
Combining High-Level Causal Reasoning with

Low-Level Geometric Reasoning and Motion Planning

for Robotic Manipulation

by

Can Palaz

Submitted to the Graduate School of Sabancı University

in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

August, 2011

c© Can Palaz, 2011

All Rights Reserved

Combining High-Level Causal Reasoning with
Low-Level Geometric Reasoning and Motion Planning

for Robotic Manipulation

Can Palaz
ME, Master of Science, 2011

Thesis co-advisors: Assist. Prof. Dr. Volkan Patoğlu,
Assist. Prof. Dr. Esra Erdem

Keywords: Manipulation planning, task planning, motion planning, reasoning,

artificial intelligence.

Abstract

We present a modular planning framework for manipulation tasks that com-
bines high-level representation and causality-based reasoning with low-level geo-
metric reasoning and motion planning. This framework features bilateral interac-
tion between task and motion planning, and embeds geometric reasoning in causal
reasoning. The causal reasoner guides the motion planner by finding an optimal
task-plan; if there is no feasible kinematic solution for that task-plan then the mo-
tion planner guides the causal reasoner by modifying the planning problem with
new temporal constraints. The geometric reasoner guides the causal reasoner to
find feasible kinematic solutions by means of external predicates/functions. We
show the applicability of this method on two sample problems: extended towers
of Hanoi and multiple robot manipulation inside a maze.

We focus on two main problems in this planning framework: i) a systemic
analysis of various levels of integration between high-level representation and
causality-based reasoning with low-level geometric reasoning and motion plan-
ning and ii) generalization of the planning framework to continuous domains. For
the former, we consider various levels of integration in the two domains men-
tioned above, to check which level of integration achieves better performance. For
the latter, we abstract configurations at the representation level by continuous re-
gions instead of discrete positions, and introduce an incremental sampling-based
method coupled to a goal region-based probabilistic path planner for extracting
specific goal configurations required for generating valid plans for execution. This
way, we tightly integrate high-level reasoning and region-based motion planning
and provide a general framework for addressing a wide spectrum of manipulation
problems.

iv

Üst-Seviye Nedensel Akıl-Yürütmenin Alt-Seviye Geometrik
Akıl-Yürütme ve Hareket Planlama ile Robotik Manipülasyon için

Kaynaştırılması

Can Palaz
ME, Yüksek Lisans Tezi, 2011

Tez Eşdanışmanları: Yrd. Doç. Prof. Dr. Volkan Patoğlu,
Yrd. Doç. Prof. Dr. Esra Erdem

Anahtar kelimeler: Manipülasyon planlama, görev planlama, hareket planlama,

akıl-yürütme, yapay zeka.

Özetçe

Üst-seviye gösterim ve nedensellik tabanlı akıl-yürütme ile alt-seviye geomet-
rik akıl-yürütme ve hareket planlamayı kaynaştıran modüler bir mimari sunulmuş-
tur. Bahsi geçen mimaride görev planlama ve hareket planlama arasında iki-yönlü
etkileşim bulunmakta ve geometrik akıl-yürütme, nedensel akıl-yürütmenin içine
yerleştirilebilmektedir. Nedensel akıl-yürütücü, hareket planlayıcıyı eniyilenmiş
bir görev planı bularak yönlendirmekte; şayet görev planını sağlayan uygulan-
abilir bir kinematik çözüm bulunamazsa, hareket planlayıcı, planlama problemini
zamana bağlı kısıtlar ekleyerek değiştirmek suretiyle yönlendirmektedir. Geomet-
rik akıl-yürütme ise nedensel akıl-yürütücüyü uygulanabilir çözümler bulması için
dış fonksiyonlar yardımıyla yönlendirmektedir. Bu yöntemin uygulanabilirliği iki
örnek problem üzerinde gösterilmiştir: Genişletilmiş Hanoi kuleleri bulmacası ve
iki robotun bir labirent içindeki manipülasyonu.

Bu mimari kapsamında iki ana problem üzerinde yoğunlaşılmıştır: i) Üst-
seviye gösterim ve nedensellik tabanlı akıl-yürütücü ile alt-seviye geometrik akıl-
yürütme ve hareket planlamanın bütünleştirilmesinin sistematik bir çözümlemesi;
ii) planlama mimarisinin sürekli alanlar için genellenmesi. İlk problem için, yukarıda
bahsi geçen örnekler üzerinde, çeşitli seviyelerdeki bütünleştirmelerin hesaplama
verimliliğini araştırılmıştır. İkinci problem için, gösterim seviyesinde, kesikli
konumlar yerine sürekli alanlar kullanılarak önerilen mimari genellenmiştir. Ayrıca
öne sürülen örnekleme tabanlı bir metot ile birlikte alan tabanlı bir hareket plan-
layıcı kullanılmıştır. Bu yolla, üst-seviye akıl-yürütme ile alan tabanlı hareket
planlama bütünleştirilmiş ve geniş kapsamlı manipülasyon problemlerini ele ala-
cak genel bir sistem sağlanmıştır.

v

Acknowledgements

It is a great pleasure to extend my gratitude to my thesis advisors Assist. Prof.

Dr. Volkan Patoğlu and Assist. Prof. Dr. Esra Erdem for their precious guidance

and support. I am greatly indebted to them for their supervision and excellent

advises throughout my Master study. I would gratefully thank Prof. Dr. Kemal

İnan, Prof. Dr. Ali Rana Atılgan, and Assist. Prof. Dr. Müjdat Çetin for their

feedbacks and spending their valuable time to serve as my jurors.

I would like to acknowledge the financial support provided by Sabancı Uni-

versity through my Master education under Internally-funded Research Projects

scholarship.

Many thanks to Kadir Haspalamutgil, Tansel Uras, Ozan Tokatlı, Alper Ergin,

Ahmetcan Erdoğan, and other fellow graduate students for making the laboratory

enjoyable and memorable.

Finally, I would like to thank my family for all their love and support through-

out my life.

vi

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Outline . 7

2 Preliminaries 8

2.1 Causal Reasoning with C+ and CCALC 8

2.1.1 Syntax of Causal Laws in C+ 9

2.1.2 Semantics for Action Descriptions 12

2.1.3 Queries . 14

2.1.4 CCALC . 17

2.1.5 Why C+ and CCALC? 22

2.2 Motion Planning with RRT . 24

3 A Hybrid Planning Framework for Robotic Manipulations 26

3.1 Overall System Architecture . 27

3.2 Task Planning Guides Motion Planning 29

3.3 Motion Planning Guides Task Planning 31

3.4 Related Work . 32

3.5 Summary of Contributions . 35

vii

4 Different Levels of Integration between High-Level Task Planning and

Geometric Reasoning 38

4.1 Extended Towers of Hanoi . 39

4.1.1 Action Domain Description 40

4.1.2 Physical Implementation 44

4.1.3 Experimental Results . 46

4.2 Maze Problem . 48

4.2.1 Action Domain Description 49

4.2.2 Physical Implementation 54

4.2.3 Experimental Results . 56

4.3 Discussion . 59

5 Generalization to Continuous Domains 61

5.1 Inverse Kinematics Bidirectional RRT 62

5.1.1 Kinematics of KUKA youBot 63

5.2 System Architecture . 68

5.3 Case Study: Waiter Robot . 72

5.3.1 Action Domain Description 72

5.3.2 Example Query . 75

5.3.3 Dynamic Simulation of the Waiter Robot Problem 77

5.4 Discussion . 79

6 Conclusion 80

viii

List of Figures

2.1.1 The suitcase domain described in C+. 12

2.1.2 The suitcase domain described in the language of CCALC. 19

3.1.1 Overall system architecture . 27

3.1.2 Manipulation planning framework 30

4.1.1 3D representation of Extended Towers of Hanoi 41

4.1.2 Snapshots of Extended Towers of Hanoi implementation 45

4.2.1 3D representation of Maze Problem 49

4.2.2 Snapshots of Maze Problem implementation 55

4.2.3 Domains for the Maze Problem 59

5.1.1 KUKA Youbot . 64

5.1.2 Youbot position inverse kinematics component 66

5.2.1 New planning architecture . 69

5.3.1 3D representation of Waiter Robot problem 72

5.3.2 Query of Waiter Robot Problem 76

5.3.3 Snapshots from execution of a plan for Waiter Robot problem . . . 78

ix

List of Tables

4.1.1 Problem size of Extended Hanoi Towers (Grounding) 43

4.1.2 Plan informations of Extended Hanoi Towers 47

4.2.1 Queries of the Maze Problem . 57

4.2.2 Problem size of Maze (Grounding) 57

4.2.3 Plan informations of Maze . 58

5.4.1 Problem size of Waiter Robot for the feasible query 79

x

List of Algorithms

1 BiRRT . 24

2 TASK&MOTION_PLAN . 31

3 IKBiRRT . 62

4 DETERMINE_STATES . 71

xi

Chapter 1

Introduction

Manipulation planning asks the question of how to autonomously generate robot

motion sequences that manipulate movable objects, possibly in an environment

with obstacles, in order to perform a specified task. These problems involve ob-

jects that can only move when picked up by robots and the order of pick-and-place

operations for manipulation may matter to obtain a feasible kinematic solution [1].

Therefore, geometric reasoning and motion planning alone are not sufficient to

solve these problems. On the other hand, every pick-and-place operation phys-

ically changes the state of the environment continuously. The abstraction and

discretization planning of actions may fail to capture these changes and result in

infeasible plans. For these reasons; planning of actions such as the pick-and-place

operations need to be integrated with the motion planning problem.

Motivated by this challenge, we introduce a formal hybrid planning framework

that combines high-level representation and causality-based reasoning with low-

level geometric reasoning and motion planning to obtain plans to be executed by

robotic manipulators.

Our hybrid planning framework features a general interface between high-

1

level causal reasoning and low-level geometric reasoning and motion planning,

utilizing external predicates/functions of high-level representation formalism. Ex-

ternal predicates/functions allow externally defined procedures/functions (in some

programming language, like C++) to be embedded into the logical formalism of

the high-level representation language. These external predicates/functions may

implement, for instance, collision detection. Then, the idea is to embed such a

function into the formulation of a robotic system, to be able to generate feasible

plans. With the use of external predicates/functions, we are able to decide the

amount of integration between high-level reasoning and geometric reasoning. For

instance, all geometric constraints can be implemented as a C++ program, e.g.,

for collision detection as in the example above, and then they can be used to spec-

ify the executability of actions in the high-level formulation of a dynamic system.

In this way, using such a formulation, feasible plans can be found to be executed

later on. In that sense, the geometric reasoner guides the causal reasoner to find

feasible kinematic solutions.

Alternatively; some of the geometric constraints can be implemented as an ex-

ternal predicate/function, since checking all constraints may be time consuming.

Then, since some constraints are not considered in the definition of the external

predicate/function, the plan computed using the formulation of the dynamic sys-

tem may not be always feasible. In such cases, in order to guarantee a physically

correct plan, we introduce another sort of guidance between task and motion plan-

ning: When a motion plan fails due to geometric constraints not captured by the

external predicates/functions during task planning, the planning problem is mod-

ified considering domain-specific information about the possible causes of the

failure. In this way, the causal reasoner finds a plan to a more “relevant” planning

problem. Note that in a classical 3-layer robot control architecture, such failures

2

are detected at the execution level. However, in our approach, they are detected at

the representation level, thanks to the tight bilateral interaction between high-level

representation and low-level geometric reasoning, before executing the plan.

We show the applicability of our hybrid planning framework on two domains:

extended towers of Hanoi and multiple robot manipulation inside a maze. In each

case, we represent the action domain in the logic-based formalism C+, imple-

ment the external functions in C++, use the causal reasoner CCalc to compute

task plans. We use our Rapidly-exploring Random Trees-based (RRT) [2] motion

planner for geometric reasoning.

Furthermore, we study two important questions: i) a systemic analysis of var-

ious levels of integration between high-level representation and causality-based

reasoning with low-level geometric reasoning and motion planning and ii) and

generalization of the planning framework into continuous domains. For the first

problem, we consider various levels of integration in the two domains mentioned

above, to check which level of integration achieves better performance. Note that

our planning framework allows such a systematic analysis due to flexible use of

external predicates/functions as part of high-level representation and reasoning.

For the second problem, we introduce a new method to apply probabilistic motion

planning methods to operate with goal regions, by incrementally determining goal

positions and utilizing the Inverse Kinematics Bidirectional RRT (IKBiRRT) [3]

algorithm.

1.1 Contributions

• We introduce a hybrid planning framework that combines high-level repre-

sentation and causality-based reasoning with low-level geometric reasoning

3

and motion planning. Novel features of this framework can be listed as

follows:

– Geometric reasoning guides task planning at the representation level.

∗ External predicates/functions enable embedding geometric rea-

soning and motion planning into task planning. In this way, fea-

sibility checks are handled at the representation level.

∗ Delegating some feasibility checks to external predicates/functions

allows control over the level of integration between high-level rea-

soning and geometric reasoning.

∗ Since the integration is formulated at the representation level, our

hybrid planning framework enables various search engines to be

utilized for high level reasoning, such as (parallel) SAT solvers,

without modifying their algorithms. Thus, the framework inherits

advantages of these underlying solvers.

∗ Since external predicates/functions can be implemented in any

language, geometric reasoning can be modularly added to high-

level representation of the domain. Thus, existing functions for

geometric reasoning can be utilized in our hybrid planning frame-

work.

– Task planning guides motion planning by computing a task plan.

∗ Task planner calculates an optimal plan in terms of plan length.

This plan contains all of the necessary primitive actions and their

order of execution, including pick-and-place actions which are

beyond the scope of motion planning.

∗ Motion planners lack the ability to determine if there exists a fea-

4

sible path (i.e., a continuous trajectory corresponding to a discrete

action in the given task plan). Usually, they are asked to deter-

mine if there is a feasible trajectory with respect to a given time

threshold. However, in the worst case, infeasible motion planning

queries take long time since the planners are required to reach the

given threshold before they can return an answer. A task plan lim-

its the search space for the motion planner and does so by mostly

eliminating infeasible regions of the configuration space, which

significantly increases computational efficiency.

– Motion planning guides task planning by means of temporal constraints.

∗ When all the feasibility checks are not delegated to external pred-

icates/functions, motion planning may fail due to a geometric/

kinematic details not captured by the task planner. In such a case,

the description of the planning problem is modified taking into ac-

count some domain specific information from motion-level (e.g.,

the causes of infeasibilities), and the causal reasoner is asked to

solve a more “relevant” planning problem.

∗ Instead of guiding the task planner at the search level by manip-

ulating its search algorithm directly, the motion planner guides

the task planner at the representation level by presenting to it the

“right” planning problem.

• We show the applicability of our hybrid planning framework by physically

implementing it on two example domains: Extended Towers of Hanoi and

multiple robot manipulation inside a maze.

• We systematically analyze the influence of the level of integration between

5

high-level task planning and low-level geometric reasoning and path plan-

ning.

– External predicates/functions allow task planning to capture physical

constraints in more detail. However, their presence in the formalism

brings a computational burden on the task planner. On the other hand,

embedding only a partial set of the physical constraints at the repre-

sentation level implies that task planner can suggest infeasible plans

and replanning with the guidance motion planning may be more fre-

quently required. Therefore, there exists an inherent trade-off on the

level of integration and computational efficiency/tractability. We sys-

tematically analyze this trade-off with some experiments on the two

domains mentioned above.

• We generalize our hybrid planning framework to continuous domains in

robotic manipulation problems

– Instead of viewing a configuration of a robotic manipulation domain

as a set of discrete objects (e.g., viewing a maze as a grid of dis-

crete points), we view them in a more abstract way as continuous re-

gions. We introduce an incremental sampling-based method coupled

to a goal-region-based probabilistic path planner for extracting specific

goal configurations required for generating valid plans for execution.

• We show the effectiveness of the generalized hybrid planning framework

by implementing a dynamic simulation of a mobile manipulation task with

continuous goal regions.

6

1.2 Outline

Following is the structure of the thesis: In Chapter 2, we describe the action de-

scription language C+and the causal reasoner CCalc; and give a brief description

of RRT-based motion planning algorithms. Then in Chapter 3, we describe the

overall architecture of our hybrid planning framework. In Chapter 4, we discuss

the impact of the level of integration of low-level into the high-level through em-

pirical data, and show the applicability of the framework on physical setups. Then

in Chapter 5, we propose a method for generalizing the framework into domains

where continuous regions are assumed. In Chapter 6, we conclude.

7

Chapter 2

Preliminaries

Before delving into the details of our hybrid planning framework, its compo-

nents shall be described for a better understanding. Our approach of integrat-

ing high-level causal reasoning and low-level geometric reasoning consists two

components. High-level representation formalism (C+ [4]) and causal reasoner

(CCALC [5]) are utilized for causal reasoning; whereas variants of Rapidly ex-

ploring Random Trees (RRTs) [2] algorithm are used for geometric reasoning and

motion planning.

Now, we describe these components in detail.

2.1 Causal Reasoning with C+ and CCALC

By describing a domain in C+ (by a set of rules called “causal laws”) and using

the reasoning mechanism CCALC, high-level task plans with several properties

(such as being of minimum number of steps, obeying constraints) can be calcu-

lated. In the following, syntax and the semantics of the action description lan-

guage C+ (similar to [4]) are described, and the reasons behind the selection are

8

explained.

2.1.1 Syntax of Causal Laws in C+

We start with a (multi-valued propositional) signature that consists of a set σ of

constants of two sorts, along with a nonempty finite set Dom(c) of value names,

disjoint from σ , assigned to each constant c. An atom of σ is an expression of the

form c = v (“the value of c is v”) where c ∈ σ and v ∈ Dom(c). A formula of σ

is a propositional combination of atoms. If c is a Boolean constant, we will use c

(resp. ¬c) as shorthand for the atom c = True (resp. c = False).

A signature consists of two sorts of constants: fluent constants and action

constants. Intuitively, fluent constants denote “fluents” characterizing a state; ac-

tion constants denote “actions” characterizing an event leading from one state to

another.

A fluent formula is a formula such that all constants occurring in it are fluent

constants. An action formula is a formula that contains at least one action constant

and no fluent constants.

An action description is a set of causal laws of three sorts. Static laws are of

the form

caused F if G (2.1)

where F and G are fluent formulas. Action dynamic laws are of the form (2.1)

where F is an action formula and G is a formula. Fluent dynamic laws are of the

form

caused F if G after H (2.2)

where F and G are as above, and H is a fluent formula. In (2.1) and (2.2) the part

if G can be dropped if G is True; the part F is called the head.

9

Abbreviations for causal laws

While describing action domains, we can use some abbreviations. For instance,

we can describe the (conditional) direct effects of actions using expressions of the

form

c causes F if G

which abbreviates the fluent dynamic law

caused F if True after c∧G.

This abbreviation expresses that “executing c at a state where G holds, causes F .”

We can formalize that F is a precondition of executing c by the following

expression

nonexecutable c if F

which stands for the fluent dynamic law

caused False if True after c∧F .

Similarly, we can prevent the execution of two actions c and c′ by the expression

nonexecutable c∧ c′.

We can represent the “commonsense law of inertia” also by using abbrevia-

tions. For instance, we can describe that “the value of a fluent F remains to be

true unless it is caused to be false” by the expression

inertial F

10

that stands for the fluent dynamic causal law

caused F if F after F .

Note that classical task planners make such an assumption but at the search level

(i.e., they cannot represent it explicitly as a part of planning domain description).

Furthermore, expressions

inertial F1, ..., inertial Fn

can be abbreviated as

inertial F1, ...,Fn.

In almost all the action domains, we express that there is no cause for the

occurrence of an action A by the expression

exogenous A

that abbreviates the following action dynamic laws:

caused A if A

caused ¬A if ¬A.

Example – Suitcase domain

Consider, for instance, the suitcase domain introduced in [6]: there is a suitcase

with two latches l1 and l2; when these two latches are up then the suitcase auto-

matically opens. There are three propositional fluents: up(L), where L is l1 or l2,

11

Notation: L ranges over {l1, l2} and a ranges over action constants.
Action constants: Domains:

toggle(L) Boolean

Fluent constants: Domains:
up(L) Boolean
open Boolean

Causal laws:
toggle(L) causes up(L) if ¬up(L)
toggle(L) causes ¬up(L) if up(L)

caused open if up(l1)∧up(l2)

inertial open,¬open
inertial up(L),¬up(L)

exogenous a

Figure 2.1.1: The suitcase domain described in C+.

and open; up(L) holds iff latch L is up, open holds iff the suitcase is open. There is

an action of toggling a latch L denoted by toggle(L). If a latch is down (resp. up)

then it becomes up (resp. down) after toggling it. We can describe this domain in

the action description language C+ by the causal laws presented in Figure 2.1.1.

The first two lines of causal laws describe the direct effects of toggling the latches.

The third line describes the indirect effects of toggling. The commonsense law of

inertia is expressed by the next two lines. The last line expresses that actions are

exogenous.

2.1.2 Semantics for Action Descriptions

The meaning of an action description can be represented by a “transition system”.

A transition diagram can be thought of as a labeled directed graph. Every state

is represented by a vertex labeled with the function from fluent constants to their

values. Every transition 〈s,A,s′〉 is represented by an edge leading from s to s′ and

12

labeled A.

For instance, the transition system of the suitcase domain description in Fig-

ure 2.1.1 has 7 possible states:

{up(l1),up(l2),open} (S1)

{up(l1),¬up(l2),open} (S2)

{up(l1),¬up(l2),¬open} (S3)

{¬up(l1),up(l2),open} (S4)

{¬up(l1),up(l2),¬open} (S5)

{¬up(l1),¬up(l2),open} (S6)

{¬up(l1),¬up(l2),¬open} (S7)

Note that {up(l1),up(l2),¬open} is not a possible state; due to the static law

caused open if up(l1)∧up(l2)

at every state s, up(l1)∧up(l2)⊃ open.

At each possible state there are 4 applicable actions:

{toggle(l1), toggle(l2)} (A1) “toggle l1 and l2′′

{¬toggle(l1),¬toggle(l2)} (A2) “do nothing”

{toggle(l1),¬toggle(l2)} (A3) “toggle l1”

{¬toggle(l1), toggle(l2)} (A4) “toggle l2”

so that each state has 4 outgoing edges. For instance, the edges outgoing from S1

are

〈S1,A1,S6〉,〈S1,A2,S1〉,〈S1,A3,S4〉,〈S1,A4,S2〉.

The transition system that corresponds to the suitcase domain has 28 edges.

13

Consider the transition 〈S7,A1,S1〉. The causal laws that are applicable to this

transition are
toggle(l1) causes up(l1) if ¬up(l1)

toggle(l2) causes up(l2) if ¬up(l2)

caused open if up(l1)∧up(l2)

exogenous toggle(l1)

exogenous toggle(l2).

Here {up(l1),up(l2),open} is the only interpretation that satisfies the heads of

the first three causal laws; {toggle(l1), toggle(l2)} is the only interpretation that

satisfies the heads of the last two causal laws.

Now consider the triple 〈S7,A3,S1〉. The causal laws that are applicable to this

transition are
toggle(l1) causes up(l1) if ¬up(l1)

caused open if up(l1)∧up(l2)

exogenous toggle(l1)

exogenous toggle(l2).

Here there are two interpretations that satisfy the heads of the first three causal

laws; {up(l1),up(l2),open} and {up(l1),¬up(l2),open}. In other words, no

causal law provides a causal explanation for up(l2). Therefore, this triple is not a

transition.

2.1.3 Queries

Given an action domain description represented in a fragment of C+ as described

above, we can perform various reasoning tasks over it, such as planning, predic-

tion and postdiction. Such reasoning problems are represented using queries in an

“action query language” as described in [7].

14

We consider a variation of the action query language Q introduced in [7]. In

this language, an atomic query is one of the two forms, F holds at t or A holds at t,

where F is a fluent formula, A is an action formula, and t is a time step. A query

is a propositional combination of atomic queries.

Let D be an action description and T (D) = 〈S,V,R〉 denote the transition sys-

tem described by D, with a set S of states, a value function V mapping, at each

state s, every fluent P to a truth value, and a set R of transitions. A history of D of

length n is a sequence

s0,A1,s1, . . . ,sn−1,An,sn (2.3)

where each 〈si,Ai+1,si+1〉 (0 ≤ i < n) is in R. We say that a query Q of the form

F holds at t (resp. A occurs at t) is satisfied by a history (2.3) if st satisfies F

(resp. if At satisfies A). For nonatomic queries, satisfaction is defined by truth

tables of propositional logic. We say that a query Q is satisfied by an action

description D, if there is a history H of D that satisfies Q.

Suppose that F and G are fluent formulas denoting an initial state and goal

conditions respectively. We can describe the problem of finding a plan of length

n, with a query of the form

F holds at 0 ∧G holds at n. (2.4)

Consider, for instance, the following planning problem over the suitcase domain

defined above: initially, both latches are down and the suitcase is not open; the

goal is to open the suitcase in maxstep steps. This problem can be expressed as a

15

query as follows:

¬up(l1)∧¬up(l2)∧¬open holds at 0∧

open holds at maxstep.
(2.5)

We can also solve variations of these problems, where some intermediate

states are specified or where the specified actions are not executed consecutively.

This allows us to enforce, for instance, further temporal constraints in a planning

problem. Consider the planning problem above described by (2.5), but with a

constraint that “at every time step t, if latch l2 is down then latch l1 cannot be

toggled.” We can describe this new problem by modifying (2.5) as follows

¬up(l1)∧¬up(l2)∧¬open holds at 0∧

open holds at maxstep∧∧
0≤t<maxstep¬

(
up(l2) holds at t ⊃

¬toggle(l1) occurs at t
)
.

(2.6)

We can also ensure some order of actions if desired. For instance, we can

ensure that “at some time t, latch l1 is toggled before latch l2” by modifying (2.5)

as follows:

¬up(l1)∧¬up(l2)∧¬open holds at 0∧

open holds at maxstep∧∨
0≤t1,t2<maxstep,t1<t2

(
toggle(l1) occurs at t1∧

toggle(l1) occurs at t2
)
.

(2.7)

16

2.1.4 CCALC

The Causal Calculator (CCALC) [5] is a reasoning system, that performs rea-

soning tasks over an action domain description represented in a fragment of C+

described above. To present formulas to CCALC, conjunctions ∧, disjunctions ∨,

implications ⊃, negations ¬ are replaced with the symbols & (or &&)), ++, -»,

and - respectively. In most of the action descriptions, fluents are inertial and ac-

tions are exogenous; therefore, CCALC allows us to include this information at

the very beginning of the action description while declaring fluent constants and

action constants. For instance, the suitcase domain represented in C+ in Fig-

ure 2.1.1 is presented to CCALC as in Figure 2.1.2.

When we present causal laws to CCALC, we can call “external predicates/

functions” in them. These predicates/functions are not part of the signature of the

domain description (i.e., they are not declared as fluents or actions). They are im-

plemented as functions in some programming language of the user’s choice, such

as C++. External predicates take as input not only some parameters from the ac-

tion domain description (e.g., the locations of robots) but also detailed information

that is not a part of the action domain description (e.g., geometric models). They

are used to check externally some conditions under which the causal laws apply, or

compute externally some value of a variable/fluent/action. For instance, suppose

that the external predicate collision(X,Y,X1,Y1) (implemented in C++)

checks whether the path between (X,Y) and (X1,Y1) collides with an obsta-

cle. Then we can express that there is no state at which the endpoints of a payload

are located at (X,Y) and (X1,Y1) where collision(X,Y,X1,Y1) holds:

caused false

if xpos(r1)=X1 & ypos(r1)=Y1 &

xpos(r2)=X2 & ypos(r2)=Y2

17

where collision(X1,Y1,X2,Y2).

In addition, an external predicate can accomplish some other tasks as “side -

effects.” For instance, while checking whether a robot located at (X,Y) collides

with another robot at (X1,Y1), the external predicate collision(X ,Y,

X1, Y1) can form a database keeping which locations lead to a collision and

which locations do not. Then this database can be reused in the future.

Another useful feature of CCALC is its ability to represent “attributes of ac-

tions” that allows us to talk about various special cases of actions. Consider, for

instance, the action of “a robot R picking a payload”. We can enforce that a robot

R cannot pick a payload while moving by a causal law like

nonexecutable move(R) & pick(R).

However, when we want to specify some effects of these actions, we need to

consider special cases of them. For instance, to express the effect of picking a

payload, it may be useful to consider where the robot is picking the payload at.

To express the effect of moving, it may be useful to consider in which direction

and by what number of steps the robot is moving the payload. To denote these

special cases of actions, we declare their attributes. For instance, for pick, we

introduce an attribute pickpoint (as a function that returns which endpoint)

after we declare pick as an exogenous action:

pick(robot) :: exogenousAction;

pickpoint(robot) ::

attribute(endpoint) of pick(robot);

and describe its effect (“robot R is holding a payload at its endpoint P”):

18

:- sorts
latch.

:- objects
l1, l2 :: latch.

:- variables
L :: latch.

:- constants
up(latch), open :: inertialFluent;
toggle(latch) :: exogenousAction.

% effects of toggling
toggle(L) causes up(L) if -up(L).
toggle(L) causes -up(L) if up(L).

% suitcase is open if
% both of the latches are open
caused open if up(l1) & up(l2).

Figure 2.1.2: The suitcase domain described in the language of CCALC.

pick(R) causes holding(R,P)

if pickpoint(R)=P.

By this way, additional special cases of an action can be defined without having

to modify the definitions of more general actions. Note that such a representation

of actions by special cases is a form of “hierarchical” representation of actions.

Once such an action domain description is given, we can perform various rea-

soning tasks via queries in an action query language, like the variation of the

action query language Q described above.

Given a domain description and a query, CCALC checks whether the query is

satisfied by the domain description (in the sense of satisfiability planning of [8])

19

as follows:

1. it transforms the causal laws into a propositional theory ΓD, via “causal

logic” [4],

2. it transforms the query into a propositional theory ΓP,

3. it checks whether ΓD∪ΓP is satisfiable;

4. if ΓD∪ΓP is unsatisfiable, it returns No;

5. otherwise, it returns Yes and presents an example extracted from a satisfying

interpretation for ΓD∪ΓP.

The transformations in the first two steps are different: the one in 1) is based on

literal completion, whereas the one in 2) is based on a simpler procedure (see [4]

for a detailed description). Such a difference allows one to check the satisfiabil-

ity of other queries (for instance, for replanning) without executing the first step

again. Step 3) is done automatically by a state-of-the-art SAT solver, such as

MINISAT [9] or its parallel variant MANYSAT [10].

Let us give now some examples for the kind of reasoning tasks that CCALC

can do. For instance, we can present query (2.5) to CCALC as follows:

:- query

maxstep :: 2;

0: -up(l1), -up(l2), -open;

maxstep: open.

Note that conjunctions ∧ in a formula are denoted by commas in queries. A query

of the form F holds at t (resp. A occurs at t) is represented as t: F (resp. t:

20

A). The third line in the query above describes the initial state at time step 0, and

the last line describes the goal condition at time step maxstep=2.

To find a shortest plan, we modify this query (let us label the modified query

as ‘Query 1’):

:- query

label :: 1; % Query 1

maxstep :: 0..infinity;

0: -up(l1), -up(l2), -open;

maxstep: open.

With this query, CCALC successively tries to find a plan of length maxstep=0,

1 ,..., infinity. For Query 1, CCALC finds a shortest plan for maxstep

= 1 where both latches are toggled at time step 0:

0:

ACTIONS: toggle(l1) toggle(l2)

1:

CCALC can also show the complete history of this plan, including state informa-

tion, if prompted:

0: -up(l1) -up(l2) -open

ACTIONS: toggle(l1) toggle(l2)

1: up(l1) up(l2) open

We can add some constraints to a planning problem specified as a query, as in

(2.6):

21

:- query

label :: 2; % Query 2

maxstep :: 0..infinity;

0: -up(l1), -up(l2), -open;

maxstep: open;

[/\T | T<maxstep ->>

(-(T: up(l2)) ->> -(T: toggle(l1)))].

With this modification, CCALC finds the following shortest plan instead:

0: -up(l1) -up(l2) -open

ACTIONS: toggle(l2)

1: up(l2) -up(l1) -open

ACTIONS: toggle(l1)

2: up(l1) up(l2) open

2.1.5 Why C+ and CCALC?

We have decided to use the action description language C+ to describe action

domains due to its expressivity: we can formalize not only effects and precon-

ditions of actions, but also state/transition constraints and changes that do not

directly involve actions; we can represent not only deterministic effects but also

nondeterministic effects of actions. Also C+ allows concurrency, unless specified

otherwise via nonexecutability constraints.

We envision agents (robots) in a framework that has the capability of solving

not only planning problems but also other reasoning tasks; since we aim endowing

agents (robots) with various kinds of high-level reasoning mechanisms (such as

prediction, postdiction, diagnosis, reasoning about shared resources, etc.) in the

22

sense of cognitive robotics [11]. The action description language C+, with the

query language defined above, provides a common language for all these reason-

ing tasks, and thus allows us to setup such a framework.

CCALC can answer queries about a domain description represented in C+

with respect to a reasoning task described in the query language above. There-

fore, it allows us to solve different sorts of reasoning problems mentioned above

(possibly with temporal constraints). Being able to add domain-specific temporal

constraints as part of queries, for instance, allows us to do intelligent replanning

to find different and “better” plans, as explained in the Chapters 3 and 4.

Due to its modular structure and generic implementation, CCALC allows us

to use various kinds of search engines to answer queries: CCALC supports SAT

solvers such as MINISAT and the parallel SAT solvers like MANYSAT; the user

can choose which search engine to use for answering which query. Due to well-

studied relations between action languages and Answer Set Programming (ASP)

[12], as in [13], we can also use efficient ASP solvers instead of SAT solvers, as

in [14].

CCALC also supports external predicates/functions that can be implemented in

some programming language of the user’s choice. These predicates/functions are

important, for instance, in embedding low-level geometric reasoning in high-level

reasoning, as explained in Chapter 4.

CCALC has other useful features/utilities as well: it supports additive fluents

(to talk about the total effect of concurrently executing actions on numeric-valued

fluents that denote shared resources), macros (to define complex notions suc-

cinctly, in some ways similar to “derived predicates”), attributes (to talk about

special cases of actions). For more information about CCALC, we refer the reader

to [4].

23

Algorithm 1 BiRRT
Require: Initial state S and goal state G

{C, t, d denote the configuration space, a specified timeout and a specified distance}
s← Find initial configuration in C that corresponds to S;
g← Find goal configuration in C that corresponds to G;
V := {〈s,1〉,〈g,2〉}; {The roots of Tree 1 and Tree 2}
E := /0; {Empty set of undirected edges in these trees}
connected := false;
while ¬connected and the timeout t is not exceeded do

p← Sample a random point in C;
if p is collision-free then

p1← Find the closest point to p in V with label 1;
p2← Find the closest point to p in V with label 2;
for i = 1,2 do

if the path connecting pi ad p is collision-free then
V :=V ∪{〈p, i〉}; {Expand Tree i with p}
E := E ∪{{pi, p}};

end if
end for
if both the path connecting p and p1, and the path connecting p and p2 are collision-free
then

connected := true;
end if

end if
end while
if connected then

π ← Extract the trajectory from 〈V,E〉;
return true,π;

else
return false; {No trajectory}

end if

2.2 Motion Planning with RRT

Motion planning, and specifically path planning, is an area that has been well

studied. Path planning problem, also known as piano mover’s problem, asks for

the path that leads an initial configuration to a goal configuration (for a review of

motion planning, see [15]).

The most suitable branch of motion planning for this work is sampling based

path planning. Algorithms of sampling based path planning can be divided into

24

two categories in terms of usability of their samplings. Multi-query path plan-

ning algorithms, such as variants of probabilistic roadmaps (PRM [16]), sample

the configurations space in advance to generate a graph, called a roadmap; path

planning is carried out afterwards. Since the roadmaps are generated without re-

garding the path planning query, they can be used multiple times. However, the

overhead time of generating a roadmap negatively affects the overall computation

time, which proves to be inefficient in situations where the environment changes

rapidly.

Single-query algorithms, such as RRT [2], only try to connect the initial con-

figuration to a goal configuration, without regarding reusability. Therefore, the

computation of a single path is significantly reduced compared to PRM.

Bidirectional RRT, which is commonly referred to as RRT, tries to expand and

connect two trees whose roots are initial and goal configurations. In one of the

examples of Chapter 4, as well as in our other studies, a variant of this algorithm

(Algorithm 1) is employed. The trees are expanded in the following manner: A

point p is sampled from the configuration space. If p is collision-free, then from

the tree Ti, the closest point pi to p is calculated. If the path connecting pi to p is

collision-free, then point p and edge (pi, p) are added to Ti.

25

Chapter 3

A Hybrid Planning Framework for

Robotic Manipulations

While manipulating objects, the order of pick-and-place actions may affect the

feasibility of a plan. Consider, for instance, a robot is to place an object to a given

location. Further, the goal location may be occupied by another object. In such

a case, motion planners alone are not able to solve the problem. On the other

hand, as the burden on task planning is increased by adding the details of low-

level, the problem becomes harder to solve for the task planner. As a result, some

amount of abstraction is unavoidable. However, this may lead to task plans whose

execution in the real world is not possible. Therefore, similar to motion planning,

task planning is not sufficient by itself for capturing all geometric constraints and

details.

26

G
e
o
m

e
tr

ic
 M

o
d

e
ls

 a
n

d
 K

in
e
m

a
ti

c
R

e
la

ti
o
n

s
Domain Description Planning ProblemCommonsense Knowledge

Compute an Optimal Task Plan

TASK PLANNING

Obtain a Continuous Trajectory for each Task
MOTION PLANNING

NoTrajectory
Exist?

Modify Planning Problem

Execute the Plan
EXECUTION & MONITORING

S
e
n

so
r

In
fo

rm
a
ti

o
n

Check for a Discrepancy Intervention
Collision?

No

Yes

Diagnose the Cause of the Failure

Modify Planning Problem

Yes

Figure 3.1.1: Overall system architecture

3.1 Overall System Architecture

The overall architecture of our formal framework that combines high-level repre-

sentation and causality-based reasoning with low-level geometric reasoning and

27

motion planning to generate feasible continuous trajectories and a modular exe-

cution monitoring framework is illustrated in Figure 3.1.1.

In this framework, we start with an action domain description and planning

problem description in the input language of CCALC, geometric models in some

modeling system (e.g., Wavefront or VRML), and functions (e.g., kinematics,

look-up tables, etc.) whose truth values are to be calculated for task planning.

These inputs can be described as follows:

• Geometric models include links of the robots, payloads that shall be manip-

ulated, and obstacles in the environment.

• Functions, such as kinematic relations, are to be used in the planning pro-

cess. Their values are calculated for availabilities of states and transitions.

These functions may make use of the geometric models provided.

• An action domain description is a set of causal laws that express direct ef-

fects and preconditions of actions of robots, causal relations that do not

involve these actions directly (e.g., ramifications), and state and transition

constraints. These causal laws may include external predicates, that use the

provided functions, expressing conditions that involve geometric reasoning

(as shown in Section 2.1) so that geometric models are also taken into ac-

count while a task plan is computed.

• A planning problem description is a set of formulas that express an initial

state, goal conditions, and temporal constraints.

Given an action domain description and a planning problem, and using CCALC;

first we compute a plan of sequence of actions 〈A0, . . . ,An〉, that is optimal in plan

28

length, and its complete history 〈S0,A0,S1, . . . ,Sn,An,Sn+1〉, that includes inter-

mediate states. The computed plan may involve concurrent execution of actions

by multiple robots; so each Ai is a set of primitive actions.

Next, using plan and history, and considering kinematic relations; we calcu-

late a continuous trajectory for each transition. Considering the state before the

transition and effects of the transition, a continuous trajectory for each robot is

calculated by a motion planning algorithm (Section 2.2).

If the motion planner fails to find a continuous trajectory for a transition, we

identify the cause of that failure. There may be various kinds of failure with dif-

ferent causes. For instance, state caused by a transition may not be valid in reality.

Similarly, although previous and next states of a transition may be valid, motion

planner may fail to find a trajectory due to obstacles. Depending on the cause of

the failure, we modify the planning problem (to state such a transition or state is

invalid) by adding domain-specific temporal constraints to avoid similar sorts of

failure, as shown in Section 2.1. Afterwards, the modified planning problem is

solved by CCALC, generating a different optimal task plan.

In the following, we describe, in detail, how task planning guides motion plan-

ning and how motion planning guides task planning, as illustrated in the manipu-

lation planning framework shown in Figure 3.1.2.

3.2 Task Planning Guides Motion Planning

The aim of planning is ultimately to obtain robotic motion sequences to perform

a given task. Applicability of a plan may be effected by the order of involved

primitive actions, such as pick and place; and motion planners are not able to

determine such an order. Similarly, motion planners cannot reason on the effects

29

G
e
o
m

e
tr

ic
 M

o
d
e
ls

 a
n

d
 K

in
e
m

a
ti

c
R

e
la

ti
o
n

s

TASK PLANNING
Compute an Optimal Task Plan

MOTION PLANNING

No

Domain Description:
 preconditions and effects of actions
 state constraints
 transition constraints

optimal plan <A0, ..., An>
with history

<S0, A0, S1, ..., Sn, An, Sn+1>

i := 0
T := < >

Obtain a continuous trajectory Ti
for transition <Si, Ai, Si+i>

using motion planning

Identify
the cause

of the failure

Modify
planning problem

by adding
temporal constraints

Ti Exists?Append
Ti to T

i = n?

Continuous trajectory T

i := i+1

Yes

Yes

No

Re-task
plan?

Modify
motion planning

problem parameters

No

Yes

Planning Problem:
 initial state
 goal state
 constraints

External Predicates/Fuctions

Te
m

p
o
ra

l C
o
n
stra

in
ts

Figure 3.1.2: Manipulation planning framework

of geometry changing actions.

By the help of a task plan and state history 〈S0,A0,S1, ...,Sn,An,Sn+1〉, motion

planning is used for planning a single transition 〈Si,Ai,Si〉 at a time, which is

what motion planning algorithms are essentially designed for. If a motion plan for

such a transition is calculated, it is appended to an incrementally created overall

motion plan. Otherwise, this information is used for the guiding the task planner,

as described in the next section.

30

Algorithm 2 TASK&MOTION_PLAN
Require: Action domain description D , and planning problem P with the initial state(s) S and

the goal G
while true do

plan,P ← Compute a shortest task plan P of length n (within a history H =
〈S0,A0,S1, ...,Sn,An,Sn+1〉, where S0 = S and Sn+1 = G) using CCALC with D and P (if
there is such a plan);
if ¬plan then

return false;
end if
T := 〈〉; {Initially the trajectory is empty}
trajectoryFound := true;
i := 0;
while trajectoryFound do
〈Si,Ai,Si+1〉 ← Extract from H the next transition;
{Compute a trajectory π for 〈Si,Ai,Si+1〉, if one exists}
trajectoryFound,π ←MOTION_PLAN(Si,Si+1);
if ¬trajectoryFound then

P← Identify the cause of the failure and modify the planning problem P accordingly;
else

T ← Append π to T ;
if Ai is the last action then

return true,P,H,T ;
end if

end if
i++;

end while
end while

3.3 Motion Planning Guides Task Planning

If a motion plan cannot be calculated for an instance of transition, by using the

information, the cause of the failure is tried to be determined. There are three

elements of a transition 〈Si,Ai,Si+1〉: Current state, set of action to be executed at

the current state, and next state. As mentioned in the previous section, the motion

plans are generated incrementally, therefore any failure caused by the initial state

would have been captured in the previous iteration. Remaining possibilities are

that the goal state may not be available (e.g., a robot may be colliding), and such

a transition given the initial state cannot be executed (e.g., a collision-free path

31

may not be computed). Former can be immediately captured. In such a case, the

planning problem is modified by the addition of a temporal constraint stating that

state Si +1 cannot occur.

When a motion planner cannot find a feasible trajectory due to some impossi-

ble state or transition, the task planning problem is modified accordingly. In this

way, the motion planner guides the task planner to find plans that are more likely

to be feasible.

By the addition of temporal constraints, the motion planner is used to guide

the task planner by asking to find more “relevant” plans.

3.4 Related Work

In earlier studies, the state-of-the-art motion planning systems have been extended

to handle some manipulation planning problems [17, 18] based on the idea of

viewing the configuration space as consisting of regions connected by lower-

dimensional submanifolds, such as transit and transfer manifolds. However, such

manipulation planners are domain-specific and cannot handle action planning in a

generic manner: each one addresses a specific sort of manipulation planning prob-

lems without making use of task planning. As a result, there has been a growing

interest in hybrid manipulation planning approaches that utilize both task planning

and motion planning. The traditional approaches to hybrid manipulation planning

have been top-down, separating high-level task planning from lower-level motion

planning. In these approaches, task planning is simplified by ignoring low-level

(geometric) details; however, due to such an abstraction, the resulting plans may

be inefficient/infeasible.

Recently, more elaborate approaches have been proposed to integrate task and

32

motion planning more tightly at the search level. For instance, [19–24] take ad-

vantage of a forward-search task planner to incrementally build a task plan, while

checking its kinematic/geometric feasibility at each step by a motion planner; all

these approaches use different methods to utilize the information from the task-

level to guide and narrow the search in the configuration space. By this way, the

task planner helps focus the search process during motion planning.

In particular, Cambon et al. [19, 20] describe the manipulation problem in a

hybrid symbolic and geometric domain, but attack the problem in a decoupled

manner: they first solve the relaxed task planning problem (by ignoring the ge-

ometric constraints) using a heuristic forward planner and then call a sampling-

based motion planner to geometrically validate the highest priority action of this

task plan; the roadmap of validated actions are added to a global roadmap, while

invalidated actions are given a lower priority. Hauser and Latombe [21] propose

a probabilistically complete incremental task/motion planner based on heuristic

search. Acknowledging the non-expansive nature of the feasible space due to

varying dimensionality of subspaces, the motion planner samples each subspace

individually and composes them to construct a roadmap [21]. The incremental

task planner capitalizes on the fact that transition spaces are easier to sample and

use an estimate of non-emptiness of the transition spaces as a geometrically moti-

vated metric to focus the search on the task space. Plaku and Hager [22] propose a

heuristic search approach similar to that of [21] to combine sampling based motion

planning with symbolic task planning. In particular, a tree-based search is utilized

for the motion planner to obtain dynamically feasible trajectories and this search

is guided by the task planner relative to a utility heuristic, whose estimates are up-

dated by a sampling-based motion planner. Wolfe et al. [24] represent the manip-

ulation problem by a vertically integrated Hierarchical Task Network (HTN) [25]

33

where transition models are defined for primitive actions at the bottom level. The

transition models are procedural and calls for external geometric planners, such

as Rapidly exploring Random Trees (RRTs) [2], to solve for feasibility and ac-

tion cost queries when these primitive actions are invoked. Given such an HTN,

a hierarchically optimal plan (optimal plan subject to the hierarchy constraints in-

troduced during HTN modeling) is found through an exhaustive search that uses

subtask relevance as a heuristic to speed up the search. [23] follows a different

approach to hierarchical planning: their planner is based on goal-regression, so

the search starts from the goal towards the initial state; because of this approach,

instead of checking preconditions of tasks, the algorithm checks the configuration

“in the now”. Also sometimes the successor states in the search tree are decided

by making use of geometric planning. For instance, geometric reasoning can be

used to find out from which location the object shall be moved so that the object is

at its current region. Note that each one of these approaches presents a specialized

combination of task and motion planning at the search level, and do not consider

a general interface between task and motion planning.

With this motivation, [26] and [27] introduce an alternative approach to in-

tegrating task and motion planning by considering a general interface between

them, using “external predicates/functions” whose values for ground instances

are computed by an external mechanism, e.g., by a C++ program. The concept

of external predicates/functions is not new; they have existed as undocumented

features of the planner TLPlan [28] and the Causal Calculator (CCALC) [5]. The

idea in [26,27] is to use external predicates/functions in an action domain descrip-

tion, for checking the feasibility of a primitive action by a motion planner. [26]

applies this approach in the action description language C+ [4] using CCALC,

while [27] extends the planning domain description language PDDL [29] to sup-

34

port external predicates/functions (called semantic attachments) and modifies the

planner FF [30] accordingly.

3.5 Summary of Contributions

In our studies, we use the action description language C+ as the high-level rep-

resentation and causal reasoning formalism, and CCALC as the automated causal

reasoner. Our contribution is an alternative approach for integrating task and

motion planners that combines various advantages of some of the related ap-

proaches discussed above with some other advantages inherited from the high-

level causality-based representation and reasoning formal framework we use in

our studies. As in [26, 27], we also consider a general interface between high-

level causal reasoning and low-level geometric reasoning and motion planning,

using external predicates/functions, but in a more flexible way. The first novelty

of our approach is the flexible use of external predicates/functions for feasibility

checks: Instead of delegating all sorts of feasibility checks to external predicates

as in [26, 27], we can decide which sorts of feasibility check should be done by

external predicates as part of high-level reasoning, and which sorts of feasibility

checks should be done by motion planning later on. For instance, external pred-

icates can check only collisions of robots with each other and with other objects

(so they do not check, for instance, collisions of objects with each other), and

they can be used in action domain description to specify conditional effects of

these robots’ actions. By this way, geometric reasoning is “embedded” in high-

level representation: while computing a task-plan, the causal reasoner takes into

account geometric models and kinematic relations by means of external predi-

cates implemented for geometric reasoning. In that sense, the geometric reasoner

35

guides the causal reasoner to find feasible kinematic solutions. Such a flexibility

may be useful if gathering all sorts of feasibility checks in one external predi-

cate/function is computationally disadvantageous, or if checking feasibility in a

modular way (using different mechanisms/algorithms/solvers) is preferred.

Since we do not delegate all the feasibility checks to external predicates/ func-

tions, in addition to the bilateral interactions between task and motion planing as

discussed above (i.e., task plans guide search in motion planning, motion planners

check feasibility of task plans and thus affect search of task planners), we need to

find tighter interactions between task and motion planning to handle all feasibil-

ity checks for a guaranteed-feasible kinematic solution. This requirement brings

out the second novelty of our approach — another interaction between causal

reasoning and motion planning: when a motion planning failure occurs due to

some infeasibility not captured by geometric reasoning handled by external pred-

icates/functions, the description of the planning problem is modified taking into

account some domain-specific information from motion-level (e.g., the causes of

infeasibilities), and the causal reasoner is asked to solve a more “relevant” plan-

ning problem. Therefore, instead of guiding the task planner at the search level

by manipulating its search algorithm directly, the motion planner guides the task

planner at the representation level by presenting to it the “right” planning problem.

The algorithms used in the causal reasoner CCALC are sound and complete [4].

Therefore, our hybrid task and motion planning algorithm is sound and complete

to the extent that the motion planning algorithm is sound and complete. For in-

stance, the RRT algorithm that we use for motion planning is resolution-sound

and probabilistically complete [2], so is our hybrid planning algorithm.

Compared with the recent efforts for integration of task and motion planning

at the search level, bringing (a certain amount of) geometric/kinematic details to

36

the representation level allows one to utilize different formulations (declarative

or procedural) and reasoning systems. Other novelties of our approach are of this

sort: they are inherited from the high-level causality-based representation and rea-

soning formalism (action language C+) and its automated reasoner (CCALC) we

use in our studies. Due to the expressiveness of the formalism, we can handle

concurrent actions by multiple agents, nondeterministic effects, multi-valued ac-

tions/fluents, additive fluents for reasoning about shared resources, state/transition

constraints, and changes that do not involve actions (e.g., ramifications of actions),

defaults, etc. Due to the input language of the causal reasoner, we can use external

predicates/functions implemented in some programming language of the users’

choice, and we can solve modified planning problems that involve temporal con-

straints. Due to the search mechanism of the causal reasoner, we can compute

optimal plans (e.g., in terms of its length or total cost of actions). Due to the

modular structure of the causal reasoner, we can experiment with various search

engines, such as (parallel) SAT solvers, without modifying their algorithms, and

thus inherit advantages of these underlying solvers. Due to the capabilities of the

causal reasoner, our approach substantially extends the classes of manipulation

problems that can be solved. In particular, we can solve not only planning but

also prediction/postdiction and diagnosis problems.

We illustrate the usefulness of this approach with a physical implementation of

two problems that involves two robots working for a common goal, in Chapter 4.

In each problem, we show how the robots find and execute a plan using our hybrid

planning framework. Also, we present snapshots from the process of execution of

these plans.

37

Chapter 4

Different Levels of Integration

between High-Level Task Planning

and Geometric Reasoning

When we present causal laws to CCALC, we can call external predicates/ func-

tions in them. These predicates/functions are not part of the signature of the do-

main description (i.e., they are not declared as fluents or actions). They are imple-

mented as functions in some programming language of the user’s choice, such as

C++. External predicates take as input not only some parameters from the action

domain description (e.g., the locations of robots) but also detailed information that

is not a part of not the action domain description (e.g., geometric models). This

feature enables the integration between geometric reasoning and task planning, as

in the example of collision detection. While describing the domain, we can choose

to embed all of the geometric constraints into the formulation; or similarly decide

to implement some of the constraints. For instance, in a domain where two robots

and a payload exist, some of the possible choices would be to check collisions for

38

robots at a state, check collisions for robots during a transition, check collisions

for the payload at a state, or check collisions for the payload during a transition.

Therefore, there exists a selection of different levels of integration between task

planning and geometric reasoning.

Selection of the level of integration is a design problem that effects the perfor-

mance of the framework, as established in the remainder of this chapter. However,

the decision is not trivial as there is a trade-off between the level of integration

and the size of the problem. As the integration becomes more profound, in other

words, as the number of fluents that is required for an external predicate increases,

the time required for transformation of the causal laws into a propositional theory

increases dramatically. On the other hand, more integration is ensued by a more

physically accurate plan; therefore the expectancy of failure during the motion

planning stage is lower.

In this chapter, we systematically investigate the influence of different levels

of integration over computational efficiency with two domains: Extended Tow-

ers of Hanoi and Maze Problem. In each domain, we give domain descriptions

in the language of CCALC with interpretations of causal laws, explain external

predicates/functions and their physical meanings, give implementation details on

system parameters, specifically SAT solver, motion planner, analyze the influence

of different levels of integration, and present a sample problem and show its ap-

plicability on physical setups.

4.1 Extended Towers of Hanoi

Towers of Hanoi consists of a number of different-sized rings and three identical

pegs which the rings can slide onto; the pegs are attached to and perpendicular to

39

a platform. Initially all the rings are stacked on a single peg in decreasing order so

that the largest ring is the base of the tower and the smallest ring is the tip of the

tower. The aim is to move all the rings to another peg with respect to the following

two constraints: Only the topmost rings can be moved, and one at a time; and no

ring can be stacked on top of a smaller one. For n rings, a solution can be found

in 2n−1 steps.

We extend this puzzle by adding the possibility of rotating rings about the

peg axis with respect to the following constraints: Only the topmost rings can

be rotated, in place or while being moved from one peg to another, and one at a

time; and a ring can be rotated in multiples of 90◦ about the peg axis. Therefore,

a configuration of rings include also their orientations. We suppose that there is a

mark (e.g., an arrow) put on each ring, and that the arrow can be directed in four

different directions with 90◦ intervals at least one direction being along the line

connecting the pegs together; then there are four possible orientations of a ring.

Also the initial and the goal configurations can be any legitimate configuration of

rings. The goal is to move and/or rotate the rings in such a way as to transform

the initial configuration to the goal configuration.

We consider Cartesian mechanisms with magnetic end-effectors to carry out

the transitions. Since a robot can only move in three dimensional space without

rotations, we require two robots in order to rotate the rings. Geometric represen-

tation of the domain is given in Figure 4.1.1.

4.1.1 Action Domain Description

In this problem, pegs are denoted by unique constants p1, p2, p3 and rings

are identified by unique numbers 1, 2, 3, 4, ..., n such that Ring i is

smaller than Ring j if i < j. We suppose that there is a mark (e.g., an arrow) on

40

Figure 4.1.1: 3D representation of Extended Towers of Hanoi

each ring, and that the arrow can be directed in four different directions with 90◦

intervals at least one direction being along the line connecting the pegs together;

these four possible orientations are uniquely denoted by 1, 2, 3, 4. Each ring

D has a location and an orientation, specified by the functional fluents loc(D)

and ort(D): a ring D is located either on top of another ring D1 in which case

loc(D) = D1, or on the base of a peg P in which case loc(D) = P.

We also consider two auxiliary functions: base(D) = P (“ring D is some-

where on peg P”) and clear(L) (“ring/peg L has no other ring on top of it”).

The former is declared as a functional fluent, and defined recursively in terms of

loc(D).

We consider two kinds of actions: move(P1,P2) (move the ring at the top

41

of the stack on peg P1 to the top of peg P2) and rotate(P,O) (rotate the ring

at the top of the stack on peg P so that its orientation becomes O). Notice that we

do not introduce an action for rotating a disk while moving it; this will be handled

by concurrency.

Direct effects of actions

Moving the topmost ring D of the stack at peg P1, to the topmost location L of the

stack at peg P2 changes the location of D:

move(P1,P2) causes loc(D)=L

if base(D)=P1 & clear(D) & base(L)=P2 & clear(L).

Here base(D)=P1 & clear(D) expresses that ring D is on top of the stack at

peg P1, whereas base(L)=P2 & clear(L) expresses that L is the topmost

location of peg P2 (i.e., L is either the base of P2 or the ring at the top of the stack

on P2).

Similarly, the effect of rotating the topmost ring D at peg P to the orientation

O can be described by the causal law

rotate(P,O) causes ort(D)=O if base(D)=P & clear(D).

Preconditions of actions

It is not possible to move a ring from an empty peg:

nonexecutable move(P,P1) if clear(P).

Only one ring can be moved at each step:

nonexecutable move(P,P1) & move(P2,P3) if P@<P2.

42

Table 4.1.1: Problem size of Extended Hanoi Towers (Grounding)
Level Atoms Rules Clauses New Atoms

No 151 939 4969 468
Full 151 1011 5041 468

Only one ring can be rotated at each step:

nonexecutable rotate(P,O) & rotate(P1,O1) if P@<P1.

A ring cannot be rotated while moving another ring:

nonexecutable move(P,P1) & rotate(P2,O) if P2\=P.

Constraints

The following constraint does not allow two rings to occupy the same location:

constraint loc(D)\=loc(D1) where D<D1.

This constraint prevents moving a ring to two different pegs at the same time. In

that sense, it is a qualification constraint.

A ring cannot be on top of a smaller one:

constraint loc(D)\=D1 where D>=D1.

Note that this is a qualification constraint as well: it prohibits moving a ring on

top of a smaller one.

Two Levels of Integration

Due to the simplicity of the domain, two levels are available for investigation.

First is level of no integration, which uses the domain description provided above.

43

Therefore, during the task planning, geometric reasoning will not be considered

for feasibility evaluation.

For the second level, full integration is regarded, and following causal law is

added to the description.

caused false

if base(D)=P & ort(D)=O after base(D)=P1 & ort(D)=O1

where notrajectory(P1, O1, P, O).

This causal law states that a disk is not allowed to change its base and ori-

entation when no trajectory exists for the transition. The function requires four

arguments from the domain. By the use of this external predicate/function, we

embed all of the physical changes that can occur during a transition.

4.1.2 Physical Implementation

In our studies, we have physically implemented the setup and used the frame-

work for solving queries. The controllers of the robots are implemented on a

PC-based architecture, that compromises of a PCI I/O card and workstation, si-

multaneously running RTX real-time operating system and Windows XP SP2.

For robust trajectory tracking of the end-effectors, feedback controllers are im-

plemented in real-time. The robots are planar parallel mechanisms (pantographs)

with two degrees-of-freedom. To enable pick and drop actions, the end-effectors

of the pantograph robots are equipped with linear servo motors with magnetic

tips acting out of plane. These servo motors are controlled via their dedicated

amplifiers driven by the analog outputs of the control card.

Below is one of the queries we studied:

44

p1

p3

p2

1

2

3

4

0: Initial 1

2 3: Goal

Figure 4.1.2: Snapshots of Extended Towers of Hanoi implementation

:- query

label:: 0 ;

maxstep:: 0..infinity;

0: loc(1) = 3, ort(1)=4,

loc(2) = p3, ort(2)=1,

loc(3) = 4, ort(3)=2,

loc(4) = p1, ort(4)=2;

maxstep: loc(1) = 2, ort(1)=2,

45

loc(2) = 3, ort(2)=2,

loc(3) = 4, ort(3)=2,

loc(4) = p1, ort(4)=2;

Figure 4.1.2 is the snapshots taken during the execution of the plan on the

physical system. The goal is to collect all of the rings on p1 and facing direction

2. However, the smallest ring 1 is already at p1, therefore it needs to be removed

before 2 can be placed. Moreover, 1 is facing 4. Due to physical constraints,

it cannot be rotated to its desired orientation in one step. According to the plan,

the first set of actions are to move the topmost ring from p1 to p2, move(p1,

p2), and rotate it to direction 3, rotate(p1, 3). Next, move(p3, p1)

and rotate(p3, 2) move the topmost ring at p3, 2, to p1 and face it to its

desired orientation, 2. Finally, move(p2, p1) and rotate(p2, 2) move

the last ring to p1 and rotate it to 2.

4.1.3 Experimental Results

Framework is asked for a solution; using above description and the query below

as the inputs.

:- query

label :: 0 ;

maxstep :: 15 ..infinity;

0: loc(1) = 2, loc(2) = 3, loc(3) = 4, loc(4) = p1,

ort(1)=2, ort(2)=2, ort(3)=2, ort(4)=2;

maxstep: loc(1) = 2, loc(2) = 3, loc(3) = 4, loc(4) = p2,

ort(1)=2, ort(2)=4, ort(3)=2, ort(4)=4.

46

Table 4.1.2: Plan informations of Extended Hanoi Towers

Level
Query size

maxstep Total plans
Total time

Atoms Clauses (s)

No

7699 71749 16 87 374
7699 71749 16 89 393
7699 71749 16 95 466
7699 71749 16 91 410
7699 71749 16 94 416
7699 71749 16 93 418
7699 71749 16 91 400
7699 71749 16 87 379
7699 71749 16 88 380
7699 71749 16 88 383

Average 7699 71749 16 90.3 401.9
Std. Dev. 0 0 0 2.3 27.4

Full

7699 72901 16 1 9
7699 72901 16 1 13
7699 72901 16 1 10
7699 72901 16 1 11
7699 72901 16 1 11
7699 72901 16 1 11
7699 72901 16 1 11
7699 72901 16 1 11
7699 72901 16 1 10
7699 72901 16 1 11

Average 7699 72901 16 1 10.8
Std. Dev. 0 0 0 0 0.9

47

which states a problem where, in the beginning, all of the disks are located at p1

and facing direction 2; and we want the disks to be at p2 with orientations are 2,

4, 2 and 4, in respective order.

For this implementation, we have employed MANYSAT as the SAT solver,

which is a parallel SAT solver that is designed for multiple core computations.

As a result, the task plan, that is calculated for one query, is not deterministic;

although it is still optimal in plan length. In addition, we have used RRT (Algo-

rithm 1) as the motion planner, which is a probabilistic motion planning algorithm.

Consequently, the number of total task plans and computation time required for

obtaining a full plan are not deterministic either. Therefore, more than multiple

runs are required for a sound analysis.

By asking the same query, Table 4.1.1 and Table 4.1.2 are obtained as the

result of ten runs. By observing the data, we conclude that the integration be-

tween geometric reasoning and task planning has increased the efficiency. In the

non-integrated case, the task planning was not able to capture invalid transitions,

therefore guidance of motion planning was required in order to obtain a feasible

solution.

4.2 Maze Problem

Consider two robots, and a payload (a long metal stick) on a platform. Suppose

that each robot has a magnet at its end-effector so that it can hold the payload only

at one end. None of the robots can carry the payload alone; they have to hold the

payload at both ends to be able to carry it. The goal is to place the payload at a

specified goal position on the platform. Figure 4.2.1 is geometric representation

of a sample domain.

48

Figure 4.2.1: 3D representation of Maze Problem

4.2.1 Action Domain Description

We view the platform as a maze. We represent the robots by the constants r1 and

r2. We describe the payload by its end points, and denote them by the constants

pl1 and pl2.

We characterize each robot by its end-effector, and describe its position by

a grid point on the maze. The location (X,Y) of a robot R is specified by two

functional fluents, xpos(R)=X and ypos(R)=Y. Similarly, the location (X,Y)

of an end point P1 of the payload is specified by two fluents, xpay(P1)=X and

ypay(P1)=Y. Movements of a robot R in some direction D are described by

actions of the form move(R,D). Each such action has an attribute that specifies

the number of steps to be taken by the robot. The robots are to move in a linear

49

fashion for each transition.

In the following, suppose that R denotes a robot, P1 and P2 denote the end

points of the payload, N and N1 range over nonnegative integers 1, ..., maxN, and

D and D1 range over all directions, up, down, right, left. Also suppose that

X1, X2, Y1, Y2 range over nonnegative integers 0, ..., maxXY.

We present the causal laws in the language of CCALC.

Direct effects of actions

We describe the effect of a robot’s moving right, by the causal laws

move(R,right) causes xpos(R)=X2

if steps(R,right)=N & xpos(R)=X1

where X2=X1+N & X2 =< maxN.

Similarly, we describe the effects of moving in other directions.

Ramifications

If a robot R is at the same location as an end point P1 of the payload, the end-

effector of that robot attracts that end point:

caused on(R,P1) if xpos(R)=xpay(P1) & ypos(R)=ypay(P1).

Then the location of the payload is determined by the locations of the robots:

caused xpay(P1)=X1 if on(R,P1) & xpos(R)=X1.

caused ypay(P1)=Y1 if on(R,P1) & ypos(R)=Y1.

50

Preconditions of actions

We describe that a robot cannot move in opposite directions by the causal laws

nonexecutable move(R,up) & move(R,down).

nonexecutable move(R,left) & move(R,right).

Note that we do not prohibit a robot to move in vertical directions concurrently:

For instance, a robot can move up and right during the same transition. However,

this transition must be as a linear motion.

We describe each robot’s range of motion, taking into account the Pythagorean

Theorem, by the causal laws

nonexecutable move(R,D) & move(R,D1)

if D @< D1 & steps(R,D)=N & steps(R,D1)=N1

where N*N+N1*N1 > maxN*maxN.

The robots can carry the payload only if both of them hold the payload at its

end points.

nonexecutable move(R,D) if -canCarry & on(R,P1).

The conditions under which two robots can carry the payload are described by

canCarry:

caused canCarry if on(r1,P1) & on(r2,P2) & P1\=P2

after on(r1,P1) & on(r2,P2) & P1\=P2.

Note that it is required by the causal laws above that the robots wait for one step

immediately after they hold the payload at both ends.

51

Constraints

We make sure that a payload cannot move places unless it is carried by the causal

laws

caused false if xpay(P1)=X1 & X1\=X2

after -canCarry & xpay(P1)=X2.

caused false if ypay(P1)=Y1 & Y1\=Y2

after -canCarry & ypay(P1)=Y2

Since CCALC can only deal with integers, we cannot keep track of the ex-

act locations of the payload. (Consider, for instance, moving one end of the

horizontally-situated payload up by 2 steps.) Therefore, we allow the payload’s

length change with a small tolerance for a more flexible motion. Suppose that

linklengthsq denotes the square of the length of the payload; and tolerance

denotes the maximum change allowed in the payload’s length. The following laws

ensure that the payload’s length cannot increase/decrease more than tolerance:

caused false

if xpay(pl1)=X1 & xpay(pl2)=X2

& ypay(pl1)=Y1 & ypay(pl2)=Y2

where

(X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1)

<(linklengthsq-tolerance) ++

(X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1)

>(linklengthsq+tolerance).

52

Three Levels of Integration

For this domain, we investigate three levels of integration for comparison pur-

poses. In the first level, no integration is considered: No geometric reasoning is

embedded into causal-reasoning. Therefore, the domain description, for this case,

is as described above.

In the second level, which is considered to be partial integration, following

two causal laws are added to the domain description:

caused false if xpos(R)=X1 & ypos(R)=Y1

after xpos(R)=X2 & ypos(R)=Y2

where collision_robot_transition(X1,Y1,X2,Y2).

caused false if xpay(pl1)=X1 & ypay(pl1)=Y1

& xpay(pl2)=X2 & ypay(pl2)=Y2 & canCarry

where collision_payload_state(X1,Y1,X2,Y2).

Former causal law above states that the transition of a robot from (X1,Y1)

to (X1, Y2) is not allowed to cause collision. The external predicate func-

tion collision_robot_transition, which is implemented in C++ and

Python, returns the collision situation of such a transition, and requires four ar-

guments. Note that, since the robots are described to move only linearly, there is

no need to use a motion planner, but only geometric reasoning for collision detec-

tion. By the addition of this causal law, the task planner also fulfills the duty of a

motion planner, but only for the motion of the robots.

Latter causal law states that a payload whose end points are located at (X1,

Y1) and (X1, Y2) is not allowed to cause collision. Similar to the other, ex-

ternal predicate function collision_payload_state is implemented in the

same manner, and requires four parameters as well.

53

Third level, which is considered as full integration in this domain, requires

addition of the following causal law:

caused false if xpay(pl1)=X1 & xpay(pl2)=X2

& ypay(pl1)=Y1 & ypay(pl2)=Y2

after xpay(pl1)=X3 & xpay(pl2)=X4

& ypay(pl1)=Y3 & ypay(pl2)=Y4

where collision_payload_transition(X1, Y1, X2, Y2,

X3, Y3, X4, Y4).

By introducing this causal law, transition of a payload is also handled during task

planning, which is the only geometric event that is not included in the partial

integration.

4.2.2 Physical Implementation

We have physically implemented the setup with simple robots, using LEGO MIND-

STORMS NXT. The controllers of the robots are implemented on NXT, an em-

bedded controller, with an ARM7 microprocessor. Feedback controllers are im-

plemented in one of the compatibles languages of NXT, called NXC. The robots

are wheeled mechanisms with a one degree-of-freedom arm, resulting in two

degrees-of-freedom. To manipulate the payload, the end-effectors of the robots

are equipped with magnetic tips acting out of plane.

Following query was solved using the framework.

:- query

label :: 0 ;

maxstep :: 0..infinity;

54

0: Initial state 1 2

3 4 and 5 6

7 8 9: Goal state

Figure 4.2.2: Snapshots of Maze Problem implementation

% At initial step

0:

% r1 is at (1,1)

xpos(r1)=1, ypos(r1)=1,

% r2 is at (1,1)

xpos(r2)=1, ypos(r2)=1,

% pl1 is at (4,1)

xpay(pl1)=4, ypay(pl1)=1,

% pl2 is at (9,1)

xpay(pl2)=9, ypay(pl2)=1,

% Robots are not holding the payload

-canCarry;

% At goal step

55

maxstep:

% pl1 is at (9,9)

xpay(pl1)=9, ypay(pl1)=9,

% pl2 is at (4,9)

xpay(pl2)=4, ypay(pl2)=9.

In Figure 4.2.2 are snapshots taken during the execution of the plan. First,

the robots move towards end-points of the payload (steps 1-4). Then they wait for

one step to ensure the magnetic tips hold the end-points (step 5). Afterwards, the

robots carry the payload to its goal configuration (steps 6-9).

4.2.3 Experimental Results

For this implementation of the system, no probabilistic motion planner is em-

ployed. In addition, SAT solver of choice is MINISAT, which is a single processor

SAT solver that gives the same solution to each identical trial. Therefore, this

implementation is deterministic, unlike the one in previous section. Thus, we

consider 10 problem instances with different mazes (Figure 4.2.3). The problem

instances are given in Table 4.2.1.

Table 4.2.2 shows the grounding sizes of the problems for each of the mazes.

As the gridsize and level of integration increases, the problem becomes larger

also, therefore more computational effort is needed. Especially for mazes (2) and

(3), grounding stage could not be completed successfully due to limits of physical

memory. Consequently, no plan can be computed. Table 4.2.3 shows the planning

results. In general, the number of total plans decreases as the level of integration

increases. However, in most cases, full integration proves to be computationally

expensive. When no and partial integrations are compared, partial integration

proves more efficient in more complicated problems.

56

Table 4.2.1: Queries of the Maze Problem

Query Maze
Initial State Goal State

r1 r2 pl1 pl2 pl1 pl2
1 1 (0, 0) (0, 0) (0, 1) (5, 1) (5, 5) (0, 5)
2 2 (0, 0) (0, 0) (0, 1) (5, 1) (0, 1) (5, 1)
3 3 (0, 0) (0, 0) (2, 0) (2, 5) (3, 5) (3, 0)
4 3 (0, 0) (0, 0) (2, 0) (2, 5) (3, 0) (3, 5)
5 4 (0, 0) (0, 0) (3, 0) (0, 4) (7, 4) (4, 0)
6 4 (0, 0) (0, 0) (3, 0) (0, 4) (4, 0) (7, 4)
7 5 (0, 0) (0, 0) (0, 1) (0, 6) (7, 1) (7, 6)
8 5 (0, 0) (0, 0) (0, 1) (0, 6) (7, 6) (7, 1)
9 6 (1, 1) (1, 1) (4, 1) (9, 1) (9, 9) (4, 9)
10 6 (1, 1) (1, 1) (4, 1) (9, 1) (1, 4) (1, 9)

Table 4.2.2: Problem size of Maze (Grounding)
Maze Level Atoms Rules Clauses New Atoms Success

(1)
No 154 3242 5510 510 V

Partial 154 3242 5510 510 V

Full 154 3242 5510 510 V

(2)
No 154 3242 5510 510 V

Partial 154 4978 7246 510 V

Full 154 1559012 1561280 510 X

(3)
No 154 3242 5510 510 V

Partial 154 4682 6950 510 V

Full 154 1439932 1442200 510 X

(4)
No 186 8450 12222 830 V

Partial 186 15898 19670 830 V

(5)
No 186 8450 12222 830 V

Partial 186 20898 24670 830 V

(6)
No 234 28292 34920 1430 V

Partial 234 63416 70044 1430 V

57

Table 4.2.3: Plan informations of Maze

Query Maze Level
Query size

maxstep Total plans
Total time

Atoms Clauses (s)

1 (1)
no 2819 22000 6 1 5

partial 2819 22000 6 1 34
full 2819 22000 6 1 79220

2 (2)
no 2819 22000 6 2 7

partial 2819 29236 6 1 35
full N/A N/A N/A N/A N/A

3 (3)
no 2388 18702 5 2 10

partial 2388 23646 5 1 35
full N/A N/A N/A N/A N/A

4 (3)
no 2819 22000 6 381 1256

partial 2819 27820 6 4 44
full N/A N/A N/A N/A N/A

5 (4)
no 2933 32828 4 3 16

partial 2933 56312 4 4 238

6 (4)
no 4850 53514 7 1019 6763

partial 4850 92954 7 320 1529

7 (5)
no 6128 67278 9 519 2019

partial 6128 153390 9 1 228

8 (5)
no 6128 67278 9 557 2416

partial 6128 153390 9 4 223

9 (6)
no N/A N/A N/A 3409+ N/A

partial 10763 435777 10 9 951
10 (6) partial 11774 652722 11 1 877

58

Obstacle

Grid line

Origin

(1) (2) (3)

(4) (5)

(6)

Figure 4.2.3: Domains for the Maze Problem

4.3 Discussion

We observe from the experimental results presented in Tables 4.1.1, 4.1.2, 4.2.2,

and 4.2.3 that the level of integration of low-level geometric reasoning into high-

level causality-based reasoning dramatically effects the computational efficiency.

1. With more detailed external predicates/functions, it gets harder to compute

a task plan.

2. Having less number of physical constraints as causal laws in the domain

description, in general, decreases the applicability of a plan and increases

59

the number of plannings that are required to obtain a feasible task plan.

Therefore computation can require considerably long time.

In short, using external predicates/functions that necessitate a reasonable num-

ber of domain variables (which, in many domains, corresponds to partial integra-

tion) proves to be the best policy.

On very simple domains or queries, level of no integration may seem to have

a good performance, however, such cases are very limited. Even in a very simple

domain as extended towers of Hanoi, addition of a single constraint with geomet-

ric reasoning greatly increases computational efficiency. In a more geometrically

relevant problem (maze (6) of Maze Problem), although the calculation of a task

plan demands a short time, a feasible task plan could not be calculated in level of

no integration; due to allocated memory limitations. This level should be avoided,

unless domain and task in consideration are considerably simple.

In this chapter, we introduced two non-trivial example domains with the de-

tails of their descriptions and external predicates/functions. We investigated the

effects of the amount of integration of low-level geometric reasoning into high-

level causality based reasoning in a systematic manner and presented a compari-

son with provided data. Moreover, we concluded on a guideline for choosing the

level of integration.

60

Chapter 5

Generalization to Continuous

Domains

One of the common characteristics of the previous examples is that reasoning

included exact positions of object that were manipulated. However, this need not

be the case in a manipulation problem. One can argue that, in the human thought

process, rather than considering exact coordinates, qualitative notions are taken

into account. For instance, saying "this box needs to be located on top of the

table" is more meaningful in a thought process than saying "the coordinates of the

box needs to be this".

Motivated by this, we introduce a new approach where locations are consid-

ered instead of exact positions. Locations can be regarded as a set of positions in

space, which has the same characteristics for a given purpose. For instance, if a

box needs to be located on a table, any position on the table satisfies the require-

ment. On the other hand, an item may need to be located at a specific position.

Still, this approach does not lose expressiveness as a location can correspond to a

single position in space.

61

Algorithm 3 IKBiRRT
Require: Initial state qs, WGR W

Ta.Init(qs); Tb.Init(NULL);
while TimeRemaining() do

Tgoal = GetBackwardTree(Ta, Tb);
if Tgoal .size = 0 or rand(0, 1) < Psample then

AddIKSolutions(Tgoal , W);
else

qrand ← RandConfig();
qa

near← NearesetNeighbor(Ta, qrand);
qa

reached ← Extend(Ta, qa
near, qrand);

qb
near← NearesetNeighbor(Tb, qa

reached);
qb

reached ← Extend(Tb, qb
near, qa

reached);
if qa

reached = qb
reached then

P← ExtractPath(Ta, qa
reached , Tb, qb

reached);
return SmoothPath(P);

else
Swap(Ta, Tb);

end if
end if

end while
return NULL

Describing a space by locations rather than by a grid is expected to ease the

burden on the high-level: Depending on the resolution, the number of locations

would be less than the number of grid points. However, this implies that geo-

metric reasoning must be handled differently, as goal configurations are no longer

single points. In the following section, a variant of RRT path planning algorithm

is introduced. Then, in Section 5.2, the extension of the manipulation planning

system for handling continuous regions is explained.

5.1 Inverse Kinematics Bidirectional RRT

In order to have more flexibility, in this work, we utilize a more recent variant

of RRT, which was one of the two algorithms introduced in [3]. This approach

introduces workspace goal regions (WGR) as a means of representing the desired

62

goal in the task space, rather than to reach a single point in configuration space.

Furthermore, it can handle multiple disconnected regions.

We adopted inverse kinematics bidirectional RRT (IKBiRRT, Algorithm 3).

Unlike RRT, this algorithm uses both configuration and task spaces. It proba-

bilistically generates points in WGRs, and solves the inverse kinematics problem

to obtain configuration space points. Then, depending on the collision of these

points, they are added to the goal tree. Remainder of the algorithm is similar to

that of RRT.

Since we require the inverse kinematics, let us solve forward and inverse kine-

matics of the robot KUKA youBot, a robotic manipulator with a holonomic base

that is designed for research applications.

5.1.1 Kinematics of KUKA youBot

KUKA youBot (Figure 5.1.1) is combination of a 5 DoF robotic arm and a holo-

nomic platform; therefore, it has 8 degrees of freedom which renders it as a re-

dundant manipulator. Its generalized coordinates are given below.

• x: Projection of poa over iN

• y: Projection of poa over jN

• q0: Rotation angle of frame A with respect to frame N about kN

• q1: Rotation angle of frame B with respect to frame A about −jA

• q2: Rotation angle of frame C with respect to frame B about −jB

• q3: Rotation angle of frame D with respect to frame C about −jC

• q4: Rotation angle of frame E with respect to frame D about −jD

63

b

33 mm

c
155 m

m

13
5

m
m

2
1

7
.5

 m
m

d

a

f

e

o

q
3

q
2

q
4

q
5

o

a
b

f

q
1

x

y

2
4

6
 m

m

165 mm

q
0

A

B

C
D

E

F

N

N

A

B

Figure 5.1.1: KUKA Youbot

• q5: Rotation angle of frame F with respect to frame E about iE

where iX, jX,kX denote i, j,k basis vectors of frame X , minding a right-handed

frame; and pab denotes the position vector from point a to point b.

Due to being an open kinematic chain, its forwards kinematics analysis is

trivial. Position of the end-effector pof is given by the following equation.

64

poa +pab +pbc +pcd +pde +pef = pof (5.1)

If the above expression is decomposed in to its components on each axis, be-

low expressions are obtained for the coordinates [x f y f z f]
T of point f in the

Newtonian frame N:

x f = x+165 cos(q0)+33 cos(q1 +q0)+155 sin(q2)cos(q1 +q0)

+135 sin(q2 +q3)cos(q1 +q0)+217.5 cos(q1 +q0)sin(q2 +q3 +q4)

(5.2)

y f = y+165 sin(q0)+33 sin(q1 +q0)+155 sin(q2)sin(q1 +q0)

+135 sin(q1 +q0)sin(q2 +q3)+217.5 sin(q1 +q0)sin(q2 +q3 +q4)

(5.3)

z f = 246+155 cos(q2)+135 cos(q2 +q3)+217.5 cos(q2 +q3 +q4) (5.4)

For orientation representation, body321, i.e. Yaw(ψ)-Pitch(θ)-Roll(φ) Euler

angles, notation is adopted during implementation:

ψ = q0 +q1 (5.5)

θ = q2 +q3 +q4 (5.6)

φ = q5 (5.7)

65

Inverse kinematics problem, on the other hand, is more cumbersome. Since the

robot has two redundant degrees of freedom, in addition to the end-effector pose,

two additional pieces of information are needed. In this analysis, orientation of

the robot base q0 is assumed to be given. Also, an auxiliary variable s (Figure

5.1.2) is defined and assumed to be given. Depending on the joint limits, different

solutions exist for each pair of (q0,s).

To solve the inverse kinematics problem, let us decompose the problem into

orientation and position problems, and start with orientation problem. Since the

robot does not have an obvious spherical wrist, three suitable degrees of freedom

should be dedicated for orientation purposes. We choose q1 for ψ and q4 for θ ;

for q5 is the only choice for φ .

s

h

a)
b)

Figure 5.1.2: Youbot position inverse kinematics component

66

Let us, also, decompose position problem into two parts: Height (Figure

5.1.2.a) and planar position (Figure 5.1.2.b). Two joint variables determine the

height of the end-effector: q2 and q3. These angles can be extracted by using

trigonometric equalities for given s and h. h is calculated by the following equa-

tion:

h = z f −246.0−217.5 sin(θ) (5.8)

q2 and q3 are calculated as:

q3 = ±2 atan(

√
(155.0+135.0)2− (s2 +h2)

(s2 +h2)− (155.0−135.0)2) (5.9)

q2 = atan2(h,s)

−atan2(135.0 sin(q3),155.0+135.0 cos(q3)) (5.10)

where, elbow-up and elbow-down configurations depend on the sign of q3. Using

Equation 5.6, q4 is given as:

q4 = θ −q2−q3 (5.11)

At this point, position of point b can be calculated. Next is the planar compo-

nent of the position, in other words base pose. For a given q0, Equation 5.5 gives

q1.

67

q1 = ψ−q0 (5.12)

x and y can trivially be obtained.

x = x f − (217.5 cos(θ)+ s+33.0) cos(ψ)−165.0 cos(q0) (5.13)

y = y f − (217.5 cos(θ)+ s+33.0) sin(ψ)−165.0 sin(q0) (5.14)

5.2 System Architecture

Our generalized manipulation planning architecture is illustrated in Figure 5.2.1.

The idea is to abstract configurations at the representation level in the domain

description to consider locations, instead of exact position. Although the task

planning mechanism remains as it was, abstraction needs to be compensated as

exact positions are requisite for manipulation planning and execution.

The system is provided with domain description, planning problem, and geo-

metric information (models, positions, kinematics, etc.); and calculates task and

motion plans to satisfy the goals.

First, the system performs a preprocess. By using the geometric information,

this preprocess parcels off the locations into regions, which is the medium that

guides the geometric reasoning; determines the regions and locations that objects

are located at; and prepares the domain description and planning problem accord-

ingly.

Once the domain description and planning problem are ready, they are passed

on to CCALC for the calculation of the task plan. Note that if a task plan can

68

be calculated, it will be at region level. However, for execution on real robots,

exact positions are still required. In an attempt to overcome this; we introduce a

method that extracts position information from regions. At each step, the system

samples each region to position an object (Algorithm 4). Using the task plan, the

manipulated item at each step is positioned in space, by the means of sampling. If

G
e
o
m

e
tr

ic
 M

o
d

e
ls

 a
n

d
 K

in
e
m

a
ti

c
R

e
la

ti
o
n

s

Domain Description Planning Problem

Compute an Optimal Task Plan

TASK PLANNING

MOTION PLANNING

Obtain a continuous trajectory for each transition <Si,Ai,Si+1>

NoTrajectory
Exist?

Modify Planning Problem

Yes

Success

Find a geometrically feasible configuration for each state Si

No

Yes

optimal plan <A0, ..., An>
with history

<S0, A0, S1, ..., Sn, An, An+1>

Modify Planning ProblemConfiguration
exists?

Figure 5.2.1: New planning architecture

69

such a position cannot be calculated, this may be due to two reasons.

• There are obstacles in the region that prevent the item from being posi-

tioned.

• Other manipulable objects in the same region occupy the space.

In the former, nothing can be done to overcome, therefore, a temporal con-

straint that states the state is invalid needs to be added. In the latter case, however,

information of the objects whose position has been changed in the task plan is

utilized. In Algorithm 4, first, rearranging the objects in the same region is tried.

If this fails also, a similar idea is tried for the objects in the same location, without

changing their regions. If the outcome is failure, only then the temporal constraint

that renders the state invalid is introduced.

After successfully placing the objects at each state, the initial and goal con-

figurations are decided; therefore the motion planner can be called. The motion

planning algorithm chosen for the new framework is IKBiRRT (Algorithm 3). The

motivation behind this selection is the following: After an object is positioned at

a point, there may be multiple robot configurations that reaches the same point,

especially in the case of using redundant manipulators. Thus, by the use of this al-

gorithm, the system can consider multiple goal configurations in the configuration

space of the robot.

If path planning is also successful, then the resulting plan is passed to execu-

tion and monitoring systems. In a case where a failure shall occur, the planning

problem is modified accordingly, and the system is asked for a new plan (loops in

Figure 5.2.1).

The applicability of the architecture is shown in the following example.

70

Algorithm 4 DETERMINE_STATES
Require: Task plan T , History H

planLength← getPlanLength(T);
stepno← 0;
while stepno < planLength do

A← getActionName(T , stepno);
F ← getFluents(T , stepno);
if A = pickup then

item← getPickUpItem(T , stepno);
setAllPosesAfterStep(item, robotCarrying, stepno+1);

end if
if A = putdown then

item← getHeldItem(F , stepno);
if itemPositionedAtStep(item) < stepno then

region← getTargetRegion(A, stepno);
position← positionItemsAtRegion(item, region);
if exists(position) then

setAllPosesAfterStep(item, position, stepno+1);
itemPositionedAtStep(item)← stepno;

else
items← getItemsAtRegion(S, stepno, region);
positions← positionItemsAtRegion(items, region);
if exists(positions) then

setAllPosesAfterStep(items, positions, stepno+1);
itemsPositionedAtStep(items)← stepno;
stepno←−1;

else
location← getLocationOfRegion(region);
items,regions← getItemsAndRegionsAtLocation(S, stepno, location);
positions← positionItemsAtRegions(items, regions);
if exists(positions) then

setAllPosesAfterStep(items, positions, stepno+1);
itemsPositionedAtStep(items)← stepno;
stepno←−1;

else
addTemporalConstraint();

end if
end if

end if
end if
stepno← stepno+1;

end if
end while
return NULL

71

Figure 5.3.1: 3D representation of Waiter Robot problem

5.3 Case Study: Waiter Robot

Consider a KUKA youBot, several heterogeneous items, i.e., items that are not

identical, and locations. The robot has a two fingered gripper as its end-effector

and can carry the items with it. The items can be positioned on the locations. The

goal is to position the items at their goal locations.

5.3.1 Action Domain Description

In this problem, we consider a single robot, denoted by the constant z. Items, loca-

tions and regions are described by positive integers up to itemNo, locationNo

and regionNo, respectively. Each item I, as well as the robot, has a location

that is specified by the fluents locationOf(I) and locationOf(z). In ad-

72

dition, items are associated with regions, specified by the fluent regionOf(I).

The robot has few actions: move, pickup and putdown. Each of the ac-

tions are associated with attributes that specify the details of the action.

Description of the domain in the language of CCALC is given below.

Direct effects of actions

Moving of the robot is described by the causal law

move causes locationOf(Z)=L if moveLocation=L.

Action of the robot picking up an item is given as follows

pickup causes holding(I) if pickupItem=I.

Finally, robot putting down the item it is holding is describes below

putdown causes -holding(I) if holding(I).

putdown causes regionOf(I)=R

if holding(I) & putdownRegion=R.

Ramifications

If the robot picked up an item, then the item is no more associated with a region.

caused regionOf(I)=none if holding(I).

Robot holding an item implies that the item is moved at least once.

caused wasMoved(I) if holding(I).

The item that is being held by the robot has the same location as the robot.

caused locationOf(I)=L

if holding(I) & locationOf(Z)=L.

73

Preconditions of actions

Robot cannot execute actions that conflict with each other.

nonexecutable move & pickup.

nonexecutable move & putdown.

nonexecutable pickup & putdown.

Moving of robot to the same location it is located at is forbidden.

nonexecutable move

if moveLocation=L & locationOf(Z)=L.

Picking up an item is forbidden if the robot is at a different location.

nonexecutable pickup

if pickupItem=I & locationOf(I)=L

& locationOf(Z)=L1 & L\=L1.

Similarlar, picking up an item while holding another is forbidden.

caused false if holding(I) & holding(I1) & I\=I1.

Robot cannot execute put down action unless it is holding an item.

nonexecutable putdown if [/\I | -holding(I)].

Constraints

An item cannot be at a region that is not associated with the location it is currently

at.

74

caused false if locationOf(I)=L & regionOf(I)=R

where -regionOfLocation(L, R).

where regionOfLocation(L, R) is an external predicate/function that re-

turns true if R is a region of L.

Integration

To guide the task planning at the representation level, following causal law is

added to the formulation.

nonexecutable putdown

if holding(I) & putdownRegion = R

& regionOf(I1) = R & locationOf(I1) = L

& emptyRegion(R1) & R\=R1

where -fit(R, I, I1) & regionOfLocation(L, R1).

where fit is an external predicate/function that determines whether the region R

is filled up when items I and I1 are placed on. This causal law states that, the

robot cannot put the item down to a region, if there is another item on that region

large enough so that the two items fill it up, in the presence of other regions in the

same location with no items.

5.3.2 Example Query

Figure 5.3.2 illustrates the sample problem. There are two tables defined as the

locations and six items in the problem. Items are initially positioned on top of the

tables as depicted in Figure 5.3.2. We are interested in finding a plan to move all

of the items on top of the second table.

75

Location

Item

1

2

1

4

5

6

3

2

Figure 5.3.2: Query of Waiter Robot Problem

The locations are parceled off to regions according to the size of the larger

items, which, in this case, are 1, 3, and 5. After preprocessing, each location is

divided into four regions. Initial state of the world is also generated in this process.

The query reads as follows:

:- query

label :: 0;

maxstep :: 0..infinity;

0: [/\I | -holding(I)], [/\I | -wasMoved(I)],

locationOf(z)=2,

locationOf(1)=1, regionOf(1)=3,

locationOf(2)=2, regionOf(2)=8,

locationOf(3)=2, regionOf(3)=6,

locationOf(4)=1, regionOf(4)=2,

locationOf(5)=2, regionOf(5)=7,

76

locationOf(6)=2, regionOf(6)=5;

maxstep: [/\I | -holding(I)], clear(1).

where clear(x) is a macro that states that no item is located on x.

CCALC calculates the following task plan:

0: move, moveLocation=1

1: pickup, pickupItem=4

2: move, moveLocation=2

3: putdown, putdownRegion=5

4: pickup, pickupItem=6

5: putdown, putdownRegion=8

6: move, moveLocation=1

7: pickup, pickupItem=1

8: move, moveLocation=2

9: putdown, putdownRegion=5

5.3.3 Dynamic Simulation of the Waiter Robot Problem

The problem is implemented in Robot Operating System (ROS) and simulated in a

dynamic simulation environment for robotic applications, Gazebo, which utilizes

a rigid body simulator, Open Dynamics Engine. Velocity control of the youBot

base and joint position control of the youBot arm are implemented in C++, while

position control of the youBot base and all other algorithms are written in Python.

Figure 5.3.3 presents snapshots from the execution of a plan on the dynamic

simulator Gazebo. Initially, the robot and the items are positioned as shown in

Figure 5.3.3.a. First, the robot moves to a position in location 1. Then, it picks up

77

a b c

d e f

g h i

j k l

m n o

p q r

s t u

v w

Figure 5.3.3: Snapshots from execution of a plan for Waiter Robot problem

78

Table 5.4.1: Problem size of Waiter Robot for the feasible query
Atoms Clauses
1922 12874

item 4. While holding the item, it moves to location 2, and puts down item to re-

gion 5. After positioning item 4, no room enough for item 1 remains. Therefore,

to make room, the robot picks up item 6, and puts it down to region 8. Then, it

moves to location 1, picks up item 1, and moves to location 2. Finally, the robot

puts item 1 down to region 5 to conclude the execution.

5.4 Discussion

We have proposed a method for generalizing our framework to handling contin-

uous domains. The first difference of the new approach is that position repre-

sentation is abstracted from exact point representation into locations and regions.

We argue that this is a more intuitive way of specifying tasks for a higher-level

representation.

Although we consider a more complex domain in Section 5.3 compared to do-

mains introduced in Chapter 4, Table 5.4.1 indicates that problem size in ground-

ing level is considerably smaller; therefore, computation of a task plan requires

less time.

In addition, to fulfil the need of exact positions for the execution, we intro-

duced a method where exact positions are generated incrementally for each step

through sampling regions for objects. Due to the presence of an external predi-

cate/function that can reason about geometries, calculated task plans respect geo-

metric constraint, instead of performing a blind search. Consequently, the perfor-

mance of the position generation method is shown to be satisfactory.

79

Chapter 6

Conclusion

We have presented a novel approach to combine high-level representation and

causality-based reasoning with low-level geometric reasoning and motion plan-

ning for robotic manipulation. Our hybrid planning framework extends the class

of problems that can be solved by task planning and motion planning. In the

framework, we exploit a tight integration between high-level causality-based rea-

soning, and geometric reasoning and path planning. Components of the frame-

work guide one another at the representation and the search level, in order to

obtain a physically correct plan.

We have showed the applicability of our framework in two example domains

that were investigated for various levels of integration. In both of the problems,

our planning framework finds a plan for problems where two robots are involved

and their concurrent actions are required for successful completion of execution.

We have presented instances from the execution of the plans.

We have presented a systematic analysis of the influence of the level of inte-

gration between high-level task planning and low-level geometric reasoning and

path planning. External predicates allow externally defined procedures/functions

80

to be embedded into the logical formalism. They can be utilized in task planning

to capture physical constraints. However, they bring a computational burden on

the task planner, especially at the grounding level. On the other hand, partially

embedding physical constraints at the representation level implies that task plan-

ner may compute infeasible plans and replanning with the guidance of motion

planning may be more frequently required. Therefore, there exists an inherent

trade-off on the level of integration and computational efficiency/tractability. In

our studies, we have concluded that having partial integration, by the means of

external predicates/functions that require a low number of domain variables, is

computationally more efficient.

Additionally, we have generalized our hybrid planning framework to consider

continuous domains instead of domains with exact positions. In order to do so,

we introduce the notions of location and region that abstract the position of an

object in the representation level. However, exact positions of objects are essen-

tial for manipulation planning and execution, therefore they need to be extracted

from the available region information. We introduce a method that samples the

regions, and determines the positions of objects incrementally according to the

task plan. Once the positions are obtained in the three-dimensional space, we uti-

lize IKBiRRT path planning algorithm, one of whose features is to consider task

space and configuration space in its planning mechanism, for generation of robot

trajectories. We, then, illustrate the generalized hybrid planning framework in an

example domain.

Feature works include addition of perception and learning components into

the proposed hybrid planning framework. Additionally, further integration levels

can be considered and systematic analysis can be extended to other domains.

81

Bibliography

[1] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic, Dor-

drecht, 1991.

[2] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path

planning. Technical report, 1998.

[3] Dmitry Berenson, Siddhartha Srinivasa, David Ferguson, Alvaro Collet

Romea, and James Kuffner. Manipulation planning with workspace goal re-

gions. In IEEE International Conference on Robotics and Automation (ICRA

’09), May 2009.

[4] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain,

and Hudson Turner. Nonmonotonic causal theories. Artificial Intelligence,

153:49–104, 2004.

[5] Norman McCain and Hudson Turner. Causal theories of action and change.

In Proc. of AAAI/IAAI, pages 460–465, 1997.

[6] Fangzhen Lin. Embracing causality in specifying the indirect effects of ac-

tions. In Proc. of IJCAI, pages 1985–1991, 1995.

[7] Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic

Transactions on Artificial Intelligence, 2:193–210, 1998.

82

[8] Henry Kautz and Bart Selman. Planning as satisfiability. In Proc. of ECAI,

pages 359–363, 1992.

[9] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Proc. of SAT,

pages 502–518, 2003.

[10] Youssef Hamadi, Saïd Jabbour, and Lakhdar Sais. Control-based clause

sharing in parallel sat solving. In Proc. of IJCAI, pages 499–504, 2009.

[11] Hector Levesque and Gerhard Lakemeyer. Cognitive robotics. In Handbook

of Knowledge Representation. Elsevier, 2007.

[12] Vladimir Lifschitz. What is answer set programming? In Proc. of AAAI,

2008.

[13] Vladimir Lifschitz and Hudson Turner. Representing transition systems by

logic programs. In Logic Programming and Non-monotonic Reasoning:

Proc. Fifth Int’l Conf. (Lecture Notes in Artificial Intelligence 1730), pages

92–106, 1999.

[14] Vladimir Lifschitz. Action languages, answer sets and planning. In The

Logic Programming Paradigm: a 25-Year Perspective, pages 357–373.

Springer Verlag, 1999.

[15] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cam-

bridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[16] Lydia Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark Overmars.

Probabilistic roadmaps for path planning in high-dimensional configuration

spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580,

1996.

83

[17] R. Alami, J.P. Laumond, and T. Simeon. Two manipulation planning algo-

rithms. In Workshop on Algorithmic Foundations of Robotics, pages 945–

952, 1994.

[18] Y. Koga and J. C. Latombe. On multi arm manipulation planning. In Proc.

of ICRA, pages 945–952, 1994.

[19] Fabien Gravot, Stephane Cambon, and Rachid Alami. Robotics Research

The Eleventh International Symposium, volume 15 of Springer Tracts in Ad-

vanced Robotics, chapter aSyMov:A Planner That Deals with Intricate Sym-

bolic and Geometric Problems, pages 100–110. Springer, 2005.

[20] Stephane Cambon, Rachid Alami, and Fabien Gravot. A hybrid approach to

intricate motion, manipulation and task planning. 28(1):104–126, 2009.

[21] Kris Hauser and Jean-Claude Latombe. Integrating task and PRM motion

planning: Dealing with many infeasible motion planning queries. In Work-

shop on Bridging the Gap between Task and Motion Planning at ICAPS,

2009.

[22] Erion Plaku and Gregory D. Hager. Sampling-based motion and symbolic

action planning with geometric and differential constraints. In Proc. of ICRA,

pages 5002–5008, 2010.

[23] Leslie Pack Kaelbling and Tomas Lozano-Perez. Hierarchical planning in

the now. In Proc. of ICRA Workshop on Mobile Manipulation, 2010.

[24] Jason Wolfe, Bhaskara Marthi, and Stuart Russell. Combined task and mo-

tion planning for mobile manipulation. In Proc. of ICAPS, pages 254–258,

2010.

84

[25] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial

Intelligence, 5(2):115–135, 1974.

[26] Ozan Caldiran, Kadir Haspalamutgil, Abdullah Ok, Can Palaz, Esra Erdem,

and Volkan Patoglu. Bridging the gap between high-level reasoning and

low-level control. In Proc. of LPNMR, 2009.

[27] Patrick Eyerich, Thomas Keller, and Bernhard Nebel. Combining action

and motion planning via semantic attachments. In Workshop on Combining

Action and Motion Planning at ICAPS, 2010.

[28] Fahiem Bacchus and Froduald Kabanza. Using temporal logic to ex-

press search control knowledge for planning. Artificial Intelligence, 116(1–

2):123–191, 2000.

[29] Maria Fox and Derek Long. Pddl2.1: An extension to pddl for expressing

temporal planning domains. Journal Artificial Intelligence Research, 20:61–

124, 2003.

[30] Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan

generation through heuristic search. Journal Artificial Intelligence Research,

14:253–302, 2001.

85

	Introduction
	Contributions
	Outline

	Preliminaries
	Causal Reasoning with C+ and CCalc
	Syntax of Causal Laws in C+
	Semantics for Action Descriptions
	Queries
	CCalc
	Why C+ and CCalc?

	Motion Planning with RRT

	A Hybrid Planning Framework for Robotic Manipulations
	Overall System Architecture
	Task Planning Guides Motion Planning
	Motion Planning Guides Task Planning
	Related Work
	Summary of Contributions

	Different Levels of Integration between High-Level Task Planning and Geometric Reasoning
	Extended Towers of Hanoi
	Action Domain Description
	Physical Implementation
	Experimental Results

	Maze Problem
	Action Domain Description
	Physical Implementation
	Experimental Results

	Discussion

	Generalization to Continuous Domains
	Inverse Kinematics Bidirectional RRT
	Kinematics of KUKA youBot

	System Architecture
	Case Study: Waiter Robot
	Action Domain Description
	Example Query
	Dynamic Simulation of the Waiter Robot Problem

	Discussion

	Conclusion

