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Abstract

Smoothed Particle Hydrodynamics (SPH) is a relatively new meshless numerical ap-

proach which has attracted significant attention in the last 15 years. Compared with

the conventional mesh-dependent computational fluid dynamics (CFD) methods, the

SPH approach exhibits unique advantages in modeling multiphase fluid flows and asso-

ciated transport phenomena due to its capabilities of handling complex material surface

behavior as well as modeling complicated physics in a relatively simple manner. On

the other hand, as SPH is still a developing CFD tool, it is vital to investigate its at-

tributes, namely, advantages or potential limitations in modeling different multiphase

flow problems to further understand and then improve this technique. Toward this end,

this work aims to design a computational code using SPH method for the simulation of

multiphase flows.

In this work, we present numerical solutions for flow over an airfoil and square obsta-

cle using both weakly compressible and incompressible SPH method with an improved

solid boundary treatment approach, referred to as Multiple Boundary Tangents (MBT)

method. It is shown that the MBT boundary treatment technique is very effective for

tackling boundaries of complex shapes. Also, we have proposed the usage of the re-

pulsive component of the Leonard Jones Potential (LJP) in the advection equation to

repair particle fracture occurring in SPH method due to the tendency of SPH particles

to follow the stream line trajectory. This approach is named as the artificial particle

displacement method.

Furthermore, the proposed method is totalized for the multiphase fluid systems and

implemented accordingly. The presented model is validated by solving Laplace’s law,



and square bubble deformation without surface tension whereby it is shown that the

implemented SPH discretization does not produce any artificial surface tension. Then,

the problem descriptions and solutions for two important hydrodynamic instabilities

namely, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, are provided along with

their brief analytical linear stability analysis to describe the accuracy and the limitation

of the numerical scheme. The long time evolution for both cases are investigated and

the comparison between the simulation results and existence theories are provided in

details.

Finally, we have presented a model to study the deformation of a droplet suspended

in a quiescent fluid subjected to the combined effects of surface tension and electric

field forces. The electrostatics phenomena are coupled to hydrodynamics through the

solution of a set of Maxwell equations. The relevant Maxwell equations and associated

interface conditions are simplified relying on the assumptions of the so called leaky

dielectric model. All governing equations and the relevant jump and boundary conditions

are discretized in space using the SPH method with improved interface and boundary

treatments. Numerical results are validated by two highly credential analytical results

which are frequently cited in the literature.
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Chapter 1

Introduction

1.1 Motivation

Predicting the behavior of fluid is possible in two general ways namely, experimental

and theoretical, where each one has its own advantages and disadvantages and generally

these two approaches are complementary. Hitherto, experimental approaches are widely

considered as the main source of information for predicting the physical behavior of

the problems at hand. However, due to the complexities in fluid behavior especially

regarding multi-phase flows and also the small time and length scales in such flows,

experimental means become either extremely expensive or in some cases impossible.

Under these constraints, scrutinizing the physical phenomenon seems to be possible

only with having theoretical tools as alternative at hand.

In the theoretical study of a problem, the first issue is to determine the problem’s phys-

ical influence parameters and the importance of each of these parameters on the given

problem. Based on this physical model, a mathematical model can be introduced and

formulated which is composed of a set of equations and relations that can virtually cap-

ture all of the fluid behaviors qualitatively and quantitatively. To solve these equations,

the analytical or numerical method or a combination of these two methods can be used.

However, there are many issues that on one hand have of great practical importance,

and on the other hand the analytic solutions for them are very complex (or virtually im-

possible). In these circumstances using numerical methods as the only possible solution

1
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are considered in the theoretical prediction of phenomena. Due to this, Computational

Fluid Dynamics (CFD) branch is primarily expanded.

In this introduction section, we concisely present the most famous and frequently used

numerical methods in literature for the numerical simulation of interfacial flow and

elaborate on their differences, similarities, advantages and drawbacks. As such, why

Smoothed Particle Hydrodynamics (SPH) method has been chosen and investigated for

the numerical modeling of multiphase flow within the scope of this dissertation would

be substantiated. The correct treatment of difficulties inherent to numerical model-

ing of fluid flow system is essential for determining the success of the entire method.

These intrinsic are: (i) the method should correctly and effectively models the physical

boundary condition (i.e. solid walls); (ii) it should conserve the mass (iii) it should

realistically treat the complicated physical interfacial phenomena such as folding, merg-

ing and/or break-up; (iv) it should properly take the interfacial jump condition into

account (i.e. large density and viscosity ratios); (v) the influence of surface tension

force should be accurately evaluated and inserted into the model; and finally (vi) it

should be easily extendable to deal with more complicated phenomena such as those in

Electrohydrodynamics’ problems. Furthermore a good methodology should lend itself

to three-dimensional modeling and massively parallel computing in order to handle the

real life problems.

1.2 Numerical methods for interfacial flows

Multiphase flow where two or more fluids have interfacial surfaces is one of the chal-

lenging and difficult areas in the field of CFD, which plays an important role in many

industrial and natural systems such as cavitation, boiling heat transfer, air entrain-

ment at ocean surfaces and bubble reactors, among others. Nevertheless, because of

the complexity of these problems mainly associated with the necessity of finding precise

interface evolution, most of the early works have not gone beyond simple problems. As

can be inferred, the interface evolution is crucial to the modeling of multiphase flows and

thus, needs to be modeled correctly and studiously in order to obtain reliable simulation

results.
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The ongoing attempts of modeling free surface/interfacial fluid flows resulted in the

availability of a numerous amount of papers with different numerical approaches. This

can be easily observed by reviewing Anderson et al. [4], Cuvelier and Schulkes [27],

Floryan and Rasmussen [43], Hou [66], Scardovelli and Zaleski [133], Tsai and Yue [160]

and Shyy et al. [141].

Numerical methods for fluid flow can be categorized into three distinct classes based co-

ordinate system utilized, namely, Eulerian, Lagrangian and mixed Eulerian-Lagrangian.

Eulerian methods generally employ a reference coordinate system wherein fluid proper-

ties are transmitted from one cell into another. In Lagrangian methods unlike Eulerian

methods, moving coordinate system is utilized whereby the fluid elements (can be rep-

resented by numerical cells or particle) move along the fluid motion while containing

identical fluid species (see Fig. 1.1). In between, mixed Eulerian-Lagrangian are the

numerical schemes that employ both Eulerian and Lagrangian concepts. The above

mentioned classification does not contain any information about the interface motion

modeling; however it reasonably describes the fluid flow modeling. In this respect,

when a fluid interface is considered, and due to the importance of interface modeling,

it is crucial to take into account a new classification which divides simulations into

interface-tracing and interface-capturing approaches. The difference between these two

approaches relies on the construction of the interface. The interface is generated by

tracking fluid trajectories in a Lagrangian field or mixed Eulerian-Lagrangian for the

interface-tracking method while in the interface-capturing approach, the interface is

constructed by fluid properties such as density or fluid volume fraction.

Figure 1.1: Eulerian and Lagrangian representation of fluid flow equations.
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To gain an insight into any particular computational technique for multiphase flows

knowing the following three distinguished common parts, i.e. (i) flow modeling, (ii)

interface treatment, and (iii) flow-interface coupling, seems to be sufficient. However,

in addition to these information, spatial discretization schemes, and the flow equation

solver need to be considered. The former deals with the algorithmic component and

representation of the flow equations which influences the interface representation while

the latter deals with different strategies to overcome nonlinear difficulties that come

from the nature of fluid flow equations.

Because both the flow-interface coupling and flow equation solver contain difficulties that

include but not restricted to nonlinearities, restrictions and singularities, they are the

bottle-neck parts of simulations and thus need strategies in order to deal with compli-

cated fluid flows. These strategies can mainly be obtained by two different approaches,

namely ”integrated” and ”segregated”. For the flow-interface coupling in the segre-

gated approach, the flow is first simulated with the determinant interface and, then, a

new position of the interface is found using the last computed flow variables, while the

integrated approach tends to evaluate the flow properties and interface position simul-

taneously. On the other hand, the segregated flow equation solver carries the concept

of separate solution of all or parts of the flow such as fluid incompressibility, viscous

diffusion and etc., while the integrated approach solves the flow sets of equations all

together.

Considering the main attributes of a numerical modeling procedure for free surface/in-

terfacial flows, a general form of classification can be achieved as [143]

1. Flow modeling: Eulerian, Lagrangian, mixed Eulerian-Lagrangian, mapping Method.

2. Interface modeling: capturing, tracking.

3. Flow-interface coupling: integrated, segregated.

4. Spatial discretization: FDM, FVM, FEM, meshless, others.

5. Flow equations solver: integrated, segregated.

Now, one may find various schemes in literature by amalgamation of all reviewed ap-

proaches, strategies and methods above. In the following, the most popular schemes are

briefly introduced.
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1.2.1 Eulerian methods

In the scope of Eulerian methods, it is possible to make use of either interface-capturing

or interface-tracking approach. On the other hand, the interface-tracking approach

can be decomposed into two categories namely, surface-tracking and volume-tracking

techniques. In the following sections, the three combinations of Eulerian methods will

be discussed.

1.2.1.1 Interface capturing

In the interface-capturing methods the interface is represented as either by a disconti-

nuity line of some characteristic function or a zero-level set of some implicit function by

reconstructing from the properties of some suitable field variables such as fluid fractions

or density (Fig. 1.2, left). The former method called the ”discontinuous approach”

whiles the later one known as the ”continuous approach”. Either function expresses

that the interface is a material line propagating with the fluid and it follows pure trans-

port equation. The term ”interface-capturing” comes from the fact of recovery of the

interface from current distribution of that field variable.

Discontinuous approach: The volume-of-fluid (VOF) method, introduced by Hirt

and Nichols [64], can be named as the first and the main algorithm from discontinuous

approach family. This method defines a discontinuous line as the discontinuity function

which is equal to unity at any point occupied by one of the fluids for a two-fluid flow

system and zero elsewhere; and should satisfy the pure convection equation; and advect

with the fluid velocity.

Two main steps of the VOF-type of algorithm are: (i) the propagation and (ii) the

reconstruction. Since the former one introduces a serious problem for numerical method

and the later one affect the viscous stress and surface tension forces’ approximation at

the interface (calculated from the location, orientation and curvature of the interface),

both of these steps should be applied with a great care. Furthermore, it is noted that the

initially proposed first-order accuracy in determining the interface location, which uses

the simple line interface calculation (Noh and Woodward [107]) method, can be promoted

to the second-order accuracy by implying the piecewise linear interface construction

method (Rudman [128], Rider and Kothe [125], Ashgriz and Poo [7]).
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The main advantages of the VOF interface-capturing methods are: (i) easy treatment

of reconnection or merger of interfaces, (ii) mass conservation in a natural way, and

(iii) easy extendibility to three-dimensional problems. The major disadvantages of the

methods can be named as: (i) the advection of discontinuous VOF-function, (ii) the

complexities in determining the exact interface’ location, normal and curvature, (iii)

numerical gauming of the interfacial boundary conditions as well as the interface details.

Continuous approach: Although in principle it shares similarities to that of the

discontinuous-capturing framework (for instance, coupling flow-interface in a segregated

manner, and approximating the spatial derivatives on a fixed grids), the continuous

approach represents the interface as a zero level set of some continuous functions.

Defining a zero level set of a continuous ”pseudo-density” function, and integrated using

finite element method for the solution of flow equations, the paper by Dervieux and

Thomasset [30] seems to be the first work in the scope of continuous interface-capturing

algorithms. Later, The continuous interface-capturing has been divided into two distin-

guished groups: (i) ”pseudo-concentration” function notion (Thompson [154], Dhatt et

al. [31], Lewis and Ravindran [86]) and (ii) level-set approach (Osher and Sethian [111],

Sussman et al. [145], Sussman and Smereka [144]).

Although, partake the strength in handling multiple interfaces and the expandability to

three-dimension with the VOF method, the discontinuous interface-capturing represen-

tation of the interface gives two immediate advantages over it; which are: (i) the simpler

interface convection problem of a continuous function comparing to a discontinuous one

and (ii) the more convenient interpretations for the normal and curvature at interface.

On the other hand, three major drawbacks of the discontinuous approach can be count

as: (i) inaccurate defining of the interface position, (ii) numerical gauming of the inter-

facial boundary information, and (iii) worse mass conservation comparing to VOF-type

methods.

1.2.1.2 Surface tracking

In the surface tracking methods, the interface is represented by a series of interpolated

curves through a discrete set of points on the interface. After saving the information

about the points’ location and their sequence at each time step, the points will be moved
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according to an interface evolution equation. Thus, the Lagrangian motion of particles

in interface-tracking methods is the key point in the interface-tracking approach, which

is in contrast to the advection of some field variables through fixed Eulerian grid in the

interface-capturing methods.

In this method the interface information including its location, orientation and curvature

are explicitly available at any time during the simulation process. Two general forms of

surface-tracking methods exist: (i) the points are given as heights above a reference line

or (ii) using a parametric representation (Fig. 1.2, center). There might be a failure in

the first approach, if the interpolated curve becomes multi-valued, which strongly limits

a practical utility of this method.

Figure 1.2: (left) interface-capturing Eulerian method; (center) surface-tracking Eu-
lerian method; (right) volume-tracking Eulerian method.

The ability to resolve features of the interface that are smaller than the cell spacing

of the overlaid Eulerian grid can be named as the main advantage of surface-tracking

methods. However, this method has two main disadvantages namely: (i) difficulties in

interfaces’ folding and merging (needs interface’s points reordering and as consequences it

requires computational overhead and complex logical programming) and (ii) the interface

points accumulation in one part of the computational domain may leave the other parts

unresolved.

The paper by Hyman [73] is a comprehensive reference for the overview of early works on

surface-tracking methods. Later on, using surface-tracking approach, Glimm et al. [49,

48] employed a finite element approximation with locally adaptive grid; and Tryggvason

et al. ([161, 38, 39]) proposed some specific algorithm to treat interface merging in 3D

where they employed the finite difference method along with segregated approach for the

system of flow equations. More recently one may name, another algorithm for handling

interface topology changes in the work by Shyy et al. [141], and the finite volume
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and the finite element discretization used by Popinet and Zaleski [113] and Tornberg

[156] respectively. In all above mentioned works, the calculations of flow variables are

computationally segregated from tracking of the interface.

1.2.1.3 Volume tracking

In the volume-tracking methods, the interface is reconstructed when it is necessary and

they do not store its representation. The presence of marker quantity within the cell

is the key point of interface reconstruction (it is used to reconstruc the interface cell

by cell). The notion of volume-tracking comes from the fact that the marker particles,

which are used to show which cells contain a particular fluid, are moved in a purely

Lagrangian manner (Fig. 1.2, right).

The marker-and-cell (MAC) method is the first Eulerian volume-tracking algorithm for

free-surface flows (Harlow and Welch [58]). In this approach, a fixed uniform mesh along

with finite difference method is used to approximate the flow equations and then resolved

it in a segregated fashion using either a pressure Poisson equation or velocity/pressure-

correction algorithm (Bulgarelli et al. [14]).

The main advantages of the method are: (i) it can treat multi-fluid flow systems, (ii) it

can easily handle large interface deformation, and (iii) it can model interfaces’ break-up

and merging; on the other hand, the problems associated with the method are as follows:

(i) no details are given regarding to the precise interface’ location, orientation, and cur-

vature in this method, (ii) the particle accumulation in one portion of the computational

domain may leave the other portions not well resolved or even unresolved, (iii) it has

some difficulties for imposing the interfacial boundary conditions, and (iv) since it needs

a double grid system for both Eulerian and marker particles, the method is expensive

in terms of computational costs.

Despite its weaknesses, and due to its flexibility in treating large interfacial deformations

and its logical simplicity, the MAC method has become very popular among scientist;

later, the approach were strengthened and extended by implementing the pressure cor-

rection segregated algorithm (Hirt and Cook[62]), the efficient algorithm for accurate

treatment of fluid convection (Ramshaw and Trapp [122]), and the presentation of the

improved algorithm for interface reconstruction respectively (Noh and Woodward [107]).
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1.2.2 Mixed Eulerian-Lagrangian methods

1.2.2.1 Segregated flow-interface treatment

The arbitrary-Lagrangian-Eulerian (ALE) algorithm proposed by Hirt et al. [61] is

one of the most cited early papers within the Eulerian-Lagrangian framework. The

numerical algorithm for this method can be divided into three distinct phases; (i) an

explicit Lagrangian calculation without moving the mesh vertices (ii) an implicit iterative

velocity and pressure fields’ adaptation for the new time level, followed by the mesh

vertices movement to their new position, and (iii) a mesh rezoning for a new configuration

(Fig. 1.3).

Figure 1.3: Arbitrary Lagrangian-Eulerian (ALE) method with interface-tracking.

The last phase is arbitrary as it may be required for moving fluid flow and interface

of highly deformations by following Lagrangian principles, or may be fixed for small

deformations (Eulerian principles). Thus by following the Lagrangian motion of ver-

tices which are initially aligned with the interface the interface can be tracked. Sharing

the same main advantages and drawbacks, as far as the treatment of the interface is

concerned, this algorithm has remarkable similarities with conventional Lagrangian re-

zoning methods. In particular, the significant shortcoming can be reported as limited

interface deformations due to the necessity of maintaining a fixed topology of the grid.

Nonetheless, the ALE-type methods are attractive for interfacial flows due to their flexi-

bility in mesh vortices’ motion. This algorithm were successfully implemented by Bansch

[8], Belytschko and Flanagan [10], Donea et al. [33], Hughes et al. [72], Ramaswamy and
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Kawahara [121]. All these works relied on the finite-element method and on the segre-

gated treatment of flow-interface coupling. Examples of ALE methods for the integrated

solver for the systems of flow equations are Tezduyar et al. [152, 153] and Hansbo [57],

where space-time finite-element method was combined with least-squares type stabiliza-

tion. Although simulation results obtained with diverse ALE-based algorithms are very

good, the changes of interface topology lie beyond the method capabilities and especially

in three-dimension the implementation seems to be rather complex.

1.2.2.2 Integrated flow-interface treatment

Proposed by Ruschak [129] and Saito and Scriven [131], a group of Lagrangian-Eulerial

concept of mesh movement on the fully coupled (integrated) manner for the ”flow

variable-interface” systems was introduced. Although it is initially introduced for steady

free-surface flows, later on, it has been extended to unsteady flows with free mov-

ing boundaries in works by Christodoulou and Scriven [22], Engelman and Sani [35],

Kheshgi and Scriven [77], Cuvelier [26]. In this approach, after the discretization of

flow equations with their corresponding interfacial boundary conditions as a whole with

respect to the flow variables and to some functional representation (parametrization) of

the interface, the nonlinear algebraic equations are solved benefiting from any iterative

procedure such as Newton or quasi-Newton ones. Comparing to segregated methods, the

fast quadratic convergence rate towards the steady-state solution is obtained. However,

there remain some uncertainties for purely transient problems: (i) considering the lacks

in the solution uniqueness for certain ranges of physical parameters, should the iterative

process within each time step always converge to some ”fixed point”?, (ii) the ways that

a good initial approximation for the Newton iteration is chosen, (iii) how to determine

the Jacobian matrix of discrete nonlinear operator efficiently, and (iv) since the time

discretization error of the entire process usually dominates, does it really make sense to

treat the ”flow variables-interface” coupling so accurately on each time step?

1.2.3 Lagrangian methods

In the Lagrangian methods, the fluid elements originally represented by mesh are allowed

to move and deform. The Lagrangian methods are inherently combined with interface-

tracking approaches, holding the benefits of: (i) precise tracking and the delineation of
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material interface, (ii) easily applying the interface boundary conditions and (iii) the

absence of nonlinear convective term in the momentum equation. However, the mesh

may get extensively distorted and in turn acquire highly irregular shape (Fig. 1.4, left)

hence leading to the numerical inaccuracy. Therefore, the Lagrangian interface-tracking

methods in their original form (the mesh based Lagrangian approach) are convention-

ally suitable to handle small interfacial deformation. An appropriate reference is the

article of Hirt et al. [63], where the segregated approach for flow equations solver to-

gether in combination with the finite-volume approximation was used. Kawahara et

al. ([59], [110]) and Shopov et al. [140] also proposed employed the purely Lagrangian

flow description with interface-tracking and improved the finite-element method (FEM)

together with fractional-step segregated and integrated algorithm respectively.

Figure 1.4: (left) Strictly Lagrangian interface-tracking; (center) Free Lagrangian
interface-tracking; (right) Lagrangian meshless SPH method.

1.2.3.1 Free Lagrangian methods

Attempts are made to improve the Lagrangian methods by decreasing the effects of severe

mesh distortion and resulted into two approaches: remeshing algorithms and meshless

particle methods. In the remeshing approach, also called free Lagrangian methods, a

new mesh will be build in conjugate with the scrambled mesh; then, using any arbitrary

interpolation, the information will be transferred from the old distorted mesh to the new

one. Having in mind the change in the interface topology, the remeshing procedure may

need mesh point addition, deduction and/or reconnection (Fig. 1.4, center). The notion

of free Lagrangian method also came from this later way of remeshing. As appropriate

references in this framework one may mention the works done by Fyfe et al. [45], Fritts

and Boris[44] and Crowley [24].
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Although at the first glance they seem to be suitable for the moving interfacial problems,

the grid-based Lagrangian methods have three critical drawbacks: (i) the remeshing al-

gorithm is computationally expensive (ii) the large changes in the interface topology only

can be modeled using some complex algorithms and (iii) performing frequent remeshing

may be severely unreliable, especially in three dimensions.

1.2.3.2 Meshless particle methods

Using meshless particle methods is the second popular approach circumventing the mesh

tangling problem. In this method grid is completely abandoned (Fig. 1.4, right). In

this group, the discrete viscous flow is represented by replacing the conventional mesh

with a finite number of particles which can carry the fluid characteristic properties

such as position, mass, velocity, and other hydrodynamics properties; and the fluid

system evolution is governed by interactions between these particles. The particles are

explicitly associated with different materials, and thus the interface between species can

be easily tracked. The Boltzmann lattice-gas algorithms can be classified in the category

of particle methods (Benzi et al. [11], Rothman and Zaleski [127, 126]). Although they

have a natural ability to treat the interfacial flows, these methods suffer from some

uncertainties which are: (i) the concerns towards the reliability of physical models for

flow viscosity and also inter-particle forces’ representation and (ii) how to properly model

the interfacial jump conditions with high density and viscosity ratio and in the presence

of surface tension.

In the scope of meshless particle methods, Smoothed Particle Hydrodynamics is a solu-

tion towards achieving a realistic physical model for interfacial flows. Benefiting from

a smoothing kernel function, physical quantities are interpolated in a discrete form

(Monaghan [100], Morris [104]). Nevertheless, common to every numerical method, the

standard SPH method in its current stage has also some shortcomings around: (i) ac-

curacy of flow variable approximation as an optimized point between the interpolation

accuracy and numerical diffusion, and (ii) modeling of large ratios of density/viscosity

discontinuity at the interface. Additionally, particle clustering in some region may cause

insufficient particle resolution in some other region and hence, comparing to grid-based

Lagrangian methods, particle methods may suffer from the accurate representation of

the interface.



Introduction 13

1.3 Computational strategy and thesis outline

Having compared diverse numerical methods, which has provided us with a solid foun-

dation in order to choose the basic components of our numerical modeling strategy, we

choose purely Lagrangian meshless particle approach since it enables us to use movable

particles on any arbitrarily computational domain. The particular advantages of having

movable particles for interface resolving has been discussed in preceding section. Second,

we rely on this fact that the interfaces between different materials can be easily followed

in order to be able to deal with complex changes in interface topology including interface

break-up, and merger phenomena.

Finally, we choose the SPH approach for spatial discretization in the present work. The

main reason for this choice is its inherent strength which some of those may be found in

other methods but the combination of all those features seems to be found only in SPH.

These features are: (i) natural distinguishing between phases due to holding material

properties at each individual particle, (ii) natural incorporation of coefficient discon-

tinuities and singular forces into the numerical scheme, (iii) natural incorporation of

derivative instead of the field properties’ derivatives into the scheme, (iv) non-existence

of convective term in discretization of the momentum equation in the numerical approx-

imation scheme.

This work is original due to the following contributions:

It suggests an improved ISPH and WCSPH algorithm that include the implementation

of (i) Multiple Boundary Tangent (MBT) method to treat geometrically complex solid

boundaries in a flow field, (ii) the Artificial Particle Displacement (APD), particle frac-

ture repair, procedure for eliminating particle clustering induced instabilities, and (iii)

the corrective SPH discretization scheme to improve the accuracy of the computation.

Furthermore, the proposed method totalized for the multiphase fluid systems and im-

plemented accordingly. The presented model is validated by solving Laplace’s law, and

square bubble deformation without surface tension whereby it is shown that the im-

plemented SPH discretization does not produce any artificial surface tension. Then,

it suggests an improved interface treatment approach which enable us to model multi-

phase systems with large variations in the transport parameters of constituents. This
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improvement has been validated extensively through solving two complex hydrodynamic

instabilities namely, Kelvin-Helmholtz and Rayleigh-Taylor instabilities.

Finally, it has presented a model to study the electrohydrodynamics problem through the

solution of a set of Maxwell equations. The model is validated by solving the deformation

of droplet suspended in a quiescent fluid subjected to the effect of constant electric field

and comparing with established theory.

The rest of this thesis is structured as follows:

The presentation of the current work begins in chapter 2 with a brief description of the

formulations, mathematical background and afterward in chapter 3 we concisely derive

the first and second derivative approximations as well as brieflt introduce projective SPH,

XSPH, artificial viscosity, MBT treatment for complex geometry, interface treatment,

instabilities and their possible remedies in SPH method, initial and boundary condi-

tions, SPH neighbor search algorithm, and describe numerical schemes implementation

consecutively.

In Chapter 4, two benchmark problems are solved for relatively high Reynods numbers

and a remedy for eliminating particle clustering-induced instabilities with the implemen-

tation of a particle fracture repair procedure as well as the corrected SPH discretization

scheme is introduced. It is also shown that both general numerical schemes widely used

in SPH, namely incompressible and weakly compressible SPH, are capable to produce

numerical results as accurate and reliable as mesh dependent methods.

The treatment of the interface for the multiphase flow and the solution algorithm are

discussed in chapter 5. The continuum surface force (CSF) model is used to include the

surface tension force in the linear momentum balance equation. The results of simula-

tions conducted for a droplet problem with the effect of surface tension force to validate

the CSF model with analytical Laplace solution and a square-droplet deformation with-

out the influence of surface tension to illustrate the nonexistence of artificial surface

tension in the used SPH discretization.

In the same chapter, the problem description for the Kelvin-Helmholtz instability (KHI)

is provided. An analytical linear stability analysis is performed to describe effective

parameters for the KHI problem and simulation results for the KHI problem with a broad

range of parameters are presented. Effect of surface tension and gravity on the KHI is
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tested separately and simultaneously in details, and the effect of the Ri number on the

development of instability is investigated. Afterwards, the problem description for the

Rayleigh-Taylor instability (RTI) is provided along with simulation results validated by

analytical linear stability analysis. The long time evolution of the RTI is also investigated

and the comparison between the simulation results and existence theories are provided

in details.

In Chapter 6, we numerically investigate the effect of an electric field on the neutrally

buoyant droplet in a quiescent Newtonian fluid. The leaky dielectric model is used in

order to account for the effects of the electric field, and electrical properties of liquids.

In the leaky dielectric model, the droplet with finite electrical conductivity and with no

free electrical charge is considered. Under these model assumptions, electric stresses are

only supported at the droplet interface, and are absent in the bulk. The droplet interface

is modeled as a transition zone with a finite-thickness across which the material prop-

erties vary smoothly, and the electric field effect is integrated into momentum balance

equations as volumetric force by using the divergence of the Maxwell stress tensor. The

extensive amount of computations performed has enabled us to study the complex na-

ture of droplet dynamics under the combined effect of Maxwell stresses, surface tension,

and viscous forces.

Finally, in Chapter 7 we discuss some possible directions for further research.



Chapter 2

Mathematical Background

2.1 Mathematical primaries

For the readability of this presentation, it is worthwhile to introduce the notational

conventions which will be used throughout this work. The bold-faced Latin indices (i,j)

will denote explicitly particles and will always be placed as subscripts. For vector or

tensor fields, we may use mixed notations (i.e., either direct or indices notations) to

improve the readability. When direct notation is used, vector will be represented with

either lower or upper case letters with an arrow placed on top wile tensor fields will be

denoted by upper case bold-faced letters. In the case of indices notations, italic Latin

indices will be used to denote vector or tensor components and will always be placed

as superscripts, except in the base vectors, where they are placed as subscripts. For

example, the position vector for particle the ”i” is ~ri = xki êk where xki component of the

position vector with k = 1, 2, 3 and êk is the base vector. The difference vector between

the particles are indicated by ~rij or ~rji.Explicitly,

~rij =~ri −~rj =
(
xki − xkj

)
êk = rkijêk = −~rji. (2.1)

Additionally, the magnitude of the difference vector |~rij| will be denoted by rij, and

finally, the unit difference vector will be denoted by drkije = rkij/rij vector of the difference.

16
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2.2 Dirac delta function

Dirac delta (widely referred to as unit pulse function) is the starting point of the SPH

approach. Therefore, it is prudent to introduce certain aspects of Dirac delta function

without getting into unnecessary details. For the analysis of the Dirac delta function

δ(x− xo), it is convenient to start with introducing the unit step (Heaviside) function,

H(x) which has the jump at zero as shown in Fig. 2.1. The unit step function shifted

to the right by ”a” (where ”a” is an positive) can be written as H(x − a). With the

help of the unit step function, the integral of a continuous function over finite limits,

i.e., a ≤ x ≤ b can be extended over the whole x-axis

∫ b

a
f(x)dx =

∫ +∞

−∞
f(x)[H(x− a)−H(x− b)]dx. (2.2)

If we consider the integral of the same function between the limits xo−ε/2 and xo+ε/2,

we can write

∫ x0+ε/2

x0−ε/2
f(x)dx =

∫ +∞

−∞
f(x)[H{(x− xo) + ε/2} −H{(x− xo)− ε/2}]dx. (2.3)

Applying the mean value theorem to Eq. (2.3), we can write

∫ +∞

−∞
f(x)

[H{(x− xo) + ε/2} −H{(x− xo)− ε/2}]
ε

dx = f(ξ), (2.4)

where H{(x−xo)+ε/2}−H{(x−xo)−ε/2}
ε defines a window function denoted by W̄ (x − xo, ε)

(refer to Fig. 2.1 (center)) and ξ is a number between xo − ε/2 ≤ ξ ≤ xo + ε/2. If the

parameter ε is sufficiently small, the window function W̄ (x − xo, ε) is called as a unit

impulse, since the area under the nonzero part of the graph is equal to unity. Here, xo

is the centre position of the impulse.
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Figure 2.1: (left)Unit step function H(x), (right) shifted unit step function H(x− a)
and (center) window function W̄ (x− xo, ε).

Taking the limit of Eq. (2.4), we can have

∫ +∞

−∞
f(x) lim

ε→0
W̄ (x− xo, ε)dx = lim

ε→0
f(ξ). (2.5)

The limit of the window function W̄ (x − xo, ε) as ε → 0 defines a new function that

is known as Dirac delta function and denoted by δ(x − xo), and limε→0f(ξ) = f(xo).

Hence, Eq. (2.5) becomes

∫ +∞

−∞
f(x)δ(x− xo)dx = f(xo). (2.6)

Dirac delta function has following features; (i) it is zero everywhere except when its

arguments is zero, namely except when x = xo and it approaches to infinity at x = xo.

Therefore, Dirac delta function acts like a filter through which only the value of the

f at x = xo is able to pass. It can be seen from Eq. (2.4) that Dirac delta function

is the derivative of the unit step function. It is obvious to see from Fig.2.1(center)

that integral of the Dirac delta function from minus infinity to plus infinity equals to
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unity. This implies that delta Dirac function is an even function. Mathematically, these

statements can be written as

δ(x− xo) =

 0 , x 6= xo

∞, x = xo
,

∫ +∞

−∞
δ(x− xo)dx = 1, δ(x− xo) = δ(xo − x). (2.7)

A function f(x) is even if satisfies the condition f(x) = f(−x). Even functions are

symmetric about the f(x) axis. A simple example for an even function is f(x) = x2. A

function g(x) is called odd if it satisfies −g(x) = g(−x). Examples of odd functions are

g(x) = 1/x and g(x) = x3. Some of the important properties of odd and even functions

that will be used in the derivations of SPH equation can be listed as; the product of an

even and odd functions is odd function, and the derivative of an even function is an odd

function, while the derivative of an odd function is even function. Finally, it is easy to

deduce that an integration of an odd function over entire space is equal to zero; that is,

∫
g(x)dx = 0. (2.8)

Three dimensional Dirac delta function in Cartesian coordinates δ3(|~ro −~r|) is just the

product of three one-dimensional delta functions

δ3(|~r− ~ro|) = δ
(
x1 − x1

o

)
δ
(
x2 − x2

o

)
δ
(
x3 − x3

o

)
, (2.9)

where it satisfies the condition

∫∫∫
Ω
δ3(|~r− ~ro|)dΩ =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
δ
(
x1 − x1

o

)
δ
(
x2 − x2

o

)
δ
(
x3 − x3

o

)
dx1dx2dx3

(2.10)

where the symbol Ω indicates the space (differential volume) over which the integration

is carried out.

In three dimensional, the corresponding relation for Eq. (2.6) is then,



Mathematical Background 20

∫
Ω
f(~r)δ3(|~r−~ro|)d3~r = f(~ro). (2.11)

This identify is exact mathematical relationship, and is the starting point of the SPH

technique.

2.3 Multi-dimensional Taylor expansions

In the derivation of SPH equations, we will frequently use the Taylor expansion of a

scalar or vector-valued function. All continuous functions can be approximated using

a Taylor series expansion. The Taylor expansion of a function f(x) with one variable

about a point xo is given as

f(x) =

∞∑
α=0

δxα

k!
fα(x)|x=xo = f(xo) + (x− xo)f́(xo) + . . . +

(x− xo)α

k!
f (α)(xo). (2.12)

Here, δx = (x − xo), α is the summation index and the subscript on the vertical bar

indicates that all the derivatives are evaluated at the point xo. Now consider the same

scalar-valued function f(~r) whose argument is a position vector ~ro = x1ê1 +x2ê2 +x3ê3.

Since the position vector has tree components, f(~r) is a function of three variables. In

vector notation (direct notation), the expansion of the function about ~ro is

f(~r) = f(~ro) + ((~r−~ro).∇~r)f(~r)|~r=~ro +
1

2
(~r−~ro).∇~r∇~rf(~r)|~r=~ro . (~r−~ro), (2.13)

where the nabla operator ∇~r denotes a differentiation with respect to coordinate ~r.

The first order derivative of the function is a vector, and it is dotted with (~r − ~ro)

to give a scalar field. The second order derivative of the function is a second order

tensor, and it is dotted from both sides by (~r−~ro) to have scalar field; dotting a tensor

from both side is the same as taking the second-order tensor inner product, namely,

(~r−~ro)⊗ (~r−~ro) : ∇~r∇~rf(~r)|~r=~ro . The inner product (also called the double dot product)

between two second-order tensors is a scalar defined as ~a ⊗ ~b: T = aiêibj êj : Tklêkêl =

aibjTklδikδjl = aibjTij, where δij is the Kronecker delta.
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From onward, two vectors multiplied side by side without any dot (ie., ~a~b = ~a: ~b) is

understood to be a dyadic product. Eq. (2.10) can be written in compact form as,

f(~r) =

∞∑
α=0

1

n!
((~r−~ro).∇)αf(~r)|~r=~ro . (2.14)

In the component notation, a scalar valued-function f(~r) of the position vector (~r) can

be written as

f(~r) = f(~ro) + (x− xo)l
∂f(~r)

∂xl
|~r=~ro +

1

2
(x− xo)l(x− xo)k

∂2f(~r)

∂xl∂xk
|~r=~ro . (2.15)



Chapter 3

Smoothed Particle

Hydrodynamics

3.1 Introduction

Smoothed particle hydrodynamics (SPH) is a meshless Lagrangian particle method to

solve partial differential equations widely encountered in the engineering problems. Un-

like grid dependent technique, SPH does not require mesh since the partial derivatives in

transport equations are approximated using a properly normalized distribution function

(widely referred to as the Kernel function) such as Gaussian, Spline or Quantic distri-

bution functions; hence it offers noteworthy flexibility in modeling problems involving

highly irregular geometries, or where mesh break down occurs. It was initially developed

by Gingold and Monaghan [46] and Lucy [94] in 1972 separately to study astrophysical

problems, such as star and galaxy formations. Recently, there has been a strong interest

in devoting considerable amount of research to implement SPH to engineering prob-

lems by solving energy, mass and momentum balance. Several examples where SPH has

been studied includes flow in porous media (Tartakovsky et al. [149]), splash of water

(Dalrymple and Rogers [28]), fluid-solid interactions (Antoci et al. [6]).

In SPH, the continuum is represented by an ensemble of particles. Strictly speaking, the

term particle refers to a geometrical position in the continuum. Particles are bestowed

with mass, momentum, temperature, concentration or other hydrodynamic properties.

SPH approach assumes that the fields of the particle of interest are affected by that of all

22
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other particles within the continuum under consideration. In order to narrow down the

contributions coming from other particles in order for reducing the computation time,

SPH only includes the effects of nearby particles, within a smoothing radius of κh, also

called support domain, where κ is a constant. The support domain is a localized domain

over which the Kernel is nonzero. Therefore, the kernel W (|~ri −~rj|, h) is the function

of distance between the particle of interest ~ri and neighboring particle ~rj as well as the

smoothing length.

If the Dirac delta function in Eq. (2.11) is replaced by a smoothing kernel function,

written asW (|~ri−~rj|, h), the integral estimate or the kernel approximation to an arbitrary

function f(~ri) can be introduced as

f(~ri) ≈ 〈f(~ri)〉 ≡
∫

Ω
f(~rj)W (|~ri −~rj|, h)d3~rj, (3.1)

where the angle bracket ”〈〉” denotes the kernel approximation, d3~rj is a differential vol-

ume element and Ω represents the total bounded volume of the domain. Approximation

to the Dirac-delta function δ(|~ri −~rj|) by a smoothing kernel function is the origin of

the SPH approach. It is important to note that Eq. (3.1) is no longer exact. For the

Dirac-delta function to be approximated by a smoothing kernel function the smoothing

kernel has to satisfy several conditions; the first one is the normalization condition that

requires

∫
Ω
W (|~ri −~rj|, h)d3~rj = 1. (3.2)

The second condition is the Dirac-delta function property. That is, as the smoothing

length approaches to zero, the Dirac-delta function is recovered. Hence,

lim
h→0

W (|~ri −~rj|, h) = δ3(|~ri −~rj|). (3.3)

The third condition is the compactness or compact support. This means that the kernel

function has a compact support domain beyond which it becomes zero

W (|~ri −~rj|, h) = 0 when |~ri −~rj| > κh, (3.4)
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and be positive within the support domain.

Due to the compactness condition, the integration over entire problem is localized; there-

fore, from this point onward, the integration domain Ω is represents the support domain.

The last condition is that the kernel function has to be spherically symmetric even func-

tion

W (|~ri −~rj|, h) = W (−|~ri −~rj|, h). (3.5)

In literature, it is possible to find the variety of kernel function which satisfies above-

listed conditions. Most famous ones are Gaussian and spline kernel distributions. The

smoothing kernels can be considered as discretization schemes in mesh dependent tech-

niques such as finite difference and volume. Stability, accuracy and the speed of SPH

simulation heavily depend on the choice of the smoothing kernel distribution as well as

the smoothing length. Eq. (3.6) gives the quintic spline kernel function representation

(which widely used in this work)

Wij =
7

478πh2



(3− q)5 − 6 (2− q)5 + 15 (1− q)5 , 0 ≤ q ≤ 1

(3− q)5 − 6 (2− q)5 , 1 ≤ q ≤ 2

(3− q)5 , 2 ≤ q ≤ 3

0, 3 ≤ q

(3.6)

where we have used a concise notation, i.e. Wij = W (|~ri −~rj|, h). Here, q = rij/h.

It is also valuable to mention that the SPH approximation of a function is second order

accurate as long as the function can be differentiated up to the second order. To show

this, one can initiate with Taylor expantion of Eq. (3.1) as

〈f(~ri)〉 =

∫
Ω

(
f(~ri) + rkji

∂f(~ri)

∂xki
+

1

2
rkjir

l
ji

∂2f(~ri)

∂xki ∂x
l
i

)
Wijd

3~rj. (3.7)

Using the sum rule in integration Eq. (3.7) is reduces to
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〈f(~ri)〉 = f(~ri)

∫
Ω
Wijd

3~rj︸ ︷︷ ︸
=1

+
∂f(~ri)

∂xli

∫
Ω
rkjiWijd

3~rj︸ ︷︷ ︸
=0

+
1

2

∂2f(~ri)

∂xki ∂x
l
i

∫
Ω
rkjir

l
jiWijd

3~rj︸ ︷︷ ︸
=δkl

. (3.8)

The first integral term in Eq. (3.8) is equal to unity because Kernel used is properly

normalized. The second integral on the right hand side of the same equation vanishes

since integration of a symmetric odd function over whole space is zero. The kernel used

is a symmetric even function. Position vector is an odd function. Multiplication of an

even and odd function is an odd function. This is a very important point to remember

since it forms the basis for the derivation of SPH equations. The reaming integral is

equal to identity tensor or Kronecker delta due to the spherical symmetry and isotropy.

The proof for the last integration will be introduced in section A when Laplace of a

function is approximated by a first order derivative. Consequently Eq. (3.8) is further

simplified to

〈f(~ri)〉 = f(~ri) +
1

2

∂2f(~ri)

∂xki ∂x
k
i

, (3.9)

which shows a second order accuracy for the SPH approximation of an arbitrary function.

3.2 The first and second derivative approximations

The integral estimate or the kernel approximation to an arbitrary function f(~ri), evalu-

ated at particle i can be introduced as (Eq. (3.1))

f(~ri) ∼= 〈f(~ri)〉 ≡
∫

Ω
f(~rj)Wijd

3~rj. (3.10)

Approximating the integration in Eq. (3.10) by the summation over particle j and setting

d3~rj = 1/ψj, one can write SPH interpolation for an arbitrary field f(~ri) as

f(~ri) =
∑
j

1

ψj
f(~rj)Wij, (3.11)
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where the number density ψi for the particle i is defined as

ψi =
∑
j

Wij, (3.12)

which is approximately equal to reciprocal of the corresponding particle’s volume ψi =

ρi/mi.

The SPH approximation for the gradient of an arbitrary function f(~ri) can be introduced

as

∂f(~ri)

∂xki
=
∑
j

1

ψj
f(~rj)

∂Wij

∂xki
, (3.13)

For improving the accuracy and the stability of the SPH method, in the literature, several

forms of corrective SPH gradient discretizations have been proposed and implemented

with the aim of remedying particle inconsistency and kernel-boundary truncation related

problems. Out of many excellent SPH studies that utilized the corrective SPH schemes,

some deserves particular mention due to being the pioneering works in the field [123,

93, 19, 75, 91, 92, 18]. Randalls et al. [123] used the renormalization procedure which

modifies the gradient of the kernel function through utilizing two by two corrective

matrix. Liu, Belytschko, and their co-workers [93, 19, 75, 91, 92] in series of papers used a

reproducing kernel approach, which consists of a correction function and the conventional

SPH kernel function and showed that their correction formulations removes the tensile

instability [91]. It should be mentioned that many other corrective formulations are

also possible. For example, Chen and Beraun in [18] also presented corrective SPH

formulations for the first and the second order derivatives. Their first-order derivative

correction is quite similar to what has been utilized in this work. However, their second-

order derivative correction requires the inversion of three by three matrix unlike the

formulation presented in this work. In our earlier studies, we have attempted to use

a corrective SPH formulation for the second-order derivative which also necessitate the

inversion of three by three corrective matrix, and observed that three by three corrective

matrix is rather sensitive to particle distribution, and becomes easily ill-conditioned,

which is not the case for two by two corrective matrix [136].
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Using a Taylor series expansion and the properties of a second-rank isotropic tensor, the

corrective SPH approximation for the gradient of a a vector-valued function can also be

introduced as

∂fp(~ri)

∂xki
aksi =

∑
j

1

ψi
(fp(~rj)− fp(~ri))

∂Wij

∂xsi
, (3.14)

where aksi =
∑

j
1
ψj
rkji

∂Wij

∂xsi
is the corrective second-rank tensor. The corrective term aksi is

ideally equal to Kronecker delta δks for a continuous function (see Appendix A for more

details). The corrective SPH discretization scheme for the Laplacian of an arbitrary

function can be written in two different ways [136, 138]

∂

∂xki
(ζi
∂fp(~ri)

∂xki
) = 8(apmi )−1

∑
j

2

ψj

ζiζj
ζi + ζj

(fp(~ri)− fp(~rj))
rpij
r2
ij

∂Wij

∂xmi
, (3.15)

∂

∂xki
(ζi
∂fp(~ri)

∂xki
) =

8

(1 + alli )

∑
j

2

ψj

ζiζj
ζi + ζj

(fp(~ri)− fp(~rj))
rsij
r2
ij

∂Wij

∂xsi
, (3.16)

where ζ might denote µ, and ρ−1. In a multiphase system with a large mismatch in

transport parameters such as density and viscosity of phases, the attentive treatment

of interface fluxes or gradients is of significant importance for the accuracy and the

robustness of the computation. Therefore, it is a common practice in the SPH approach

to smooth transport parameters through using a weighted harmonic mean interpolation,

namely ζi = 2ζiζj/(ζi + ζj), as has been done in above equations.

In this work, Eq. (3.15) is used for the discretization of the Laplacian of velocity field in

the linear momentum equation while Eq. (3.16) is utilized for the Laplacian of pressure

in the pressure Poissons equation.

3.3 Projective SPH

Let us have two vectors ~u and ~w. By using the vector dot product, we can extract parts

of a vector in particular directions. The operation ~u· d~we (where d~we = ~w/|~w|) gives

the rectangular component of ~u in the direction of ~w. If we were to multiply the ~u· d~we
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by d~we, then we would obtain a vector that is in the direction of ~w. This operation, in

which multiplying the component of ~u in the direction of d~we by d~we itself is called the

orthogonal vector projection of ~u onto ~w. This new vector will be denoted by

~uDw = (~u· d~we)d~we =
~u· d~we
d~we· d~we

d~we. (3.17)

The remaining part of the vector ~u that is perpendicular to ~w, which will be denoted by

~uPw is then calculated as

~uPw = ~u− ~uDw = ~u− ~u· (d~we ⊗ d~we), (3.18)

or in index notation as

uPwl = ul − uDwl = uk (δlk − dwekdwel)︸ ︷︷ ︸
Pkl

, (3.19)

where Pkl is a second rank tensor, is referred to as orthogonal projector, and when it

is operated on a vector field, it extracts its tangential component. Eq. (3.19) shows

clearly that any vector can be decomposed into two parts; one is being parallel to ~w

and the remainder is perpendicular to ~w. Depending on this idea, the Helmholtz-Hodge

decomposition theorem states that an arbitrary vector field ~w can be decomposed into

the sum of other vector fields; a divergence-free vector field, and the gradient of a scalar

field.

~w = ~u +∇Φ, (3.20)

where ~u is a divergence free vector field (∇·~u = 0) and Φ is a scalar field (see Fig. 3.1).
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Figure 3.1: The schematic representation of Helmholtz-Hodge decomposition on a
divergence free subspace.

Operating the projection operator P on Eq. (3.20), we can have,

P·~u = P· ~w −P· ∇Φ︸ ︷︷ ︸
=0

= ~u, (3.21)

where P· ∇Φ = 0 are used. This results shows that the projector tensor projects any

arbitrary vector ~w field onto its divergence free part ~u = P· ~w. If we apply the divergence

operator to both side of ~w = ~u +∇Φ, we will obtain a Poisson equation for the scalar

field with the divergence of ~w being the source term which is subjected to the Neumann

boundary condition ∂Φ/∂n = 0 at the boundary

∇· ~w = ∇2Φ. (3.22)

Solution of this equation is then used to compute the projection

~u = P· ~w = ~w −∇Φ. (3.23)

3.4 XSPH

In smoothed particle hydrodynamics particles are moved using the following relation,

dxki
dt

= vki . (3.24)

Here, the vki is the velocity components for particle i that is computed through the

solution of the balance of the linear momentum equation. It should be noted that in
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the SPH method, the orderness of particles affects the accuracy of interpolations for

the gradient and Laplacian computations. Therefore, for computational stability and

accuracy, it is preferable to move the particles in a more orderly fashion, which can

be achieved through using the XSPH technique suggested by Monaghan [102]. The

XSPH method includes the contribution from neighboring particles, hence causing a

fluid particle to move with an average velocity

dxki
dt

= vki − ε
∑
j

2mj

ρi + ρj
(vki − vkj )Ŵij, (3.25)

where the second term on the right hand side is the XSPH-averaged new velocity by the

correction factor of ε (0 < ε < 1).

3.5 Artificial viscosity

The artificial viscosity term is included in the current model in order to circumvent

numerical instabilities due to the meshless nature of the SPH method. This term intro-

duces some numerical diffusion into the model, thus preventing non-physical oscillations.

There are various forms of the artificial viscosity term in SPH literature. In this work,

the one suggested by Monaghan [102] is implemented in the form of

Πij =
8µm(~vij ·~rij)
ψiψj(r

2
ij + εh2

m)
. (3.26)

Here, hm =
hi+hj

2 , ε ≈ 0.0001 is a small number that is introduced to prevent singularity

when rij = 0, and µm is the harmonic average of µi and µj, which is defined as

µm =
2

1
µi

+ 1
µj

, (3.27)

where µi = 1
8αhiciρi in which c is the speed of sound and α is the artificial viscosity

constant.
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3.6 Multiple Boundary Tangent (MBT) method

In most engineering problems, the domain of interest has, in general, solid boundaries.

The SPH formulations being valid for all interior particles are not necessarily accurate

for particles close to the domain boundary since the kernel function is truncated by

the boundary. Therefore, the application of boundary conditions is problematic in the

SPH technique. Consequently, the proper and correct boundary treatments have been

an ongoing concern for an accurate and successful implementation of the SPH approach

(Kulasegaram et al. [80], Feldman and Bonet [80, 40]) as well as other meshless methods

(Krongauz and Belytschko [79], Alfaro et al. [3]) in the solution of engineering problems

with solid walls. Improper boundary treatment has two important consequences. The

first originates from the penetration of fluid particles into boundary walls, which then

leave the computational domain. The second is that kernel truncation at the boundary

produces errors in the solution. Hence, over the years, several different approaches

have been used for the boundary treatment such as specular reflections, or bounce-back

of fluid particles with the boundary walls (Simpson and Wood [142]), Lennard-Jones

Potential (LJP) type force as a repulsive force (Monaghan and Kos [103], Monaghan

[102]), ghost particles (Morris et al. [105], Colagrossi and Landrini [23], and Takeda et

al. [147]), and Multiple Boundary Tangent (MBT) method (Yildiz et al. [168], Shadloo

et al. [136]) which is initially proposed to treat complex boundaries and is mainly used

in this work.

The various steps of implementing MBT boundary treatment technique to the airfoil

geometry (as an example of a complex geometry with highly cyrved pert at the tip and

thin region at the tail), as depicted in Figs. 3.2 and 3.3, are as follows:
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Figure 3.2: Boundary treatment for a submerged thin object: (a) step-1, and (b)
step-2.

1. At each or prescribed time steps, all near boundary fluid particles (particles with

boundary truncations) as well as boundary particles are associated with their

neighbour boundary particles using the cell array data structure (the Fortran 90

derived data type) as also described in [168], see Fig. 3.2a. When dealing with

a thin solid object enclosed by flow such as the trailing edge of the airfoil, for

instance, near boundary fluid particles or boundary particles positioned above/on

the upper camber take contribution from fluid and boundary particles located be-

low the upper camber since the weighting function Wij has an influence domain

that spans over the smoothing radius .Physically, particles flanking a solid wall

should not affect each other. Consequently, the neighbour list computed through

the standard box-sorting algorithm has to be modified, and then updated at each

time step. The neighbour boundary particles of a given near boundary fluid par-

ticle are sorted in accordance with the distance between boundary particles and

the fluid particle in ascending order. Then, the fluid particle in question is given

the unit normal vector of its nearest boundary neighbour particle. For instance,

fluid particle i = 25 in Fig. 3.2 is given the unit normal of the boundary particle
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i = 7. The neighbour lists of all particles are updated by computing the angles

(~ni ·~nj) among unit normal vectors of particles and their neighbours. Here, ~ni and

~nj are the unit normal of a given particle and its neighbours. Only the particles

with angles smaller than the preset value (130o used in this study) are regarded

as neighbours to each other, whereby forming the updated neighbour list. To be

more specific, as can be seen from Fig. 3.2b, the updated neighbour list of the

particle i = 25 include only those particles enclosed by a square frame since other

neighbour particles do not satisfy the preset angle condition even though they are

in the influence domain of the particle i=25.

2. As in the case of previous step, all near boundary fluid and boundary particles

are associated with their updated neighbour boundary particles. Associating near

boundary fluid particles and boundary particles with their neighbour boundary

particles and sorting and then storing these neighbour boundary particles in ac-

cordance with the shortest distance among them allows for (i) the computation of

the overlapping contributions of mirrored particles from each boundary particle,

(ii) the confinement of the mirrored particles into the solid domain, (iii) defin-

ing solid boundaries by the envelope of boundary tangent lines, as well as (iv)

associating mirrored particles with near boundary fluid particles.

3. Given that each boundary particle has fluid particles in its influence domain as

neighbours, these fluid particles are mirrored with respect to the tangent line of

the corresponding boundary particle as indicated in Fig. 3.3. The fluid particles

should satisfy the condition ~rbf ·~nb ≥ 0, where ~rbf is a position vector between

the boundary particle and its neighbour fluid particles directing towards the fluid

particles and ~nb is the unit normal of the boundary particle. This condition en-

sures that only fluid particles above the associated boundary particle tangent line

are mirrored. The second condition ~rngb ·~nnb ≤ 0 to be fulfilled is that mirrored

particles should be confined into the solid region, meaning that mirrored particles

associated with a boundary particle have to be inside of the all tangent lines of

the neighbour boundary particles of the boundary particle in question, where ~rngb

is the position vector between the ghost particles and the neighbour boundary

particles of the given boundary particle and, ~nnb is the unit normal vector of the

neighbour boundary particles for the boundary particle in question. Using the

cell array structure, every boundary particle is associated with its corresponding
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mirrored particles. Spatial coordinates and particle identification numbers of mir-

rored particles are stored in a cell array. To be more precise, mirrored particles are

associated with the particle identification number of the fluid particle from which

they are originated (referred to as the ’mother’ fluid particle). For example, for a

fluid particle indexed with i = 25, the ghost particle mirrored about a boundary

particle tangent line (for example, boundary particle 7) will also be associated with

i = 25 as shown in Fig. 3.3a. Note that fluid and boundary particles have numer-

ical identifications that are permanent, whereas mirrored particles have varying

(dummy) indices, throughout the simulation. A ghost particle is given the same

mass, density and transport parameters, such as viscosity, as the corresponding

fluid particle. As for the field values (i.e. velocities) of a ghost particle, they are

obtained depending on the type of boundary condition implemented.

Figure 3.3: Boundary treatment for a submerged thin object; (a): step-3 and (b):
step-4.

4. In a loop over all particles, if a fluid particle has a boundary particle or multiple

boundary particles as neighbour(s), then the fluid particle will become a neighbour

of all mirrored particles associated with the corresponding boundary particles on

the condition that (i) the mirrored particles are in the influence domain of the fluid
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particle in question, and (ii) for a mirrored particle, its mother particle has to be

within the influence domain of the fluid particle in question. During the creation

of ghost particles, there is an over-creation of ghost particles due to the fact that

the influence domain of neighbouring boundary particles overlaps. The overlapping

contributions of mirrored particles can be eliminated by determining the number of

times a given fluid particle is mirrored into the influence domain of the associated

fluid particle with respect to a boundary particle’s tangent line. For computational

efficiency, the fluid particle can only be associated with the mirror particles of its

several nearest boundary particle rather than all neighbour boundary particles as

explained in Fig. 3.3b. Boundary particle i = 7 has the shortest distance to i = 25

compared to other boundary particles neighbor to the fluid particle i=25. Hence,

mirror particles of i = 7 also become the neighbor of i = 25 provided that above

two conditions (i and ii) are satisfied. Near boundary fluid particles hold the

information of spatial coordinates and fluid particle identity numbers, boundary

particle identity numbers (i.e. the particle number for a boundary particle to which

mirrored particles are associated initially), and over-creation number for mirrored

particles in the cell array format. During the SPH summation over ghost particles

for a fluid particle with a boundary truncation, the mass of the ghost particles are

divided by the number of corresponding over-creations.

3.7 Instabilities and their possible remedies in SPH method

The homogeneity of the particle distribution is quite important for the accuracy and

the robustness of the SPH method. The formation of ill particle distributions during

the simulation may result in the numerical solution to fail. For instance, if the pressure

field is solved correctly thereby imposing the incompressibility condition as accurately as

possible, the particle motion closely follows the trajectory of streamline, hence resulting

in a linear clustering and in turn fracture in particle distribution. In these regions due

to the lack of sufficient number of particles, or inhomogeneous particle distribution,

the gradients of field variables can not be computed reliably. Such a situation leads

to spurious fields, especially erroneous pressure values in the ISPH approach. As the

computation progresses, errors in computed field variables accumulate whereby blowing-

up the simulation.
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To prevent the particle clustering, the trajectory of particles can be disturbed by adding

relatively small artificial displacement, δrki , to the advection of particles computed by

the solution of the equation of motion. Recall the form of a Lennard-Jones potential

(LJP)-type force used in the SPH literature as a repulsive force for the solid boundary

treatment,

F ki,LJP =
N∑
j

[(
ro
rij

)n1

−
(
ro
rij

)n2
]
βrkijv

2
max

r2
ij

, (3.28)

where F ki,LPG is the force per unit mass on fluid particle i due to the neighbor particles

j, n1 and n2 are constants, β is a problem-dependent parameter, ro is the cutoff distance

and vmax is the largest particle velocity in the system. If the second term (attractive

interaction) on the right-hand side of LJP force is neglected, and n1 = 2, and the force

F ki,LPG, and vmax are replaced by δrki / (∆t)2 and rkij/∆t, one can write the relationship

δrki = β
N∑
j

rkij
r3
ij

r2
ovmax∆t, (3.29)

where δrki is the artificial particle displacement (APD) vector. Here, the cut-off distance

can be approximated as ro =
∑N

j rij/N . Given that rkij/r
3
ij is an odd function with

vanishing integral, one can write
∑N

j rkij/r
3
ij = 0 for a spherically symmetric particle

distribution. However, if the particle distribution is asymmetric, and clustered, the term∑N
j rkij/r

3
ij 6= 0 is no longer equal to zero, whereby implying the region with clustered

particle distribution. The APD is only influential in the clustered region and negligibly

small in the rest of the computational domain due to
∑N

j rkij/r
3
ij
∼= 0 provided that the

particle distribution is closely uniform. The offset vector between the particle i and the

center of mass of its influence domain, δřkii, can be presented as

δřkii = xki − x̌ki =
N∑
j=1

rkij
N
, (3.30)

where xki and x̌ki are the coordinates of the particle i and the center of mass for the

influence domain of the particle i.
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The comparison of the APD and offset vector implies that upon using the particle

displacement vector in the advection equation, the particle i moves towards the diluted

particle region (the region which is away from the center of mass). Hence, the fractures

in the simulation domain are repaired. Since the near boundary fluid particles have

influence domains truncated by boundaries, with the usage of the artificial particle

displacement vector in the computation, these fluid particles will tend to move towards

the boundary and stick to it. Even though this situation may appear as a problem

and the deficiency of the approach, it might be used in advantageous way such that

fluid particles close to boundaries are then artificially forced to move in conformation

with boundaries. Hence pressure forces on the boundaries can be computed much more

accurately in that particle deficiency is no longer problem therein. In our simulations,

since the ghost particles are used for near boundary fluid particles, the influence domain

of the kernel function is fully populated, and therefore such a problem is not an issue. The

artificial particle displacement vector is added to the particle advection equation in both

prediction and correction steps. This approach repairs all the clustering and fracture

in the domain gradually without inducing significant errors in the computation, and

enabling a quite robust SPH approach. It is due to this approach that it becomes possible

to run simulations with higher Reynolds numbers, which are otherwise impossible to

achieve.

3.8 Initial and boundary conditions

The modeling process starts with generating particles for the flow domain and its bound-

aries. Initially, particles are created in the form of a rectangular grid with equidistant

particle spacing. All physical boundaries are represented by a row of fixed particles (here-

after referred to as boundary particles) whose pertinent fields are evolved in accordance

with the numerical solution. To distinguish among fluid and boundary particles, bound-

ary and fluids particles are assigned to different integer labels. Additionally, boundary

particles of dissimilar boundaries are also differently tagged, thereby enabling the imple-

mentation of various boundary conditions when necessary. Fluid and boundary particles

are given their physical parameters and initial conditions. The particle spacing between

each boundary particle is the same as the initial particle spacing between fluid particles.

All particles are given the same smoothing lengths as h = κrij,o where rij,o is the initial
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particle spacing, and κ is a problem-dependent input parameter. It should note that in

this work, a constant smoothing length is used.

Through using a standard box-search algorithm (see section 3.9), the neighbor list is

formed for each particle. Subsequently, ghost particles are created for the incorporation

of the MBT boundary treatment into the numerical procedure (see section 3.6). It should

be mentioned that ghost particles are given the same mass, density, number density, and

transport parameters (i.e., viscosity) as their corresponding fluid particles.

Either, no-slip, (~v|Γ = 0), or free-slip, (~v ·~n = 0, ~t ·
(
∇~v +∇~vT

)
·~n = 0, where for 2D

vertical boundary it will reduces to: u = 0, ∂v∂x = 0 ), boundary conditions for the velocity

field are applied depending on the considered case study. Pressure field is subjected to

homogeneous Neumann boundary condition, ρ/∆t
(
~v∗ − ~v(n+1)

)
·~n = ∇p ·~n, where ~n

is the unit normal vector. Upon replacing ~v∗ by ~v(n+1) [25], the pressure boundary

condition reduces to ∇p ·~n = 0.

Figure 3.4: The sketch of the channel for which fully periodic condition is imposed
in the horizontal direction. Particles denoted by B are the imaginary copies of those
designated by I while particles represented by C are the imaginary copies of those

shown by J.

Field values Λ (i.e. velocities, pressure and elastic stress tensor) of a ghost particle, are

obtained depending on the type of boundary condition implemented. For the Dirichlet

boundary condition which species values for the field variables on the boundary of the

domain, the following linear interpolation is utilized; namely, Λg = 2Λb−Λf where Λg, Λb

and Λf are the fields variables of the ghost, boundary, and fluid particles, respectively. As

for the zero gradient boundary condition (Neumann boundary condition) which specifies

values for the field variables as a derivative on the boundary, a ghost particle is assigned

to the same field values as the corresponding fluid particle possesses Λg = Λf .
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The fully periodic boundary condition is imposed in a following manner. In order to

conserve the mass of the system, particles leaving the channel off the right boundary

are reinserted into the flow domain from the left boundary at the same y-position. In

addition, the fluid particles around the left boundary are defined as neighbors to those

at the proximity of the right boundary and vice versa as shown in Fig. 3.4.

3.9 Neighbor search algorithm

There are several known searching algorithms that will find and store neighboring par-

ticles. Recall that neighbor particles are those particles j that satisfy the condition

rij ≤ κh for a given particle i. The most direct approach for finding particle neighbors

is to cycle through all particles, and check whether the above given condition is satisfied

or not, storing the results. However, this algorithm searches all N particles for each of

the N particles i. Therefore, this type of search procedure is of the order N × N in

terms of computation searching effort required. A more efficient approach is the ”box-

sorting” algorithm, which is known to be of order N logN . This algorithm divides the

domain into an ordered number of boxes, with side dimensions equal to the maximum

smoothing length in the domain (κhmax) in length. Each of the N particles, i, is then

catalogued by which box it is located in. Since the box side dimensions are chosen to be

κhmax, a neighbor j of particle i must be located in one of the adjacent boxes to the box

containing particle i. Therefore, instead of searching all N particles, one must search a

much smaller group of particles. Due to the much smaller computational expense, all

simulations in this work used the box-sorting procedure (see Fig. 3.5).
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Figure 3.5: Schematic illustration of neighbor searching algorithm.

3.10 Numerical scheme

Here, we briefly introduce the numerical algorithm implemented in this work. There

are two common approaches utilized in the SPH literature for solving the balance of the

linear momentum equation. The first one is widely referred to as the weakly compress-

ible SPH (WCSPH) where the pressure term in the momentum equation is determined

through an artificial equation of state. In the second approach known as incompressible

SPH (ISPH), the pressure is computed by means of solving a pressure Poisson equation.

Within the frame work of this research program, we have implemented both WCSPH and

ISPH approaches. It is noted that in this section we only present the numerical scheme

for the ISPH treatment of the most complicated problem (i.e. two phase Electrohydro-

dynamics’ problem), where all electric field, surface tension and viscous forces exist. The

algorithm for WCSPH and for each individual problem are eliminated for the sake of

redundancy. The interested readers are referred to our papers [135, 136, 137, 138, 170].

The procedure starts with the initial mass calculation for each particle using the relation

mi = ρi/ψo where ψo = max(ψi) is the initial or reference particle number density which

is retained constant during the computation. For the time marching, we have used a
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first-order Euler time step scheme along with a projection method based ISPH approach

[139]. Thus, we first move particles from their current positions ~r
(n)
i with their current

divergence free velocities ~v
(n)
i at time t to the temporary or intermediate positions ~r ∗i

using

~r ∗i =~r
(n)
i + ~v

(n)
i ∆t+ δ~ri. (3.31)

Here, to enhance the robustness of the model, and circumvent the particle disorderness

and fracture induced numerical problems, the APD term is added to the advection

equation [136]. The APD vector δ~ri is calculated from the Eq. (3.29) for all fluid

particles where the β is a problem-dependent parameter which is set to be equal to 0.03

for all test cases in this work. As it noted before the APD vector is an odd function and

therefore has a non zero value only for asymmetric particle distribution.

Having advected particle positions to their intermediate positions, their neighbors (both

real and ghost particles) are recalculated. Assuming relatively small changes in particle

positions at each time step, one may presume that the neighbor of a given particle will

not change significantly. Thus, the neighbor lists and ghost particles are updated every

tenth time step to reduce the computational cost due to neighbor finder algorithm.

Afterward, in the interface subroutine, the surface tension force is computed using Eq.

(5.13) (see section 5.3). Furthermore, since each fluid particle has constant density,

viscosity, and electrical permittivity and conductivity (ρ, µ, εE and σE respectively)

which are discontinuous across the interface, the numerical scheme might have insta-

bilities especially in the case of a large mismatch in the transport parameters of con-

stituents. Thus, these transport parameters are smoothed in the same subroutine using

the weighted arithmetic mean interpolation (see section 5.3)

ρi = (1− Ci)ρ1 + Ciρ2, (3.32)

µi = (1− Ci)µ1 + Ciµ2, (3.33)
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εEi = (1− Ci)ε
E
1 + Ciε

E
2 , (3.34)

and

σEi = (1− Ci)σ
E
1 + Ciσ

E
2 . (3.35)

Then, the intermediate velocity ~v ∗i is computed on the temporary particle locations

through the solution of the momentum balance equations with the forward time inte-

gration as

~v ∗i = ~v
(n)
i +~f

(n)
i ∆t. (3.36)

Here,~f
(n)
i represents the right hand side of the momentum balance equation given in Eq.

(6.22), which embodies viscous, volumetric surface tension and electric forces excluding

the pressure gradient term, calculated using old velocities, updated transport properties

and intermediate positions. Given the intermediate particle positions and velocities, the

intermediate number densities

ψ∗i = ψ
(n)
i −∆tψ

(n)
i (∇ · ~v∗i ), (3.37)

and mixture densities

ρ∗i = ψ∗i
∑
α

mα
i C

α
i , (3.38)

as well as divergences of intermediate velocities are calculated, which will be used at the

correction step in the pressure Poisson equation. Then, at the correction step, we add

the effect of pressure gradient term into intermediate velocity ~v ∗i to obtain the divergence

free velocity vector ~v
(n+1)
i at the new time

~v
(n+1)
i = ~v ∗i −

∆t

ρ∗i
∇p(n+1)

i . (3.39)
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where the pressure p(n+1) has been obtained through the solution of the pressure-Poisson

equation, which can be formulated in general form as

∇ · ~v ∗

∆t
= ∇ · (∇p

(n+1)

ρ∗
). (3.40)

To be able to treat large variation in the density across the interfaces in a robust manner

without facing pressure related convergence issues, the discretization of the pressure

gradient term (the second term on the right hand side) in Eq. (3.39) requires a special

treatment. Upon using the product rule of differentiation, one can write that

1

ρ
∇p = ∇(

p

ρ
)− p∇(

1

ρ
), (3.41)

whose right hand side can be discretized by using Eq. (3.14) as

1

ρ
∇p = (aksi )−1(

∑
j

1

ψj

[
(
pj
ρj
− pi
ρi

)− (
pi
ρj
− pi
ρi

)

]
∂Wij

∂xsi
)

= (aksi )−1(
∑
j

1

ρjψj
(pj − pi)

∂Wij

∂xsi
). (3.42)

It is noted that in the calculation of the pressure gradient in Eq. (3.42), the intermediate

number density and mixture densities are used.

Upon taking the divergence of Eq. (3.39) and noting that the incompressibility condition

requires that ∇ · ~v (n+1)
i = 0. Eq. (3.40) is solved using a direct solver based on the

Gauss elimination.

Finally, with the correct velocity field for t(n+1), all fluid particles are advected to their

new positions ~r
(n+1)
i using an average of the previous and current particle velocities as

~r
(n+1)
i =~r

(n)
i + 0.5(~v

(n)
i + ~v

(n+1)
i )∆t+ δ~ri. (3.43)
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Neighbor and ghost particle lists are updated, and then the initial (reference) number

density of the fluid is restored. Finally, For a stable solution, the time step is selected

in accordance with ∆t 6 CCFLh
vmax

where CCFL = 0.125 in this work.



Chapter 4

Single Phase Flows

4.1 Introduction

Due to being a relatively new computational method for engineering applications, there

are still a few significant issues with SPH that need to be scrutinized. It is still a

challenge to model physical boundaries correctly and effectively. In addition, there are

various ways to construct SPH equations (discretization), and a consistent approach

has not gained consensus. Highly irregular particle distributions which occur as the

solution progresses may cause numerical algorithms to break down, thereby making

robustness another significant issue to be addressed. Namely, it is well-known by SPH

developers that when passing from one test case to another, new problems are faced. For

example, instabilities due to clamping of SPH particles which is not in general present

in modeling a dam-breaking problem show themselves in the simulation of flow over

bluff bodies, especially at the leading and trailing edges. These shortcomings are not

insurmountable. The underlying factors causing these shortcomings can be understood

through extensive research on the verification of SPH against a wide variety of possible

applications as being done in the SPH literature.

As it mentioned before, in the SPH literature, there are two commonly utilized ap-

proaches for solving the balance of the linear momentum equations. The ISPH technique

is based on the projection method originally proposed in [20, 21] and first implemented

to the SPH method in the work of Cummins and Rudman [25], which is referred to

as the standard projection method in this work. In this method, the pressure term

45
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in the momentum balance equation is computed by solving a pressure Poisson’s equa-

tion. The standard projection method has been reported to suffer from the density error

accumulation during the computation of the intermediate density field [139, 114]. To

circumvent this and the associated problems, and consequently enhance the accuracy

and the performance of the standard ISPH scheme, several modifications have been pro-

posed for it in literature. For example, Shao and Lo [139] enforced the incompressibility

in a somewhat similar manner to the one proposed in [25] with two main differences:

first, they computed the intermediate velocity and then advected SPH particles; and

second, they utilized the density variation as a source term rather than the divergence

of the intermediate velocity. Their projection scheme has been referred to as the density

invariance algorithm in the SPH literature.

Hu and Adams [68] have pointed out the density invariant ISPH algorithm leads to large

density variations, thereby producing less accurate pressure field. In what follows, they

have proposed the concurrent usage of the standard and the density invariant ISPH

algorithms. However, such an approach requires that the pressure Poisson’s equation

be solved two times in each time step of a simulation, hence bringing about additional

computational load to the simulation.

As for the WCSPH method, the pressure is computed explicitly from a simple thermo-

dynamic equation of state [25, 105, 99].The above introduced state equations enforce

the incompressibility condition on the flow such that a small variation in density pro-

duces a relatively large change in pressure thereby limiting the dilatation of the fluid

to 1%. To keep the relative incompressibility or the density variation factor, defined as

(δ = ρ/ρo − 1), under 1%, the sound speed is as a rule of thumb chosen to be at least

one order of magnitude larger than the maximum bulk fluid velocity vmax thus resulting

in a very small Mach number M = vmax/c = δ0.5 = 0.1.

The major advantages of WCSPH over ISPH are the ease of programming and better

ordered particle distributions. Mainly for these reasons, the WCSPH method has become

the most widely used approach to solve the linear momentum balance equation in SPH

literature. However, unlike the ISPH method, when dealing with fluid flow problems

characterized by higher Reynolds number values (i.e. greater than 100), the standard

WCSPH method has been reported to suffer from large density variations, and therefore

it requires the usage of a much smaller Mach number than 0.1 to avoid the formation
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of unphysical void regions in the computational domain [74, 84]. From the numerical

stability point of view, the speed of sound has a direct effect on the permissible time-step

in a given simulation, and hence directly affects the total computational cost.

There are several recent works that have aimed to compare ISPH against WCSPH for

free surface and bluff body problems [84, 71, 85]. Hughes and Graham [71] have recently

compared the ISPH and WCSPH approaches for free-surface water flows. They have

concluded in their work that if the standard WCSPH method is used along with some

special treatments such as density smoothing, the WCSPH technique can be as correct as

the ISPH approach. On the other hand, Lee et al. [85] illustrated that the ISPH method

produces more accurate pressure fields with respect to the WCSPH through simulating

three-dimensional (3D) water collapse in waterworks, and consequently concluded that

the ISPH method is much more reliable in modelling free surface flow problems.

Referring back to the reported SPH simulation results in literature, one may argue that

there is still no consensus in the SPH community on WCSPH being as accurate as the

ISPH method. Therefore, the necessity of further comparisons of both methodologies

to enforce the incompressibility condition is obvious, which is also acknowledged in

[51]. To shed further light on the current understanding of the performance of both

methodologies, an improved SPH algorithm for both WCSPH and ISPH approaches is

proposed and implemented. The improved algorithm comprises the following: (i) the

MBT method to treat solid boundaries with complex geometries [136]; (ii) the APD

procedure to repair the nonuniformity and local fractures in particle distributions; and

(iii) a corrective SPH discretization scheme to circumvent the particle inconsistency

problem and in turn enhance the accuracy of the overall computation. Both WCSPH

and ISPH methods are implemented and tested for two bluff body examples, namely

the square obstacle and airfoil flow problems. Results of WCSPH and ISPH simulations

are compared with each other for various test cases and are also validated against the

outcomes of the FEM analyses. It is shown that the WCSPH approach can be as reliable

as the ISPH if the APDt, density smoothing, corrective SPH formulations, and proper

boundary treatments are concurrently employed in the same problem. The improved

WCSPH method can correctly model fluid flows at Reynolds numbers as high as ISPH

can handle in the laminar flow regime without the necessity of using a Mach number

much smaller than 0.1, and without suffering from the common issues related to particle

clustering or fracture in the computational domain. As a final remark of the introduction,
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even though the APD improves the particle distribution and in turn enables the usage

of a lower Mach number and consequently a larger time step, the ISPH method is still

superior to WCSPH from the computational time point of view.

4.2 Governing equations

In this chapter, a laminar, incompressible, viscous and Newtonian fluid flow is consid-

ered. Equations governing fluid problems in hand are the conservation of mass and linear

momentum, which are expressed in the Lagrangian form and given in direct notation as

Dρ

Dt
= −ρ∇ · ~v, (4.1)

ρ
D~v

Dt
= ∇ ·T + ρ~f b, (4.2)

where ~v is the fluid velocity vector, ρ is the fluid density, T is the total stress tensor,

and ~f b is the body force which is equal to gravitational force in this work. The total

stress tensor is defined as T = −pI+τ , where p is the absolute pressure, I is the identity

tensor, and τ = µ(∇~v + (∇~v)T ) is the viscous part of the total stress tensor, where µ is

the dynamic viscosity. Finally, D
Dt is the material time derivative operator.

4.3 Flow around bluff bodies

There are several complex flow phenomena such as separation, circulation and reattach-

ment in many industrial and engineering problems. These phenomena occur in various

practical applications like the heat transfer performance of fins, sudden expansion in

air-conditioning ducts, flow behaviours in a diffuser, and flow around structures. Flows

around a square obstacle and an airfoil are two of the widely used benchmark problems

that are appropriate for understanding the aerodynamics and the fundamental char-

acteristics of fluid flows around structures. They are relatively well documented and

understood both experimentally and numerically [106, 109, 95] and therefore have be-

come benchmark problems to validate new computational fluid dynamic approaches as
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well as to show the capability and the accuracy of developing in-house codes and new

algorithms.

The flows around the airfoil and square obstacle placed inside the channel were modelled

for a range of Reynolds numbers Re = ρlcvb
µ where lc is the characteristic length being

set equal to the side length for the square obstacle, and vb is the bulk flow velocity. The

ISPH and WCSPH modelling results are compared in terms of velocity, and pressure

contours and Strouhal number for the square obstacle, and the chord length for the airfoil

geometry, and the pressure envelope, surface traction forces, and velocity gradients on

the airfoil boundaries as well as the lift and drag values for the airfoil.

To be able to test the effectiveness of the improved SPH algorithm for both WCSPH

and ISPH approaches (involving the utility of the MBT method together with the APD

and the corrective SPH discretization scheme) for modelling fluid flow over complex ge-

ometries, we solved two benchmark flow problems, namely, two-dimensional simulations

of a flow around a square obstacle and a NACA airfoil. Mass and linear momentum

balance equations are solved for both test cases on a rectangular domain with the length

and height of L = 15m, and H = 6m, respectively.

4.3.1 Flow around a square obstacle

A square obstacle with a side dimension of 0.7m is positioned within the computational

domain with its center coordinates at x = L/3 and y = H/2. Initially, a 349×145 array

(in x-direction and y-direction, respectively) of particles is created in the rectangular

domain, and then particles within the square obstacle are removed from the particle

array. The boundary particles are created and then distributed on solid boundaries such

that their particle spacing is almost the same as the initial particle spacing of the fluid

particles.

The simulation parameters, fluid density, dynamic viscosity and body force in x-direction

are respectively taken as ρ = 1000( kg
m3 ), µ = 1( kgms), and |~fb| = 3.0× 10−3(Nkg ). The mass

of each particle is set equal and found through the relation mi = ρi
ψi

and the smoothing

length for all particles is chosen equal to 1.6 times the initial particle spacing.

Boundary conditions for inlet and outlet particles are implemented such that particles

crossing the outflow boundary are reinserted into the flow domain at the inlet from the
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same y-coordinate positions with the velocity of the inlet fluid region with its coordinates

of x = 0, and y = 3 so that the inlet velocity profile is not poisoned by the outlet

velocity profile. The no-slip boundary condition is implemented for the square obstacle.

For upper and lower walls bounding the simulation domain, the symmetry boundary

condition for the velocity is applied such that v = 0, and ∂u/∂y = 0. The pressure,

no-slip and symmetry boundary conditions of relevant fields are implemented on both

benchmark problems using the MBT method, which has been explained in detail in

[136, 168].

Fig. 4.1 presents the modelling results as contour plots of the velocity magnitude (m/s)

for the square obstacle problem with Reynolds numbers of 100 (left) and 200 (right),

respectively. One can note that the modelling outcomes of both SPH approaches are

in a very good agreement with those of the FEM method. In Fig. 4.2 are shown the

pressure contours computed by ISPH, FEM and WCSPH methods for the same Reynolds

numbers as in Fig. 4.1. It is worthy to accentuate that the WCSPH pressure contours

for both Reynolds numbers are as accurate as those of both ISPH and FEM and do not

show any oscillatory or noisy behaviour as reported in other relevant literature [84, 29].
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Figure 4.1: The comparison of (up) ISPH, (center) FEM and (down) WCSPH simu-
lation results in terms of the contours of the velocity magnitude (m/s) for (a) Re = 100

and (b) Re = 200.
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Figure 4.2: The comparison of (up) ISPH, (center) FEM and (down) WCSPH pressure
contours for (a) Re = 100 and (b) Re = 200, where pressure unit is Pascal (pa).

Early experiments and numerical studies reported the occurrence of vortex shedding at

the rear edge of the square obstacle at higher Reynolds numbers [109]. In this direction,

to show that both WCSPH and ISPH algorithms proposed in this work are also capable

of capturing vortex shedding at the trailing edge of the square obstacle as accurately as

mesh dependent solvers, simulation results of WCSPH and ISPH methods are compared

with those of FEM in Fig. 4.3 for a Reynolds number of 320 in terms of vortex shedding

contours for a full period of shedding. It can be observed that the results are in a good

agreement with each other with regard to the magnitude of velocities as well as the

position and number of vortices.
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Figure 4.3: The comparison of a full period of vortex shedding velocity contours
obtained with (up) ISPH, (center) FEM and (down) WCSPH for the Reynolds number

of 320.

To further comment on the correctness of the SPH modelling results presented, the

Strouhal number St = ωlc
vb

is considered, where ω is the frequency of vortex shedding.
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The computed values of the Strouhal number for WCSPH and ISPH methods for the

Reynolds number of 320 are 0.139 and 0.142, respectively, which are also consistent with

the experimental result reported in the literature [109].

4.3.2 Flow around a NACA airfoil

The channel geometry and the boundary conditions for the second benchmark problem

are identical to the first one with the exception that the square obstacle is replaced by

the NACA airfoil with a chord length of 2m, which is created by

yc =


m
(

2pxc−x2c
p2

)
, 0 ≤ xc ≤ p

m
(

2p(xc−1)+1−x2c
1−p2

)
, p ≤ xc ≤ 1

(4.3)

where xc and yc are the mean camber line coordinates, m is the maximum camber in

percentage of the chord, which is taken to be 5%, and p is the position of the maximum

camber in percentage of the chord that is set to be 50%. The thickness distribution

above and below the mean camber line is calculated as

yt = 5t
(
0.2969x0.5

c − 0.126xc − 0.3516x2
c + 0.284x3

c − 0.1015x4
c

)
(4.4)

Here, t is the maximum thickness of the airfoil in percentage of chord, which is 15%.

The final coordinates of the airfoil for the upper surface (xU , yU ) and the lower surface

(xL, yL) are determined using


xU = xc − yt sinφ

yU = yc + yt cosφ

(4.5)

and


xL = xc + yt sinφ

yL = yc − yt cosφ

(4.6)
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respectively, where φ = arctan (dyc/dx). Because the leading edge of the airfoil has a

curve with a steeper slope, the chord is split into two parts to be able to locate more

boundary particles towards the leading edge. Discrete points on the chord are created

with the formula

xc =

[
(i− 1)

(ilen− 1)

]n
× idis (4.7)

where i is a nodal index, ilen is the number of nodes along the chord, idis is the length

of the chord, and n is the geometrical progression coefficient that controls the distance

between points on the chord. Given the chord length of 1, six inequidistant nodal points

created through the geometrical progression coefficient of 2 are located along 5% of

the chord length starting from the leading edge. The remaining section of the chord

has 50 equidistant nodal points. The leading edge of the airfoil is located at Cartesian

coordinates (L/5, H/2).

Having obtained all coordinates of the airfoil geometry, the upper and lower surface

lines are curve fitted using the least squares method of order six. In so doing, it becomes

possible to compute boundary unit normals, tangents and slopes for each boundary

particles. An array of 300× 125 particles in x and y-directions, respectively, is created

in the rectangular domain. All the initial particles falling between fitted curves for upper

and lower cambers are removed from the rectangular computational domain, and then

the remaining fluid particles are combined with the boundary particles to form a particle

array of the computational domain. The smoothing length for all particles is set equal

to 1.6 times the initial particle spacing. To show convergence, three different particle

arrays, namely, 150 × 62 (coarse), 300 × 125 (intermediate) and 400 × 167 (fine) were

used. It was observed that 300× 125 array of particles is sufficient for particle number

independent solutions.

After demonstrating the competence and success of the improved ISPH and WCSPH

algorithms on a geometry with sharp corners, the proposed algorithm was also tested on

a more general and complex geometry with curved boundaries and a thin body section.

The sensitivity of the numerical solutions to particle numbers and the convergence of the

present modelling have been recently investigated by Shadloo et al.[136] for the ISPH

method as well as the FEM. Therefore, a comprehensive validation is not repeated
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here. Instead, the emphasis is placed on the validation of the numerical scheme for the

WCSPH method. To do this, the velocity fields over the airfoil with the same values of

the parameters were computed (Fig. 4.4) on three different sets of particles (i.e. 150×62

(coarse), 300× 125 (intermediate) and 400× 167 (fine)).
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Figure 4.4: The velocity fields in terms of velocity magnitudes over the airfoil (with
an angle of attack of 5o at Reynolds number of 420) computed on three different sets of
particles by the WCSPH method, namely 150 × 62 (coarse), 300 × 125 (intermediate)

and 400× 167 (fine), for which results are given from top to bottom, respectively.

The comparison of results on the coarse, medium and fine particle numbers clearly

indicates that the intermediate particle number can produce numerical results with

satisfactory accuracy given the trade-off between computational costs and capturing

flow characteristics of interest. Because finer meshes are computationally expensive, the

intermediate particle number is chosen for the numerical simulations presented in this

work. The simulations are performed on a workstation using an Intel R© CoreTM i7-950

Processor (8M Cache, 3.06 GHz, 4.80 GT/s) under a WINDOWS XP (64-Bit Edition)

operating system. The computational cost in terms of the CPU time for the coarse,

intermediate and fine particle numbers for one second of the real simulation time is

shown in table 4.1.
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Table 4.1: The computational cost in terms of the CPU time for the coarse, interme-
diate and fine particle numbers for one second of the real simulation time for the ISPH

and WCSPH method. The reported unit is second.

coarse intermediate fine

ISPH 21.2s 85.6s 159.2s

WCSPH 128.9s 1352.8s 2651.3s

Figs. 4.5 and 4.6 compare the velocity contours of (up) ISPH, (center) FEM and (down)

WCSPH for the angles of attack of 5o and 15o respectively (contours show the velocity

magnitude, (m/s)) for the Reynolds numbers of 420 (left) and 570 (right). Similar to

the previous benchmark problem, both WCSPH and ISPH results are in good agreement

with those of the mesh dependent FEM technique. In all simulations, the results of WC-

SPH are as accurate as the ISPH ones. The figures further illustrate that the proposed

algorithm is also very successful in simulating the flow around the airfoil geometry with

different angles of attack across the flow field.
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Figure 4.5: The comparison of (up) ISPH, (center) FEM and (down) WCSPH velocity
contours for the angle of attack of 5o at (a) Re = 420 and (b) Re = 570.



Single Phase Flows 57

2 4 6 8 10 12
1

3

5

 

 

 y
 (

m
)

0

0.1

0.2

2 4 6 8 10 12
1

3

5

 

 

 y
 (

m
)

0

0.1

0.2

2 4 6 8 10 12
1

3

5

 

 

 x (m)

 y
 (

m
)

0

0.1

0.2

2 4 6 8 10 12
1

3

5

 

 

 y
 (

m
)

0

0.1

0.2

0.3

2 4 6 8 10 12
1

3

5

 

 

 y
 (

m
)

0

0.1

0.2

0.3

2 4 6 8 10 12
1

3

5

 

 

 x (m)
 y

 (
m

)

0

0.1

0.2

0.3

(a) Re=420 (b) Re=570

Figure 4.6: The comparison of (up) ISPH, (center) FEM and (down) WCSPH velocity
contours for the angle of attack of 15o at (a) Re = 420 and (b) Re = 570.

Fig. 4.7 provides a comparison for the WCSPH, ISPH and FEM pressure envelops

around the airfoil for the angle of attack of 15o with the Reynolds numbers of 420

(left) and 570 (right). The results of both SPH approaches are consistent with those

corresponding to the mesh dependent solver. It is noted that the WCSPH pressure

envelop is more accurate and is in a closer agreement with the FEM method than that

of ISPH, especially at the higher Reynolds number. Observing the figures, one can notice

that there is a small discrepancy in pressure values compared with the FEM results for

the upper camber in the vicinity of the leading edge and the stagnation point. Also, the

x-coordinates of minimum pressure for both WCSPH and ISPH methods are slightly

greater than that of the FEM method. These discrepancies in pressure values might

be attributed to the dynamic nature of the SPH method because fluid particles are in

continuous motion. This local temporary scarcity of particles near the solid boundaries

might deteriorate the accuracy of the computed pressure because the SPH gradient

discretization scheme is rather sensitive to the particle deficiencies within the influence

domain of the smoothing kernel function.
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Figure 4.7: The comparison of pressure envelopes for the angle of attack of 15o at (a)
Re = 420 (left) and (b) Re = 570 (right).

To have an additional quantative comparison between the proposed SPH methods and

the FEM analysis, the total surface force ~F = T. ~nda acting on the upper and the lower

cambers are plotted as a function of the chord length, as denoted in Fig.4.8 where da is

the area of a surface element. One can notice that there exist similar discrepancies in

total surface forces between SPH and FEM results as in the case of pressure values. This

is due to the fact that at this Reynolds number range, the pressure force is dominant

over the viscous forces.
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Figure 4.8: The comparison of total forces on the upper and lower cambers of the
airfoil for the angle of attack of 15o at Re = 420.

Fig. 4.9 illustrates the components of the velocity gradient on the airfoil boundary for

the upper camber. Upon integrating the x-component and y-component of the total

surface force over the airfoil, one can calculate the lift and drag forces, respectively. The

lift and drag forces acting on the airfoil with the angle of attack of 15o for the Reynolds

numbers of 420 and 570 are reported in table 4.2. Given the difficulty of having more

particles in the vicinity of the airfoil boundaries in the SPH method unlike the mesh-

dependent methods because of the dynamic nature of SPH particles, satisfactorily good

agreement is observed between SPH and FEM results.
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Figure 4.9: The comparison of the components of the velocity gradient on the upper
camber of the airfoil with the angle of attack of 15o at Re = 420.

Table 4.2: The lift and drag forces acting on the airfoil with the angle of attack of
15o at Re = 420 and Re = 570.

ISPH FEM WCSPH

Re Lift Drag Lift Drag Lift Drag

420 43.218 16.9709 52.0167 17.5942 49.2342 16.5904

570 66.4510 26.4433 69.9198 25.9040 62.9650 24.4302

Fig. 4.10 presents the close-up view of particle positions around airfoils with the angle

of attack of 15o and Reynolds numbers of 570 (left) and 1400 (right) for the ISPH and

WCSPH methods. Incompressibility condition is enforced more accurately in the ISPH

method than in the WCSPH method. Therefore, particles in the WCSPH method do

not have a strong tendency to follow the streamline trajectory. As a consequence, the

WCSPH technique does not suffer from particle deficiency around the upper camber as

much as ISPH. These figures also illustrate the effectiveness of using the MBT method
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to treat difficult geometries, which might not be achievable with other boundary treat-

ment methods proposed for meshless numerical approaches. For both the low and high

Reynolds number values (i.e. Re = 570, and Re = 1400) there are no particle deficiencies

in the domains of interest for the WCSPH method.
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Figure 4.10: The close-up view of particle positions around airfoils with the angle of
attack of 15o at (a) Re = 570 and (b) Re = 1400 for ISPH (up) and WCSPH (down)

methods, respectively.

It is noteworthy to emphasize that without the APD algorithm presented and imple-

mented in this work, nonphysical particle fractures occur around the airfoil geometry

because of the relatively high velocity and the tendency of SPH particles to follow a

streamline trajectory as illustrated in Fig.4.11. This brings about erroneous density,

pressure and velocity fields and in turn blows up the simulations even for relatively

small Reynolds numbers (i.e. Re = 100 − 300) and angle of attack values. In passing,

it should be mentioned that within the scope of this work, the artificial stress method

[101, 53] has also been considered and implemented as a possible remedy for particle frac-

tures for both the ISPH and the WCSPH techniques. It was observed that the artificial

stress method could partially eliminate particle clustering and associated instabilities in

computational domains and is effective only up to a Reynolds number of roughly 120.

This may lead one to conclude that the particle disorderliness has a significant effect on

the existence of numerical instabilities in the SPH method.



Single Phase Flows 62

2 3 4 5 6
2

3

4

 y
 (

m
)

 x (m)
2 3 4 5 6

2

3

4

 x (m)

(a) ISPH (b) WCSPH

Figure 4.11: The close-up view of particle positions around airfoils with the angle of
attack of 5o at Re = 300 without using the APD method for (a) ISPH and (b) WCSPH

methods.

Another approach to avert the formation of particle clustering and fractured domains in

the WCSPH method is to increase the speed of sound value. Although this treatment

might be a remedy for void formations as also reported in [74, 84], it increases the

computational cost significantly. For example, the computational costs to achieve one

second of the real time simulation are 4665.7 s, 1352.8 s, 1069.8 s, and 761.2 s in terms

of CPU time for large (M = 0.025), default (M = 0.1), small (M = 0.173), and very

small (M = 0.316) sound speeds, respectively. The large and default speed of sound

values keep the density variation less than 1%, and small and very small speed of sound

values are chosen such that the density variation is less than 3% and 10% in that order.

In Fig. 4.12 are given particle distributions and the contour plots for the density field

corresponding to default, small and very small speed of sound values. One can see that

the APD permits the usage of much smaller sound speed values without the concern of

any fractured regions in particle distribution. Despite the fact that small and very small

sound speed values do not cause any noticeable problem in the particle distribution,

they cannot enforce the incompressibility. Therefore, the sound speed value referred to

as the default has been used to generate all the reported WCSPH results in this work.
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Figure 4.12: (a) The density contours and (b) corresponding particle distributions
(right) around the airfoils obtained with the WCSPH method with the angle of attack

of 5o at Re = 1000.

Having shown that the WCSPH algorithm presented in this work can simulate fluid flow

around the bluff bodies as successfully and accurately as ISPH and FEM, for the sake

of completeness, it is prudent and valuable to show that it can also model laminar fluid

flow over bluff bodies with high Reynolds number values. Fig. 4.13 shows an snapshot

of the vortex shedding contours produced by WCSPH (up) and FEM (down) methods

for the angle of attack of 5o and the Reynolds number of 1400 (colors denote the velocity

magnitude (m/s)). As in the case of the presented square obstacle results, the WCSPH

result is also satisfactorily in agreement with FEM regarding the magnitude of velocities

as well as the position and number of vortices for the airfoil geometry.



Single Phase Flows 64

2 4 6 8 10 12
1

3

5

 

 

 y
 (

m
)

0

0.2

0.4

0.6

0.8

2 4 6 8 10 12
1

3

5

 

 

 x (m)

 y
 (

m
)

0

0.2

0.4

0.6

0.8

Figure 4.13: The comparison of vortex shedding contours produced by (up) WCSPH
and (down) FEM methods for the angle of attack of 5o at Re = 1400.

4.3.3 Conclusion

In this section, solutions for flow over an airfoil and square obstacle are presented to

demonstrate that the WCSPH and ISPH algorithms integrated concomitantly with the

MBT and APD methods as well as the corrective SPH discretization scheme can simulate

flow around complex geometries accurately and reliably. The WCSPH and ISPH results

were compared in terms of velocity and pressure contours and Strouhal number for

the former benchmark problem, and velocity contours, the pressure envelope, surface

traction forces, and velocity gradients on the airfoil boundaries as well as the lift and

drag values for the latter one. Simulation results for both SPH methods were validated

using the FEM method. Excellent agreements among the results were observed. It

was demonstrated that the improved WCSPH method is able to capture the complex

physics of bluff-body flows such as flow separation, wake formation at the trailing edge,

and vortex shedding as accurately as the ISPH method without experiencing any particle

clustering and fracture problems. It has been documented in the SPH open literature

that the WCSPH method may not estimate pressure fields reliably and is believed to

produce noisy and oscillatory pressure fields. It is further considered that if a relatively

low speed of sound value is used, the WCSPH method cannot simulate flow problems

with high Reynolds number values and leads to the occurrence of void regions in the

computational domain. It was shown that with the proper and judicious implementation

of the proposed algorithms, for all Reynolds numbers in the laminar regimes, the WCSPH

technique can provide stable simulations and accurate results without any noticeable



Single Phase Flows 65

noise in pressure values. Also, the Mach number equal to 0.1 satisfactorily enforces the

fluid incompressibility condition with the density variation less than 1%.



Chapter 5

Two Phase Flows

5.1 Introduction

In this chapter, we have modeled several challenging two phase flow problems, namely,

square bubble deformation under and without the effect of surface tension force, Laplace’s

law, and Kelvin-Helmholtz instability, and Rayleigh-Taylor instability. The outcomes of

our numerical solutions are validated against available numerical data in literature, and

excellent agreement is observed between the current SPH and literature results.

5.2 Governing equations

We consider Newtonian, viscous, incompressible, and immiscible two-phase system. The

governing equations for such a system are the conservation of mass and linear momen-

tum, which are respectively formulated in Lagrangian form as

Dρ

Dt
= −ρ∇ · ~v, (5.1)

ρ
D~v

Dt
= ∇ ·T + ρ~f b +~f v, (5.2)

where ~v is the fluid velocity vector, ρ is the fluid density, T is the total stress tensor,

~f b is the body force which is equal to gravitational force in this work , and ~f v is the

66
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volumetric surface tension force. The total stress tensor is defined as T = −pI + τ ,

where p is the absolute pressure, I is the identity tensor, and τ = µ(∇~v + (∇~v)T ) is the

viscous part of the total stress tensor, where µ is the dynamic viscosity. Finally, D
Dt is

the material time derivative operator.

5.3 Interface treatment

The mass and momentum balance equations on the discontinuity surfaces can be for-

mulated respectively as

‖ρ(~v − ~u)‖ · ~n = 0, (5.3)

and

‖ρ~v(~v − ~u)−T‖ · ~n = ∇(s)σ + κσ~n, (5.4)

or in a component form

‖ρ(vk − uk)‖nk = 0, (5.5)

and

‖ρvl(vk − uk)− Tkl‖nk = σ,kPkl + κσnl. (5.6)

The symbol ‖ ‖ indicates the jump of the enclosed quantities across the discontinuity

surface; for instance, ‖ϕ‖ = ϕ+−ϕ− where ϕ+ and ϕ− are the values of ϕ on the positive

and negative sides of the discontinuity surface, ~u is the velocity of the discontinuity

surface, ~n is the unit normal to the discontinuity surface, ∇(s) is the surface gradient

operator, σ is the surface tension, and κ is the curvature.

Assuming that the discontinuity surface is a material interface (which requires that

vk = uk), and the momentum flux is continuous across the fluid-fluid interface, and
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finally the surface tension is independent of the position on the interface, the interface

mass balance is satisfied identically, and the momentum balance on the interface reduces

to

‖p‖ · ~n =~fs = σκ~n. (5.7)

For computational simplicity and efficiency, it is preferable to express this local surface

force as an equivalent volumetric force ~fv (the force per unit volume) as is done in the

Continuum Surface Force (CSF) method originally proposed by Brackbill et al. in [13].

The basic concept behind this approach is to replace the sharp interface between two

fluids with the transition region of finite thickness (see Fig. 5.1). This can be realized

through multiplying the local surface tension force with a surface delta function as

~fv = σκδs~n, (5.8)

The volumetric surface tension force ~fv acts only on the interface in the unit normal

direction thereby reducing the total surface energy and the surface area, and vanishes

in the bulk of the fluid. The effect of interfacial surface tension is consequently included

in the computational model in the form of an external force term.

(a) (b) 
fluid A 

fluid B 

fluid A 

fluid B 

interface

transition region

~t~t

~n

Figure 5.1: Replacing the sharp interface between two fluids with the transition region
of finite thickness.

To be able to distinguish among constituents of an immiscible multiphase system, and

calculate relevant interface fields (i.e., the interface unit normal, curvature, and interfa-

cial forces), each particle is assigned to color function such that c = 0 for fluid A and

c = 1 for fluid B. To avoid sharp variations in the color function across the interface,

the color function for each particle is smoothed as
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Ci =

∑
jWijcj∑
jWij

. (5.9)

Here, it should be noted that the smoothed color function Ci effectively represents the

volume fraction of fluid B, namely, CBi = Ci and CAi = 1−Ci wherewith one can write∑
αC

α
i = 1 where Cαi is the smoothed color function of α th phase.

Since each fluid particle has constant transport properties which are discontinuous across

the interface, the numerical scheme might have instabilities especially in the case of a

large mismatch in the transport parameters of constituents. Hence, it is practical to

smooth the density and the viscosity of fluids through using a weighted arithmetic mean

interpolation. Upon using smoothed color function, the density and viscosity of the

multiphase system can be calculated from those of constituents respectively as

χi = (1− Ci)χ
A + Ciχ

B, (5.10)

where χ can be any partticle’s properties such as density (ρ), viscosity (µ), and/or

electrical permittivity (εE) or conductivity (σE).

The unit normal vector ~n for particle i can be calculated as

~n =
∇C
|∇C|

. (5.11)

Unit normals in the vicinity of fringes of the interface might be erroneous and in turn

may produce faulty results when they are used in the computation of the curvature.

Therefore, a constraint is required to determine reliable normals as also pointed out in

[104]. In this direction, the constraint in the form of |∇Ci| > ε/h is employed. Here, ε

is a constant used to control the thickness of the interface, which is set to be ε = 0.08 in

this work. Particles satisfying this condition are regarded to be interface particles with

reliable unit normals.

Further, upon using only these reliable normals, the curvature for particle i is calculated

as
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κ = −∇ · ~n. (5.12)

Finally, substituting Eqs. (5.11) and (5.12) into Eq. (5.8), one can rewrite the volumetric

surface force as,

~fv = −σ∇ · ( ∇C
|∇C|

)∇C. (5.13)

5.4 Benchmarking

5.4.1 Square-droplet deformation

To be able to show the effect of the interface thickness on the accuracy of the computed

interface curvature, a two-dimensional simulation for a square-droplet deformation under

the influence of the surface tension force is considered where the two-fluid system has

density and viscosity ratios of one, namely (ρ2/ρ1 = 1, ρ1 = 1( kg
m3 )) and (µ2/µ1 = 1,

µ1 = 1(Pa.s)), respectively. The initial square-droplet with a side length of 1m is

placed at the center of the square domain with a side length of 2(m). A 100 × 100

array of particles is distributed on a regular lattice. Upon the application of a constant

surface tension (σ = 1) on the two-fluid system interface, the initial square-droplet starts

deforming into a circular shape in order to reduce its surface energy and surface area.

This problem has been solved with two different interface thicknesses, namely, four and

two rows of interface particles from each fluid side, which is referred to as thick and thin

interface configurations, respectively. Figure 5.2 shows the initial (t = 0(s)) and the

final (t = 1(s)) shapes of the square-droplet with a thin interface.
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Figure 5.2: The initial (a) t = 0(s) and the final (b) t = 1(s) shapes of the square-
droplet problem with thin interface.

Figure 5.3 presents the variation of the interface curvature as a function of the radius

of the deformed droplet and also illustrates the form of the Dirac delta function for the

thick and thin interfaces at (t = 1(s)). The Dirac delta function is plotted along the

vertical line starting at the geometrical location of (x = 1, y = 1) and ending at (x = 1,

y = 2) in Fig. 5.2b. It should be noted that the integration of the Dirac delta function

for both cases over the associated thickness of the interface produces unity. It can be

inferred from Fig. 5.3 that the thicker the interface, the more oscillatory and inaccurate

the curvature values in the vicinity of the interface fringes. Therefore, the surface tension

force is to have more erroneous values in the vicinity of the interface fringes for the thick

interface than for the thin one due to the multiplication of the Dirac delta function with

the curvature.
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Figure 5.3: Interface curvature versus droplet radius and the form of the Dirac delta
function at the final time (t = 1(s)) for the square-droplet deformation problem; (a)

thick interface, (b) thin interface.

5.4.2 Laplace’s law

A static circular bubble is a commonly used test case for validating the accuracy of

numerically computed pressure jump across the interface in multiphase systems since

it has a simple analytical solution, (pin − pout = σ/r), widely referred to as Laplace’s

law for a stationary droplet [108, 47]. The computational domain for this test case is

a unit square with H denoting the edge length and a circular bubble with a radius of

r = 0.25(m) is placed at the center of the unit square domain (H = 1(m), see Fig. 5.4a).

It is represented by an array of 100 by 100 particles in x− and y− directions, and the

smoothing length for all particles is set equal to 1.6 times the initial particle spacing.

The simulation parameters are density, viscosity and surface tension coefficient with

the numerical values of ρ1 = ρ2 = 1000( kg
m3 ), µ1 = µ2 = 1(Pa.s) and σ = 0.25(Nm),

respectively. The utilized model parameters, namely, the radius of the bubble and the
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surface tension should lead to pressure jump of unity on the interface in accordance with

the Laplace relation pin − pout = 1(Pa). As for the boundary conditions, the pressure

on the boundaries are set equal to zero, and no-slip boundary condition is imposed for

velocity on all solid walls. The initial velocity field is zero.

As stated previously, in the numerical modeling of multiphase flows, the physically

sharp interface is approximated by a transition region of a finite thickness, and the

surface tension force is included in the momentum balance equation as a volumetric force

that is active only over this finite interface thickness through the usage of Dirac delta

function. Thus, it is numerically impossible to reproduce sharp or exact pressure jump

as in the case of analytical solution [108] since the pressure jump across the interface is

smoothed. The existence of this smoothed pressure gradient, and also the slight variation

of curvature along the perimeter of the circular bubble due to the discrete nature of the

numerical approach induce spurious or parasite currents which are observed as vortices

in the vicinity of interface despite the absence of any external force. Not only are they

inherent to the CSF method but also observed in other surface tension methods [133, 82].

Figure 5.4b presents the computed pressure field for the over all domain.

Figure 5.5 illustrates the locations of the spurious currents in the neighborhood of the

interface for two different mesh resolutions for the first time step. It is seen from the

figure that the spurious current can be alleviated through the mesh refinement. In

spite of the spurious current, it is observed that the computed pressure gradient across

the interface is equal to pin − pout = 1.004(pa) which is in a good agreement with the

analytical result. Here, the pressure inside and outside the bubble is calculated by

averaging the pressure fields of particles for fluids 2 and 1 which are far enough from the

interface. Since the parasitic current in this test case in the energy point of view is at least

two order of magnitude lower than the applied surface tension force, it does not create

any serious effect on the results; nevertheless, in some problems, force due to the spurious

effect might be comparable to other physical forces such as viscous, gravitational, and

surface tension forces, among others, thereby leading to over/underestimated erroneous

values in computational results.
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Figure 5.4: (a) Initial particle distribution for the circular droplet (fluid-2) surrounded
by the background fluid (fluid-1) (b) pressure field for the over all domain. The particle

resolution is 100× 100.

Figure 5.5: The locations of the spurious currents in the neighborhood of the interface
for the particle resolutions of (a) 50× 50 and (b) 100× 100.

To show the convergence of the numerical model, in table 6.1 are given the L1 and L2

norms of the velocity magnitude for the same time step, which are respectively defined

as L1 =
∑N

i |~v|/N and L2 =
√∑N

i |~v|2/N2. Given that the simulation starts with zero

initial velocity field, the interface velocities after the first time step are a direct measure

for the error in the pressure fields. As seen from table 6.1, as the particle resolution

increases, both L1 and L2 norms decrease, which indicates the convergence due to the

particle refinement.

5.4.3 Square droplet

The presence of velocity field on the interface of two fluids in absence of any external

forces due to the jump in the density of phases across the interface is known as artificial
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Table 5.1: The L1 and L2 norms of velocity magnitude after the first time step.

Particle resolution L1 Norm L2 Norm

25×25 8.64 e-6 1.64 e-6
50×50 4.64 e-6 6.4 e-7
100×100 3.64 e-6 2.4 e-7
200×200 2.64 e-6 1.35 e-7

surface tension [65]. This is an undesired non-physical phenomenon which is directly

related to the discretization scheme and the treatment of density discontinuity. The

artificial surface tension can introduce some error into the model thereby leading to

inaccurate calculation of curvature, and the formation of unphysical flow across the

interface. Square droplet problem is one of the simplest test cases which can be used

effectively to demonstrate if the artificial surface tension exists in the solution domain.

For this benchmark problem, the domain geometry and the boundary conditions are

identical to the previous example except that the bubble is replaced by a square droplet.

The density ratio of phases is ρ2/ρ1 = 5 where ρ1 = 1000( kg
m3 ) and the kinematic viscosity

is kept constant, which is equal to ν1 = ν2 = 10−3(m
2

s ).

Figure 5.6 shows particle positions for t = 0, and t = 1(s). Unlike the standard SPH

[148], both sub figures are identical to each other, which indicates that the particle

number density formulations used in the discretization of governing equations do not

generate any artificial surface tension in contrast to the standard SPH.
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Figure 5.6: (a) Initial particle distribution of a square drop of fluid 2 surrounded by
fluid 1 (b) the particle distribution for the same problem after 1s.
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5.5 Kelvin-Helmholtz instability

5.5.1 Introduction

Flow instability at the interface between two horizontal parallel streams of different ve-

locities and densities, with the heavier fluid at the bottom, is called the Kelvin-Helmholtz

Instability (KHI). The KHI is induced by either velocity shear within a continuous fluid

or a sufficiently large velocity difference across the interface of a multiphase fluid. The

instability kicks in when the destabilizing effect of shear across the interface overcomes

the stabilizing effect of stratification due to gravity and/or surface tension if it exists.

The KHI manifests itself as a row of horizontal eddies (in the form of waves) aligned

across the interface. These eddies or waves are referred to as main billows. There

are several well-known natural situations where the KHI can be observed such as wind

blowing over the ocean or water surface, a meteor entering the Earth’s atmosphere, the

interface between the tails of comets and solar wind, or the interface between a liquid

layer and a compressible gas, among others.

The Kelvin-Helmholtz instability problem was solved first for the ideal case of inviscid

and incompressible fluids in 1871 by Lord Kelvin. It has been studied both theoretically

[83, 98, 146, 78] and experimentally [88, 89, 163, 56], as well as numerically using sev-

eral techniques including lattice Boltzmann [172],direct simulation Monte Carlo [167],

molecular dynamics [50], volume of fluid [87], and level set method [60], as well as, some

recent works which have been conducted to investigate the feasibility and the ability of

the SPH method to capture the physics behind the KHI [76, 2, 116, 12].

Junk et al. [76] reported an SPH simulation for the KHI problem with surface tension

and viscosity included in the model, and compared their modeling results with those

obtained by a grid-based method and an analytical solution in the linear regime. In the

light of their modeling outcomes, they concluded that the SPH method is not capable

of following the evolution of the KHI in a two-phase flow system with a large density

contrast due to the smoothing property of the SPH technique.

Agertz et al. [2] examined the fundamental differences between SPH and grid-based

methods in problems with density and thermal energy discontinuities at the interface

without the inclusion of any stabilizing term (i.e., surface tension or gravity) within

the modeling domain. They concluded that unlike ordinary grid-based methods, the



Two Phase Flows 77

standard SPH formulation used in astrophysical simulations in general is unable to

predict the dynamics of KHI when density differences exist between fluid layers.

In reply to the study by Agertz, Price [116] discussed the treatment of discontinuities in

the SPH technique. In particular, Price discussed the difference between the integral and

differential representations of fluid equations in the SPH context and then elaborated on

how this difference relates to the formulation of dissipative terms to capture shocks and

other discontinuities. He proposed a new formulation referred to as artificial thermal

conductivity, which minimizes the dissipation away from discontinuities and showed that

the results are in good agreement with those obtained by ordinary grid-based methods,

reported in Agertz et al. [2]. More recently, Borve and Price [12] compared three

different SPH formulations and illustrated that these formulations can handle hydrody-

namic instabilities in compressible fluids provided that they are integrated with proper

artificial dissipation terms; namely, artificial conductivity or particle regularization.

5.5.2 Definition of the problem

The KHI can occur at the interface between two horizontal parallel streams of different

velocities and densities, with the heavier fluid at the bottom. For the simulation of this

natural flow phenomenon, two immiscible fluids that are intervened between two infinite

parallel horizontal plates with the height of H ( 0 < y < H) (Fig. 5.7) are considered.

For simplicity, the x-dimension of the computational domain L (0 < x < L) is chosen

to be equal to the domain height H (L = H).

The computational domain for the KHI problem is represented by a set of particles

created on a Cartesian grid with an equidistance particle spacing. At the beginning

of the simulations, the computational domain is halved by a horizontal midline (H1 =

H2 = H/2 and H = 1(m)), where each half represents the different fluid region. The

number of particles for each fluid region is the same. An initial sinusoidal perturbation

is applied to the fluid-fluid interface through swapping the color fields of particles in the

vicinity of the perturbation. The wavelength of the initial disturbance is set to be equal

to the domain length (λ = L) so that the instability can be confined to the mid section

of the model domain. The magnitude of the perturbation is (ζo/H ≈ 0.03) where ζo

is the initial amplitude of the applied disturbance. Let U1 and ρ1 be the velocity and

density of the basic state of the upper layer and U2 and ρ2 be those of the lower layer.
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Particles of two fluids initially at rest are set into motion in opposite directions with the

same velocity magnitude (i.e. U1 = −U2 = U = 0.5(ms )).

We have implemented periodic boundary conditions at x = 0 and x = L, and wall

boundary conditions at y = 0 and y = H. Periodic boundary conditions are enforced

using ghost particles. Each solid wall is represented by a single row of wall boundary

particles, and four rows of dummy particles to account for the kernel truncation by the

boundaries. The no-slip boundary conditions on solid boundary walls are implemented

by fixing the positions of wall boundary and dummy particles and setting their velocities

to (U1) and (U2) correspondingly throughout the simulation. Such an implementation of

wall boundary conditions is referred to as the standard fixed boundary particle approach

for which further details can be found in [90].

Figure 5.7: Configuration of Kelvin-Helmholtz instability at initial time, t = 0.

To be able to show the effect of density on the KH instability, we have conducted

simulations with three density ratios, namely, ρ2/ρ1 = 2, 5 and 10 where the density

of the upper fluid layer is set to be ρ1 = 1000( kg
m3 ). When all modeling parameters are

active, the surface tension force per unit length (σ) acts only on the interface particles

in the unit normal direction, while the gravity (g) acts in downward direction on all

particles. To show convergence, several test cases have been run where three different

particle arrays 80×80, 150×150 and 300×300 are used. It was observed that a 150×150

array of particles is sufficient for capturing the primary wave as well as obtaining particle

independent solutions.
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5.5.3 Linear stability analysis

Here, a two-phase unperturbed flow system with uniform streams slipping past each

other in opposite directions at steady state is considered. This two-fluid system can be

perturbed by applying a sinusoidal disturbance on the fluid-fluid interface in the form

of

ζ = ζoe
i(kx−ωt) (5.14)

where ζ is the local coordinate system on the interface, which is a function of the

horizontal direction x, t is the time, ω is the angular frequency of the wave, and k is the

wave number. It can be shown that when both gravitational and surface tension forces

are present, the eigenvalue condition [34] is given by

ω

k
=
ρ1U1 + ρ2U2

ρ1 + ρ2
±

√
−ρ1ρ2(U1 − U2)2

(ρ1 + ρ2)2
+
g

k

ρ2 − ρ1

ρ1 + ρ2
+

σk

ρ1 + ρ2
, (5.15)

In the absence of stabilizing forces, namely gravity and surface tension, one can see from

Eq. (5.15) that the perturbation grows unconditionally. Thus, the velocity discontinuity

is always unstable. On the other hand, both solutions are neutrally stable (i.e. corre-

spond to a real value of ω) as long as the sum of all the terms in the square root is

positive. This situation results in stable waves for the system. However, perturbation

will grow if the imaginary part of ω is non-zero, that is,

−ρ1ρ2(U1 − U2)2

(ρ1 + ρ2)2
+
g

k

ρ2 − ρ1

ρ1 + ρ2
+

σk

ρ1 + ρ2
< 0. (5.16)

With some mathematical manipulations on Eq. (5.16), one can write

Ri =
ρ1 + ρ2

kρ1ρ2(U1 − U2)2

(
g(ρ2 − ρ1) + k2σ

)
< 1 (5.17)

where Ri is the Richardson number which is defined as the ratio of potential energy to

kinetic energy. The potential energy in the Ri number constitutes surface tension and

body force effects. To be able to analyze the effect of surface tension and body force
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individually on the occurrence of instability, it is more convenient to split up the Ri

number into two parts as

Riσ =
kσ(ρ1 + ρ2)

ρ1ρ2(U1 − U2)2
(5.18)

Rig =
g(ρ2

2 − ρ2
1)

kρ1ρ2(U1 − U2)2
. (5.19)

where Riσ and Rig are the surface tension and gravity Ri numbers, respectively.

For the case of Ri < 1, the analytical non-dimensional growth rate γe in the linear

regime can be written as

γe = Im(ω) =
2π
√
ρ1ρ2

ρ1 + ρ2

√
1−Ri, (5.20)

which relates the growth rate of the interface perturbation to the Ri number.

For numerical investigation, the numerical growth rate γn is calculated in the form of

γn =
ζ̂/ζo − 1

t∗
, (5.21)

where ζ̂ is the amplitude of the disturbance at time t and t∗ is the dimensionless time

t∗ =
t |U2 − U1|

H
, (5.22)

where t is the real time and H is the domain height.

To be able to compare the analytical growth rate in Eq. (5.20) which is only valid for

the linear regime with the numerical one in Eq. (5.21), t∗ is calculated when the wave

amplitude reaches up to 10 percentage of the domain height (ζ̂/H ∼= 0.1).
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5.5.4 Discussion

Having perturbed the fluid-fluid interface at the initial time (t∗ = 0) by a small distur-

bance in accordance with Eq. (5.14), under certain input parameters (i.e., surface ten-

sion, gravity, density, etc.), the interface disturbance grows and the flow system becomes

unstable. Figure 5.8 illustrates the growth of the interface disturbance as a function of

time in the two-dimensional KHI problem for a density ratio of 2 at Ri = 0.01. For

this simulation, the stabilizing force is only the surface tension (i.e. the Ri number is

calculated from Eq. (5.18)) and the coefficient of the artificial viscosity in Eq. (3.26)

is set to be α = 0.001. As a result of the interface disturbance, the heavier fluid starts

moving in a positive vertical direction, while the lighter fluid in the opposite direction.

As a result, both fluids begin to penetrate into each other. As the time progresses,

the height of the instability gets larger, and due to the inertial effect, both fluids tend

to gain horizontal velocity opposite to their initial bulk velocities. At (t∗ ∼= 0.75) in

Fig.5.8, a small vortex appears and the flow regime is no longer linear. This process

results in the formation of the main billow. It should be noted that the linear stability

analysis performed in section 5.5.3 is valid only before this time step. At later times,

the characteristic form of the KHI becomes much more obvious. Just after the time step

(t∗ ∼= 1.25), the non-linear flow regime results in the formation of a Cat’s Eye vortex

out of the hydrodynamical motions.
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Figure 5.8: Time evolution of the interface in the two-dimensional KHI problem for
the density ratio of (ρ2/ρ1 = 2), and α = 0.001 at Ri = 0.01, which is given between
dimensionless time t∗ = 0.25 and t∗ = 4.0 with a time interval of ∆t = 0.25. The time

step increment is from left-to-right for each row.

Figure 5.9 shows the time evolution of the growing disturbance for the density ratio

ρ2/ρ1 = 2 at various Ri numbers. Similar results are also presented for ρ2/ρ1 = 5

and ρ2/ρ1 = 10 in Figs. 5.10 and 5.11 respectively. In these figures, each row shows

the status of the interface at various instances for a given Ri number. For these three

test cases, the only stabilizing force is the surface tension and the artificial viscosity

coefficient is set to be α = 0.001.
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Figure 5.9: Time evolution of the interface in the two-dimensional KHI problem
for the density ratio of ρ2/ρ1 = 2 at various Ri numbers; (a)t∗ = 0.5, (b)t∗ = 1.0,

(c)t∗ = 1.5, (d)t∗ = 2.0; (α = 0.001).
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Figure 5.10: Time evolution of the interface in the two-dimensional KHI problem
for the density ratio of ρ2/ρ1 = 5 at various Ri numbers; (a)t∗ = 0.5, (b)t∗ = 1.0,

(c)t∗ = 1.5, (d)t∗ = 2.0; (α = 0.001).
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Figure 5.11: Time evolution of the interface in the two-dimensional KHI problem
for the density ratio of ρ2/ρ1 = 10 at various Ri numbers; (a)t∗ = 0.5, (b)t∗ = 1.0,

(c)t∗ = 1.5, (d)t∗ = 2.0; (α = 0.001).

As mentioned previously, the Ri number is the only parameter that controls the stability

of the two fluid system in the KHI phenomena. Towards this end, it is important to

determine the critical value for this number, which defines the border between stable

and unstable flow regimes. The results of the simulations have shown that in the SPH

method, the critical value for the Ri number is approximately 0.8 for all density ratios,

which is slightly smaller than the one determined using the linear stability analysis. This
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difference might be attributed to the artificial viscosity utilized in the SPH method,

numerical diffusion and the methodology used to perturb the initial fluid-fluid interface.

The comparative examination of Figs. 5.9, 5.10 and 5.11 for a given Ri number reveals

that the density ratio significantly affects the shape of the main billow as well as the

growth rate. It is also important to note that with increasing density ratio, the transition

from a linear to non-linear regime is delayed to later simulation times. On the other hand,

as can be seen from these three figures individually that for a given density ratio, the

growth rate and the transition in the flow pattern from a linear to non-linear regime is a

function of the Ri number. Results presented in Figs. 5.9, 5.10 and 5.11 are summarized

as the plot of growth rate versus the Ri number in Fig. 5.12 where numerically and

analytically computed growth rates are compared. One can see from the figure that the

numerically computed growth rate decreases with increasing Ri number and/or density

ratio, which is consistent with Eq. (5.20), and simulation results are in close agreement

with those corresponding to analytical solutions.
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Figure 5.12: Growth rate (γ) of the KHI in the linear regime for various Ri numbers
and density ratios(Ri numbers are based on surface tension; α = 0.001).

Figure 5.13 shows the relation between the growth rate and stabilizing forces (the surface

tension and body forces) at various Ri numbers calculated from Egs.(5.18) and (5.19)

respectively. For both cases, the density ratio is ρ2/ρ1 = 10 and the artificial viscosity

coefficient is set to be α = 0.01. It is observed that for the same Ri number, nearly the

same growth rate exists, which implies that the KHI phenomena is mainly related to

the value of the Ri number, not to the nature of the stabilizing forces.
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Figure 5.13: Effect of stabilizing forces on the growth rate (γ) of the KHI in the
linear regime (ρ2/ρ1 = 10; α = 0.01).

It was previously stated that the artificial viscosity is one of the reasons that may cause

numerically obtained simulation results to deviate slightly from analytical ones. Figure

5.14 illustrates the effect of the artificial viscosity on the time evolution of the interface

in the two-dimensional KHI problem for one specific test case, which is chosen as a

representative for the whole data. In this specific test case, Ri = 0.01 and ρ2ρ1 = 10. As

seen from the figure, upon choosing a low artificial viscosity coefficient, the numerical

results are in better agreement with those of the linear stability analysis. One can

also notice that the growth rate decreases as the utilized artificial viscosity coefficient

increases. To have stable numerical simulations, the artificial viscosity coefficient can

not be chosen to be too small (as an example, α ≥ 0.0001 and 0.001 for ρ2/ρ1 = 2 and

for ρ2/ρ1 = 10, respectively). Therefore, it should be selected carefully in order to have

physically valid numerical results, which can predict the KHI phenomena accurately

without loosing numerical stability.
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Figure 5.14: Effect of the artificial viscosity coefficient α on the growth rate (γ) of
the KHI in the linear regime (ρ2/ρ1 = 10).

Finally, for the sake of completeness, the time evolution of the interface for the density

ratio of ρ2/ρ1 = 10 is demonstrated in Fig. 5.15. For this simulation, Ri = 0.01 (based

on the surface tension calculated from Eq. ( 5.18) and α = 0.01. It can be concluded

from Fig. 5.15 that for a large density ratio, the vortex elongates rather than rolling up.

Such a behavior was attributed to the poor particle resolution in the low density region

in the reference [16], where the density difference between two fluids was handled using

a different particle resolution (and thus equal mass) for each fluid domain.

Although in the current work, the KHI problem was set using the same particle resolution

for both fluids (thus unequal mass particles for each fluid [67]), the vortex elongation

or the so called fingering is still observed. The fingering was also reported to occur

in the modeling of the KHI with mesh-dependent methods [87, 60, 115] under certain

modeling parameters, which might not necessarily be due to only the large density ratio.

It should be noted that the flow circulation in the KHI system begins at the crest of

the wave in all the test cases reported in this work. In the simulation with the density

ratio of 2, both fluids have relatively close inertial forces, and therefore, the vortex is

not advected significantly by fluid streams. Consequently, as the simulation progresses,

the flow circulation forms the Cat’s Eye shape. On the other hand, due to the fact that

there exists a relatively large difference in the inertial forces between the upper and the

lower fluid layers for the density ratio of 10 , and the heavier fluid at the bottom of the

modeling domain has a greater inertial force than the lighter fluid at the top, the flow
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circulation is advected faster in the flow direction of the heavier fluid whereby it leaves

the flow domain through the left side and re-enters it from the right side. Accordingly,

the translational motion of the flow circulation along the interface brings about the

elongation of the crest of the wave, or the fingering phenomenon.

Figure 5.15: Time evolution of the interface in the two-dimensional KHI problem for
the density ratio of (ρ2/ρ1 = 10), and α = 0.01 at Ri = 0.01, which is given between
dimensionless time t∗ = 0.25 and t∗ = 6.0 with a time interval of ∆t = 0.25. The time

step increment is from left-to-right for each row.

As briefly mentioned in the introduction section, the standard SPH formulation fails to



Two Phase Flows 90

predict the KHI in the flow systems with large density ratios. The suppression of the

instability or non-existence of mixing between two fluid layers is described as the artificial

surface tension at the two-fluid interface [116]. The presence of the artificial surface

tension at the discontinuity can be attributed to the generation of an artificial force

owing to the inaccurate computation of the density gradient. Recall that in the present

work, the particle number density is used in the discretization of governing equations

unlike the standard SPH formulation which uses a real fluid density. Therefore, one

can conclude that a fluid particle will not experience any artificial force when pressure

equilibrium is assumed and the artificial viscosity and all the external forces are ignored.

5.5.5 Conclusions

In this section the KHI phenomenon in inviscid incompressible two-phase fluids under

the effects of surface tension and body forces was studid. Numerical simulations were

performed for numerous Ri numbers, density ratios and artificial viscosity coefficients. It

was shown that under the influence of certain input parameters (i.e., body force, surface

tension, and density ratios), flow instability develops in a two-phase fluid system with

an initial disturbed fluid-fluid interface. The instability grows in time and subsequently,

the flow system experiences a transition from a linear to non-linear regime. Simulation

results are observed to be in good agreement with those corresponding to analytical

solutions in the linear regime in terms of growth rate. Referring to the linear stability

analysis, a two-phase fluid system with the Ri number less than unity (Ri < 1) should

experience instability. However, it is observed that the flow instability in the SPH

method occurs at Ri number values less than roughly 0.8. The noted discrepancies

between numerical and analytical results might be attributed to numerical diffusions, to

the inclusion of artificial viscosity in the model and to the form of the initial interface

disturbance. It was observed that the growth rate is higher for lower density ratio and Ri

numbers, and reaches to free shear flow limit at Ri numbers near zero. Numerical results

suggest that the growth rate of the instability is only controlled by the Ri number, and

is independent of the nature of stabilizing forces. It is also shown that the artificial

viscosity plays a significant role in all simulations. Therefore, it should be chosen such

that it preserves the stability of the numerical method and captures all the complex

physics behind this phenomenon. As a final remark, it should be noted that unlike the

standard SPH formulation, the SPH discretization scheme based on the particle number
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density formulation does not lead to the creation of so-called artificial surface tension

force across the fluid-fluid interface that can suppress the KHI.

5.6 Rayleigh-Taylor instability

5.6.1 Introduction

Instability developing and evolving at the interface between two horizontal parallel fluids

of different viscosities and densities with the heavier fluid at the top and the lighter at

the bottom is known as the Rayleigh-Taylor Instability (RTI) to honor the pioneering

works of Lord Rayleigh [124] and G. I. Taylor [150]. The instability initiates when

a multiphase fluid system with different densities experiences gravitational force. As

a result, an unstable disturbance tends to grow in the direction of gravitational field

thereby releasing and reducing the potential energy of the system.

Due to being an important phenomenon in many fields of engineering and sciences, the

RTI have been widely investigated by using experimental [162, 5], analytical [112, 97] as

well as numerical [169, 118] approaches. In the literature, one may find many qualitative

numerical study for this two phase flow problem [9, 13, 117, 133, 158, 159, 32, 108].

Surprisingly, out of the works which have been published up to now, there are only a

few studies, especially for the long time evolution of the RTI, where the authors compare

their numerical results with available analytical theories and if it is so, mesh dependent

techniques were used [13, 108]. To our best knowledge there is no work in which the

RTI problem is validated against analytical data using meshless methods.

5.6.2 Definition of the problem

The RTI can occur in a multiphase fluid system where a layer of heavier fluid is placed on

top of another layer of lighter fluid with an interface having a small initial perturbation.

This disturbance will grow to produce spikes of heavier fluid moving downward into

the lighter fluid, and bubbles of the lighter fluid moving upward. For modeling the

RTI phenomena, a rectangular computational domain (Fig. 5.16) with the width and

height of H and 4H is used. For simplicity, H is chosen to be unity (H = 1(m)). The

number of particles for each fluid region is the same. An initial sinusoidal perturbation,
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y = 2+ξo cos(kx), is applied to the fluid-fluid interface through swapping the color fields

of particles in the vicinity of the perturbation where ξo is the amplitude of the applied

disturbance, which is ξo/H = 0.05, k is the wave number k = 2/πλ, and λ is the wave

length which is set to be λ = 1(m).

In all simulations, the density of the heavier fluid layer is set to be ρ2 = 1000( kg
m3 )

and kinematic viscosity for both fluids are kept constant, which is equal to ν1 = ν2 =

10−3(m
2

s ). When all modeling parameters are active, the surface tension force per unit

length (σ) acts only on the interface particles in the unit normal direction, while the

gravity (g) acts in downward direction on all particles. The boundaries are treated as

solid walls, and the no-slip and zero pressure gradient boundary conditions are imposed

using MBT method [168].
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Figure 5.16: (a) Initial particle distribution for Rayleigh-Taylor instability (b) The
zoom view of initial particle distribution for half ofthe interface. The particle resolution

is 80× 320.
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5.6.3 Linear stability analysis

The linear stability analysis starts with considering a fluid system composed of two

immiscible fluids possessing different densities with the configuration where the heavier

fluid sits on top of the lighter one. At equilibrium, the fluid-fluid interface is located

at y = 0 and is assumed to be perfectly planer as illustrated in Fig. 5.17a. Therefore,

fluid particles of both phases in close proximity to the interface feel the same pressure,

namely, p1 = p2 = 0. The equilibrium state of the fluid-fluid interface can be perturbed

through the application of a sinusoidal disturbance ζ(x) whereby the interface position

moves quasistatically to a new location, y = ζ(x). This disturbance will grow under

the effect of gravitational force since the heavier fluid moves downward while dislocating

the lighter fluid upwards. The growth of the initial disturbance leads to the release of

potential energy. Upon employing the Newton’s second law of motion, the equation

governing the movement of the interface can be written

mζ̈ = f t, (5.23)

where ζ̈ is the acceleration of the local coordinate system on the interface, f t is the total

force (sum of all forces) acting upon interface and m is the total fluid mass that moves

due to the motion of the interface. The total mass is introduced as

m = m1 +m2 =
(ρ1 + ρ2)a

k
. (5.24)

Here, a is the interfacial area, k is the wave number and m1 and m2, and ρ1 and ρ2 are

the masses and the densities of the lighter and heavier fluids respectively.

The total force f t acting on the interface consists of pressure force fp, surface tension

force fs, and viscous force fµ, namely, f t = fp+fs+fµ. Given that the static pressure

in an incompressible fluid linearly changes with the fluid depth, the fluid elements at

ζ > 0 should feel more pressure than those at ζ < 0. Also, knowing that the pressure

is proportional to the fluid density, for the fluid region where ζ > 0, the fluid pressure

infinitesimally above the interface ṕ2 increases more than that below the interface ṕ1.

In what follows, pressure on both sides of the interface can be written as ṕ2 = po + ρ2gζ

and ṕ1 = po + ρ1gζ as also shown in Fig. 5.17b, where po is the initial or equilibrium
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Figure 5.17: The schematic of two layer of fluid where the heavy fluid’2’ is initially
above the light fluid’1’ (a) before initial disturbanc, and (b) after initial disturbance.

pressure and g is the gravity. Subsequently, the pressure force across the interface can

be formulated as

fp = ∆pa = (ρ2 − ρ1)gζa. (5.25)

where ∆p = ṕ2 − ṕ1.

Furthermore, the surface tension force between two fluids is given by

fs = σκa, (5.26)

where κ = 1/Ro is the curvature of the interface with Ro being the radius of the curva-

ture, which is defined as

Ro =
[a+ (dζ/dx)2]3/2

d2ζ/dx2
. (5.27)

If it is assumed that the slope of the curve y = ζ(x) is rather small compared with unity,

one can write that Ro = 1
d2ζ/dx2

.

With the initial sinusoidal disturbance and the fact that in linear regime kζ � 1, the

curvature radius is simplifying to Ro ≈ − 1
k2ζ

and the surface tension force become

fs = −σak2ζ. (5.28)
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Finally, the viscous force across the interface is of the following form,

fµk = −Tklnla, (5.29)

where Tkl is the deviatoric part of the stress tensor, and written in the component form

as Tkl = µ(vk,l + vl,k), nk is the k − th component of the unit normal vector ~n. The

vertical component of viscous force per unit area reads as

fµy = −(Tyyny + Tyxnx)a. (5.30)

Since in the linear regime |ny| ≈ 1 and nx v kζ � 1, the second term Eq. (5.30) is

negligible and, hence fµy ≈ −Tyynya. The total viscous force on the interface is then

fµ = (fµ1y + fµ2y )a = 2

(
µ1
∂v1

∂y
− µ2

∂v2

∂y

)
a. (5.31)

where it should be noted that ~n1 = ~n2, and the subscripts 1 and 2 denote the lighter

and heavier fluids respectively. Now if a perturb velocity is introduced as

v1 ∝ eikx−ky, v2 ∝ eikx+ky. (5.32)

Upon combining Eqs. (5.31) and (5.32), and noting that the velocity is continuous on

the interface, namely, v1|y=0 = v2|y=0 = ζ̇, one can write the total viscous force in the

form of

fµ ≈ −2(µ1 + µ2)kζ̇a. (5.33)

Casting Eqs. (5.25), (5.28), and (5.23) into Eq. (5.23) together with some simple

mathematical manipulations, the equation governing the motion of the interface can be

introduced as

ζ̈ = ATkgζ −
µ1 + µ2

ρ2
(1 +AT )k2ζ̇ − σk3 1 +AT

2ρ2
= 0, (5.34)
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where AT = (ρ2 − ρ1)/(ρ2 + ρ1) is dimensionless Atwood number. If the interface

disturbance is assumed to be of the form, ζ ∝ exp(ikx+ γt), the most general form for

the asymptotic growth rate γ of the interface due to all active forces is then [97]

γ2 − µ1 + µ2

ρ2
(1 +AT )k2γ − [ATkg − σk3 1 +AT

2ρ2
] = 0. (5.35)

It should be noted that Eq. (5.35) is not an exact, but an accurate analytical approx-

imation (less than 11%) for the asymptotic growth rate of viscous flow in the linear

regime. On neglecting the viscous effects in Eq. (5.35), one can obtain the well-known

known exact analytical solution for inviscid fluid with the effect of surface tension [17]

γ2 = kg[AT −
k2σ

g(ρ1 + ρ2)
]. (5.36)

Upon setting γ2 = 0 in Eq. (5.36), one can calculate the maximum or critical surface

tension (σc = (ρ2−ρ1)g
k2

) below which the given perturbation is unstable, namely, σ < σc

where σc is the critical surface tension and shows the border of instability. In what

follows, one can introduce an stability parameter as

φ =
σ

σc
. (5.37)

where φ > 1 means that the two-fluid system should be stable.

5.6.4 Discussion

Figure 5.18 compares analytical and numerical growth rates in the linear regime which

are plotted as a function of stability parameter where (γx1, γx2), γe and (γn) denote

respectively the roots of growth rate for viscous flow, growth rate for inviscid flow, and

numerical growth rate which are correspondingly calculated from Eq. (5.35), Eq. (5.36)

and

γn =
ξ̂/ξo − 1

t∗
. (5.38)
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Figure 5.18: The dependence of the linear growth rate γ, of a disturbance on its
stability parameter, φ, for the Atwood number of AT = 1/3. The dashed-dotted and
dashed lines show two roots for the analytical approximation (γx1, γx2), the dotted line
is exact theoretical result (γe), and the solid line with the symbol inside is for numerical

simulation (γn).

Here t∗ is the dimensionless simulation time at which the perturbation amplitude ξ̂ is

approximately equal to ξ̂/H ≈ 0.1. There is a good agreement between analytical and

numerical results except for some higher values of the stability parameter. However, all

results follow the same pattern.

Figure 5.19 presents the results of numerical simulations with the density ratio of ρ2/ρ1 =

2 which corresponds to AT = 1/3 for various stability parameters, namely, φ = 0.0, 0.2,

0.6, 0.9, and 1.1. In all cases, results are plotted for dimensionless time t∗ = t(g/H)0.5 =

9.0. Simulation results show an exponential growth for φ < 1.15 and a stable oscillation

for φ > 1.15.

The close observation of Fig. 5.19 suggests that the morphology of the instability for

the unstable regime can be divided into three visible categories. The first category is

associated with small stability parameter values due to rather small surface tension. In

this category, the gravitational force dominates over the surface tension force, hence

causing the spike to accelerate into the lighter fluid. As a result, one can notice the

formation of secondary vortices, so called Kelvin-Helmholtz instability, on the bubble-

spike interface owing to the interfacial shear (see Figs. 5.19a and 5.19b). The second

category is observed when the gravitational and interfacial forces are comparable. In

this case, although the spike has its side tails, the shear due to the acceleration is not
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Figure 5.19: The stability parameter dependency of the fluid interface of the single
mode perturbation Rayleigh-Taylor instability for the Atwood number of AT = 1/3
at dimensionless time of t∗ = t(g/H)0.5 = 9. The left hand side of each sub figures
presents particle distributions whereas the right hand side indicates the contour plots
of the color function for the stability parameter values of (a) φ = 0.0, (b) φ = 0.2,(c)

φ = 0.6, (d) φ = 0.9, and (e) φ = 1.1.

so strong to lead to the creation of secondary instabilities (see Fig. 5.19c). In the last

category corresponding to higher values of stability parameter, where the surface tension

force is dominant, the instability is hindered (see Figs. 5.19d and 5.19e). It is noted that

although according to Eq. (5.37), the border of instability is marked by the instability

parameter of unity φ = 1.0, here we have found this value is equal to φ ≈ 1.15 which

deviates by 15% from the analytical calculation. Several reasons might contribute to

this discrepancy.

The first reason might be initial particle distribution. Recalling that the computational

domain is initially represented by a Cartesian grid with a equidistant particle spacing,

and then the sinusoidal perturbation is formed through swapping the color fields of par-

ticles in the vicinity of the planar interface, it is rather difficult to obtain highly smooth

and continuous initial sinusoidal disturbance due to the discreteness in the particle dis-

tribution, as seen in Fig. 5.16b. This may result in several smaller wave-like structures

on the main wave length. In the course of simulations, especially for initial times in the

linear regime, these wave-like structures may act as additional disturbances which tend

to grow, hence causing over prediction of the growth rate and the stability parameter.

Another reason might be spurious currents due to the usage of CSF model for the surface

tension. As elaborated in section 5.4.2, the spurious current brings about unphysical
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Figure 5.20: Time evolution of the fluid interface of the single mode perturbation
Rayleigh-Taylor instability for the Atwood number of AT = 1/3 and the stability
parameter of φ = 0.0. The left panels of each sub figures show particle distributions
while the right panels illustrate contour plots of the color function for dimensionless

times of (a) t∗ = 1.8, (b) t∗ = 2.6,(c) t∗ = 5.4, (d) t∗ = 7.2, and (e) t∗ = 9.0.

velocity field in the vicinity of the interface, which causes extra kinetic energy therein,

thereby shifting the RTI problem toward instable region. Finally, the numerical diffusion

owing to the smoothing nature of the SPH method for variables such as density, viscos-

ity, pressure, among others, especially in the neighborhood of the interface might also

contribute to the deviation in the stability parameter since it consumes the stabilizing

surface energy due to the surface tension.

Time evolution of the fluid interface of the single mode perturbation Rayleigh-Taylor

instability for the stability parameter of φ = 0.0 and φ = 0.4 are shown in Figs. 5.20 and

5.21, respectively. Here, results are presented for five equidistant dimensionless times

with 0 ≤ t∗ = t(g/H)0.5 ≤ 9.0.

Upon disturbing the initial planar interface sinusoidally, the hydrostatic pressure acts

to drive the heavier fluid into the lighter one with the disturbance amplitude initially

growing exponentially. Shortly afterward, a ”mushroom cap” shape begins forming. As

the time progresses, the heavy fluid falling down gradually forms a central spike with two

side tails which shed side spikes form their ends for the lower stability parameter case.

Eventually, for the first case where φ = 0.0, the main spike of the heavy fluid experiences

the Kelvin-Helmholtz instability while two side spikes are stretched and folded into very

complicated shapes. On the other hand for the second case (φ = 0.4), the interface along
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Figure 5.21: Time evolution of the fluid interface of the single mode perturbation
Rayleigh-Taylor instability for the Atwood number of AT = 1/3 and the instability
parameter of φ = 0.4. On the left panels are given particle distributions while on the
right panels are presented contours of the color function for dimensionless times of (a)

t∗ = 1.8, (b) t∗ = 2.6, (c) t∗ = 5.4, (d) t∗ = 7.2, and (e) t∗ = 9.0.

the central spike, as well as the fronts of both bubble and the spike remain relatively

smooth.

The features of Rayleigh-Taylor instability during the time evolution can be better il-

lustrated via the velocity fields. For this reason the velocity vectors and magnitudes for

the same set of data are presented in Figs. 5.22 and 5.23. As expected, the heavier fluid

falls down in the middle and the lighter fluid rises along vertical walls. A distorted single

vortex is clearly visible at the initial time for both cases. For the lower stability param-

eter case (see Fig. 5.22) a strong shear layer exists, which provides a good condition for

the formation of secondary instabilities. In this situation, with an increase in time, more

and more vortices are generated and the flow field becomes quite distorted along both

side of the domain. However, an increase in the stability parameter (or an increase in

the surface tension) significantly suppresses the development of both Kelvin-Helmholtz

instability and the tails roll-up and the interface along the instability remains rather

smooth (see Fig. 5.23). In this case, up to late time, the dilute single vortex still exists

and elongates along the domain height. The interfacial patterns obtained in this work

compare very well with those in [158, 54].

In Figs. 5.24 and 5.25, the positions and velocities of the bubble’s fronts and spike’s

tips, hb, vb and hs, and vs respectively, are plotted as a function of time for the test
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Figure 5.22: Time evolution of velocity fields of the Rayleigh-Taylor instability for
the Atwood number of AT = 1/3 and the stability parameter of φ = 0.0. The left hand
sides of sub figures denote velocity vectors while the right hand sides show velocity
contours (m/s) (the interval between contours is 0.02) for the dimensionless time of (a)

t∗ = 1.8, (b) t∗ = 2.6, (c) t∗ = 5.4, (d) t∗ = 7.2, and (e) t∗ = 9.0

Figure 5.23: Time evolution of velocity fields of the Rayleigh-Taylor instability for
the Atwood number of AT = 1/3 and the stability parameter of φ = 0.4. The left hand
sides of sub figures denote velocity vectors while the right hand sides show velocity
contours (m/s) (the interval between contours is 0.02) for the dimensionless time of (a)

t∗ = 1.8, (b) t∗ = 2.6, (c) t∗ = 5.4, (d) t∗ = 7.2, and (e) t∗ = 9.0



Two Phase Flows 102

0 1 2 3 4 5 6 7 8 9
1.5

2.5

3.5

 h
b

 t(g/H)0.5

 

 

(a)

 φ=0.0
 φ=0.2
 φ=0.6
 φ=0.9
 φ=1.1

0 1 2 3 4 5 6 7 8 9

0

0.05

0.1

0.15

 v
b

 t(g/H)0.5

 

 

(b)

 φ=0.0
 φ=0.2
 φ=0.6
 φ=0.9
 φ=1.1

Figure 5.24: (a) The y-coordinate positions and (b) the velocities of the tip of the
rising fluid (bubble) versus dimensionless time at the Atwood number of AT = 1/3 for

various stability parameters, namely, φ = 0.0, 0.2, 0.6, 0.9, and 1.1.

case presented in Fig. 5.19. As expected, the lower the stability parameter, the higher

the bubble front (Fig. 5.24a) and the faster the bubble velocity (Fig. 5.24b). The

bubble velocity is one of the important characteristic behaviors of RT instability which

attracted the attention of researchers [119, 52, 1]. The single bubble is found to rise

with the steady velocity of [134]

vb = Fr

√
ρ2 − ρ1

ρ2

gDb

2
, (5.39)

where Fr is the Froude number (a dimensionless number which is defined as the ratio

of inertial to gravitational forces and is used to quantify resistance of an object moving

through a fluid), and Db is the bubble diameter. If Db is taken to be approximately

equal to λ and with some simple mathematical manipulation, the following relationship

for Fr can be obtained:

Fr =
vb√
AT

1+AT
gλ
. (5.40)

It is noted that Eqs. (5.39) and (5.40) does not take into account the dilution of bubbles

due to the entrainment of heavier fluid and any physical and numerical diffusions.
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Figure 5.25: (a) The y-coordinate positions and (b) the velocities of the tip of the
falling fluid (spike) versus dimensionless time at the Atwood number of AT = 1/3 for

various stability parameters, namely, φ = 0.0, 0.2, 0.6, 0.9, and 1.1.
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Figure 5.26: The Froude number of the rising fluid (bubble) versus dimensionless
bubble tip position at the Atwood number of AT = 1/3. The solid and the dashed lines
are the analytical solutions proposed by Goncharov [52] and Abarzi [1] respectively, and
the square and circle points represent the simulation results for the values corresponding
to stability parameters φ = 0.0, and φ = 0.2 respectively. The dimensionless bubble tip

position is calculated as h∗b = hb/λ.

Calculating the magnitude of bubble velocity from numerical results, one can obtain the

Fr number for the bubble motion as presented in Fig. 5.26. Evidentially, it is shown

that two well known analytical solutions proposed by Goncharov [52] and Abarzi [1] form

the lower and the upper bounds for the simulation results. Additionally, the presented

velocity and Fr number patterns are consistent with those reported in literature [120,

165].
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Figure 5.27: Particle convergence for a test case with the Atwood number of AT = 1/3
and the instability parameter of φ = 0.4 on three different sets of particles (i.e., 60×240
(coarse), 80 × 320 (intermediate), and 120 × 480 (fine)); (a) the interface position at
dimensionless time of t∗ = 4.5, and (b) the y−coordinates of the tip of the falling (spike)

and rising (bubble) fluid versus dimensionless time

For the sake of completeness, the sensitivity of the numerical solutions to particle num-

bers has been investigated through solving a test case with the Atwood number of

AT = 1/3 and the stability parameter of φ = 0.4 on three different sets of particles

(i.e., 60× 240 (coarse), 80× 320 (intermediate), and 120× 480 (fine)). Results of these

simulations are summarized as; the interface position at dimensionless time of t∗ = 4.5

in Fig. 5.27a, and the y−coordinates of the tip of the falling (spike) and rising (bubble)

fluid as function of dimensionless time in Fig. 5.27b.

Figure 5.27a demonstrates evidently that the intermediate particle number provides so-

lutions with sufficient accuracy considering the trade-off between computational costs

and capturing the features being studied. Additionally, Fig. 5.27b indicates that the

bubble position is well reproduced by using coarse particle number, but the spike ap-

pears to need at least the intermediate particle resolution in order to achieve conver-

gence. Therefore, in this work, all RTI results are obtained using intermediate particle

resolution.

Like many other works on the numerical simulation of RTI in literature, the previously

presented results have been obtained utilizing initially uniform Cartesian particle dis-

tribution (referred to as cubic grid hereafter). For the sake of completeness, to be able

assess possible difficulties caused by irregular distributions of particles, numerical exper-

iments with initially non-uniform particles have also been conducted; namely, staggered

Cartesian grid and two different forms of circular grid (radially centered, and radially

off-centered) with nearly equal particle spacing as illustrated in Figs. 5.28b, 5.28c, and

5.28d, respectively. Particles for circular grids are generated following the procedure
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described. Initially, particle spacing is determined in accordance with the dimensions

of domain boundaries and the number of particles in the x− and y−direction of the

Cartesian grid. Then, the largest boundary length is chosen as a radius for the greatest

circle. This radius is divided into particles with the same particle spacing as the bound-

ary particles. Accordingly, the position of each particle on the radius of the largest

circle (i.e., 4H for the current computational domain configuration) is used as the ra-

dius for other smaller circles. The number of particles to be generated on each circle is

determined in a way that the particle spacing is equal. Once particles are generated in

circular manner on all circles, the rectangular computational domain is extracted from

the domain represented by particles with circular arrangement. Simulation parameters

for numerical experiments conducted on these irregular particle distributions are identi-

cal to one presented in Fig. 5.20c. The number of particles for cubic grid, staggered grid,

radially centered and off-centered grids is 25600, 25600, 25974, and 25989, respectively.

It is noted that the non-uniform particle distribution makes it impossible to construct

a symmetric disturbance with respect to vertical central line. Due to the discreteness

of the particles, the initial amplitudes of the disturbances for circular grids are slightly

different from cubic and staggered grids, and circular grids have larger y-coordinate po-

sitions for the tip of the spike than cubic and staggered grids with respect to bottom

horizontal wall of the domain. As can be seen from Figs. 5.28e - 5.28h, these issues

leads to the development of asymmetry in the spike of the instability, and inconsisten-

cies among simulation results in terms the position of the tip of the spike as well as

the straightness of the stem of the spike since the initial cosine shape disturbance is

no longer a perfect cosine function and also there are also several wavelike disturbances

on the main wave which change the form of the initial disturbance. To conclude, even

though as the simulation progress, all fluid particles acquire random distribution, it

appears that the initial particle distribution is quite important to be able construct a

symmetric and a smoothly varying disturbance.

5.6.5 Conclusions

The developed SPH scheme have been used for the simulation of incompressible mul-

tiphase flow where the interfacial dynamics are modeled by CSF model. Numerical

simulations reveal most features of Rayleigh-Taylor instability observed in previous the-

oretical and numerical studies. For the single-mode Rayleigh-Taylor instability, both
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Figure 5.28: The different initial particle distributions namely, (a) cubic, (b) stag-
gered, (c) radially-centered, and (d) radially-off-centered, and in sub figures (e), (f), (g)
and (e) are given the evolutions of the fluid interface of the single mode RTI for the
Atwood number of AT = 1/3 at dimensionless time of t∗ = t(g/H)0.5 = 5.4 calculated
correspondingly on the grids in sub figures (a), (b), (c) and (d).It is noted that sub
figure (e) has the lowest initial disturbance amplitude (0.044) and highest tip position
with respect to the bottom wall of the domain which might explain the lag in the

presented position of the tip of the spike.
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the initial linear growth rate and the terminal bubble velocity as well as its Froude

number agree well quantitatively with the theoretical prediction and previous numerical

simulations. Furthermore, for the stability parameter analysis, some deviations from

analytical results were noted, which were discussed and reasoned in details.



Chapter 6

ElectroHydrodynamics

6.1 Introduction

The motion of droplet within a bulk fluid medium takes place in numerous natural and

engineering processes such as blood-flow, air entrainment at ocean surfaces, cloud cav-

itation, boiling heat transfer, petroleum refining, spraying of liquid fuel and paint, and

bubble reactors in the chemical industry [36, 164, 166]. This motion in a viscous liquid

is a dynamically complicated, nonlinear, and non-stationary hydrodynamical process,

and is usually associated with a significant deformation in the droplet geometry due

to the complex interactions among fluid convection, viscosity, gravitational and interfa-

cial forces. Deforming droplet can acquire complex shapes, thereby resulting in a large

variety of flow patterns around droplets [36, 157, 81, 70].

In multiphase systems of different electrical permittivities and conductivities, the uti-

lization of electric fields provides a promising way to control the motion and deformation

of droplets which can be crucial for a variety of engineering applications such as elec-

trospray ionization, electro-coalescence and mixing, electrostatic printing and electro-

spinning [164, 166, 69]. To state more explicitly, if a droplet suspended in a quiescent

viscous liquid is exposed to an externally applied electric field, in addition to the gravita-

tional force induced deformation and motion if exist, it will also be deformed depending

on the strength of the applied electric field and the fluid properties such as viscosity,

surface tension, electrical conductivity, and permittivity [69, 155, 55].

108
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Although a number of experimental, theoretical, and numerical studies have addressed

the buoyancy-driven motion of a droplet through a quiescent fluid [70, 15, 130, 42],

there are only a few works that consider the effect of the applied electric field on the

dynamics of bubble deformation [81, 69, 155], and a complete understanding of the

underlying mechanisms has not yet been achieved, which necessitates further studies in

this field. Additionally, not only the problem in question but also the large majority

of other multiphase flow problems have generally been modeled using mesh dependent

techniques [81, 70, 155, 41] and the validity and accuracy of mesh free methods for

modeling droplet deformation under the influence of electric field need to be further

investigated.

6.2 Mathematical Formulation

6.2.1 Mechanical balance laws of continua

All constituents of the multiphase system are considered to be viscous, Newtonian and

incompressible liquids with constant material properties DΓ/Dt = 0 where D/Dt is the

material time derivative operator, and the arbitrary field Γ may represent the density,

and viscosity, among others. The set of equations governing the electrohydrodynam-

ics of viscous fluids is composed of Maxwell’s equations, and the conservation of mass

and linear momentum which are written in their local form for the volume and the

discontinuity surface, respectively as

Dρ

Dt
= −ρ∇ · ~v, (6.1)

ρ
D~v

Dt
= ∇ ·T + ρ~f b +~f v +~f E , (6.2)

‖ρ(~v − ~u)‖ · ~n = 0, (6.3)

‖ρ~v(~v − ~u)−T−TE‖ · ~n =~f s, (6.4)
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where Eq. (6.1) and (6.2) are valid in V − ξ which denotes the volume excluding points

lying on the discontinuity surface ξ while Eqs. (6.3) and (6.4) are valid only on the

discontinuity surface and represent the jump condition across ξ. Here, ρ is the density,

~v the divergence-free velocity vector, T is the symmetric total stress tensor, ~f b is the

body force, and~f E is the Lorentz force per unit volume, which can be shown to be equal

to the divergence of the so-called Maxwell stress tensor TE as ~f E = ∇ · TE [37]. As

can be noted, the electrostatics and hydrodynamics are coupled together through the

Maxwell stress tensor. Furthermore, the symbol ‖ ‖ indicates the jump of the enclosed

quantities across the discontinuity surface ξ; for instance, ‖Γ‖ = Γ+−Γ− where Γ+ and

Γ− are the values of Γ on the positive and negative sides of the discontinuity surface, ~u

is the velocity of the discontinuity surface, and ~n is the unit normal to the discontinuity

surface, and finally,~f s is the surface force per unit area on the interface due to the surface

tension. For a Newtonian fluid, the total stress tensor can be defined as T = −pI + τ

where p is the absolute pressure, I is the identity tensor, and τ = µ(∇~v + (∇~v)T ) is the

viscous part of the total stress tensor, where µ is the dynamic viscosity, and T denotes

transpose operation.

6.2.2 Electrohydrodynamics Balance Laws

Electrohydrodynamics (EHD) is a science concerned with the interactions of electric

fields and electric charges in fluids. The electrical conductivity of fluids may range

from exceedingly low value to high value hence allowing for a fluid to be classified as

extremely good insulator (dielectrics) or highly conducting. In electrohydrodynamics

transport phenomena, due to the transient nature of the problems, the electric current

distribution is not steady. Therefore, in accordance with the Ampere-Maxwell’s law,

∇× ~B = µM~J + µMε
E ∂

~E

∂t
, (6.5)

dynamic currents in the system give rise to a time-varying induced magnetic field. Here,

~B and ~E respectively are magnetic and electric field vectors, µM is the magnetic perme-

ability, and ~J is total volume current. In electrohydrodynamics, the dynamic currents
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are so small that the influence of magnetic induction is negligible whereby the elec-

tromagnetic part of the system can be described by a quasi-static electric field model.

Additionally, in the system considered, there is no externally applied time-varying mag-

netic field. In light of these assumptions, the coupling between the electric and magnetic

field quantities in the Faraday’s law ∇ × ~E = −∂~B/∂t disappears which requires that

the electric field vector be irrotational as [132]

∇× ~E = 0, (6.6)

which necessitates that the gradient of the electric field vector be a symmetric tensor,

namely, ∇~E = (∇~E)T . The total volume current is defined as

~J = qv~v +~j, (6.7)

where the first term on the right hand side is the convection current due to the free

charges, qv is the volume-charge density of free charges, and ~j is the volume conduction

current density, ohmic current, which is related to electric field vector through

~j = σE~E, (6.8)

where σE is the electrical conductivity.

The Gauss’ law for electricity in a dielectric material with the absolute permitivity

(hereafter referred to as the permitivity) εE can be written in terms of the electric

displacement vector, ~D = εE~E as

∇· ~D = qv. (6.9)

On taking the divergence of the differential form of Ampere’s law, and using the entity

∇ ·∇× ~B = 0 (the divergence of the curl is equal to zero) together with the Gauss’ law

(Eq. (6.9)) for electricity, one can write the charge conservation as
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Dqv

Dt
+∇ ·~j = 0. (6.10)

Considering a homogeneous fluid with the constant permittivity and the electrical con-

ductivity, and then substituting the Gauss’ law for electricity in a dielectric material

(Eq. (6.9)) together with the volume conduction current density (Eq. (6.8)) into the

charge conservation equation (Eq. (6.10)), one can write

q̇v = −qv σ
E

εE
. (6.11)

The integration of this differential equation produces

qv = qvo exp

(
−t
tE

)
, (6.12)

which describes the time relaxation of the net free charges along fluid particles line.

Hence, homogeneous fluids support no net free charges. However, in inhomogeneous

materials, free charges can be generated by an electric field component along the gradi-

ents of electrical conductivity and/or permittivity. Here, tE = εE/σE is referred to as

the bulk relaxation time. For electrohydrodynamics problems, the time t can be consid-

ered as the viscous time scale of the fluid motion, which is defined as tµ = ρL2/µ, where

L is the characteristic length scale. A two-fluid system can be classified as dielectric-

dielectric, dielectric-conducting, or conducting-conducting by comparing the magnitude

of tE with tµ where the last case is the focus of this work.

As in the case of mechanical balance laws, in the surface-coupled model for a sharp

interface, the electrical material properties are also piecewise constant on either side

of the interface. However, jump conditions are also needed for Maxwell’s equations to

relate interfacial and bulk properties. The jump conditions corresponding to Eqs. (6.6),

(6.9) and (6.10) are written respectively as [37, 132]

~n× ‖~E‖ = 0, (6.13)
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~n · ‖~D‖ = qs, (6.14)

δqs

δt
+ ~n · ‖~J− qv~v‖+∇s · ~K = 0, (6.15)

where qs is a surface density of free charge (charge per unit surface area), δ/δt is the total

time derivative in following the motion of the discontinuity surface ξ along its normal,

and defined as δ/δt = ∂/∂t+(~v·~n)(~n·∇) wherein the velocity of the discontinuity surface

~u is replaced by ~v based on the assumption that the discontinuity surface is a material

interface (~v = ~u). Here, ~K is the total surface current defined as ~K = ~k + qs~u where

~k and qs~u are the surface conduction and convection currents, respectively. Eq. (6.13)

states that the tangential component of the electric field vector is continuous across the

discontinuity surface while Eq. (6.14) reveals that the normal component of the electric

displacement vector is discontinuous at the interface. (Eq. (6.15)) is the conservation of

charge on the discontinuity surface.

As stated previously, the electrostatics and hydrodynamics of a fluid system can be

coupled together in the momentum balance equation through the Maxwell stress tensor

which accounts for the stress induced in an incompressible liquid medium due to the

presence of an electric field. The Maxwell stress tensor can be written as [96, 132]

TE = ~D~E− 0.5(~D· ~E)I, (6.16)

where in Eq. (6.16), the contribution from the induced magnetic field was neglected.

Upon taking the divergence of the Maxwell stress tensor and then using Eq. (6.9) and

the symmetry of the gradient of the electric field vector as well as the product rule of

differentiation, one can obtain the electric force ~fE per unit volume as [96, 132]

~fE = qv~E− 0.5~E· ~E∇εE , (6.17)

Here, the first term on the right hand side of Eq. (6.17) is the electric force acting

along the direction of the electric field due to the interaction of the free charges with the
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electric field while the second term accounts for the polarization force due to the pairs of

charges, which acts along the normal direction to the interface as a result of term ∇εE .

6.2.3 Leaky dielectric model

For a two-fluid system with finite electrical conductivities in a quasistatic electric field

and tµ >> tE and in the absence of buoyancy forces, both volume and surface charge

conservation equations in Eqs. (6.10) and (6.15) can attain steady state condition (i.e.,

Dqv/Dt = 0 and δqs/δt=0) in a time scale much smaller than the viscous time scale of

the fluid motion. Such a system can be referred to as conducting-conducting. Therefore,

relying on the quasistatic assumption, the conservation of charge in Eq. (6.10) can be

simplified to

∇ · (σE~E) = 0. (6.18)

Additionally, since the electric field is irrotatioal (∇× ~E = 0), due to the mathematical

entity of ∇×∇φ = 0 (the curl of the gradient is equal to zero), which holds for any arbi-

trary scalar field, the electric field vector can be expressed in terms of electric potential

as

~E = −∇φ, (6.19)

where φ is the electric potential. This would mean that the charge conservation equation

(Eq. (6.18)) in the domain can be re-written as

∇ · (σE∇φ) = 0. (6.20)

The interface condition for Eq. (6.20) can be written from the jump condition for the

conservation of charge in Eq. (6.15) in the form of

‖σE~E‖ · ~n = 0, (6.21)
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by ignoring the surface current for the computational simplicity. This interface condition

is referred to as the continuity of the current across the interface. Further interface

condition can be written as the continuity of the electric potential across the interface

as ‖φ‖ = 0. For a two-fluid system, having a constant electrical conductivity in each

fluid, Eq. (6.20) for electrical potential reduces to Laplace equation (∇2φ = 0) in each

medium.

With the solution of Eq. (6.20), the electric potential can be obtained, and then the

electric field strength is calculated by ~E = −∇φ. Based on Eq. (6.9), we can obtain

the distribution of volume charge density as qv = ∇ · (εE~E). Having calculated the

distributions of electric charge density and electric field strength, the electric force within

the liquid bulk in the vicinity of interface can then be determined through Eq. (6.17)

for incompressible fluid.

Upon combining Eq. (6.2) with Eqs. (5.8) and (6.17), one can obtain the equation of

motion including volumetric surface tension and electric field forces as

ρ
D~v

Dt
= −∇p+ µ∇2~v + ρ~fb + σκ~nδ +

qv~E− 0.5~E· ~E∇εE . (6.22)

6.3 Results

In this section, we consider two main test cases. The first one is the deformation of

static circular droplet under the influence of the surface tension force only, which is

modeled to validate the implementation of surface force and the numerical scheme.

The second one is also the deformation of a droplet which is this time subjected to

both surface tension and a constant externally applied electric field. The second test

case has been numerically simulated under various combinations of fluid properties to

reveal the capability and the accuracy of the SPH method in modeling the multiphase

electrohydrodynamics problems.

The deformation of a static circular droplet under the surface tension force is a commonly

utilized test case for validating the accuracy of numerically computed pressure jump
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Figure 6.1: The comparison of numerically computed pressure jumps as a function
of surface tension coefficient with that calculated by the analytical equation, namely,

Laplace’s law.

across the interface in multiphase systems, which can also be calculated analytically

from the relation, pin − pout = σ/r. This relation is known as the Laplace’s law that

relates pressure difference between inside and outside of the droplet to the surface tension

coefficient and the curvature (more details can be found in chapter 5). For this test

problem, the computations are performed in a square domain with the edge length of

H = 0.04 (m). The origin of the static circular droplet with a radius of r = 0.005

(m) is placed at the center of the square domain, which is represented by an array of

100× 100 particles in x− and y− directions, and the smoothing length for all particles

is set equal to 1.6 times the initial particle spacing. The simulations are performed

for constant density and viscosity values of ρ1 = ρ2 = 1000 (kg/m3), µ1 = µ2 = 1

(Pa.s), respectively, and for several values of the surface tension coefficient σ (N/m).

Here, subscripts 1, and 2 are used to denote parameters associated with the inner and

outer fluids, respectively. As for the boundary conditions of the current test case, the

pressure on the boundaries is set equal to zero, and the no-slip boundary condition is

imposed for velocity on all solid walls. The initial velocity field is zero. Pressure jumps

computed across the interface for various surface tension coefficients are presented in

Fig. 6.1 together with the results of the analytical solution, where the linear continuous

line represents the results obtained from the analytical relation while the outcomes of

the numerical simulations are shown with filled-in circles. From this figure, one can

notice the good agreement between numerical and analytical results.

In Fig. 6.2 is shown the two dimensional problem geometry for the second test problem
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which is composed of a square domain occupied by the immiscible background fluid and

the initially circular droplet having the radius of ro whose origin is located at the center of

the square domain. The size of the computational domain and droplet radius for this test

case is identical to that for the first one unless stated otherwise. Likewise, the modeling

domain is represented by particles generated on a rectangular grid with identical and

equidistant particle spacing. Additionally, for all simulations, the domain size is eight

times greater than initial droplet radius. The smoothing length for all particles is set

equal to 1.6 times the initial particle spacing as in the case of the first test case. In

the present test case, both the droplet and background fluids have identical densities

and viscosities, namely, (ρ1 = ρ2, µ1 = µ2), respectively, and a constant surface tension

coefficient σ is used. However, the inner fluid’s electric permittivity εE1 and conductivity

σE1 may differ from that of the background fluid depending on the test case studied.

The relative differences in the electric permittivity and conductivity of both constituent

phases are represented by their ratios as

S =
εEin
εEout

=
εE1
εE2
, Q =

σEin
σEout

=
σE1
σE2

, (6.23)

which are two significant parameters that play an important role in simulations which

will be discussed later in details.

One of the main features that can be compared in bubble dynamics research is the

droplet deformation parameter D, which is defined as

D =
A−B
A+B

, (6.24)

where A and B are the diameters of the elliptic droplet which are parallel and perpen-

dicular to the direction of the applied electric, respectively, at the steady state condition.

The droplet deformation parameter quantifies the deviation in the geometry of a droplet

from its original circular shape to an elliptic one. The higher the value of D, the larger

the ellipticity whereas as the D goes to zero, the droplet approaches a circular shape.

Besides, the positive value of D indicates that the droplet is stretched in the electric

field direction thus acquiring a prolate shape while the negative value denotes that it

is lengthened perpendicularly to the electric field direction (transverse direction) hence

forming an oblate shape.
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Figure 6.2: The schematic of the problem domain. Upon setting an electric potential
at the upper and lower horizontal boundaries, a constant electric field in the downward

direction is obtained in the model domain.

The numerical findings of this test case are compared with two different theories in terms

of the droplet deformation parameter. The first one is the analytical equation developed

by Taylor [151] which formulates the droplet deformation parameter as

DT =
9fd,TE

2
oε
E
2 ro

8(2 +Q)2σ
, (6.25)

where Eo is the magnitude of the electric field vector (set to be Eo = 1 unless stated

otherwise) which is calculated as (φ+−φ−)/H with φ− = 0, and fd,T is the discriminating

function, which is evaluated as

fd,T = Q2 + 1− 2S +
3

2
(Q− S), (6.26)

which determines the sign of DT in the above equation so that according to fd,T , the

droplet may oblate or prolate.

Taylor also showed that the fluid rotation in the droplet and surrounding fluid is only

dependent on the ratios between electric permittivity and conductivities. Figure 6.3
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 R<SQ<S  R>SQ>S

Figure 6.3: Schematics for two types of induced flow: (a) Q < S and (b) Q > S.

shows fluid vorticities inside and outside of a droplet subjected to a constant electric

field for the conditions of the Q < S (left) and Q > S (right). Taylor’s theory suggests

that for the condition of Q < S, there are four vortices inside the droplet which have

identical flow patterns. Namely, the flow direction is from the center of the drop toward

the pole along vertical axis, from the pole to the equator along the perimeter of the

drop, and from the equator to the center of the drop along the horizontal axis. However,

for the condition of Q > S, the fluid circulates in the opposite direction in comparison

to the first case.

The second theoretical analysis which is used to evaluate our results is the one introduced

by Feng [41] wherein the droplet deformation parameter D is formulated as

DF =
fd,FE

2
oε
E
1 ro

3(1 +Q)2Sσ
. (6.27)

In the above equation, the sign of DF also depends on the sign of fd,F because all the

other terms have positive sign. The discriminating function fd,F in Eq. (6.27) is defined

as

fd,F = Q2 +Q+ 1− 3S. (6.28)

If fd,F is positive, the droplet deformation parameter DF will be positive, wherefore the

droplet will prolate, while the negative values of fd,F result in oblate deformation of the
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Table 6.1: The comparison of SPH and theoretical results (Eqs. (6.25) and (6.27)) in
terms of the discriminating function fd and the deformation parameter D for different

combinations of conductivity and permittivities.

εE1 S σE1 Q σ fd,T DT fd,F DF Dn

0.3 0.5 40 2 0.01 6.25 0.0659 5.5 0.06111 0.0854
0.5 0.5 40 2 0.01 6.25 0.1099 5.5 0.10185 0.1304
0.5 0.5 150 3 0.01 12.75 0.1434 11.5 0.1198 0.1683
0.5 0.5 1 0.05 0.01 -0.6725 -0.0450 -4.25 -0.0630 -0.0612
3 5 10 0.5 0.03 -15.5 -0.1395 -13.25 -0.1963 -0.2293
0.05 0.2 2 0.1 0.03 0.46 0.00248 0.51 0.0058 0.0051

droplet.

In this paper, it is shown that the results of simulations by the SPH method are in good

agreement with those of theoretical analysis explained previously. In order to compare

numerical results with those obtained by using Taylor and Feng theories quantitatively,

Table 6.1 is presented. In this table, the droplet deformation parameter D is presented

for six different sets of input parameters. As one may infer from the sign of evaluated

droplet deformation D in Table 6.1, the input parameters given in the first three rows

of the table lead to prolate deformation while the input parameters in the fourth and

fifth rows causes the droplet to deform in the oblate form. However, the simulation with

input parameters given in the last row is an exception, which will be discussed in details

later by referring to Fig. 6.4.

One may notice from Table 6.1 that for small deformation parameter values in both

oblate and prolate conditions, the results of numerical simulations agree very well with

those of analytical analysis except that there are rather small deviations between the

analytical and simulation results. However, for relatively higher values of the droplet

deformation parameter, the results of numerical simulations deviate observably from

those of both theories. It is important to state that the theoretical analysis of both

Taylor and Feng assume that the droplet remains circular hence being accurate for

small droplet deformations only. Therefore, our findings are in mesh with what have

been reported in literature [157, 69, 171] wherein it was shown both experimentally

and numerically that for large droplet deformations, these two analytical expressions

underestimate the droplet deformation parameter. Another important point worthy of

mentioning here is that for the prolate deformation, our results are closer in magnitude to

those of the Taylor’s theory. On the other hand, when the droplet oblates, our findings
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Figure 6.4: (a) The relation between the permittivity and the conductivity ratios:
(b) Q > S, fd,F > 0; (c) Q < S, fd,F < 0; and (d) Q < S, fd,F > 0. Only a half
of the central regions are displayed; different particle shape and size are also shown to

indicate the fluid-fluid interfaces and drop deformations.

have better agreement with the results of the Feng’s theory rather than the Taylor’s

theory. In other words, in the prolate deformation, the Taylor’s theory calculates higher

values for the droplet deformation parameter and the relative difference between Taylor

data and ours are less than the Feng’s theory. Yet, in oblate deformation, the opposite

situation is observed. The reason for such a controversy is hidden in Eqs. (6.25) and

(6.27) where in Feng’s theory, the inner fluid permittivity is used while in Taylor’s theory,

the droplet deformation parameter is evaluated using the outer fluid’s permittivity.

The relation between the permittivity ratio S and the conductivity ratio Q is shown

in Fig. 6.4a, which is hereafter referred to as S − Q map. In this figure, the dashed

straight line represents the situation of S = Q. For the case of Q < S which is the

region above the dashed straight line on the map, the fluid particles inside and outside
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of droplet circulate with the pattern explained earlier and depicted in Fig. 6.3a. As for

the case of Q > S, the opposite flow circulation pattern should be expected. Moreover,

in the same figure, the variation of S as a function of Q is plotted by utilizing the

discrimination functions fd,T and fd,F in Eqs. (6.26) and (6.28) for the values of fd,T = 0

and fd,F = 0, and the curves are denoted by solid and dash-dot lines, respectively. Since

these two curves are almost equivalent to each other, we have provided our discussion

below referring to the Feng’s theory. The regions above and below this curve represent

the conditions of fd,F < 0 and fd,F > 0 in the given order, which correspond to the

oblate and prolate droplet deformations, respectively. Three different combinations or

configurations might be formed out of the above given situations, which are plotted in

Figs. 6.4b, c, and d, where the right half of each sub-figure shows particle velocity vectors

and the left half represents droplet (dark) and surrounding (light) particles distribution

for corresponding simulations. The first configuration, which is shown in Fig. 6.4b,

belongs to the situation where Q > S and in turn fd,F > 0, which can be obtained

using the input parameters given in the first three rows of Table6.1. The results in Fig.

6.4b are obtained by using the simulation parameters provided in the second row of the

Table6.1. As a result, the flow circulation inside the droplet is according to Fig. 6.3b,

and the droplet prolates. The second combination shown in Fig. 6.4c represents the

Q < S and as a result fd,F < 0,which leads to the formation of the flow pattern as

illustrated in Fig. 6.3a and oblate droplet deformation. Under this configuration, the

droplet deformation is a representative figure for the fourth and fifth rows of Table6.1.

The input parameters for the Fig. 6.4c is given in the forth row of the Table6.1. The

third configuration (i.e., Q < S and fd,F > 0) forms when the problem conditions belong

to the small region flanked by the straight and curved lines. In this configuration, as

can observed from Fig. 6.4d for which the input parameters are given in the last row

of the Table6.1, the droplet tends to prolate due to the fact that fd,F > 0 while the

flow pattern is opposite to Fig. 6.4b. One can note that the droplet does not prolate

severely, which is a quite expected result since the input parameters result in S, Q, and

fd,F values that fall into the region between the straight and curved lines in the S −Q

map.

Figure 6.5 shows the variation of droplet deformation with respect to different parameter

changes. In subfigures, electric field strength, droplet initial radius, inner fluid permit-

tivity, and surface tension coefficient are separately varied to show the dependency of
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Figure 6.5: The variation of droplet deformation parameter D as a function of (a)
theelectric field strength Eo, (b) the permittivity εE1 , (c) the initial droplet radius ro,

and (d) the reciprocal of the surface tension 1/σ.

droplet deformation to each parameter. In these figures, the solid lines and unfilled

circles represent the results of Feng and Taylor theories, respectively, while the numer-

ical values are shown with filled circles. It is observed that for all cases, our numerical

simulations for larger droplet deformations have overestimated values of D calculated

by both theoretical analyses. However, as discussed before, for small deformations, the

overestimation is relatively small.

Other parameters that can be compared with the theory are the velocity profiles of fluid

media inside and outside of droplet. Thanks to Feng [41], the fluid velocity inside and

outside the droplet may be evaluated theoretically as,

vr,in = U∗[(r/ro)
3 − (r/ro)] cos 2θ, (6.29)

vθ,in = U∗[(r/ro)− 2(r/ro)
3] sin 2θ, (6.30)
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vr,out = U∗[(ro/r)− (ro/r)
3] cos 2θ, (6.31)

vθ,out = −U∗[(ro/r)3] sin 2θ, (6.32)

where r is the radial position, vr and vθ are the radial and tangential velocities in

the given order. Also, the U∗ is the characteristic velocity, which corresponds to the

maximum velocity

U∗ =
Q− S

2S(1 +Q)2

εE1 E
2
oro

µ1 + µ2
. (6.33)

These equations carry some valuable conceptual facts which are perfectly captured by

current simulations. First, for the radial velocity, in both expressions for inner and outer

fluid velocities, the fluid velocity approaches zero near the droplet boundary. Moreover,

the maximum radial velocity may be observed where the cosine function in Eqs. (6.29)

and (6.31) is maximized. This happens at angles like θ = 0, and π/2. On the other

hand, for the angles like π/4 at which the sinusoidal function has its maximum value,

the tangential velocity is maximized.

Figure 6.6 shows the profiles of the radial and tangential velocity components for two

different angles at which one of the velocity components is maximized. In this figure, the

theoretical velocity profile for radial and tangential components are shown with solid and

dashed lines, respectively. Also, the numerical data for radial and tangential velocity

components are represented with unfilled and filled circles, respectively. In accordance

with Eqs. (6.30) and (6.32), the tangential velocity component has to be zero at θ = 0,

which is observed in Fig. 6.6a where the radial velocity may have its maximize values.

Eqs. (6.29) and (6.31) require that for the circular droplet, the radial velocity should be

zero at the droplet interface where r = ro. Nevertheless, after the droplet gets deformed,

its interface is no longer at r = ro. Thus, the numerical results show a slight deviation

in evaluation of zero radial velocity prediction, which is again due to the assumption

made in theory that the droplet remains circle.

Finally, to show the convergence of our results with respect to particle resolution, one

of the test cases is reexamined here. In this case, the numerical parameters are set
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Figure 6.6: The profiles for the components of the velocity profile and their compar-
ison with analytical results (a) for the case of θ = 0, (b) for the case of θ = π/4. This
figures are generated from the simulation with input parameters provided in the forth

row of Table6.1 after the steady state has been reached.

to S = 0.5, Q = 2.0, σE1 = 40, εE1 = 0.3, and the surface tension coefficient has the

value of 0.012. Under this condition, the droplet prolates as the calculated deformation

parameter is equal to D = 0.077. Figure 6.7a represents the fluid particles’ positions

for four different particle resolutions of 60 × 60, 80 × 80, 100 × 100, and 120 × 120 for

the quarter of the entire domain. Figure 6.7b shows the corresponding velocity vectors

inside and outside the droplet.

A close observation on Fig. 6.7a reveals that for low particle resolution cases, i.e. 60×60

and 80× 80, the droplet deformation is dependent on the particle resolution. However,

as the particle resolution increases, this dependency vanishes so that the droplet defor-

mation is identical for 100×100, and 120×120 particle resolutions. Moreover, Fig. 6.7b

clearly reveals that as the particle resolution increases, the center of vorticities inside and

outside of droplet converges to a certain location, so that the position of vorticity centers

are independent of particle resolution at high values. This brings the conclusion that

considering the computational costs and the satisfactory accuracy of 100× 100 particle

resolution, as well as minor quantitative and qualitative difference between 100 × 100,
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Figure 6.7: (a) Particle position distribution, and (b) velocity vectors, for different
particle resolutions of 60× 60, 80× 80, 100× 100, and 120× 120.

and 120× 120 results, the particle resolution of 100× 100 has been employed for all the

simulations for which results are presented.

6.4 Conclusion

In this chapter, the SPH method has been extended to model EHD of a droplet sus-

pended inside a neutral viscous fluid with different electrical and hydrodynamical prop-

erties. To be able couple electric field forces, surface tension forces, droplet deformation,

and flow fields, momentum balance equations with the source terms for the electric field

and surface tension forces on the droplet interface are solved together with a set of

Maxwell equations simplified by the using leaky dielectric model. The electric field force

is included in the momentum balance equations as volumetric forces through taking the

divergence of the Maxwell stress tensor. Quite many simulations have been performed

to investigate the effects of the electric field strength, permittivity ratios, and electrical

conductivity ratios, surface tension and the initial droplet radius on the droplet defor-

mation parameter. It is found that in the leaky dielectric model, droplets deform in

either prolate or oblate manners depending on the ratios of electrical conductivity and

permittivity. The simulation results have been validated by two theories and shown to

agree well with those predicted by both theories for small droplet deformation param-

eters. However, it is observed that the numerical results overestimate the analytically
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calculated droplet deformation parameters for high deformations, which was also under-

scored in some other relevant works in literature. The reason behind this discrepancy

lies in the assumption made by theories such that droplet deformation is rather small,

and hence the droplet remains nearly circular after the deformation. Depending on the

relative magnitudes of the electric permittivity and conductivity ratios (i.e., the case of

Q > S, or S > Q), flow circulations have different patterns. The electric field strength

only affects the magnitude of drop deformation. The intensity of the circulatory flow

motion gets stronger when the droplet is subject to a larger deformation due to the

high value of the steady electric field. The results of the current work suggest that the

SPH method is able to capture the physics behind the droplet deformation under the

influence of a steady electric field in robust and accurate manner.



Chapter 7

Future Works

High performance computing: Although researchers have done numerous interest-

ing works, these works are usually limited either to the simplification assumptions in

the analytical approach or to the highly expensive devices and facilities in experiments.

With the recent significant enhancement in the computational technology the compu-

tational modeling becomes more and more attractive. Thanks to the massive parallel

processing technology one can easily solve the full Navier-Stoke equations without any

simplification even for the three dimensional problems in a small fraction of time. This

enables us to solve real life scientific and industrial applications in a more accurate and

cheaper way. Benefitting from not having inter-linked particles, SPH has a great po-

tential to be treated in parallel clusters. Especially the three main component of the

SPH namely, neighbor list construction, force computation, and the integration of the

equation of motion have capabilities to be computed in a parallel algorithm. The code

can be further developed to three dimensions that uses the Compute Unified Device

Architecture (CUDA) programing developed by Nvidia for executing a larg number of

particles on a Graphical Processing Unit (GPU). This provides us a powerful tool (the

computer performance of couple of teraflop) which performs the massive parallel com-

putation on a cheap cluster (less than 1000 USD at the moment). Considering the fact

that with achieveing this type of parallel processing, simulation of more challenging and

realistic three-dimensional problems will be feasible in the near future.

Three or more phases flows: Multiphase flow where two or more fluid have inter-

facial surface occurs in various applications including hydrocarbon reservoirs, oil pipes,

128
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drug injection. In many engineering problems, determining free surface and tracking

interfaces are of particular importance. Multiphase flow problems so far have been stud-

ied widely using mesh dependent techniques. Nevertheless, because of the complexity

of these problems, most current works has not gone beyond the simple ones. In mesh-

dependent methods, additional equations have to be solved to track interfacial surface,

and depending on the problem in hand, mesh-refinement might be required. The SPH

method due to its Lagrangian nature is an excellent candidate to address complex flow

phenomena such as free surface, and interfacial surface. As a first practical application

for multiphase flow modeling, the deformation of a compound drop with multiple in-

terfaces in a flow field can be solved. When many compound drops exist in another

liquid medium, the mixture formed is referred to as multiple emulsion; for example,

water in oil compound suspending in water, abbreviated as (w-o-w) emulsion. w-o-w

system was proposed as a drug delivery vehicle for insulin, and is widely encountered

in polymer processing applications as well. In the literature, little attention has been

given to the deformation and morphological evolution of compound drops in flow fields.

These are practically important issues since shear-induced burst of the oil shell is an

important mechanism for drug release. Modeling the deformation of a compound drop

is a computational challenge because of the two moving and deforming interfaces. It

needs endeavor the development of a new approaches to track the interfaces and accu-

rately compute momentum transfer across the multiple interfaces by using color fields,

or level set method (whichever is more efficient). The second practical application with

scientific and industrial significance is the modeling of non-Newtonian fluid flow under

the effect of electric field through a capillary tube. The study intends to shed a light

on the flow nature and the droplet formation at the end of a capillary tube where the

surface tension strength as well as electric field distribution control ”necking” behavior

and droplet size. This problem has many practical applications such as electro spinning

of polymers for producing nano-fibers, and droplet-droplet and oil-surface interactions.

Fluid-Structure interaction: Fluid-Structure interaction (FSI) is one of the chal-

lenging problems in the field of computational fluid dynamics. Typical examples include

flow around aircrafts wings, bridges and other many complex structures. There are two

main approaches for solving FSI problems. The first one is Monolithic approach which

solves the governing equations of fluid and structure displacement simultaneously and
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the second one is partitioned approach which solves these equations separately. In gen-

eral, Lagrangian-Eulerian methods (LE) have been used in literature, which implements

Eulerian formulation for fluid and Lagrangian formulation for solid structure. However

this approach, when the deformation of the solid is large, faces numerous difficulties

such as transferring data between fluid and the solid structure. To overcome these mod-

eling difficulties, it would be a prudent choice to use Lagrangian formulations for both

fluid and solid sites, because Lagrangian methods can solve the governing equations of

fluid and structure simultaneously without implementing any specific treatment for data

transfer from one region to another. The Lagrangian nature of SPH method lends itself

excellently to the simulation of a variety of complex fluid flow processes such FSI. In this

work a modified SPH algorithm should be implimented to solve problems including fluid

flow in interaction with compatible structures under a large deformation. One possible

modification of this algorithm can be based on neglecting the intermediate data transfer

steps terms, which result in an easy and time-saving numerical simulation method. The

algorithm needs to be developed further so that it can solve the fluid site with incom-

pressible SPH and can handle more complex test applications such as the impact of an

object to a liquid surface.

Turbulent multiphase flows: The turbulent multiphase problem contains extremely

destructive and dangerous natural hazards. There is a significant need for reliable meth-

ods for predicting the dynamics, run-out distances, mass transport, and inundation areas

of such events. They consist of a broad distribution of soil/ice sizes mixed with fluid.

The flow behavior can vary and depends on the sediment composition and percentage of

solid and fluid phases. Strong coupling between the solid- and fluid-momentum trans-

fer leads to simultaneous deformation, mixing, and separation of the phases. Also, the

evolution, advection, and diffusion of the solid-volume fraction play important roles in

these phenomena. Due to the problem complexity, strong phase coupling and highly

nonlinear nature of its equation, comprehensive theory accounting for all the interac-

tions between the solid particles and the fluid is still out of reach. The mathematical

models and computational solution algorithms can be further develops in the way that

it can count and describe all existing forces and predict the whole physics behind these

phenomena.



Appendix A

First and second order

approximations

The following section provides derivations for the SPH approximation to first- and

second-order derivatives of a vector-valued function. The derivations are carried out

in Cartesian coordinates. The SPH approximation for the gradient of a vectorial func-

tion starts with a Taylor series expansion of fp (~rj) so that

fp (~rj) = fp (~ri) + rlji
∂fp (~ri)

∂xli
|~rj=~ri +

1

2
rljir

k
ji

∂2fp (~ri)

xlix
k
i

|~rj=~ri . (A.1)

Upon multiplying Eq. (A.1) by the term,
∂Wij

∂xsj
, and then integrating over the whole

space, d3~rj, one can write,

∫
Ω

(fp (~rj)− fp (~ri))
∂Wij

∂xsj
d3~rj =

∂fp (~ri)

∂xli

∫
Ω
rlji
∂Wij

∂xsj
d3~rj︸ ︷︷ ︸

Ils

+
1

2

∂2fp (~ri)

xlix
k
i

∫
Ω
rljir

k
ji

∂Wij

∂xsj
d3~rj︸ ︷︷ ︸

Ilks=0

.

(A.2)

Note that the first and the second integrals on the right hand side of Eq. (A.2) are,

respectively, second- and third-rank tensors. The third-rank tensor can be integrated by

parts, which, upon using the Green-Gauss theorem produces Eq. (A.3) since the kernel
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Wij vanishes beyond its support domain

I lks = −
∫

Ω
Wij

∂

∂rsj

(
rljir

k
ji

)
d3~rj = −

∫
Ω
Wij

(
rljiδ

sk + rkjiδ
ls
)
d3~rj. (A.3)

Recalling that the kernel function is spherically symmetric even function and the multi-

plication of an even function by an odd function produces an odd function. Integration

of an odd function over a symmetric domain leads to zero

I lks = −δsk
∫

Ω
rljiWijd

3~rj − δls
∫

Ω
rkjiWijd

3~rj = 0. (A.4)

Following the above described procedure identically, the second rank tensor, I ls, can be

written as

I ls = −δls
∫

Ω
Wijd

3~rj︸ ︷︷ ︸
=1

= −δls. (A.5)

On combining Eq. (A.2) with Eq. (A.4) and (A.5), one can write,

∂fp (~ri)

∂xsi
=

∫
Ω

(fp (~rj)− fp (~ri))
∂Wij

∂xsi
d3~rj. (A.6)

Note that in Eq. (A.6), the relationship
∂Wij

∂xsj
= −∂Wij

∂xsi
has been used. Replacing the

integration in Eq. (A.6) with SPH summation over particle “j” and setting d3~rj = mj/ρj,

we can obtain the gradient of a vector-valued function in the form of SPH interpolation

as,

∂fp (~ri)

∂xsi
=

N∑
j=1

1

ψj
(fp (~rj)− fp (~ri))

∂Wij

∂xsi
d3~rj. (A.7)

It is important to note that the second rank tensor I ls, shown to be equal to kronecker

delta for a continuous function, may not be equal to kronecker delta for discrete particles.

Hence, for the accuracy of the computations, this term should be included in the SPH

gradient interpolation of a function. From Eq. (A.2), we can write

N∑
j=1

1

ψj
(fp (~rj)− fp (~ri))

∂Wij

∂xsi
d3~rj =

∂fp (~rj)

∂xli

N∑
j=1

1

ψj

∂Wij

∂xsi
d3~rj. (A.8)
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Eq. (A.8) can be written in matrix form as


∑N

j f
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i

 (A.9)

where asj = 1
ψj

∂Wij

∂xsi
.

Starting with the relation for the SPH second-order derivative approximation [168] of a

vector valued-function fp (~ri) given in Eq. (A.10)

2

∫
Ω

(fp (~ri)− fp (~rj))
rsij
r2
ij

∂Wij

∂xmi
d3~rj =

2

ξ

∂2fp (~ri)

∂xsi∂x
m
i

+
1

ξ

∂2fp (~ri)

∂xki ∂x
k
i

δsm, (A.10)

which, upon contracting on indices p and s, one can obtain

2

∫
Ω

(fp (~ri)− fp (~rj))
rpij
r2
ij

∂Wij

∂xmi
d3~rj =

1

ξ

∂2fp (~ri)

∂xki ∂x
k
i

δpm. (A.11)

Note that the first term on the right hand side of Eq. (A.10) becomes ∂2fp(~ri)
∂xpi ∂x

m
i

and

consequently drops off if the vector-valued function fp (~ri) is assumed to be divergence-

free velocity field. Here, the coefficient ξ takes the value of 4 and 5 in two and three

dimensions, respectively. We have shown in Eqs. (A.2) and (A.5) that Kronecker delta

can be written as,

δpm =

∫
Ω
rpij
∂Wij

∂xmi
d3~rj. (A.12)

Casting Eq. (A.12) into Eq. (A.11) leads to

2
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Eq.(A.13) can be written in matrix form as
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Upon contracting on indices s and m of Eq. (A.10), an alternative form of Laplacian

for a vector field can be obtained as

8
N∑
j=1

1

ψj
(fp (~ri)− fp (~rj))

rsij
r2
ij

∂Wij

∂xmi
d3~rj =

2

ξ

∂2fp (~ri)

∂xsi∂x
m
i

+
1

ξ

∂2fp (~ri)

∂xki ∂x
k
i

δsm. (A.15)

If the trace of the Kronecker delta in Eq. (A.15) is replaced by the trace of Eq. (A.15),

one can obtain an alternative form of corrective SPH interpolation for a Laplacian.
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[8] E. Bänsch. Numerical methods for the instationary Navier-Stokes equations with

a free capillary surface. PhD thesis, Schr., 1998.

[9] J.B. Bell and D.L. Marcus. A second-order projection method for variable-density

flows* 1. Journal of Computational Physics, 101(2):334–348, 1992.

138



Bibliography 139

[10] T. Belytschko, DP Flanagan, and JM Kennedy. Finite element methods with user-

controlled meshes for fluid-structure interaction. Computer Methods in Applied

Mechanics and Engineering, 33(1-3):669–688, 1982.

[11] R. Benzi, S. Succi, and M. Vergassola. The lattice boltzmann equation: theory

and applications. Physics Reports, 222(3):145–197, 1992.

[12] S. Borve and DJ Price. Hydrodynamical instabilities in compressible fluids using

sph. In Fourth International SPHERIC Workshop, Nantes, France, pages 27–29,

2009.

[13] JU Brackbill, D.B. Kothe, and C. Zemach. A continuum method for modeling

surface tension* 1. Journal of computational physics, 100(2):335–354, 1992.

[14] U. Bulgarelli, V. Casulli, and D. Greenspan. Pressure methods for the numerical

solution of free surface fluid flows. Pineridge Press, Swansea, UK, 1984.

[15] B. Bunner and G. Tryggvason. Effect of bubble deformation on the properties of

bubbly flows. Journal of Fluid Mechanics, 495(1):77–118, 2003.

[16] S.H. Cha, S.I. Inutsuka, and S. Nayakshin. Kelvin–helmholtz instabilities with

godunov smoothed particle hydrodynamics. Monthly Notices of the Royal Astro-

nomical Society, 403(3):1165–1174, 2010.

[17] Subrahmanyan Chandrasekhar. Hydrodynamic and hydromagnetic stability. Dover

Pubns, 1961.

[18] JK Chen and JE Beraun. A generalized smoothed particle hydrodynamics method

for nonlinear dynamic problems. Computer Methods in Applied Mechanics and

Engineering, 190(1):225–239, 2000.

[19] J.S. Chen, C. Pan, C.T. Wu, and W.K. Liu. Reproducing kernel particle meth-

ods for large deformation analysis of non-linear structures. Computer Methods in

Applied Mechanics and Engineering, 139(1):195–227, 1996.

[20] A.J. Chorin. Numerical solution of the navier-stokes equations. Math. Comp,

22(104):745–762, 1968.

[21] A.J. Chorin. On the convergence of discrete approximations to the navier-stokes

equations. Math. Comp, 23(341-353):17, 1969.



Bibliography 140

[22] KN Christodoulou and LE Scriven. Discretization of free surface flows and other

moving boundary problems. Journal of Computational Physics, 99(1):39–55, 1992.

[23] A. Colagrossi and M. Landrini. Numerical simulation of interfacial flows

by smoothed particle hydrodynamics* 1. Journal of Computational Physics,

191(2):448–475, 2003.

[24] W. Crowley. Flag: a free-lagrange method for numerically simulating hydrody-

namic flows in two dimensions. In Proceedings of the Second International Con-

ference on Numerical Methods in Fluid Dynamics, pages 37–43. Springer, 1971.

[25] S. J. Cummins and M. Rudman. An SPH projection method. Journal of compu-

tational physics, 152(2):584–607, 1999.

[26] C. Cuvelier. A time dependent free boundary governed by the navier-stokes equa-

tions. In Ninth International Conference on Numerical Methods in Fluid Dynam-

ics, pages 170–174. Springer, 1985.

[27] C. Cuvelier and R. Schulkes. Some numerical methods for the computation of

capillary free boundaries governed by the navier-stokes equations. Siam Review,

pages 355–423, 1990.

[28] RA Dalrymple and BD Rogers. Numerical modeling of water waves with the sph

method. Coastal engineering, 53(2):141–147, 2006.

[29] L. Delorme, A. Colagrossi, A. Souto-Iglesias, R. Zamora-Rodriguez, and E. Botia-

Vera. A set of canonical problems in sloshing, part i: Pressure field in forced roll–

comparison between experimental results and sph. Ocean Engineering, 36(2):168–

178, 2009.

[30] A. Dervieux and F. Thomasset. A finite element method for the simulation of

a rayleigh-taylor instability. Approximation methods for Navier-Stokes problems,

pages 145–158, 1980.

[31] G. Dhatt, DM Gao, and A.B. Cheikh. A finite element simulation of metal flow

in moulds. International journal for numerical methods in engineering, 30(4):821–

831, 1990.



Bibliography 141

[32] H. Ding, P.D.M. Spelt, and C. Shu. Diffuse interface model for incompressible

two-phase flows with large density ratios. Journal of Computational Physics,

226(2):2078–2095, 2007.

[33] J. Donea, S. Giuliani, and JP Halleux. An arbitrary lagrangian-eulerian finite ele-

ment method for transient dynamic fluid-structure interactions. Computer Meth-

ods in Applied Mechanics and Engineering, 33(1-3):689–723, 1982.

[34] P.G. Drazin and W.H. Reid. Hydrodynamic stability. Cambridge Univ Pr, 2004.

[35] MS Engelman and RL Sani. Finite element simulation of incompressible fluid flows

with a free/moving surface. Computational Techniques for Fluid Flow, 47, 1986.

[36] J.S. Eow and M. Ghadiri. Motion, deformation and break-up of aqueous drops

in oils under high electric field strengths. Chemical Engineering and processing,

42(4):259–272, 2003.

[37] A.C. Eringen and G.A. Maugin. Electrodynamics of continua, volume 1. Springer

New York, 1990.

[38] A. Esmaeeli and G. Tryggvason. Direct numerical simulations of bubbly flows.

part 1. low reynolds number arrays. Journal of Fluid Mechanics, 377(1):313–345,

1998.

[39] A. Esmaeeli and G. Tryggvason. Direct numerical simulations of bubbly flows part

2. moderate reynolds number arrays. Journal of Fluid Mechanics, 385(1):325–358,

1999.

[40] J. Feldman and J. Bonet. Dynamic refinement and boundary contact forces in

sph with applications in fluid flow problems. International Journal for Numerical

Methods in Engineering, 72(3):295–324, 2007.

[41] J.Q. Feng and T.C. Scott. A computational analysis of electrohydrodynamics of a

leaky dielectric drop in an electric field. Journal of Fluid Mechanics, 311(1):289–

326, 1996.

[42] ZC Feng and LG Leal. Nonlinear bubble dynamics. Annual review of fluid me-

chanics, 29(1):201–243, 1997.



Bibliography 142

[43] JM Floryan and H. Rasmussen. Numerical methods for viscous flows with moving

boundaries. Applied Mechanics Reviews, 42:323, 1989.

[44] MJ Fritts and JP Boris. The lagrangian solution of transient problems in hydrody-

namics using a triangular mesh. Journal of Computational Physics, 31(2):173–215,

1979.

[45] D.E. Fyfe, E.S. Oran, and MJ Fritts. Surface tension and viscosity with la-

grangian hydrodynamics on a triangular mesh. Journal of Computational Physics,

76(2):349–384, 1988.

[46] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics-theory and

application to non-spherical stars. Monthly Notices of the Royal Astronomical

Society, 181:375–389, 1977.

[47] I. Ginzburg and G. Wittum. Two-phase flows on interface refined grids modeled

with vof, staggered finite volumes, and spline interpolants. Journal of Computa-

tional Physics, 166(2):302–335, 2001.

[48] J. Glimm, J. Grove, B. Lindquist, O.A. McBryan, and G. Tryggvason. The bifur-

cation of tracked scalar waves. SIAM Journal on Scientific and Statistical Com-

puting, 9:61, 1988.

[49] J. Glimm, O. McBryan, R. Menikoff, and DH Sharp. Front tracking applied to

rayleigh–taylor instability. SIAM Journal on Scientific and Statistical Computing,

7:230, 1986.

[50] JN Glosli, DF Richards, KJ Caspersen, RE Rudd, JA Gunnels, and FH Streitz.

Extending stability beyond cpu millennium: a micron-scale atomistic simulation

of kelvin-helmholtz instability. In Proceedings of the 2007 ACM/IEEE Conference

on Supercomputing, page 58. ACM, 2007.

[51] Moncho Gomez-Gesteira, Benedict D. Rogers, Damien Violeau, Jose Maria Grassa,

and Alex J.C. Crespo. Foreword: Sph for free-surface flows. Journal of Hydraulic

Research, 48(sup1):3–5, 2010.

[52] VN Goncharov. Analytical model of nonlinear, single-mode, classical rayleigh-

taylor instability at arbitrary atwood numbers. Physical review letters,

88(13):134502, 2002.



Bibliography 143

[53] JP Gray, JJ Monaghan, and RP Swift. Sph elastic dynamics. Computer methods

in applied mechanics and engineering, 190(49-50):6641–6662, 2001.

[54] J.L. Guermond and L. Quartapelle. A projection fem for variable density incom-

pressible flows. Journal of Computational Physics, 165(1):167–188, 2000.

[55] J.W. Ha and S.M. Yang. Electrohydrodynamics and electrorotation of a drop with

fluid less conductive than that of the ambient fluid. Physics of Fluids, 12:764, 2000.

[56] WT Hancox, RL Ferch, WS Liu, and RE Nieman. One-dimensional models for

transient gas-liquid flows in ducts. International Journal of Multiphase Flow, 6(1-

2):25–40, 1980.

[57] P. Hansbo. The characteristic streamline diffusion method for the time-dependent

incompressible navier-stokes equations. Computer methods in applied mechanics

and engineering, 99(2-3):171–186, 1992.

[58] F.H. Harlow, J.E. Welch, et al. Numerical calculation of time-dependent viscous

incompressible flow of fluid with free surface. Physics of fluids, 8(12):2182, 1965.

[59] M. Hayashi, K. Hatanaka, and M. Kawahara. Lagrangian finite element method

for free surface navier-stokes flow using fractional step methods. International

journal for numerical methods in fluids, 13(7):805–840, 1991.

[60] M. Herrmann. A eulerian level set/vortex sheet method for two-phase interface

dynamics. Journal of Computational Physics, 203(2):539–571, 2005.

[61] CW Hirt, A.A. Amsden, and JL Cook. An arbitrary lagrangian-eulerian computing

method for all flow speeds* 1. Journal of computational physics, 14(3):227–253,

1974.

[62] CW Hirt and JL Cook. Calculating three-dimensional flows around structures and

over rough terrain* 1. Journal of Computational Physics, 10(2):324–340, 1972.

[63] CW Hirt, JL Cook, and TD Butler. A lagrangian method for calculating the

dynamics of an incompressible fluid with free surface* 1. Journal of Computational

Physics, 5(1):103–124, 1970.

[64] C.W. Hirt and B.D. Nichols. Volume of fluid (vof) method for the dynamics of

free boundaries* 1. Journal of computational physics, 39(1):201–225, 1981.



Bibliography 144

[65] W.G. Hoover. Isomorphism linking smooth particles and embedded atoms.

Physica-Section A, 260(3):244–254, 1998.

[66] T.Y. Hou. Numerical solutions to free boundary problems. Acta Numerica,

4(1):335–415, 1995.

[67] X. Y. Hu and N. A. Adams. A multi-phase SPH method for macroscopic and

mesoscopic flows. Journal of Computational Physics, 213(2):844–861, 2006.

[68] X. Y. Hu and N. A. Adams. An incompressible multi-phase SPH method. Journal

of Computational Physics, 227(1):264–278, 2007.

[69] J. Hua, L.K. Lim, and C.H. Wang. Numerical simulation of deformation/motion

of a drop suspended in viscous liquids under influence of steady electric fields.

Physics of Fluids, 20:113302, 2008.

[70] J. Hua and J. Lou. Numerical simulation of bubble rising in viscous liquid. Journal

of Computational Physics, 222(2):769–795, 2007.

[71] J. P. Hughes and D. I. Graham. Comparison of incompressible and weakly-

compressible sph models for free-surface water flows. Journal of hydraulic research,

48:105–117, 2010.

[72] T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann. Lagrangian-eulerian finite

element formulation for incompressible viscous flows* 1. Computer Methods in

Applied Mechanics and Engineering, 29(3):329–349, 1981.

[73] J.M. Hyman. Numerical methods for tracking interfaces. Physica D: Nonlinear

Phenomena, 12(1-3):396–407, 1984.

[74] R. Issa, E. S. Lee, D. Violeau, and D. R. Laurence. Incompressible separated flows

simulations with the smoothed particle hydrodynamics gridless method. Interna-

tional journal for numerical methods in fluids, 47(10-11):1101–1106, 2005.

[75] S. Jun, W.K. Liu, and T. Belytschko. Explicit reproducing kernel particle methods

for large deformation problems. International Journal for Numerical Methods in

Engineering, 41(1):137–166, 1998.

[76] V. Junk, F. Heitsch, and T. Naab. The kelvin-helmholtz instability in smoothed-

particle hydrodynamics. Proceedings of the International Astronomical Union,

2(S235):210–210, 2006.



Bibliography 145

[77] HS Kheshgi and LE Scriven. Penalty-finite element analysis of time-dependent

two-dimensional free surface film flows. In Finite Element Flow Analysis, volume 1,

pages 113–120, 1982.

[78] E.S. Kordyban, T. Ranov, and American Society of Mechanical Engineers. Mech-

anism of slug formation in horizontal two-phase flow. ASME, 1970.

[79] Y. Krongauz and T. Belytschko. Enforcement of essential boundary conditions

in meshless approximations using finite elements. Computer Methods in Applied

Mechanics and Engineering, 131(1-2):133–145, 1996.

[80] S. Kulasegaram, J. Bonet, R. W. Lewis, and M. Profit. A variational formulation

based contact algorithm for rigid boundaries in two-dimensional sph applications.

Computational Mechanics, 33(4):316–325, 2004.

[81] E. Lac and GM Homsy. Axisymmetric deformation and stability of a viscous drop

in a steady electric field. Journal of Fluid Mechanics, 590:239–264, 2007.

[82] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti. Modelling

merging and fragmentation in multiphase flows with surfer. Journal of Computa-

tional Physics, 113(1):134–147, 1994.

[83] H. Lamb and S.H. Lamb. Hydrodynamics. Cambridge Univ Pr, 1997.

[84] E. S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence, and P. Stansby. Com-

parisons of weakly compressible and truly incompressible algorithms for the sph

mesh free particle method. Journal of Computational Physics, 227(18):8417–8436,

2008.

[85] E. S. Lee, D. Violeau, R. Issa, and S. Ploix. Application of weakly compressible and

truly incompressible sph to 3-d water collapse in waterworks. Journal of Hydraulic

Research, 48(S1):50–60, 2010.

[86] RW Lewis and K. Ravindran. Finite element simulation of metal casting. Inter-

national journal for numerical methods in engineering, 47(1-3):29–59, 2000.

[87] J. Li, Y.Y. Renardy, and M. Renardy. A numerical study of periodic disturbances

on two-layer couette flow. Physics of Fluids, 10:3056, 1998.



Bibliography 146

[88] PY Lin and TJ Hanratty. Prediction of the initiation of slugs with linear stability

theory. International journal of multiphase flow, 12(1):79–98, 1986.

[89] PY Lin and TJ Hanratty. Effect of pipe diameter on flow patterns for air-water

flow in horizontal pipes. International journal of multiphase flow, 13(4):549–563,

1987.

[90] M. B. Liu and G. R. Liu. Smoothed particle hydrodynamics (sph): an overview

and recent developments. Archives of Computational Methods in Engineering,

17(1):25–76, 2010.

[91] W.K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko. Reproducing kernel particle

methods for structural dynamics. International Journal for Numerical Methods in

Engineering, 38(10):1655–1679, 1995.

[92] W.K. Liu, S. Jun, D.T. Sihling, Y. Chen, and W. Hao. Multiresolution reproducing

kernel particle method for computational fluid dynamics. International journal for

numerical methods in fluids, 24(12):1391–1415, 1997.

[93] W.K. Liu, S. Jun, and Y.F. Zhang. Reproducing kernel particle methods. Inter-

national Journal for Numerical Methods in Fluids, 20(8-9):1081–1106, 1995.

[94] L. B. Lucy. A numerical approach to the testing of the fission hypothesis. The

Astronomical Journal, 82:1013–1024, 1977.

[95] U.B. Mehta and Z. Lavan. Starting vortex, separation bubbles and stall- a numer-

ical study of laminar unsteady flow around an airfoil. Journal of Fluid Mechanics,

67(Part 2):227–256, 1975.

[96] JR Melcher and GI Taylor. Electrohydrodynamics: a review of the role of interfa-

cial shear stresses. Annual Review of Fluid Mechanics, 1(1):111–146, 1969.

[97] K.O. Mikaelian. Effect of viscosity on rayleigh-taylor and richtmyer-meshkov in-

stabilities. Physical Review E, 47(1):375, 1993.

[98] L.M. Milne-Thomson. Theoretical hydrodynamics. Dover Pubns, 1996.

[99] J. J. Monaghan. Smoothed particle hydrodynamics. Annual Review of Astronomy

and Astrophysics, 30:543–574, 1992.



Bibliography 147

[100] J. J. Monaghan. Simulating free surface flows with SPH. Journal of computational

physics, 110:399–399, 1994.

[101] J. J. Monaghan. SPH without a tensile instability. Journal of Computational

Physics, 159(2):290–311, 2000.

[102] J. J. Monaghan. Smoothed particle hydrodynamics. Reports on Progress in

Physics, 68:1703, 2005.

[103] J. J. Monaghan and A. Kos. Solitary waves on a cretan beach. Journal of Water-

way, Port, Coastal and Ocean Engineering, 125(3):145–154, 1999.

[104] J. P. Morris. Simulating surface tension with smoothed particle hydrodynamics.

International Journal for Numerical Methods in Fluids, 33(3):333–353, 2000.

[105] J. P. Morris, P. J. Fox, and Y. Zhu. Modeling low reynolds number incompressible

flows using sph. Journal of Computational Physics, 136(1):214–226, 1997.

[106] T.J. Mueller and S.M. Batil. Experimental studies of separation on a two-

dimensional airfoil at low reynolds numbers. AIAA Journal, 20:457–463, 1982.

[107] W. Noh and P. Woodward. Slic (simple line interface calculation). In Proceedings

of the Fifth International Conference on Numerical Methods in Fluid Dynamics

June 28–July 2, 1976 Twente University, Enschede, pages 330–340. Springer, 1976.

[108] M. Oevermann, R. Klein, M. Berger, and J. Goodman. A projection method for

two-phase incompressible flow with surface tension and sharp interface resolution.

Konrad-Zuse-Zentrum für Informationstechnik Berlin, 2000.

[109] A. Okajima. Strouhal numbers of rectangular cylinders. J. Fluid Mech, 123:379–

398, 1982.

[110] T. Okamoto and M. Kawahara. Two-dimensional sloshing analysis by lagrangian

finite element method. International Journal for Numerical Methods in Fluids,

11(5):453–477, 1990.

[111] S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: al-

gorithms based on hamilton-jacobi formulations. Journal of computational physics,

79(1):12–49, 1988.



Bibliography 148

[112] AR Piriz, OD Cortazar, J.J.L. Cela, and NA Tahir. The rayleigh-taylor instability.

American journal of physics, 74:1095, 2006.

[113] S. Popinet and S. Zaleski. A front-tracking algorithm for accurate representation of

surface tension. International Journal for Numerical Methods in Fluids, 30(6):775–

793, 1999.

[114] J. Pozorski and A. Wawrenczuk. SPH computation of incompressible viscous flows.

JOURNAL OF THEORETICAL AND APPLIED MECHANICS-WARSAW-,

40:917–938, 2002.

[115] C. Pozrikidis. Instability of two-layer creeping flow in a channel with parallel-sided

walls. Journal of Fluid Mechanics, 351:139–165, 1997.

[116] D.J. Price. Modelling discontinuities and kelvin-helmholtz instabilities in sph.

Journal of Computational Physics, 227(24):10040–10057, 2008.

[117] E.G. Puckett, A.S. Almgren, J.B. Bell, D.L. Marcus, and W.J. Rider. A high-order

projection method for tracking fluid interfaces in variable density incompressible

flows* 1. Journal of Computational Physics, 130(2):269–282, 1997.

[118] DI Pullin. Numerical studies of surface-tension effects in nonlinear kelvin–

helmholtz and rayleigh–taylor instability. Journal of Fluid Mechanics, 119(1):507–

532, 1982.

[119] P. Ramaprabhu, G. Dimonte, and MJ Andrews. A numerical study of the influence

of initial perturbations on the turbulent rayleigh–taylor instability. Journal of

Fluid Mechanics, 536(1):285–319, 2005.

[120] P. Ramaprabhu, G. Dimonte, Y.N. Young, AC Calder, and B. Fryxell. Limits of

the potential flow approach to the single-mode rayleigh-taylor problem. Physical

Review E, 74(6):066308, 2006.

[121] B. Ramaswamy and M. Kawahara. Arbitrary lagrangian–eulerianc finite element

method for unsteady, convective, incompressible viscous free surface fluid flow.

International Journal for Numerical Methods in Fluids, 7(10):1053–1075, 1987.

[122] J.D. Ramshaw and J.A. Trapp. A numerical technique for low-speed homoge-

neous two-phase flow with sharp interfaces* 1. Journal of Computational Physics,

21(4):438–453, 1976.



Bibliography 149

[123] P. W. Randles and L. D. Libersky. Smoothed particle hydrodynamics: some

recent improvements and applications. Computer methods in Applied mechanics

and Engineering, 139(1-4):375–408, 1996.

[124] L. Rayleigh. Investigation of the character of the equilibrium of an incompressible

heavy fluid of variable density. Proc. Lond. Math. Soc, 14(1):170–177, 1883.

[125] W.J. Rider and D.B. Kothe. Reconstructing volume tracking* 1,* 2. Journal of

computational physics, 141(2):112–152, 1998.

[126] D.H. Rothman and S. Zaleski. Lattice-gas models of phase separation: interfaces,

phase transitions, and multiphase flow. Reviews of Modern Physics, 66(4):1417,

1994.

[127] D.H. Rothman and S. Zaleski. Lattice-gas cellular automata: simple models of

complex hydrodynamics, volume 5. Cambridge Univ Pr, 2004.

[128] M. Rudman. Volume-tracking methods for interfacial flow calculations. Interna-

tional Journal for Numerical Methods in Fluids, 24(7):671–691, 1997.

[129] K.J. Ruschak. A method for incorporating free boundaries with surface tension in

finite element fluid-flow simulators. International Journal for Numerical Methods

in Engineering, 15(5):639–648, 1980.

[130] AC Rust and M. Manga. Effects of bubble deformation on the viscosity of dilute

suspensions. Journal of non-newtonian fluid mechanics, 104(1):53–63, 2002.

[131] H. Saito and LE Scriven. Study of coating flow by the finite element method.

Journal of Computational Physics, 42(1):53–76, 1981.

[132] DA Saville. Electrohydrodynamics: the taylor-melcher leaky dielectric model.

Annual review of fluid mechanics, 29(1):27–64, 1997.

[133] R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and

interfacial flow. Annual Review of Fluid Mechanics, 31(1):567–603, 1999.

[134] RS Scorer. Experiments on convection of isolated masses of buoyant fluid. Journal

of Fluid Mechanics, 2(06):583–594, 1957.



Bibliography 150

[135] MS Shadloo and M. Yildiz. Numerical modeling of kelvin–helmholtz instabil-

ity using smoothed particle hydrodynamics. International Journal for Numerical

Methods in Engineering, 87:988–1006, 2011.

[136] M.S. Shadloo, A. Zainali, S.H. Sadek, and M. Yildiz. Improved incompressible

smoothed particle hydrodynamics method for simulating flow around bluff bodies.

Computer methods in applied mechanics and engineering, 200(9):1008–1020, 2011.

[137] MS Shadloo, A. Zainali, and M. Yildiz. Simulation of single mode rayleigh–taylor

instability by sph method. Computational Mechanics, pages 1–17, 2012.

[138] M.S. Shadloo, A. Zainali, M. Yildiz, and A. Suleman. A robust weakly compress-

ible sph method and its comparison with an incompressible sph. International

Journal for Numerical Methods in Engineering, 2011.

[139] S. Shao and E. Y. M. Lo. Incompressible SPH method for simulating Newto-

nian and non-Newtonian flows with a free surface. Advances in Water Resources,

26(7):787–800, 2003.

[140] P.J. Shopov, P.D. Minev, and I.B. Bazhlekov. Numerical method for unsteady

viscous hydrodynamical problem with free boundaries. International journal for

numerical methods in fluids, 14(6):681–705, 1992.

[141] W. Shyy, HS Udaykumar, M.M. Rao, and RW Smith. Computational fluid dy-

namics with moving boundaries. series in computational and physical processes in

mechanics and thermal sciences. WJ Minkowycz and EM Sparrow ed, 1996.

[142] J. C. Simpson and M. A. Wood. Classical kinetic theory simulations using

smoothed particle hydrodynamics. Physical Review E, 54(2):2077, 1996.

[143] A. Smolianski. Numerical modeling of two-fluid interfacial flows. University of
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