
 

 

 

 

 
 
 

BIOINFORMATICS APPROACHES TO ASSOCIATE SINGLE NUCLEOTIDE  
 

POLYMORPHISMS WITH HUMAN DISEASES ACCORDING TO THEIR  
 

PATHWAY RELATED CONTEXT 
 
 

 

 

 

 

 

 

 

by 

BURCU GÜNGÖR 

 

 

 

 

 

 

 

Submitted to the Graduate School of Engineering and Natural Sciences  
in partial fulfillment of  

the requirements for the degree of  
Doctor of Philosophy 

 

 

 

Sabancı University 
 

June 2012 
 



 

ii 

 



 

iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© BURCU GÜNGÖR 2012 

 

All rights reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 

ABSTRACT 

 

BIOINFORMATICS APPROACHES TO ASSOCIATE SINGLE NUCLEOTIDE  
POLYMORPHISMS WITH HUMAN DISEASES ACCORDING TO THEIR  

PATHWAY RELATED CONTEXT 
 

Burcu Güngör 
Biological Sciences and Bioengineering 

PhD Thesis, 2012 
 

Prof. O. Ugur Sezerman (Thesis Supervisor) 

 

Keywords: Genome Wide Association Study (GWAS), Single Nucleotide 
Polymorphism (SNP), human complex diseases, pathways, protein-protein interaction 
networks  
 

 

Genome-wide association studies (GWASs) with millions of single nucleotide 
polymorphisms (SNPs) are popular strategies to reveal the genetic basis of human 
complex diseases. Despite many successes of GWASs, it is well recognized that new 
analytical approaches have to be integrated to achieve their full potential. In this thesis, 
starting with a list of SNPs, found to be associated with disease in GWAS, we have 
developed a novel methodology to devise functionally important pathways through the 
identification of SNP targeted genes within these pathways. Our methodology is based 
on functionalization of important SNPs to identify effected genes and disease related 
pathways. We have tested our methodology on rheumatoid arthritis, epilepsy, 
intracranial aneurysm and Behçet’s disease datasets. With the whole-genome 
sequencing on the horizon, we show that the full potential of GWASs can be achieved 
by integrating prior knowledge from functional properties of a SNP and pathway-
oriented analysis via protein-protein interaction networks. 
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ÖZET 

 

TEK NÜKLEOTĐD POLĐMORFĐZMLERĐNĐ YOLAKLAR ÜZERĐNDEN ĐNSAN 
HASTALIKLARI ĐLE ĐLĐŞKĐLENDĐRMEK ĐÇĐN BĐYOĐNFORMATĐK 

YÖNTEMLER 
 

Burcu Güngör 
Biyolojik Bilimler ve Biyomühendislik 

Doktora Tezi, 2012 
 

Prof. Dr. O. Uğur Sezerman (Tez Danışmanı) 

 

Anahtar Kelimeler: tüm genom bağlantı analizi, tek nükleotid polimorfizmi, karmaşık 
insan hastalıkları, yolaklar, protein-protein etkileşim ağları 
 

  
 
Milyonlarca tek nükleotid polimorfizmlerinin incelendiği tüm genom bağlantı analizleri 
(TGBA), insan karmaşık hastalıklarının genetik temellerini açığa çıkarmak için popüler 
stratejilerdir. TGBAların bilinen pek çok başarısına rağmen, onların tüm 
potansiyallerine ulaşabilmek için yeni analitik yöntemlerin entegre edilmesi gerektiği 
iyi bilinir. Bu tezde, TGBAda hastalıkla ilşkisi bulunmuş tekli nükleotid polimorfizm 
(TNP) listesi ile başlayıp, fonksiyonel olarak önemli yolak listesini, yolağın içindeki 
TNPler tarafından hedeflenen genleri bularak ortaya çıkaran yeni bir yöntem geliştirdik. 
Metodumuz, etkinenen genlerin ve hastalıkla ilgili yolakların bulunması için önemli 
TNPlerin fonksiyonel özelliklerinin incelenmesiyle başlar. Yöntemimizi romatizma, 
epilepsi, anevrizma ve Behçet hastalığı TGBA verilerinde test ettik. Ufukta tüm genom 
dizilemesi varken, TGBAnın tüm potansiyellerine, TNPlerin fonksiyonel özellikleri ve 
protein protein etkileşim ağları ile yolak bazlı analizlerden önsel bilgiler katarak 
erişilebileceğini gösterdik. 
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CHAPTER  1 
 
 
 
 

1  INTRODUCTION 
 
 
 

1.1 Motivation 
 

 

Human complex diseases are at the interplay of multiple genetic, life style and 

environmental factors. As the incidence of human complex diseases increase, 

researchers attempt to exploit many different experimental techniques to be able to 

comprehend the complex nature of these diseases. The advances in high-throughput 

laboratory methods now allow researchers to investigate larger questions in larger 

populations and to cover the genome in more detail. Thus, the discoveries in the 

genetics of complex diseases get accelerated. As it becomes easier and cheaper to find 

out the genotypes of many individuals, now the genetic studies cover a richer set of 

mutations within individual genes rather than focusing on one or a few coding variants. 

In parallel, the underlying patterns of coinheritance of markers (linkage disequilibrium, 

LD) are discovered through the HapMap Project (http://www. hapmap.org). Once this 

information is combined with the chip-based genotyping assays, genome-wide 

association studies (GWASs) of complex diseases became quite popular.  

 

GWASs aim to identify single-nucleotide polymorphisms (SNPs) that may be 

associated with a disease under study, via comparing the differences in the frequencies 

of the SNPs between the cases and the controls. GWASs have been advocated as the 

most powerful approach to explore polygenic traits for many diseases. Although 

GWASs are rapidly increasing in number, numerous challenges persist in identifying 

and explaining the associations between loci and quantitative phenotypes.  As observed 

in many examples of GWASs, few of the many possible variants can contribute to the 
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explanation of a small percentage of the estimated heritability for complex diseases, and 

thus it is a major challenge to identify marker SNPs specific to a complex disease or to 

develop genetic risk prediction tests (Couzin and Kaiser, 2007; Couzin and Kaiser, 

2007; Dermitzakis and Clark, 2009; Gibson, 2010; Shriner, et al., 2007; Williams, et al., 

2007). Although, there are many success stories that uncover the genetic epidemiology 

of complex diseases using GWASs, still many of the fundamental questions relating to 

the mechanisms of complex human disease remain unanswered. 

 

A biological pathway is a sequence of activities between molecules in a cell, 

which ends up to a particular product or a change in a cell. Most of the times, in 

complex diseases, several genes and thus several pathways have to be affected for 

disease development. Multiple factors (e.g. SNPs, miRNAs, metabolic factors) may 

target different set of genes in the same pathway crippling its function and thus causing 

the disease development. Therefore, each gene makes a mild contribution to disease 

risk, which is difficult to detect using existing methodologies. In addition to the 

significance of the pathways for complex diseases in worldwide, the pathway 

knowledge can be further exploited to enlighten the underlying disease etiology in 

different populations. Finally, the knowledge of the genetic determinants of a disease 

(in the form of variants, genes or pathways) may provide diagnostic tools for identifying 

individuals at increased risk for that specific disease (McCarthy, et al., 2008).   

 

 

1.2 Thesis statement and contributions 
 

 

In this thesis, we hypothesize that the pathways are more important than 

individual genes, SNPs and other individual factors to elucidate disease mechanisms. 

Hence, to understand the underlying mechanism of complex diseases, rather than 

focusing on SNP/gene markers, we hypothesize that one should find out affected 

pathways targeted by different factors. Throughout this thesis, we developed a novel 

pathway and network oriented GWAS analysis method, PANOGA, that challenges to 

identify pathway markers by combining nominally significant evidence of genetic 

association with protein-protein interaction networks, functional information of selected 

SNPs, and current knowledge of biochemical pathways (Bakir-Gungor and Sezerman, 
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2011). Our methodology devises functionally important pathways through the 

identification of SNP targeted genes within these pathways. We have tested our 

methodology on rheumatoid arthritis (RA), partial epilepsy (PE), intracranial aneurysm 

(IA) and Behçet’s disease datasets and shown that pathway and network oriented 

analysis of GWASs reveals the underlying mechanisms of complex diseases in more 

detail, compared to the traditional analyses of GWASs. The main contributions of this 

thesis can be summarized as following: 

 

1) We present PANOGA, pathway and network oriented GWAS analysis, 

that challenges to identify disease associated Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathways by combining nominally significant 

evidence of genetic association with current knowledge of biochemical 

pathways, protein-protein interaction networks, and functional information 

of selected SNPs (Bakir-Gungor and Sezerman, 2011). 

2) In the rheumatoid arthritis GWAS dataset, we identified both previously 

known (e.g. Jak-STAT signaling, T cell receptor signaling, leukocyte 

transendothelial migration, cytokine-cytokine receptor interaction, antigen 

processing and presentation) and additional KEGG pathways (e.g. pathways 

in cancer, neurotrophin signaling, chemokine signaling pathways) as 

associated with RA. The KEGG functional enrichment of the RA specific 

drug target genes included these additionally found pathway terms. Among 

the previously known pathways, we identified additional genes as associated 

with RA (e.g. antigen processing and presentation, tight junction). 

Importantly, within these pathways, the associations between some of these 

additionally found genes, such as HLA-C, HLA-G, PRKCQ, PRKCZ, TAP1, 

TAP2 and RA were verified by either OMIM database or by literature 

retrieved from the NCBI PubMed module (Bakir-Gungor and Sezerman, 

2011). Similarly, we applied our methodology on epilepsy dataset, and 

showed that PANOGA was able to identify significant pathways, explaining 

the pathogenesis of the disease. The relation between these pathways and the 

disease was supported by other studies in literature. 20 out of the top 30 

affected pathways were found to be common with at least three different 

studies, among the seven studies compared (Bakir-Gungor and Sezerman, 

2012, submitted). 
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3) Via applying PANOGA on two aneurysm GWASs, conducted on 

European and Japanese populations, we have shown that 7 of the top 10 

affected pathways are common between these two populations (where, the 

probability of getting 7 common pathways out of randomly selected 10 

pathways from existing 246 human KEGG pathways is 2.44E-36). These 

pathways are MAPK signaling, Cell cycle, TGF-beta signaling, Focal 

adhesion, Adherens junction, Regulation of actin cytoskeleton, and 

Neurotrophin signaling pathways. The relation between these pathways and 

the disease is supported by other studies in literature. We have also applied 

PANOGA on two Behçet's disease GWASs, conducted on Turkish and 

Japanese populations. Even though there were very few common SNPs and 

commonly targeted genes, we have shown that 5 of the top 10 pathways are 

common between these two populations. Hence, we emphasize the 

importance of pathway-oriented analysis to enlighten disease mechanisms. 

Although different SNP targeted genes are affected on each population, these 

genes map to the same pathways among different populations (Bakir-Gungor 

and Sezerman, 2012, submitted). Accordingly, we introduce pathway marker 

concept to the literature, which explains universal disease development 

mechanism. As a potential application, each population may search for 

disease causing factors targeting the genes within these marker pathways. 

Rather than the population, the same method can be extended to individuals 

to identify modifications occuring on the genes within these pathways and 

thus determine individual reasons for disease development, which can be 

exploited for drug development and personalized therapeutical applications. 

4) Since our method can be easily applied to GWAS datasets of other 

diseases, it will facilitate the identification of disease specific pathway 

combinations. In this regard, PANOGA protocol represents a feasible 

solution for the identification of pathway markers to bridge the gap between 

GWAS and biological mechanisms of complex diseases (Bakir-Gungor and 

Sezerman, 2012). PANOGA protocol is designed as a dynamic and modular 

platform, which can be easily updated with new methodologies and datasets. 

On the other hand, to present the user a fully automated option, we 

implemented PANOGA protocol as a web-server, which is almost ready to 

be published (in preparation). 
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5) Finally, these research efforts correspond to four journal papers 

published or submitted, during the course of this thesis (Bakir-Gungor and 

Sezerman, 2011); (Bakir-Gungor and Sezerman, 2012); (Bakir-Gungor and 

Sezerman, 2012, submitted); (Bakir-Gungor, et al., 2012, submitted).  Two 

additional manuscripts, describing our results on Behçet’s disease and 

webserver implementation are in preparation.  

 
 

1.3 Organization of the thesis 
 

 

 We present a brief introduction to the human complex diseases, GWASs, 

problems in GWAS data analysis, thesis statement and contributions in this chapter. 

Chapter 2 gives basic background on the biological and computational aspects, and 

summarizes related literature. Information about biological pathways, Mendelian vs. 

complex diseases, network and pathway based approaches to GWASs, the significance 

of conducting GWASs on different populations are also discussed in Chapter 2. Chapter 

3 presents the details of the proposed pathway and network oriented GWAS analysis 

protocol, and the datasets used. The details of the design and the implementation of the 

PANOGA protocol are also explained in Chapter 3. Chapter 4 provides results of the 

proposed system on several data sets, i.e. rheumatoid arthritis, partial epilepsies, 

intracranial aneurysm, Behçet’s disease. The results are discussed from both biological 

and computational perspectives in Chapter 5 for each dataset. In this chapter, the 

advantages of network, pathway and population based GWAS analysis, over traditional 

GWASs are discussed in detail. Chapter 6 concludes the thesis and gives some future 

directions for pathway oriented and integrative GWAS data analysis procedures. 

 

 

 

 

 

 

 

 



 

6 

 

 
 

 

 
 

CHAPTER  2 
 
 
 
 

2  BACKGROUND INFORMATION ON BIOLOGICAL & COMPUTATIONAL 
ASPECTS 

 
 
 

2.1 Mendelian Disorders 
 

 

 Mendelian disorders are a type of human diseases that obey Mendelian pattern 

of inheritance and are caused by the variances in a single gene. Hence, they are also 

called single-gene or mono-genic diseases. They are relatively uncommon. According 

to their modes of inheritance, single-gene diseases can fall into one of the following five 

categories: 

1. Autosomal recessive inheritance,  

2. Autosomal dominant inheritance,  

3. X-linked recessive inheritance,  

4. X-linked dominant inheritance, 

5. Mitochondrial inheritance. 

 Depending on where the gene for the trait is located, a single-gene disorder is 

categorized as autosomal vs. X-linked, or may be mitochondrial. Depending on how 

many copies of the mutant allele are required to express the phenotype, a single-gene 

disorder is categorized as recessive vs. dominant. Examples of Mendelian type human 

disorders from these categories and known associated genes are shown in Table 2.1. 
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Table 2.1 Examples of Mendelian type human disorders, types of inheritance, 

responsible genes (Chial, 2008). 

Disease Type of Inheritance Gene Responsible 

Phenylketonuria (PKU) Autosomal recessive Phenylalanine hydroxylase 

(PAH) 

Cystic fibrosis Autosomal recessive Cystic fibrosis conductance 

transmembrane regulator 

(CFTR) 

Sickle-cell anemia  Autosomal recessive Beta hemoglobin (HBB)  

Albinism, oculocutaneous, 

type II  
Autosomal recessive Oculocutaneous albinism II 

(OCA2)  

Huntington's disease  Autosomal dominant Huntingtin (HTT) 

Myotonic dystrophy type 1  Autosomal dominant Dystrophia myotonica-protein 

kinase (DMPK)  

Hypercholesterolemia, 

autosomal dominant, type B  
Autosomal dominant Low-density lipoprotein 

receptor (LDLR); 

apolipoprotein B (APOB)  

Neurofibromatosis, type 1  Autosomal dominant Neurofibromin 1 (NF1) 

Polycystic kidney disease 1 

and 2 
Autosomal dominant Polycystic kidney disease 1 

(PKD1) and polycystic 

kidney disease 2 (PKD2), 

respectively 

Hemophilia A  X-linked recessive Coagulation factor VIII (F8)  

Muscular dystrophy, 

Duchenne type  
X-linked recessive Dystrophin (DMD)  

Hypophosphatemic rickets, 

X-linked dominant 
X-linked dominant Phosphate-regulating 

endopeptidase homologue, X-

linked (PHEX)  

Rett's syndrome  X-linked dominant Methyl-CpG-binding protein 

2 (MECP2)  

Spermatogenic failure, 

nonobstructive, Y-linked 
Y-linked Ubiquitin-specific peptidase 

9Y, Y-linked (USP9Y)  
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 Online Mendelian Inheritance in Man, OMIM is a comprehensive database that 

contains information on all known Mendelian disorders, including 5,264 phenotypes 

and 13,916 genes, as of May 22nd 2012 (Amberger, et al., 2011). To understand the 

genetic causes of Mendelian diseases, several attempts have been made, and these 

efforts resulted in major discoveries of gene variations that predispose to such diseases.  

This happens due to the simplicity of their inheritance patterns, compared to the human 

complex diseases. 

 
 

2.2 Human Complex Diseases 
 
 
 

 In contrast to the Mendelian diseases, in which a single gene defines 

susceptibility to a disease, human complex diseases arise from the joint effects of 

multiple genetic, environmental factors and life style (Kiberstis and Roberts, 2002; 

Lander and Schork, 1994; Weeks and Lathrop, 1995). Hence they are also referred as 

multifactorial or polygenic diseases. Complex diseases appear commonly in the 

population and are of major clinical and economic significance. Many human diseases 

fall into this category, including cardiovascular diseases, cancer, Alzheimer’s disease, 

diabetes mellitus, scleroderma, nicotine and alcohol dependence, asthma, rheumatoid 

arthritis, Parkinson's disease, epilepsies, multiple sclerosis, aneurysm, osteoporosis, 

connective tissue diseases, kidney diseases, autoimmune diseases, and many more 

(Hunter, 2005; Merikangas and Risch, 2003). These diseases are accepted as the major 

source of disability and death worldwide. 

 

 The genes related to complex disease phenotypes are inherited, but these genetic 

factors only illuminate one side of the coin. Environmental factors, including life style 

choices, act on the other side of the coin, differently from Mendelian diseases. In this 

regard, genetic predisposition indicates that a person has a genetic susceptibility to 

develop a certain disease. But, this does not guarantee that an individual with such a 

genetic tendency will develop the disease phenotype. At this point, the combined effect 

of environmental factors makes the final decision on the development of 

the disease phenotype. For example, researchers show that some type of the skin cancer 

is associated with mutations in the melanocortin 1 receptor gene (MC1R) in people with 

fair skin color (Box, et al., 2001). When these individuals are exposed to sunlight, then 
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the combined action of ultraviolet light B and the variants on the MC1R increases the 

risk of developing a skin cancer (Hunter, 2005). 

Although complex diseases appear more frequently than the Mendelian diseases, 

little progress has been made in the identification of the genetic causes of these diseases.  

Even if some individual gene variants have been associated with multifactorial diseases, 

they typically have small effect sizes or account for only a few percent of disease risk. 

That said, the combined effects of gene variants within pathways might better explain 

complex disease development mechanisms (the paradigm of complex genetics).   

 
 
2.2.1 Rheumatoid Arthritis (RA) 
 

 
Rheumatoid Arthritis (RA, OMIM 180300) is a systemic inflammatory disease, 

primarily affecting synovial joints. As reported at the 2008 American College of 

Rheumatology meeting, about 1% of the world's population is afflicted by RA and 

women affected three times more often than men. Disease onset is most frequent 

between the ages of 40 and 50, but people of any age can be affected. While the earlier 

stages of the disease appear a disabling and painful condition, in the later stages it can 

lead to substantial loss of functioning and mobility.  

Being a complex disease, the etiology of RA depends on a combination of multiple 

genetic and environmental conditions, involving a yet unknown number of genes. The 

heritability of this disease is estimated as ~50% based on family studies, including twin 

studies (Bali, et al., 1999; MacGregor, et al., 2000). In GWASs among RA patients of 

European ancestry, multiple risk alleles have been identified in the major 

histocompatibility complex (MHC) region, and 25 RA risk alleles have been confirmed 

in 23 non-MHC loci (Barton, et al., 2009; Begovich, et al., 2004; Gregersen, et al., 

2009; Kurreeman, et al., 2007; Plenge, et al., 2007; Raychaudhuri, et al., 2008; 

Raychaudhuri, et al., 2009; Remmers, et al., 2007; Suzuki, et al., 2000; Thomson, et al., 

2007; Zhernakova, et al., 2007). These variants explain about 23% of the genetic burden 

of RA (Raychaudhuri, et al., 2008), indicating that additional variations remain to be 

discovered to explain the polygenic etiology of RA.  
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2.2.2 Partial Epilepsy (PE) 
 

Epilepsy is a common neurological disorder that affects around 1% of the world’s 

population, including one in 200 children (Cowan, 2002; Pitkanen and Sutula, 2002; 

Sander, 2003). Even though it has myriad etiologies, it is characterized by recurrent and 

spontaneous seizures. In roughly 30% of epilepsy cases, it is a result of an insult to the 

brain, such as trauma, stroke, hypoxia, brain infection, tumour, postnatal insults, and 

status epilepticus (Hauser, 1994). Despite the heterogeneity in the causes of epilepsies, 

it is accepted as a highly genetic and heritable disorder in many cases (Gourfinkel-An, 

et al., 2001; Prasad, et al., 1999; Reid, et al., 2009; Walsh and McCandless, 2001). 

While the risk of having epilepsy in general population is 0.5 percent, the same risk 

among first-degree relatives of individuals with idiopathic generalized epilepsy reaches 

to 8-12 percent (Steinlein, 2004). This statistic also indicates a strong genetic 

component underlying epilepsy, but which is considered as a complex one in ~99% of 

the cases, rather than displaying the characteristics of Mendelian inheritance 

(Kasperaviciute, et al., 2010). 

Partial epilepsy (PE) is a subcategory of epilepsy, which is characterized by localized 

origin of seizures. In other words, seizure affects only one part of the brain in PE. 

Although cortical dysplasias and low-grade neoplasms are the most frequently detected 

reasons in children, no identifiable etiology exist in adults (ie, neuroimaging studies are 

most often normal). Still, epilepsy patients share some biological features including 

EEG abnormalities, secondary generalization of partial seizures, and the elemental 

biophysical and neurochemical cellular components of seizures, e.g. action potentials 

and synaptic transmission processes. These observations indicate that there are some 

shared mechanisms in indivial's predisposition to PE. Different studies report different 

estimates for PE heritability, even reaching up to 70% (Kjeldsen, et al., 2001). Reviews 

by Poduri et al (Poduri and Lowenstein, 2011) and Pandolfo et al (Pandolfo, 2011) 

summarize the current status in epilepsy genetics. Although the significance of genetic 

factors is well known for PE, the factors themselves are still ambiguous. Advancing 

genetic technologies such as genome wide association studies, whole-genome 

oligonucleotide arrays, whole exome, whole genome sequencing now allow researchers 

to discover epilepsy genetics from many different perspectives, which is not thought to 

be possible using traditional methodologies. For example, the identified copy number 
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variations as associated with idiopathic epilepsy explain higher percent of epilepsies 

than any single gene discovered so far (de Kovel, et al., 2010; Mefford, et al., 2010; 

Poduri and Lowenstein, 2011). Although the traditional pedigree studies of epilepsy 

genetics focus on ion channels and neurotransmitters, newly discovered genes, as 

identified with the help of advancing technologies reveal the significance of novel 

pathways involved in epileptogenesis (Kasperaviciute, et al., 2010; Poduri and 

Lowenstein, 2011). Even if the first GWAS of epilepsy on European population 

reported that no genome-wide significant association is found, it highlighted two 

candidate genes (ADCY9 and PRKCB) related to the chemokine signaling pathway, 

which is also identified through genome level expression analysis in epileptogenesis 

(Kasperaviciute, et al., 2010; Sharma, 2012). Second GWAS of epilepsy on Chinese 

population detected two highly correlated SNPs, rs2292096 (P=1.0X10-8, OR=0.63) and 

rs6660197 (P=9.9X10-7, OR=0.69). One of these SNPs is located on 1q32.1, in the 

CAMSAP1L1 gene, which encodes a cytoskeletal protein (Guo, et al., 2012). They 

showed once again the association of rs9390754 (P =1.7 X 10-5) with epilepsy, which is 

found on 6q21 in the GRIK2 gene, that encodes a glutamate receptor. Additionally, they 

reported several other loci in genes involved in neurotransmission or neuronal 

networking, which requires further analysis (Guo, et al., 2012). Unfortunately, the 

GWAS dataset of this study is not publicly available. 

 

2.2.3 Intracranial Aneurysm (IA) 
 
 
Intracranial aneurysm (IA, OMIM 105800) is a cerebrovascular disease that affects 

around 1 per 50 people (Rinkel, et al., 1998). IA is thought to be a major public health 

concern since the rupture of an IA leads to subarachnoid hemorrhage (SAH), which is a 

destructive subset of stroke. One third of the patients with SAH die within the initial 

weeks after the bleed and the rest end up with severe physical disabilities (Ruigrok and 

Rinkel, 2010). Both environmental risk factors such as smoking, hypertension, 

excessive alcohol intake; and non-modifiable risk factors such as family history of IA, 

female gender and systemic diseases (e.g. polycystic kidney disease and vasculr type of 

Ehlers Danlos disease) are accepted to have a role in the development of IA and SAH 

(Feigin, et al., 2005; Gieteling and Rinkel, 2003; Juvela, 2000; Juvela, et al., 2001; 

Pepin, et al., 2000; Taylor, et al., 1995). Since the subjects with familial preponderance 
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of IA have a higher risk of being affected by IA, the genetic components are thought to 

be related with the tendency of developing an IA. To identify these IA related genetic 

factors, several approaches including DNA linkage, candidate gene studies and genetic 

association studies have been used (Krischek and Noue, 2006; Nahed, et al., 2007; 

Ruigrok and Rinkel, 2008). Since these studies included relatively small numbers of 

patients and controls, results have been conflicting and have not been replicated 

(Krischek and Inoue, 2006; Nahed, et al., 2007; Ruigrok and Rinkel, 2008). Compared 

with the candidate gene studies, the hypothesis-free approach of GWAS allows testing 

for the association of all common variations in the entire genome with disease. Four 

recent GWAS identified some variants associated with IA (Akiyama, et al., 2010; 

Bilguvar, et al., 2008; Low, et al., 2012; Yasuno, et al., 2010).  In JP population, five 

SNPs (rs1930095 (P=1.31×10-5), rs4628172 (P=1.32×10-5), rs7781293 (P=2.78×10-5), 

rs7550260 (P=4.93×10-5), rs9864101 (P=3.63×10-5)) were associated with IA 

(Akiyama, et al., 2010; Low, et al., 2012). In EU population, five loci were found to be 

strongly related with IA on chromosomes 18q11.2 (rs11661542, OR=1.22, P=1.1×10-

12), 10q24.32 (rs12413409, OR=1.29, P=1.2×10-9), 13q13.1 (rs9315204, OR=1.20, 

P=2.5×10-9), 8q11.23-q12.1 (rs10958409, rs9298506, OR=1.28, P=1.3×10-12), 9p21.3 

(rs1333040, OR=1.31, P=1.5×10-22) (25) and a further 14 loci displayed suggestive 

association (Gaal, et al., 2012). However, these variants explain only a small percentage 

of the familial risk of IA, which makes genetic risk prediction tests currently unfeasible 

for IA (Ruigrok and Rinkel, 2010). 

 

2.2.4 Behçet’s Disease 
 
 
Behçet's disease is a chronic systemic disease, characterized by recurrent inflammatory 

attacks affecting several organs such as orogenital mucosa, eyes and skin. It is firstly 

described by the Turkish clinician Hulusi Behçet in 1937 as a complex disorder 

(Behçet, 1937), and its etiology remains poorly characterized. Although Behçet’s 

disease exists worldwide, it is more widespread in countries along the ancient silk route 

spanning from Japan to the Middle East and the Mediterranean basin. With a prevalance 

of 4 cases per 1,000 individuals, Behçet's disease is most frequently observed in Turkey 

among the Middle Eastern countries (Remmers, et al., 2010), (Hatemi and Yazici, 

2011).  In the Turkish population, the sibling recurrence risk ratio of Behçet's disease is 
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estimated to be between 11.4 and 52.5, which supports the genetic contributions to the 

disease (Remmers, et al., 2010). Candidate gene studies and two small GWASs (Fei, et 

al., 2009; Meguro, et al., 2010) have investigated the genetics of Behçet’s disease, but 

the results have generally been underpowered, making interpretation and replication of 

the outputs problematic. Recently, two GWASs of Behçet's disease are conducted on 

Turkish (Remmers, et al., 2010) and Japanese (Mizuki, et al., 2010) populations. In 

these studies, a variant on HLA-B gene is found as the most strongly associated genetic 

factor to Behçet’s disease, but it accounts for less than 20% of the genetic risk. This 

result indicates that other genetic factors are waiting to be discovered. 

 

 
2.3 Biological pathways 

 
 
 

One important goal of biology is to comprehend life at the molecular level, more 

specifically at the DNA, RNA, gene, or protein levels. This knowledge is central to 

perceive how cells act in concert in an organism and also how they dysfunction to cause 

a disease. In this regard, biological pathways organize our knowledge with respect to a 

functional mechanism and describe an order of events at the molecular level that realize 

this specific mechanism. For instance, the steps followed within the cell to replicate 

DNA, to control the cell division, or to degrade glucose in order to produce energy may 

each be represented as a biological pathway (Lamond, 2002). Typically, a pathway 

defines a group of molecular entities, their cellular locations and their relations, e.g. 

activates, degrades, inactivates, inhibits, phosphorylates. Most importantly, each such 

set of molecules are specialized to perform a specific biological function. Over the 

years, several canonical pathways, which cover many generic biological processes in 

the cell, have been proposed. One significant advantage of pathway representations is 

that they aid the comprehension of complex molecular relationships with their carefully 

designed maps. Pathway maps present an overview of the cascade of events, 

participating molecules and relations among them in a single diagram, which is easy to 

perceive. Since these diagrams capture the overall structure of a biological mechanism, 

they help to analyze potential consequences of perturbations (e.g. when one of the genes 

is mutated in a disease or when one of the proteins is targeted by a drug). In summary, 

biological pathways are fundamental to enlighten the functions of individual genes and 
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proteins in terms of systems and processes that contribute to normal physiology and to 

disease. Hence, the pathway-level analysis is a powerful approach to understand 

complex biological systems at multiple levels of biological organization; to create a full 

picture of a system’s behaviour; and to interpret experimental data at a higher level than 

that of individual biomolecules.  

 
 
2.3.1 KEGG pathways 
 

 
Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg) 

present experimental knowledge on biological systems, systemic functions of the cell in 

terms of molecular pathway maps. KEGG database is frequently curated by Kaneisha 

Labs, from published literature. As of May 2012, it holds 249 human pathways. 

Soh et al conducted a comparative analysis between three widely used pathway 

databases (KEGG, Ingenuity and Wikipathways) (Soh, et al., 2010). They defined 

“Pathway Comprehensive Score” metric as the number of pathways a database hosts, 

divided by the total number of unique pathways present within that pathway database. 

According to this metric, KEGG achieves the highest score of 0.59, indicating that 

KEGG Pathways are the most comprehensive of all databases. Their second metric, 

“Gene Pair Coverage Score” is computed via dividing the number of gene pairs a 

database hosts by the total number of unique gene pairs. In terms of Gene Pair Coverage 

Score, KEGG achieves the highest score of 0.65. KEGG pathways are also widely used 

for high throughput data analysis. Hence, we will focus our pathway analysis on KEGG 

pathways. 

 
 
2.3.2 Pathway oriented high-throughput data analysis 
 
 
The tremendous boost in the “omics” technologies such as transcriptomics, proteomics 

and metabolomics makes it possible to generate a global picture of system 

characteristics, and to look for the interactions and coordinated behavior among 

different levels of biochemical activity. These experiments measure tens of thousands of 

entities in parallel, e.g., gene expression (Tarca, et al., 2009), protein abundance 

(Patterson and Aebersold, 2003) or metabolite concentrations (Ouattara, et al., 2012) in 
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various biological samples. Additionally, functional data, e.g., PPI (Bonetta, 2010), 

protein-DNA interactions (Luo, et al., 2009); or miRNA expressions (Duan, et al., 

2011), or genetic variations (Knight, 2010; Lam, et al., 2012) can also be measured 

using high-throughput techniques. Due to the enormous size of these datasets, in 

practice, it gets impossible to manually curate them and to deduce the underlying 

mechanisms. At this point, to assist the human mind, bioinformatics approaches are 

crucial to integrate, summarize and present the high-throughput data in the context of 

biological knowledge (Gehlenborg, et al., 2010). In this regard, biological pathways rise 

as an effective strategy. They provide an abstraction of existing knowledge, which is 

more amenable to computing, rather than purely textual information. Moreover, as 

mentioned before pathway maps present an approach to integrate biological knowledge 

with data visualization to facilitate human interpretation of the results. Hence, as shown 

in Figure 2.1, performing pathway-level analysis for high-throughput datasets helps to 

identify relevant biological mechanisms and generate hypotheses, which can be further 

tested with smaller scale, but more sensitive experiments.  

 

Figure 2.1 Pathway-level analysis of high-throughput datasets (Kelder, et al., 2010) 

(Bebek, et al., 2012). 

 

There are several studies in the literature trying to analyze high-throughput data in a 

pathway related context, as reviewed in (Khatri, et al., 2012). A widely used method for 

conducting pathway-level analysis on single omic data is functional enrichment, which 

is also referred as over-representation analysis or the first generation approach in 

pathway analysis (Khatri and Draghici, 2005). In this method, firstly, a set of genes that 

are observed to be correlated with the phenotype under study, or a set of genes that are 
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differentially expressed is selected. Secondly, this gene set is compared with a priori 

defined molecular sets (e.g. genes in established pathways, gene ontologies (GO)). At 

the end of this comparison, the goal is to identify the established pathways or GO terms 

that result in higher levels of overlap with the phenotype-associated genes than expected 

by chance. Finally, the list of significantly overrepresented or ‘enriched’ sets/pathways 

is used to comment on the biological relevance of the data. Since the development of 

the original tools (e.g. DAVID (Dennis, et al., 2003), GoMiner (Zeeberg, et al., 2003)), 

around a hundred of modified implementations of these functional enrichment analysis 

have been published and most are reviewed in (Huang, et al., 2009). While most of 

these tools perform functional enrichment in terms of gene ontologies (e.g. Go-Mapper 

(Smid and Dorssers, 2004), ADGO (Nam, et al., 2006), Ontologizer (Bauer, et al., 

2008), topGO (Alexa, et al., 2006)); some other tools conduct pathway based functional 

enrichment (e.g. Webgestalt (Zhang, et al., 2005), PANTHER (Mi, et al., 2010), 

KOBAS (Wu, et al., 2006)). There is also a third type of enrichment tool that checks for 

over-representation of genes both in gene ontologies and established pathways (e.g. 

ClueGO (Bindea, et al., 2009), DAVID (Huang, et al., 2007)). Following over-

representation analysis, functional class scoring approaches are developed as a second 

generation approach in pathway analysis. While detecting affected pathways, these 

approaches make use of molecular measurements (e.g., gene expression levels) and take 

into account the dependence between genes in a pathway in (Khatri, et al., 2012). The 

third generation approaches, namely pathway topology based approaches incorporate 

topological features of pathways, instead of treating the pathways as simple lists of 

genes (Khatri, et al., 2012). Although most of these pathway analysis tools are initially 

developed to gain insight into the underlying biology of differentially expressed genes; 

in the meantime they get adapted to the analysis of other types of high-throughput 

datasets, which is still a very hot research field. 

 

2.4 Genome wide association studies (GWAS) 
 
 
 

2.4.1 Overview of the GWAS 
 

Within the human genome, there are millions of sequence variations that vary in their 

frequencies and in the range of their effects on a particular disease. Single nucleotide 
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polymorphisms (SNPs) are the most common type among all other variants, which arise 

due to a single base substitution at a given genetic locus. Differently from point 

mutations, polymophism terminology is restricted to the genetic variations with a 

population frequency of at least 1% (Ku, et al., 2010). During and after the completion 

of the Human Genome Project, millions of SNPs were detected. In parallel, 

International HapMap Project have been crucial to validate these SNPs and characterize 

their correlation or linkage disequilibrium (LD) patterns in populations of European, 

Asian and African ancestry. This knowledge had a central role in making the study of 

the genetics of common disease a reality and has been integral to the development of 

genome-wide association studies.  

Genome-Wide Association Studies (GWAS) – in which hundreds of thousands of single 

nucleotide polymorphisms (SNPs) are tested simultaneously in thousands of cases and 

controls for association with a human complex disease, as shown in Figure 2.2,- have 

revolutionized the search for genetic basis of these diseases  (Hardy and Singleton, 

2009). The success of GWAS can be summarized with the published 600 genomewide 

association studies covering 150 distinct diseases and traits, explaining 800 SNP-trait 

associations. These studies not only identified novel common genetic risk factors, but 

also confirmed the importance of previously identified genetic variants. However, 

GWASs suffer from multiple-testing problem. To define the true DNA variant, that is 

associated with disease, a stringent statistical threshold is used (genotypic P value 

threshold of less than 5x10-8 for a SNP). Hence, in a typical GWAS, only a minority of 

DNA sequence variations that modulate disease susceptibility and their neighboring 

genes with the strongest evidence of association is explained. Whereas, in this “most-

significant SNPs/genes” approach, genetic variants that confer a small disease risk but 

are of potential biological importance are likely to be missed. Hence, it is recognized 

that GWAS data is undermined in most cases and concentrating on a few SNPs and/or 

genes with the strongest evidence of disease association is not enough to exploit 

underlying physiological processes and disease mechanisms (Elbers, et al., 2009). For 

instance, PPARG variants are known to be associated with type 2 diabetes (T2D) 

(Altshuler, et al., 2000). Whereas, this true association is missed by the four out of five 

GWAS  designed to replicate the initial finding, due to its modest effect on disease 

susceptibility (odds ratio 1.2) (Baranzini, et al., 2009; Frayling, 2007). A similar 

situation was recently observed regarding the association of IL7R variants with multiple 
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Figure 2.2 Genome-wide association studies (GWAS) (Manolio, 2010).  

sclerosis (Baranzini, et al., 2009). Especially in complex diseases, which are intrinsicly 

multifactorial, rather than identifying single genes, the identification of affected 

pathways would shed light into understanding of disease development mechanism. 

 

2.4.2 Pathway and network oriented GWAS data analysis 
 

 Following its successful application on gene expression studies, the pathway 

analysis for GWAS is originated in the form of gene-set enrichment analysis (GSEA) by 

Wang et al. (Wang, et al., 2007). Since then, several different implementations of gene 

set enrichment for genome-wide pathway analysis of SNP-chip datasets have been 
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published (Askland, et al., 2009; Baranzini, et al., 2009; Chen, et al., 2010; Elbers, et 

al., 2009; Holmans, et al., 2009; Neibergs, et al., 2010; Peng, et al., 2010; Purcell, et al., 

2007; Wang, et al., 2010; Weng, et al., 2011; Zhang, et al., 2011; Zhang, et al., 2010). 

Comparative evaluation of some of these existing pathway based GWAS data analysis 

platforms are shown in Table 2.2. The review of these tools and issues related to GWAS 

pathway analysis can be found in (Cantor, et al., 2010).  

Pathway-based approaches are thought to complement the most-significant 

SNPs/genes approach and provide additional insights into interpretation of GWAS data 

on complex diseases (Askland, et al., 2009; Baranzini, et al., 2009; Elbers, et al., 2009; 

Peng, et al., 2010). These pathway-based GWASs are based on the hypothesis that 

multiple genes in the same biological pathway contribute to disease etiology, wheras 

common variations in each of these genes make mild contributions to disease risk. The 

use of prior knowledge in the form of pathway databases is demonstrated in GWAS of 

diseases such as Parkinson’s disease, age-related macular degeneration, bipolar 

disorder, rheumatoid arthritis, and Crohn’s disease (Lesnick, et al., 2007; Pattin and 

Moore, 2008; Torkamani, et al., 2008; Wang, et al., 2007; Wilke, et al., 2008). While 

the concept of pathway analysis for GWAS is attractive, it is restricted by our limited 

knowledge of cellular processes.  

Since the analysis of single variants within isolated genes is not informative 

enough to explain the underlying disease mechanisms, another recent trend to further 

mine GWAS data is to incorporate network-based analysis (Bakir-Gungor and 

Sezerman, 2011; Barabasi, et al., 2011; Baranzini, et al., 2009; Barrenas, et al., 2009; 

Feldman, et al., 2008; Franke, et al., 2006; Lage, et al., 2007; Menon and Farina, 2011; 

Pattin and Moore, 2008; Tu, et al., 2006). However, some of these studies either do not 

use actual genetic (genotypic) data or are applied to model organisms. To the best of our 

knowledge, the only study to date that uses both a protein interaction network and 

pathway analysis to reveal significant disease related genes and pathways in genetic 

association studies is conducted by Baranzini et al. (Baranzini, et al., 2009) on Multiple 

Sclerosis. Since this study is gene centered, it is possible that true associations with 

markers that lie in large intergenic regions were neglected and the analysis is limited to 

the known functional properties of genes. 
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Table 2.2 Comparison of pathway based GWAS data analysis platforms (Yaspan and Veatch, 2011). 
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 Another important piece of information that could improve the analysis of 

GWAS datasets is the functional effect of a SNP. To better understand the biological 

processes underlying complex diseases, in this thesis, in addition to the pathway and 

network based approaches, we considered the functional effect of a typed SNP in 

GWAS. While the DNA polymorphisms that change protein function can have very 

significant consequences, such as NOD2 mutations in inflammatory bowel disease 

(Hugot, et al., 2001) and FLG mutations in eczema (Palmer, et al., 2006), other types of 

SNPs, such as synonymous SNPs do not have such serious effects in disease 

development mechanism. Hence, functionally important SNPs, such as those that 

change amino acids, splicing sites; those that lead to gain or loss of stop codon; those 

that result in frame shift; those that are found in regulatory region (including known 

transcription factor binding sites (TFBSs), DNase I hypersensitive sites which marks 

open chromatin, histone modification sites, CCCTC-binding factor (CTCF) sites which 

characterize insulator/enhancer elements) are priority targets in disease studies and 

large-scale genotyping projects (Calabrese, et al., 2009; Flicek, et al., 2010; Zhang, et 

al., 2011). There are a few existing web-servers that prioritize GWAS results based on 

the SNP's functional consequences, e.g. SPOT (Saccone, et al., 2010), SNPinfo (Xu and 

Taylor, 2009), ICSNPathway (Zhang, et al., 2011). Hence, we decided that SNP 

functional knowledge is valuable information to strengthen our pathway and network 

oriented GWAS analysis method. As summarized here, in order to mine GWAS results 

further, there are attempts to combine different sets of knowledge. Yet, to the best of 

our knowledge, none of these platforms can successfully integrate functional 

information of typed SNPs in a GWAS with LD analysis and protein protein interaction 

networks to identify SNP targeted pathways; and make a comparative evaluation 

between different populations.  

 

2.4.3 GWAS on different populations 
 

 

The potential of GWAS on disparate populations to uncover the links between genetics 

and pathogenesis of human complex diseases is discussed in the literature (Rosenberg, 

et al., 2010). One reason is that the risk variants can vary in their occurrence across 

populations (Goldstein, 2007; Goldstein and Hirschhorn, 2004). For example, while the 
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high-risk variant at MYBPC3 gene is observed with a frequency of ~4% in 

cardiomyopathy patients in Indian populations; this variant is rare or absent in other 

populations (Dhandapany, et al., 2009). Another reason is the difference in allele 

frequencies and biological adaptations among populations, which in turn affects the 

detectability and importance of risk variants. The identification of a variant might be 

easier in some populations compared to other populations since the particular histories 

of recombinations, mutations and divergences of genealogical lineages in the various 

populations affect the mappability of a variant. This situation is observed in the variants 

of TCF7L2 and KCNQ1 genes in type 2 diabetes (Adeyemo and Rotimi, 2010; Myles, 

et al., 2008). Also, in a review paper by Stranger et al. it has been pointed out that 

studying additional populations in GWAS may provide valuable insights for current and 

future research in medical genetics (Stranger, et al., 2011). 
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CHAPTER  3 

 
 
 
 

3  MATERIALS AND METHODS 
 
 
 

3.1 Materials 
 
 
 

3.1.1 Datasets 
 

 

3.1.1.1 GWAS datasets 
 

RA, IA, PE, and Behçet’s disease GWAS datasets are used within this thesis. The 

details of each dataset are explained below: 

 
 
3.1.1.1.1 Rheumatoid arthritis dataset 
 
 
We have applied our methodology on Wellcome Trust Case Control Consortium 

(WTCCC) Rheumatoid Arthritis (RA) dataset, in which 500,475 SNPs were tested on 

5003 samples (1999 cases and 3004 controls) using Affymetrix GeneChip Human 

Mapping 500 K Array Set. SNP data and the genotypic p-values of association for each 

tested SNP were downloaded from the WTCCC project webpage (www.wtccc.org.uk). 

In total, 25,027 SNPs were included from WTCCC dataset, showing nominal evidence 

of association (P < 0.05).  
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3.1.1.1.2 Partial epilepsy dataset 
 

 

We have used the dataset of Kasperaviciute et al's GWAS, which tested 3445 PE 

patients and 6935 controls of European ancestry (Kasperaviciute, et al., 2010). In that 

study, after the population structure analysis, 528,745 SNPs were included using the 

Human610-Quadv1 genotyping chips (Illumina). SNP data and the genotypic p-values 

of association for each tested SNP were obtained from 

http://www.ion.ucl.ac.uk/departments/epilepsy/themes/genetics/PEvsCTRL. Cochran–

Mantel–Haenszel test results were used as the genotypic p-values of the identified 

SNPs.  

 

 
3.1.1.1.3 Intracranial aneurysm European population dataset 
 
 
The first IA GWAS dataset, that we used in this thesis, is a multicenter collaboration in 

Finnish, Dutch and Japanese cohorts totaling 5891 cases and 14,181 controls (Yasuno, 

et al., 2010). This study tested ~832,000 genotyped and imputed SNPs using the 

Illumina platform. In personal communication with the authors, upon our request, JP 

population specific data was removed and EU population specific results were obtained, 

including 2780 cases and 12,515 controls. 

 

3.1.1.1.4 Intracranial aneurysm Japanese population dataset 
 

The second IA GWAS dataset, that is used in this thesis, tested 312,712 SNPs on 1069 

Japanese IA patients and 904 Japanese controls using the HumanHap300 or 

HumanHap300-Duo Genotyping BeadChips (Illumina) (Akiyama, et al., 2010). For 

both IA datasets, SNP data and the genotypic p-values of association for each tested 

SNP (calculated via Cochran-Armitage trend test) were obtained from our collaborators. 
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3.1.1.1.5 Behçet’s disease Turkish population dataset 
 
 
This GWAS is conducted on 1,215 Turkish Behçet's disease cases vs 1,278 unaffected 

controls (Remmers, et al., 2010). 311,459 autosomal SNPs were typed using the 

Infinium assay (Illumina), HumanCNV370-Duo v1.0 and HumanCNV370-Quad v3.0 

chips. 

 

3.1.1.1.6 Behçet’s disease Japanese population dataset 
 
 
This GWAS tested 500,568 SNPs on 612 Japanese individuals with Behçet’s disease 

(cases) and 740 healthy controls (Mizuki, et al., 2010). DNA samples were typed using 

the Affymetrix GeneChip Human Mapping 500K Array Set. 

For both Behçet's disease datasets, SNP data and the genotypic p-values of association 

for each tested SNP (calculated via allelic chi-squared test) were obtained from our 

collaborators. 

 

3.1.1.2 Protein-protein interaction network 
 

PPI network file, used within this thesis, is composed of two high quality systematic 

yeast two-hybrid experiments and PPIs obtained from literature by manual curation 

(Rual, et al., 2005; Stelzl, et al., 2005). The integrated set of PPIs contains 61,070 

interactions between 10,174 genes. This file is obtained in the SIF format, which offers 

a straightforward means to import networks into Cytoscape as text. 

 

3.1.1.3 IA gene expression dataset for Japanese population 
 

 
A list of differentially expressed genes along with their p-values was obtained from the 

study of Krischek et al. (Krischek, et al., 2008). In this study, four unruptured and six 

ruptured IA specimens, which were collected during 42 months, were used as cases. 

Four arteriovenous malformation feeders, which were obtained during microsurgical 
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resection, were used as intracranial control tissue. The average age of the IA patients 

was 56.4 years, and that of the controls was 60.25 years. All patients and controls were 

of Japanese ethnicity. All tissue samples were profiled using oligonucleotide 

microarrays (Agilent Technologies). In the original study, in order to find out the 

differentially expressed genes between the aneurysmal cases and the controls, the 

analytical tools in the GeneSpringGX v11 was utilized. The statistical significance of 

the difference between the gene expression levels was calculated via the Student’s t-test 

(Krischek, et al., 2008). In our study, we used these genes showing significant 

difference at the false discovery rate of 0.05 according to the Benjamini and Hochberg 

procedure (Benjamini and Hochberg, 1995).  

 

3.1.2 Computational equipment setup 
 

 

A computer with Windows or Linux operating system and internet access is required to 

follow the steps of the PANOGA protocol, which is developed within this thesis. We 

recommend a 1 GHz CPU or higher, a high-end graphics card, 500MB of available hard 

disk space, at least 1 GB of free physical RAM and a minimum screen resolution of 

1,024 x 768.  

 

 

3.1.2.1 Java platform 
 

We recommend to install the Standard Edition of Java, version 5.0 or higher (Java SE 5 

or higher). (http://java.sun.com/javase/downloads/index.jsp). 

 

3.1.2.2 Cytoscape 
 

Cytoscape is an open source network data integration, analysis, and visualization 

platform (Cline, et al., 2007; Shannon, et al., 2003). Subnetwork identification and 

functional enrichment steps of PANOGA protocol are realized by Cytoscape plugins. 

Hence, to follow PANOGA protocol, users need to install Cytoscape version 2.6.3 by on 

a local computer by following the steps in Box 2 of the Cytoscape paper, published in 
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Nature protocols (Cline, et al., 2007). Although Cytoscape has newer versions, 

jActiveModules and ClueGO plugins are verified to work in Cytoscape version 2.6.3. 

 
3.1.2.3 SNP functionalization tools 
 

PANOGA protocol utilizes four external web-servers to functionalize SNPs, i.e., SPOT 

(Saccone, et al., 2010), F-SNP (Lee and Shatkay, 2008), SNPnexus (Chelala, et al., 

2009), SNPinfo (Xu and Taylor, 2009); jActiveModules plugin (Ideker, et al., 2002) of 

Cytoscape (Shannon, et al., 2003) to identify sub-networks; ClueGO plugin (Bindea, et 

al., 2009) of Cytoscape (Shannon, et al., 2003) for functional enrichment of the 

identified sub-networks. All of these web-servers, programs and plugins are freely 

available for academic use. 

 

 

3.2 Methods 
 
 
 

3.2.1 Design of Pathway and Network Oriented GWAS Analysis (PANOGA) Tool  
 
 
3.2.1.1 PANOGA Overview 
 

Starting with a list of SNPs, found to be associated with disease in GWAS, in this 

thesis, we propose a novel methodology to determine disease related pathways through 

the identification of SNP targeted genes within these pathways. PANOGA is the first 

algorithm that integrates functional information of typed SNPs in a GWAS with LD 

analysis and protein protein interaction networks to identify SNP targeted pathways. 

With its multifactorial basis, PANOGA has a good potential to decipher the 

combination of biological processes underlying disease and to aid the development of 

novel therapies at molecular level. PANOGA has been tested on several complex 

diseases including rheumatoid arthritis (Bakir-Gungor and Sezerman, 2011), epilepsy 

(Bakir-Gungor, et al., 2012, submitted), intracranial aneurysm (Bakir-Gungor and 

Sezerman, 2012, submitted), and Behçet’s disease; and proved to be useful. Throughout 

the time, the method has evolved with our efforts, and here, we present the latest 

version of PANOGA. In this methodology, GWAS results are used in the form of SNP 
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rs ids vs. p-values, where the p-values refer to the genotypic p-values of association for 

each tested SNP. We only focused on SNPs with nominal evidence of association (P < 

0.05) in a GWAS, following the study in (Baranzini, et al., 2009).  

 

PANOGA proceeds in nine steps, as outlined in Figure 3.1. Briefly, step (i) of 

PANOGA utilizes SPOT (Saccone, et al., 2010) and F-SNP (Lee and Shatkay, 2008) 

web-servers to obtain functional information of a SNP. In step (ii), PANOGA combines 

the functional scores obtained from SPOT and F-SNP web-servers with GWAS p-

values; and it calculates a weighted p-value, Pw, for each score (15). In step (iii), SNPs 

are assigned to genes using SPOT's SNP to gene assignment module (Saccone, et al., 

2010). In step (iv), SPOT (Saccone, et al., 2010) and F-SNP (Lee and Shatkay, 2008) 

Pw-values are assigned to each gene as two separate attributes. If more than one SNP is 

assigned to the same gene in step (iii), SPOT and F-SNP Pw values of all these SNPs 

are taken into account and lowest SPOT and F-SNP Pw values are assigned to the gene. 

In step (v), a possible overlap of the input SNPs with known Transcription Factor 

Binding Site (TFBSs) at TRANSFAC (Wingender, et al., 2000) is also checked. If this 

transcription factor (TF) is not already found in step (iii), this TF is added to our list by 

transferring its SPOT and F-SNP Pw-values from its associated SNP. In step (vi), genes 

with two separate weighted P-values (Pw values) are mapped to a human protein protein 

interaction network. By using the Pw values of the genes and network topology, step 

(vii) aims to find out active sub-networks in the human PPI network using jActive 

Modules algorithm (Ideker, et al., 2002). Although this algorithm was originally 

developed for microarray gene expression data, steps (i)-(v) of PANOGA successfully 

adapts GWAS data to be used with this algorithm. In terms of GWAS data, jActive 

Modules algorithm integrates the network topology with the calculated Pw-values of 

each gene to extract potentially meaningful active sub-networks. Following the 

identification of sub-networks, we evaluated whether these sub-networks were 

biologically meaningful in step (viii) of PANOGA, using functional enrichment 

techniques. In step (ix), we integrate the functional enrichments of the generated sub-

networks. KEGG pathways that might have a role in disease mechanism are identified 

via including the pathway, if it is found as significant for at least one of the identified 

sub-networks. For each identified KEGG pathway in our final list, PANOGA counts the  
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Figure 3.1 Outline of PANOGA’s assessment process. In steps (i) to (v), a gene-wise 
Pw-value for association with disease was computed by integrating functional 
information. In step (vi), Pw-values were loaded as two separate attributes of the genes 
in a PPI network. In step (vii), active sub-networks of interacting gene products that 
were also associated with the disease, are identified. In step (viii), genes in an identified 
active sub-network were tested whether they are part of functionally important KEGG 
pathways. Lastly, step (ix) integrates the functional enrichments of the generated sub-
networks. 
 

number of associated SNPs from GWAS, the number of regulatory SNPs (SNPs located 

on TFBSs or miRNAs) among those disease predisposing SNPs, the number of SNP-

targeted genes, the number of sub-networks that this pathway is found to be statistically 
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significant. Due to its modular design pattern, PANOGA protocol gives flexibility to the 

user and it is very easy to adapt novel datasets or more precise tools, e.g. better, more 

comprehensive SNP functionalization tools, higher quality, higher coverage PPI 

networks. We further describe each module below. 

 
3.2.1.2 SNP functionalization 
 
 
SNPs might have different functional impacts such as: an effect on transcriptional 

regulation by changing TFBS’s activity; premature termination of amino-acid sequence 

(generate a stop codon); alteration in the splicing pattern or efficiency by disturbing 

splice site, exonic splicing enhancers (ESE) or silencers (ESS); a change in protein 

structures or properties by altering single amino acids or changing the frame of the 

protein-coding region; regulation of protein translation by affecting microRNA 

(miRNA) binding sites activity. To predict such functional properties of SNPs, many 

different web tools are developed, and a comprehensive comparison of these tools can 

be found in (Karchin, 2009). Among these tools, we have decided to combine the scores 

of SPOT (Saccone, et al., 2010) and F-SNP (Lee and Shatkay, 2008) servers as 

following. SPOT score (Saccone, et al., 2010) takes into account SNP/gene transcript 

functional properties (including nonsense, frameshift, missense and 5’ and 3’-UTR 

designations), impact of an amino acid substitution on the properties of the protein 

product from PolyPhen server (Adzhubei, et al., 2010; Ramensky, et al., 2002), 

evolutionary conserved regions from ECRbase (Loots and Ovcharenko, 2007), and all 

possible LD proxies - SNPs with r2 over a predefined threshold in a specific HapMap 

sample (Frazer, et al., 2007). Hence, in the SNP functionalization step, PANOGA 

captures the functional consequences of other candidate SNPs that are in the same LD 

based on the HapMap data. On the other hand, F-SNP score (FS score) reflects the 

deleterious effect of a SNP, where the functional consequence of a SNP is obtained 

from multiple independent tools at four major categories (i.e. splicing, transcriptional, 

translational and post- translational levels) (Lee and Shatkay, 2009). FS scores of 

known disease-related SNPs, which are collected from OMIM, are previously shown to 

be significantly different from FS scores neutral SNPs (Lee and Shatkay, 2009). The 

details of the data sources used in our functional score can be found in Table 3.1. In the 

preprocessing step of PANOGA, SNPs are submitted to the above mentioned SNP  
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Table 3.1 Description of data sources used in our functional score. 
 

Functional Category Tool Description Meta-tool 

Protein Coding 
 

LS-SNP, 
SNPs3D, SIFT, 
SNPeffect 

SNP annotation tool, Impact of nsSNPs on 
protein function, Prediction of amino acid 
substitution effects, SNP annotation with 
human disease 

F-SNP 
 

Protein Coding PolyPhen Prediction of amino acid substitution effects 
SPOT,  
F-SNP 

Protein Coding,  
Splicing Regulation,  
Transcriptional 
Regulation 

 
Ensembl 
 

 
Extensive genomic database including SNPs  
and gene transcripts 

 
F-SNP 
 

Splicing Regulation 
 

ESEfinder, 
ESRSearch, 
PESX, 
RescueESE 

Exonic splice sites, Exonic-splicing regulatory 
(ESR) sequences, Exon splicing 
enhancers/silencers, Exonic splice sites 

F-SNP 
 

 
Transcriptional 
Regulation 

Consite 
TFSearch  

Conserved transcription factor binding sites, 
Transcription factor binding sites F-SNP 

Transcriptional 
Regulation SNPnexus Conserved transcription factor binding sites SNPnexus 
Transcriptional 
Regulation, Conserved 
Region GoldenPath 

MicroRNA, cpgIslands, evolutionary 
conserved regions 

F-SNP 
 

Conserved Region ECRBase Evolutionary conserved regions SPOT 

Post-translation 
 

KinasePhos, 
OGPET, 
Sulfinator 

Phosphorylation sites, Prediction of O-
glycosylation sites in proteins, Tyrosine 
sulfination sites 

 
F-SNP 

Genomic Coordinates dbSNP  General SNP/gene transcript properties SPOT 

Genomic Coordinates UCSC 
Extensive genomic database including SNPs 
and gene transcripts F-SNP 

 
LD estimation 
 

HapMap, 
Haploview 

Dense genotyping on multiple populations, 
useful for LD estimates 
Estimation of r2 LD coefficients for each 
population 

 
SPOT 
 

 
functionalization web-servers. Step (i) of PANOGA obtains results from these web-

servers and normalizes if needed. FS Score is defined in the range of [0,1], where 0 

means the functional consequence of a SNP on the gene product is negligible and 1 

means the functional consequence of the SNP on the gene product is serious (Lee and 

Shatkay, 2009). SPOT scores are not limited to a range of [0,1] and hence we 

normalized SPOT scores to this range in step (i). 

 

If a SNP lies within the transcription factor binding site (TFBS) of a gene, it may 

disrupt the level or timing of gene expression. We used two other SNP functionalization 

web-servers within PANOGA in step (i), i.e. SNPnexus (Chelala, et al., 2009), SNPinfo 

(Xu and Taylor, 2009) to evaluate whether the GWAS SNPs interfere transcriptional 
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regulation by affecting TFBS’s activity. SNPnexus (Chelala, et al., 2009) checks for a 

possible overlap of a SNP with conserved TFBSs from TRANSFAC Matrix Database, 

v.7.0, (Wingender, et al., 2000) and returns the related TF name. On the other hand, 

SNPinfo determines whether the the alternative alleles of a SNP, which is located in the 

TFBS, have a different activity than usual and returns the rsIDs of such SNPs (Xu and 

Taylor, 2009). As shown in the step (v) of Figure 3.1, we used the SNPnexus results as 

part of the assigning SNPs to genes step, as described in detail below. We incorporated 

SNPinfo results in the last step, step (ix), as shown in Figure 3.1.   

 

 
3.2.1.3 SNP-wise weighted p-value calculation 
 
 
To combine biological information with evidence for genetic association, the following 

scoring scheme is proposed in (Saccone, et al., 2008). In (Saccone, et al., 2008), firstly, 

a non-negative prioritization score (PS) was specified for each SNP and then, the 

weighted P-value Pw is defined by Pw=P/10PS (Roeder, et al., 2006; Saccone, et al., 

2008), where P denotes GWAS P-value for a particular SNP.  In this scheme, smaller 

values of Pw indicate higher priority. Following this convention, in step (ii), for each 

SNP, we have calculated SPOT Pw-value using SPOT prioritization score and F-SNP 

Pw-value using F-SNP prioritization score.  

 

 
3.2.1.4 SNP to gene assignment  
 
 
It is hypothesized that meaningful combination of genes harboring markers with only 

modest evidence of association can be identified if they belong to the same biological 

pathway or mechanism (Baranzini, et al., 2009). Therefore, the gene and pathway-based 

association analysis allows us to gain insight into the functional basis of the association 

and facilitates to unravel the mechanisms of complex diseases. However, a SNP may be 

associated with many genes, i.e. it can be located in a gene with several known 

transcripts due to alternative splicing, or in one gene and very close to another gene, or 

at the intersection of different genes on different strands and hence a SNP may have 

different functional consequences on each transcript. In step (iii), SNPs are assigned to 

genes using SPOT's SNP to gene assignment module (Saccone, et al., 2010). SPOT 
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considers all known SNP/gene transcript associations and assigns the SNP to the gene 

with the highest priority (Saccone, et al., 2010). To generate those SNP/gene transcript 

associations, SPOT program utilizes information from the PolyPhen method of 

predicting the effect of an amino acid substitution on the properties of the protein 

product (Adzhubei, et al., 2010; Ramensky, et al., 2002). Those effects can be directly 

detected from DNA and RNA sequences, like nonsense and missense amino acid 

substitutions, untranslated regions, coding regions, and frameshifts. Hence, by 

prioritizing all known SNP/gene transcript consequences, propitious association signals 

found in GWAS, are not lost at the SNP to gene transition step. At this stage, PANOGA 

creates a gene list including the gene symbols which are associated with GWAS SNPs. 

 

3.2.1.5 Gene-wise weighted p-value calculation 
 

 
Since SNPs are associated with genes in step (iii) of our method, these two weighted p-

values (Pw-values) can be automatically transferred into the SNP's associated gene as 

two separate attributes. Hence, in step (iv), each gene has a SPOT Pw-value and a F-

SNP Pw-value, indicating the association with the disease (gene-wise Pw-values). If 

more than one SNP is assigned to the same gene in step (iii), SPOT and F-SNP Pw 

values of all these SNPs are taken into account and lowest SPOT and F-SNP Pw values 

are assigned to the gene. In other words, the SPOT Pw-value of a gene is calculated as 

the lowest SPOT Pw-value of the SNP that is assigned to that particular gene among all 

the SPOT Pw-values of the SNPs assigned to the same gene. Same is true for F-SNP 

Pw-value. A possible overlap of the input SNPs with known TFBSs is already checked 

in the SNP functionalization step, step (i). If the related TF is not already found in Step 

(iii), this TF is added to our list by transferring its SPOT and F-SNP Pw-values from its 

associated SNP in step (v). At the end of this step, step (v), PANOGA returns a list of 

genes with SPOT and F-SNP Pw-values. 

 
 
3.2.1.6 Active sub-network identification  
 
 
By using weighted p-values of the genes, as calculated at the end of the step (v), this 

step aims to find out active sub-networks in the human PPI network. Here, an active 
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sub-network refers to a connected subgraph of the interactome that has high total 

significance of genotypic p-values of the disease-predisposing SNPs with respect to the 

controls. It should be noted that in jActive Modules algorithm, an identified sub-

network with a high score is not necessarily the sub-network that includes the genes 

with very significant genotypic p-values. Instead, the identified sub-network can be 

composed of many genes with moderately significant genotypic p-values. Hence, 

jActive Modules algorithm helps to discover groups of genes that display seemingly 

negligible association with disease when evaluated individually, but display strong 

association when considered as a group. 

 

In step (vi), PANOGA maps the genes with two separate Pw-values (SPOT and F-SNP 

Pw-values) into a human PPI network. In step (vii), active sub-networks of interacting 

gene products, that were possibly associated with the disease, are identified using 

jActive Modules (Ideker, et al., 2002). Basicly, jActive Modules (Ideker, et al., 2002) is 

a Cytoscape plugin that identifies active sub-networks via incorporating both the 

topological properties of a PPI network and the attributes of the nodes (proteins). In this 

approach, firstly the attributes (SPOT and F-SNP Pw-values) are mapped into biological 

networks, secondly a statistical measure (as explained below) is used to score sub-

networks based on the attributes, and finally a search algorithm is used to find active 

sub-networks with high score. 

 

Biologically speaking, an active sub-network (statistically significant module) is a sub-

network in our PPI network that the protein products of this set of genes – probably 

associated to the disease- also physically interact, thus raises the possibility that they 

belong to the same pathway or biological process. To rate the biological activity of a 

particular sub-network, jActive Modules starts by assessing the significance of 

differential association with disease for each gene (by comparing the gene-wise Pw-

values of association with the disease). In this procedure, jActive Module samples p-

values from the distribution of p-values loaded into Cytoscape, and not from a normal 

uniform distribution. Then, a network is generated from each node by systematically 

adding one neighbor at a time. The aggregate z-score (S) of an entire sub-network, 

consisting of k genes is calculated via summing the scores of all genes zi in the sub-

network and then dividing by the square-root of k. To extend the z-score over multiple 
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conditions (attributes), jActive Module sorts z-scores for each attribute, adjusts for rank, 

maximum score is corrected using the background score distribution (Ideker, et al., 

2002). The scoring system of jActive Modules ensures that the expected mean and 

variance of the subgraph scores are independent of subgraph size (Ideker, et al., 2002). 

jActive Modules plugin also corrects for the fact that a bigger sub-network is more 

likely to contain nodes with significant p-values by random chance (Ideker, et al., 

2002). When S stops to increase, the sub-network stops growing and is reported as a 

module. Next, the test statistic (S) is compared with an appropriate background 

distribution to properly capture the connection between network topology and 

association with disease. As a background distribution, we used the scores of sub-

networks randomly selected from the entire human PPI network, as provided by jActive 

Modules. In order to make the background distribution independent of the module size, 

jActive Modules creates a background distribution by scoring 10,000 random sub-

networks of each size in a Monte Carlo procedure. In our study, modules with S > 3 

were reported as significant (active sub-network), as stated in the original publication 

(Ideker, et al., 2002).  

 
 
3.2.1.6.1 Overlap threshold parameter  
 

At the initial version of PANOGA, we focused only on the highest scoring sub-network. 

But later we noticed that the scores of the identified sub-networks were very close to 

each other. We also realized that the highest scoring sub-network does not cover the 

initial PPI network and thus, we lose information. That is why in the improved 

PANOGA, we decided to combine the pathway enrichment results of the identified sub-

networks. At this stage, due to the nature of the search algorithm, several of these sub-

networks overlap extensively in their component genes. While we wanted to cover the 

whole PPI network with the identified sub-networks as much as possible, we did not 

want to include the same genes over and over in our sub-networks. To this end, starting 

with 0, we experimented PANOGA with 10% increments of the overlap threshold 

values, where this parameter defines the max level of identity between the constituent 

genes of any two identified sub-networks. The coverage of the PPI network was 0.02, 

0.22, 0.376, 0.462, 0.391, 0.321 for overlap threshold values 0, 0.2, 0.4, 0.5, 0.6, 0.8, 

respectively. Hence, we set this parameter as 50% to balance between disabling 
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repetitive sets of identical genes (obtained via high overlap threshold parameter) and 

enabling moves to the different parts of the network (low overlap threshold parameter). 

So, in the current version of PANOGA, rather than focusing on the highest scoring sub-

network, we find all significant sub-networks (with S > 3) that overlap less than 50% 

with each other. 

 

3.2.1.7 Functional enrichment, pathway identification 
 

 

Next step following the identification of sub-networks is to evaluate whether these sub-

networks were biologically meaningful. For each sub-network, in step (viii), we 

compute the proportion of the genes in an identified sub-network that are also found in a 

specific human biochemical pathway, compared to the overall proportion of genes 

described for that pathway. For this purpose, ClueGO plugin (Bindea, et al., 2009) of 

Cytoscape (Shannon, et al., 2003) is utilized in this step. ClueGO is an open-source Java 

tool that extracts the non-redundant biological information for groups of genes using 

GO, KEGG and BioCarta ontologies (Bindea, et al., 2009). Unlike other functional 

enrichment analysis tools (Boyle, et al., 2004; Huang, et al., 2007; Maere, et al., 2005; 

Ramos, et al., 2008; Zeeberg, et al., 2003) that present their results as long lists or 

complex hierarchical trees; ClueGO facilitates the biological interpretation via 

visualizing functionally grouped terms in the form of networks and charts (Bindea, et 

al., 2009).  To link the terms in the network, ClueGO uses kappa statistics, in a similar 

way as described in (Huang, et al., 2007). Among different ontologies, since KEGG 

database primarily categorizes genes into bona-fide biological pathways; and since 

biological interpretation of pathways is more straightforward compared to GO terms, 

we report only our functional enrichment results using KEGG pathways. We used two-

sided (Enrichment/Depletion) test based on the hypergeometric distribution to examine 

the association between the genes targeted by disease predisposing SNPs and the genes 

in each KEGG pathway. To correct the P-values for multiple testing, Bonferroni 

correction procedure is applied (Bindea, et al., 2009). Since PANOGA identifies 

hundreds of active sub-networks with S>3, in step (viii) we used the command-line 

version of ClueGO_v1.4  (Bindea, et al., 2009). 
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3.2.1.8 Integration of the functional enrichments of the generated subnetworks  
 

 

While an identified sub-network represents only one part of the whole interaction 

network, the identified pathways for this sub-network represents one aspect of the 

disease. Since the human complex diseases are multifactorial, via discovering the 

pathways from different sub-networks, we aimed to enlighten different aspects of the 

disease. To this end, step (ix) integrates the functional enrichments of the generated sub-

networks. If a KEGG pathway is found to be statistically significant for at least one of 

the active sub-networks with S score >3, PANOGA adds this pathway into our final list 

of significant KEGG pathways as associated with disease. At this step, PANOGA 

calculates the significance of a pathway in relation to disease as the minimum p-value 

of the enrichment test, among all p-values calculated for this pathway during the 

enrichment of each identified sub-network. The pathways are ranked according to the 

significance scores and are referred as SNP targeted pathways. 

 
  
3.2.2 Development of a protocol to identify SNP targeted pathways from GWAS 
 
 
Following the design of PANOGA, as explained in Section 3.2.1, we implemented a 

protocol to devise functionally important pathways through the identification of genes 

within these pathways, where these genes are targeted by SNPs obtained from the 

GWAS analysis. The protocol, developed within this thesis, is publicly available at: 

http://akademik.bahcesehir.edu.tr/~bbgungor/panoga_protocol.zip 

PANOGA protocol is composed of 43 steps, as summarized in Figure 3.2. Briefly, the 

preprocessing step of PANOGA is realized by a java script (createpanogainput.jar); SNP 

functionalization steps of PANOGA are realized via sending the input files into four 

different web-servers (SPOT (Saccone, et al., 2010), F-SNP (Lee and Shatkay, 2008), 

SNPnexus (Chelala, et al., 2009), SNPinfo (Xu and Taylor, 2009)); the subnetwork 

identification step of PANOGA is realized by the jActiveModules plugin (Ideker, et al., 

2002) of Cytoscape (Shannon, et al., 2003); the remaining steps are performed via 

running java executable programs. The detailed instructions for each step are presented 

below. 
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Figure 3.2 Summary of PANOGA protocol. In Step 1, a gene-wise Pw-value for 
association with disease was computed by integrating functional information. In Step 2, 
significant Pw-values were loaded as two separate attributes of the genes in a PPI 
network and visualized using Cytoscape [20]. At this step, active sub-networks of 
interacting gene products that were also associated with the disease are identified using 
jActive Modules plugin plugin (Ideker, et al., 2002). In Step 3, genes in an identified 
active sub-network were tested whether they are part of functionally important KEGG 
pathways. Step 4 integrates the functional enrichments of the generated sub-networks. 

 

3.2.2.1 PANOGA input files’ formats  
 

3.2.2.1.1 GWAS dataset file format 
 

 

As an input file, PANOGA protocol requires GWAS result of a disease saved in a tab 

delimited text file (.txt) or excel file (.xls) including “SNP rs id” and “p-value” 

information. Here, the p-value refers to the genotypic p-value of association for each 

tested SNP. In this input file, the user should include only the SNPs with nominal 

evidence of association (P < 0.05, or a user defined threshold) in a GWAS. It is 

important to note that PANOGA protocol does not require individual genotypes, odds 
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ratio (OR), minor allele frequency (MAF), or confidence intervals (CI) computed in a 

GWAS, which can have ethical considerations. A sample input file might look like this: 

rs1320565 0.0354782368664204 

rs2887286 0.0485440172506189 

rs12736358 1.85031556014792e-05 

rs10102164 3.40287797939709e-11 

In this GWAS result input file, SNP rs ids are unique and the p-values are listed using 

dot after first digit and with e- or E- notation for exponentials.  

CRITICAL STEP A different notation of the p-values other than the above mentioned 

format may block the PANOGA procedure. 

Because of its basic format, PANOGA input file can be easily created either manually 

by a user (e.g., in Excel) using GWAS results or programmatically by a text-processing 

script. A sample PANOGA input file, sample_panoga_input.txt is provided under 

PANOGA_protocol/data/sample/. 

 

3.2.2.1.2 Protein-protein interaction network file format 
 

 

Cytoscape program (Shannon, et al., 2003) realizes the network oriented steps of 

PANOGA protocol, and it accepts a variety of file formats for importing networks, e.g., 

.sif, .gml, .xgmml, .xls, SBML, BioPAX, PSI-MI. A brief description of these file 

formats are presented in (Cline, et al., 2007) and the details of these file formats can be 

found at: 

http://wiki.cytoscape.org/Cytoscape_User_Manual#Supported_Network_File_Formats 

Although Cytoscape (Shannon, et al., 2003) allows the usage of various file formats, 

PANOGA users are encouraged to use Simple Interaction File (SIF or .sif) file format, 

due to its simplicity to create either manually by a user (e.g., in Excel) or 

programmatically by a text-processing script. As a network input file, a sample human 

protein-protein interaction file is provided at: PANOGA_procedure/data/humanPPI.sif. 

This .sif file looks like as following: 

geneSymbolA pp geneSymbolB 

geneSymbolA pp geneSymbolC 
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geneSymbolC pp geneSymbolD 

The first line of this file indicates that proteinA that is produced by geneSymbolA 

interacts with proteinB that is produced by geneSymbolB. Here “pp” refers to ‘protein-

protein’ interaction type. In a typical sif file, the interaction type might be one of the 

following relationships: ‘protein-protein’, ‘degrades’ or ‘phosphorylates’.  

CRITICAL STEP For best results, use ‘pp’ interaction type in the sif formatted file, 

because PANOGA protocol uses undirected network.  

CRITICAL STEP Use standard HUGO gene symbols (Seal, et al., 2011) as node 

identifiers in the sif formatted network file. Because the node attributes file that 

PANOGA protocol generates uses official HGNC gene symbols as node identifiers and 

Cytoscape does not allow to import node attributes if the identifier types used in the 

network file and in the attributes file do not match. 

 
3.2.2.2 Procedure  
 
 

3.2.2.2.1 Install PANOGA 
 

1) Set up necessary environment to run PANOGA (as detailed in EQUIPMENT 

SETUP). 

2) Download the PANOGA files at: 

http://akademik.bahcesehir.edu.tr/~bbgungor/panoga_protocol.zip. Unzip the 

downloaded PANOGA_protocol.zip file and extract it. The executable jar files 

of PANOGA are found at: PANOGA_protocol/.  

 

3.2.2.2.2 Preprocess GWAS data 
 

3) Pick a disease name for your project, which can be any disease name (e.g., 
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diabetes), not necessarily a standard OMIM disease name. In the following steps 

of PANOGA procedure, we will refer to this disease name as 

$DISEASE_NAME. 

CRITICAL STEP Do not use space in the $DISEASE_NAME since it will 

corrupt the further steps of PANOGA procedure. 

4) Create a folder with your disease name under PANOGA_protocol/data/ and 

under PANOGA_protocol/out/ via typing the following commands: 

>cd PANOGA_protocol/data 

>mkdir $DISEASE_NAME 

>cd ../out 

>mkdir $DISEASE_NAME 

>cd .. 

Replace $DISEASE_NAME above with the disease name that you specified in 

Step 3. 

5) Format GWAS results input file following the instructions in Box1, and save 

this file under PANOGA_protocol/data/$DISEASE_NAME/ using any input file 

name. e.g., PANOGA_protocol/data/diabetes/diabetes_panoga_input.txt or 

bipolar_gwas_result.xls. sample_panoga_input.txt file is also provided under: 

PANOGA_protocol/data/sample/. 

6) Run the java script “createpanogainput.jar” to create four separate input files 

that will be used in SNP to gene assignment and SNP functionalization steps of 

PANOGA: 

 Replace $INPUT_FILE_NAME with your input file name, e.g. 

 (diabetes_panoga_input.txt),  $DISEASE_NAME with your disease name and 

 $PVALUE_THRESHOLD with genotypic  p-value threshold that you would 

 like to use to restrict your SNPs based on their significance for disease. The 

 default $PVALUE_THRESHOLD is 0.05. 

 >java -jar createpanogainput.jar $INPUT_FILE_NAME $DISEASE_NAME 

 $PVALUE_THRESHOLD 
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 e.g. java -jar createpanogainput.jar sample_panoga_input.txt sample 0.05 

 This run generates $DISEASE_NAME_spot_input.txt, 

 $DISEASE_NAME_fsnp_input.txt, $DISEASE_NAME_snpnexus_input.txt, 

 $DISEASE_NAME_snpinfo_input.txt files under 

 PANOGA_protocol/data/$DISEASE_NAME. 

 CRITICAL STEP Using an input filename with an extension other than .txt or 

 .xls interferes  this step. 

 

3.2.2.2.3 Assign SNPs to Genes 
 

 

7) PANOGA procedure uses SPOT webserver (Saccone, et al., 2010) to assign 

SNPs to genes. Go to the SPOT webserver at: 

https://spot.cgsmd.isi.edu/submit.php.  

8) Click into “Upload SNP File” button; select SPOT input file, i.e. 

$DISEASE_NAME_spot_input.txt. 

9) Change “Maximum SNPs to output:” parameter to 50,000 in SPOT webserver.  

10) If your $PVALUE_THRESHOLD (from Step 6) is different than 0.05, change it 

in the “p-value threshold:” parameter of SPOT webserver. 

11) Under “Linkage Disequilibrium (LD) options” select the appropriate HAPMAP 

sample among the available options in SPOT webserver. 

12) Click into “Run” button and download the result under “Primary Results” 

section. Save the SPOT output as Tab-delimited file under 

PANOGA_protocol/data/ 

$DISEASE_NAME/$DISEASE_NAME_spot_output.txt. 

13) At this step, the users need to choose one of the following two options: option A 

to proceed with the full PANOGA procedure, including network oriented stages 

and functional information of SNPs; option B to proceed with only pathway 

oriented steps of PANOGA procedure. We highly recommend the users to 

follow the full PANOGA procedure (option A). 

 (A) Proceed with the full PANOGA procedure 
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 Continue with Step 14. 

 (B) Proceed with only pathway oriented steps of PANOGA 

 procedure 

 (i) Run the java script “parsespotoutput.jar” to get a list of gene symbols 

 assigned into typed SNPs. 

  >java -jar parsespotoutput.jar $DISEASE_NAME  

  This run will create the gene symbol file ($DISEASE_NAME_partial_ 

  panoga_gene_symbols.txt) under PANOGA_procedure/ClueGO/data/  

  and $DISEASE_NAME_partial_panoga_gene2snp.txt file under   

  PANOGA_procedure/data/$DISEASE_NAME/. 

  (ii)Type the following command to perform functional enrichment of  

  identified gene symbols: 

  >cd ClueGO 

  Replace $DISEASE_NAME below with the disease name that you  

  specified in Step 3. 

  >java -jar ClueGO_v1.4.command-line.jar -props clueGO.props -file1   

  data\$DISEASE_NAME_partial_panoga_gene_symbols.txt -analysis- 

  name $DISEASE_NAME_partial_panoga -out out 

  At the end of this step, enrichment results of the gene symbols are  saved  

  under PANOGA_procedure/ClueGO/out/ 

  (iii) Run the java script “analyzecluegooutput.jar” to create SNP targeted  

  pathway lists and gene list for identified SNP targeted pathways. 

  >cd .. 

  >java –jar analyzecluegooutput.jar $DISEASE_NAME 

  At the end of this step pathway based lists and gene list are created as  

  explained in the “Anticipated Results” section and “PANOGA’s   
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  Application to Human Complex Diseases” subsection of Introduction  

  section.   

3.2.2.2.4 Install Cytoscape and its plugins 
 

14) Install Cytoscape version 2.6.3 by following its installation guide (Cline, et al., 

2007). Follow Cytoscape installation instructions to get the executable file.  

 CRITICAL STEP Although Cytoscape has newer versions, jActiveModules 

 and ClueGO  plugins are verified to work in Cytoscape version 2.6.3. 

15) Install jActiveModules and ClueGO version 1.4 plugins of Cytoscape. These 

plugins should be installed into Cytoscape_v2.6.3/plugins/ using the following 

options: option A to install jActiveModules plugin; option B to install ClueGO 

version 1.4 plugin: 

 (A) Installing jActiveModules plugin  

jActiveModules plugin is used to identify active sub-networks. Copy 

jActiveModules plugin from: 

  PANOGA_protocol/EXTERNAL_TOOLS/jActiveModules.jar 

  and save under Cytoscape_v2.6.3/plugins/. 

      (B) Installing ClueGO version 1.4 plugin  

(i) ClueGO plugin is used in the functional enrichment step of PANOGA. 

Copy .cluegoplugin, provided under PANOGA_protocol/ClueGO/ into 

the home directory of the user. 

(ii) Obtain ClueGO licence from its website 

(http://www.ici.upmc.fr/cluego/cluegoLicense.shtml) and save. lf file 

under home/.cluegoplugin/License/.l/ and .lcf file under 

home/.cluegoplugin/License/.lc/. 

 CRITICAL STEP Before running PANOGA, ensure that Cytoscape, 

 jActiveModules and ClueGO plugins are working properly. 
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3.2.2.2.5 Obtain Functional Information of SNPs 
 

16) PANOGA procedure utilizes SPOT (Saccone, et al., 2010), F-SNP (Lee and 

Shatkay, 2008), SNPnexus (Chelala, et al., 2009) and SNPinfo (Xu and Taylor, 

2009) webservers to functionalize SNPs. SNP functional information through 

SPOT web-server (Saccone, et al., 2010) is already obtained in the previous step 

while assigning SNPs to genes. Run “runfsnp.jar” to obtain SNP functional 

information from F-SNP webserver (Lee and Shatkay, 2008): 

 Replace $DISEASE_NAME with the disease name that you specified in Step 3. 

 >java -jar runfsnp.jar $DISEASE_NAME 

 This step will save the F-SNP output into PANOGA_procedure/data/ 

 $DISEASE_NAME/ $DISEASE_NAME_fsnp_output.txt. 

17) Go to the SNPnexus webserver at: http://www.snp-nexus.org/. Under “Batch 

Query” option, Browse SNPnexus input file, i.e.  

$DISEASE_NAME_snpnexus_input.txt. 

18) Under “Annotation Categories”-> “Regulatory Elements”, select ”Conserved 

Transcription Factor Binding Sites (TFBS)” option and click “Run” button. 

19) Download the result under “Regulatory Elements” section via clicking into TXT 

icon. Save the SNPnexus output as text file under 

PANOGA_procedure/data/$DISEASE_NAME/$DISEASE_NAME_snpnexus_

output.txt.  

20) Go to the SNPinfo webserver at: http://snpinfo.niehs.nih.gov/snpfunc.htm. 

Browse and upload SNPinfo input file, i.e.  

$DISEASE_NAME_snpinfo_input.txt. 

21) Click “Submit” button and download the results via clicking into “Export To 

Excel” button under “SNP Function Prediction Results”. Save the SNPInfo 

output as csv file under 

PANOGA_procedure/data/$DISEASE_NAME/$DISEASE_NAME_snpinfo_ou

tput.csv.  
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3.2.2.2.6 Prepare the Gene Attributes data 
 

22) PANOGA needs the attributes file (in .pvals format) to identify the sub-

networks (using jActive Modules plugin (Ideker, et al., 2002)). This file has two 

weighted P-values (SPOT Pw and F-SNP Pw values) for each gene, where the 

weighted P-value combines the genotypic p-value of a SNP with the functional 

information of a SNP that is associated with the gene. The following steps of the 

PANOGA procedure will create an attributes file similar to the provided 

sample_panoga_spot_fsnp.pvals file at PANOGA_procedure/. Run  

“combinespotfsnp.jar” to combine SPOT and F-SNP output files: 

 Replace $DISEASE_NAME with the disease name that you specified in Step 3. 

>java -jar combinespotfsnp.jar $DISEASE_NAME 

23) Run “incorporatesnpnexus.jar” to incorporate functional information from 

SNPnexus. Replace $DISEASE_NAME with the disease name that you 

specified in Step 3. 

>java -jar incorporatesnpnexus.jar $DISEASE_NAME  

This run will create the gene attributes file 

($DISEASE_NAME_spot_fsnp_snpnexus.pvals) under 

PANOGA_procedure/data/$DISEASE_NAME/. A sample .pvals file is shown 

in Figure 3.3. 

GeneSymbol  SPOTPvalue  FSScorePvalue 
PIK3C2A  0.002829698  0.02247709 
SPATA18  2.54002e-5  4.97005e-4 
DNAI2  0.001442935  0.014429346 
EPB41L4A  0.00230284  0.018250034468831174 
 
Figure 3.3 Sample gene attributes input file (sample_spot_fsnp_snpnexus.pvals), 

showing SPOT and F-SNP weighted p-values (Pw-values) for each SNP associated 

gene. Each of the two Pw values combines functional information of a SNP and the 

genotypic p-value of a SNP, that is found to be significant in GWAS. 
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3.2.2.2.7 Obtain network data  

 

24) Decide which human protein-protein interaction (PPI) dataset you would like to 

use as your initial network—follow option A to use the default human PPI 

network or option B to use a customized PPI network. 

 (A) Using the default human PPI network 

  A user can work with the default human PPI network supplied in the  

  PANOGA installation package. The default human PPI network is  

  available in sif format in: PANOGA_protocol/data/humanPPI.sif. 

  (B) Using another PPI network 

      A user can work with their own human PPI network. Since Cytoscape 

(Shannon, et al., 2003) accepts networks in many different file formats (e.g., .sif, 

.gml, .xgmml, .xls, SBML, BioPAX, PSI-MI.), the user has the option to  choose 

the network that they want to work with. 

 

3.2.2.2.8 Load network data  
 

 

25) Start Cytoscape via following option A for Windows users, option B for Linux 

users. 

(A) Windows Users 

 Run Cytoscape.exe. 

(B) Linux Users 

       Run ./cytoscape.sh. 

26) Decide how you would like to load network data into Cytoscape. Cytoscape 

allows to import networks from a local or remote computer, or from Web 

Services—follow option A to import a network file from a local computer, 

option B from a remote computer or option C to use Web Services. We 

recommend PANOGA users to follow option A to load network data. 
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 (A) Loading the default human PPI network from a local computer 

     (i) Assemble your network data into a SIF file, as described in Box 1. 

     (ii) Import human PPI network using File->Import->Network commands of 

Cytoscape. The user is free to load any human PPI network, as long as the 

official HUGO gene symbols are used as node identifiers. A sample human PPI 

network is also provided at: PANOGA_procedure/data/humanPPI.sif. 

       (B) Loading a PPI network from a remote computer 

 Follow the procedure described at:  

 http://wiki.cytoscape.org/Cytoscape_User_Manual/#Cytoscape_User_Ma

 nual.2BAC8Creating_Networks.Load_Networks_from_a_Remote_Comp

 uter_.28URL_import.29 

      (C) Loading a PPI network using Web Services 

 Follow the procedure described at:  

 http://wiki.cytoscape.org/Cytoscape_User_Manual/ImportingNetworksFr

 omWebServices 

 

3.2.2.2.9 Import gene attributes  
 

27) Assign values (two attributes for each identified gene) to nodes (genes) using 

File->Import->Attribute/Expression Matrix commands of Cytoscape and 

selecting the gene attributes file 

($DISEASE_NAME_spot_fsnp_snpnexus.pvals) that is created in Step 23. A 

sample gene attributes file (sample_spot_fsnp_snpnexus.pvals) is also provided 

at PANOGA_procedure/data/sample/. 
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3.2.2.2.10 Identify sub-networks 
 

28) Start jActiveModules plugin from Cytoscape->Plugins->jActiveModules.  

29) Select SPOTPvaluesig and FSScorePvaluesig from Expression Attributes panel. 

30) In the General Parameters panel, set “Number of Modules” parameter as 1000. 

“Overlap Threshold” parameter defines max percent of overlap between any two 

identified subnetworks. The default value used in PANOGA_protocol is 0.5.  

31) Click “Find Modules” to identify active sub-networks. 

32) Save the result as text file into 

PANOGA_procedure/data/$DISEASE_NAME/$DISEASE_ 

NAME_jactivemodules_output.txt via clicking into “Save All Results” button 

on “Results Panel”. Replace $DISEASE_NAME with the disease name that you 

specified in Step 3. 

 

3.2.2.2.11 Parse jActiveModules output 
 

33) Create a folder with your disease name under PANOGA_protocol/ClueGO/data/ 

and under PANOGA_protocol/ClueGO/out/ via typing the following commands: 

 >cd ClueGO/data 

 >mkdir $DISEASE_NAME 

 >cd ../out 

 >mkdir $DISEASE_NAME 

 >cd ../.. 

 Replace $DISEASE_NAME above with the disease name that you specified in 

 Step 3. 

34) Run “parsejactivemodulesoutput.jar” to create individual files containing gene 

symbols for each identified sub-network: 

 Replace $DISEASE_NAME with the disease name that you specified in Step 3.  

 >java -jar parsejactivemodulesoutput.jar $DISEASE_NAME 
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 At the end of this step, for the sub-networks with scores higher than 3, individual 

 files containing gene symbols are saved under 

 PANOGA_procedure/ClueGO/data/ $DISEASE_NAME/ and the number of 

 subnetworks created is printed on the screen. 

 

3.2.2.2.12 Functional enrichment of subnetworks 
 

35) Decide which pathway resource you would like to use for the functional 

enrichment of the identified subnetworks. ClueGO (Bindea, et al., 2009) assigns 

a set of genes into KEGG (Kanehisa, et al., 2012) or BioCarta pathways—follow 

option A to assign genes into KEGG pathways, option B to assign genes into 

Biocarta pathways. 

      (A) Identifying KEGG pathways 

  Use the clueGO.props file provided under      

  PANOGA_procedure/ClueGO/. In order to  identify KEGG pathways,  

  make sure that under the “Select Ontologies” title     

  “SelectedOntologySources=KEGG_14.03.2012” in the ClueGO   

  properties file  (clueGO.props). 

 (B) Identifying BioCarta pathways 

   In order to identify BioCarta pathways, under the “Select Ontologies”  

  title change “SelectedOntologySources =      

  REACTOME_BioCarta_07.04.2011” in the ClueGO properties file  

  (PANOGA_procedure/ClueGO/clueGO.props). 

36) At this step, the users need to choose one of the following two options, 

depending on their operating systems: Windows Users, follow option A; Linux 

Users, follow option B. For both options, replace $DISEASE_NAME with the 

disease name that you specified in Step 3, $NUMBER_OF_SUBNETWORKS 

with the number of subnetworks, as created in Step 34. Type the following 

command to perform functional enrichment for each of the identified sub-

networks using the clueGO.props file created in Step 35: 
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(A) Windows Users 

 >java –jar functionalenrichment.jar $DISEASE_NAME 

 $NUMBER_OF_SUBNETWORKS 

(B) Linux Users 

 >./functionalenrichment.sh $DISEASE_NAME 

 $NUMBER_OF_SUBNETWORKS 

 ($OPTIONAL_JAVA_PATH) 

 If java is installed as root user, skip $OPTIONAL_JAVA_PATH and run 

 as: 

 e.g. ./functionalenrichment.sh diabetes 508 

 If java is already installed on a different path, specify 

 $OPTIONAL_JAVA_PATH and  run as: 

 e.g. ./functionalenrichment.sh diabetes 508 ../../jre1.7.0_04/bin 

  At the end of this step, enrichment results of each of the identified sub- 

  networks are saved under        

  PANOGA_procedure/ClueGO/out/$DISEASE_NAME/ for both options. 

 

3.2.2.2.13 Combine functional enrichment results 
 

37) Run the java script “combinesubnetworkpathways.jar” to create SNP targeted 

pathway lists and gene list for identified SNP targeted pathways. Replace 

$DISEASE_NAME with the disease name that you specified in Step 3, 

$NUMBER_OF_SUBNETWORKS with the number of subnetworks, as created 

in Step 34. 

>java –jar combinesubnetworkpathways.jar $DISEASE_NAME 

$NUMBER_OF_SUBNETWORKS 
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At the end of this step pathway based lists and gene list are created as explained 

in the “Anticipated Results” section and “PANOGA’s Application to Human 

Complex Diseases” subsection of Introduction section. 

 

3.2.2.2.14 Visualize SNP targeted genes in a KEGG pathway map  
 

38) Create a directory under PANOGA_protocol/out/ to store gene attribute files for 

each pathway, via typing the following command: 

 >cd out/KeggPathwayMapGeneAttributeFiles 

 >mkdir $DISEASE_NAME 

 >cd ../.. 

 Replace $DISEASE_NAME above with the disease name that you specified in 

 Step 3. 

39) Run the java script “createattributesforpathwaymap.jar” to create a gene 

attributes file for each identified pathway, which will be used in the next step to 

customize KEGG pathway maps. Each pathway specific file contain identified 

gene symbols and color specifications depending on the number of SNP targeted 

genes per base pair. Replace $DISEASE_NAME with the disease name that you 

specified in Step 3. 

>java –jar  createattributesforpathwaymap.jar  $DISEASE_NAME  

At the end of this step, gene attribute file for each of the identified sub-networks 

are saved under: 

PANOGA_protocol/out/KeggPathwayMapGeneAttributeFiles/$DISEASE_NA

ME . 

40) Color SNP targeted genes for the pathway of interest using the KEGG Mapper – 

Color Pathway tool available at: 

http://www.genome.jp/kegg/tool/map_pathway3.html. 

41) Type “hsa” followed by the KEGG Term ID for the pathway of interest to the 

“Select KEGG pathway map:” field. KEGG Term IDs of the pathways can be 
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obtained from the first column of the 

$DISEASE_NAME_pathways_subnetwork_genes.csv file under 

PANOGA_procedure/out/$DISEASE_NAME/. 

42) Browse gene attribute file created in Step 39 for the pathway of interest. 

43) Hit “Execute” button.  KEGG Mapper – Color Pathway tool (Kanehisa, et al., 

2012) generates a customized pathway map, where the SNP targeted genes are 

colored based on the number of SNPs per base pair. 
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CHAPTER  4 

 
 
 
 

4  RESULTS 
 

 

4.1 Anticipated results of PANOGA protocol 
 

 
Using PANOGA protocol, a GWAS can be further mined to identify SNP targeted 

pathways as associated with a specific human complex disease. These pathways can 

also be used as markers of a disease, which would have higher explanatory power than 

SNP or gene markers. The strength of our methodology stems from its multidimensional 

perspective, where we combine evidence from the following 5 resources: i) Genetic 

association information obtained through GWAS, ii) SNP functional information, iii) 

protein-protein interaction data, iv) LD, v) biochemical pathways. At the end of 

PANOGA protocol, pathway and gene tables with several features in .csv format 

(comma separated values) are generated, as shown in Tables 4.1-4.3 and 4.4, 

respectively. The files can be opened by Microsoft Excel or Open Office and displayed 

as spreadsheets. Each row of the pathway spreadsheet corresponds to the features of the 

identified pathway, i.e., KEGG term, KEGG term ID, p-value, rank, number of times 

found significant for different subnetworks, number of SNP targeted genes, number of 

typed SNPs in GWAS that are associated with the genes as part of the pathway under 

study, number of regulatory SNPs which are also found significant in GWAS, SNP 

targeted genes and their SNP counts.  

Gene table file, as shown in Table 4.4, includes different features of the genes that are 

found as part of the identified pathways. While some of these genes are SNP targeted 



 

55 

 

genes, some others are identified as the neighbours of SNP targeted genes within the 

generated sub-networks. Each row of the gene spreadsheet correspond to a gene 

symbol, entrez gene ID, number of times found in subnetwork, number of associated 

pathways, list of associated pathways, number of typed SNPs in GWAS, functional 

information of the typed SNPs in GWAS, SNP regulatory potential, number of 

regulatory SNPs. If the number of typed SNPs in GWAS is zero, this means this gene is 

identified through neighbour effect. Tables 4.1-4.4 are described in more detail below, 

within the Results on rheumatoid arthritis dataset section. 
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Table 4.1 Pathway based representation of PANOGA results, focusing on SNP targeted genes. The top 5 SNP targeted KEGG pathways are are 
shown along with their KEGG term IDs, ranks and p-values in the 1st, 3rd and 4th columns, respectively. SNP targeted genes that are identified 
in PANOGA protocol are shown in the 5th column; along with the number of typed SNPs, shown in paranthesis. For each identified SNP targeted 
pathway, number of SNP targeted genes, number of associated SNPs in GWAS, number of regulatory GWAS SNPs and how many times this 
pathway is identified are shown in columns 6 to 9, respectively. 

KEGG ID KEGG Term Rank 

Term 
Pvalue 

Corrected 
Bonferroni 

SNP Targeted Genes  
(typed SNP counts) 

# of SNP 
Targeted 
Genes 

# of 
Associated 
SNPs in 
GWAS 

# of 
Regulatory 

SNPs 
Times 
Found 

KEGG:04512 ECM-receptor interaction 1 8,76E-21 

COL4A2(1); COL4A1(5); ITGA2(1); ITGB3(2); 
ITGA4(5); ITGB1(10); SDC2(1); COL5A1(2); 
SDC3(1); VWF(4); LAMA3(9); ITGA6(4); 
CD44(3); LAMA5(1); ITGB8(1); TNR(3); 
ITGB6(8); FN1(3);  18 64 2 23 

KEGG:04630 
Jak-STAT signaling 
pathway 2 1,01E-19 

PIK3CG (2); IL2RB (1); OSMR (1); STAM2 (2); 
SOCS1 (1); CBL (1); LIFR (4); STAT1 (5); 
STAT3 (4); IFNAR1 (1); IFNAR2 (2); CBLB (2); 
CSF3R (2); CSF2RB (12); JAK2 (1); IL5RA (1);  16 42 0 10 

KEGG:04610 
Complement and 
coagulation cascades 3 2,42E-19 

PLAT (3); KNG1 (1); F11 (1); MBL2 (2); C3 (2); 
F13A1 (7); VWF (4); KLKB1 (1); SERPINC1 
(4); PROS1 (1);  10 26 0 18 

KEGG:04510 Focal adhesion 4 5,46E-19 

BCAR1 (1); ITGB5 (5); ITGB3 (2); ITGB1 (10); 
ITGB8 (1); PAK4 (3); ITGB6 (8); PAK1 (4); FN1 
(3); PRKCA (6); EGFR (8); FLT4 (1); ITGA2 
(1); ITGA4 (5); PPP1CB (4); FLNB (1); VWF 
(4); VEGFC (3); ITGA9 (6); ITGA6 (4); FYN 
(10); GSK3B (1);  22 91 2 31 

KEGG:04144 Endocytosis 5 1,14E-18 

STAM2 (2); KIT (1); CLTC (7); IGF1R (1); 
CDC42 (1); AP2B1 (1); SH3GLB1 (3); WWP1 
(2); NEDD4L (2); ITCH (3); SH3GL3 (5); EGFR 
(8); RET (1); FLT1 (1); CBL (1); HLA-C (8); 
CBLB (2); NTRK1 (1); SH3GL2 (4); EPN2 (1);  20 55 1 3 
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Table 4.2 Pathway based representation of PANOGA results, focusing on subnetwork genes. The top 5 SNP targeted KEGG pathways are shown along with 
their KEGG term IDs, ranks and p-values in the 1st, 3rd and 4th columns, respectively. Pathway associated genes that are found in the subnetworks are shown 
in the 5th column. While the genes without ‘*’ symbol are SNP targeted genes (e.g. JAK2 gene in the Jak-STAT signaling pathway), the genes with ‘*’ symbol 
are identified in the subnetwork due to the neighbour effect (e.g. JAK1 gene in the Jak-STAT signaling pathway). The genes with neighbour effect (not 
targeted by SNPs) are incorporated using PPI network in the subnetwork identification step of PANOGA and they help to identify SNP targeted pathways. 
Column 6 displays other members (genes) of the identified SNP targeted pathway, that are not found in PANOGA subnetworks. 

KEGG ID KEGG Term Rank 

Term 
Pvalue 

Corrected 
Bonferroni 

Pathway Associated Genes Found in 
Subnetworks 

Pathway Associated Genes Not Found in 
Subnetworks 

KEGG:04512 
ECM-receptor 
interaction 1 8,76E-21 

 COL4A2;  COL4A1;  ITGA2;  ITGB3;  ITGA4;  
ITGB1;  SDC2;  COL5A1;  SDC3;  VWF;  
LAMA3;  CD36*;  ITGA6;  CD44;  LAMA5;  
ITGB8;  TNR;  ITGB6;  COL1A1*;  FN1;  

GP9; HMMR; HSPG2; IBSP; ITGA1; ITGA10; 
ITGA11; ITGA2B; ITGA3; ITGA5; ITGA7; ITGA8; 
ITGA9; ITGAV; ITGB4; ITGB5; ITGB7; LAMA1; 
LAMA2; LAMA4; LAMB1; LAMB2; LAMB3; LAMB4; < 

KEGG:04630 
Jak-STAT signaling 
pathway 2 1,01E-19 

 PIK3CG;  IL6*;  IL2RB;  OSMR;  IL6ST*;  
STAM2;  SOCS1;  CBL;  LIFR;  IL6R*;  
STAT1;  STAT3;  IL11*;  IFNAR1;  TYK2*;  
OSM*;  IFNAR2;  CBLB;  JAK1*;  CSF3R;  
CSF2RB;  JAK2;  IL5RA;  

CREBBP; CRLF2; CSF2; CSF2RA; CSF3; CSH1; 
CTF1; EP300; EPO; EPOR; GH1; GH2; GHR; GRB2; 
IFNA1; IFNA10; IFNA13; IFNA14; IFNA16; IFNA17; 
IFNA2; IFNA21; IFNA4; IFNA5; IFNA6; IFNA7; IFNA8; 
TPO; TSLP; <<<<<<<.. 

KEGG:04610 
Complement and 
coagulation cascades 3 2,42E-19 

 PLAT;  KNG1;  F11;  MBL2;  F12*;  F10*;  C3;  
F13A1;  PLG*;  PROC*;  VWF;  FGG*;  FGA*;  
FGB*;  KLKB1;  F2*;  SERPINC1;  PROS1;  
PLAU*;  

A2M; BDKRB1; BDKRB2; C1QA; C1QB; C1QC; C1R; 
C1S; C2; C3AR1; C4A; C4B; C4BPA; C4BPB; C5; 
CD59; CFB; CFD; CFH; CFI; CPB2; CR1; CR2; F13B; 
SERPINA1; SERPINA5; SERPIND1; SERPINE1; <. 

KEGG:04510 Focal adhesion 4 5,46E-19 

 TNC*;  ERBB2*;  BCAR1;  ITGB5;  ITGB3;  
ITGB1;  PTK2*;  ITGB8;  PAK4;  ITGAV*;  
ITGB6;  PAK1;  SPP1*;  FN1;  PRKCA;  
EGFR;  FLT4;  ITGA2;  ITGA4;  PPP1CB;  
FLNB;  VWF;  VEGFC;  ITGA9;  ITGA6;  
ITGA5*;  FYN;  GSK3B;  

PIP5K1C; PPP1CA; PPP1CC; PPP1R12A; PRKCB; 
PRKCG; PTEN; PXN; RAC1; RAC2; RAC3; RAF1; 
RHOA; ROCK1; ROCK2; SHC1; SHC2; SHC3; SHC4; 
SOS1; SOS2; SRC; THBS1; THBS2; THBS3; THBS4; 
TLN1; TLN2; TNN; TNR; TNXB; VASP; VAV1; VAV2; 
VAV3; VCL; VEGFA; VEGFB; VTN; XIAP; ZYX; <<. 

KEGG:04144 Endocytosis 5 1,14E-18 

 STAM2;  KIT;  CLTC;  IGF1R;  CDC42;  
AP2B1;  SH3GLB1;  WWP1;  NEDD4L;  ITCH;  
SH3GL3;  EGFR;  RET;  FLT1;  CBL;  HLA-C;  
EPS15*;  CBLB;  AP2A2*;  NEDD4*;  NTRK1;  
SH3GL2;  EPN1*;  DNM1*;  EPN2;  

SMAD2; SMAD3; SMAD6; SMAD7; SMAP1; SMAP2; 
SMURF1; SMURF2; SNF8; SRC; STAM; STAMBP; 
TFRC; TGFB1; TGFB2; TGFB3; TGFBR1; TGFBR2; 
VPS45; VPS4A; VPS4B; VTA1; ZFYVE16; ZFYVE20; 
ZFYVE9; <<<<<. 
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Table 4.3. Pathway based representation of PANOGA results, focusing on associated SNPs from GWAS and their associated genes (SNP targeted genes). The 
top 5 SNP targeted KEGG pathways are shown along with their KEGG term IDs, ranks and p-values in the 1st, 3rd and 4th columns respectively.  

KEGG ID KEGG Term Rank 

Term 
Pvalue 

Corrected 
Bonferroni 

Pathway Associated Genes Found in Subnetworks [Associated 
SNPs & Functional Properties] 

# of 
Associated 
SNPs from 
GWAS 

KEGG:04512 ECM-receptor interaction 1 8,76E-21 

ITGB3 [rs2292700 ITGB3/intron; rs4629025 ITGB3/cds-synon]; ITGB1 
[rs4587680 ITGB1/intron; rs9417094 ITGB1/UTR-3; rs11009021 
ITGB1/UTR-3; rs16933501 ITGB1/intron; rs7914799 ITGB1/intron; 
rs7910994 ITGB1/UTR-3; rs2490486 ITGB1/UTR-3; rs11008969 
ITGB1/UTR-3; rs10827054 ITGB1/UTR-3;ITGB1/intron; rs2230395 
ITGB1/cds-synon]; SDC2 [rs10100191 SDC2/intron];<< 64 

KEGG:04630 Jak-STAT signaling pathway 2 1,01E-19 

IL2RB [rs3218253 IL2RB/intron]; JAK1 ; JAK2 [rs10491652 JAK2/intron]; 
IL5RA [rs2290611 IL5RA/intron]; IL2RA [rs2104286 IL2RA/intron; 
rs942200 IL2RA/intron; rs10795791 IL2RA/intron; rs11596355 
IL2RA/intron; rs10905668 IL2RA/intron; rs10905669 IL2RA/intron; 
rs942201 IL2RA/intron; rs12722527 IL2RA/intron; rs12722489 
IL2RA/intron; rs11256448 IL2RA/intron]; STAT1 [rs11687659 
STAT1/intron; rs3024912 STAT1/nearGene-3; rs6718902 
STAT1/nearGene-5;STAT1/intron; rs16833177 STAT1/nearGene-3; 
rs1914408 STAT1/nearGene-5;STAT1/intron]; STAT3 [rs3785898 
STAT3/intron; rs744166 STAT3/intron; rs8069645 STAT3/intron; 
rs16967738 STAT3/intron]; IL11 ;<<<<< 42 

KEGG:04610 Complement and coagulation cascades 3 2,42E-19 

KNG1 [rs698078 KNG1/missense;KNG1/intron]; F11 [rs4253417 
F11/intron]; MBL2 [rs11003123 MBL2/nearGene-3; rs7095891 
MBL2/nearGene-3]; FGG ; KLKB1 [rs925453 KLKB1/cds-synon];<<<.. 26 

KEGG:04510 Focal adhesion 4 5,46E-19 

 TNC ; ERBB2 ; BCAR1 [rs4887810 BCAR1/cds-synon]; ITGB5 
[rs6438856 ITGB5/intron; rs4678169 ITGB5/intron; rs4678168 
ITGB5/intron; rs4422355 ITGB5/intron; rs614664 ITGB5/intron]; ITGB3 
[rs2292700 ITGB3/intron; rs4629025 ITGB3/cds-synon]; <<.. 91 

KEGG:04144 Endocytosis 5 1,14E-18 

 HLA-C [rs2524051 HLA-C/intron; rs4394275 HLA-C/nearGene-5; 
rs2524115 HLA-C/intron; rs3873385 HLA-C/UTR-3; rs10456057 HLA-
C/nearGene-5; rs396038 HLA-C/intron; rs2853934 HLA-C/intron; 
rs2844615 HLA-C/intron]; EPS15 ; <<..  55 
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Table 4.4 Gene list representation of PANOGA for the identified SNP targeted pathways. For each SNP targeted gene, number of associated SNPs in GWAS, 
number of regulatory GWAS SNPs, how many times this pathway is identified, number of associated SNP targeted pathways, list of these pathways, 
associated SNPs from GWAS, functional information regarding associated SNPs from GWAS, SNP regulatory potential and number of regulatory SNPs are 
shown in columns 2 to 9, respectively. 

Gene 
Symb
ol 

# of 
Associat
ed SNPs 
from 
GWAS 

Times 
Found 
in 

Subne
twork 

# of Asso 
ciated 
Path 
ways Associated Pathways 

Associated 
SNPs from 
GWAS 

Functional info regarding 
Associated SNPs from 

GWAS SNP Regulatory Potential 

# of 
Regu
lator
y 

SNPs 

IL2RA 10 68 4 [HTLV-I infection; Endocytosis; Jak-
STAT signaling pathway; Measles] 

[rs11256448; 
rs12722527; 
rs11596355; 
rs12722489; 
rs10795791; 
rs10905669; 
rs942200; 
rs942201; 
rs10905668; 
rs2104286] 

[rs2104286 IL2RA/intron; 
rs942200 IL2RA/intron; 
rs10795791 IL2RA/intron; 
rs11596355 IL2RA/intron; 
rs10905668 IL2RA/intron; 
rs10905669 IL2RA/intron; 
rs942201 IL2RA/intron; 
rs12722527 IL2RA/intron; 
rs12722489 IL2RA/intron; 
rs11256448 IL2RA/intron] 

rs11256448 0.243147; 
rs12722527 0.17259; 
rs11596355 0.115745; 
rs12722489 0.0; 
rs10795791 0.0; 
rs10905669 0.0; rs942200 
0.12037; rs942201 NA; 
rs10905668 0.0; rs2104286 
0.0; 

0 

IL2RB 1 141 4 [HTLV-I infection; Endocytosis; Jak-
STAT signaling pathway; Measles] 

[rs3218253] [rs3218253 IL2RB/intron] rs3218253 0.113255; 0 

JAK2 1 150 7 

[Leishmaniasis; Cholinergic synapse; 
Measles; Jak-STAT signaling 
pathway; Adipocytokine signaling 
pathway; Toxoplasmosis; Chemokine 
signaling pathway] [rs10491652] [rs10491652 JAK2/intron] rs10491652 0.0; 0 

STAT1 5 235 11 

[Leishmaniasis; Osteoclast 
differentiation; Jak-STAT signaling 
pathway; Measles; Influenza A; 
Pathways in cancer; Toll-like receptor 
signaling pathway; Pancreatic 
cancer; Hepatitis C; Toxoplasmosis; 
Chemokine signaling pathway] 

[rs16833177; 
rs1914408; 
rs3024912; 
rs6718902; 
rs11687659] 

[rs11687659 STAT1/intron; 
rs3024912 STAT1/ 
nearGene-3; rs6718902 
STAT1/nearGene-5; 
STAT1/intron; rs16833177 
STAT1/nearGene-3; 
rs1914408 STAT1/ 
nearGene-5;STAT1/intron] 

rs16833177 0.0; rs1914408 
0.176371; rs3024912 0.0; 
rs6718902 0.0; rs11687659 
0.0; 0 
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In addition to the SNP targeted pathway list, and gene list representations of PANOGA, 

customized KEGG pathway maps, as shown in Figure 4.1, enrich the utility of 

PANOGA results. These pathway maps help the users to visualize affected genes along 

different routes within the pathway map. In these maps, the shade of red color in genes 

indicates the number of targeted SNPs (typed in the GWAS), per base pair of the gene. 

Figure 4.1 is described in more detail below, within the Results on rheumatoid arthritis 

dataset section. 

 
 

Figure 4.1 Customized KEGG pathway map for JAK-STAT signaling pathway. The 

shade of red color in genes indicates the number of targeted SNPs (typed in the GWAS 

of RA), per base pair of the gene. Red refers to the highest targeted gene, whereas white 

refers to a gene product, not targeted by the SNPs. 

 

In the following sections, we present our findings on RA, PE, IA and Behçet’s disease 

datasets, using PANOGA protocol. 

 

 
4.2 Results on rheumatoid arthritis dataset 

 
 
 

 Starting with 25,176 SNPs, that are found to be significant in a GWAS (WTCCC 

RA dataset), PANOGA was performed to identify RA related genes and functionally 

important KEGG pathways. These SNPs were assigned into 4,029 genes using SPOT 
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webserver (Saccone, et al., 2010) by considering all known SNP/gene transcript 

associations. As the possible overlap of a SNP with conserved TFBSs was considered, 

by using SNPnexus program (Chelala, et al., 2009), we incorporated 65 more proteins 

(TFs) that bind to the TFBS, that an RA associated SNP resides in. In order to 

incorporate functional information (functional score) to these genes, SPOT and F-SNP 

Pw-values were calculated as mentioned in the methods section. Following these 

calculations, network oriented steps of the PANOGA were realized using Cytoscape  

(Shannon, et al., 2003). SPOT and F-SNP Pw-values were used as attributes of the 

nodes (4094 genes) in the PPI network. We next searched for active sub-networks using 

the Cytoscape plugin jActive Modules (Ideker, et al., 2002). Once again, this plugin 

combines the network topology with attributes (SPOT and F-SNP Pw-values in our 

case) of each gene to extract potentially meaningful sub-networks. The higher the 

assigned aggregate z-score of a sub-network is, biologically more active the sub-

network is. As in the original publication of jActive Modules (Ideker, et al., 2002), sub-

networks with a score S > 3 (3 SD above the mean of randomized scores) were 

considered significant. Hence, our results with scores around 17.5 showed that this sub-

network is statistically significant. But the involvement of the genes in this network 

with RA is further investigated through comparison with existing RA related 

information in databases.  

 
 
4.2.1 Significant sub-networks for RA 
 
 
Using both GWAS p-values and functional score, we identified 5 significant sub-

networks on the basis of their aggregate degree of genetic association with RA. Due to 

the nature of the search algorithm, several of these sub-networks overlap extensively in 

their component genes. Thus, to describe a sub-network representative of association 

with RA, we selected the one with the highest score. This selected active sub-network is 

composed of 275 genes (our gene set) and 778 edges, as shown in Figure 4.2.a. 

Associations between 20 genes from this sub-network (XCL1, VCAM1, TRPV1, 

TRPC1, SPP1, RUNX1, RAC1, PRKCZ, NR3C1, NFKB1, MAP2K4, JUN, ITGB1, 

ITGAV, HMGB1, HLA-DMB, HLA-C, ERBB2, EPAS1, CCL21) and RA were 

verified by literature retrieved from the NCBI PubMed module and OMIM, as shown in 

Figure 4.2.b.  
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Figure 4.2 (a) The highest scoring sub-network is composed of 275 nodes and 778 
edges (as found in Step 2 of PANOGA). Node size is shown as proportional to the 
degree of a node. (b) Zoomed in view of the highest scoring sub-network. 20 genes 
known in literature as associated with RA are shown in green. Blue denotes the genes in 
our highest scoring sub-network that cannot be associated with RA in literature. 
 

In this highest scoring subnetwork, many of the nodes have modest p-values, and would 

not be seen as significant in a conventional GWAS analysis, as shown in Figure 4.3. For 

example, the Pw-value of HLA-DRA gene is 8.29E-48, but its interacting partners MBP 

gene has Pw-value 0.016, thus, it is included in the subnetwork.  

 

Next, we checked the topological parameters of this network. The distribution of the 

number of links per node (degree distribution, P(k)) is an important measure for a 

network to decide if it is a random, scale-free or hierarchical network. As shown in 

Figure 4.4.a, the degree distribution of our highest scoring sub-network follows a 

power-law distribution (P(k)=ax−γ, a= 120.03, γ=1.353, R2=0.773, Correlation= 0.891 in 

log log scale) and hence it is scale-free, as expected from a biological network 

a b 
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Figure 4.3 Highest scoring subnetwork, which is identified by jActiveModule using 

gene-wise weighted p-values, which combines GWAS p-values with the SNP’s 

functional score. Node’s color gradient from red to blue represents the Pw-values 

associated with each gene (from E-61 to 0.05), and the nodes with grey color indicate 

that these genes are not associated with a SNP, which is found to be significant in 

GWAS. 

 

(Albert, 2005; Barabasi, 2009; Jeong, et al., 2000; Vallabhajosyula, et al., 2009). The 

unusual properties of scale-free networks are valid only for γ<3 and the smaller the 

value of γ, the more important the role of the hubs is in the network (Barabasi and 

Oltvai, 2004). Similar to the degree distribution of the main PPI network (γ=1.617), the 

degree distribution of other top 5-scored sub-networks follows a power-law distribution 

(γ=1.418, 1.365, 1.406, 1.330). We also randomized our highest scoring sub-network 

using Erdos-Renyi algorithm and observed that its node degree distribution follows a 

Poisson distribution as expected from a random network (Figure 4.4.b).  
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Figure 4.4 (a) Node degree distribution of the highest scoring sub-network follows a 

power-law (P(k)=ax−γ, a= 120.03, γ=1.353, R2=0.773, Correlation= 0.891 in log log 

scale), showing that our network displays scale-free properties, as expected from a 

biological network. (b) Node degree distribution of a random network, obtained via 

randomization of our highest scoring sub-network using Erdos-Renyi algorithm. 

 

 

4.2.2 Functionally important KEGG pathways for RA 
 

 

As a result of the functional enrichment step (Step 3) of our methodology, we identified 

87 KEGG pathway terms. In Table 4.5, we represent 20 most significant pathways 

(determined by their p-values), which are mostly related to immunity and inflammation, 

cell adhesion and cancers.  Most of these pathways (Chemokine signaling, Neurotrophin 

signaling, Pathways in cancer, Leukocyte transendothelial migration, T cell receptor 

signaling,  Toll-like receptor signaling, Allograft rejection, MAPK signaling, Apoptosis, 

Jak-STAT signaling)  have been previously found to be associated with RA 

experimentally. In Table 4.5, we color coded the pathways and genes in blue, green and 

red, respectively, if they are computationally found only, experimentally found only, or 

found both experimentally and computationally. For example, Toll-like receptor (TLR) 

signaling pathway term was colored in red since other computational methods identified 

this term and it is also experimentally known to play an important role in the 

development and progress of RA. Among the most significant pathways identified by 

our methodology are Focal Adhesion and Cell Adhesion Molecules (CAM) pathways. 

a b 
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These pathways are experimentally shown to play a critical role in cellular processes 

such as osteoclass pathology and angiogenesis, which are known to be important for RA 

(Shahrara, et al., 2007).  

We compared our findings with previously found RA related KEGG pathways and with 

the genes found from those pathways. Wu et al. (Wu, et al., 2010) created a 

comprehensive molecular interaction map for RA by combining the molecules and 

pathways found to be associated with RA based on merging all available papers related 

to high throughput experiments on RA. Following a procedure as in (Calzone, et al., 

2008), they have decomposed their network into 11 modules using the Cytoscape plugin 

BiNoM (Zinovyev, et al., 2008). DAVID (Huang, et al., 2007) pathway analysis on 

their largest module with 292 nodes for 104 proteins and 334 edges returned 26 

different KEGG pathways. In summary, this module contains 43 proteins from the 

MAPK signaling pathway, 36 proteins from focal adhesion, 23 proteins from the ErbB 

signaling pathway, and some cancer associated pathways such as leukemia, prostate 

cancer and colorectal cancer. 

 

In another study (Martin, et al., 2010), the genomic regions showing low-significance 

associations in previous GWAS of RA (WTCCC and NARAC datasets) were further 

explored. Using Prioritizer software (Franke, et al., 2006), they have prioritised genes 

from similar pathways but located in different regions. This tool searches for those 

genes belonging to the same biological pathways or related biological pathways, based 

on the assumption that true disease-causing genes are functionally related. Prioritizer 

software uses a Bayesian approach to reconstruct a functional gene network based on 

known functional interactions from several databases such as the KEGG. Martin et al., 

2010 reported 18 overrepresented KEGG pathways; in which Jak-STAT signaling 

pathway, Glioma, Calcium signaling pathway, Long-term potentiation, Apoptosis had 

the top 5 scores.
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Table 4.5 Overrepresented KEGG Pathways found in the highest scoring sub-network for RA. Green denotes experimental, blue denotes computational, red denotes both 
experimental and computational verification regarding susceptibility to RA. 

KEGG Term 
 

Num. 
of 

Genes 
Found 

Asso-
ciated 
Genes 
(%) 

Term 
Pvalue 
Corr. w/ 
Bonfer. 

Associated Genes Found 
  

Focal adhesion 30 14,9 9,33E-11 
ACTB, ACTG1, AKT1, COL4A4, CRKL, CTNNB1, EGF, EGFR, FLNA, FLNB, FLT4, FYN, GRLF1, ITGA5, ITGB1, ITGB3, 
ITGB5, MAP2K1, PAK4, PIK3R2, PTK2, RAC1, RHOA, SHC3, SRC, VASP, VAV1, VAV3, VTN, ZYX 

ErbB signaling pathway 20 22,9 2,13E-10 
AKT1, CAMK2D, CAMK2G, CBL, CRKL, EGF, EGFR, ERBB3, ERBB4, HBEGF, KRAS, MAP2K1, NCK2, NRG1, PAK4, 
PIK3R2, PTK2, SHC3, SRC, STAT5A 

Tight junction 22 16,4 1,80E-08 
ACTG1, ACTN2, CASK, CTNNB1, EPB41L1, EPB41L2, EPB41L3, GNAI1, INADL, KRAS, LLGL1, MAGI1, MAGI3, PARD3, 
PRKCE, PRKCI, PRKCQ, PRKCZ, RHOA, SPTAN1, SRC, TJP1 

Chemokine signaling pathway 26 13,7 2,31E-08 
ADCY2, ADCY5, ADCY8, AKT1, CHUK, CRKL, DOCK2, ELMO1, FGR, GNG2, IKBKB, KRAS, MAP2K1, NCF1, PARD3, 
PIK3R2, PRKCZ, PTK2, PTK2B, RAC1, RHOA, SHC3, STAT3, TIAM1, VAV1, VAV3 

Adherens junction 17 22,6 1,16E-07 
ACTB, BAIAP2, CREBBP, CTNNB1, EP300, FYN, PARD3, PTPRF, PTPRM, RHOA, SMAD2, SMAD4, SORBS1, SRC, 
TCF7L2, TGFBR1, TJP1 

Bacterial invasion of epith. cells 15 20,5 1,57E-07 ACTB, ACTG1, CBL, CLTC, CTNNB1, CTTN, DNM3, ELMO1, ITGB1, PIK3R1, PTK2, RAC1, RHOA, SRC, WASL 

Neurotrophin signaling pathway 20 15,8 2,36E-07 
ARHGDIB, CALM1, CALM3, CAMK2D, IKBKB, IRS1, JUN, KRAS, MAPK10, MAPK3, NFKB1, NTRK1, NTRK3, PLCG1, 
RAC1, RHOA, RPS6KA1, TP73, YWHAE, YWHAH 

Long-term potentiation 15 21,4 3,67E-07 ADCY8,CALM1,CALM3,CAMK2D,EP300,GRIA1,GRIN1,GRIN2B,GRM5,ITPR1,ITPR3,KRAS,MAPK3, PPP1CB, RPS6KA1 

Pathways in cancer 32 9,7 1,12E-06 
CASP8, CBL, CHUK, COL4A4, CTNNB1, EP300, EPAS1, ERBB2, FOXO1, FZD4, IKBKB, ITGAV, ITGB1, JUN, KIT, KRAS, 
MAPK10, MAPK3, NFKB1, NTRK1, PIAS1, PIAS2, PLCG1, PTK2, RAC1, RHOA, RUNX1, SMAD4, STAT1, STAT5A, TPM3 

Chronic myeloid leukemia 14 19,1 1,44E-06 CBL, CRK, CRKL, HRAS, IKBKB, MAPK3, NFKB1, PIK3R2, SHC1, SMAD3, SMAD4, SOS1, STAT5B, TGFBR1 

Cell adhesion molecules 
(CAMs) 18 13,2 1,42E-05 

CD226, CD28, CD4, CDH2, HLA-B, HLA-C, HLA-DMB, HLA-DPA1, HLA-DQA2, HLA-DRA, ITGB1, L1CAM, NCAM1, 
NLGN1, PTPRC, PTPRF, PTPRM, SDC3 

Leukocyte transendothelial 
migration 17 11 1,72E-05 

ACTG1, ACTN2, CTNNB1, EZR, GNAI1, GRLF1, ITGB1, NCF1, PLCG1, PTK2, PTK2B, RAC1, RHOA, TXK, VAV1, VAV3, 
VCAM1 

T cell receptor signaling 
pathway 16 14,8 2,70E-05 CBL, CD247, CD28, CD4, CHUK, FYN, HRAS, IKBKB, LCK, MAP2K1, NCK2, PLCG1, PRKCQ, PTPRC, RHOA, VAV3 

Toll-like receptor signaling 
pathway 13 12,7 1,97E-03 CASP8, CHUK, IFNAR1, IFNAR2, IKBKB, JUN, MAP2K4, MAPK10, MAPK3, NFKB1, RAC1, SPP1, STAT1 

Antigen processing and 
presentation 11 13,9 2,08E-03 CALR, CANX, HLA-B, HLA-C, HLA-DMB, HLA-DRA, HLA-F, HLA-G, HSPA1L, TAP1, TAP2 

Allograft rejection 8 20 2,16E-03 CD28, HLA-B, HLA-C, HLA-DMB, HLA-DPA1, HLA-DQA2, HLA-DRA, IL12A 

MAPK signaling pathway 20 7,4 6,13E-03 
CACNA1A, CHUK, CRKL, DAXX, EGF, FLNA, FLNB, FOS, HRAS, HSPA1L, JUN, MAPK10, MAPK3, MAPK8, NF1, RAC1, 
RPS6KA1, RRAS2, SOS1, TGFBR1 

Type I diabetes mellitus 8 17,3 6,24E-03 CD28, HLA-B, HLA-C, HLA-DMB, HLA-DPA1, HLA-DQA2, HLA-DRA, IL12A 

Apoptosis 11 12,5 6,84E-03 CAPN1, CASP10, CASP8, CHUK, CSF2RB, FADD, IKBKB, IRAK1, IRAK4,PRKAR2A,PRKAR2B 

Jak-STAT signaling pathway 15 9,6 7,41E-03 CBL, CREBBP, CSF2RB, EP300, IFNAR1, IFNAR2, IL12A, IL2RA, IL2RB, JAK1, LIFR, SOCS5, STAT1, STAT3, STAT5A 
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Baranzini et al., 2009 conducted a pathway-oriented analysis on WTCCC GWAS data 

for RA and another GWAS data by Plenge and collaborators. 9 KEGG pathways were 

identified in this study including Cell adhesion molecules (CAMs), Antigen processing 

and presentation, Type I diabetes mellitus. Lastly, the screening approach developed in 

(Zhang, et al., 2010) to further analyze GWAS data considers all SNPs with nominal 

evidence of Bayesian association, structural and functional similarities of corresponding 

genes. Responsible pathways identified in their study include Jak-STAT signaling 

pathways, cell adhesion molecules, and MAPK signaling pathways. 

 

Comparative results with these four studies are shown in Table 4.6 in terms of number 

of genes found in commonly identified KEGG pathways. While most of these 

associations are computational predictions only, the functional relations of five of these 

pathways (Jak-STAT signalling, apoptosis, T cell receptor signalling, leukocyte 

transendothelial migration and cytokine-cytokine receptor interaction) with RA 

pathogenesis are known (Plenge, et al., 2007; Raychaudhuri, et al., 2009). Also, the 

effect of Toll-like receptor (TLR) signaling pathway and MAPK signaling pathway on 

RA is known. Here it is important to note that these associations are obtained by 

different methods on different datasets. For example, while Wu et al. utilizes text-

mining (Wu, et al., 2010), Martin et al. mines GWAS data from WTCCC and NARAC 

studies (including variations on more cases and controls) (Martin, et al., 2010), and 

Zhang  et al. applies their methodology on GAW16 (Genetic Analysis Workshop) data 

(Zhang, et al., 2010). PANOGA identifies previously found KEGG pathway terms with 

high statistical significance (terms shown in blue for former computational 

identification, in red for both computational and experimental identification). 

 

From those previously identified pathways, we identified additional genes associated 

with RA within some of these pathways (e.g. Antigen processing and presentation, 

Tight junction). Importantly, within these pathways, the associations between some of 

these additionally found genes, such as HLA-C, HLA-G, PRKCQ, PRKCZ, TAP1, 

TAP2 (colored in green in Table 4.5) and RA were also verified by either OMIM 

database or by literature retrieved from the NCBI PubMed module. 
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Table 4.6 Comparison of found KEGG pathways with previous studies in terms of 

number of genes associated within each KEGG term for RA. Blue denotes 

computationally found pathways, green denotes experimentally verified RA associated 

pathways, and red denotes both experimental and computational verification. 

KEGG Term 
 
 
 
 

Number of Genes Found 
 

Term 
Pvalue 

Corrected 
Bonfer-
roni 
 
 

Baran
zini 
et.al. 

Martin 
et.al. 

Wu 
et.al 

Zhang 
et.al. 

PANOGA 
(only 
GWAS 
p-values) 

PANOGA 
(w/2 attributes  
SPOT Pw and 
F-SNP Pw) 

Focal adhesion 0 0 36 32 22 30 9,33E-11 

ErbB signaling pathway 0 0 23 0 18 20 2,13E-10 

Tight junction 0 0 0 5 20 22 1,80E-008 

Chemokine signaling pathway 0 0 0 0 24 26 2,31E-08 

Adherens junction 0 0 0 18 16 17 1,16E-07 
Bacterial invasion of epithelial 
cells 0 0 0 0 15 16 1,57E-007 

Neurotrophin signaling pathway 0 0 0 0 20 20 2,36E-07 

Long-term potentiation 0 22 0 7 14 15 3,67E-07 

Pathways in cancer 0 0 0 0 29 32 1,12E-06 

Chronic myeloid leukemia 4 0 21 18 10 14 1,44E-06 
Cell adhesion molecules 
(CAMs) 8 26 0 10 12 18 1,42E-05 
Leukocyte transendothelial 
migration 0 24 14 0 17 17 1,72E-05 
T cell receptor signaling 
pathway 4 21 16 16 13 16 2,70E-05 
Toll-like receptor signaling 
pathway 0 0 22 6 7 13 1,97E-03 
Antigen processing and 
presentation 6 0 0 3 11 11 2,08E-03 

Allograft rejection 0 0 0 0 8 8 2,16E-03 

MAPK signaling pathway 0 0 43 34 16 20 6,13E-03 

Type I diabetes mellitus 5 0 0 1 8 8 6,24E-03 

Apoptosis 0 18 12 11 6 11 6,84E-03 

Jak-STAT signaling pathway 0 25 0 16 13 15 7,41E-03 

Prostate cancer 0 0 22 0 10 11 5,04E-02 

Calcium signaling pathway 0 35 0 4 15 16 1,63E-01 

VEGF signaling pathway 3 0 15 13 8 9 2,71E-01 

Total 30 171 224 194 332 385  

 

Different from previous studies, we also identified Chemokine signaling, Neurotrophin 

signaling, Pathways in Cancer, Allograft rejection pathways as significant for RA. 

While the significance of these pathways in relation to RA were not thoroughly 

discussed in literature, the KEGG functional enrichment of RA-specific drug target 

genes, included these terms. List of drug target genes for RA, is downloaded from 
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Pharmaccogenomics Knowledge Base website. In this database, 83 genes are associated 

with drugs that are used to treat RA. Furthermore, within these pathways, the 

associations between some of the genes, such as EPAS1, CD28, HLA-C (colored in 

green in Table 4.5) and RA were verified by either OMIM database or by literature 

retrieved from the NCBI PubMed module.  

 

In order to assess the contribution of the found pathways and associated genes to 

disease mechanism, we also searched all identified genes from all found pathways in the 

Pharmacogenomics Knowledge Base website. When we filtered SNPs based on their 

significance in GWAS (p-value < 0.05 cutoff is applied) and assigned into genes, 14 out 

of 85 drug target genes were found. Whereas, via considering all the genes in the found 

KEGG pathways, we identified 25 out of 85 drug target genes, which are associated 

with RA. Hence, we showed that incorporating pathway knowledge on top of GWASs 

provides additional insights into the pathogenesis of RA. 

 

To emphasize the effect of the functional score in PANOGA, we have applied our 

analysis on 4,094 genes firstly by using only GWAS p-values, secondly by using both 

SPOT and F-SNP Pw-values as attributes. As can be seen in Table 4.6, (PANOGA (w/ 

functional scores) column vs. PANOGA (only GWAS pvalues) column), incorporating 

functional information of a SNP increases the number of genes identified as associated 

with RA; and hence increases the significance of the identified KEGG pathway term. 

 
 
4.2.3 Functionally grouped annotation network of RA  
 
 

The diversity and complexity of the identified KEGG pathways involved in one sub-

network confirms that RA is a complex systemic disease. Since a gene can be present in 

multiple pathways, we would like to show the pathway relationship, based on whether 

the pathways are sharing same genes. Hence, we generated a functional annotation 

network from the found KEGG pathways using ClueGO plugin (Bindea, et al., 2009). 

While the nodes in a functionally grouped network in Figure 4.5 denoted the found 

KEGG terms associated to RA, the edges were drawn based on the existence of shared 

genes using kappa statistics, in a similar way as described in (Huang, et al., 2007). 87 
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Figure 4.5 (a) Functionally grouped annotation network of our highest scoring sub-

network. The relationships between the KEGG terms (nodes) were based on the 

similarity of their associated genes. The size of the nodes reflected the statistical 

significance of the terms (term p-values corrected with Bonferroni). Edges represent the 

existence of shared genes. The thickness of the edges is proportional to the number of 

genes shared and calculated using kappa statistics, in a similar way as described in 

(Huang, et al., 2007). The grouped terms (according to their kappa scores) were shown 

in same color. (b) Zoomed in view of the entire functional annotation network. The 

most significant pathway term of the group with the lowest term p-value (the group 

leading term) was shown in bold using the group specific color.  

a 

b 
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pathway terms that were found to be RA associated in our analysis were clustered into 9 

groups, as can be seen in Figure 4.5.a (according to their kappa scores) and the 

pathways in the same group were shown in same color. ClueGO also assigns the most 

significant pathway terms with the lowest term p-value (corrected with Bonferroni) as 

group leading terms. For our functional annotation network, Focal adhesion, Adherens 

junction, Chemokine signaling pathways, T cell receptor signaling, Jak-STAT signaling 

were selected as group leading terms, as shown in Figure 4.5.b. Indeed, these group 

leading terms were either experimentally or computationally found to be related with 

RA, as can be seen in Table 4.5. This experiment generated the interconnections 

between the pathways that were found to be related with RA in our analysis. 

 

To further check for the biological significance of our results, we compared the 

functional enrichments of the genes found in the highest scoring active sub-network 

with the functional enrichments of previously determined 331 genes verified by either 

OMIM database or by literature retrieved from the NCBI PubMed module to be 

associated with RA (Wu, et al., 2010). While our highest scoring sub-network with 275 

genes enriched for 87 KEGG pathways, these 331 genes mapped to 88 pathways. 

Among those, 37 pathways were found in common, showing significant overlap 

between pathways coming from our study and the literature. In Figure 4.6.a, the 

different proportion of the genes found in KEGG pathways from two sets was 

represented with a color gradient from green for literature verified RA genes, to red for 

our gene set. White denoted the pathways found in both sets with equal number of 

genes. As shown in Figure 4.6.b (the zoomed in view), Pathways in cancer, T cell 

receptor signaling pathway, MAPK signaling pathway were found in both sets with the 

contribution of equal number of genes (shown in white). Whereas, the light green color 

in Neurotrophin signaling pathway term indicated that although most of the RA 

associated genes in this pathway comes from literature verified set, some of the genes in 

our gene set were assigned to this pathway. 
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Figure 4.6 (a) Comparison of KEGG pathway terms with literature verified RA 

genes/our gene set were shown in green/red, respectively. Nodes represent the identified 

pathway terms from any one of the two sets. (b) Zoomed in view of the network. The 

color gradient showed the gene proportion of each set associated with the term. White 

color represented equal proportions from the two comparison sets. The size of the nodes 

reflected the statistical significance of the terms (term p-values corrected with 

Bonferroni). Following the convention in Figure 4.5.a, edges represented the existence 

of the shared genes between the pathway terms and node border colors mapped to the 

group colors. 

 

4.2.4 Comparison with known drug target genes for RA  
 

Since only a couple of KEGG pathways are known to be associated with RA in 

literature, for verification purposes we also compared the genes as part of these 

pathways with the drug target genes of RA in Pharmaccogenomics Knowledge Base. To 

this end, we tried to find out whether taking the genes in pathway context would 

enhance the results of GWA study by identifying additional target genes. As result of 

assigning SNPs coming from GWAS to genes we identified 4094 genes. Only 14 of 

them were mapped to 83 RA specific drug target genes. Following the application of 

our method, we identified KEGG pathways that are affected by the SNPs, and these 

pathways contained 25 out of 83 RA specific drug target genes. This provided an added 

value to GWAS analysis showing that not only the genes affected by the SNPs may be 

the drug targets but also other genes in these affected pathways may also be the drug 

a b 
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targets, as shown by 11 extra genes identified. The analysis of SNP affected genes in a 

pathway context provides added value in identification of potential drug targets.  

 

4.2.5 Comparison with random networks  
 

To test whether the identified KEGG pathways could be obtained by chance, we tested 

the enrichment in KEGG pathways for 100 randomly generated networks of size 275. 

The enrichment of these 100 random networks returned 68 different KEGG pathways. 

Among these 68 pathways, only two KEGG pathways (Type I diabetes mellitus and 

Allograft rejection) overlap with the identified pathways, as shown in Table 4.5. 

However, the statistical significance of these pathways (out of the random network) 

were low (term p-values=0.013 and 0.007 respectively). These two pathways are found 

only for one random network out of 100 randomly generated networks and both 

pathways are found due to the existence of the following 5 random genes in this 

network, i.e. PRF1, HLA-B, FAS, HLA-DQA1, IL2. Whereas in our pathway analysis 

(as shown in Table 4.5), more genes are identified as part of Type I diabetes mellitus 

and Allograft rejection pathways (i.e. CD28, HLA-B, HLA-C, HLA-DMB, HLA-

DPA1, HLA-DQA2, HLA-DRA, IL12A). Hence, our gene list includes different genes 

compared to the ones found in random network with higher significance (term p-

values=6.24E-03 and 2.16E-03 respectively).  

 

4.2.6 KEGG pathway map of JAK-STAT signaling, as related to RA  
 

Results explained so far on RA dataset focuses on the highest scoring sub-network. We 

have also applied the full PANOGA protocol on the RA dataset. Table 4.1-4.4 and 

Figure 4.1 summarize our results on the RA dataset, once the full PANOGA protocol is 

applied. As shown in Table 4.1-4.3, the JAK-STAT signaling pathway is identified by 

PANOGA on WTCCC rheumatoid arthritis (RA) GWAS dataset in 2nd ranking with 

p=1.007E-19. The effect of JAK-STAT signaling pathways on RA is reviewed in 

(Plenge, et al., 2007; Raychaudhuri, et al., 2008; Raychaudhuri, et al., 2009). SNP 

targeted pathway list of PANOGA (Table 4.1) indicates that 16 SNP targeted genes and 

42 genotyped SNPs are found in this pathway. For each SNP targeted pathway, 

PANOGA protocol displays not only SNP targeted genes but also neighbour genes that 
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are found in subnetworks. For instance, while JAK2 gene is a SNP targeted gene, JAK1 

is a neighbour gene (shown with * in Table 4.2) and found in the identified 

subnetworks. These neighbour genes help to identify SNP targeted pathways, which can 

not be picked up using SNP targeted genes only. Different from Tables 4.1 and 4.2, 

Table 4.3 displays associated SNPs from GWAS, their associated genes (SNP targeted 

genes) and the functional effect of the SNP on the gene. Additionally, customized 

KEGG pathway map representation of PANOGA (Figure 4.1) demonstrates that 

CytokineR, which includes IL2RA and IL2RB genes (shown in red) creates a complex 

with JAK (shown in pink). The dramatic effects of JAK inhibitors on RA in clinical 

trials are recently discussed in (Migita, et al., 2011). As shown in Figure 3, JAK can 

phosphorylate (i) STAT (shown in pink) and may lead to immunity related responses; 

(ii) SHP2 and as a downstream effect, MAPK signaling pathway, which is known to 

cause chronic synovitis during RA (Schett, et al., 2000), is influenced. MAPK signaling 

pathway is also identified by PANOGA protocol with p=4.6E-17, as shown in Table 

4.5. On the other hand, Table 4.4, the gene list representation of PANOGA protocol 

shows that rs6718902 and rs1914408 are found to be associated with RA (p<0.05) 

according to WTCCC GWAS on RA. PANOGA protocol identifies these SNPs on the 

5’ end of STAT1 gene (shown in pink in Figure 4.1), which is part of the JAK-STAT 

signaling pathway. 

4.3 Results on partial epilepsy dataset  
 

Among the 528,745 SNPs, which were tested in the original GWAS, 28,450 SNPs 

showed nominal evidence of association (P < 0.05). These affected SNPs mapped to 

4347 genes. At the end of the subnetwork identification step, we identified 545 

significant sub-networks. Following the identification of sub-networks, we evaluated 

whether these sub-networks were biologically meaningful. In another words, for each 

sub-network, we searched for the over-represented pathways. 47 pathways were 

identified with p-values less than E-10. The top 30 over-represented pathways were 

shown in Table 4.7. Among the 545 subnetworks, these pathways were identified at 

least for 2 subnetworks and at most for 241 subnetworks. The higher the number of 

times that the pathway is found significant for a sub-network, the more support that the 

pathway gets from different parts of the PPI network and hence, such pathways could be 

more important for disease development mechanisms. Complement and coagulation  
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Table 4.7 The top 30 over-represented KEGG pathways identified for PE dataset.  
 

KEGG Term 

Term 
Pvalues 
Corr Bonf 

 
 
Times 
Found 

# of 
Associated 
SNPs in 
GWAS 

# of 
Regulatory 
SNPs 

# of SNP 
Targeted 
Genes 

Complement and coagulation 
cascades 2,16E-025 

 
24 34 1 12 

Cell cycle 1,03E-024 27 24 0 14 

Focal adhesion 7,10E-023 71 97 3 20 

ECM-receptor interaction 1,62E-022 71 62 2 14 

Jak-STAT signaling pathway 1,16E-021 3 24 1 16 

MAPK signaling pathway 2,32E-019 10 73 2 23 

Proteasome 1,15E-018 7 11 1 4 

Ribosome 1,57E-018 6 2 0 2 

Calcium signaling pathway 5,73E-018 26 154 2 22 

Regulation of actin 
cytoskeleton 9,23E-018 

10 
88 4 19 

Adherens junction 1,01E-017 241 79 4 13 

Pathways in cancer 3,94E-017 11 112 5 22 

Gap junction 6,32E-017 135 147 3 18 

Apoptosis 3,72E-016 21 37 0 13 

Long-term depression 2,90E-015 182 151 2 15 

Axon guidance 4,01E-015 32 59 1 12 

Fc gamma R-mediated 
phagocytosis 2,22E-014 

105 
66 3 12 

Tight junction 2,82E-014 16 82 2 13 

ErbB signaling pathway 4,04E-014 158 86 1 12 

Wnt signaling pathway 6,28E-014 17 44 1 13 

Chemokine signaling pathway 9,60E-014 18 68 0 19 

GnRH signaling pathway 1,22E-013 67 65 2 15 

Pentose phosphate pathway 1,29E-013 17 20 1 7 

Long-term potentiation 2,28E-013 140 94 1 13 

Neurotrophin signaling 
pathway 3,24E-013 

27 
19 0 9 

Glycolysis/Gluconeogenesis 4,29E-013 3 21 1 8 

Notch signaling pathway 9,33E-013 33 5 0 5 

Dilated cardiomyopathy 1,40E-012 32 109 1 11 

TGF-beta signaling pathway 2,32E-012 23 15 0 7 

Endocytosis 3,61E-012 2 72 0 12 

 
cascade pathway, which was identified as the most important pathway in our analysis 

(p=2,16E-25), was discussed previously as associated with epileptogenesis, in a study 

that conducted transcriptome analysis of the hippocampal cells from rats subjected to 

the pilocarpine model of epilepsy (Okamoto, et al., 2010). They showed that seven 

genes from this pathway were commonly up-regulated throughout epileptogenesis, from 

the early events post-status epilepticus to the onset of recurrent spontaneous seizures 

(Okamoto, et al., 2010). In our analysis, as part of this pathway, we identified 12 genes, 
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which were targeted by 34 genotyped SNPs, and one of these SNPs had a regulatory 

role. In the two previous GWAS studies of epilepsy (Guo, et al., 2012; Kasperaviciute, 

et al., 2010), this pathway is not pronounced as important. This result shows one more 

time that the GWAS are undermined in most cases and more comprehensive analytical 

approaches, as presented here, are needed. 

 
In order to compare our findings more systematically with previous studies, we 

compiled seven lists of epilepsy associated genes, checked their pathway enrichments 

using DAVID tool (Huang, et al., 2007), and compared the identified pathways with our 

top 30 SNP-targeted pathway list. First gene list was obtained through Wang et al’s 

study, in which they comparatively evaluated the status of gene expression profiling in 

epileptogenesis, as of 2010 (Wang, et al., 2010). We got the list of 53 genes, which was 

reported to be differentially expressed in more than one study among 18 studies. Second 

gene list, including 185 genes, was obtained through OMIM, as a result of our search 

using “partial epilepsy” keyword. Third gene list included 6 genes, shown as the closest 

genes to the 11 SNPs, which were found to be significant in a GWAS on PE 

(Kasperaviciute, et al., 2010). Fourth gene list was obtained through a copy number 

variation (CNV) study in idiopathic generalized and focal epilepsies, in which they 

identified CNVs in 26 genes (Mefford, et al., 2010). Fifth gene list included 81 epilepsy 

related genes that was provided by our collaborators. Sixth gene list assembled genes 

listed in the Epilepsy Genetic Association Database (epiGAD), which summarizes the 

results of both published and unpublished research efforts relating to genetic association 

studies in the field of epilepsy. Seventh, the last gene list was collected from Rogic et 

al’s study (Rogic and Pavlidis, 2009). Via reviewing four articles (Lukasiuk, et al., 

2006; Lukasiuk and Pitkanen, 2004; Wang, et al., 2010; Zagulska-Szymczak, et al., 

2001), they compiled a list of genes that have been previously linked to epileptogenesis 

or excitotoxic-brain injury by studies of gene expression (Rogic and Pavlidis, 2009). 

This list of 182 differentially expressed genes during epileptogenesis was used as our 

last gene list. Even though we collected candidate gene lists of epilepsy, that are 

obtained in different studies via different whole-genome studies, e.g. gene expression, 

GWAS and whole-genome oligonucleotide array comparative genomic hybridization, 

we suspect that the affected pathways might show commonalities. As shown in Table 

4.8, all pathways in our list, except proteasome, pentose phosphate and notch signaling 

pathways were also found for at least one of the seven candidate gene lists. Wang et al 
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showed that only 53 out of 2000 differentially expressed genes were found in more than 

one study (Wang, et al., 2010). Whereas in our study, pathways targeted by candidate 

epilepsy genes, which are coming from different studies show more conservation. 20 

out of the top 30 pathways were found to be common for at least three different studies, 

as shown in Table 4.8.  This result also indicated the relevance of our pathway oriented 

approach. Compared to the individual genes/SNPs, we showed that the pathways were 

more conserved among different epilepsy studies. 

The diversity of the identified KEGG pathways confirmed that PE was a complex 

disease. Since a gene can be present in multiple pathways, we investigated the 

relationships among the pathways, based on the shared genes. To this end, we grouped 

the top 30 SNP targeted pathways of PE with the help of ClueGO plugin (Bindea, et al., 

2009), as shown in Figure 4.7. While the nodes in this figure denoted the SNP targeted 

pathways, the edges were drawn based on the existence of shared genes using kappa 

statistics, in a similar way as described in (Huang, et al., 2007). The pathway terms, 

which were shown in color, indicated that this term was a group leading term (GLT). 

GLT was chosen as the pathway with the smallest p-value among all the pathways in 

the same group. While 8 pathways did not belong to any groups of pathways, other 

pathways were grouped into 7 major groups. As expected, signaling pathways were 

interlinked with synapse pathways. Jimenez-Mateos et al performed a microarray 

analysis in mice, 24 h after status epilepticus, where the mice had received previously 

either seizure preconditioning (tolerance) or sham-preconditioning (injury) (Jimenez-

Mateos, et al., 2008). Analysis of the genes differentially suppressed in tolerance 

identified calcium signaling and synapse pathways as over-represented (Jimenez-

Mateos, et al., 2008). As shown in Figure 4.7, the functional grouping of our top 30 

pathways clustered calcium signaling with Cholinergic, GABAergic, Glutamatergic 

Serotonergic, Dopaminergic synapse pathways. Our functional grouping placed long 

term potentiation and long term depression pathways among signaling pathways. Since 

these pathways shared genes with signaling pathways, a similar situation was observed 

in Jimenez-Mateos’s study, such that long term potentiation pathway comprised 8 

downregulated genes, including signaling intermediates (calcium-dependent 

phosphatase Ppp3r1) and nuclear/transcription-associated genes (calcium/calmodulin-

dependent kinase 4). As Figure 4.7 illustrates, GnRH signaling pathway was found as 

the group leading term of the signaling pathways that were identified in our top 30  
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Table 4.8 Comparison of the top 30 SNP-targeted KEGG pathways with the pathways of the known genes as associated with PE.  

KEGG Term 
Term Pvalue 
Corr Bonf 

Wang et al. 
Study OMIM GWAS on PE 

CNV Study 
on Epilepsy 

Candidate 
Gene List EpiGAD 

Rogic et al. 
Study 

Complement and coagulation cascades 2,16E-025 - Y - - - - Y 

Cell cycle 1,03E-024 - Y - - - - Y 

Focal adhesion 7,10E-023 Y Y Y - - - Y 

ECM-receptor interaction 1,62E-022 Y Y - - - - Y 

Jak-STAT signaling pathway 1,16E-021 Y Y - - - - Y 

MAPK signaling pathway 2,32E-019 Y Y Y - Y Y Y 

Proteasome 1,15E-018 - - - - - - - 

Ribosome 1,57E-018 - - - - - - Y 

Calcium signaling pathway 5,73E-018 Y Y Y Y Y Y Y 

Regulation of actin cytoskeleton 9,23E-018 Y Y - Y - - Y 

Adherens junction 1,01E-017 - - Y - - - Y 

Pathways in cancer 3,94E-017 Y Y Y - - - Y 

Gap junction 6,32E-017 Y Y Y - - - Y 

Apoptosis 3,72E-016 Y Y - - - - Y 

Long-term depression 2,90E-015 Y Y Y Y Y Y Y 

Axon guidance 4,01E-015 - - - - - - Y 

Fc gamma R-mediated phagocytosis 2,22E-014 Y Y Y Y - - Y 

Tight junction 2,82E-014 Y Y Y - - - Y 

ErbB signaling pathway 4,04E-014 Y Y Y - - - Y 

Wnt signaling pathway 6,28E-014 Y Y Y - Y - Y 

Chemokine signaling pathway 9,60E-014 Y - Y Y - - Y 

GnRH signaling pathway 1,22E-013 Y Y Y - - - Y 

Pentose phosphate pathway 1,29E-013 - - - - - - - 

Long-term potentiation 2,28E-013 Y Y Y - Y - Y 

Neurotrophin signaling pathway 3,24E-013 Y Y - - - - Y 

Glycolysis / Gluconeogenesis 4,29E-013 Y Y - - - - Y 

Notch signaling pathway 9,33E-013 - - - - - - - 

Dilated cardiomyopathy 1,40E-012 - Y Y - Y - Y 

TGF-beta signaling pathway 2,32E-012 - - - - - - Y 
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Figure 4.7 Functionally grouped annotation network of the identified pathways for epilepsy dataset. The pathways are grouped based on the 
similarity of their SNP targeted genes. 



 

80 

 

pathway list. This pathway was also reported by Lauren et al., in their transcriptome 

analysis of the hippocampal CA1 subregion after kainic acid-induced status epilepticus 

in 21-day-old rats, which were developmentally comparable to juvenile children 

(Lauren, et al., 2010). 

 
 

4.4 Results on intracranial aneurysm dataset 
 

 

We applied PANOGA on two IA GWAS separately: i) Finnish, Dutch (European, EU) 

population of 1701 cases and 7409 control cohorts (Bilguvar, et al., 2008; Yasuno, et 

al., 2010), ii) Japanese (JP) population of 1069 cases and 904 controls (Akiyama, et al., 

2010). In our analysis, we have included 44,351 SNPs from EU population specific 

dataset, and 14,034 SNPs from the JP population specific dataset with p-values < 0.05, 

where the genotypic p-value of a SNP is calculated via Cochran-Armitage trend test. 

Only 576 of these SNPs were common between two populations. While the affected 

SNPs from EU population map to 3327 genes, the affected SNPs from JP population 

map to 2804 genes. As the possible overlap of a SNP with conserved TFBSs was 

considered, by using SNPnexus program (Chelala, et al., 2009), we incorporated 169 

(EU dataset) and 126 (JP dataset) more proteins (TFs) that bind to the TFBS, that an IA 

associated SNP resides in. 1125 of these SNP targeted genes are commonly found in 

both EU and JP datasets. To identify the biological pathways with the genes responsible 

for IA susceptibility, we applied the affected SNP functionalization, SNP to gene 

mapping, gene-wise weighted p-value calculation, sub-network identification and 

functional enrichment steps of PANOGA separately for each dataset. The details of 

these steps are explained in the methods section. 

We calculated the rankings of each identified pathway in each population and found that 

the correlation between the two studies was significant (Spearman's r2=0.71, P<10-6). 

Pairwise correlation of pathway statistics between two studies (which were carried out 

on independent populations with different ethnicities) should indicate common genetic 

variation associated with IA. As shown in Table 4.9, 12 of the top 20 (P=4.09E-60) and 7 

of the top 10 (P=2.44E-36) affected pathways were found to be commonly identified in 

both EU and JP populations. In these 12 commonly identified pathways, while 95 and 

81 genes are uniquely targeted by disease predisposing SNPs in EU and JP populations 
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 Table 4.9 The top 20 KEGG pathways identified for both populations in IA. 7 out of the top 10 and 12 out of top 20 pathways are shown in bold and in italic, respectively. 
 

 
P-values  
 

Rank  
 

# of  
Associated 
SNPs in 
GWAS 
  

  
# of  
Common 
SNPs in 
GWAS 
 

  
# of SNP 
Targeted 
Genes 
(STGs) 
 

  
# of 
Com-
mon 
STGs 
 
  

   
% Common 
Genes in Both 
Populations 
  

Common SNPs in GWAS 
 
 
 KEGG Term EU JP EU JP EU JP EU JP EU JP 

MAPK signaling pathway 3.53E-27 2.70E-18 1 8 133 43 1 14 18 2 14.29 11.11 rs791062 

Cell cycle 2.35E-25 2.81E-19 2 4 76 18 
1 

11 10 2 18.18 20 rs744910 

TGF-beta signaling pathway 6.26E-24 2.41E-17 3 9 126 20 
 
3 15 9 5 33.33 55.56 rs2053423. rs1440375. rs744910 

ErbB signaling pathway 9.52E-22 2.47E-15 4 16 50 15 
0 

6 4 0 0 0  

Focal adhesion 9.55E-22 5.60E-21 5 2 117 45 
1 

21 14 5 23.81 35.71 rs4678167 

Proteasome 2.36E-21 4.55E-11 6 35 32 1 
0 

6 1 0 0 0  

Adherens junction 4.91E-19 2.58E-21 7 1 85 34 
1 

13 11 2 15.38 18.18 rs1561798 

Notch signaling pathway 2.14E-18 4.74E-12 8 31 26 13 
0 

8 4 1 12.5 25  
Regulation of actin 
cytoskeleton 2.28E-18 4.05E-17 9 10 102 36 

 
1 18 14 1 5.556 7.143 rs4678167 

Neurotrophin signaling 
pathway 2.49E-18 1.93E-18 10 7 68 14 

 
0 7 7 1 14.29 14.29  

Chronic myeloid leukemia 2.62E-18 8.13E-11 11 36 54 12 
1 

4 4 1 25 25 rs744910 

Apoptosis 7.37E-18 1.71E-8 12 58 17 10 
0 

8 6 1 12.5 16.67  

Pathways in cancer 1.16E-17 9.38E-19 13 6 147 48 
1 

16 19 2 12.5 10.53 rs744910 

Tight junction 1.84E-17 4.68E-14 14 21 98 37 
4 

14 11 6 42.86 54.55 
rs4578183. rs4654383. rs955749. 
rs2276266 

Long-term potentiation 2.25E-17 2.21E-13 15 24 140 23 
0 

13 10 3 23.08 30  
Measles 1.06E-16 3.42E-7 16 72 94 16 0 8 6 0 0 0  
T cell receptor signaling 
pathway 1.62E-16 1.97E-15 17 15 63 28 

 
0 7 13 0 0 0  

Nucleotide excision repair 3.66E-16 8.84E-15 18 18 70 12 
0 

6 7 1 16.67 14.29  

Chemokine signaling pathway 1.15E-15 8.17E-12 19 32 193 26 
 
0 13 13 2 15.38 15.38  

Calcium signaling pathway 3.27E-15 1.37E-15 20 12 123 42 
 
1 21 16 8 38.1 50 rs7298821 
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Table 4.10 The top 20 over-represented KEGG pathways for IA, and the SNP targeted genes within these pathways. Seven out of the top ten 
affected pathways in both EU and JP populations are shown in italic. SNP Targeted Genes that are identified in both EU and JP populations are 

shown in the last column; along with the number of commonly typed SNPs in both populations, only in EU population and only in JP 
populations are shown in paranthesis. 

KEGG Term 
Any Common SNPs 
in Common Genes? 

Commonly Associated. SNP Targeted Genes and their SNP Counts:  
(Common) (EU GWAS) (JP GWAS) 

MAPK signaling pathway Y MAP3K7 (1)(28)(2), NFATC2 (0)(1)(2),  
Cell cycle Y SMAD3 (1)(14)(4), SMAD2 (0)(28)(1),  
TGF-beta signaling pathway Y SMAD6 (2)(7)(4), SMAD3 (1)(14)(4), SMAD2 (0)(28)(1), SMURF1 (0)(4)(3), TGFB2 (0)(6)(1),  
ErbB signaling pathway N   
Focal adhesion Y IGF1R (0)(2)(5), LAMA1 (0)(1)(6), ITGB6 (0)(4)(4), ITGA1 (0)(5)(2), ITGB5 (1)(5)(3),  
Proteasome N   
Adherens junction Y PTPRB (1)(2)(1), PTPRM (0)(10)(6),  
Notch signaling pathway N NCOR2 (0)(2)(1),  
Regulation of actin cytoskeleton Y ITGB5 (1)(5)(3),  
Neurotrophin signaling pathway N RPS6KA2 (0)(6)(1),  
Chronic myeloid leukemia Y SMAD3 (1)(14)(4),  
Apoptosis N BID (0)(1)(1),  
Pathways in cancer Y SMAD3 (1)(14)(4), CSF1R (0)(3)(1),  

Tight junction Y 
MAGI2 (0)(12)(11), EPB41 (2)(8)(5), MPDZ (0)(4)(1), PRKCE (0)(4)(7), JAM3 (1)(1)(1), CTNNA2 
(1)(12)(3),  

Long-term potentiation N GRIN2A (0)(7)(1), PLCB1 (0)(44)(1), GRM1 (0)(1)(3),  
Measles N   
T cell receptor signaling pathway N   

Nucleotide excision repair N RPA3 (0)(1)(2),  
Chemokine signaling pathway N VAV3 (0)(8)(1), PLCB1 (0)(44)(1),  

Calcium signaling pathway Y 

GNA14 (0)(5)(1), NOS1 (0)(1)(1), ADCY2 (0)(8)(5), CHRM2 (0)(1)(1), ADRA1A (0)(2)(4), PLCB1 
(0)(44)(1),  
CACNA1C (1)(3)(5), GRM1 (0)(1)(3),  
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respectively, only 25 genes (as shown in Table 4.10) are targeted by SNPs in both 

populations. In the 7 commonly identified pathways, while 15 of the SNP targeted 

genes (STGs, shown in Table 4.10) are common between populations. 62 and 51 of the 

STGs are unique to EU and JP populations, respectively. In these 7 commonly found 

pathways, there were 724 and 195 SNPs unique to EU and JP populations, respectively, 

and 6 SNPs were common. There were very few commonly affected SNPs/genes and 

many distinct sets of SNPs/genes targeting the same pathways for each population, 

which strongly supports our hypothesis. Hence, if one follows a gene or SNP oriented 

approach, crucial information for disease development mechanism might be missed. 

Instead, here we emphasize the importance of a pathway oriented approach to 

investigate the etiology of IA. The 7 pathways in top 10 are MAPK signaling, Cell 

cycle, TGF-beta signaling, Focal adhesion, Adherens junction, Regulation of actin 

cytoskeleton, and Neurotrophin signaling pathways, as shown in Table 4.9. In these 

commonly found pathways, we checked the number of STGs, and the number of typed 

SNPs separately for EU and JP populations and the commonality of these entities 

between the two populations. For example in MAPK signaling pathway, there were 14 

and 18 STGs in EU and JP populations, respectively. Among these genes, only 2 of 

them (MAP3K7, NFATC2, as shown in Table 4.10) were common, indicating that the 

same pathways can be targeted via independent genes in diverse populations. There 

were 133 and 43 typed SNPs in EU and JP populations, respectively and among these 

SNPs only 1 of them (rs791062) was common. In addition to these typed SNPs that 

were commonly identified in both populations, the commonly identified SNP targeted 

genes harbour other disease predisposing SNPs in different populations. For example, 

MAP3K7 gene is associated with 28 other typed SNPs in EU population that is not 

found in JP population. These observations were true for all the 7 commonly found 

pathways and the genes within them. These results show the relevance of our pathway 

oriented approach and indicate that if there is a problem in these seven pathways, the 

disease is more likely to happen. 

We also searched for known IA related pathways in KEGG Disease Pathways Database 

(KEGGDPD) using “aneurysm” as a keyword, which resulted in three hits (H00801, 

H00800, and H00579). Seven pathways from our top twenty pathway list (MAPK 

signaling, TGF-beta signaling, Calcium signaling, Focal adhesion, Adherens junction, 

Tight junction, Regulation of actin cytoskeleton) were amongst the twelve pathways 
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found to be associated with aneurysm related diseases in KEGGDPD. 

Next, we searched for the affected pathways using the gene expression data, which is 

obtained from ruptured and unruptured IA patients with Japanese ethnicity as cases; and 

from arteriovenous malformation feeders with Japanese ethnicity as intracranial controls 

(Krischek, et al., 2008). Even though gene expression and GWAS data are not coming 

from the same samples, the enriched pathways might show commonalities. Therefore, 

we mapped the differentially expressed genes to PPI and proceeded with the following 

steps of PANOGA to detect effected pathways. The top 20 over-represented KEGG 

pathways identified for gene expression data are shown in Table 4.11. As expected, 

there is no strong correlation between the rankings of the effected pathways, obtained 

from GWAS and expression data. Because, the transcriptomics data only includes genes 

with significant changes in expression levels, whereas, GWAS data includes genes, 

affected by several factors. Still, compared to the top ten pathways identified GWAS in 

EU and JP populations, Ribosome pathway is also found by GWAS data on Japanese 

population (with 5th ranking); ErbB signaling pathway and Proteasome pathways are 

also found by GWAS data on European population (with 4th and 6th rankings, 

respectively); Adherens Junction (AJ), Focal Adhesion (FA) and Neurotrophin 

Signaling (NS) pathways are also found by GWAS data on both Japanese and European 

populations (with 1st and 7th (AJ), 5th and 2nd (FA), 7th and 10th rankings (NS), 

respectively). In these 6 pathways (Adherens junction, Focal adhesion, ErbB signaling, 

Neurotrophin signaling, Ribosome, Proteasome pathways), 25 out of 379 genes were 

commonly identified with GWAS results. Among these genes, PTPRB gene, as part of 

the Adherens Junction pathway, is known to have a crucial role in blood vessel 

remodeling and angiogenesis. Even though this gene is not found to be differentially 

expressed in Japanese population, rs1561798 variant that this gene contains, is found to 

be significant in the GWAS of both European and Japanese populations. Interestingly, 

another gene expression study on IA found this gene to be differentially expressed in 

Polish population (Pera, et al., 2010). Although PTPRB gene is not found to be 

differentially expressed in JP population, using GWAS data in EU and JP populations, 

PANOGA was able to identify this gene as part of an important pathway for IA 

development mechanism. 
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Table 4.11 The top 20 over-represented KEGG pathways identified for gene expression 
data of IA. 

 

 

KEGG Term P-values Corrected with 

Bonferroni Rankings 

KEGG Term 

Gene 

Expression GWAS EU GWAS JP 

Gene 

Expression 

GWAS 

EU 

GWAS 

JP 

Ribosome 7.91E-23 1.40E-08 5.93E-19 1 73 5 

Spliceosome 7.40E-17 2.05E-13 4.72E-13 2 33 27 

RNA transport 3.97E-14 6.26E-09 - 3 69 - 
Complement and coagulation 
cascades 6.05E-13 7.00E-14 1.06E-09 4 31 48 
T cell receptor signaling 
pathway 7.86E-12 1.62E-16 1.97E-15 5 17 15 

ErbB signaling pathway 5.70E-09 9.52E-22 2.47E-15 6 4 16 

Chronic myeloid leukemia 6.70E-09 2.62E-18 8.13E-11 7 11 36 
Natural killer cell mediated 
cytotoxicity 9.96E-09 2.56E-07 1.29E-09 8 81 50 

RNA degradation 1.44E-08 3.44E-11 1.66E-07 9 44 67 

Osteoclast differentiation 1.45E-08 8.12E-15 4.97E-10 10 26 43 

Neurotrophin signaling pathway 6.68E-08 2.49E-18 1.92E-18 11 10 7 

Adherens junction 1.74E-07 4.91E-19 2.58E-21 12 7 1 

mRNA surveillance pathway 3.59E-07 - - 13 - - 

Pyruvate metabolism 1.87E-06 - 5.82E-05 14 - 92 
Toll-like receptor signaling 
pathway 3.26E-06 9.18E-13 1.50E-10 15 35 38 

Small cell lung cancer 3.55E-06 - 1.01E-08 16 - 55 

Proteasome 4.19E-06 2.35E-21 4.54E-11 17 6 35 

Focal adhesion 8.57E-06 9.55E-22 5.60E-21 18 5 2 
Fc gamma R-mediated 
phagocytosis 1.47E-05 4.00E-09 1.32E-13 19 66 22 

Toxoplasmosis 2.68E-05 1.06E-08 - 20 72 - 

 
 

4.5 Results on Behçet’s disease dataset 
 

 

We applied PANOGA separately on two Behçet's disease GWASs: i) Turkish (TR) 

population of 1,215 cases and 1,278 control cohorts, ii) Japanese (JP) population of 612 

cases and 740 controls. In our analysis, we have included 18,479 SNPs from TR 

population specific dataset, and 20,594 SNPs from the JP population specific dataset 

with p-values < 0.05, where the genotypic p-value of a SNP is calculated via allelic chi-

squared test. 

To identify the biological pathways with the genes responsible for Behçet's disease 

susceptibility, we applied the affected SNP functionalization, SNP to gene mapping, 
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gene-wise weighted p-value calculation, sub-network identification and functional 

enrichment steps of PANOGA separately for each dataset. The details of these steps are 

explained in the methods section. After the gene mapping step, while the affected SNPs 

from TR population map to 3,869 genes, the affected SNPs from JP population map to 

4,076 genes. As shown in Table 4.12, five of the top ten affected pathways were found 

to be commonly identified in both TR and JP populations. These pathways are Notch 

signaling pathway, Focal adhesion, Jak-STAT signaling pathway, Long-term 

potentiation and Pathways in cancer. In these five pathways, as shown in Table 4.13, in 

the five commonly identified pathways, 36 of the SNP targeted genes are common 

between populations. Only 9 of the SNPs that are targeting these 36 genes were 

common between TR and JP populations. Similar to our results on intracranial 

aneurysm dataset, the identified pathways between two populations show more 

commonality than individual genes or SNPs. 

We also searched for known Behçet's disease related pathways in KEGGDPD using 

“Behçet” as a keyword, which resulted in one hit (H00106), including one pathway 

(Complement and coagulation cascades). This pathway is identified in 5th and 33rd 

rankings with P=2.47E-20, P=2.6E-12 in TR and JP populations, respectively.



 

87 

 

Table 4.12 The top 10 KEGG pathways identified for both populations in Behçet’s disease. 5 out of the top 10 pathways are shown in bold. 
 

 
P-values  
 

Rank  
 

# of  
Associate
d SNPs in 
GWAS 
  

  
# of SNP 
Targeted 
Genes 
(STGs) 
 

  
# of 
Com-
mon 
STGs 
 
  

   
% Common 
Genes in 
Both 
Populations 
  

Is Common 
Genes more 
than 50% in 

any 
population? 

 
 KEGG Term TR JP TR JP TR JP TR JP TR JP 

Notch signaling 
pathway 1,53E-25 4,66E-17 

1 
10 37 11 9 6 5 55.55 83.33 

Y 
Ribosome 7,62E-24 1,28E-15 

2 
14 5 4 4 2 0 0.0 0.0 

N 
Focal adhesion 1,15E-20 2,20E-18 

3 
4 65 80 25 20 7 27.99 34.99 

N 
Jak-STAT signaling 
pathway 1,28E-20 2,26E-18 

4 
5 32 44 16 16 3 18.74 18.74 

N 
Complement and 

coagulation cascades 2,48E-20 2,60E-12 
5 

33 25 27 13 8 3 23.07 37.49 
N 

Long-term potentiation 4,86E-20 2,69E-18 
6 

6 59 88 14 16 8 57.14 49.99 
Y 

Long-term depression 3,30E-19 1,22E-14 
7 

18 59 73 15 10 9 59.99 89.99 
Y 

Pathways in cancer 4,30E-19 1,18E-17 
8 

9 79 98 25 26 4 15.99 15.38 
N 

Proteasome 1,55E-18 2,65E-16 
9 

12 2 3 1 3 0 0.0 0.0 
N 

ECM-receptor interaction 1,27E-17 4,56E-12 
10 

38 19 41 10 10 4 39.99 39.99 
N 
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Table 4.13 The top 10 over-represented KEGG pathways for Behçet’s disease, and the SNP targeted genes within these pathways. Five out of 
the top ten affected pathways in both TR and JP populations are shown in bold. SNP Targeted Genes that are identified in both TR and JP 

populations are shown in the last column; along with the number of commonly typed SNPs in both populations, only in TR population and only 
in JP populations are shown in paranthesis. 

KEGG Term 
Any Common SNPs 
in Common Genes? 

Commonly Associated, SNP Targeted Genes and their SNP Counts:  
(Common) (TR GWAS) (JP GWAS) 

Notch signaling pathway N CTBP1 (0)(1)(1), KAT2B (0)(2)(1), MAML2 (0)(15)(4), MAML3 (0)(2)(3), NCOR2 (0)(2)(1),  

Ribosome N  

Focal adhesion Y 

PRKCA (0)(4)(5), COL4A2 (1)(3)(12), VAV3 (0)(6)(7), LAMA5 (0)(2)(1), CAPN2 (0)(3)(2), LAMB1 

(1)(1)(1), FLNB (0)(2)(6),  

Jak-STAT signaling pathway N IL2RB (0)(2)(1), OSMR (0)(1)(1), JAK2 (0)(3)(14),  

Complement and coagulation 

cascades N PLAT (0)(1)(1), F5 (0)(3)(2), F13A1 (0)(4)(7),  

Long-term potentiation N 

GRM5 (0)(3)(10), PRKCA (0)(4)(5), GRIA1 (0)(2)(15), ADCY8 (0)(3)(1), GRIN2A (0)(16)(10), CACNA1C 

(0)(5)(2), PLCB1 (0)(3)(10), ITPR1 (0)(5)(4),  

Long-term depression Y 

GRM5 (0)(3)(10), PRKCA (0)(4)(5), LYN (0)(1)(2), GRIA1 (0)(2)(15), PLCB1 (0)(3)(10), ITPR3 (0)(9)(6), 

PRKG1 (1)(11)(8), GRM1 (0)(3)(1), ITPR1 (0)(5)(4),  

Pathways in cancer N PRKCA (0)(4)(5), CTBP1 (0)(1)(1), ETS1 (0)(5)(3), MITF (0)(1)(1),  

Proteasome N  

ECM-receptor interaction N LAMA1 (0)(3)(1), CD44 (0)(1)(1), LAMA5 (0)(2)(1), SDC2 (0)(1)(1),  
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CHAPTER  5 
 
 
 
 

5  DISCUSSION 
 
 
 

Many reports of the genome wide associaton studies emerging in the literature, and the 

online GWAS catalog, including 273 published GWAS so far by National Human 

Genome Research Institute (NHGRI), are the clear evidences of the success of GWAS. 

Unfortunately, using the traditional approaches in GWAS, only the strongest 

associations can be detected; and there are many more SNPs/genes still to be found as 

associated with disease (Couzin and Kaiser, 2007; Williams, et al., 2007). Lately, 

several GWAS (Lesnick, et al., 2007; Pattin and Moore, 2008; Torkamani, et al., 2008; 

Wang, et al., 2007; Wilke, et al., 2008) have proposed the use of prior knowledge in the 

form of pathway databases, such as the KEGG and Biocarta, or gene ontology 

databases. On the other hand, (Franke, et al., 2006) suggested the use of protein 

interaction network information along with pathway-based analysis. For Multiple 

Sclerosis GWAS data, (Baranzini, et al., 2009) demonstrated the utility of network-

based analysis. On top of these pathway and network based analyses of GWAS, here we 

devised a methodology that also integrates the functional information of a SNP as a 

third component. As a result of this multidimensional screening approach, our 

methodology generated a comprehensive list of functionally important KEGG 

pathways.  
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5.1 Discussion on rheumatoid arthritis dataset 
 
 
 

 While most of these associations can be thought as computational predictions, 

the functional relations of five of these pathways (Jak-STAT signalling, apoptosis, T 

cell receptor signalling, leukocyte transendothelial migration and cytokine-cytokine 

receptor interaction) with RA pathogenesis are shown in the reviews by (Plenge, et al., 

2007; Raychaudhuri, et al., 2008; Raychaudhuri, et al., 2009).  

 

Additionally, the effect of Toll-like receptor (TLR) and MAPK signaling pathway on 

RA is known as following: TLRs are membrane-bound receptors which are expressed in 

innate immune cells, such as macrophages and dendritic cells. TLR signaling plays an 

important role in the activation and direction of the adaptive immune system by the up-

regulation of co-stimulatory molecules of antigen presenting cells. The activation of the 

TLRs signaling pathway can trigger the activation of the MAPK and NF-kB pathways. 

Evidence is emerging that certain TLRs play a role in the pathogenesis of infectious 

and/or infammatory diseases. There is considerable evidence from rodent models that 

activation of the TLRs can induce or exacerbate inflammatory arthritis (Joosten, et al., 

2003). 

 

The role of MAPK signaling pathway in the development and progress of RA was 

shown to be related to cartilage damage, which is a hallmark of RA. Cartilage damage is 

based on increased proteoglycan loss as well as attachment and invasion of 

inflammatory tissue into the cartilage, which leads to its structural disintegration. 

Production of matrix metalloproteinases (MMPs) by synovial tissue appears to be a key 

prerequisite for synovial tissue to invade and destroy cartilage. MAPK is a crucial 

signal transduction pathway for inflammation and carries information about 

inflammatory stimuli to the cell nucleus. Synthesis of MMPs is regulated through 

multiple MAPK families, suggesting that a blockade of MAPK might have structural 

benefit in arthritis (Liacini, et al., 2003; Suzuki, et al., 2000). Also, activation of stress 

kinase pathways ERK, JNK, and p38 MAPK is a typical feature of chronic synovitis 

during RA, and several proinflammatory mediators use the signaling of these stress 

kinase pathways (Schett, et al., 2000). 
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Cytokine-cytokine receptor interaction pathway has been previously identified by two 

other studies as RA associated and included in the KEGG functional enrichment of 

known disease genes (Martin, et al., 2010; Zhang, et al., 2010). Even though this term 

has not been found as significant in our highest scoring sub-network, it has been 

identified in the functional enrichment of our third highest scoring sub-network. Due to 

the nature of the search algorithm used by jActive Modules, several of the identified 

sub-networks overlap extensively in their component genes. Since it is complicated and 

cumbersome to represent the enrichment analysis of all identified sub-networks, here 

we have shown only the results from our highest scoring sub-network. In future, we aim 

to visualize the KEGG enrichment analysis results from all identified 5 top scoring sub-

networks in a comprehensive manner.  

 

 

5.2 Discussion on partial epilepsy dataset 
 
 
 

 The knowledge of genes, proteins, and pathways changed during the different 

stages of epilepsy development is crucial to enlighten the pathophysiology of epilepsies 

and to develop new therapeutic strategies based on drugs with anti-epileptogenic 

activities. The synchronized neuronal activity and unbalance between inhibitory and 

excitatory neurotransmission are known as the common features linked to the 

pathogenesis of epilepsy (Dalby and Mody, 2001). Hence, the mechanisms of action of 

most clinically used drugs in epilepsies are based on these biological processes. In this 

regard, voltage-gated ion channels, gabaergic, and glutamatergic systems are the well-

known therapeutic targets. In addition to these well studied examples, several groups 

conduct gene-expression studies, and a few others perform GWAS, CNV studies to 

uncover the molecular mechanisms involved in epileptogenesis. Here, we would like to 

discuss our findings in relation to the identified pathways as part of these previous 

studies. 

 
Aronica et.al. detected complement and coagulation cascade pathway as a result of gene 

expression profile analysis of epilepsy-associated gangliogliomas (GG) (Aronica, et al., 

2008). As shown in Figure 5.1.a, they report that C1qa, C1qb, C1qc, C1r, C1s, C3, C4a 

and C7 genes as part of this pathway showed more prominent expression in GG   
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Figure 5.1 The complement and coagulation cascade (a) Up and down-regulated genes 

are shown in red and in blue, respectively, as a result of microarray analysis for 

epilepsy-associated gangliogliomas (Aronica, et al., 2008). (b) The shade of red color in 

genes indicates the number of GWAS targeted SNPs per base pair of the gene. Red 

a 

b 
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refers to the highest targeted gene, whereas white refers to a gene product, not targeted 

by the SNPs. 

 

specimens than in control specimens. Expression of SerpinG1, a C1 inhibitor, and CD59 

an inhibitor at the level of the membrane attack complex was also higher, but to a lesser 

extent compared to C1q genes. They claim that the complement and the IL-β1 system 

are indeed activated in different human epilepsy associated lesions (Aronica, et al., 

2008; Aronica, et al., 2007; Jamali, et al., 2006) consolidates the preclinical findings. 

Figure 5.1.a shows that the differentially expressed genes exist in both complement and 

coagulation cascades, according to the microarray study of epilepsy-associated 

gangliogliomas. On the other hand, in Figure 5.1.b, we show that mostly the coagulation 

cascade of this pathway is affected by the genes, which are targeted by the genotyped 

SNPs (SNPs that are found to be significant for PE in a GWAS (Kasperaviciute, et al., 

2010)). As part of the complement cascade, only C6 and C4BP genes (shown in light 

pink in Figure 5.1.b) are targeted by the genotyped SNPs. This example supports our 

hypothesis that pathways can be used as markers of diseases. While the transcriptomics 

data only includes genes with significant changes in expression levels, GWAS data 

includes genes, affected by several factors. Different factors cripple distinct parts of the 

pathways, as shown here on complement and coagulation cascades with a comparison 

of gene expression vs GWAS study. 

 

In parallel with our results, MAPK, Wnt, Notch, TGF-beta, Jak-STAT and Calcium 

signaling pathways are identified in Okamoto et al’s study as regulatory signaling 

pathways, which include over- and hypo-expressed genes during all experimental times 

studied after status epilepticus (Okamoto, et al., 2010). Among these pathways, MAPK, 

Jak-STAT, and TGF-beta were found regulated in pilocarpine-treated animals 

throughout the epileptogenesis period evaluated. In order to confirm the microarray 

results, they quantified the differential expression of the selected genes Nestin, CDK1, 

p18 (INK4c), TGF-b1, IGF-1 and GFAP by real-time PCR and found similar results 

with their microarray study (Okamoto, et al., 2010). Ye et al analyzed microarray data 

of temporal epilepsy from Gene Expression Omnibus and reported that the main 

biological functions shared among the 71 differentially expressed genes included 

MAPK and Calcium signaling pathways (Zhou, et al., 2011). Jimenez-Mateos et al 



 

94 

 

investigated hippocampal transcriptome after status epilepticus in mice, and identified 

MAPK, TGF-beta, Jak-STAT pathways (Jimenez-Mateos, et al., 2008). In their study, 

the pathway containing the most differentially down-regulated genes in tolerance was 

calcium signaling, including the genes associated with the plasma membrane 

(ionotropic glutamate receptor and voltage-dependent calcium channel genes) and genes 

downstream of endoplasmic reticulum calcium stores. They also validate the 

expressional changes of a selection of these genes by quantitative PCR (Jimenez-

Mateos, et al., 2008). Limviphuvadh et al investigated the genes on the chromosomal 

region 4p15, which is shown previously as the partial epilepsy with pericentral spike 

locus (Limviphuvadh, et al., 2010). They detected 14 candidate genes in this region, 

which are found to be deleted in both of the two independent studies, describing patients 

that share the epilepsy-like seizures. Among these genes, they report that CCKAR gene 

functions in the nervous system and they show this gene as part of the calcium signaling 

pathway (Limviphuvadh, et al., 2010). STAT3 gene, as part of the JAK-STAT pathway 

was shown to be phosphorylated both at Ser727 by mTORC1 (Yokogami, et al., 2000) 

and at Tyr705 by Janus kinases (Reich, 2009), leading to the regulation of several genes 

in varying cellular processes. In an experimental epileptical model based on rats, when 

rats have been injected with kianates, they have been shown to have STAT1, STAT3 

and p42/44 MAPK activated in their hippocampus preeceeding epileptic seizures (Choi, 

et al., 2003). On the other hand, CREB is actively expressed in surgically obtained 

epileptic hippocampus material, leading to proliferating reactive astrocytes specifically 

localized to the hippocampal sclerosis region (Morimoto, et al., 2004).  Our analyses 

have revealed Wnt and Notch signaling pathways involving CREBBP gene, which can 

indicate roles for these pathways in seizure formation through the protein-protein 

interactions of CREB and CREBBP.  

In addition to the signaling pathways, cell cycle pathway is identified in 2nd ranking 

with P=1.03E-24, as shown in Table 4.8. Jimenez-Mateos et al also identified this 

pathway and apoptosis pathway (identified in 8th ranking with P=3.72E-16 in our 

study) (Jimenez-Mateos, et al., 2008). ANAPC4 gene as part of the cell cycle pathway 

is detected in Limviphuvadh et al’s study, as one of the 14 candidate genes 

(Limviphuvadh, et al., 2010). Among the cell cycle regulators, mutations in Cdk1 

inactivates TSC1 leading to the onset of Tuberos Sclerosis Complex and 70% of 

individuals affected with TSC known to develop epilepsy (Cho, 2011). 
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5.3 Discussion on intracranial aneurysm dataset 

 
 
 

  The pathway and network oriented analysis of GWAS data in two different 

populations together with gene expression data gave us the tools to investigate the 

pathogenesis of IA. The genes that are found to be targeted by disease predisposing 

SNPs are shown to be involved in several biological pathways including MAPK 

signaling, Cell cycle, TGF-beta signaling, Focal adhesion, Adherens junction, 

Regulation of actin cytoskeleton, and Neurotrophin signaling pathways. Since these 

pathways are known to have a role in the regulation of cell growth, tissue remodeling, 

inflammation, and wound healing, they are likely to contribute to the pathophysiology 

of IA. In addition to these top ten pathways, here, we also would like to discuss in detail 

the identified signaling pathways from top 20 list, that are functionally relevant to the 

pathogenesis of IA.  

 

The mitogen-activated protein kinases (MAPKs) are serine-threonine kinases that are 

involved in intracellular signaling related with several cellular activities such as cell 

proliferation, differentiation, survival, death and transformation (Kholodenko and 

Birtwistle, 2009; McCubrey, et al., 2006). Laaksamo et al. studied the expression and 

phosphorylation of the 3 major MAPKs in unruptured and ruptured human IAs: c-Jun 

N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (Laaksamo, et 

al., 2008). Their study shows that JNK and p38 expression have role in IA growth; and 

JNK activity and expression have possible role in rupture (Laaksamo, et al., 2008). As 

shown in Table 4.9, this pathway is identified in 1st and 8th rankings with P=3.53E-27, 

P=2.70E-18 in EU and JP populations, respectively. As shown in Figure 5.2 in red, and 

in Table 4.10, in this pathway, MAP3K7 (TAK1) and NFATC2 genes are identified in 

our method both by EU and JP GWAS. There are 28 typed SNPs on MAP3K7 gene 

according to EU GWAS and 2 typed SNPs according to JP GWAS; and among those 

SNPs, 1 SNP is identified in both studies. As shown in the KEGG pathway map in 

Figure 5.2, TAK1 gene is shown to have a downstream effect on Wnt signaling and the 

pathways of proliferation, inflamation, and anti-apoptosis. Additionally, as part of this 
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Figure 5.2 KEGG pathway map for MAPK signaling. The set of genes shown in blue 

includes genes that are found for EU dataset; yellow includes genes that are found for 

JP dataset; red includes genes that are found both by EU and JP GWAS of IA.  

 

pathway, HSPA1L, PRKCA, BRAF, RPS6KA2, MAP3K2, MAP4K2, PPP3CA, 

MAPK10, FGF12, FLNB, CHUK, MAP3K12 genes are uniquely found in EU 

population (shown in blue in Figure 5.2) and DUSP10, RAF1, NR4A1, NFKB1, 

CACNG2, CDC25B, FOS, PLA2G4A, RPS6KA3, MAP3K5, RASGRP3, RASGRF1, 

MAPK14, RAC1, NFATC4, CACNA1C genes are uniquely found in JP population 

(shown in yellow in Figure 5.2). 

 

The transforming growth factor beta (TGF-beta) signaling pathway is known to play a 

role in aortic aneurysms and also has a possible role in aneurysms in general (Ruigrok, 

et al., 2008). Additionally, TGF-beta signaling is shown to drive aneurysm progression 

in multiple disorders, including Marfan syndrome (Holm, et al., 2011). It is reported 
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that therapies that inhibit this signaling cascade are in clinical trials in mice (Holm, et 

al., 2011). As shown in Table 4.9, this pathway is identified in 3rd and 9th rankings 

with P=6.26E-24, P=2.41E-17 in EU and JP populations, respectively. In our analysis, 

we detected 15 and 9 SNP targeted genes in EU and JP populations, respectively. As 

shown in Table 4.10, 5 of these genes (SMAD6, SMAD3, SMAD2, SMURF1, TGFB2) 

are identified in both populations; and 2 of these 5 genes, SMAD3 and SMAD6, have 

common typed SNPs. SMAD2 in this pathway harbors 28 typed SNPs in EU population 

which is not observed in JP population. In Figure 5.3, the KEGG pathway map of TGF-

beta signaling shows that SMAD6 gene (shown in red) is targeted by typed SNPs in JP 

population and it inhibits the formation of SMAD2/3 complex (shown in pink). The 

colors of the genes in Figure 5.3 indicate the number of targeted SNPs in JP population 

per base pair of the gene, from red to white. SMURF1 (shown in pink) inhibits 

TGFBR2 (shown in pink with blue border), that also binds to TGFB (shown in pink).  

TGFBR2 gene is found to be differentially expressed. As a downstream effect, 

SMAD2/3 complex (shown in pink) is affected as well as the transcription factors, co- 

activators, and co-repressors. As shown in Figure 5.3, this cascade of events leads to 

angiogenesis, and neogenesis. Our method detected ten additional genes (ACVR2B, 

SMAD9, SMAD7, GDF5, SMAD4, SMAD1, BMP7, BMPR1B, BMPR1A, BMP6) that 

are affected in EU population, but not in JP population. These genes are not colored in 

Figure 5.3. 

 

Several putative risk genes were suspected to play a role in cell-cycle progression, 

potentially affecting the proliferation and senescence of progenitor-cell populations that 

are responsible for vascular formation and repair (Yasuno, et al., 2010). As shown in 

Table 4.9, Cell-cycle pathway is identified in 2nd and 4th rankings with P=2.35E-25, 

P=2.81E-19 in EU and JP populations, respectively. 



 

98 

 

Figure 5.3 KEGG pathway map for TGF-beta signaling pathway. The shade of red 

color in genes indicates the number of targeted SNPs in JP population per base pair of 

the gene. Red refers to the highest targeted gene, whereas white refers to a gene 

product, not targeted by the SNPs. Blue border indicates that the gene is found to be 

differentially expressed. 

 

Calcium is a key signaling ion that controls many different cellular processes, such as 

gene transcription, synaptic activity, muscle contraction, cell-cell communication, 

adhesion and cell proliferation (Hofer, 2005; Marambaud, et al., 2009). The calcium 

signaling pathway has a significant role in regulating a great variety of neuronal 

processes (Edwards, et al., 2011). As shown in Table 4.9, we identify this pathway in 

20th and 12th rankings with P=3.27E-15, P=1.37E-15 in EU and JP populations, 

respectively. In this pathway, we suspect a mechanism related to autocoids and GPCRs 

for IA disease development. As shown in Table 4.10 and in red in Figure 5.4, GPCR, 

Gq, PLCB1 genes are detected in our methodology both by EU and JP GWAS. These 

genes are found on our suspected autocoid path in calcium signaling pathway. There are  
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Figure 5.4 KEGG pathway map for calcium signaling pathway. The set of genes shown 

in blue includes genes that are found for EU dataset; yellow includes genes that are 

found for JP dataset; red includes genes that are found both by EU and JP GWAS of IA. 

 

44 marker SNPs on PLCB1 gene according to EU GWAS and 1 marker SNP according 

to JP GWAS; and none of those SNPs are identified in both studies. As part of our 

suspected autocoid path, Kuo et al. has shown the association of a polymorphism of 

ITPKC (inositol-trisphosphate 3-kinase C, IP3-3KC) with the susceptibility and 

aneurysm formation in KD patients in a Taiwanese population (Kuo, et al., 2011). 

ITPR1 (inositol 1.4.5-trisphosphate receptor, type 1, IP3R) is identified in our analysis 

as part of Calcium signaling pathway and it is also found as differentially expressed 

between aneurysm patients and controls in JP population. Calcium signaling pathway's 

high rank in our analysis, and our suspected autocoid path within this pathway also fit 

well with the recent work which reports that Clazosentan is in phase III trial to reduce 

vasospasm caused by Endothelin A autocoid (Feigin and Findlay, 2006; Zhou, et al., 

2011). 
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5.4 Discussion on Behçet’s disease dataset 
 
 

 Out of the top ten affected pathways, notch signaling, focal adhesion, Jak-STAT 

signaling, pathways in cancer and long-term potentiation pathways were commonly 

identified in both Turkish and Japanese populations. Among these pathways, here we 

would like to emphasize the possible role of Jak-STAT signaling pathway for Behçet’s 

disease development mechanism. Because, it has been reported that different GWAS 

identified Jak-STAT signaling pathway as highly relevant to human autoimmunity and 

targeting JAKs is now a reality in immune-mediated disease (O'Shea and Plenge, 2012). 

This pathway is identified in 4th and 5th rankings with P=1.28E-20, P=2.26E-18 in TR 

and JP populations, respectively. As part of this pathway, while 16 genes are identified 

in TR population and 16 genes are identified in JP population, only three of these genes 

(IL2RB, OSMR, JAK2) are commonly detected between these two populations. None 

of these genes are targeted by the same SNP, which is found to be significant in a 

particular population’s GWAS. It is especially interesting for JAK2 gene, which is 

targeted by 14 genotyped SNPs in Japanese population, and none of these SNPs target 

the same gene in Turkish population. Hence, if one searches for conserved SNPs 

between populations, such important clues, illuminating an aspect of disease etiology, 

might have been missed. Therefore, to understand the underlying mechanism of 

complex diseases, one should find out affected pathways targeted by several genetic 

variants. Also, similar to our results on intracranial aneurysm dataset, the identification 

of the five same pathways out of the top ten pathways in both Turkish and Japanese 

population showed that our results are independent from disease. 

 

5.5 General Discussion 
 
 

 The identification of significant individual factors causing complex diseases is 

challenging in genome-wide association studies (GWAS), since each factor would have 

a modest effect on the disease development mechanism. In this thesis, we hypothesize 

that the biological pathways that are targeted by these individual factors show higher 

conservation within and across populations. To test this hypothesis, we searched for the 

disease related pathways on i) two intracranial aneurysm GWAS in European and 

Japanese case–control cohorts; ii) two Behçet's disease GWAS in Turkish and Japanese 
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case–control cohorts. Even though there were a few significantly conserved SNPs 

within and between populations, seven of the top ten and five of the top ten pathways 

were significantly identified in both populations for IA and Behçet's disease datasets, 

respectively. The probability of random occurrence of such an event is 2.44E-36. 

Hence, our results indicate that even though each individual has a unique combination 

of factors involved in disease development mechanism, most of the targeted pathways 

that need to be altered by these factors are mostly the same. 

 

It is noteworthy to mention that pathway-based analyses, like it is presented here, are 

limited to our knowledge of cellular processes. The biological functions of most of the 

genes in the genome are not known. Since network and pathway tools make use of 

functional information from gene and protein databases, they are biased toward the 

well-studied genes, interactions, and pathways. Also, variants associated to genes not 

represented in the protein-protein interaction network were not evaluated in this 

analysis. Nevertheless, there is scope for the development of related methodologies to 

increase the power to detect associations in these genes. By combining information 

from several sources (functional properties of SNPs, genetic association of a SNP with 

the disease, PPI network), as shown in this paper, such limitations can be overcome. We 

also would like to point out that our method is not intended to be used for tag SNPs 

which are associated with a specific phenotype.  
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CHAPTER  6 
 
 
 
 

6 CONCLUSION 
 
 
 

 With the fast technological developments and continuous data production in the 

field of GWAS, more and more datasets are expected to be available in the near future. 

However, these studies are thought to be undermined in most cases. For GWAS analysis 

of complex diseases, novel disease-susceptibility genes and mechanisms can only be 

identified by looking beyond the tip of the iceberg (the most significant SNPs/genes). In 

this thesis, we described a novel methodology, PANOGA that performs network and 

pathway-oriented analysis of GWAS datasets via incorporating the functional 

information of the genotyped SNP. We tested PANOGA on rheumatoid arthritis, partial 

epilepsy, intracranial aneurysm and Behçet’s disease datasets. In order to determine the 

biological significance of our results, we compared our findings with known disease 

related pathways in literature and with disease associated gene list obtained from 

OMIM, retrieved from literature using the NCBI PubMed module, or downloaded from 

Pharmaccogenomics Knowledge Base website. Our results show that incorporating SNP 

functional properties, protein-protein interaction networks, and pathway classification 

tools into GWAS can dissect leading molecular pathways, which cannot be picked up 

using traditional analyses. We hope that such developments of pathway and network-

based approaches that also integrate prior biological knowledge for mining the 

associations of a group of SNPs, will take us one step closer to unravel the complex 

genetic structure of common diseases.   

 

Using intracranial aneurysm datasets, we have described the advantages of a network 

and pathway-oriented analysis of GWAS data on different populations. Starting with 

two independent GWAS, which are conducted on two different populations, we have 
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shown that most of the affected pathways are shared between populations. But, in 

different populations, different SNP targeted genes are found to be affected in these 

commonly found pathways. In other words, same pathways can be targeted via 

independent genes in different populations. Even though there are not so many common 

disease predisposing SNPs and commonly targeted genes between two populations, the 

identification of 7 common pathways in the top 10 pathways showed the relevance of 

our pathway oriented approach. We have shown that while the shared pathways 

between the EU and the JP populations explain the general mechanisms of IA disease 

development; the pathways that are identified by population specific GWAS also need 

to be examined to gain a more comprehensive understanding of IA pathogenesis.  

 

As a future work, we plan to fully automate our protocol and convert to a webserver 

such that it takes GWAS data as an input and generates disease specific pathway terms. 

Since the PANOGA protocol, which is developed throughout this thesis is quite 

modular, each main step of this method can be further improved. For example, currently 

available human PPI networks are far from being comprehensive. As the coverage and 

accuracy improves for these networks, the usage of such high quality PPI networks 

could dissect molecular pathways, which are not associated with the disease before. 

Another example might be the adaptation of pathway topology based approaches to the 

pathway identification step of PANOGA. Differently from traditional over-

representation analysis approaches, these approaches incorporate the topological 

measures of the pathways while assigning a set of genes into pathways. Also, the 

incorporation of a functional enrichment approach that considers the shared genes 

between pathways (dependence between pathways), significance values of the genes, 

might further improve our methodology. In addition to the GWAS datasets, the 

tremendous boost in the “omics” technologies such as transcriptomics, proteomics and 

metabolomics also makes it possible to generate a global picture of system 

characteristics. Recently, miRNA expression datasets also became popular to 

understand the effect of the targeted modulation of gene regulation on complex disease 

mechanisms. Due to the modularity of PANOGA protocol, such different types of 

datasets can be easily incorporated to our system. Hence, the pathway level integration 

of all these different types of information might be a valuable approach to illuminate 

disease development mechanisms in a more comprehensive manner. 
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To conclude, as exemplified with GWAS datasets throughout this thesis, the affected 

pathways can be used as marker pathways for diseases to explain universal disease 

development mechanisms. Each population may search for disease causing factors 

targeting the genes within these affected pathways. Rather than the population, the same 

method can be extended to individuals to identify modifications occuring on the genes 

within these pathways. Hence, we can determine individual reasons for disease 

development which can be exploited for drug development and personalized 

therapeutical applications. To understand individual disease development mechanisms, 

these marker pathways can be scanned for an individual for alterations in the functions 

of the genes contained within. Thus, determining the disease-causing factors will 

provide a valuable insight for individualized therapy targets that would rectify the 

impact of these function altering factors. 
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