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ABSTRACT 
 
 

Cellulase enzymes have been extensively used for the biopolishing of cellulosic 

fabrics but they are inefficient to prevent pilling in viscose fabrics. Moreover, their  

application causes a loss in the fabric strength due to the aggressive action of the 

enzymes. One solution to this problem is the design and production of enzymes with 

increased molecular weights so that aggressive action of the cellulases would be limited 

to the fabric surface. In the framework of this study, cellulases and cellulase 

formulations that can ameliorate the problem of pilling and prevent loss of tensile 

strength in viscose fabrics were designed and produced . For this purpose, both protein 

engineering and chemical modification methods were used seperately and in 

combination to obtain cellulases with desired properties. Trichoderma reesei 

Endoglucanase I (EGI), Endoglucanase III (EGIII), Cellobiohydrolase I (CBHI) 

enzymes were successfully cloned and expressed in Pichia pastoris under the control of 

AOX1 promoter to mg/L quantities.  A loop mutant of EGI, (EGI_L5) was prepared by 

introduction of a ten aminoacid long loop by molecular modelling and site directed 

mutagenesis for the creation of hotspots for directed crosslinking of the enzyme. The 

mutant enzyme was crosslinked using crosslinked enzyme aggregate (CLEA) 

technology. The effect of codon optimization on EGI production was analyzed. A 

mutant of EGI was prepared by inserting a second catalytic domain to EGI and thereby 

forming a bicatalytic mutant of EGI (EGI_BC) with increased molecular weight. All of 

the recombinant enzymes were produced in a laboratory scale fermenter and 

characterized. A commercial cellulase preparation was crosslinked using CLEA 

technology and fractionated according to the particle size. The effects of native, 

engineered and chemically modified cellulases on viscose fabrics were evaluated. It was 

found that commercial cellulase preparation crosslinked using CLEA technology, 

recombinant EGI and EGI_L5 produced in P. pastoris improved the pilling values of 

viscose fabrics by 20 % without much loss in the strength of the fabrics.    
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ÖZET 
 

 Selülaz enzimleri selülozik kumaşların biyoparlatmasında yaygın olarak 

kullanılmaktadır ancak viskon kumaşlarda tüylülüğün önlenmesinde yetersiz 

kalmaktadırlar.  Bu enzimlerin agresif hareketleri kumaş mukavemetinde kayıplara yol 

açmaktadır. Selülaz enzimlerinin aktivitesini kumaş yüzeyi ile sınırlayacak moleküler 

ağırlığı arttırılmış enzimler tasarlanarak ve üretilerek bu problem  çözülebilinir. Bu 

çalışmada, viskon kumaşlardaki tüylenme sorununu azaltabilecek ve kumaşların 

mukavemet kayıplarını engelleyebilecek selülaz ya da selülaz formülasyonları 

tasarlanmış ve üretilmiştir. Bu amaçla, hem protein mühendisliği yöntemleri hem de  

kimyasal modifikasyon yöntemleri istenilen özellikte selülazların elde edilebilmesi için 

hem ayrı ayrı hem de birarada kullanılmıştır.  Trichoderma reesei Endoglukanaz I 

(EGI), Endoglukanaz III (EGIII), Sellobiyohidrolaz I (CBHI) enzimleri Pichia 

pastoris’te AOX1 promoter bölgesinin kontrolünde başarılı bir şekilde klonlanmış ve 

mg/L miktarlarında ifade edilmiştir.EGI’in bir döngü mutantı olan EGI_L5, 10 

aminoasitlik bir döngünün moleküler modelleme ve yönlendirilmiş mutagenez 

yöntemleri kullanılarak enzimin yönlendirilmiş olarak çapraz bağlanması için sıcak 

noktalar oluşturmak üzere EGI’e eklenmesi ile oluşturulmuştur.  Mutant enzim çapraz 

bağlı enzim agregatları (CLEA) teknolojisi kullanılarak çapraz bağlanmıştır. Kodon 

optimizasyonunun EGI üretimi üzerine etkisi araştırılmış ve kodon optimizasyonunun 

P. pastoris’te EGI üretimini % 24 arttırdığı saptanmıştır. EGI’e ikinci bir katalitik 

modül eklenerek böylece moleküler ağırlığı büyütülmüş EGI’in bikatalitik bir mutantı 

(EGI_BC) elde edilmiştir. Tüm rekombinant enzimler laboratuvar ölçeğindeki bir 

fermentörde üretilmiş ve karakterize edilmiştir. Ticari bir selülaz formülasyonu CLEA 

teknolojisi kullanılarak çapraz bağlanmış ve parçacık büyüklüğüne göre parçalara 

ayrılmıştır. Ham, protein mühendisliği yoluyla değiştirilmi ş ve kimyasal olarak 

değiştirilmi ş selülazların viskon kumaş üzerindeki etkileri değerlendirilmiştir. ticari 

CLEA teknolojisi kullanılarak çapraz bağlanan ticari selülaz formülasyonunun, P. 

pastoris’te üretilen rekombinant EGI ve EGI_L5enzimlerinin viskon kumaşların 

boncuklanma notlarını % 20 oranında iyileştirdiği ve kumaş mukavemetinde kayıplara 

yol açmadığı bulunmuştur.  
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CHAPTER 1 
 
 
 
 

1. BACKGROUND 
 

Enzymes are used extensively in the industrial processes along with conventional 

chemical processes. As a result of green technology, extensive research has been done 

to replace conventional chemical processes with environmentally friendly, less harmful 

alternatives. Enzymes are used for a wide range of industrial applications that include 

biofuels, detergent, paper, food, feed, pharmaceutical and textile industries. As new 

industrial application areas emerge, there is an increasing demand for the production of 

enzymes that can be used for specific purposes and that can withstand heavy chemical 

conditions and elevated temperatures of the industrial processes. One of these rapidly 

growing areas is the textile processing industry. Enzymes are preferred in textile 

processes because of their specificity, speed, biodegradability, operational stability and 

vast application areas. They are especially used in biofinishing and biopreparation of the 

textiles. Cellulases are commonly used in biofinishing of cellulosic fabrics. They 

remove the microfibrils on the fabric surface and prevent formation of the pills. They 

are routinely used for the removal of pills from cotton and viscose fabrics. They are 

effective in removal of pills from cotton fabrics but not from viscose fabrics.  Moreover, 

they cause a reduction in the tensile strength of the fabrics due to their aggressive 

action. Our previous studies have shown that application of crosslinked commercial 

cellulases had prevented the loss of tensile strength in viscose fabrics but the 

crosslinked commercial cellulases did not prevent the pilling formation (Bayram 

Akcapinar, 2005). Moreover, it has been found that the activity of the commercial 

enzyme was lowered after crosslinking. Cellulases are multi-component enzymes. Their 

activity on fabrics and their effects on fabric surfaces change according to cellulase 

composition. Therefore, there is still need for production of mono-component cellulases 

and cellulase formulations that can improve viscose fabric pilling properties without a 
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reduction in fabric strength, enzyme stability and activity. This can be achieved by 

producing cellulase components in homologous or heterologous hosts; increasing the 

enzyme size either by protein engineering or by chemical modification or a combination 

of both. To this end, 

 
• EGI, EGIII and CBHI of T. reesei were cloned and expressed in P. pastoris.  

• A loop mutant of EGI was prepared by introduction of a ten aminoacid long 

loop by molecular modelling and site directed mutagenesis for the creation 

of hotspots for directed crosslinking of the enzyme and this enzyme was 

crosslinked using CLEA method. 

• Effect of codon optimization on EGI production was analyzed. 

• A mutant of EGI was prepared by inserting a second catalytic domain to EGI 

and thereby forming a bicatalytic mutant of EGI (EGI_BC) with increased 

molecular weight.   

• All of the recombinant enzymes were produced in a laboratory scale 

fermenter and characterized.   

• A commercial cellulase preparation was crosslinked using crosslinked 

enzyme aggregate (CLEA) technology and fractionated according to the 

particle size. 

• Effects of native, engineered and chemically modified cellulases on viscose 

fabrics were evaluated.  

 

1.1. Cellulolytic System of Trichoderma reesei  
 
 The very first strain of fungi that is capable of hydrolyzing cellulose was first 

discovered during World War II when it was noticed that the rate of deterioration of 

cellulosic materials that belong to the U.S. Army was increased in the South Pacific. In 

order to produce a solution to this  problem immediate research was started and as a 

result the first strain QM6a was isolated. This strain was first identified as Trichoderma 

viride and later recognized as Trichoderma reesei (Bhat, 2000). The research on this 

cellulose degrading organism and cellulose degradation has started. In the last half of 

the 20th century there has been a remarkable progress in isolation of microorganisms 

producing cellulases; improving the yield of cellulases by mutation; purifying and 

characterizing the cellulase components; understanding the mechanism of cellulose 
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degradation cloning and expression of cellulase genes; determining the 3-D structures of 

cellulase components; understanding structure-function relationships in cellulases; and 

demonstrating the industrial potential of cellulases (Kumar, Yoon, & Purtell, 1997). 

 
Cellulose, being the most abundant polymer on earth, has a very important place in 

bioethanol production and it is a starting material for many fabrics used in textile 

(Zhang & Lynd, 2004). Due to these properties of cellulose, cellulases, enzymes that 

degrade cellulose, are becoming very important materials for biotechnology and enzyme 

engineering (Bhat & Bhat, 1997). Among all of the enzymes cellulases are being used 

increasingly for a variety of industrial purposes (Bhat, 2000) and consequently, a lot of 

effort has been put into their cloning (Qin, Wei, Liu, Wang, & Qu, 2008; Saloheimo, 

Nakari-Setala, Tenkanen, & Penttila, 1997; Yao, Sun, Liu, & Chen, 2008) and 

expression (Aho, 1991) as well as their study by site-directed mutagenesis (Nakazawa, 

et al., 2009; Rignall, et al., 2002; Sandgren, Stahlberg, & Mitchinson, 2005) . Cellulases 

are multicomponent enzymes. There are three major types of cellulases secreted by 

Trichoderma reesei: Endoglucanases, 1,4-ß-D-glucan 4-glucanohydrolases; 

Cellobiohydrolases, 1,4-ß-D-glucan cellobiohydrolases; Cellobiases, ß-D-glucosidases . 

Trichoderma reesei has at least six endoglucanases, two cellobiohydrolases, and two ß-

D-glucosidases (Bhat & Bhat, 1997; Heikinheimo, 2002).EGI and EGII are the main 

components of the T. reesei endoglucanases and they comprise ~10 % of the secreted 

proteins of the organism(Heikinheimo & Buchert, 2001). 

 
 Application of cellulases in industrial processes has increased to a considerable 

amount in the last thirty years. Cellulases are used in textile industry for biopolishing of 

textiles and fabrics to improve fabric quality (Videb, 2000), biostoning of denim 

garments to obtain a fashionable  aged appearance (Cavaco-Paulo, Almeida, & Bishop, 

1996). They are also used extensively in feed, food industries, in pulp and  paper 

processing, in laundry (Bhat, 2000). In the last decade,  several studies focused on  the  

use of cellulases for the conversion of lignocellulosic biomass to produce biofuels as an 

alternative renewable energy source to fossil fuels (Bayer, Lamed, & Himmel, 2007; 

Percival Zhang, Himmel, & Mielenz, 2006; Wilson, 2009).  

 
 Cellulases are enzymes that work under extreme conditions of textile industry: e.g. 

elevated temperatures and pH, exposure to organic solvents and various chemicals. 

Engineering of the cellulase enzyme should not cause a dramatic reduction in the 
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enzyme activity and stability since enzymes stable under such harsh conditions attract 

attention due to their applicability in industrial processes. Understanding the underlying 

mechanisms of stability may help designing an engineered cellulase without a reduction 

in the enzyme stability and activity.  

 
   Cellulolytic enzymes are produced by a wide variety of organisms. Few of these 

enzymes are capable of degrading crystalline cellulose effectively.  Among these 

microorganisms, the extremophilic ones are very important because of the stability of 

their enzymes under harsh conditions such as  highly acidic and alkaline pHs as well as 

temperatures up to 90 °C (Lamed & Bayer, 1988). Important thermophilic 

microorganisms capable of degrading cellulose are Clostridium thermocellum, 

Thermomonospora fusca, Thermoascus auarantiacus, Sporotrichum thermophile, 

Humicola insolens and Chaetomium thermophile. Clostridium thermocellum differs 

from other cellulolytic microorganisms since it secretes all its cellulolytic enzymes in a 

protein complex called cellulosomes (Németh, et al., 2002). Most extensive research 

about the cellulases has been done on aerobic fungi such as Trichoderma koningii 

(Halliwell & Vincent, 1981)  and T. reesei (Liming & Xueliang, 2004; Medve, 

Karlsson, Lee, & Tjerneld, 1998; Miettinen-Oinonen, Paloheimo, Lantto, & Suominen, 

2005).  

 
 Cellulases are the only enzymes used in biofinishing of the cotton fabrics. These 

enzymes are suitable for wet processes and they can be used almost in all textile 

machines. Nowadays commercial cellulase preparations for different types of fabrics are 

available for use in biopolishing. They exhibit a wide range of pH and temperature 

stability and activity. Commercial cellulase preparations are mostly from the 

filamentous fungi, Trichoderma reesei. Cellulases are extracellular enzymes. They are 

secreted out of the cells. Industrial producers take this advantage into consideration. 

That is why  Trichoderma reesei is the workhorse of industry in terms of production of 

cellulases. Trichoderma reesei produces cellulases in large quantities and secretion of 

the  enzyme components allows rapid purification of the enzymes. 

 
 Researchers are also working on producing genetically modified cellulase 

enzymes with the desired properties for different types of processes. Directed evolution  

and site directed mutagenesis studies which target the cellulases are reported (Sandgren, 

et al., 2005). Moreover, site-directed mutagenesis studies have been used for the 
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identification of active site residues and residues responsible for the stability of the 

cellulases. These studies are very valuable tools because they provide the information 

for the design of new cellulases having specific activities.   

  
 Cellulases are multicomponent enzymes. There are three major types of cellulases 

secreted by Trichoderma reesei: Endoglucanases, 1,4-ß-D-glucan 4-glucanohydrolases; 

Cellobiohydrolases, 1,4-ß-D-glucan cellobiohydrolases; Cellobiases, ß-D-glucosidases 

[48]. Trichoderma reesei has at least six endoglucanases, two cellobiohydrolases, and 

two ß-D-glucosidases (Bhat & Bhat, 1997; Heikinheimo & Buchert, 2001). Figure 1.12 

indicates the molecular weights and number of aminoacids of some of the cellulase 

components.  

   
Table 1: Trichoderma reesei cellulolytic system components (Vinzant, et al., 2001). 

 
Name acc. to 

GH 
Classification* 

Cellulase 
components of 

Trichoderma reesei 

Molecular 
Weight (kDa) 

Number of 
amino acids 

Amount of 
total 

cellulase** 
CEL7B EG I 48,2 459 9 
CEL5A EG II 44,2 418 8 
CEL12A EG III 23,5 218 <1 
CEL45A EG IV 35,5 344 not known 
CEL61 EG V 24,5 242 not known 
CEL7A CBH I 54 513 55 
CEL6A CBH II 49,6 471 18 

GH Family 3 Β-D-glucosidase I 78,5 744  
*  The names of the cellulases are based on the GH nomenclature system introduced by 
Henrissat et al. (Henrissat & Bairoch, 1993). **Amount of total cellulase secreted by T. 
reesei. 
 
 Cellulases belong to the glycosyl hydrolase family of enzymes. This enzyme 

family contains  nearly 96 subfamilies. Cellulases are present in at least 11 of these 

subfamilies; GH 5, 6, 7, 8, 9, 12, 26, 44, 45, 48 and 61 according to www.cazy.org 

(Henrissat, 1991; Henrissat & Bairoch, 1993). Subfamily classifications of the glycosyl 

hydrolase family are done on the basis of their amino acid sequences. The three 

dimensional structures and enzyme-substrate interaction mechanisms display some 

differences in every subfamily.  

 
 These multicomponents act synergistically for the degradation of cellulose. They 

act specifically on 1,4-β-glycosidic bonds of the cellulose. Cellulase has two domains. 

One of them is the catalytic core domain and the other is the cellulose binding domain. 
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The hydrolysis of the cellulosic substrates takes place inside the catalytic core domain  

and this domain occupies the largest part of the enzyme. These two domains  linked by 

a short linker peptide form the intact bimodular enzyme (Kleywegt, et al., 1997; 

Sandgren, et al., 2005). The length of the linker varies from 20 to 40 aminoacids.  The 

linker peptide is rich in Proline, Threonine and Serine residues and it is often O-

glycosylated. O-glycosylation provides maintenance of the extended conformation of 

the linker peptide and also protects the linker region against proteases of the organism. 

Cellulose binding domains are thought to adsorb to the cellulose thereby acting as 

anchor points  for the whole enzyme. They keep the cellulosic substrate in the vicinity 

of the enzyme. These adsorption properties of CBD enable the enzyme to have a higher 

turnover rate (Ståhlberg, 1991).  

   
 Cellulose binding domains of fungi, algea and bacteria  are  classified into  two 

families. The shorter CBDs (30-40 amino acids) are the ones from the fungi are 

classified as family II and the longer ones (100-150 amino acids) are the ones from 

bacteria and algae and classified as family I (Reinikainen, Teleman, & Teeri, 1995). 

They are thought to have arisen by a convergent evolution since they do not have much 

sequence similarities. But they have conserved aminoacids having aromatic side chains 

and these are thought to be involved in cellulose binding in all types of CBDs.  CBDs 

are also classified into more than 30 families according to CAZY database (www. 

CAZY.org). Much effort has been put to clarify the mechanism of adsorption and its 

effect on the activity of the cellulase components. Deletion mutants of cellulase 

components (CBD deleted) were prepared and analysis of their adsorption trends 

revealed  a decrease of  50-80 % of activity of fungal cellulases on insoluble substrates 

(Srisodsuk, Reinikainen, Penttila, & Teeri, 1993).    

 
 It was suggested that in CBHI of T. reesei both core domain and CBD participated 

in binding and in bacteria only CBDs are involved in binding. Site directed mutagenesis 

directed towards CBDs of CBHI (Y492A, Y492H and P477R) indicated that conserved 

aromatic aminoacids are essential in binding and it is known that hydrophobic 

interactions are also important for binding (Reinikainen, et al., 1995). The CBD is 

located at the C-terminus of the CEL7A, CEL7B, CEL45A, and CEL61A catalytic core 

domains and at the N-terminus of the CEL5A, and CEL6A catalytic core domains. 
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CEL12A is the only T. reesei cellulase that is known to have no cellulose binding 

domains. 

1.1.1. Endoglucanases, (EG) (endo-1,4-β-gluconase, 1,4-β-D-glucan-4-
glucanohydrolase, EC 3.2.1.4) 

 
Endogluconases are the endocellulases which randomly hydrolyze the cellulose 

chains internally. Action of endoglucanases produces new chain ends and changes the 

degree of polymerization of the cellulose. The target of the endoglucanases is the 

amorphous cellulose (Heikinheimo & Buchert, 2001). They exhibit lower activity 

towards insoluble substrates such as crystalline cellulose. There are at least 6 identified 

endoglucanases in Trichoderma reesei (EG I-VI). CEL74A (EG VI) was described only 

at the protein level (Bower, et al., 1998).  CEL7B  and CEL5A are the main components 

of the T. reesei endoglucanases and they comprise ~10 % of the secreted proteins of the 

organism (Heikinheimo & Buchert, 2001).  CEL7B, CEL5A and CEL12A cleave β-1,4-

glycosidic bonds with retention of anomeric configuration, yielding the β-anomer as the 

reaction product and CEL45A uses the inverting mechanism. The exact mechanism of 

CEL61A and EGVI is not exactly known according to the current knowledge. Azavedo 

et al.(2000), suggested that agitation levels has a profound effect on endoglucanase 

activity and at high levels of agitation the presence of CBDs is not key to the 

functioning of the endoglucanases (Azevedo, Bishop, & Cavaco-Paulo, 2000).  

 

1.1.1.1. Endoglucanase I, Cel7B 
 

CEL7B belongs to the glycosyl hydrolase(GH) family 7. CEL7B is homologous 

to CEL7A, cellobiohydrolase I with ~45 % sequence identity.  The active site of CEL7B 

is located in an open cleft not crowded by extended loops as in CEL7A. The catalytic 

residues of the active site are identified as E196-D198-E201-H212 (Kleywegt, et al., 

1997).  Comparison of the structures of the T. reesei EG I and H. insolens EG I, reveals 

that they have similar substrate-binding grooves: both proteins have their active site 

located in an open cleft (Sandgren, et al., 2005). Figure 1 shows the three dimensional 

structure of  the catalytic core domain of endoglucanase I of  T. reesei.  Estimated 

molecular weight of CEL7B is 48 kDa and it is known to have a pI around 4.5. Several 

studies indicate a heterogenous glycosylation of Trichoderma reesei EGI (Eriksson, et 
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al., 2004; Hui, White, & Thibault, 2002). Thus the molecular weight changes according 

to the glycosylation pattern. EGI is known to have N-linked glycosylation.  

 
 

 

Figure 1: 1EG1, The crystal structure of the catalytic core domain of endoglucanase I 
(CEL7B) from Trichoderma reesei at 3.6 A° resolution (Kleywegt, et al., 1997).  

 
There are a few studies that indicate heterologous production of Cel7B in different 

hosts. Korhola et al. have  introduced egl1 gene of T. reesei  into S. cerevisiae under the 

control of PGK1, MEL and ADH1 promoters and  used the enzyme as a reporter for 

screening mutagenized yeast strains (Aho, Arffman, & Korhola, 1996). CEL7B cDNA 

under the control of ADH1 promoter has produced 10-4-10-5 g/l CEL7B. With the 

screening of first generation and second generation mutants, they were able to isolate 

mutants producing immunoreactive CEL7B as high as 0,04 g/l but only the 2% of the 

enzyme was found to be active. In a more recent study (Nakazawa, et al., 2008), CEL7B 

catalytic core domain was expressed in E. coli strains Rosetta-gami B (DE3) pLacI or 

Origami B (DE3) pLacI. CEL7B produced as a functional intracellular protein  in these 

E. coli cells.  Maximum productivity for CEL7B catalytic domain was found to be at 

15°C with a yield of 6.9 mg/l. CEL7B was found to have a pH optimum around 5. 

Temperature stability experiments have indicated that the recombinant enzyme has lost 

all of its activity  upon incubation at 60 °C  and 70 °C for 15 minutes.   

1.1.1.1. Endoglucanase III, Cel12A 
 

Cel12A is a GH family 12 endoglucanase. CEL12A  is known to have a molecular 

weight around 25 kDa and a pI of 7.5 (Hakansson, Fagerstam, Pettersson, & Andersson, 

1978; Ulker & Sprey, 1990). The pH optimum for CEL12A  was found to be  5.8 and it  

was shown to exhibit its optimal temperature at around 52 °C (Ulker & Sprey, 1990). 
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CEL12A is known to have no CBDs and it is known to be sparsely glycosylated . The 

active site residues were  found to be E116 and E200 (Okada, Mori, Tada, Nogawa, & 

Morikawa, 2000). The crystal structure of CEL12A is shown in Figure 2.  CEL12A is  

produced in very little quantities by T. reesei (less than 1%).  Nakazawa et al. expressed 

egl3 cDNA in E. coli (Nakazawa, et al., 2008) and performed directed evolution 

experiments using error prone PCR on the recombinant enzyme (Nakazawa, et al., 

2009).  Stability and the specific activity of the enzyme was found to be enhanced by 

directed evolution. The pH stability experiments of the wild type CEL12A and mutant 

CEL12A have indicated that directed evolution has broadened the pH range of the 

enzyme. 

 

 
Figure 2: 1H8V, the crystal structure of endoglucanase III (Cel12A) from Trichoderma 
reesei (prepared with VMD). 

 

1.1.2. Cellobiohydrolases (CBH) (exo-1,4-β-glucanase, 1,4-β-D-glucan 
cellobiohydrolase, EC 3.2.1.91) 

 
Cellobiohydrolases are exocellulases that hydrolyze the cellulose chains from the 

ends releasing cellobiose as the end product. T. reesei has two CBHs. CBH I splits 

cellobiose from the reducing end and CBH II from the nonreducing end (Heikinheimo 

& Buchert, 2001).  

 
Structural studies revealed that CBH I core domain contains a 40 A° long tunnel 

shaped active site along the enzyme molecule. A model for cellulose hydrolysis by 

CBHI was shown in Figure 3. The tunnel shaped active site explains the high affinity of 

CBHs to crystalline cellulose during the progressive catalytic cycles. This also explains 

the processivity seen in CBHs. The loops present on the surface of CBH allows the 
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extricated cellulose chain from adhering back to the crystalline cellulose. Moreover, 

since the crystalline cellulose is the highly ordered one, it can fit easily into that tunnel 

whereas amorphous cellulose having a more loose structure can not easily fit to the 

same cavity. Figure 4 indicates the three dimensional structure of CBH I from T. reesei. 

CBH I has a retaining mechanism of hydrolysis whereas CBH II has inverting 

mechanism (Sandgren, et al., 2005). 

 

 
Figure 3: Molecular model showing cellulose hyrolysis by CEL7A.  N-linked 

glycosylation is shown in blue color and O-linked glycosylation is endicated with 
yellow color. Cellulose molecule is shown in green. 
(http://www.nrel.gov/biomass/images/cbh1.jpg) 

 

 
Figure 4: 1CEL, the crystal structure of the catalytic core of cellobiohydrolase I (Cel7A) 
from Trichoderma reesei (prepared with VMD) (Divne, et al., 1994).  

 

1.1.3. β-glucosidase 
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β-glucosidases also called cellobiases are responsible for the hydrolysis of 

cellobiose produced by CBH enzymes into glucose. The function of β-glucosidase is 

very important. It is known that CBH and EG are inhibited by cellobiose (Gruno, 

Valjamae, Pettersson, & Johansson, 2004). So the main function of the β-glucosidase in 

the cellulase system is to overcome the product inhibition of CBH and EGs (Lenting & 

Warmoeskerken, 2001). The three dimensional structure of T. reesei β-glucosidase 1 

has not been solved yet. 

 
There exists a strong synergism between cellulase components. The types of 

synergisms reported upto now are endo-endo, endo-exo, exo-exo, endo-exo-glucosidase 

exo/endo-glucosidase. However, endo-exo synergism is the most extensively studied 

one. There is also an intramolecular synergy between the CBD and core catalytic 

domains. The degree of synergism is different for each type of substrate. For example, 

endo-exo synergism is mostly pronounced for the degredation of the crystalline 

cellulose. Degree of synergism was found to be most for cotton and then Avicel and 

least for acid swollen amorphous cellulose (Zhang & Lynd, 2004). Figure 5 shows the 

synergistic action of cellulases on cellulose. In this synergism, endogluconases adsorb 

to the cellulose microfibrils and start to make internal cuts in the cellulose chain. Then 

cellobiohydrolases start the hydrolysis from the newly created chain ends and CBHs 

hydrolyze the cellulose chain processively. This combined action increases the 

efficiency and activity of the whole cellulase system with respect to the enzymes acting 

alone.    
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Figure 5: Endo-exo synergism between endogluconases and cellobiohydrolases during 
cellulose hydrolysis (Heikinheimo, 2002). 

 

1.2. Biopolishing 
 

Biopolishing also known as biofinishing refers to the removal of the cellulose 

fibrils and microfibrils protruding from the surface of the fabric or fibers by the action 

of cellulases. These fibrils and microfibrils are termed as fuzz. These loose microfibrils 

and fibrils tend to agglomerate on the fabric surface. These loose agglomerations are 

called pills. Pills are formed during fabric processing in the production plant, washing 

and/or wearing. The mechanical action provided by the friction of the fabrics during 

wearing causes pill formation. There is an increasing demand on the use of cellulases in 

the textile industry for the removal of pills  and fuzz formed on the surface of the fabric. 

Enzymatic treatment provides fabrics with 

 
• better surface properties and look 

• improved hand properties 

• improved drapeability (ability to hang or stretch out loosely) 

• increased brightness 

• reduced pilling and pilling tendency 

• increased softness compared to the conventional softeners 

 
Biopolishing involves the enzymatic treatment of the cellulosic fabrics such as 

cotton, linen, rayon and Lenzing’s Lyocell and viscose  with cellulases that eventually 

leads to the weakening of the fibers protruding from the surface of the fabric and the 

removal of the weakened fibers with mechanical action. The tendency for the formation 

of pills during wearing and washing is minimized since the protruding fibrils are 

removed by biopolishing. The biopolishing process was patented in 1993 by Videbaek 

and Andersen (Videbaek & Andersen, 1993) and it is mainly designed to improve fabric 

quality. 

  
Since biopolishing is an enzymatic process it can be carried out during the wet 

processing stages. It is mostly performed after bleaching before dyeing. After bleaching, 

the fabric becomes cleaner and more hydrophilic. So it becomes more prone to attack by 

cellulases. Biopolishing is not performed after dyeing since there is risk of color fading 
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and the chemical content of the dyes can reduce the performance of the enzymes by 

interfering with them. Direct and reactive dyes have been known to have an inhibitory 

effect on cellulases. 

  
Biopolishing is mostly performed in machines such as a jet-dryer or winch. 

Enzyme dosage is a very important parameter for having the desired effect. The dosage 

was determined as a percentage of the garment weight. Usually, 0.5-6 % enzyme over 

fabric weight is used by the manufacturers.  Process parameters such as pH, temperature 

and duration is determined according to the properties of the cellulase enzyme to be 

used. Generally the process is performed at pH 4.5-5.5, temperature between 40-55 ºC 

for 30-60 minutes and the enzyme is inactivated usually by increasing the temperature 

above 80 °C or pH above 10. Soda ash is used for the pH adjustments. 

 
Many aspects of  cotton biopolishing with cellulases were studied. For example, 

Miettinen-Oinonen et al. developed different cellulase formulations (CBH I, CBH I and 

II, EGII, EGI and II enriched and wild type) by genetic engineering and applied these 

on the biofinishing of cotton fabrics (Miettinen-Oinonen, et al., 2005). They found that   

EGII enriched and EG enriched cellulase formulations improved the surface appearance 

more than CBHI, CBHII and CBH enriched cellulase formulations. All the pilling 

values were better than the wild type and CBHII was found to be the most effective 

throughout all CBHs. The pilling values for EGII enriched cellulase formulation was 

4.3 and for CBHI enriched cellulase and wild-type cellulase pilling values were 2.3 

where a pilling value of 5 indicates no pills and 1 indicates intense pilling. 

 

Although there are many studies on the biopolishing of cotton fabrics, there are a 

few on the biopolishing of the regenerated cellulose fabrics such as Lyocell and viscose. 

Use of cellulases in biopolishing of viscose was studied by Ciechańska et al. 

(Ciechańska, Struszczyk, Miettinen-Oinonen, & Strobin, 2002).  Different formulations 

of cellulases (EGII, CBHI and total cellulase enriched with EGII) and a commercial 

cellulase (Econase CE, Rohm Enzymes Inc.) from T. reesei were applied on two types 

of viscose woven fabrics. The  microscopic properties of the fabrics and residual fibers 

were analyzed, but the pilling values or pilling tendencies were not evaluated. It was 

found that use of  the commercial enzyme removed most of the microfibrils and fuzz 
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protruding from the surface of the viscose woven fabric whereas the purified 

components did not improve the surface of the viscose woven fabric.  

 

According to our knowledge, there are no studies on the biopolishing of knitted 

viscose fabrics and their pilling values upon enzymatic treatment. Liu et al. analyzed the 

effects of different commercial and experimental cellulase preparations (commercial 

multicomponent acid cellulase and monocomponent acidic endogluganase, 

experimental EG enriched cellulase) on cotton interlock (type of a stretchable fabric) 

knitted fabric (J. Liu, et al., 2000) (cited in (Heikinheimo, 2002)). According to their 

results and interpretation, cellulases were found to have different selectivities when 

their ratios of pilling to bursting strength, their sensitivities to liquor ratio and 

mechanical agitation created by the equipment, fiber types were considered. Kumar et 

al. suggested that EG enriched cellulases had some advantegous properties such as 

improved hand compared to total cellulase preparations (Kumar, et al., 1997). 

 

One of the problems encountered during biopolishing is the loss of fiber or fabric 

strength as a result of the aggressive action of the enzymes. This problem is 

predominantly seen in the biofinishing of lyocell and viscose fabrics.  These problems 

are solved using different formulations of cellulases (Kumar, et al., 1997).Viscose 

fabrics’ tensile strength is known to be lowered when it is wet. This poses an important 

problem since most of the textile processes are wet processes. Moreover, aggressive 

cellulases are used in most of the processes. There are commercial cellulase 

preparations suitable for lyocell biofinishing and most of them are also suggested for 

biofinishing of viscose fabrics. But to our knowledge there are no specific commercial 

cellulases for viscose and the ones that are used for lyocell, cotton are insufficient for 

the removal of the pills on viscose (especially, viscose knitted fabric).        

1.3. Cellulose and Viscose  
 

Cellulose is an unbranched polymer of β-1,4-linked glucose molecules. Plants are 

the only producers of cellulose. It is the most abundant polymer on earth. The glucose 

units forming the cellulose chain are in six membered pyranose ring. There forms an 

acetal linkage between the C1 of one pyranose ring and C4 of the next pyranose ring. A 

single oxygen atom joins the two pyranose rings. In the formation of an acetal, one 
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molecule of water is lost when an alcohol and a hemiacetal reacts. That is why the 

glucose units forming the cellulose polymer are also called anhydroglucose units. 

 
 The spatial arrangement of the acetal linkages are very important in determining 

the characteristics of the cellulose molecule. With the formation of pyranose ring, there 

exists two possibilities for the configuration. The hydroxyl group present on C4 can 

approach the C1 hydroxyl group from both sides. This results in two different 

stereochemistries. If the C1 hydroxyl group is on the same side with C6 hydroxyl group, 

the configuration is called the α, if they are on the opposite sides the configuration is 

called the β. Cellulose is known to be in β configuration and is a poly[β-1,4-D-

anhydroglucopyranose]. In β configuration all the functional groups (hydroxyls) are in 

equatorial positions which means they protrude laterally from the extended molecule. 

These protruding hydroxyl groups are readily available for hydrogen bonding 

(interchain and intrachain hydrogen bonding are observed). Moreover, inter and 

intrachain H-bonding and Van der Waals interactions force the cellulose chains into a 

parallel alignment and finally to an ordered crystalline structure. This property allows 

the chain of cellulose to extend in a straight line and makes cellulose a good fiber 

forming polymer by giving tensile strength along the fiber axis. Hydrogen bonding 

causes the formation of highly ordered crystal structure. This highly ordered crystalline 

regions are thought to be intruded with less ordered amorphous regions (Zhang & Lynd, 

2004). The interchain hydrogen bonds in the crystalline regions gives the fibers their 

strength and insolubility. In the less ordered regions the cellulose chains are more loose 

and further apart as a result. This enables the hydroxyl groups to form hydrogen bonds 

for example with water molecules and causes these regions to absorb water. On the 

other hand, amylose  has  the α configuration, C1 oxygens are in α configuration . This 

causes the formation of the linkages between the adjacent glucopyranose residues to be 

in axial positions and this forces the amylose chain to assume a helical structure 

maintained by interchain hydrogen bonds. Since helical structure is not proper for fiber 

formation, starch is not a suitable fiber-forming molecule.       

 
 Figure 6 indicates the repeating unit of a cellulose molecule. The repeating unit 

of cellulose is the anhydrocellobiose. Cellobiose is formed from two identical but 180° 

rotated anhydroglucose units. This introduces the symmetry to the cellulose molecule 

since there are equal numbers of hydroxyl groups on each side of the molecule.  



31 
 

 

Cellulose

n - 2

HO

O

CH2OH

OH

O
CH2OH

OH

O

O

HOCH2OH

OH

HO

O

HO

O OH

O

HO
OH

CH2OH

 

Figure 6: Repeating unit of a cellulose molecule (Zhang & Lynd, 2004). 

 
Researchers have been working on the production of artificial silk from cellulose 

by forming cellulose derivatives for years. These researches introduced two commonly 

used routes for the production of fibers: acetate and xanthate esters. Cellulose acetate is 

a cellulose derivative and soluble in solvents such as acetone and can be spun into 

fibers. When cellulose is exposed to strong alkali and then treated with C2S, xanthate 

esters of cellulose are formed. Cellulose xanthate is soluble in alkali (aq.) and from this 

solution filaments and films can be formed. Cellulose xanthate process is the basis of 

viscose rayon production (Brown, 1982).     

 
Viscose is a regenerated cellulose fiber and it has a high tenacity and high 

extensibility. It is manufactured from cotton linters or from cellulose obtained from 

wood pulp. Viscose process requires many steps. Viscose fabrics are less strong than 

cotton fabrics. Viscose has a very low mechanical strength especially when it is wet.  

 
Viscose is composed of both amorphous and crystalline cellulose with different 

ratios. The viscose fiber consists of a core surrounded by the mantle, of which 

crystalline and amorphous cellulose content differs (Figure 7). The crystalline regions in 

the mantle are smaller and distributed homogeneously throughout the fiber and the core 

region contains a disordered network formed from bigger crystallites seperated by big 

amorphous regions. The outer region is more ordered and rigid than the core region and 

accounts for the most of the tensile strength. 
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Figure 7: Cross-section of a viscose fiber (Lenzing Viscose® 2,8 dtex) and its schematic 
representation. 

 
It is known that amorphous cellulose is more prone to attack by cellulases than 

crystalline cellulose. Crystalline cellulose is more rigid and gives tensile strength along 

the fiber axis whereas amorphous cellulose is mainly responsible for the flexibility. The 

loss of tensile strength is most probably due to the loss of highly ordered crystalline 

structure  by the action of cellulases (Lenting & Warmoeskerken, 2001).  

1.4. Protein Engineering 

Protein engineering studies have begun in the early 1980s. Chemical modification 

methods or genetic methods are used to modify the structure of a protein in order to 

alter its function, activity or stability.  This concept uses interdisciplinary approaches, 

hybrid methods such as use of X-ray crystallography, DNA modification techniques, 

computer modelling, artificial gene synthesis etc. to achive protein modification 

(Bornscheuer & Pohl, 2001; Carter, 1986). Application of protein engineering methods 

to enzymes has been gaining importance for the last three decades since enzymes are 

used in many industrial applications. Developments in the area of genetic manipulation 

allowed researchers to produce those enzymes in homologous or heterologous hosts in 

larger amounts. Many of the industrial processes still need enzymes with high chemo-

regio and stereoselectivity and stability. As a result, screening  and production of 

enzymes with novel properties that can fulfill the needs of these industrial processes  is 

becoming an important issue. This can be achieved through screening of environmental 

samples and culture collections but high throughput screening methods are needed and 

this method may not always yield  a suitable enzyme. Tailor made biocatalysts can be 

designed from wild type enzymes via protein engineering using rational design 

(computer-aided molecular modeling and site-directed mutagenesis) or by directed 
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evolution of these enzymes (Bornscheuer & Pohl, 2001; Schmidt, Bottcher, & 

Bornscheuer, 2009; Shao & Arnold, 1996). 

1.4.1. Rational Design of Proteins 

Rational design of proteins involves  computer aided molecular modelling and site 

directed nutagenesis of the protein of interest. Computer assisted modelling of 

biocatalysts have been gaining importance for understanding the underlying physical 

basis of the structure-function relationships of biological macromolecules. For the last 

two decades, computer simulation methods have been applied to structural and dynamic 

studies of many proteins as well as understanding the mechanisms of protein folding 

and unfolding (Daggett, 2006; De Mori, Meli, Monticelli, & Colombo, 2005; Gu, 

Wang, Zhu, Shi, & Liu, 2003; Karplus & Sali, 1995; H. L. Liu, Wang, & Hsu, 2003) 

and recently to the design of enzymes with improved or specific properties (Huang, 

Gao, & Zhan, 2011) or design of protein inhibitors (Lameira, Alves, Tuñón, Martí, & 

Moliner, 2011).  

Molecular dynamics (MD) is a computer simulation technique that explores  protein 

dynamics in atomic detail (Adcock & McCammon, 2006).  Generally all-atom level 

simulations with longer time scales and higher resolution are  preferred in MD 

simulations since analysis of these give more elaborate information about the energetics 

and structure of a protein at different temperatures (Beck & Daggett, 2004; Mark & van 

Gunsteren, 1992).  This method, when well designed, can  provide detailed information 

about the protein under study (van Gunsteren & Mark, 1992a, 1992b). We now have a 

deeper understanding about the concept of unfolded proteins (Floriano, Domont, & 

Nascimento, 2007). The concept  has transformed into a more complex state other than 

mere unfolding of a polypeptide chain into an extended conformation. The current view 

states  the unfolded state as an ensemble of partially folded conformers of the protein 

and  the denaturing conditions determine the extent of unfolding (Floriano, et al., 2007; 

Hung, Chen, Liu, Lee, & Chang, 2003). An increase in temperature results in increased 

intramolecular motions,  which in turn causes protein unfolding (H. L. Liu & Wang, 

2003a, 2003b). MD simulations of proteins are currently restricted to microseconds 

(Klepeis, Lindorff-Larsen, Dror, & Shaw, 2009) due to the large computational 

demands of such simulations. In reality, it has been estimated that half-time required  

for most proteins for folding is more than 1 millisecond. The rate of  unfolding 



34 
 

increases with increased temperatures and it is known that at 225 °C, most proteins 

unfold in less than 1 nanosecond.  MD simulations are generally performed at high 

temperature because of the  large time scales needed for modelling unfolding or folding 

of proteins (Fersht & Daggett, 2002). It is hypothesized that  use of high temperatures in 

simulations  did not change the overall unfolding pathway but just accelerates the 

kinetics of unfolding (Daggett, 2006; Day, Bennion, Ham, & Daggett, 2002). 

Additionally, information gathered through application of molecular mechanics 

simulations can be used to determine the possible sites for directed mutagenesis and the 

effect of  those mutations on the stability of the protein residues. Baysal and Atılgan 

(2001) introduced a new molecular mechanics approach that involves use of 

perturbation response theory to study residue stabilities of proteins in a given 

conformation (Baysal & Atilgan, 2001). In this approach,  a perturbation is induced in 

the form of a displacement on a selected residue of the energy minimized protein 

followed by energy minimization. The displacement of each residue was recorded in a 

perturbation response matrix and the stabilities of each residues are calculated from that 

matrix. They have shown that residue stability had arisen as a  tool reflecting the 

character of the response.  By introduction of such perturbations, residues that confer 

stability and instability to the protein could be identified.  

The information about the protein of interest gathered through molecular 

simulations are used for  designing and construction of mutants of the protein with 

desired properties. Mutations are introduced to DNA encoding these proteins via site 

directed mutagenesis (Carter, 1986) and  computer simulations of these mutants are also 

performed to evaluate the effect of those mutations on the protein structure. After some 

random mutagenesis experiments, the  mutants with desired properties can be subjected 

to computer simulations to uncover the the effect of such mutations on the structure and 

function (Bornscheuer & Pohl, 2001; Shao & Arnold, 1996). 

1.4.2. Directed Evolution (Molecular Evolution) 

Directed evolution aka molecular evolution  is a very powerful technique which 

involves either random mutagenesis of a gene of interest or recombination of the gene 

fragments. the variants produced by either mutagenesis  methods are usually screened 

with high throughput methods to identify and select the desired variant.  Directed 

evolution is developed in 1996 by Francis Arnold (Arnold, 1996) . Arnold used repeated 
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cycles of mutagenesis and the power of natural selection to force the evolution of the 

selected protein  into a protein with the desired properties. In this method, random 

mutagenesis is applied and after each cycle of random mutagenesis, selection pressures 

are applied and only a single variant exhibiting desired improvements is selected and 

the random mutagenesis procedure is repeated on this variant . This mutagenesis and 

selection cycles are repeated until obtaining a mutant with desired properties. There are 

many examples of protein engineering by directed evolution in the literature.  You and 

Arnold (1996) used repetitive rounds of error prone PCR to introduce random mutations 

and screened the resultant mutant libraries of subtilisin E protein of Bacillus subtilis. 

They obtained a mutant where the total catalytic activity of subtilisin E is significantly 

enhanced in a non-natural environment, aqueous dimethylformamide (You & Arnold, 

1996).  

1.5. Crosslinked Enzyme Aggregates (CLEA) 
 
Immobilization of biomolecules on solid supports and crosslinking of enzymes 

have been gaining importance over the last 40 years. The developments in the biosensor 

technology and in the enzyme technology enable the researchers to find different 

supports and crosslinking methods suitable for different applications. Crosslinking of 

biomolecules such as enzymes offers many advantages. Most important ones are 

increased stability and durability, multiple use, longer half-life.  

 

 No support material is used for crosslinking. Instead, enzymes are crosslinked to 

each other. Crosslinking of the enzymes causes their aggregation and helps their 

recovery from the solution. Mostly, two types of crosslinkers are used in this method. 

Homobifunctional crosslinkers are the ones that bind to the same reactive groups on 

both sides and heterobifunctional crosslinkers are the ones that have the capability of 

binding to different reactive groups on each side. Multifunctional crosslinkers are also 

available for use. Glutaraldehyde is a homobifunctional crosslinker and forms 

oligoglutaraldehyde in solution (Figure 8).   
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Figure 8: Crosslinking of  a protein with a homobifuctional crosslinker, glutaraldehyde 
(Kiernan, 2000). 

 
It is known that glutaraldehyde reacts with ε-amino groups on Lysine residues and 

also N-terminal amino groups (Richards & Knowles, 1968). This reaction is through the 

double bonds of its oligomeric form. It can not be a single bond since it is very stable 

and formation of a simple Schiff-base can not provide that stability. Moreover, freshly 

distilled solutions of glutaraldehyde indicates lower reactivity on proteins. 

Glutaraldehyde is widely used in crosslinking because of technical ease and versatility 

of its application.     

 
Many studies propose use of crosslinking agents to enhance stability of the 

enzyme but they seem to have adverse impact on the activity since they target certain 

types of aminoacids that may also exist in the vicinity of the active site (Busto, Ortega, 

& Perez-Mateos, 1997; Yuan, Shen, Sheng, & Wei, 1999). Crosslinking with agents 

like glutaraldehyde is known to reduce enzyme activity due to unspecific binding to 

Lysine residues (Busto, et al., 1997). 

 
 Crosslinked enzymes form a large, three-dimensional complex  structure. Since 

the crosslinking attaches all the enzymes together, reduced activity or stability due to 

the steric hindrance is expected.  Introduction of spacer molecules or proteins such as 

Bovine Serum Albumin (BSA) may be a solution to the close proximity problems or 
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creation of hotspots for directed crosslinking away from the active site may be another 

way to address this problem. 

 
  Nowadays, the activity losses as a result of crosslinking is overcome by the 

introduction of Crosslinked enzyme crystals (CLEC) and Crosslinked enzyme 

aggregates (CLEA) technologies. Since it is hard to get enzymes as crystals CLEC is 

not used very much but CLEA technology is much more simple and proven to cause 

hyperactivation of glucose oxidase, laccase, lipase enzymes (López-Serrano, Cao, van 

Rantwijk, & Sheldon, 2002).  

 
 CLEAs are prepared by precipitating the enzyme molecules by a polar 

precipitant solution such as ammonium sulphate, ethyl lactate, PEG, acetone, tert-butyl 

alcohol etc. and then crosslinking these aggregates with a suitable crosslinker (mostly 

glutaraldehyde). It is shown that formation rate of aggregates increases as the polarity of 

the solvent increases. Use of CLEAs is a universal and cheap alternative to other 

crosslinking methods because pure proteins with enhanced activity and having higher 

protein ratios per volume is reached.  
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CHAPTER 2 
 
 
 
 
 

2. PURPOSE 
 

Viscose fabrics are more prone to pilling than any of the other fabric types. There 

are no cellulase formulations that effectively remove the microfibrils that cause pill 

formation on the surface of the viscose fabrics. Aggressive action of the cellulases 

causes loss of fabric strength due to the damage in the highly ordered crystalline regions 

of the viscose fibers. One solution to this problem is the design and production of 

enzymes with increased molecular weights so that aggressive action of the cellulases 

would be limited to the fabric surface. The aim of this study is the design and  

production of cellulases and cellulase formulations that can alleviate the problem of 

pilling and loss of tensile strength  in viscose fabrics and evaluation of their effects on 

viscose fabric properties. For this purpose, throughout this study, both protein 

engineering and chemical modification methods were used seperately and in 

combination to obtain enzymes with increased molecular weights.  
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CHAPTER 3 

 

 

 
 

 
3. MATERIALS AND METHODS 

 
3.1. Molecular Modeling 

 
3.1.1. Molecular Models 

 
A novel molecular mechanics approach introduced by Baysal and Atılgan was used 

to  determine the possible loop insertion regions.  This approach involves the use of  

perturbation response theory. Stabilizer motifs on EGI were identified using MM 

simulations with the application of perturbation response theory and flexibility analysis 

of EGI with FIRST (Floppy Inclusions and Rigid Substructure Topography) software 

now located in Flexweb (http://flexweb.asu.edu/software/first/). Two potential loop 

insertion sites were determined based on these data. These sites were between 112th and 

113th residues and between 155th and 156th residues.   

 
All loop models were constructed using Modeller 8v2 (Sali & Blundell, 1993) 

using endoglucanase 1 native 3-D structure (PDB code: 1EG1) as a template.  Ten 

aminoacid long loops composed of four different compositions of   Lysine and Glycine 

residues were introduced into two flexible regions of EGI. Glycines were introduced for 

spacing and flexibility, Lysines were introduced as the crosslinking spots.  L1, L2, L3, 

L4 were introduced between 155th and 156th residues and L5, L6, L7 were introduced 
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between 112th and 113th residues of the protein.  L1 and L5,  L2 and L6 , L3 and L7 

have the same loop sequence and composition.   

 
3.1.2. Molecular Dynamics (MD) Simulations 

 
MD simulations were used to analyze the effects of the proposed mutations (L1-

L7) on the native enzyme structure (EGI). NAMD/VMD software package was used for 

MD simulations (Phillips, et al., 2005). Simulations were performed inside 6 A° 

waterboxes under periodic boundary conditions and they were run at different 

temperatures: 300 °K, 400 °K, 450 °K, 500 °K in order to see the effect of temperature 

on the structure of the enzymes. 2 fs timestep was used and data collection was done 

every 2 ps. Structures were minimized 10000 steps using conjugate gradient (CG) 

method before the simulations. 

 
Simulations were performed at higher temperatures to speed up the unfolding 

kinetics. Unfolding behavior of the enzyme was reflected by the change in root mean 

squared deviation (RMSD)  and radius of gyration (RGYR) values with the increase in 

temperature. These values were calculated from the trajectory files using VMD and 

Carma (Glykos, 2006) programs, respectively.  Both RMSD and RGYR are indicators 

of the degree of dissimilarity for the structures at the end of the simulation at the 

simulation temperature with respect to their initial structures. RGYR indicates how 

much the structure spreads out from its center. Size and shape were both taken into 

account in RGYR calculations.  Shorter simulations (4 ns) were performed for EGI and 

its all loop mutants. Best loop mutant (EGI_L5) was selected for further detailed 

analysis.  In order to confirm the unfolding behavior of the native and mutant enzyme 

properly, longer simulations (10 ns) were carried out at 300 °K and 450 °K. Effect of the 

proposed mutation on the active site was analyzed by calculating active site residue 

distances from trajectory files with VMD programme.  

 
3.1.3. Molecular Mechanics (MM) Simulations 

     
Perturbation response analysis by MM simulations method developed by Baysal and 

Atılgan was also used to  study the effect of loop insertion on stabilizer motifs of the 

enzyme. The native enzyme EGI is compared to its loop inserted mutant EGI_L5 

utilizing MM procedure. 10000 step initial minimization was applied to both enzymes 

with CG method until the gradient tolerance was 0.001. Cα of each residue was pulled 
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along a distance. New coordinates were fixed.  The energy of the system was minimized 

for 400 steps more with CG method. This was repeated for each residue in the 

sequential order for the model protein.The pulling was used as the perturbation and the 

displacement of each residue in response to such perturbation is recorded in a 

perturbation-response matrix L.   

 
Protein stability is defined by                                where λi is the ratio of the total 

amount of change that may be induced on the same residue by equal amounts of 

perturbations inserted in the rest of the protein , to the overall ability of a given residue 

to induce change in the rest of the protein. The free energy associated with the residue 

stability is defined by                           (Baysal & Atilgan, 2001).  From this perspective, 

idle loops will have ∆Gλ < 0, the residues that contribute to stability and function will 

have ∆Gλ > 0, functional loops will have ∆Gλ ≈ 0, hydrophobic core residues that have 

insignificant  contributions to stability or function will also have ∆Gλ ≈ 0. ∆Gλ /RT 

values of each residue were calculated from perturbation-response matrices of EGI and 

EGI_L5. The effect of the proposed loop insertion on the stability of the active site of  

the enzyme was analyzed.   

 
3.2. Microorganisms, enzymes and chemicals 

 
 Escherichia coli Top10 F was used as host for the propagation of the vectors and 

subcloning. P. pastoris KM71H (aox1::ARG4, arg4) (Invitrogen, San Diego, USA) was 

used for recombinant protein expression. pPICZαA vector (Invitrogen, San Diego, 

USA) was used for  cloning and protein expression. Pfu Polymerase and Rapid Ligation 

Kit (Fermentas) were used for cloning purposes. Taq Polymerase (Qiagen) was used for 

colony PCR.  All of the contained chemicals were of analytical grade.   

 
3.3. Site directed mutagenesis 

 
Overlap PCR extension method was applied to introduce the loop mutation. Overlap 

PCR extension primers for preparation of pPiczαA_egl1_L5 (Figure 9, Table 2)  and 

pPiczαA_egl1_BC (Figure 10, Table 3) were designed according to literature (Vallejo, 

Pogulis, & Pease, 1994).  L5 loop mutation was introduced between 112th and 113th 

aminoacids. The fidelity of the constructs was confirmed by sequencing. 
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                  Primer 2 

Primer 1      

                       

 

 

                                  Primer  3                     Primer 4 

 

      
Figure 9: Overlap extension PCR schematics for egl1_L5.  egl1_L5 mutant gene 
(bottom drawing) prepared from egl1s ( top drawing). Overlap extension primers were 
denoted with numbers. Added loop domain, L5 was shown as flashes at the end of each 
overlap extension primer.  

   

Table 2: Overlap PCR extension primers designed for egl1_L5 gene. 

. Primer Sequence Notes 
Primer 1 5’CCGGAATTC CAGCAACCGGGTACCAGCACC 3’ EcoRI restriction 

site 
Primer 2 5’ACCTTTCTTACCCTTCTTCTTACCCTTCTTGTCCA

AGTACAATCTTG 3’ 
L5 sequence 

Primer 3 5’AAGAAGGGTAAGAAGAAGGGTAAGAAAGGTTCC
GACGGTGAATACGGT 3’ 

L5 sequence 

Primer 4 5’CCGTCTAGA GCAAGGCATTGCGAGTAGTAG 3’ XbaI restriction 
site 

 

Catalytic Domain Linker CBD 

L5 
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Figure 10: Overlap extension PCR schematics for egl1_BC.  egl1_BC mutant gene 
(bottom drawing) prepared from egl1s (top drawing). Overlap extension primers, 
overlapping regions were denoted with letters. Added overlapping regions were shown 
as flashes at the end of each overlap extension primer.  

 
Table 3: Overlap PCR extension primers designed for egl1_BC gene. 

 Primer Sequence Notes 
Primer a 5’ TCCATCCTGTCAGCAACCGGGTACCT  3' LC2  region 
Primer b 5’GGGCCATCCAGAATTCCAGCAACCGGGTAC

CT  3' 
EcoRI restriction site 

Primer c 5'  GCAATGCCTT CCACCACCACCACCTG  3' BL1 region 
Primer d 5'CGTCATCGGCTCTAGAAGCAGTAGAGTTTGT

A  3' 
XbaI restriction site 

Primer e 5' CCGGTTGCTGACAGGATGGAGAGGAA  3' LC1 region 
Primer f 5' GTGGTGGTGGAAGGCATTGCGAGTAG  3' BL2 region 
Primer g 5' CGTCATCGGCTCTAGA  3' XbaI restriction site  
Primer h 5' GGGCCATCCAGAATTC  3' EcoRI restriction site 

 

3.4. Cloning 
 
A codon optimized (for Pichia pastoris) endoglucanase 1 synthetic gene (egl1s) 

carrying EcoRI and XbaI restriction sites on each arm was obtained from GeneART.  

Protein sequence of the synthetic gene is identical to Trichoderma reesei endoglucanase 

1 (GenBank accession no. M15665).  EcoRI and XbaI sites were added to the gene 

flanking regions. For cloning egl1, egl3, cbh1 and cbh2 genes, total RNA from   

Trichoderma reesei QM9414 strain was extracted using RNAeasy RNA isolation kit 

(Qiagen) according to the manufacturer’s instructions. cDNA was synthesized from 

b 

d 

g 

                 Catalytic Domain             Linker    CBD LC1 LC2 BL2 BL1 

 

a 
LC2 

Xba
I 

c 
BL1 

e LC1 

EcoRI 

f BL2 

h 
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total RNA using RT-PCR. EcoRI and XbaI sites were added to the gene flanking 

regions of egl1, egl3, PstI and NotI sites were added to the gene flanking regions of 

cbh1, EcoRI and NotI sites were added to the gene flanking regions of cbh2  during this 

RT-PCR reaction. The synthetic gene endoglucanase 1 (egl1s) and the native cDNA’s 

were double-digested with suitable restriction enzyme couples and ligated into suitable 

multiple cloning site of  pPiczαA (egl1s, egl1, egl3, cbh2) or pPiczαB (cbh1) vectors 

using Rapid Ligation Kit (Fermentas). All genes were subcloned in E.coli Top10 F or 

XL1-Blue cells.  E.coli cells were cultured on low salt LB plates in the presence of 25 

µg/ml zeocin. Zeocin positive colonies were selected and colony PCR with 5’ AOX (5´-

GACTGGTTCCAATTGACAAGC-3´) and 3’ AOX (5´-

GCAAATGGCATTCTGACATCC-3´) primers was performed. Colony PCR positive 

colonies were selected and recombinant plasmids were isolated using MiniPrep Kit 

(Qiagen).   Fidelity of the constructs were confirmed by sequencing. 

  
3.5. Transformation and Screening 
 
The recombinant plasmids and empty vector pPiczαA were linearized with either 

SacI or PmeI or BstXI before transformation according to their restriction sites. 

Prepared plasmids and their linearization sites were shown in Table 4. This process 

resulted in the stable integration of one or multiple copies of the linearized vector at 5’ 

AOX1 chromosomal locus of P. pastoris KM71H by homologous recombination. All 

the obtained transformants were Muts (slow methanol utilizing phenotype). Competent 

P. pastoris KM71H  cells were prepared according to a procedure combining chemical 

transformation and electroporation (Wu & Letchworth, 2004). ~1µg linearized 

recombinant plasmid was mixed with competent KM71H cells. The mixture was 

immediately transferred to a pre-chilled 0.2cm electroporation cuvette and incubated on 

ice for 5 minutes. About 1 ml of ice-cold 1M sorbitol was immediately added to the 

cuvette after electroporation. The charging voltage, capacitance, and resistance were 1.5 

kV, 25F, and 200 Ω, respectively. The transformation mixture was spread onto YPD 

plates containing 100 µg/ml zeocin. The plates were incubated at 30 °C until the 

appearance and growth of colonies (about three days). Zeocin positive colonies were 

selected and colony PCR with 5’ AOX and 3’ AOX primers was performed. Colony 

PCR positive colonies were selected. 
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Multicopy transformants were selected on BMM-agar plates containing blue colored 

Azo- carboxymethylcellulose (Azo- CMC) as a substrate. More active transformants 

expressing the enzyme were selected according to the relative radii of the clear zones 

around the colonies. When the enzyme was active, it degraded Azo-CMC and clear 

zones were produced around the colonies as a result of enzymatic hydrolysis.  Selected 

clones and their notations used in the research were shown in Table 4.    

 

      Table 4: Plasmid names and linearization sites for all genes. 

 
Plasmid 

Restriction Enzymes 
for Linearization 

 
Clones 

pPiczαA PmeI A4 
pPiczαA-egl1 SacI E12, X11 
pPiczαA-egl1n PmeI C5 
pPiczαA-egl1_L5 SacI D5 
pPiczαA-egl1_BC SacI F7, F8 
pPiczαA-egl3 SacI C13, Z10 
pPiczαB-cbh1 BstXI X3 
   

 

3.6. Copy Number Determination 
 

Copy number of egl1s and egl1 expression cassettes integrated into the Pichia 

pastoris was determined by quantitative real time PCR. SYBR Green PCR Master Mix 

(Fermentas) was used in a BioRAD iCycler according to the manufacturer’s 

instructions. Genomic DNA was extracted from stable transformants and 100 ng of 

genomic DNA was used as a template in the quantitative real time PCR reaction. 

Primers for the promoter region of AOX gene were used for quantitative real time PCR.   

Primers for Pichia pastoris ARG4 gene were used for normalization. It has been known 

that Pichia pastoris harbors only a single copy of ARG4 gene.  Following cycling 

parameters and primers were used for the amplification:  Forward ARG4 primer, 

5’ TCCTCCGGTGGCAGTTCTT 3’;  reverse ARG4 primer,  5’ 

TCCATTGACTCCCGTTTTGAG 3’;  forward AOX promoter primer, 

5’ACATCCACAGGTCCATTC 3’; reverse AOX promoter primer, 

5’GGTGTTAGTAGCCTAATAGAAG 3’. Initial denaturation at 95 °C for 10 min.; 40 

cycles of denaturation at 95 °C for 15 sec., annealing at 60 °C for 30 sec., extension at 

72°C for 30 sec.  

 
3.7. Small Scale Expression of recombinant Pichia pastoris strains  
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The colonies were inoculated into 50 mL BMG medium (100mM potassium 

phosphate, pH 6.0, 1.34%YNB, 4×10-5 % biotin and 1% glycerol) and grown (250rpm) 

at 30 °C overnight in 250 ml baffled shake flasks. When OD600 reached 10 units/ml, the 

cells were collected by centrifugation (3000×g, 5min). The cell pellet was resuspended 

in BMM medium (BMG with 0.5% (w/v) methanol instead of 1% glycerol) with a 

starting OD600 of 30 units/ml. The culture was grown for ~ 120 hours at 30 °C. 

Methanol was added to a final concentration of 10 g/L at every 24 hours. Cell culture 

supernatants were collected every 24 hours. 

 
3.8. Bioreactor Cultivations of  recombinant Pichia pastoris strains 

 
Pichia pastoris clones harboring EGI, EGIn, EGI_L5, EGI_BC, EGIII, CBHI, 

CBHII  were grown in a 7.5L fermenter (BioFlo 110, New Brunswick Scientific) with a 

starting volume of 2L at 28 °C and pH 5 with feed rates of 18 ml/h/L glycerol and 1-12 

ml/h/L methanol. EGI_BC subjected to three different fed-batch fermentations at pH 5, 

29 °C; at pH 7, 29 °C and at pH 5, 25 °C. Three different conditions were applied to   

prevent degradation of the product. Invitrogen Corp.’s fermentation medium recipe was 

used for fed-batch fermentations along with PTM1 trace metal solution.  Glycerol was 

used as the sole carbon source throughout glycerol batch and glycerol fed-batch phases 

of the fermentations. Methanol was used as an inducer of the AOX promoter during 

methanol fed-batch phase of the fermentations. Methanol levels were monitored using a 

specific methanol probe (Raven Biotech).Fermentation products were filtered, buffer 

exchanged and concentrated using Sartocon Micro and Ultrafiltration System 

(Sartorius-Stedim).  Sartocon Slice 200 HydroSart membranes with 0.45 micron cutoff 

and Polyether sulfone (PES) membranes with 100 kDa and 10 kDa cutoffs were used.  

Enzymes were either lyophilized after filtration or frozen at -20 °C for long-term 

storage. 

 
3.9. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Zymogram 

Analysis 
 
Collected cell culture supernatants were run on an SDS-PAGE gel with 5% stacking 

gel and 12% separating gel. About 15–20 µl of the supernatant was loaded into each 

well of the gel. After electrophoresis, the gel was stained with Coomassie Brilliant Blue 

R-250. For the zymogram analysis native SDS-PAGE was performed. The gels were 

washed with 2.5 % (v/v) TritonX-100- 50 mM sodium acetate solution at pH 4.8 three 
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times for 10 minutes.Then, the gels were washed with 50 mM sodium acetate buffer at 

pH 4.8 three times for 10 minutes. Zymogram analysis was performed using 4-MUC (4-

Methylumbelliferyl beta-D-cellobioside) as a substrate. Activity of the enzymes were 

visualized and documented under UV-light. After zymogram analysis, the gels were 

stained with Coomassie Brilliant Blue R-250. All gel photographs were documented 

using Gel-Doc (BioRad).  

 
3.10. Purification of Recombinant Proteins  

 
EGI, EGIn, EGI_BC and EGI_L5 were purified using regenerated amorphous 

cellulose (RAC) as an affinity chromatography matrix.  Batch affinity purifications of 

both enzymes were obtained. Hong et al.’s purification methodology was employed 

with slight modifications (Hong, Ye, Wang, & Zhang, 2008).  Avicel Ph105 was used 

for the synthesis of regenerated amorphous cellulose.  Purification was performed at 

room temperature. Recombinant cellulases were eluted with ethylene glycol and 

ethylene glycol was further removed and exchanged with 50 mM Sodium acetate buffer 

(pH 5) due to its interference with BCA protein assays by ultrafiltration through 10 kDa 

cutoff Vivaspin 500 membrane spin filters (Sartorius-Stedim).  

 
3.11. Protein Assays 

 

Protein concentrations were determined using BCA Protein Assay Reagent (Pierce) 

according to manufacturer’s instructions. Bovine serum albumin was used as the protein 

standard. 

 
3.12. Enzyme Assays 

 

All CMC activity assays were performed in triplicates with a standard deviation of 

below 10%.  All 4-MUC activity assays were performed in duplicates or triplicates with 

a standard deviation below 10%. 

 
3.12.1. Effect of Temperature on Enzyme Activity  

 

Activity of each enzyme at different temperatures (15°C -95 °C) were determined 

by 3,5-Dinitrosalicylic acid (DNS) method against  0.5 % CMC (w/v) in 50 mM 

sodium acetate buffer (pH 4.8) (Ghose, 1987). Each enzyme and substrate was 
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preincubated for 5 minutes at each assay temperature seperately. Enzyme and the 

substrate were incubated at the assay temperature for 10 minutes. Reducing sugars 

produced were measured at 550 nm. Glucose was used as a standard.  Residual enzyme 

activity was calculated by taking the maximum activity of the enzyme at the determined 

temperature as 100 %.  

 
3.12.2. Effect of pH on Enzyme Activity  

 

Activity of each enzyme at different pHs  (pH 3-7) were determined using 3,5-

Dinitrosalicylic acid (DNS) method against  0.5 % CMC (w/v) in different pH buffers 

for 10 minutes at 55 °C. Reducing sugars produced were measured at 550 nm. Glucose 

was used as a standard. Residual enzyme activity was calculated by taking the 

maximum activity of the enzyme at the determined pH as 100 %.  

 
3.12.3. 4-MUC Assays 

 

4-MUC assay was performed for fermentation products according to (Chernoglazov, 

Jafarova, & Klyosov, 1989). Fermentation samples were incubated with 0.5 mg/ml 4-

MUC in 50 mM sodium acetate buffer at pH 4.8. Kinetic analysis was performed at 25 

°C, 30 °C or 45 °C for 30 minutes. 4-Methylumbelliferone (4-MU) was used as the 

standard. Liberated 4-MU was measured with a fluorescence spectrophotometer with 

excitation at 363 nm and emission at 435 nm. 

 
3.12.4. Stability assays 

 

Enzyme stability was determined by first incubating each enzyme at 100 °C for 10 

minutes. Enzymes were then chilled on ice for 10 minutes. Standard CMC assay was 

performed to 100 °C incubated and unincubated enzyme samples at 55 °C and pH 4.8 

for 10 minutes. The stability of each enzyme was calculated with respect to its normal 

activity in the form of retained activity.  

 

  

 

Residual enzyme activity at 50 °C was determined by incubating both of the 

enzymes at 50 °C for 0h to 72h and assaying the enzyme activities against 1% CMC 
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(w/v) at 50 °C and pH 4.8 for 10 minutes.  Activity of the enzymes with no incubation 

(time 0) at 50 °C were taken as 100 %. At least two independent activity tests were 

carried out for each incubation. At each incubation time, recombinant enzymes were 

assayed in triplicates with a standard deviation below 10 %.  

 
Residual enzyme activity at 70 °C was also determined by incubating both of the 

enzymes at 70 °C for 0h to 2h and assaying the enzyme activities against 1% CMC 

(w/v) at 50 °C and pH 4.8 for 10 minutes.  Activity of the enzymes with no incubation 

(time 0) and assayed at 50 °C were taken as 100 %. Enzyme activity was determined in 

triplicates with a standard deviation below 10 %.  

 
3.13. CLEA Preparation 

 
3.13.1. CLEA preparation from commercial cellulase 

 

CLEA of Gempil 4L was prepared according to Schoevaart et al. with slight 

modifications (Schoevaart, et al., 2004; Sheldon, Schoevaart, & Langen, 2006). Acetone 

was used as the precipitant solution. 200 ml and 500 ml of the enzyme solution  was 

added to an  Erlenmayer flask with a magnetic stirrer bar (batch 2 and batch 3 CLEA). 

CLEA of Gempil 4L was prepared at room temperature with constant mixing. 1800 ml 

and 4500 ml of the precipitant solution containing glutaraldehyde as the crosslinker at 

pH 7.3 was added drop by drop to the enzyme mixture, respectively. The suspensions 

were stirred for 1 hour. The reaction was quenched by the addition of  200 ml and  500 

ml of 1M Tris  solution at pH 8, respectively.  The suspensions were vacuum filtered 

through 10 µm metal filter and washed with excess amounts of 0.1 M Potassium 

phosphate buffer at pH 7.3. As a final step, CLEA  particles of Gempil 4L were washed 

with acetone and dried overnight at room temperature.  Dried CLEA particles were 

ground using TissueLyzer (Qiagen) apparatus  for  1 minute at a frequency of 1/30 

(1/sec).  The ground CLEA particles were separated based on their sizes by further 

filtering them through metal filters of different sizes ( 10 µm, 25 µm, 33 µm, 45 µm, 77 

µm, 154 µm, 288 µm, 1980 µm).   

 
 

3.13.2. CLEA preparation from EGI and EGI_L5 
 

CLEA of EGI and EGI_L5 weren also prepared according to Schoevaart et al. with 

slight modifications (Schoevaart, et al., 2004; Sheldon, et al., 2006). Acetone was used 
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as the precipitant solution. 20 ml and 100 ml of the EGI_L5 solution  were added to   

Erlenmayer flasks with magnetic stirrer bars. CLEA of Gempil 4L was prepared at 

room temperature with constant mixing. 180 ml and 900 ml of the precipitant solution 

containing glutaraldehyde as the crosslinker at pH 7.3 was added drop by drop to the 

enzyme mixtures, respectively. The suspensions were stirred for 1 hour. The reactions 

were quenched by the addition of  20 ml and  100 ml of 1M Tris  solution at pH 8.  The 

suspensions were vacuum filtered through 10 µm metal filters and washed with excess 

amounts of 0.1 M Potassium phosphate buffer at pH 7.3. As a final step, CLEA of the 

recombinant enzymes were washed with acetone and dried overnight at room 

temperature.  Dried CLEA particles were ground using metal steel balls and vortexing. 

 
 

3.14. Enzymatic Biofinishing of Viscose Fabrics 
 

100 % viscose supreme (single Jersey) knitted fabric kindly provided by Denge 

Chemicals used for biopolishing. It had a fabric density of 137 g/m2. The fabric was 

bleached and primary fibrillation was performed. 100% viscose knitted fabric was used 

for biopolishing with CLEAs. 

 
Biopolishing of viscose fabric with enzyme samples was performed in shaker 

incubators under constant shaking (250 rpm) at 55 °C, pH 4.8 in 0.05 M NaOAc buffer 

for 2 hours in 1 L Erlenmayer flasks. Liquor ratio of 1:9 was used in all tests. A special 

plastic container with a embroidery hoop like apparatus was prepared for CLEA 

biopolishing experiments. This apparatus acted as a holder for the fabric. A liquor ratio 

of 1:50 was used with the apparatus and the container housing the apparatus was put in a 

shaker incubator for biopolishing under constant shaking (150 rpm) at 55 °C, pH 4.8 for 

2 hours. A hybridization chamber and its bottles were also used for biopolishing 

experiments under constant rotation (15 rpm) at 55 °C, pH 4.8 for 2 hours. 

 
180 µl of the commercial enzyme (Gempil 4L) was used  for biopolishing of 1 g 

viscose fabric in all experiments. Quantity of the modified enzymes and recombinant 

enzymes used for biopolishing were determined by using an activity equivalent of the 

modified or recombinant enzyme with respect to Gempil 4L. That is the fraction of the 

modified enzyme exhibiting the same activity as the native enzyme according to the 

CMC assay was used.    
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3.15.  Light Microscope and SEM Characterization 
 
Enzyme treated and untreated fabric samples were analyzed with a digital light 

microscope and their photographs were taken under two different magnifications (~15X 

and ~200X).  

 
SEM characterization of the enzyme treated, modified enzyme treated and 

untreated fabric and fibers was performed with Gemini Supra 35VP without coating and 

under low accelerating voltage (0.9 kV) and with a working distance of 4 mm using the 

Inlens detector .    

 
3.16. Pilling Test 
 
All the tests were performed in Denge Chemicals Physics Laboratory. Martindale 

2000 pilling machine was used at 125 to 2000 rpm. The reference photographs used 

were  EMPA Standart SN 198525 K3. The photographs were evaluated according to 

AATCC (Association for American Textile Chemists and Colorists) standards with eye 

examination. All the values are the weighted averages of the five measurements. For 

pilling measurements, a five-point evaluation system is used. 1 indicates intense pilling 

and 5 indicates no pilling.  

 
3.17. Bursting Strength Test 

 
Bursting strength tests for enzyme treated and untreated viscose fabrics were 

performed in James H. Heal testing machine according to AATCC. Quadruple 

measurements were taken for each sample fabric and the end values were the weighted 

averages of those.   
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CHAPTER 4 
 
 
 

4. RESULTS 
 
4.1. Modelling and production of Trichoderma reesei endoglucanase 1 and its 

mutant in Pichia pastoris 
 

4.1.1. Molecular Modelling 
 

Molecular dynamics simulations of all loop models constructed with Modeller 8v2 

were analyzed and RMSD(Root Mean Squared Deviation) and RGYR (Radius of 

Gyration)  of the simulated structures were calculated from trajectory files  as a function 

of simulation time. RMSD and RGYR of all loop mutants and EGI derived from 4 ns 

long MD simulations at 450 °K  were shown in Figure 11 and 12, respectively.  

 
According to RMSD analysis, EGI_L5 loop mutant was chosen as a candidate for 

MM and longer MD simulation studies because of its trajectory’s similarity to EGI 

structure during 4 ns of MD simulations. EGI_L5 exhibited slightly better properties in 

terms of RMSD in comparison to all other mutants in the last 3000 ps of MD 

simulations. At high temperature while rest of the structures’ RMSD from the original 

structure were increasing,  EGI_L5’s RMSD was lower than all other loop mutants at 

450 °K , meaning the loop insertion L5, rendered the enzyme more stable with respect 

to other loop mutations. RGYR of all loop mutants and EGI did not follow a similar 

pattern as the RMSD data. RGYR calculations indicated that on the overall, EGI and 

EGI_L2 structures were more compact than all other structures. But EGI_L2 structure 

performed poorly in terms of RMSD from its original structure and also with respect to 
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EGI. 10 ns long MD simulations of EGI and EGI_L5 at 300 °K (Figure 13) indicated an 

increase in the RMSD of EGI_L5 with respect to EGI as expected and at 450 °K (Figure 

11, small figure inside) the RMSD of Cα of EGI_L5 have exhibited a slight increase in 

comparison to EGI structure, thus a slightly more loose structure. At 300 °K both EGI 

and EGI_L5 structures have shown no signs of unfolding. Moreover, active site residue 

distances calculated from 4ns long MD simulations have exhibited that the distance 

between active site Glu205 (196 in original structure) and His221 (212 in original 

structure) residues have increased by 0.554 A° and the distance between active site 

Asp207 (198) and Glu210 (201) residues have increased by 0.21 A° on the average in 

EGI_L5 with respect to EGI. The distance between Asp207 (198) and His221 (212) was 

not affected at all.  Active site remained almost intact during 4 ns MD simulation for 

both structures (Figure 14).   Superimposed EGI and EGI_L5 structures (energy 

minimized) were shown in Figure 15.  

 
 

 
Figure 11: RMSD (A°) of EGI, EGI_L1, EGI_L2, EGI_L3, EGI_L4, EGI_L5, EGI_L6, 
EGI_L7 along simulation time (ps) during 4ns MD simulations at 450 °K. 
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Figure 12: RGYR (A°) of EGI, EGI_L1, EGI_L2, EGI_L3, EGI_L4, EGI_L5, EGI_L6, 
EGI_L7 along simulation time (ps) during 4ns MD simulations at 450 °K. 

 
 

 
Figure 13: RMSD (A°) of EGI vs EGI_L5 along simulation time (ps) during 10 ns MD 
simulations at 300 °K. 
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Figure 14: Distance of active site residues to each other during 4 ns MD simulations of 
EGI and EGI_L5. 

 

 

Figure 15: Superimposed structures of EGI and loop mutant EGI_L5. L5 was inserted 
between residues 112th and 113th of EGI.  

          L5 



56 
 

 

 
Figure 16: EGI and EGI_L5 stability coefficients calculated for each residue from 
molecular mechanics simulations. Stability coefficient > 0 indicates a less rigid 
structure whereas stability coefficient < 0 indicates a more rigid structure.  

 

Molecular Mechanics simulation results of EGI and EGI_L5 are shown in Figure 16 

and 17.  Stability coefficient >0 indicated a less rigid, more flexible structure. 

Introduction of a ten aminoacid loop composed of Lysine and Glycine between 112th 

and 113th residues kept the active site more intact since the stability coefficient was 

more negative in loop inserted structure compared to the native EGI. The flexibility 

around the active site decreased in the loop mutant, probably giving the enzyme a 

slightly more stable structure.  The flexibility of the loop region was higher as expected.  
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Figure 17: EGI and EGI_L5 stability coefficients calculated for each residue from 
molecular mechanics simulations (for simplicity, stability coefficients for residues 100-
230 are shown).  Stability coefficient > 0 indicates a less rigid structure whereas 
stability coefficient < 0 indicates a more rigid structure.  

 
 

4.1.2. Production of Recombinant Enzymes and Fermentation 
 

egl1_L5 gene is obtained by overlap PCR extension method (Figure 18). After the 

loop insertion via overlap PCR extension method, the gene was inserted into pPiczαA 

plasmid and then transformed into P. pastoris.  Best clones expressing the recombinant 

enzymes EGI and EGI_L5 were selected on BMM-agar plates containing Azo-CMC as 

the substrate.  EGI clone E12 was utilized for fermentation due to its higher activity 

against Azo-CMC on BMM-agar plates.  EGI_L5 clones were found to exhibit more or 

less the same activity. As a result, EGI_L5 clone D5 was chosen for fermentation and 

further analysis. 
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Figure 18: Overlap extension PCR results for the production of egl1_L5 gene. 

Primers in Table 2 are used to produce parts of egl1 gene. 1and 5: GeneRuler DNA 
Ladder Mix (Fermentas), 2: empty well, 3: egl1_L5_1 (~380 bp with overlap extension 
sequences), 4: egl1_L5_2 (~1000 bp with overlap extension sequences), 6: egl1_L5 
gene (~1341 bp). 

 
Both EGI clone E12 and EGI_L5 clone D5 were subjected to fed-batch 

fermentation.   Fermentation products were collected at different time points throughout 

the fermentation process. SDS-PAGE and activity analysis of fermentation products 

collected at different time points are shown in Figure 19. Growth rates of the clones 

were followed by measuring and calculating cell dry weights (CDW) for each sample 

collected at different time points.  For each sample, activity against 4-MUC was 

evaluated according to the rate of formation of 4-MU per minute at 25 °C. Methanol 

concentration at each time point of fermentation was monitored using a specific 

methanol probe inside the fermenter. Fermentation data analysis for EGI and EGI_L5 

producing clones are shown in Figure 20 and Figure 21, respectively. Growth rates and 

expression profiles were found to be very similar for EGI and EGI_L5 during fed-batch 

fermentations.  Enzyme activity and enzyme production was found to be increased with 

the increase in methanol concentration.     

 
There was no enzyme production in glycerol batch and glycerol fed-batch phases in 

both fermentations as expected.  EGI started to be produced after 24 hours and EGI_L5 

after 20 hours with methanol induction of the AOX promoter. During methanol fed-

batch phase cell growth was minimal.  The activities of each recombinant enzyme 

produced were maximal at the end of the fermentation.  
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Figure 19.  Zymogram (upper picture) and SDS-PAGE (lower picture) analysis of 
fermentation products. 1-6: PageRuler Protein Ladder Mix (Fermentas), 2: EGI 0h, 3: 
EGI 16h, 4: EGI 41h, 5: EGI 46h, 7: EGI_L5 0h, 8: EGI_L5 14h, 9: EGI_L5 38h, 10: 
EGI_L5 63h.  

 
Figure 20: Fermentation data analysis for EGI fed-batch fermentation. 0-16h glycerol 
batch phase, 16h-20h glycerol fed-batch phase, 20h-46h methanol fed batch phase. 
CDW: Cell Dry Weight.  Specific activity (([4MU] produced per min) /µg of produced 
protein (mM/min* µg)). 

 

 
Figure 21: Fermentation data analysis for EGI_L5 fed-batch fermentation. 0-15h 
glycerol batch phase, 15h-20h glycerol fed-batch phase, 20h-63h methanol fed batch 
phase. CDW: Cell Dry Weight.  Specific activity (([4MU] produced per min) /µg of 
produced protein (mM/min* µg)). 
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Figure 22: SDS-PAGE of affinity batch purified EGI and EGI_L5 (12 % SDS-PAGE 
gel). 1: PageRuler Protein Ladder Mix(Fermentas),  2: EGI fermentation product, 3: 
purified EGI, 4: EGI_L5 fermentation product, 5: purified EGI_L5. 

 

4.1.1. Purification of Recombinant Proteins 
 

Both enzymes were purified to homogeneity after batch affinity purification with 

RAC. Only one glycosylation form around 70 kDa was purified with RAC (Figure 22). 

The purified component was the most active among other glycosylation products for 

both EGI and EGI_L5.  Activity of both purified enzymes indicated that EGI has the 

same specific activity as EGI_L5 against 4-MUC at 45 °C, at the same protein 

concentration (Figure 23).    

   

 

 

Figure 23: Activity of purified EGI and EGI_L5 at the same protein concentration 
against 4-MUC at 45 °C. Activity was determined in terms of relative florescence units 
(RFU) .   
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4.1.1. Zymogram Analysis 
 

Activity of the produced recombinant enzymes were monitored qualitatively using a 

zymogram gel analysis. 4-MUC was used as the substrate for the analysis.  EGI 

produced recombinantly in Pichia pastoris was found to have more than one protein 

band with activity against 4-MUC.  These were thought to be different glycosylation 

(50, 70 kDa) and/or dimerization products (100 kDa) (Figure 19).   EGI_L5 exhibited 

lower activity against 4-MUC in the zymogram analysis.  It was also found to have 

more than one enzymatically active component, ~100 kDa product being the 

predominant one, and a probable glycosylation product (~70 kDa). Both forms were 

found to be active against 4-MUC (Figure 19).  

 
4.1.1. Activity and Stability Analysis 

 
Temperature activity profiles of EGI and EGI_L5 produced by fermentation were 

determined using DNS method and 0.5 % CMC (w/v) as substrate (Figure 24).  

Activities of both recombinant enzymes at different temperatures exhibited similar 

profiles.  EGI exhibited maximal activity at 45 °C and 55 °C whereas EGI_L5 was 

found to be have a maximum activity at 35 °C. Both enzymes showed activity over a 

broad temperature range (between 15 °C-65 °C).  Although EGI_L5 had a reduced 

activity at 55 °C with respect to EGI, it showed a slightly higher relative enzyme 

activity at 65 °C, 75 °C and 85 °C. Both enzymes kept ~40 % of their activities at 75 °C 

and 30 % of their activities at 85 °C.  pH activity profiles of EGI and EGI_L5 between 

pH 3 and pH 6 are shown in Figure 25.  Both enzymes showed maximal activity at pH 

5.  pH activity profiles of both enzymes were observed to have followed a very similar 

pattern.  Enzymes were found to be almost inactive at pH 3.  Moreover, after 10 minutes 

incubation at 100 °C EGI and EGI_L5 were found to retain 94,76 % and 95,41 % of 

their activities, respectively. The pI’s of the EGI and EGI_L5 calculated with  ExPASy 

(Bjellqvist, et al., 1993) were 4.66 and 5.35, respectively.  Although the calculated  pI 

of EGI was shifted almost one pH unit with the introduction of a ten aminoacid loop, its 

pH profile did not change Both EGI and EGI_L5 were shown to keep 65 %  and 57 % 

of their activity  at 50 °C after 72 hours incubation at 50 °C, respectively.  Additionally, 

it was shown that EGI lost its activity more rapidly upon prolonged incubation at 50 °C 

(after 24h to 72h) (Figure 26). Moreover, both enzymes have exhibited similar patterns  
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for their residual enzyme  activities upon incubation at 70 °C for 2 hours  (Figure 27) . 

EGI has shown a 5.3 % decrease in residual enzyme activity whereas EGI_L5  has lost 

18 % of its activity after 2 hours of incubation at 70 °C.  Kinetic constants for EGI and 

EGI_L5 calculated from their activity against 4-MUC at 45 °C were shown in Table 5. 

 

 
Figure 24: Effect of temperature on hydrolysis of 0.5 % CMC (w/v) by EGI and 
EGI_L5. The activity was determined by incubating each enzyme at each temperature 
for 10 minutes at pH 4.8. The experiments were performed in triplicates with a S.D. of 
below 10%.  The products were analyzed using DNS method for reducing sugars.   

 
Figure 25: Effect of pH on hydrolysis of 0.5 % CMC (w/v) by EGI and EGI_L5. The 
activity was determined by incubating each enzyme at each pH for 10 minutes at 55 °C. 
The experiments were performed in triplicates with a S.D. of below 10%.  The products 
were analyzed using DNS method for reducing sugars.   
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Figure 26: Residual activity of EGI and EGI_L5 at 50 °C upon incubation for 0 to 72 
hours at 50 °C against CMC at pH 4.8.   

 
Figure 27: Residual activity of EGI and EGI_L5 at 50 °C upon incubation for 0 to 2 
hours at 70 °C against CMC at pH 4.8.  
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Table 5: Kinetic constants for EGI and EGI_L5 calculated from their activity against 4-
MUC at 45 °C. 

Enzyme Km(mM) Kcat(1/sec) Kcat/Km(1/sec*mM) 
EGI 0,332 1,804 

 

5,44 
 

EGI_L5 0,355      0,0257   0,0724 
 
 

4.2. Effect of codon optimization on the production of EGI in Pichia pastoris 
 

4.2.1. Production of Recombinant Enzymes and Fermentation 
 

Endoglucanase 1 of Trichoderma reesei is successfully produced in Pichia pastoris 

for the first time as an active and stable catalyst. Pichia pastoris endoglucanase 1 

expression yield is comparable to the ones reported in the literature(Nakazawa, et al., 

2008; M. E. Penttila, Andre, Saloheimo, Lehtovaara, & Knowles, 1987). The 

recombinant enzyme exhibited similar activities towards soluble substrates such as 

CMC and 4-MUC.  In addition to endoglucanase 1 expression in Pichia pastoris ,  the 

effect of codon optimization on the EGI expression  was studied.  

 
Comparison of the codon usage of egl1 and egl1s with that of  Pichia pastorid using 

a codon usage database (http://www.kazusa.or.jp/codon) indicated that frequencies of 

individual codons of egl1 is different from those of Pichia pastoris (Table 6). Around 

81301 codons of Pichia pastoris was used by the database to form the Pichia pastoris 

codon usage frequencies. Average GC content of Pichia pastoris was calculated to be 

42.73 %.  Moreover,  codon adaptation index (CAI) of egl1 gene was increased from 

0.55 to  0.91 after optimization. Average GC content was reduced to 46 % from 62 %. 

Four prokaryotic inhibitory motifs and five AT-rich or GC-rich sequence stretches were 

removed upon optimization.  

 
Colony PCR positive clones were selected for cloning and enzyme production 

(Figure 28 and 29). Best clones expressing the recombinant enzymes EGI and EGIs 

were selected on BMM-agar plates containing azo-CMC as the substrate. Clones that 

exhibited better activity on azo-CMC containing BMM-agar plates were chosen for 

further analysis. Real-time PCR analysis of AOX promoter regions revealed the copy 

number of the clones.  It was found that EGIs clone E12 and EGI clone C5 have 2.1 and 

1.9 copies of egl1s and egl1 expression cassettes on the average, respectively. Even 
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though we have higher endoglucanase 1 expressing clones, in order to compare the 

effect of codon optimization on production rates we have selected the clones having the 

same copy number.  As a result, EGIs clone E12 and EGI clone C5 were chosen for 

fermentation and further analysis.   

 

Table 6: Comparison of codon usage in Pichia pastoris genes with that in native and 
codon-optimized egl1 genes. Highligted values show the improved codons. 
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Figure 28: Colony PCR for subcloned 
egl1s (lanes 2-4) and egl1 (lanes 6 and 
7) genes using 5’ and 3’ AOX primers. 
1: Gene Ruler High Range and Low 
Range DNA Ladder (mixed, 
Fermentas), 2: Colony 1(Colony PCR 
+), 3: Colony 2(Colony PCR -), 4: 
Colony 3(Colony PCR -),  5: GeneRuler 
Ladder Mix(Fermentas), 6:  Colony 
4(Colony PCR +), 7:  Colony 5(Colony 
PCR +).   

Figure 29: Colony PCR for egl1s and 
egl1 expression cassettes transformed 
into Pichia pastoris KM71H using 5’ 
and 3’ AOX primers. 1 and 18: 
GeneRuler Ladder Mix (Fermentas), 2-
17: pPiczaA_egl1s transformants (5 is 
Colony PCR +), 19-21: pPiczaA_egl1 
transformants (9 is Colony PCR +). 

 

To evaluate enzyme production rates, EGIs clone E12 and EGI clone C5 were 

grown in shake flasks at 30 °C in BMM.  It was found that the average rates of 

production of enzymes were similar in both clones and wet cell weight calculations 

indicated that the growth rates of the clones were also similar (Figure 30). It was also 

observed that due to pH fluctuations, uneven methanol evaporation, and relatively 

uncontrollable growth conditions, the rates of enzyme production vary with each batch. 

In order to alleviate this problem and to provide a more controllable, stable growth 

conditions, these clones were grown in a 5L fermenter.  Batch and fed-batch 

fermentations were applied.   
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Figure 30: Zymogram analysis of expressed EGIs and EGI in shake flasks against 4-
MUC. 1:Prestained Size marker (PageRuler Plus, Fermentas). 2: EGI at 0h, 3: EGI at 
24h, 4: EGI at 48h, 5:EGI at 72h, 6: EGIs at 0h, 7: EGIs at 24h, 8: EGIs at 48h, 9: EGIs 
at 72h. 

 
During batch fermentations both enzymes were found to be produced actively. 

Zymogram analysis of the culture supernatants revealed that enzymes were active and 

that their expression levels were similar (Figure 31). Quantitative enzyme assays of the 

culture supernatants against 4-MUC indicated that EGIs was expressed as a more active 

protein throughout the batch fermentations than EGI (Figure 32).  

 

 

Figure 31: Zymogram analysis of expressed EGIs and EGI as batch fermentation 
products against 4-MUC. 1-7: Size Marker, PageRuler Ladder Mix (Fermentas). 2: EGI 
at 0h, 3: EGI at 24h, 4: EGI at 48h, 5: EGI at 72h, 6: EGI at 96h, 8: EGIs at 0h, 9: EGIs 
at 24h, 10: EGIs at 48h, 11: EGIs at 72h, 12: EGIs at 96h. 
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Figure 32: Activities of EGIs and EGI against 4-MUC throughout batch fermentation. 
Activities were expressed as 4MU produced from 4-MUC per minute divided by cell 
dry weight. Only samples after methanol induction were shown. 

 

Although total protein produced from batch fermentation of EGIs is less than EGI’s, 

EGIs specific activity against 4-MUC is higher than EGI starting from 30 hours to 60 

hours of fermentation time. Both EGIs and EGI exhibited similar specific activities 

against 4-MUC after 60 hours of fermentation time. Enzyme productivity calculations 

showed that both EGIs and EGI total protein productivity decreased with time during 

batch fermentation from the start. EGI total protein productivity decreased to a lesser 

extent. Despite the fact that both EGIs and EGI fermentation products were degraded 

during batch production, recombinant EGI and EGIs were resistant to proteolytic 

degradation by Pichia proteases which makes them ideal candidates for enzyme 

production in P. pastoris. EGIs and EGI enzyme activity per g total protein produced 

were increased to 53.77 RFU/min/g and 43.23 RFU/min/g, respectively. This indicates a 

1.24 fold increase in enzyme activity per total protein produced.  On the overall, 

although EGI total protein productivity was found to be more than EGIs on the total 

protein production level, EGIs was produced as a more active protein product.  

 
Both EGIs clone E12 and EGI clone C5 were subjected to fed-batch fermentation.   

Fermentation products were collected at different time points throughout the 

fermentation process. Activity analysis of fermentation products collected at different 

time points and SDS-PAGE of fermentation products are shown in Figure 33 and 34. 

Growth rates of the clones were followed by measuring and calculating cell dry weights 

(CDW) for each sample collected at different time points.  For each sample, activity 
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against 4-MUC was evaluated according to the rate of formation of 4- 

Methylumbelliferyl (4-MU) per minute at 30 °C.  Methanol concentration at each time 

point of fermentation was monitored using a specific methanol probe inside the 

fermenter. Growth rates and expression profiles were found to be very similar for EGI 

and EGIs during fed-batch fermentations.  Enzyme activity and enzyme production 

were found to be increased with the increase in methanol concentration. Although in fed 

batch fermentations both enzymes have exhibited similar profiles, we can not directly  

compare  their enzyme production rates since their methanol feed rates did not follow 

the same pattern due to manual adjustments.      

 

 

Figure 33: Activities of EGIs and EGI against 4-MUC throughout fed batch 
fermentation. Methanol concentrations throughout fermentations measured with 
methanol detection probe were also shown. Glycerol feed rates were kept as 18.15 
ml/h/L initial fermentation volume Methanol feed rates were kept between 1-12 ml/h/L 
fermentation volume. Activities were expressed as 4MU produced per minute divided 
by cell dry weight. 

 

 
Figure 34 : SDS-PAGE of affinity batch purified EGIs and EGI (12 % SDS-PAGE gel). 
Expected molecular weight range for EGI and EGIs was 50 to 70 kDa. 1: EGI 
fermentation product, 2: purified EGI, 3: PageRuler Protein Ladder Mix (Fermentas), 4: 
EGIs fermentation product, 5: purified EGIs. 
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4.2.2. Purification of Recombinant Proteins 
 

Both enzymes were purified to homogeneity after one step rapid batch affinity 

purification with RAC. Only one protein band around 70 kDa was purified with RAC 

(Figure 34).  

 

4.2.3. Activity and Zymogram Analysis 
 

Activity of the produced recombinant enzymes were monitored qualitatively using 

a zymogram gel analysis. 4-MUC was used as the substrate for the analysis.  EGIs 

produced recombinantly in P. pastoris was found to have more than one protein band 

with activity against 4-MUC.  These were thought to be different glycosylation (50, 70 

kDa) and/or dimerization products (100 kDa) (Figure 30 and 31). Expected molecular 

weight for EGI and EGIs is around 50 to 70 kDa (M. E. Penttila, et al., 1987) which 

changes according to the glycosylation patterns of the host organism. EGI  exhibited 

lower activity against 4-MUC in the zymogram analysis.  It was also found to  have 

more than one enzymatically active component, ~100 kDa product being the 

predominant one, and a probable glycosylation product  around 70 kDa. Both forms 

were proved to be active against 4-MUC. RAC purified EGI and EGIs were found to 

exhibit activities of  73.9 and 83.9 RFU/min/µg enzyme  against 4-MUC.  EGIs was 

shown to be more active  against 4-MUC.  Moreover, EGIs was found to exhibit a 

temperature optimum between 35-55 °C (Figure 35a)  and a pH optimum around 5 

(Figure 35b) against CMC. Nakazawa et al. cloned EGI catalytic domain in E. coli and  

found that the thermal stability of the recombinant EGI catalytic domain  was reduced 

to less than 80 % after 60 minutes incubation at 50 °C. Our  recombinant enzyme was 

found to retain almost  96 %  of its activity upon incubation at pH 4.8 at 50 °C for 5, 24 

and 48 hours and 80 % of its activity after 72 hours. This more prolonged stability 

might be due to the glycosylation of the recombinant enzyme by P. pastoris. 
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Figure 35: a) Effect of temperature on recombinant EGI activity against CMC. Activity 
is shown as % activity. Maximum activity was taken as 100%. b) Effect of pH on 
recombinant EGI activity against CMC. Activity is shown as % activity. Maximum 
activity was taken as 100%. All CMC activity measurements were done as triplicates 
and all standard deviations were below 10 %. 

 
4.3. Cloning and Production of Recombinant Enzymes and Mutants 

 
4.3.1. Production of EGI_BC   

 
egl1_bc gene is obtained by four rounds of overlap PCR extension  and with gel 

purification of the gene (Figure 36). After the egl1_BC gene production via overlap 

PCR extension method, the gene was inserted into pPiczαA plasmid and then 

transformed into P. pastoris.  Colony PCR was performed on zeocin positive colonies 

(Figure 37). Best clones expressing the recombinant enzyme EGI_BC were selected on 

BMM-agar plates containing Azo-CMC as the substrate.  EGI_BC clone F8 was utilized 

for fermentation due to its higher activity against Azo-CMC on BMM-agar plates.   

 

 
 

Figure 36: Overlap extension PCR results for the production of egl1_bc gene. Primers 
in Table 2 are used to produce parts of egl1 gene. 1: Gene Ruler High Range and Low 
Range DNA Ladder (mixed, Fermentas), 2: AD; egl1 gene catalytic domain  (~1151 bp 
with overlap extension sequences), 3: CE: linker region (~88 bp with overlap extension 
sequences), 4: CD; AD+ CE overlap extension PCR product  (~1250 bp with overlap 
extension sequences), 5: BF; egl1 gene (~1328 bp with overlap extension sequences), 6: 
6: GeneRuler Ladder Mix (Fermentas), 7: GH; egl1_bc gene (~2570 bp). 
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Figure 37: Colony PCR for egl1_bc expression cassette transformed into Pichia 

pastoris KM71H using 5’ and 3’ AOX primers. 1: GeneRuler Ladder Mix (Fermentas), 
2: pPiczaA_egl1_bc transformant (Colony PCR +) (~3150 bp�588 bp AOX region+ 
2570 bp egl1_bc gene). 

 
EGI_BC subjected to three different fed-batch fermentations at pH 5, 29 °C; at pH 

7, 29 °C and at pH 5, 25 °C.  Fermentation products were collected at different time 

points throughout the fermentation process.  Growth rates of the clones were followed 

by measuring and calculating cell dry weights (CDW) for each sample collected at 

different time points.  For each sample, activity against 4-MUC was evaluated 

according to the rate of formation of 4-MU per minute per ml at 45 °C. Methanol 

concentration at each time point of fermentation was monitored using a specific 

methanol probe inside the fermenter. Fermentation data analysis for EGI_BC producing 

clone at under three different conditions are shown in Figure 38, 39 and 40, 

respectively. Growth rates and expression profiles were found to be very similar for 

EGI_BC in comparison to EGI fermentation during fed-batch fermentations at pH 5 and 

29 °C.  Enzyme activity and enzyme production was found to be increased with the 

increase in methanol concentration. There was no enzyme production in glycerol batch 

and glycerol fed-batch phases in both fermentations as expected.  EGI_BC started to be 

produced after methanol induction of the AOX promoter. During methanol fed-batch 

phase cell growth was minimal under all three conditions.  Fed batch fermentation at pH 

7 resulted in a much lower activity compared to pH5, 29 °C and pH5, 25 °C 

fermentations (Figure 39). Moreover, EGI_BC enzyme produced at pH5, 25 °C was 

found to have a lower activity with respect to the enzyme produced at pH5, 29 °C, but a 

higher activity with respect to the enzyme produced at pH7, 29 °C (Figure 40). 

Fermentation data analysis have shown an additional decrease in the activity of the 

enzyme towards the end of the fermentation performed at pH7, 29 °C and pH 5 , 25 °C. 
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As the zymogram analysis indicates all three fermentation conditions produced 

degraded enzyme products and highly glycosylated enzymes which are still very active 

against 4-MUC (Figure 41 and 42).  Zymogram analysis has shown that EGI_BC 

produced by P. pastoris have  a 50 kDa component, probably formed as a result of the 

degradation of the enzyme by  Pichia proteases, a 85 kDa component and several 

enzymes that have  molecular weights between 100 to 150 kDa, most likely formed as a 

result of overglycosylation by Pichia as the smearing suggests.  Only EGI_BC 50 kDa 

component could be purified with RAC affinity chromatography (Figure 43). The 

purified enzyme was found to be active against 4-MUC.EGI_BC has shown its 

optimum activity against CMC at pH 5 and 45 °C (Figure 44 a and b). 

 

 
 
Figure 38: Fermentation data analysis for EGI_BC fed-batch fermentation (pH 5, 29 
°C). 0-17h glycerol batch phase, 17h-25h glycerol fed-batch phase, 25h-65h methanol 
fed batch phase. CDW: Cell Dry Weight. Activity against 4-MUC is calculated from 
4MU (mM) produced per min). 

 

 

Figure 39: Fermentation data analysis for EGI_BC fed-batch fermentation (pH 7, 29 
°C). 0-21h glycerol batch phase, 21h-26h glycerol fed-batch phase, 26h-69h methanol 
fed batch phase. CDW: Cell Dry Weight.  Activity against 4-MUC is calculated from 
4MU (mM) produced per min/ml). 

 



74 
 

 
Figure 40: Fermentation data analysis for EGI_BC fed-batch fermentation (pH 5, 25 
°C). 0-17h glycerol batch phase, 17h-20h glycerol fed-batch phase, 20h-43h methanol 
fed batch phase. CDW: Cell Dry Weight.  Activity against 4-MUC is calculated from 
4MU (mM) produced per min/ml). 

 

 
 
Figure 41: SDS-PAGE and zymogram analysis of expressed EGI_BC as fed-batch 
fermentation products against 4-MUC at pH 5, 29 °C. 1: Size Marker, PageRuler 
Protein Marker (Fermentas). 2: EGI_BC at 0h, 3: EGI_BC at 17h, 4: EGI_BC at 18h, 5: 
EGI_BC at 19h, 6: EGI_BC at 20h, 7: EGI_BC at 21h, 8: EGI_BC at 22h, 9: EGI_BC 
at 23h,10: EGI_BC at 25h, 11: EGI_BC at 41h, 12: EGI_BC at 43h, 13: EGI_BC at 
45h, 14: EGI_BC at 47h, 15: EGI_BC at 49h, 16: EGI_BC at 65h.  

 
Figure 42: Zymogram analysis of expressed EGI_BC as fed-batch fermentation 
products against 4-MUC at pH 7, 29 °C (top picture), at pH 5, 25 °C (bottom picture). 1: 
EGI_BC at 0h, 2: EGI_BC at 21h, 3: EGI_BC at 26h , 4: EGI_BC at 28h, 5: EGI_BC at 
46h, 6: EGI_BC at 49h, 7: EGI_BC at 52h, 8: EGI_BC at 69h , 9: Kaledeiscope 
Prestained Protein Standart (at pH 7, 29 °C); 1: EGI_BC at 0h, 2: EGI_BC at 17h, 3: 
EGI_BC at 19h , 4: EGI_BC at 20h, 5: EGI_BC at 39h, 6: EGI_BC at 41h, 7: EGI_BC 
at 43h, 8: empty well, 9: Size Marker, PageRuler Protein Marker (Fermentas) (at pH 5, 
25 °C); 
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Figure 43 : SDS-PAGE of affinity batch purified EGI_BC (12 % SDS-PAGE gel). 
Expected molecular weight range for EGI_BC was 90 to 120 kDa. 1: PageRuler Protein 
Ladder Mix (Fermentas), 2: EGI_BC fermentation product, 3: purified EGI_BC (~85 
kDa and ~50 kDa products). 

 

       
Figure 44: a) Effect of temperature on recombinant EGI_BC activity against CMC. 
Activity is shown as % activity. Maximum activity was taken as 100%. b) Effect of pH 
on recombinant EGI_BC activity against CMC. Activity is shown as % activity. 
Maximum activity was taken as 100%. All CMC activity measurements were done as 
triplicates and all standard deviations were below 10 %. 
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4.3.2. Production of EGIII  

 
egl3 cDNA is obtained using RT-PCR on RNA isolated from T. reesei QM9414 

strain. After the egl3 gene production, the gene was inserted into pPiczαA plasmid and 

then transformed into P. pastoris. A plasmid map showing pPiczαA_egl3  was shown in 

Figure 45. Colony PCR was performed on zeocin positive colonies (Figure 46). Best 

clones expressing the recombinant enzyme EGIII were selected on BMM-agar plates 

containing Azo-CMC as the substrate (Figure 47). EGIII clone C13 was utilized for 

fermentation due to its higher activity against Azo-CMC on BMM-agar plates and 

during shake flask experiments.  

 
EGIII was subjected fed-batch fermentation at pH 5, 29 °C. Fermentation products 

were collected at different time points throughout the fermentation process.  Growth 

rates of the clones were followed by measuring and calculating cell dry weights (CDW) 

for each sample collected at different time points.  For each sample, activity against 4-

MUC was evaluated according to the rate of formation of 4-MU per minute per ml at 45 

°C. Methanol concentration at each time point of fermentation was monitored using a 

specific methanol probe inside the fermenter. Fermentation data analysis for EGIII 

producing clone was shown in Figure 48. Growth rates and expression profiles were 

found to be very similar for EGIII in comparison to EGI fermentation during fed-batch 

fermentations at pH 5 and 29 °C.  Enzyme activity and enzyme production was found to 

be increased with the increase in methanol concentration. There was no enzyme 

production in glycerol batch and glycerol fed-batch phases in both fermentations as 

expected.  EGIII was found to be produced after methanol induction of the AOX 

promoter. During methanol fed-batch phase cell growth was minimal under all three 

conditions. The activity of recombinant enzyme against 4-MUC was much lower than 

EGI activity (Figure 48). The zymogram analysis indicates that the enzyme produced  

as a single product. No overglycosylation was observed (Figure 49).  Zymogram 

analysis has shown that EGIII produced by P. pastoris is a ~27 kDa protein. EGIII 

enzyme produced could not be purified using RAC as an affinity resin. The enzyme was 

found to be active against 4-MUC and CMC. EGIII has shown its optimum activity 

against CMC at pH 5 and 75 °C (Figure 50). After 75 °C, at 85 °C and 95 °C the enzyme 

activity sharply decrased to 0. 
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Figure 45: pPiczαA-egl3 plasmid map (drawn with VectorNTI). 
 
 

 
Figure 46: Colony PCR amplification of pPiczαA_egl3 harboring P. pastoris (KM71H) 
clones with AOX primers. 1: DNA Ladder Mix (Fermentas), 2: Colony PCR (+) clone 
(~1300 bp), 3: Colony PCR(+) clone (~1300 bp). 

 

 
Figure 47: Azo-CMC activity of different Pichia pastoris clones producing EGIII. C13: 
Initial clone, Clones 1-16: 2nd round clones (Z series). 
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Figure 48: Fermentation data analysis for EGIII clone C13 fed-batch fermentation. 0-
20h glycerol batch phase, 20h-23h glycerol fed-batch phase, 23h-73h methanol fed 
batch phase. CDW: Dry Cell Weight.  Specific activity (([4MU] produced per min) /µg 
of produced protein (mM/min* µg)). 

 

 
 
Figure 49: SDS-PAGE and Zymogram analysis of expressed EGIII as fed-batch 
fermentation products against 4-MUC. 1: Size Marker, Kaledeiscope Prestained Ladder 
(Biorad). 2: EGIII at 0h, 3: EGIII at 20h, 4: EGIII at 22h, 5: EGIII at 23h, 6: EGIII at 
25h, 7: EGIII at 44h, 8: EGIII at 48h, 9: EGIII at 73h. 
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Figure 50: Effect of temperature on recombinant EGI_BC activity against CMC. 
Activity is shown as % activity. Maximum activity was taken as 100%.  

 
4.3.3. Production of CBHI   

 
cbh1 cDNA is obtained using RT-PCR on RNA isolated from T. reesei QM9414 

strain. After the cbh1 gene production, the gene was inserted into pPiczαB plasmid and 

then transformed into P. pastoris. Colony PCR was performed on zeocin positive 

colonies (Figure 51). Best clones expressing the recombinant enzyme CBHI were 

selected according to small scale cultivations in shake flasks. CBHI clones were unable 

to utilize azo-CMC in BMM-agar plates effectively.  CBHI clone X3 was utilized for 

fermentation due to its higher activity during shake flask experiments.  

 
CBHI was subjected fed-batch fermentation at pH 5, 29 °C. Fermentation products 

were collected at different time points throughout the fermentation process.  Growth 

rates of the clones were followed by measuring and calculating cell dry weights (CDW) 

for each sample collected at different time points.  For each sample, activity against 4-

MUC was evaluated according to the rate of formation of 4-MU per minute per ml at 45 

°C. Methanol concentration at each time point of fermentation was monitored using a 

specific methanol probe inside the fermenter. Growth rates and expression profiles were 

found to be very similar for CBHI in comparison to EGI fermentation during fed-batch 

fermentations at pH 5 and 29 °C.  Enzyme activity and enzyme production was found to 

be increased with the increase in methanol concentration. There was no enzyme 

production in glycerol batch and glycerol fed-batch phases in both fermentations as 

expected. CBHI was found to be produced after methanol induction of the AOX 
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promoter. During methanol fed-batch phase cell growth was minimal under all three 

conditions. The recombinant enzyme did not show any activity against 4-MUC, it has 

shown activity towards 4-MUL (Figure 52a). But the activity was very low so no 

activity could be detected in zymogram gels. The SDS-PAGE analysis indicates that the 

enzyme is not produced as a single product (Figure 52b). SDS-PAGE analysis has 

shown that CBHI produced by P. pastoris is a ~50-70 kDa protein. CBHI enzyme 

produced could not be purified using RAC as an affinity resin. The enzyme was found 

to be active against 4-MUL and CMC. CBHI has shown its optimum activity against 

CMC at pH 6 and at  75 °C (Figure 53). After 75 °C, at 85 °C and 95 °C almost 80 % of 

the activity was dound to be intact. 

 

 
Figure 51: Colony PCR amplification of pPiczαB_cbh1 harboring P. pastoris (KM71H) 
clones with AOX primers. 1: DNA Ladder Mix (Fermentas), 2: Colony PCR(+) 
clone(~2050 bp (1487 bp cbh1 gene + 558 bp AOX region )), 3: Colony PCR(+) clone 
(~2050 bp).  

 

      
 
Figure 52: a) Fermentation data analysis for CBHI clone Y2 fed-batch fermentation. 0-
20h glycerol batch phase, 20h-24h glycerol fed-batch phase, 24h-49h methanol fed 
batch phase. CDW: Dry Cell Weight.  Specific activity (([4MU] produced per min) /µg 
of produced protein (mM/min* µg)). b) SDS-PAGE analysis of expressed CBHI as fed-
batch fermentation products against 4-MUC. 1: Size Marker, PageRuler Protein Ladder 
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Mix (Fermentas), 2: CBHI at 0h, 3: CBHI at 18h, 4: CBHI at 22h, 5: CBHI at 32h, 6: 
CBHI at 35h, 7: CBHI at 40h, 8: CBHI at 56h, 9: CBHI at 58h, 10: CBHI at 63h.  

 

           
Figure 53: a) Effect of temperature on recombinant CBHI activity against CMC. 
Activity is shown as % activity. Maximum activity was taken as 100%. b) Effect of pH 
on recombinant CBHI activity against CMC. Activity is shown as % activity. Maximum 
activity was taken as 100%. All CMC activity measurements were done as triplicates 
and all standard deviations were below 10 %. 
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4.4. CLEA 
 

 Crosslinked enzyme aggregates were prepared from commercial cellulase solution 

GEMPIL 4L  containing endoglucanases, cellobiohydrolases and most probably beta-

glucosidases of  T. reesei. T. reesei cellulases are known to exhibit their activity around 

acidic pH ranges, around pH 5. In all experiments, activity screenings were performed 

at pH 5 and 55 °C. Effect the precipitant solution on enzyme activity was analyzed by 

preparing aggregates of Gempil 4L in t-butanol, acetone and ammonium sulfate. 

enzymes precipitated with  t-butanol and acetone have shown similar activities and 

enzyme precipitated with ammonium sulfate has shown lower activity. Acetone was 

selected as the most suitable precipitant due to its unharmful effect on the activity of  

the enzyme to be modified,  the cheaper pricing and availability in comparison to t-

butanol.   It was found that crosslinking pH does not have a great impact  on the activity 

of the  of the enzyme (Figure 54). At pH 4 and 6, precipitated Gempil 4L particles 

exhibited almost the same activity and the activity decreased by 20 %  at pH8. Since 

enzyme activity is not affected much by pH and at lower pH values glutaraldehyde 

oligomerization might be affected, pH 7.3 was selected for CLEA preparation (Sheldon 

et al. used pH 7.3 for CLEA preparation).   

 

 
 

Figure 54: Effect of pH on Gempil 4L activity after precipitation. 
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Figure 55: Effect of glutaraldehyde concentration on CLEA activity against CMC after 
crosslinking. 

 

CLEA activity did not show a decreasing trend with the increase in glutaraldehyde 

concentration (Figure 55). Rather,  it has shown a  mixed trend most probably due to 

small scale preparation problems.  Almost  80 % of the activity retained after CLEA 

preparation with 40 mM glutaraldehyde.  This value was the highest activity reached 

among all glutaraldehyde concentrations. After Gempil 4L CLEA preparation size 

fractionation of the CLEA particles was performed to evaluate the impact of CLEA size 

on enzyme activity (Figure 56).  After fractionation,  Gempil 4L CLEA with 7 different 

sizes was obtained. These fractions were:  B: 25µm >CLEA size>10µm, C: 33µm 

>CLEA size>25µm, D: 45µm >CLEA size>33µm, E: 77µm >CLEA size>45µm, F: 

154µm >CLEA size>77µm, G: 288µm >CLEA size>154µm, H: 1980µm >CLEA 

size>288µm. Evaluation of the activity of these particles against CMC has indicated 

that all fractions had  exhibited  almost the same activity against CMC (Figure 56).  But 

there was a slight increase in the activity of  larger sized fractions, E, F and G in 

comparison to B, C and D.  

 
 

 
Figure 56: Effect of CLEA size on CLEA activity. CLEA sizes: Gempil 4L: ~10 nm, B: 
25µm >CLEA size>10µm, C: 33µm >CLEA size>25µm, D: 45µm >CLEA size>33µm, 
E: 77µm >CLEA size>45µm, F: 154µm >CLEA size>77µm, G: 288µm >CLEA 
size>154µm, H: 1980µm >CLEA size>288µm. 
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CLEA particles prepared from recombinant enzymes were optimized according 

to CLEA prepared from Gempil 4L but since the enzyme concentrations were lower for 

recombinant enzymes, lower glutaraldehyde concentrations were used. Crosslinking pH 

was kept at pH 7.3. EGI CLEA kept 65 % of its activity at mM glutaraldehyde 

concentration and EGI_L5 CLEA kept almost 50 % of its activity intact at 0,33 mM 

Glutaraldehyde concentration. At higher glutaraldehyde concentrations EGI_L5 CLEA 

activity against 4-MUC has rapidly diminished (Figure 57). EGI CLEA and EGI_L5 

CLEA particles have exhibited a catalytic activity of 2.2 CMC units/ml and 2.08 CMC 

units/ml per mg CLEA particle after crosslinking (Figure 58).    

 

 
 

Figure 57: Effect of glutaraldehyde concentration on CLEA prepared from EGI and 
EGI_L5. 

 

 
Figure 58: Effect of crosslinking on enzyme activity at pH 5, 55°C. 
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4.5. Fabric Tests 

 
Effect of crosslinked and recombinant enzymes on viscose biopolishing was 

evaluated by analyzing pilling values and fabric bursting strength after enzyme 

application. Effect of enzyme dosage on pilling and fabric strength was analyzed by 

applying different amounts of Gempil 4L (G) and Gempil 4L CLEA (C) particles on the 

fabrics. It was found that for the first trials, Gempil 4L dosage has not improved the 

pilling rates but fabric strength was reduced with the increase in the enzyme amount. On 

the other hand CLEA application improved the pilling notes when applied in 1X and 2X 

concentrations (G1X=180 µl Gempil 4L/ g fabric. C1X=  mg CLEA equivalent to 180 

µl Gempil 4L/ g fabric, 2X is two times the necessary amount/g fabric and so on) (Table 

7). The bursting strength of the fabrics was found to be optimal when 1X concentration 

of the enzyme is applied for 50 minutes or 2 hours. The increase in enzyme dosage of 

Gempil 4L CLEA decreased the bursting strength values of the viscose knitted fabrics 

to a much lesser extent at all enzyme concentrations than Gempil 4L. The biopolishing 

experiments were repeated for 1X and 2X enzyme dosage and effect of process times 

were evaluated for Gempil 4L CLEA (Table 8). It was shown that best pilling result was 

obtained by application of 2X CLEA for 2 hours and CLEA particles without 

fractionation results in nonhomogenous distribution of the enzymes on the fabric and 

uneven biopolishing results that cannot be repeated. Application of recombinant 

enzymes EGI, EGI_L5 and EGI_BC improved the fabric pilling notes and strength of 

the fabric has not reduced by the action of the enzymes (Table 8).  EGIII did not seem 

to exhibit any effect on fabric pilling rates and bursting strengths.  Application of 

EGI_BC in combination with Gempil 4L did not cause any improvements in the pilling 

rates, instead it has caused a decrease in the fabric strength.  Preliminary experiments 

with CLEA of EGI and EGI_L5 have shown that their application did not improve the 

pilling notes but prevented tensile strength loss. 

Impact of the recombinant enzymes, Gempil 4L and Gempil 4L CLEA on fabric 

appearance was evaluated by taking digital photographs after biopolishing (Figure 59 

and 60). The effect of all enzymes on the fabric surfaces could not be distinguished with 

visual inspection. The microfibrils that cause pill formation were present in all fabrics. 

CLEA particles remained on the surface of the enzyme during biopolishing as indicated 

by Figure 60.   
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 Table 7: Pilling test results for viscose knitted fabrics treated with Gempil 4L (G) and 
Gempil 4L-CLEA (C) or recombinant enzymes. G1X=180 µl Gempil 4L/ g fabric. 
C1X=  mg CLEA equivalent to 180 µl Gempil 4L/ g fabric, 2X is two times the 
necessary amount/g fabric and so on. 

 
 
Table 8: Pilling and bursting strength test results for viscose knitted fabrics treated with 
Gempil 4L (G) and Gempil 4L-CLEA (C) with different treatment times or recombinant 
enzymes G1X=180 µl Gempil 4L/ g fabric. C1X= mg CLEA equivalent to 180 µl 
Gempil 4L/ g fabric. 
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Figure 59: Digital light microscope photographs of viscose knitted fabrics under ~15X 
and ~400X magnification. 

 
Figure 60: Digital light microscope photographs of viscose knitted fabrics teated with 
1X and 4X CLEA under ~15X and ~400X magnification. 
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Effect of crosslinked and wild type (Gempil 4L) enzymes on viscose woven 

fabric biopolishing was evaluated by analyzing pilling values and fabric bursting 

strength after enzyme application. Effect of enzyme dosage on pilling and fabric 

strength was analyzed by applying different amounts of Gempil 4L (G) and Gempil 4L 

CLEA (C) particles on the fabrics. It was found that both enzymes improved the pilling 

values of the viscose woven fabric from 0.5X to 4X dosage (Table 9). Best effect on 

pilling was obtained by application of Gempil 4L at 2X dosage and the bursting strength 

of the fabric did not reduce much with respect to buffer treated fabric (Table 10).  

Application of Gempil CLEA at 0.5X dosage has given best results for pilling and the 

bursting strength value of the fabric was better than Gempil 4L treated fabric (Table 9 

and 10).  

 
Table 9: Pilling test results for viscose woven fabrics treated with Gempil 4L (G) and 
Gempil 4L-CLEA (C). G1X=180 µl Gempil 4L/ g fabric. C1X= mg CLEA equivalent 
to 180 µl Gempil 4L/ g  fabric. 

 

 

Table 10: Bursting strength test results for viscose woven fabrics treated with Gempil 
4L (G) and Gempil 4L-CLEA (C). 

 



89 
 

After size fractionation of CLEA particles, effect of CLEA size on viscose 

knitted fabric pilling and strength was evaluated. Experiments were performed in two 

different apparatus: in a hybridization chamber, a liquor ratio of 1:9 was used with 

constant rotation; in a special plastic container with a embroidery hoop like apparatus. 

This apparatus acted as a holder for the fabric. A liquor ratio of 1:50 was used with the 

apparatus and the container housing the apparatus was put in a shaker incubator for 

biopolishing under constant shaking. CLEA preparations from two batches were used  

for biopolishing in hybridization chamber (B, C, D, E, G, H from first batch, F2, F3, F4, 

F8 from second batch, CLEA sizes were shown in Table 11). Application of B, C, D 

and E from batch one improved the pilling notes, best effect was obtained by 

application of fraction E, bursting strength value was better than Gempil 4L and all 

other fractions from batch one (Table 11).  Application of  F2, F3, F4 and F8 from batch 

two, improved the pilling notes, best effect was obtained by application of fraction F8 in 

terms of pilling and fabric strength, bursting strength value was better than Gempil 4L 

and all other fractions from batch one and two (Table 11).  Application of fractions F3, 

F4, F8 and C in special apparatus for biopolishing did not result in any improvements in 

pilling notes or strength of the fabrics (Table 12).  

Table 11: Pilling and bursting strength test results for viscose knitted fabrics treated 
with Gempil 4L (G) and Gempil 4L-CLEA (C) with different sizes in hybridization 
chamber G1X=180 µl Gempil 4L/ g fabric. C1X= mg CLEA equivalent to 180 µl 
Gempil 4L/ g fabric. 
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Table 12: Pilling and bursting strength test results for viscose knitted fabrics treated 
with Gempil 4L (G) and Gempil 4L-CLEA (C) with different sizes in special apparatus 
G1X=180 µl Gempil 4L/ g fabric. C1X= mg CLEA equivalent to 180 µl Gempil 4L/ g 
fabric. 
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CHAPTER 5 
 
 
 
 
 
 
 
 

5. DISCUSSION  
 
5.1. Modelling and production of Trichoderma reesei endoglucanase 1 and its 

mutant in Pichia pastoris 
 
All the proposed loop insertions were placed away from the active site in order not 

to interfere with enzyme activity since enzyme active site is located on an open cleft.  

MD and MM simulations showed that among all loop inserted structures, EGI_L5 was 

the only structure that behaved similar to the native structure EGI in terms of RMSD 

during the simulations.  EGI_L5 exhibited better properties than all other loop mutants 

in the last 2000 ps of the simulations. MM simulation supported the results of MD 

simulations.  Insertion of a ten aminoacid loop between 112th and 113th residues of EGI, 

on the opposite side of the active site,   did not decrease the overall stability of EGI. 

Active site of the EGI became more rigid, thus more stable with the addition of a 

flexible loop.   

 
Trichoderma reesei has been known to produce many endoglucanases, EGI being a 

major one.  EGI comprises 5-10 % of the proteins secreted by Trichoderma reesei  (M. 

Penttila, Nevalainen, Ratto, Salminen, & Knowles, 1987).  Trichoderma reesei cellulase 

system has been known to exhibit its maximum activity around pH 5 (Bommarius, et 

al., 2008) and  around 50 °C to 60 °C (our groups unpublished results).  Our expression 

results of EGI and EGI_L5 in Pichia pastoris were consistent with these data.  

Heterelogous expression of the codon optimized egl1 gene and its mutant in Pichia 

pastoris produced glycosylated enzyme products.  Several studies indicate a 

heterogenous glycosylation of Trichoderma reesei EGI (Eriksson, et al., 2004; Hui, et 

al., 2002). Although glycosylation of Trichoderma reesei cellulases is a complex issue, 
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our recombinant enzymes were found to be still active against both soluble and 

insoluble substrates such as 4-MUC, CMC and viscose. 

 
Our recombinant enzymes, EGI and EGI_L5, exhibited similar pH activity profiles 

and consistent temparature activity profiles to EGI produced by Trichoderma reesei. 

Cloning of EGI and EGI_L5 in Pichia pastoris indicated that Pichia pastoris system 

can be used as a cloning host for endoglucanase 1.  Both EGI and EGI_L5 were 

expressed and produced actively in Pichia pastoris. Although different glycosylated 

forms were present, after affinity purification, both enzymes were obtained as single 70 

kDa protein bands. Batch affinity purification with RAC is a promising affinity 

chromatography technique. RAC is an ultra high capacity adsorbent for cellulose 

binding domains. It has larger surface area thus a larger binding surface for the cellulose 

binding domains in comparison to Avicel. Because of this technique’s relatively shorter 

process times (~30 minutes), cheaper price, and ease of use and reproducibility, it has 

come to be a frequently used research technique for the purification of cellulose binding 

domain tagged proteins (Hong, Wang, Ye, & Zhang, 2008).  We successfully used the 

same approach to purify cellulases with cellulose binding domains in only one step. 

Fermentation products were directly applied on RAC without further processing.  With 

the loop mutation, we obtained an active and stable endoglucanase which can be used 

for crosslinking and immobilization purposes. Loops that are inserted with this study 

had several Lysine residues which would create local high affinity points for 

crosslinking.  Since the loop domain contains positively charged Lysine residues, it can 

be hypothesized that the mutant enzyme could be crosslinked from the ε-amino groups 

of those residues effectively. Moreover, the loop domain was positioned away from the 

active site cleft, in order not to hinder the active site upon crosslinking.  

 
5.2. Effect of codon optimization on the production of EGI in Pichia pastoris 
 
Trichoderma reesei cellulase system has been known to exhibit its maximum 

activity around pH 5 (Bommarius, et al., 2008) and  around 50 °C to 60 °C (our group’s 

unpublished results).  Our expression results of EGI and EGIs in P. pastoris were 

consistent with these data.  Moreover, EGI catalytic domain expressed in E. coli has 

exhibited its maximum activity at pH 5 and has shown almost no activity at pH3 and 

pH7 (Nakazawa, et al., 2008).  Heterelogous expression of the codon optimized egl1 

gene and its native form in P. pastoris produced glycosylated enzyme products.  Several 
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studies indicated heterogenous glycosylation of Trichoderma reesei EGI (Eriksson, et 

al., 2004; Hui, et al., 2002). Although glycosylation of Trichoderma reesei cellulases is 

a complex issue, our recombinant enzymes were found to be still active against 

substrates such as 4-MUC and CMC. Moreover, endoglucanases were produced as 

active and stable biocatalysts in P. pastoris. Penttila et al. expressed Trichoderma reesei 

endoglucanase 1 in S. cerevisiae (M. E. Penttila, et al., 1987) the recombinant protein 

was also  found to be larger than the native protein produced by T. reesei. This was due 

to the differences between N-glycosylation patterns of S. cerevisiae and T. reesei.   

 
Cloning of EGI and EGIs in P. pastoris indicated that P. pastoris system can be 

used as a suitable cloning host for endoglucanase 1.  Both EGI and EGIs were 

expressed and produced actively in P. pastoris. As a result of codon optimization, 

recombinant endoglucanase 1 expression in P. pastoris is improved to 1.24 fold. It is 

known that increased GC-content prolongs mRNA half life and integrity in P. 

pastoris(Outchkourov, Stiekema, & Jongsma, 2002; Woo, et al., 2002).  However it is 

also known that due to codon bias, there should be a careful balance between codon 

optimization and GC content optimization. In our case, egl1 GC content was higher than 

the average GC content of P. pastoris and egl1 gene was containing negative cis acting 

sites such as AT and GC-rich stretches etc. which may negatively influence expression. 

Our synthetic gene was carefully optimized to overcome these problems. GC content 

was reduced to obtain a similar  value as of P. pastoris average GC content. Codon 

usage was biased to P. pastoris resulting in a high CAI value  of 0.91. CAI index  >0.9 

is accepted as good for expression.  Codon optimization of egl1 gene improved 

endoglucanase 1 production in P. pastoris.  

 
 Codon optimization of the gene did not affect the glycosylation pattern as expected.  

Moreover, batch productions indicated an increase in EGI activity with time as the 

productivity based on the total protein concentration decreased. However the native 

enzyme EGI did not exhibit exactly the same trend.  Total protein productivity of EGI 

clone has increased for the first 70 hours and then decreased while the enzyme activity 

has increased continuously.  Our research indicated that Pichia system can also be used 

for expression and production of other cellulase components of Trichoderma reesei.  

Moreover, one-step affinity purification using regenerated amorphous cellulose can be 

easily applied to other cellulase components cloned in P. pastoris. 
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5.3. Cloning and Production of Recombinant Cellulases in P. pastoris 
 
Bicatalytic EGI was prepared by overlap PCR extension in order to obtain an 

enzyme with increased activity and increased size. The recombinant enzyme produced 

in P. pastoris actively. But zymogram analysis revealed that the enzyme is degraded 

into catalytically active two components. Glycosylated forms of the enzyme were also 

present in zymogram gels. In order to alleviate the degradation problem by Pichia 

proteases fermentation conditions were changed by increasing the pH and decreasing 

the enzyme expression temperature. None of the conditions prevented the degradation 

of the enzyme. The degradation is thought to be arisen as a result of exposed linker 

region which connects the second catalytic domain to EGI domain. It is known that the 

linker region is o-glycosylated and this glycosylation reduces the affinity of proteases. If 

the linker region is not properly glycosylated, the enzyme would be open to the attack 

of Pichia proteases. Recombinant EGI_BC has exhibited increased activity against 4-

MUC and CMC since it has two catalytic domains.  

 

EGIII and CBHI enzymes of T. reesei were expressed in P. pastoris as active 

enzyme products. Both enzymes have exhibited activity towards CMC.  Activity of 

EGIII enzyme was also lower than EGI as expected since EGIII does not have a 

cellulose binding domain which helps the enzyme to adsorb to cellulosic substrates. 

EGIII has exhibited its maximum activity at 75 °C and at pH 5 which is much higher 

than the reported activity of the enzyme. Nakazawa et al. showed that EGIII stability 

was decreased to almost 0 % upon incubation at 60 and 70 °C for 15 minutes 

(Nakazawa, et al., 2008). EGIII was expressed in E.coli. This thermostability of EGIII 

expressed in P. pastoris may be due to glycosylation by Pichia glycosylation machinery 

since E.coli is not capable of glycosylation. It is known that glycosylation may confer 

enzymes extra stability (Kim, Kim, Raines, & Lee, 2004; Tang, et al., 2001).  

 

CBHI activity is lower towards CMC since this enzyme is known to exhibit lower 

activity towards amorphous cellulose. Boer et al. expressed cbh1 gene in P. pastoris 

GS115 strain under the control of alcohol oxidase (AOX1) and the glyceraldehyde-3-

phosphate dehydrogenase (GAP) promoters and obtained over-glycosylated enzyme 

products and part of the enzyme produced under the control of AOX1 were not 
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correctly folded (Boer, Teeri, & Koivula, 2000). Moreover they have found out that 

over-glycosylation of the enzyme did not affect its thermal stability. Our results are 

consistent with their data. CBHI enzyme has exhibited activity towards CMC over a 

broad range of temperatures (at 65 °C has shown its maximum activity). Even at higher 

temperatures such as 85 and 95 °C, recombinant CBHI retained 75-80 % of its activity. 

It has shown optimum activity around pH 5 and pH 6.  CBHI produced by T. reesei and 

CBHI produced by P. pastoris GS115 strain are known to show their maximum activity 

at pH 5  and their maximum stability at 60 °C (Boer, et al., 2000). Our enzyme has 

shown maximum activity at pH6 and 65 °C which are higher than the reported values.  

 
5.4. CLEA and Biopolishing 

 
Formation of pills on the surface of the fabric gives fabrics an aesthetic 

appearance. Application of cellulases for the removal of the pills on the surface is 

widely used in the industrial processes. The enzymatic process is very convenient for 

the cotton fabrics but results in the loss of tensile strength in viscose fabrics. Another 

problem arises from the fact that most of the commercial cellulases are unable to 

increase pilling values of the viscose as other fabrics.  

 
Viscose knitted fabrics are more prone to pilling than any of the fabrics because of their 

structure and fiber properties. The outer shell of the viscose fiber consists of amorphous 

cellulose separated by smaller ordered crystalline regions. Since the amorphous regions 

are more,  the viscose fibers are more prone to attack by cellulases. Degradation of  

amorphous regions would provide easy access of the enzymes to the ordered crystalline 

regions. Since the crystalline regions are mainly responsible for the tensile strength 

along the fiber axis, the tensile strength of the fabric drops upon cellulase action 

because of the degradation of this highly ordered crystalline regions.   This study has 

shown that CLEA of commercial cellulases and use of recombinant mono component 

cellulases (EGI, EGI_L5, EGI_BC)  can be used to alleviate the problem of lost tensile 

strength and can also be used to improve pilling notes of the viscose knitted and viscose 

woven fabrics. CLEA of commercial cellulases, EGI and EGI_L5 were found to 

increase pilling values  of the viscose fabrics by 20 %.  Preliminary studies have shown 

that application of CLEA prepared from EGI and EGI_L5 had not improved the pilling 

notes of the fabrics most probably due to loss of activity which might be caused by 

factors such as steric occlusion, hydrophobic interactions etc. More detailed 
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experiments and increased quantities of EGI and EGI_L5 are needed to optimize CLEA 

production from both recombinant enzymes.  

 

 One drawback of CLEA application for biopolishing is that, the CLEA particles 

have different sizes and batch to batch variation was present. This variation in size is 

overcome by size fractionation of the cLEA particles and evaluating their effects 

seperately.  CLEA with different sizes were shown to improve enzyme pilling notes and 

tensile strength of the fabrics.  CLEA prepared from EGI and loop mutant EGI_L5 were 

found to be active against CMC and since they were produced in lower amounts could 

not be applied to fabric samples. However both EGI and EGI_L5 have improved the 

pilling notes of the viscose knitted fabrics.  
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CHAPTER 6 

 

6. CONCLUSION 
 

This study has shown that P. pastoris is an efficient host for production of 

recombinant endoglucanase 1, endoglucanase 1 mutants, endoglucanase 3 and 

cellobiohyrolase 1 of Trichoderma reesei.  The recombinant enzymes are produced as 

active and stable biocatalysts since the P. pastoris system provides the suitable 

glycosylation patterns for stable and active production of T. reesei endoglucanases and 

cellobiohydrolases. P. pastoris endoglucanase 1, endoglucanase 3  and 

cellobiohydrolase 1 expression profiles are comparable to the ones reported in the 

literature (Boer, et al., 2000; Nakazawa, et al., 2008; M. E. Penttila, et al., 1987). The 

recombinant enzymes exhibited similar activities towards soluble substrates such as 

CMC and 4-MUC.  In addition to endoglucanase 1 expression in P. pastoris ,  the effect 

of codon optimization on the EGI expression  was studied. One step affinity purification 

has proven to be a suitable and rapid method for the purification of cellulases with 

cellulose binding domains. Moreover, the codon optimized endoglucanase 1 gene of T. 

reesei expressed in P. pastoris has improved the enzyme yield by 24 %. The change is 

not significantly different. This is expected since most of the codons existing in the 

native gene are also frequently used in P. pastoris. Overall, P. pastoris has proven to be 

an efficient host for the production of T. reesei cellulases.  

 
Use of in silico molecular modelling methods with site directed mutagenesis for 

creating a hotspot for directed crosslinking of EGI away from the active site was 

successful in terms of producing an active mutant enzyme.  Moreover, after crosslinking 

EGI_L5 has shown similar activity as EGI. Their CLEA did not improve the pilling 

values but did not cause a reduction in fabric strength.   

 
 Preparation of crosslinked enzyme aggregates of a commercial cellulase and size 

fractionation of the CLEA particles alleviated the problem of pilling formation and 

tensile strength loss in viscose knitted and viscose woven fabrics. This effect was more 

pronounced in viscose woven fabrics. The pilling values were increased by 20 % upon 
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their application. Moreover, application of recombinant EGI, EGI_L5 and EGI_BC also 

improved the pilling notes of the viscose knitted fabrics.        
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APPENDICES 

 
 
 

APPENDIX A 
 
 
 

EQUIPMENTS 
 
 

Equipment Brand Name/Model, Company 

Autoclave Certoclav, Table Top Autoclave CV-EL-12L, 
AUSTRIA 
Hirayama, Hiclave HV-110, JAPAN 

Balance Sartorius, BP211D, GERMANY 

Sartorius, BP221S, GERMANY 

Sartorius, BP610, GERMANY 

Schimadzu, Libror EB-3200 HU, JAPAN 

Burette Borucam, TURKEY  

Centrifuge Eppendorf, 5415C, GERMANY 

Eppendorf, 5415D, GERMANY 

Eppendorf, 5415R, GERMANY 

Hitachi, Sorvall Discovery 100 SE, USA 

Hitachi, Sorvall RC5C Plus, USA 

Kendro Lab. Prod., Heraeus Multifuge 
3L,GERMANY 

Dialysis Membrane Sigma,Cellusept 

Distilled Water Millipore, Elix-S, FRANCE 

Millipore, MilliQ Academic, FRANCE 

Electrophoresis Biorad Inc., USA 

Eppendorf tubes(1.5-2ml) Eppendorf 

Falcon tubes(15-50ml) TPP 

Freezer -70 oC, Kendro Lab. Prod., Heraeus Hfu486 Basic, 
GERMANY 
-20 oC, Bosch, TURKEY 

Glasswares Schott Duran, GERMANY  
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Hybridization Oven Model 1012, Biolab, TURKEY 

Ice Machine Scotsman Inc., AF20, USA 

Incubator Memmert, Modell 300, GERMANY 

Memmert, Modell 600, GERMANY 

Lyophilizer   

Magnetic Stirrer ARE Heating Magnetic Stirrer, VELP Scientifica, 
ITALY 
Microstirrer, VELP Scientifica, ITALY 

Micropipette Eppendorf 

Microscope  Olympos 

Microtiter Plates (96-well) TPP 

Microtiterplate reader Model 680, BioRad, 

Microvave oven Bosch, TURKEY 

Multitube rotator Labline 

pH-meter FisherBrand 

Pipetteman Hirschman Laborgate,  

Power Supply Biorad, PowerPac 300, USA 

Wealtec, Elite 300, USA 

Refrigerator (+4°C) Bosch, TURKEY 

SDS-PAGE Gel Casting 
Apparatus 

Biorad 

SEM Gemini 35 VP, Carl Zeiss, GERMANY 

Shaker Forma Scientific, Orbital Shaker 4520, USA 

C25HC Incubator shaker New Brunswick Scientific, 
USA 
GFL, Shaker 3011, USA 

New Brunswick Sci., Innova™ 4330, USA 

Spectrophotometers Schimadzu, UV-1208, JAPAN 

Schimadzu, UV-3150, JAPAN 

BioRad 

Speed Vacuum  Savant, Speed Vac® Plus Sc100A, USA 

Savant, Refrigerated Vapor Trap RVT 400, USA 

Tips  TPP 

Thermal Heater Bioblock Scientific 

Thermomixer Eppendorf 

Water bath Huber, Polystat cc1, GERMANY 
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APPENDIX B 
 

Protein Sequences of Loop Models 
 
>P1;EGI 
structureX:1EG1:   2 :A:+370 :A:undefined:undefined:-1.00:-1.00 
QPGTSTPEVHPKLTTYKCTKSGGCVAQDTSVVLDWNYRWMHDANYNSCT 
VNGGVNTTLCPDEATCGKNCFIEGVDYAASGVTTSGSSLTMNQYMPSSSG 
GYSSVSPRLYLLDSDGEYVMLKLNGQELSFDVDLSALPCGENGSLYLSQM 
DENGGA----------NQYNTAGANYGSGYCDAQCPVQTWRNGTLNTSHQ 
GFCCNEMDILEGNSRANALTPHSCTATACDSAGCGFNPYGSGYKSYYGPG 
DTVDTSKTFTIITQFNTDNGSPSGNLVSITRKYQQNGVDIPSAQPGGDTI 
SSCPSASAYGGLATMGKALSSGMVLVFSIWNDNSQYMNWLDSGNAGPCSS 
TEGNPSNILANNPNTHVVFSNIRWGDIGSTT* 
 
>P1;EGI_L1 
sequence:1EG1Loop1:    1 ::380   :endoglucanaseLoop1:Trichoderma 
reesei mutant::: 
QPGTSTPEVHPKLTTYKCTKSGGCVAQDTSVVLDWNYRWMHDANYNSCT 
VNGGVNTTLCPDEATCGKNCFIEGVDYAASGVTTSGSSLTMNQYMPSSSG 
GYSSVSPRLYLLDSDGEYVMLKLNGQELSFDVDLSALPCGENGSLYLSQM 
DENGGAKKGKKKGKKGNQYNTAGANYGSGYCDAQCPVQTWRNGTLNTSHQ 
GFCCNEMDILEGNSRANALTPHSCTATACDSAGCGFNPYGSGYKSYYGPG 
DTVDTSKTFTIITQFNTDNGSPSGNLVSITRKYQQNGVDIPSAQPGGDTI 
SSCPSASAYGGLATMGKALSSGMVLVFSIWNDNSQYMNWLDSGNAGPCSS 
TEGNPSNILANNPNTHVVFSNIRWGDIGSTT* 
 
>P1;EGI_L2 
sequence:1EG1L2:    1 ::380   :endoglucanaseL2:Trichoderma reesei 
mutant::: 
QPGTSTPEVHPKLTTYKCTKSGGCVAQDTSVVLDWNYRWMHDANYNSCT 
VNGGVNTTLCPDEATCGKNCFIEGVDYAASGVTTSGSSLTMNQYMPSSSG 
GYSSVSPRLYLLDSDGEYVMLKLNGQELSFDVDLSALPCGENGSLYLSQM 
DENGGAKGGKKKGGKKNQYNTAGANYGSGYCDAQCPVQTWRNGTLNTSHQ 
GFCCNEMDILEGNSRANALTPHSCTATACDSAGCGFNPYGSGYKSYYGPG 
DTVDTSKTFTIITQFNTDNGSPSGNLVSITRKYQQNGVDIPSAQPGGDTI 
SSCPSASAYGGLATMGKALSSGMVLVFSIWNDNSQYMNWLDSGNAGPCSS 
TEGNPSNILANNPNTHVVFSNIRWGDIGSTT* 
 
>P1;EGI_L3 
sequence:1EG1L3:    1 ::380   :endoglucanaseL3:Trichoderma reesei 
mutant::: 
QPGTSTPEVHPKLTTYKCTKSGGCVAQDTSVVLDWNYRWMHDANYNSCT 
VNGGVNTTLCPDEATCGKNCFIEGVDYAASGVTTSGSSLTMNQYMPSSSG 
GYSSVSPRLYLLDSDGEYVMLKLNGQELSFDVDLSALPCGENGSLYLSQM 
DENGGAKKGGKKGGKKNQYNTAGANYGSGYCDAQCPVQTWRNGTLNTSHQ 
GFCCNEMDILEGNSRANALTPHSCTATACDSAGCGFNPYGSGYKSYYGPG 
DTVDTSKTFTIITQFNTDNGSPSGNLVSITRKYQQNGVDIPSAQPGGDTI 
SSCPSASAYGGLATMGKALSSGMVLVFSIWNDNSQYMNWLDSGNAGPCSS 
TEGNPSNILANNPNTHVVFSNIRWGDIGSTT* 
 
>P1;EGI_L4 
sequence:1EG1L4:    1 ::380   :endoglucanaseL4:Trichoderma reesei 
mutant::: 
QPGTSTPEVHPKLTTYKCTKSGGCVAQDTSVVLDWNYRWMHDANYNSCT 
VNGGVNTTLCPDEATCGKNCFIEGVDYAASGVTTSGSSLTMNQYMPSSSG 
GYSSVSPRLYLLDSDGEYVMLKLNGQELSFDVDLSALPCGENGSLYLSQM 
DENGGAKGKGKGKGKGNQYNTAGANYGSGYCDAQCPVQTWRNGTLNTSHQ 
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GFCCNEMDILEGNSRANALTPHSCTATACDSAGCGFNPYGSGYKSYYGPG 
DTVDTSKTFTIITQFNTDNGSPSGNLVSITRKYQQNGVDIPSAQPGGDTI 
SSCPSASAYGGLATMGKALSSGMVLVFSIWNDNSQYMNWLDSGNAGPCSS 
TEGNPSNILANNPNTHVVFSNIRWGDIGSTT* 
 
>P1; EGI_L5 
sequence:1EG1L5:    1 ::380   :endoglucanaseL5:Trichoderma reesei 
mutant::: 
QPGTSTPEVHPKLTTYKCTKSGGCVAQDTSVVLDWNYRWMHDANYNSCT 
VNGGVNTTLCPDEATCGKNCFIEGVDYAASGVTTSGSSLTMNQYMPSSSG 
GYSSVSPRLYLLDKKGKKKGKKGSDGEYVMLKLNGQELSFDVDLSALPCG 
ENGSLYLSQMDENGGANQYNTAGANYGSGYCDAQCPVQTWRNGTLNTSHQ 
GFCCNEMDILEGNSRANALTPHSCTATACDSAGCGFNPYGSGYKSYYGPG 
DTVDTSKTFTIITQFNTDNGSPSGNLVSITRKYQQNGVDIPSAQPGGDTI 
SSCPSASAYGGLATMGKALSSGMVLVFSIWNDNSQYMNWLDSGNAGPCSS 
TEGNPSNILANNPNTHVVFSNIRWGDIGSTT* 
 
>P1; EGI_L6 
sequence:1EG1L6:    1 ::380   :endoglucanaseL6:Trichoderma reesei 
mutant::: 
QPGTSTPEVHPKLTTYKCTKSGGCVAQDTSVVLDWNYRWMHDANYNSCT 
VNGGVNTTLCPDEATCGKNCFIEGVDYAASGVTTSGSSLTMNQYMPSSSG 
GYSSVSPRLYLLDKGGKKKGGKKSDGEYVMLKLNGQELSFDVDLSALPCG 
ENGSLYLSQMDENGGANQYNTAGANYGSGYCDAQCPVQTWRNGTLNTSHQ 
GFCCNEMDILEGNSRANALTPHSCTATACDSAGCGFNPYGSGYKSYYGPG 
DTVDTSKTFTIITQFNTDNGSPSGNLVSITRKYQQNGVDIPSAQPGGDTI 
SSCPSASAYGGLATMGKALSSGMVLVFSIWNDNSQYMNWLDSGNAGPCSS 
TEGNPSNILANNPNTHVVFSNIRWGDIGSTT* 
 
>P1; EGI_L7 
sequence:1EG1L7:    1 ::380   :endoglucanaseL7:Trichoderma reesei 
mutant::: 
QPGTSTPEVHPKLTTYKCTKSGGCVAQDTSVVLDWNYRWMHDANYNSCT 
VNGGVNTTLCPDEATCGKNCFIEGVDYAASGVTTSGSSLTMNQYMPSSSG 
GYSSVSPRLYLLDKGKGKGKGKGSDGEYVMLKLNGQELSFDVDLSALPCG 
ENGSLYLSQMDENGGANQYNTAGANYGSGYCDAQCPVQTWRNGTLNTSHQ 
GFCCNEMDILEGNSRANALTPHSCTATACDSAGCGFNPYGSGYKSYYGPG 
DTVDTSKTFTIITQFNTDNGSPSGNLVSITRKYQQNGVDIPSAQPGGDTI 
SSCPSASAYGGLATMGKALSSGMVLVFSIWNDNSQYMNWLDSGNAGPCSS 
TEGNPSNILANNPNTHVVFSNIRWGDIGSTT* 
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Protein Sequences of Cloned Genes 

>EGI 
MAPSVTLPLTTAILAIARLVAAQQPGTSTPEVHPKLTTYKCTKSGGCVAQDTSVVLDWNY 
RWMHDANYNSCTVNGGVNTTLCPDEATCGKNCFIEGVDYAASGVTTSGSSLTMNQYMPSS 
SGGYSSVSPRLYLLDSDGEYVMLKLNGQELSFDVDLSALPCGENGSLYLSQMDENGGANQ 
YNTAGANYGSGYCDAQCPVQTWRNGTLNTSHQGFCCNEMDILEGNSRANALTPHSCTATA 
CDSAGCGFNPYGSGYKSYYGPGDTVDTSKTFTIITQFNTDNGSPSGNLVSITRKYQQNGV 
DIPSAQPGGDTISSCPSASAYGGLATMGKALSSGMVLVFSIWNDNSQYMNWLDSGNAGPC 
SSTEGNPSNILANNPNTHVVFSNIRWGDIGSTTNSTAPPPPPASSTTFSTTRRSSTTSSS 
PSCTQTHWGQCGGIGYSGCKTCTSGTTCQYSNDYYSQCL 

 
>CBHI  
MYRKLAVISAFLATARAQSACTLQSETHPPLTWQKCSSGGTCTQQTGSVVIDANWRWTHA 
TNSSTNCYDGNTWSSTLCPDNETCAKNCCLDGAAYASTYGVTTSGNSLSIGFVTQSAQKN 
VGARLYLMASDTTYQEFTLLGNEFSFDVDVSQLPCGLNGALYFVSMDADGGVSKYPTNTA 
GAKYGTGYCDSQCPRDLKFINGQANVEGWEPSSNNANTGIGGHGSCCSEMDIWEANSISE 
ALTPHPCTTVGQEICEGDGCGGTYSDNRYGGTCDPDGCDWNPYRLGNTSFYGPGSSFTLD 
TTKKLTVVTQFETSGAINRYYVQNGVTFQQPNAELGSYSGNELNDDYCTAEEAEFGGSSF 
SDKGGLTQFKKATSGGMVLVMSLWDDYYANMLWLDSTYPTNETSSTPGAVRGSCSTSSGV 
PAQVESQSPNAKVTFSNIKFGPIGSTGNPSGGNPPGGNRGTTTTRRPATTTGSSPGPTQS 
HYGQCGGIGYSGPTVCASGTTCQVLNPYYSQCL 

 
>EGIII 
MKFLQVLPALIPAALAQTSCDQWATFTGNGYTVSNNLWGASAGSGFGCVTAVSLSGGASW 
HADWQWSGGQNNVKSYQNSQIAIPQKRTVNSISSMPTTASWSYSGSNIRANVAYDLFTAA 
NPNHVTYSGDYELMIWLGKYGDIGPIGSSQGTVNVGGQSWTLYYGYNGAMQVYSFVAQTN 
TTNYSGDVKNFFNYLRDNKGYNAAGQYVLSYQFGTEPFTGSGTLNVASWTASIN 

 
>EGI_BC 
QQPGTSTPEVHPKLTTYKCTKSGGCVAQDTSVVLDWNYRWMHDANYNSCTVNGGVNTT 
LCPDEATCGKNCFIEGVDYAASGVTTSGSSLTMNQYMPSSSGGYSSVSPRLYLLDSDG 
EYVMLKLNGQELSFDVDLSALPCGENGSLYLSQMDENGGANQYNTAGANYGSGYCDAQ 
CPVQTWRNGTLNTSHQGFCCNEMDILEGNSRANALTPHSCTATACDSAGCGFNPYGSG 
YKSYYGPGDTVDTSKTFTIITQFNTDNGSPSGNLVSITRKYQQNGVDIPSAQPGGDTI 
SSCPSASAYGGLATMGKALSSGMVLVFSIWNDNSQYMNWLDSGNAGPCSSTEGNPSNI 
LANNPNTHVVFSNIRWGDIGSTTNSTAPPPPPASSTTFSTTRRSSTTSSSPSCTQTHW 
GQCGGIGYSGCKTCTSGTTCQYSNDYYSQCLPPPPPASSTTFSTTRRSSTTSSSPSCQ 
QPGTSTPEVHPKLTTYKCTKSGGCVAQDTSVVLDWNYRWMHDANYNSCTVNGGVNTTL 
CPDEATCGKNCFIEGVDYAASGVTTSGSSLTMNQYMPSSSGGYSSVSPRLYLLDSDGE 
YVMLKLNGQELSFDVDLSALPCGENGSLYLSQMDENGGANQYNTAGANYGSGYCDAQC 
PVQTWRNGTLNTSHQGFCCNEMDILEGNSRANALTPHSCTATACDSAGCGFNPYGSGY 
KSYYGPGDTVDTSKTFTIITQFNTDNGSPSGNLVSITRKYQQNGVDIPSAQPGGDTIS 
SCPSASAYGGLATMGKALSSGMVLVFSIWNDNSQYMNWLDSGNAGPCSSTEGNPSNIL 
ANNPNTHVVFSNIRWGDIGSTTNSTA 
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