the aim of generating new varieties with enhanced 

Zn bioavailability, genotypes having enough variation in seed Zn accumulation should 

be investigated. Although modern durum wheat genotypes were improved for better 

yield, they are poor genetic resources for breeding programs. Chatzav et al.(2010) found 

that seed Zn, Fe and protein concentrations in wild emmer genotypes were about two-

fold greater than in the modern wheat genotypes. Study with 825 accessions of wild 

emmer wheat (Triticum turgidum L. subsp. diccocoides) showed variation from 14 to 

190 mg Zn kg-1 in grain Zn concentration (Cakmak, et al. 2004). Wild emmer wheat 

genotypes having great potential for generating new enhanced varities and having 

enough variation in seed Zn content were selected to be used in this study. 

 

The aim of this research is to characterize Zn uptake, transport and 

remobilization among hydroponically grown Triticum turgidum L. subsp. durum 

cultivars and wild emmer (Triticum turgidum L. subsp. diccocoides) genotypes and to 

elucidate the potential of wild emmer (Triticum turgidum L. subsp. diccocoides) 

genotypes over Triticum turgidum L. subsp. durum genotypes for biofortification by 

increase in grain Zn concentration. In order to understand the difference between wild 

emmer and modern durum wheat  in Zn uptake from the growth medium, translocation 

to shoot, re-mobilization from old leaves and deposition of Zn into grains, two 

genotypes of Triticum turgidum L. subsp. durum and 10 genotypes of wild emmer 

(Triticum turgidum L. subsp. diccocoides) were used. 65Zn was used for the monitor of 

Zn movements through solution to plant or through foliar application and the 
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mobilization and partitioning of Zn is investigated both chemically by ICP and 

radioactively by gamma counter.  
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3. MATERIALS AND METHODS 

 

 

3.1 MATERIALS 

 

 

 

3.1.1 Seed Material 

 

 

Seed of 10 Triticum turgidum L. subsp. dicoccoides (i.e. TTD 172, 24-39, TD 

153, TD 531, TD 678, TTD 96, TTD 21, TTD 27, TD 536, TD 510) and two Triticum 

turgidum L. subsp. durum (i.e. Sarıçanak 98, and Balcalı 2000) were initially obtained 

from Çukurova University  Field Crops Department (Dr. Hakan Özkan) and then grown 

over 2 years under same conditions in field by Sabanci University to use in this study.  

 

 

 

3.1.2 Chemicals 

 

 

All chemicals were obtained from Riedel de Haen (Germany), Merck 

(Germany), Sigma (US) and Fluka (Switzerland). Radioactive Zn-65 source was 
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purchased from Polatom, Czech Republic in the form of 65ZnCl2 with a specific activity 

of 20 MBq mg-1 Zn.  

 

3.1.3 Nutrient Solutions 

 

 

The compositions of nutrient solutions are explained in the following method 

sections.  

 

 

3.1.4 Equipment 

 

 

All equipment used in this research is listed in Appendix A.  

 

 

 

3.2 METHODS 

 

 

 

3.2.1  Zn-65 uptake and translocation experiment  

 

 

Initially all seeds (Triticum turgidum L. subsp dicoccoides genotypes TTD172, 

24-39, TD 153, TD 531, TD 678, TTD 96, TTD 21, TTD 27, TD 536, TD 510 and 

Triticum turgidum L. subsp. durum genotypes Sarıçanak 98, and Balcalı 2000) were 

sterilized in 80% ethanol for 2 min, rinsed with ddH2O and placed on moistened filter 
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paper in a Petri dish. Following keeping for five days at 4°C, seeds were transferred into 

the perlite and germinated for five days. The germinated seedlings were selected for 

homogeneity and then transferred into pots containing 2.7 L of continuously aerated 

nutrient solution with the following composition. 2000 µM Ca(NO3)2, 1000 µM MgSO4, 

100 µM KCl, 200 µM KH2PO4, 700 µM K2SO4, 10 µM H3BO3, 0.5 µM MnSO4, 0.2 µM 

CuSO4, 0.01 µM (NH4)6Mo7O24, 100 µM FeEDTA. Low and adequate treatments of Zn 

received 0.05 and 1 µM ZnSO4 respectively. 

 

Plants were grown in a computer controlled growth chamber for 9 days (light 

intensity:  700 µmol m-2 s-1, light/dark cycle: 16/8 hrs, temperature: 24/20oC, humidity: 

65-75%) and the nutrient solutions were refreshed every 3 days.  On day 9, half of the 

plants grown under low or adequate Zn were supplied with 1 µM ZnSO4 labeled with 77 

KBq Zn-65. The other half of the plants was reserved for tissue Zn analysis by ICP-

OES.  

 

Following Zn-65 treatments, nutrient solutions were sampled at 15 min intervals 

to determine the decrease in activity of Zn-65 using a gamma counter (Perkin Emler 

2480 WIZARD2 Automatic Gamma Counter). On the third sampling (i.e. at 45 min) Zn-

65 activity was estimated to be reduced by half and all solutions were quickly renewed 

with the non-radioactive version. All plants were harvested as shoot and root samples 

following 24 h after the initial Zn-65 treatment. 

 

Fig. 3.1 Plants used for uptake experiment before Zn-65 treatment 
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The activity of Zn-65 in the root and shoot tissues were measured by a gamma 

counter. The data collected as counts per minute (CPM) were converted to Zn 

concentration using standards of known activity and concentration. 

 

For the determination of Zn in shoots and roots, samples that are washed with 

distilled water just after harvest were dry ashed (550°C for 8 hours) and diluted in 5 % 

HNO3 following by filtration through blue ribbon filters prior to measurement of Zn 

concentration by ICP-OES.  

 

The dry mass of all harvested plant samples (i.e. shoots and roots) were 

determined after drying the samples in a forced oven at 65 °C until complete dryness.  

 

In order to calculate the absorption and translocation rates of zinc, the data of 

absorbed zinc per root, shoot and total biomass (shoot+root) was used. All treatments 

had five replicates and the statistical analyses were done according to Student’s t-test by 

JMP 5.0.1a statistical software. The average of all replicates and the interactions of 

genotype(G), treatment(T), genotype X treatment (GxT) and LSD0.05 levels are 

evaluated.  

 

 

 

3.2.2 Zn-65 retranslocation experiment  

 

 

The remobilization (retranslocation) of zinc from old leaves to developing 

tissues was investigated by a nutrient solution experiment. All plants (Triticum 

turgidum L. subsp dicoccoides genotypes TTD172, 24-39, TD 153, TD 531, TD 678, 

TTD 96, TTD 21, TTD 27, TD 536, TD 510 and Triticum turgidum L. subsp. durum 



26 
 

genotypes Sarıçanak 98, and Balcalı 2000) were germinated and grown as indicated in 

section 3.2.1 with some modifications.  

 

Different from the uptake experiment, seeds were vernalized for 22 days and the 

plants were harvested at 24 days after transfer to nutrient solution. For tracing the 

retranslocated portion of Zn from the oldest leaf to other plant parts, leaf tip of 

(approximately 4 cm) of the oldest leaf was treated with 0.2 % (w/w) ZnSO4 solution 

containing 0.02 % Tween®20 labeled with 1480 KBq of Zn-65.  

 

Each plant’s oldest leaf tip was applied for 5 seconds for 3 times. Leaf 

application was repeated for 3 times in 8 h intervals. All plants were harvested 5 days 

after the first leaf application. At harvest plants were separated in three sections i) Zn-65 

applied leaf tip, ii) reminder of shoot and iii) root, and all sections sampled were placed 

in to scintillation vials for Zn-65 activity measurements. Prior to activity measurements 

all leaf tips with Zn-65 applications were rinsed with ddH20, 10 mM CaCl2 and finally 2 

% ZnSO4 for 5 min to remove excess Zn adhered on the leaf surface and existing in leaf 

apoplast that is not taken up into the leaf tissue. 

 

 

  

Fig. 3.2 Plants before Zn-65 foliar application (left) and Zn-65 foliar application (right). 
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Similar to the root Zn-65 uptake experiment, half of the plants were reserved for 

determination of Zn concentration and dry matter production in shoots and roots. 

 

All treatments were performed in four replicates. The CPM (count per minute) 

data was used for statistical analysis performed by student’s t-test of JMP 5.0.1a 

software. The Zn-65 activity in all samples were calculated and expressed in percent for 

all sections of application leaf, remainder of shoot and root parts and genotype (G), 

treatment (T) and genotype x treatment (GxT) LSD0.05 levels were evaluated.  
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4. RESULTS 

 

 

 

4.2.1 Zn-65 uptake and translocation experiment 

 

 

As shown on Fig. 4.1, low (-Zn) and adequate (+Zn) Zn treated plants looked 

similar and healthy on the day of Zn-65 treatment (i.e. 9 days after transplant to nutrient 

solution). The low Zn plants had no apparent shoot Zn deficiency symptoms such as 

stunting, chlorosis or necrosis (Fig 4.1), but low Zn plants had less tissue Zn 

concentrations than the adequate Zn plants (see below). 

 

Fig. 4.1 Growth of low and adequate Zn plants on 9 days after transplant to nutrient 
solution. 

-Zn -Zn +Zn 
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Table 4.1 shows the effect of low (-Zn: 0.05 µM ZnSO4) and adequate (+Zn: 1 

µM ZnSO4) Zn treatments on shoot and root dry matter production of the experimental 

plants at harvest. Compared to +Zn conditions (i.e. control treatment) shoot dry matter 

production was slightly reduced when plants were supplied with –Zn. Shoot dry matter 

in –Zn treatment ranged between 133 mg plant-1 (Balcali 2000) and 344 mg plant-1 

(TTD 27) with a mean value of 210 mg plant-1 whereas shoot dry matter in +Zn 

treatment ranged between 132 mg plant-1 (Balcali 2000) and 352 mg plant-1 (TTD 27) 

with a mean value of 227 mg plant-1 (Table 4.1). At harvest all T. dicoccoides genotypes 

produced a remarkably higher shoot biomass compared to the cultivated T. durum Desf 

wheats. The Zn efficiency values calculated by the –Zn:+Zn biomass weight ratio 

ranged between 79 % (TD 510) and 109 % (TTD 96) with a mean value of 93 % (Table 

4.1). In other words, plants treated with –Zn could produce, in average, 93 % of the 

shoot dry matter of plants treated with +Zn. In contrast to shoot dry matter production, 

root biomass was either not affected or slightly increased upon –Zn treatment. Average 

root dry weight was 170 mg plant-1 for –Zn and 162 mg plant-1 for +Zn plants. 

Consequently, the calculated Zn efficiency value for roots was 107 % in average (Table 

4.1). In summary, T. dicoccoides and T. durum Desf genotypes generally responded to 

mild Zn deficiency stress by significantly reducing shoot and increasing root dry matter 

production. There was no evidence for a superior Zn efficiency of T. dicoccoides over 

T. durum genotypes with the exception of TTD 96. There was also no significant 

difference among the genotypes concerning the response to varied Zn supply, revealing 

that GxZn interaction was not significant and that all genotypes responded more or less 

similar upon Zn deprivation (Table 4.1). 
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Table 4.1 Effect of low (-Zn: 0.05 µM ZnSO4) and adequate (+Zn: 1 µM ZnSO4) Zn 
supply on shoot and root dry matter production of experimental plants (Triticum 
turgidum L. subsp. durum genotypes Sarıçanak 98, and Balcalı 2000 and Triticum 
turgidum L. subsp dicoccoides genotypes TTD172, 24-39, TD 153, TD 531, TD 678, 
TTD 96, TTD 21, TTD 27, TD 536, TD 510) at harvest on 10 days after transplant to 
nutrient solution. Zinc efficiency values were calculated by the ratio of dry matter 
production at –Zn to that of +Zn and expressed as percentage. 

Genotype 
  Shoot   Root 

  -Zn +Zn Zn efficiency   -Zn +Zn Zn efficiency 

(mg plant-1) (%) (mg plant-1) (%) 
Saricanak 98 160 175 91 106 101 104 
Balcali 2000  133 132 101 96 71 134 
TTD 172  175 189 93 120 113 106 
24-39 190 200 95 138 147 94 
TD 153 225 234 96 210 169 124 
TD 531 208 257 81 223 208 108 
TD 678 235 240 98 155 145 107 
TTD 96 227 208 109 200 183 109 
TTD 21 171 198 86 176 155 114 
TTD 27 344 352 98 246 258 96 
TD 536 194 217 90 166 161 103 
TD 510   259 327 79   210 236 89 

Mean   210 227 93   170 162 107 

LSD0.05(G, Zn, GxZn) (30, 12, NS) (19, 8, NS) 
  

Shoot Zn concentration in –Zn treatment ranged between 11.7 mg kg-1 

(Sarıçanak 98) and 24.8 mg kg-1 (TTD 21) with a mean value of 16.7 mg kg-1 whereas 

shoot Zn concentration in +Zn treatment ranged between 74.1 mg kg-1 (Sarıçanak 98) 

and 99.9 mg kg-1 (TTD 27) with a mean value of 82.4 mg kg-1 (Table 4.2). Among the 

wheat genotypes, T. durum Desf. Sarıçanak 98 had the lowest and and T. dicoccoides 

TTD 27 and TTD 21 had the highest shoot Zn concentrations irrespective of the Zn 

supply during plant growth. Concentration of Zn in roots ranged between 13.8 mg kg-1 

(TD 510) and 27.3 mg kg-1 (TTD 172) in –Zn and 52.7 mg kg-1 (TD 678) and 145.6 mg 

kg-1 (Sarıçanak 98) in +Zn treatments mg kg-1. The average root Zn concentration was 

19.9 mg kg-1 and 76.2 mg kg-1 in –Zn and +Zn treatments respectively. The low and 

adequate treatments of Zn had resulted in about 4-fold difference in tissue Zn 

concentrations (Table 4.2) although the shoot Zn concentrations remained at around the 

marginal Zn deficiency level of 15-20 mg kg-1 (see Table 4.2) suggesting that the 

experimental plants had mild Zn deficiency at the time of harvest. 
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Zinc status of plants can be affected by the seed Zn reserve. This phenomenon is 

pronounced particularly in plants grown under limited Zn conditions. To evaluate the 

“seed reserve” phenomenon, seeds of all wheat genotypes used in the study were tested 

for total Zn concentration and the results are provided along with the shoot and root Zn 

concentrations (Table 4.2). Thus, seed Zn concentrations had generally no effect on 

shoot or root Zn concentrations (Table 4.2). As an example, genotypes with similar 

shoot and root Zn values had significantly different Zn concentrations in their seeds 

(e.g. TD 531 and TD 678) (Table 4.2). Finally, analysis of data revealed that genotype, 

treatment and the genotype by treatment interaction were statistically significant for 

both shoot and root data (Table 4.2). The variation in seed Zn was also statistically 

significant, although this was not translated to either shoot or root Zn results despite of 

the exceptionally high Zn in the seed of the T. dicoccoides cv. 24-39. In average, seeds 

of T. dicoccoides genotypes had about 1.8 fold higher Zn concentration in seeds 

compared to T. durum Desf. genotypes. Seed Zn also exhibited a broad variation in T. 

dicoccoides genotypes ranging between 131.3 mg kg-1 (24-39) and 45.4 mg kg-1 (TD 

153) (Table 4.2). 
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Table 4.2  Effect of low (-Zn: 0.05 µM ZnSO4) and adequate (+Zn: 1 µM ZnSO4) Zn 
supply on shoot and root Zn concentration of experimental plants (Triticum turgidum L. 
subsp. durum genotypes Sarıçanak 98, and Balcalı 2000 and Triticum turgidum L. subsp 
dicoccoides genotypes TTD172, 24-39, TD 153, TD 531, TD 678, TTD 96, TTD 21, 
TTD 27, TD 536, TD 510) at harvest on 10 days after transplant to nutrient solution. 
The initial seed Zn concentrations are also provided to evaluate the possible effect of 
seed Zn to that of shoot and root Zn concentrations. 

Genotype 
  Shoot   Root   

Seed 
  -Zn +Zn   -Zn +Zn   

(mg kg-1 DW) 
Saricanak 98 11.7 74.1 16.4 145.6 39.7 
Balcali 2000  13.6 90.4 22.2 114.6 35.2 
TTD 172  14.2 85.1 27.3 67.5 59.4 
24-39 19.5 91.0 21.4 64.6 131.3 
TD 153 13.6 82.7 16.0 74.6 44.5 
TD 531 14.7 74.6 23.2 62.7 47.2 
TD 678 15.0 82.6 20.3 52.7 72.9 
TTD 96 18.1 75.5 18.1 60.5 71.0 
TTD 21 24.8 80.1 25.2 53.4 69.1 
TTD 27 24.2 99.9 19.4 73.2 63.4 
TD 536 16.0 74.9 15.5 74.6 49.0 
TD 510   15.0 78.0   13.8 70.0   51.3 

Mean   16.7 82.4   19.9 76.2   61.2 

LSD0.05(G, Zn, GxZn)               (7.0, 2.7, 10)                 (7.5, 2.8, 10.5) (1.4, - , -) 
 

  

 

Root uptake, shoot transport and distribution within plants of 65Zn were 

determined by short time application of Zn-65 to the growth medium. The technique 

enables measurement of nmol quantities of Zn in the harvested plant parts by gamma 

counting. The results were expressed both as per plant (Table 4.3) and unit root dry wt. 

(Table 4.4) for a complete evaluation of possible differences in Zn-65 uptake of the 

wheat genotypes tested. 

 

Both T. durum Desf. and T. dicoccoides genotypes responded to –Zn treatment 

with induction of Zn uptake per plant (Table 4.3). There was an average of 6.5 fold 

increase in shoot Zn uptake and 2.2 fold increase in root Zn uptake per plant as a result 

of –Zn treatment. Consequently, genotypes expressed a large variation in shoot Zn 
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uptake per plant, particularly in –Zn treatment (Table 4.3). Among the T. durum Desf. 

genotypes, particularly Sarıçanak 98 expressed an induced Zn uptake to shoot, root and 

whole biomass in the –Zn treatment, although this induction remained much below the 

average of T. dicoccoides genotypes. Among the T. dicoccoides genotypes, an extreme 

case was of TD 531 in which Zn accumulation in shoot was induced up to 103.5 nmol 

plant-1 24 h-1 in the low Zn treatment compared to 5.8 nmol plant-1 24 h-1 of the control 

(Table 4.3). Similarly, TTD 27 and TTD 21 also induced Zn uptake per plant 

significantly higher than the other genotypes tested in the study (Table 4.3). 

Table 4.3. Effect of low (-Zn: 0.05 µM ZnSO4) and adequate (+Zn: 1 µM ZnSO4) Zn 
supply on Zn uptake by shoot, root and whole biomass (i.e. shoot+root) of individual 
plants (Triticum turgidum L. subsp. durum genotypes Sarıçanak 98, and Balcalı 2000 
and Triticum turgidum L. subsp dicoccoides genotypes TTD172, 24-39, TD 153, TD 
531, TD 678, TTD 96, TTD 21, TTD 27, TD 536, TD 510). All plants were grown in 
Zn-65 labeled uptake solution for 45 min. Individual plants were harvested as shoot and 
root separately 24 h after the uptake period (i.e. 45 min) to achieve sufficient 
translocation rates for activity measurements in shoots.  

Genotype 
  Shoot   Root   Whole biomass 

  -Zn +Zn   -Zn +Zn   -Zn +Zn 

(nmol plant-1 24 h-1)   (nmol plant-1 45 min-1)   (nmol plant-1 45 min-1) 
Saricanak 98 33.7 8.7 17.6 11.9 51.3 20.7 
Balcali 2000  14.8 5.9 13.5 10.4 28.3 16.3 
TTD 172  15.5 6.3 13.2 5.7 28.7 12.0 
24-39 14.7 5.3 11.8 6.2 26.6 11.5 
TD 153 58.5 7.7 27.1 12.6 85.6 20.3 
TD 531 103.5 5.8 24.7 10.3 128.2 16.1 
TD 678 28.1 11.2 14.2 10.1 42.4 21.3 
TTD 96 19.9 6.8 18.0 11.6 37.9 18.5 
TTD 21 70.9 5.4 35.9 7.8 106.8 13.2 
TTD 27 110.4 11.9 29.7 13.0 140.0 24.9 
TD 536 40.0 3.1 26.4 6.0 66.3 9.1 
TD 510   51.3 7.9   31.4 11.3   82.7 19.2 

Mean   46.8 7.2   21.9 9.8   68.7 16.9 

LSD0.05(G, Zn, GxZn)       ( 5.5,2.2, 7.7)         ( 2.6 ,1.1, 3.6)         (7.2, 3.0,  10.2) 
 

 

Root uptake and shoot translocation rates are other important parameters for 

evaluation of the Zn uptake performance of wheat genotypes. Both root uptake and 

shoot translocation rate of Zn are calculated over one gram of dry root mass for a given 
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period of time (i.e. 45 min). Translocation efficiency is calculated by the shoot 

translocation to root uptake ratio and indicates the ability of a genotype to allocate Zn 

preferentially in the shoot rather than the root. The root uptake, shoot translocation and 

translocation efficiency values for all wheat genotypes are provided in Table 4.4. Root 

Zn uptake and shoot translocation rates were induced significantly in the –Zn treatment. 

Root Zn uptake rate varied between 184.1 nmol g-1 root DW 45 min-1 (24-39) and 605.9 

nmol g-1 root DW 45 min-1 (TTD 21) with a mean value of 386.1 nmol g-1 root DW 45 

min-1 in –Zn and 56.1 nmol g-1 root DW 45 min-1 (TD 536) and 228.5 nmol g-1 root DW 

45 min-1 (Balcalı 2000) with a mean value of 115.1 nmol g-1 root DW 45 min-1 in the 

+Zn treatment (Table 4.4). Shoot Zn translocation rate varied between 100.3 nmol g-1 

root DW 45 min-1 (24-39) and 464.2 nmol g-1 root DW 45 min-1 (TD 531) with a mean 

value of 256.0 nmol g-1 root DW 45 min-1 in –Zn and 19.0 nmol g-1 root DW 45 min-1 

(TD 536) and 86.7 nmol g-1 root DW 45 min-1 (Sarıçanak 98) with a mean value of 48.4 

nmol g-1 root DW 45 min-1 in +Zn treatment (Table 4.4). Results indicate a substantial 

variation in root uptake and shoot translocation of T. dicoccoides genotypes. There were 

also significant differences in root uptake and shoot translocation rates of T. durum 

Desf. genotypes and Sarıçanak 98 performed above the average of all genotypes (Table 

4.4). Among the genotypes tested, cultivated wheats interestingly had higher root 

uptake and shoot translocation rates than their wild predecessors when supplied with 

sufficient Zn, whereas in –Zn conditions cultivated wheats ranked 4th (Sarıçanak 98) 

and 8th (Balcalı 2000) out of 12 genotypes. Under low Zn supply T. dicoccoides 

genotypes TTD 21, TD 531 and TTD 27 performed with the highest root uptake as well 

as highest shoot translocation rates. These T. dicoccoides genotypes also exhibited the 

highest translocation efficiencies compared to other genotypes. Translocation 

efficiencies of Sarıçanak 98 and Balcalı 2000 ranked 5th and 12th respectively (Table 

4.4). 
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Table 4.4. Effect of low (-Zn: 0.05 µM ZnSO4) and adequate (+Zn: 1 µM ZnSO4) Zn 
supply on Zn-65 root uptake, shoot translocation rate and root-to-shoot translocation 
efficiency of individual plants (Triticum turgidum L. subsp. durum genotypes Sarıçanak 
98, and Balcalı 2000 and Triticum turgidum L. subsp dicoccoides genotypes TTD172, 
24-39, TD 153, TD 531, TD 678, TTD 96, TTD 21, TTD 27, TD 536, TD 510).  

Genotype 
Root uptake rate Shoot translocation rate Translocation efficiency 

-Zn +Zn -Zn +Zn -Zn +Zn 

(nmol g-1 root DW 45 min-1) (nmol g-1 root DW 24 h-1) (%) 
Saricanak 98 496 205 328 87 66 42 
Balcali 2000  295 229 154 82 52 36 
TTD 172  240 105 129 55 54 52 
24-39 184 79 100 36 53 46 
TD 153 408 120 279 46 68 37 
TD 531 575 78 464 28 81 36 
TD 678 274 147 181 78 65 53 
TTD 96 192 101 101 37 53 37 
TTD 21 606 86 402 35 66 41 
TTD 27 569 96 449 46 79 48 
TD 536 398 56 239 19 60 34 
TD 510 398 81 247 33 62 41 

Mean 386 115 256 48 63 42 
LSD0.05(G, Zn, 
GxZn) ( 35,14, 49) ( 29,12, 41) ( 3.2,1.3, 4.5) 
 

There was no significant relationship between the tissue (shoot, root or seed) Zn 

concentrations and Zn uptake or translocation values (see Tables 4.2, 4.3 and 4.4). 

However, significant and positive correlations were found for Zn uptake and 

translocation results, particularly in the –Zn treatment (Fig. 4.2 and 4.3). For example, 

the root Zn absorption rate consistently and very highly correlated with shoot Zn uptake 

(Fig. 4.1, R2= 0.736, P<0.001) and root-to-shoot translocation rates (Fig. 4.2, R2= 

0.956, P<0.001). These results confirm that wheat genotypes with induced root Zn 

uptake rates have the ability to translocate more Zn into the shoot at the early vegetative 

stage (Table 4.3. and 4.4 and Fig 4.1 and 4.2). 
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Fig. 4.2. Correlations among shoot Zn uptake, root Zn uptake and root absorption rate. 
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Fig. 4.3. Correlations among shoot translocation efficiency, root absorption rate and 
shoot translocation rate. 
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4.2 Zn-65 retranslocation experiment 

 

Dry matter production of experimental plants following 20 days growth with low 

and adequate Zn supply in nutrient solution is presented in Table 4.5. Shoot dry matter 

production was slightly reduced with low Zn supply (-Zn) and ranged between 518 mg 

plant-1 (TTD 21) and 1217 mg plant-1 (TTD 27) with a mean value of 679 mg plant-1 

whereas shoot dry matter of control plants (+Zn) ranged between 524 mg plant-1 (TTD 

21) and 1359 mg plant-1 (TTD 27) with a mean value of 774 mg plant-1 (Table 4.5). It 

was noteworthy that two T. dicoccoides genotypes had produced the lowest (TTD 21) 

and highest (TTD 27) shoot dry matter production irrespective of the Zn supply. The 

average Zn efficiency for shoots was calculated as 89 % and ranged between 103 % 

(24-39) and 72 % (TD 531) (Table 4.5). For some of the T. dicoccoides genotypes (TTD 

96, TTD 21, TTD 172, TD 678 and 24-39) low Zn supply had no significant impact on 

shoot yield, whereas the remaining T. dicoccoides genotypes and T. durum Desf. 

genotypes responded to –Zn treatment with a reduction of 10-28% in shoot dry matter 

production within 20 days of growth in nutrient solution. Statistical analysis confirmed 

existence of significant differences in shoot dry matter response of genotypes upon 

different Zn treatments and their interaction.  

 

In contrast to shoot dry matter production, Zn supply had no significant effect on 

root dry matter production, suggesting that root yield was typically unaffected if not 

induced with low Zn supply in 20 days. Consequently, average Zn efficiency of roots 

was calculated as 105%, mainly because some genotypes (e.g. Sarıçanak, TTD 21, TTD 

172) had actually produced slightly higher root dry matter in the –Zn treatment. Under 

the given conditions, T. dicoccoides and T. durum Desf. genotypes generally responded 

to the imposed mild Zn deficiency stress (-Zn: 0.05 µM ZnSO4) with a reduction in 

shoot dry matter production, whereas root dry matter production remained almost 

unaffected. The changes in dry matter production indicate that a desired mild Zn 

deficiency was achieved in plants which were further subjected to the Zn mobilization 

tests. Finally, as mentioned above, the T. dicoccoides genotypes TTD 96, TTD 21, TTD 

172, TD 678 and 24-39 performed better in terms of dry matter production, whereas 

cultivated wheats expressed an average Zn efficiency.  
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Table 4.5 Effect of low (-Zn: 0.05 µM ZnSO4) and adequate (+Zn: 1 µM ZnSO4) Zn 
supply on shoot and root dry matter production of experimental plants (Triticum 
turgidum L. subsp. durum genotypes Sarıçanak 98, and Balcalı 2000 and Triticum 
turgidum L. subsp dicoccoides genotypes TTD172, 24-39, TD 153, TD 531, TD 678, 
TTD 96, TTD 21, TTD 27, TD 536, TD 510) at harvest on 20 days after transplant to 
nutrient solution. Zinc efficiency values were calculated by the ratio of dry matter 
production at –Zn to that of +Zn and expressed as percentage. 

Genotype 
  Shoot   Root 

-Zn +Zn Zn efficiency -Zn +Zn Zn efficiency 

(mg plant-1) (%) (mg plant-1) (%) 
Saricanak 98 786 872 90 394 312 126 
Balcali 2000  590 647 91 309 294 105 
TTD 172  561 565 99 289 253 114 
24-39 638 617 103 414 404 102 
TD 153 583 750 78 438 426 103 
TD 531 633 881 72 468 459 102 
TD 678 605 596 101 302 272 111 
TTD 96 589 603 98 359 371 97 
TTD 21 518 524 99 349 277 126 
TTD 27 1217 1359 90 500 531 94 
TD 536 587 789 74 405 404 100 
TD 510   842 1086 77   432 543 80 

Mean   679 774 89   388 379 105 

LSD0.05(G, Zn, GxZn)  (69 , 28, 98) (41, NS, 58) 
 

 

Changes in tissue Zn concentrations were provided in Table 4.6 along with the 

seed Zn values to assess the “seed reserve” phenomenon. Shoot Zn concentration in –Zn 

treatment ranged between 12.3 mg kg-1 (Sarıçanak 98) and 21.4 mg kg-1 (24-39) with a 

mean value of 15.5 mg kg-1 whereas shoot Zn concentration in +Zn treatment ranged 

between 71.8 mg kg-1 (TTD 96) and 112.2 mg kg-1 (TD 678) with a mean value of 86.7 

mg kg-1 (Table 4.6). As expected, shoot Zn concentrations significantly reduced down 

to a marginal deficiency level (i.e. 15 mg Zn kg-1) in plants treated with low Zn supply. 

Although the existence of significant differences in shoot and root Zn concentrations of 

control plants, no variation was found in the case of low Zn treatment, suggesting that 

wheat genotypes were experiencing a similar Zn deficiency stress at the time when 

mobilization test was performed. It was also evident that the inherent variation in seed 

Zn had no or very little influence on shoot Zn concentrations (see Table 4.6). In 
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summary, shoot Zn concentration results reflect that the low Zn treatment applied to 

plants was successful in developing a marginal and evenly distributed Zn deficiency in 

experimental plants used in the mobilization tests.  

 

Table 4.6 Effect of low (-Zn: 0.05 µM ZnSO4) and adequate (+Zn: 1 µM ZnSO4) Zn 
supply on shoot and root Zn concentration of experimental plants (Triticum turgidum L. 
subsp. durum genotypes Sarıçanak 98, and Balcalı 2000 and Triticum turgidum L. subsp 
dicoccoides genotypes TTD172, 24-39, TD 153, TD 531, TD 678, TTD 96, TTD 21, 
TTD 27, TD 536, TD 510) at harvest on 20 days after transplant to nutrient solution. 
The initial seed Zn concentrations are also provided to evaluate the possible effect of 
seed Zn to that of shoot and root Zn concentrations..4.6 Shoot and root Zn concentration 
comparing two different Zn treatments. 

Genotype 
  Shoot   Root   

Seed 
  -Zn +Zn   -Zn +Zn   

(mg kg-1 DW) 
Saricanak 98 12.3 74.9 17.9 153.3 39.7 
Balcali 2000  14.8 95.1 24.4 118.1 35.2 
TTD 172  15.0 87.2 32.7 71.7 58.6 
24-39 21.4 96.8 25.1 67.1 131.3 
TD 153 14.8 94.0 21.2 100.9 45.4 
TD 531 16.6 82.6 22.5 83.2 46.6 
TD 678 17.2 112.2 28.4 75.7 72.3 
TTD 96 15.6 71.8 20.5 78.5 71.8 
TTD 21 14.0 87.7 22.8 99.8 68.5 
TTD 27 15.4 83.0 20.8 51.2 64.2 
TD 536 14.6 74.7 18.1 89.5 50.2 
TD 510   14.1 87.0   25.6 56.5   49.7 

Mean   15.5 87.3   23.3 87.1   61.1 

LSD0.05(G, Zn, GxZn) (6.7, 2.7, 9.4) (5.4, 2.4, 7.6) (1.4, - , - ) 
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In leaf retranslocation (mobilization) tests, a large portion of the Zn applied on 

the leaf tips was retained on the application leaf without been further mobilized. For 

instance, as much of 82.5 % of the total Zn was retained on the application leaf of 

control plants (Table 4.7). However, the retained portion of Zn in plants grown with –

Zn treatment was substantially lower (i.e. 68.4 %) indicating Zn-deficiency enhanced 

Zn mobilization towards remainder of shoot and/or roots (Table 4.7). Although the 

significant differences in relative Zn content (portion of Zn retained in the application 

leaf) of –Zn and +Zn plants, there was no statistically significant differences among 

genotypes within –Zn or + Zn treatments (Table 4.7). In control plants, an average of 

9.9 % of the Zn taken up by the application leaf was mobilized into shoots and 7.5 % 

was mobilized into roots. Interestingly, low Zn treatment significantly enhanced Zn 

mobilization towards the roots but not to the shoots. In average 25.3 % of the total Zn 

taken up from the application leaf was mobilized into roots in –Zn treatment. Thus, Zn 

mobilization into roots was found to be 3.4 fold higher under low Zn supply compared 

to control treatment. Even with substantially higher mobilization rates at -Zn, wheat 

genotypes expressed no significant differences in Zn mobilization into roots under –Zn 

or +Zn conditions (Table 4.7). By contrast, statistically significant differences existed in 

shoot Zn mobilization at a level of genotype, Zn treatment and genotype by Zn 

interaction (Table 4.7). In other words, genotypes performed significantly different in 

shoot Zn mobilization ratios. Consequently, T. dicoccoides genotypes TTD 27 and 24-

39 expressed the highest shoot mobilization ratios whereas TTD 96 and TD 536 had the 

lowest. The T. durum Desf. genotypes Balcalı 2000 and Sarıçanak 98 ranked 6th and 

10th in shoot Zn mobilization ratio among a total of 12 wheat genotypes tested.  
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Table 4.7 Effect of low (-Zn: 0.05 µM ZnSO4) and adequate (+Zn: 1 µM ZnSO4) Zn 

supply on relative Zn mobilization ratio in shoot, root and application leaf of 

experimental plants (Triticum turgidum L. subsp. durum genotypes Sarıçanak 98, and 

Balcalı 2000 and Triticum turgidum L. subsp dicoccoides genotypes TTD172, 24-39, 

TD 153, TD 531, TD 678, TTD 96, TTD 21, TTD 27, TD 536, TD 510) at harvest on 

20 days after transplant to nutrient solution.  

Genotype 
  Shoot   Root   Application Leaf 

  -Zn +Zn   -Zn +Zn   -Zn +Zn 

  (% plant-1 5 days-1)   
Saricanak 98 4.0 8.3 28.7 10.9 67.3 80.9 
Balcali 2000  7.5 9.7 27.6 4.2 65.0 86.2 
TTD 172  7.9 8.2 21.6 5.8 70.6 86.1 
24-39 8.3 15.6 27.8 7.8 63.9 76.6 
TD 153 7.6 8.1 22.4 6.4 70.0 85.6 
TD 531 4.6 7.1 27.7 4.8 67.7 88.2 
TD 678 7.9 8.3 27.4 5.5 64.6 86.2 
TTD 96 3.9 8.4 22.1 10.6 74.0 81.0 
TTD 21 5.4 11.8 22.3 11.0 72.4 77.2 
TTD 27 9.6 10.1 26.7 6.6 63.8 83.4 
TD 536 3.8 14.0 19.5 10.4 76.7 75.5 
TD 510   5.9 9.9   29.6 6.3   64.5 83.9 

Mean   6.4 9.9   25.3 7.51   68.4 82.6 

LSD0.05(G, Zn, GxZn) ( 3.0, 1.2, 4.3) ( NS ,2.6, NS) (NS, 3.2,  NS) 
  

The relationships among mobilization rates of wheat genotypes at low and 

adequate Zn supply are shown in Fig. 4.4. Among the wheat genotypes tested, there was 

a negative and significant correlation between the retained portion of Zn in the 

application leaf and the mobilized portion of Zn into shoots and roots (Fig. 4.4). 

Interestingly, the mentioned correlations existed irrespective of the Zn treatments (Fig. 

4.4). In contrast, there was no significant relation between shoot and root mobilization 

ratios (Fig. 4.4) suggesting that these traits are controlled by different physiological 

mechanisms. The results confirm that the tested wheat genotypes differ significantly in 

Zn mobilization from application leaf into shoots or roots and T.dicoccoides genotypes 

in general have a higher and exploitable Zn mobilization capacity. 
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Fig 4.4 Relationships among relative Zn mobilization ratios in shoot, root and 
application leaf of plants grown with low (-Zn: 0.05 µM ZnSO4) and adequate (+Zn: 1 
µM ZnSO4) Zn supply for 20 days in nutrient solution. 
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5. DISCUSSION 

 

 

 

Our knowledge on the molecular and physiological mechanisms involved in Zn 

accumulation in cereal grains is limited (Cakmak, 2008 and references therein). The 

large number of studies published during the past few decades yielded no consensus of 

a single major mechanism that is responsible from grain Zn accumulation. Recently, 

chromosome 6B was reported as the relevant carrier of genes determining high grain Zn 

in wild emmer substitution lines (Triticum turgidum L. subsp. dicoccoides). Wild 

emmer wheat was proposed as a valuable genetic resource that can be exploited to 

increase the protein and micronutrient concentration of cultivated wheat, particularly for 

target micronutrients Fe and Zn (Cakmak et al. 2004). Following studies with wild 

emmer wheat pinpointed that Gpc-B1 locus can affect Zn and grain protein 

concentrations simultaneously (Fahima et al. 2006; Distelfeld et al. 2007). This thesis 

study focused on understanding the potential of wild emmer wheat by evaluating major 

physiological mechanisms of Zn uptake, translocation and mobilization using 10 wild 

emmer wheats along with two cultivated modern wheats (Triticum turgidum L. subsp. 

durum Desf.) during the early growth stage of the genotypes Grain Zn accumulation is 

under influence of various physiological steps starting from roots to seeds (Waters and 

Sankaran, 2011). At early growth stage, uptake and transport of Zn from growth 

medium could be very important in Zn accumulation in plant tissue and then re-

translocation of Zn from vegetative tissue into growing parts of plants such as shoot tips 

and seeds (Waters and Sankaran, 2011). In   this study, attention has been paid to the 

uptake and transport process of Zn during the early growth stage of plants. 
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In the uptake and translocation experiment conducted in this current study, there 

was no evidence for a superior Zn efficiency of wild emmer wheats over durum wheat 

cultivars with the exception of TTD 96. Despite of large differences in seed Zn 

concentrations, there was also no significant GxZn interaction suggesting that all 

genotypes responded to low Zn supply similarly in dry matter production (Table 4.1). 

This result seems to be contradictive to previous findings in which under field 

conditions higher seed Zn content significantly affected plant growth (Yilmaz et al. 

1998, Rengel and Graham, 1995a, 1995b). Obviously, seed Zn can determine plant 

survival and thus growth under field conditions where existence of multiple stress 

factors are not uncommon (Graham and Rengel, 1993; Cakmak, 2000). However, plants 

were grown under a controlled environment in in the present study. In addition to a non-

stressful environment, the lack of rhizosphere in nutrient solution also may reduce effect 

of seed Zn reserve on plant growth. Other explanation for the lack of high seed Zn 

effect on growth under low Zn supply could be related to the fact that the experimental 

plants under given conditions were not subjected to severe Zn deficiency. As can be 

seen  from the Table 4.1, plants had a slight  stress with Zn deficiency (average Zn 

efficiency was 91 %).   

 

Under low Zn supply, shoot Zn concentrations were in the range of 15 to 20 mg 

kg-1 (Table 4.2) confirming that a targeted mild Zn deficiency was achieved in plants 

used in the Zn-65 uptake experiments. It was also evident that the significant 

differences in initial seed Zn concentrations had no effect on shoot or root Zn 

concentration of the experimental plants (Table 4.2). Average seed Zn concentration 

was 1.8 fold higher in T. dicoccoides genotypes with an extreme of 131.3 mg kg-1 (24-

39) (Table 4.2).  

 

As expected, low Zn treatment enhanced Zn uptake of durum and wild emmer 

genotypes (Table 4.3) with an average increase of 6.5 fold in shoot Zn uptake and 2.2 

fold in root Zn uptake per plant. Thus, significant differences in shoot Zn uptake 

occurred in plans grown with low Zn supply (Table 4.3). Sarıçanak 98 expressed an 

induced Zn uptake to shoot, root and whole biomass in the –Zn treatment, although this 

induction remained much below the average of wild emmer wheats. Among wild 
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emmer wheats, TD 531, TTD 27 and TTD 21 expressed an impressive Zn uptake per 

plant (Table 4.3). 

 

Similar to Zn uptake per plant, Zn uptake and translocation rate per root dry 

mass were also significantly enhanced by low Zn treatment. Under the control 

conditions (i.e. sufficient Zn supply) cultivated modern wheats interestingly had higher 

root uptake and shoot translocation rates than their wild predecessors, whereas in low 

Zn supply cultivated wheats ranked 4th (Sarıçanak 98) and 8th (Balcalı 2000) out of 12 

genotypes. However, under low Zn supply T. dicoccoides genotypes TTD 21, TD 531 

and TTD 27 had highest root uptake as well as highest shoot translocation rates. These 

T. dicoccoides genotypes also exhibited the highest translocation efficiencies compared 

to other genotypes. Translocation efficiencies of Sarıçanak 98 and Balcalı 2000 ranked 

5th and 12th respectively (Table 4.4). These results indicate that the tested wild and 

modern genotypes were not distinctly different in their Zn uptake and translocation 

capacities.   

 

There was also no significant relationship between shoot, root or seed Zn 

concentrations and Zn uptake or translocation values (see Tables 4.2, 4.3 and 4.4). This 

is actually a desired result, because any relationship with tissue Zn concentration values 

can be attributed to a residual artifact such as of seed origin. In contrast, significant and 

positive correlations were found for Zn uptake and translocation results, particularly in 

the –Zn treatment (Fig. 4.1 and 4.2). Results indicate that an induced root Zn uptake rate 

is required for a better translocation to shoot during early vegetative stage in wheat 

which in turn would determine the extent of grain Zn deposition during grain filling. 

 

In the Zn mobilization (retranslocation) experiment a mild Zn deficiency was 

exerted by growing the plants with limited Zn supply. There was no variation in shoot 

Zn concentration of low Zn plants suggesting that the “seed reserve phenomenon” 

(Rengel, 2001) had no or negligible effect on the results (see Table 4.6). A large portion 

of Zn applied on the oldest leaf tip was retained without been mobilized. In control 

plants only 17.5 % of the applied Zn was mobilized form the application leaf to other 

parts of the plant compared to a mobilization rate of 31.6 % in low Zn treatment (Table 
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4.7)., indicating that Zn  can be transported through phloem channel, especially under 

low Zn supply with high demand to Zn. An enhanced leaf Zn mobilization rate under 

limited Zn supply was also reported in rice (Hajiboland et al., 2001) and wheat 

(Erenoglu et al., 2002) cultivars differing in Zn efficiency. In rice, leaf Zn mobilization 

was also proposed as an important contributing factor to Zn efficiency (Hajiboland et 

al., 2001). However, in bread and durum wheat cultivars, Zn mobilization rates were 

similar and did not correlate to Zn efficiency (Erenoglu et al., 2002). In this thesis study, 

wild emmer and durum wheat genotypes did not statistically differ in Zn mobilization 

from the application leaf (Table 4.7). By contrast, statistically significant differences 

existed in shoot Zn mobilization at a level of genotype, Zn treatment and genotype by 

Zn interaction (Table 4.7). In other words, genotypes performed significantly different 

in shoot Zn mobilization ratios. Consequently, T. dicoccoides genotypes TTD 27 and 

24-39 expressed the highest shoot mobilization ratios whereas TTD 96 and TD 536 had 

the lowest. The T. durum Desf. cultivars Balcalı 2000 and Sarıçanak 98 ranked 6th and 

10th in shoot Zn mobilization ratio among a total of 12 wheat genotypes tested. 

According to literature survey, this is the first report to show significant and exploitable 

variation in shoot Zn mobilization of wild emmer wheat genotypes. Analysis of data 

revealed a negative and significant correlation between retained portion of Zn in the 

application leaf and mobilized Zn into shoots and roots irrespective of Zn treatments 

(Fig. 4.4). By contrast, no significant relation was detected between shoot and root 

mobilization rates (Fig. 4.4), suggesting that these traits are controlled by different 

physiological and genetic factors. Such high translocation capacity for foliar applied Zn 

through phloem also indicates that plants can respond to foliar Zn application by 

increasing grain Zn concentration. Accordingly, recently, it has been shown that wheat 

plants growing under field conditions responded to foliar Zn application by significant 

increases in grain Zn concentration (Cakmak et al., 2010)  

 

In summary, this thesis study reports a higher and exploitable Zn uptake and 

mobilization capacity of wild emmer wheats. Under low Zn supply the wild emmer 

wheats TTD 21, TD 531 and TTD 27 showed highest root Zn uptake and root-to-shoot 

Zn translocation rates whereas TTD 27 and 24-39 expressed the highest shoot 

mobilization ratios. Exploitation of Zn uptake, transport and mobilization traits of these 

genotypes in further breeding studies can greatly contribute to increasing grain Zn 
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content of cultivated wheats. The wild wheats used in this study were different in their 

grain Zn concentrations (see Table 4.1); but, as presented in this study, the differences 

in grain Zn concentration were not related to the differences in root Zn uptake and Zn 

mobilization (retranslocation) rates of  the genotypes during the early growth stage. It is, 

therefore, important to conduct similar tests on those genotypes during the late growth 

stage (e.g., after flowering stage).  
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APPENDIX A 

 

Heating Block: Ceran 500® 

Gamma Counter: Perkin Emler 2480 WIZARD2 Automatic Gamma Counter 

Growth Chamber: DigiTech Hi-tech systems LTD.  

ICP (inductively coupled plasma atomic emission spectrometer):  Varian VistaPro 

Axial) 

Microwave Oven: CEM MarsXpress 

Regular Oven: Memmert beschickung-Loading model 100-800 


