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Abstract

The sparse signal recovery, which appears not only in compressed sensing but also in

other related problems such as sparse overcomplete representations, denoising, sparse

learning, etc. has drawn a large attraction in the last decade. The literature contains a

vast number of recovery methods, which have been analysed in theoretical and empirical

aspects.

This dissertation presents novel search-based sparse signal recovery methods. First, we

discuss theoretical analysis of the orthogonal matching pursuit algorithm with more

iterations than the number of nonzero elements of the underlying sparse signal. Sec-

ond, best-first tree search is incorporated for sparse recovery by a novel method, whose

tractability follows from the properly defined cost models and pruning techniques. The

proposed method is evaluated by both theoretical and empirical analyses, which clearly

emphasize the improvements in the recovery accuracy. Next, we introduce an itera-

tive two stage thresholding algorithm, where the forward step adds a larger number of

nonzero elements to the sparse representation than the backward one removes. The pre-

sented simulation results reveal not only the recovery abilities of the proposed method,

but also illustrate optimal choices for the step sizes. Finally, we propose a new mixed

integer linear programming formulation for sparse recovery. Due to the equivalency of

this formulation to the original problem, the solution is guaranteed to be correct when it

can be solved in reasonable time. The simulation results indicate that the solution can

be found easily under some reasonable assumptions, especially for signals with constant

amplitude nonzero elements.



SIKIŞTIRMALI ALGILAMA SEYREK İŞARET GERİ ÇATMA PROBLEMİ İÇİN

ARAMA TABANLI YÖNTEMLER

NAZIM BURAK KARAHANOĞLU

EE, Doktora Tezi, 2013

Tez Danışmanı: Hakan Erdoğan

Anahtar Kelimeler: sıkıştırmalı algılama, seyrek işaretlerin geri çatılması, ilk en

iyiyle ağaç araması, ileri-geri arama, karışık tam sayılı doğrusal programlama

Özet

Sıkıştırmalı algılamanın yanı sıra seyrek tamüstü gösterimler, gürültü giderme ve seyrek

öğrenme gibi alanlarda da rastlanan seyrek işaretlerin geri çatılması problemi, son yıllar-

da büyük ilgi çekmektedir. Literatürde, performansları teorik ve deneysel olarak analiz

edilmiş çok sayıda geri çatma yöntemi bulunmaktadır.

Bu tezde, arama tabanlı yeni seyrek işaret geri çatma yöntemleri tartışılmaktadır. İlk

olarak, dikgen eşleştirme arayışı algoritmasının geri çatılacak sinyalin sıfır olmayan ele-

manlarından daha fazla sayıda iterasyona izin verecek şekilde teorik bir analizi gerçek-

leştirilecektir. İkinci olarak, ilk en iyiyle arama yöntemini kullanan yeni bir seyrek işaret

geri çatma algoritması tartışılacaktır. Önerilen yöntemde, ağaç aramasının çözülebilir

olması için yeni maliyet fonksiyonları ve budama teknikleri kullanılacaktır. Bu yöntem,

geri çatma doğruluğundaki iyileşmeleri açıkça ortaya koyan teorik ve deneysel analizler

ile incelenecektir. Daha sonra, ileri adımın, seyrek gösterime geri adımın çıkardığından

daha fazla sayıda sıfır olmayan eleman eklediği yeni bir iki aşamalı döngüsel algoritma

tanımlanacaktır. Sunulan simülasyon sonuçları ile, önerilen yöntemin geri çatma be-

cerisinin yanı sıra uygun adım uzunluğu seçimi konusu da irdelenecektir. Son olarak,

seyrek geri çatma için yeni bir karışık tam sayılı doğrusal programlama formülasyonu

önerilecektir. Bu formülasyonun asıl probleme denk olması, problemin makul sürelerde

çözülebildiği durumlarda, bulunan sonucun doğruluğunu garanti etmektedir. Simülasyon

sonuçları, bu problemin özellikle eşit büyüklükteki sıfır olmayan elemanlardan oluşan

işaretler için bazı makul varsayımlar altında kolaylıkla çözülebildiğini ortaya koymak-

tadır.
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Chapter 1

Introduction

1.1 Motivation

Compression has always been one of the most important and most deeply investigated

topics in the signal processing and communication communities. Traditionally, data

compression has been considered as a completely independent process from data ac-

quisition. In this conventional understanding, the signals should be captured at the

Shannon-Nyquist rate before compression could be applied. The most popular means

for compression is the transform coding, where the captured signal is first converted by

some efficient transform technique such as the Discrete Cosine Transform or Discrete

Wavelet Transform into an appropriate domain in which it may be represented by a

limited number of significantly large transform coefficients. Compression can only then

be performed by thresholding which keeps only the largest magnitude transform coeffi-

cients. Examples of commonly used compression standards include the Moving Picture

Experts Group (MPEG) standards for video, MPEG-1 Audio Layer III (MP3), and

Advanced Audio Coding (AAC) techniques for audio, the Joint Photographic Experts

Group (JPEG) standards for image, etc.

On the other hand, the emerging compressed sensing (CS) field aims at combining the

compression process with the data acquisition in contrast to the conventional compres-

sion techniques. In the CS acquisition model, compression is implicitly performed while

signals are captured by a number of linear observations1 below the Shannon-Nyquist rate.

1This observation process is usually modelled via the so-called observation matrix, which maps the
signal of interest onto the observation domain which has less dimensions than the signal itself.

1
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This data reduction rate leads to the most fundamental question of the CS theory: Can

a reduced number of observations, which are below the Shannon-Nyquist rate, contain

enough information for exact reconstruction of signals? At first, this might seem quite

unnatural, however the CS literature [1–4] states that it is indeed possible under some

conditions. Sparse2 signals can be exactly recovered if the observation matrix satisfies

some necessary conditions, such as the well-known restricted isometry property (RIP)

[1]. Similarly, compressible3 signals can also be approximated with small error under

RIP. Although it is hard to show that the RIP holds for a fixed matrix, some families of

random matrices such as those with independent and identically distributed entries from

the Gaussian or Bernoulli distributions, or random selections from the discrete Fourier

transform are known to satisfy the RIP with high probabilities [4]. In addition, most

real world signals are compressible or sparse in some appropriate transform domain,

such as the wavelet domain or the discrete cosine transform basis for natural images.

Combining the compressibility of real world signals with the RIP of random matrices,

it is possible to unite the signal acquisition with compression via compressed sensing

techniques.

As a natural consequence of acquisition by a compressed set of linear measurements, the

necessity arises for reconstruction of the acquired signals. Due to the dimensionality re-

duction during the acquisition of the signals, this problem is analytically ill-posed: There

exists infinitely many signals which lead to the same set of measurements. Therefore,

the problem should be cast as an optimization problem which seeks the sparsest one

among these possible solutions. Though compressibility allows for this sparsity promot-

ing formulation, direct solution of the resultant optimization problem still necessitates

an intractable combinatorial search. Consequently, a vast number of alternative recov-

ery methods, which exploit different properties of the underlying recovery problem, have

recently been proposed. [5] presents an insightful overview of the sparse signal recovery

literature, where the existing methods are classified into five categories as the convex op-

timization, greedy pursuits, Bayesian methods, nonconvex optimization, and brute-force

methods.

2A signal is called sparse if most of its elements are zero. Similarly, a K-sparse signal has at most K
nonzeros.

3A signal is called compressible if its sorted coefficient magnitudes exhibit a power law decay in some
appropriate transform domain.
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The dissertation at hand concentrates on the sparse signal recovery problem, and presents

a number of novel techniques for this purpose. Due to the search-like structures employed

by the presented methods, we refer to these in common as search-based methods. The

presented methods are investigated regarding both theoretical and empirical aspects.

Their empirical recovery performances are demonstrated by various compressed sensing

simulations. RIP-based theoretical analyses are also presented whenever possible. In

addition, we present theoretical and empirical analyses of the orthogonal matching pur-

suit (OMP) method [6] which is a simple, yet well-acknowledged greedy sparse signal

recovery algorithm in the CS community.

Though the sparse signal recovery problem is mostly referred to as “compressed sensing”

in the literature, CS itself is not the only application domain of the sparse signal recovery

methods. There also exists other closely related problems in the literature, such as

sparse overcomplete representations, dictionary learning, error correction, denoising,

sparse learning, subset selection, etc. Although this dissertation examines the empirical

performance with CS simulations, the proposed sparse signal recovery algorithms can

also be trivially applied for other closely related problems as well.

1.2 Contributions and Outline

In this work, we focus on novel algorithms for the sparse signal recovery problem, regard-

ing both theoretical and empirical aspects. First, we devote Chapter 2 to an overview

of the existing sparse signal recovery algorithms in the literature. Before the new re-

covery techniques are introduced, Chapter 3 concentrates on theoretical and empirical

analyses of the well-acknowledged OMP algorithm, which may be seen as a greedy

search method. The A? orthogonal matching pursuit (A?OMP) method, presented in

Chapter 4, is based on a semi-greedy best-first tree search, while the forward-backward

pursuit (FBP) of Chapter 6 performs a greedy search by the addition and removal of

nonzero elements during the forward and backward stages. In addition to these, Chap-

ter 7 proposes solving a reformulation of the original sparse signal recovery problem by

mixed integer linear programming (MILP) techniques including the powerful branch-

and-bound methods, which obtain the optimal solution via an exhaustive search on a

solution tree. Although the proposed methods employ different routines for solving the

sparse signal recovery problem, they all incorporate search-based structures. Due to this
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similarity, we find it convenient to present them under the general class of search-based

methods.

In Chapter 3, we present RIP-based theoretical analysis of the OMP algorithm for

recovery of sparse signals from noise-free measurements. Our analysis follow a strategy

similar to [7], which analyses OMP recovery in K iterations where K denotes the number

of nonzero elements of the underlying sparse signal. In particular, we extend this analysis

to allow for more than K OMP iterations. This leads to online recovery conditions

depending on the internal state of OMP, i.e., the number of correct and false detections

in an intermediate step. Due to this dependency, we cannot convert our results into

exact recovery guarantees for all K-sparse signals. However, the presented analysis

still states that OMP can exactly recover a K-sparse signal within 3
2K iterations if an

intermediate step satisfies some conditions on the number of correct and false detections

in addition to the online recovery condition. In contrast, the state-of-the-art exact

recovery guarantees, such as [8, 9] and [10], necessitate 6K to 30K iterations, which is

impractical in many situations. In addition to the theoretical analysis, we also provide

an empirical demonstration of the OMP recovery performance for different types of

sparse signals in comparison to some mainstream sparse signal recovery algorithms in

the literature.

Chapter 4 introduces the A?OMP algorithm, which utilizes an efficient tree search for

solving the sparse signal recovery problem. The proposed method employs the A? search

[11–15], which is a best-first tree search technique frequently used in problems such as

path finding, graph traversal, and speech recognition. A?OMP possesses not only appro-

priate cost models which provide means for both simultaneous handling of paths with

different lengths throughout the search and reduction of the computational burden, but

also pruning techniques which reduce the tree size effectively. Proper definitions of

these two are very important for the tractability of the sophisticated tree search as pro-

posed. Addressing this issue, A?OMP provides means for complexity-accuracy trade-off

by proper adjustment of the cost model and pruning parameters as demonstrated in

Chapter 4. In addition, Chapter 4 also discusses the AStarOMP software, which is de-

veloped as an efficient implementation of the algorithm for the purpose of demonstrating

the recovery abilities in practice. The simulations in Chapter 4 illustrate the recovery

performance of A?OMP in comparison to some other mainstream algorithms for a vari-

ety of scenarios including both synthetically generated sparse data and images. These
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results reveal that the best-first search can significantly improve the recovery perfor-

mance with proper definition of the cost model and appropriate selection of the pruning

parameters.

In addition to the empirical evaluation of A?OMP in Chapter 4, the theoretical aspects

of the sparse signal recovery via A?OMP are discussed in Chapter 5. These analyses

not only state RIP-based exact recovery guarantees for A?OMP, but also provide a

theoretical comparison of the recovery performance with different termination criteria.

As expected by the promising empirical recovery results which are obtained after the

incorporation of the best-first search in Chapter 4, A?OMP is shown to possess stronger

exact recovery guarantees than the OMP algorithm. Moreover, our theoretical results

also indicate the optimality of the termination criterion which is based on the residue

of the measurement vector. In addition to these theoretical findings, we also develop

a novel cost model, which significantly accelerates the algorithm in practice. Finally,

Chapter 5 contains a variety of simulations which illustrate the improvements in both

the recovery accuracy and speed of the algorithm with the proposed modifications. The

results of these simulations clearly support the theoretical findings of Chapter 5.

We introduce another novel search-based technique for sparse signal recovery in Chap-

ter 6. This technique, called the forward-backward pursuit, is a novel iterative scheme

where each iteration consists of two stages. Let us define the term support as the set

of indices corresponding to the locations of nonzero elements in the underlying sparse

signal. The first one of the two stages in each FBP iteration is the forward stage, which

expands the support estimate by addition of α new indices. The latter is the backward

stage, which removes β indices from the support estimate, where β < α. This consti-

tutes a greedy algorithm which resembles two stage thresholding (TST) [16–18], while

the expansion of the support estimate by α − β atoms4 per iteration presents a novel

extension over the TST schemes in the literature. The recovery simulations in Chapter 6

illustrate the recovery accuracy via a variety of scenarios including both synthetical 1D

and real 2D data. In addition, an empirical strategy for choosing optimal step sizes is

also demonstrated.

Chapter 7 proposes a new MILP formulation of the sparse signal recovery problem. This

MILP formulation is obtained by the introduction of an auxiliary binary vector where the

4Atoms refer to the columns of the observation matrix.
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recovered nonzero elements are located by ones. Joint optimization for finding this binary

auxiliary vector together with the sparse vector of interest leads to an MILP problem.

By addition of a few appropriate constraints in order to reduce the size of the feasible

solution space, this problem can be solved by MILP techniques. This new formulation

has an important advantage over the mainstream sparse signal recovery methods: It

is not an approximation, but it is equivalent to the underlying sparse optimization

problem. Therefore, the solution becomes exactly equal to the optimal solution of the

original sparse signal recovery problem, once it can be found in reasonable time. We

demonstrate tractability of the solution by recovery simulations involving different sparse

signal types. The proposed scheme improves recovery over the mainstream recovery

methods especially when the underlying sparse signals have constant amplitude nonzero

elements.



Chapter 2

An Overview of the Sparse Signal

Recovery Problem and the

Mainstream Recovery

Approaches

2.1 Introduction

In contradiction to the conventional acquisition process, where a signal is captured as

a whole before the dimensionality reduction can be applied via some transform cod-

ing, the rapidly emerging compressed sensing (CS) field targets acquisition of sparse or

compressible signals directly in reduced dimensions. The dimensionality reduction is

achieved by capturing a set of linear measurements instead of the signal itself, where

the number of the measurements, M , is less than the signal dimension, N . As a result,

the underlying signal has to be recovered from the observations, which is ill-posed due

to the dimensionality reduction.

Despite the fact that the recovery problem is analytically ill-posed, CS literature [1–4]

states that it is indeed possible to recover the underlying sparse signal from observa-

tions below the Shannon-Nyquist rate under appropriate conditions such as the restricted

isometry property (RIP). The literature contains a broad range of methods which have

7
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Figure 2.1: Observation model for the sparse recovery problem.

been proposed for solving this ill-posed recovery problem. These methods can be cate-

gorized into a number of algorithmic families with respect to their varying approaches to

the problem. An overview and categorization of the mainstream sparse signal recovery

methods can be found in [5].

This chapter serves as a literature survey which summarizes the current state of the art

in the CS field. First, we provide a definition of the sparse signal recovery problem in

Section 2.2. The restricted isometry property, which provides an important means for

theoretical justification of sparse signal recovery approaches, is introduced in Section 2.3.

Finally, Section 2.4 is devoted to the discussion of the major sparse signal recovery

algorithms.

2.2 The Sparse Signal Recovery Problem

As mentioned in the introduction, the fundamental problem of CS is to recover a sparse

or compressible signal from some reduced set of observations. Let x ∈ RN be a sparse

signal with K � N nonzero entries. We refer to such a signal as K-sparse. Under noise-

free conditions, the “compressed” linear measurements of the K-sparse x are modelled

using the observation matrix Φ ∈ RM×N as

y = Φx (2.1)

where y ∈ RM and K < M < N . The matrix Φ is often called the dictionary, acknowl-

edging its role during the recovery. This observation model is illustrated in Figure 2.1.

Since the number of measurements is less than the signal dimension, the recovery of x

from y is analytically ill-posed. That is, there exists multiple solutions of (2.1), which
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Figure 2.2: Sparse recovery problem illustrated via selection of nonzero indices where
K = 4. Color-filled entries denote the nonzero elements of x and the corresponding

columns of Φ which contribute to y.

are shifted versions of the desired solution x in the null-space of the dictionary Φ. One

of them is, for example, the minimum `2 norm solution, which can be obtained using the

pseudo-inverse of Φ. Though this solution satisfies the observation model (2.1), there is

no guarantee that it is the desired sparsest solution, and generally it is not.

On the other hand, we may simply rewrite (2.1) as

y =

N∑
i=1

xiφi, (2.2)

where xi is the ith element of x and φi, which is sometimes referred to as an atom,

denotes the ith column vector of Φ. Since only K of the xi’s are nonzero due to the

sparsity of x, we observe that the problem is reduced to finding the K nonzero indices

of x corresponding to the atoms which best explain y. Figure 2.2 illustrates the sparse

recovery problem as selection of nonzero indices, which are marked as the color-filled

elements of x. Exploiting this basic observation, the sparse signal recovery is cast into

an optimization problem in the CS theory as

x = arg min ‖x‖0 subject to y = Φx, (2.3)

where ‖x‖0 denotes the number of nonzero elements in x. Note that, although it does

not actually satisfy the requirements of a proper norm, ‖.‖0 is often called the `0 norm

in the CS literature by abuse of the terminology.



Sparse Signal Recovery Problem 10

In addition to (2.1), other similar sparse signal recovery formulations also appear in the

literature for slightly modified problems. One of them is the case where x is not exactly

sparse, but compressible, i.e., most of its energy is concentrated in a few elements.

Another example is encountered when the observation process is noise contaminated or

not exact. In this case, the observation model is modified as

y = Φx + n, (2.4)

where n denotes some additive noise component or observation error. In these situations,

the problem might be cast as a sparse signal approximation problem:

x = arg min ‖x‖0 subject to ‖y −Φx‖2 ≤ ε, (2.5)

where ε is defined as a measure for how close the sparse approximation should satisfy

the observation constraints. Finally, we can also write a mixed formulation [5], where

the regularization parameter τ governs the sparsity of the solution:

x = arg min
1

2
‖y −Φx‖2 + τ‖x‖0. (2.6)

Direct solutions of these `0 norm minimization problems above, however, are all compu-

tationally very expensive as they require exhaustive combinatorial search over all subsets

of the columns of Φ [2, 19]. Thus, direct solution is not feasible even for signals that are

moderate in size. As a consequence, sparse signal recovery techniques in the literature

mostly concentrate on indirect means to obtain an approximation of x.

Either referred to as sparse signal recovery or approximation, formulations similar to

(2.3), (2.5), and (2.6) appear not only for CS [3, 4, 16, 16–18, 20–65], but also for

related problems such as sparse overcomplete representations [6, 66–72], error correction

[1, 73], denoising [74–79], sparse learning [80–88], etc. Note that, in the literature, it is

quite common to use the term compressed sensing for referring to the sparse optimization

formulations, even though they are also encountered in a wide range of related problems.
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2.3 The Restricted Isometry Property

Theoretical analysis of sparse signal recovery algorithms has been an important topic

in the compressed sensing community. For this purpose, researchers have concentrated

on notions such as the null space property [67, 89], coherence [67, 90–93], probabilistic

analysis [20, 94], restricted isometries [1, 4, 7, 17, 18, 95], etc.

In the last decade, RIP [1] has been acknowledged as an important means for obtaining

theoretical guarantees of the proposed algorithms. To get an understanding of the RIP,

we can count on two important requirements for exact recovery of x from the observation

y = Φx [5]:

• Uniqueness: The uniqueness of a K-sparse representation x for each y implies

an algebraic condition on submatrices of Φ. Assume that there exists some z such

that y = Φx = Φz. Then, Φ(x − z) = 0. To ensure that x is unique, we need

‖z‖0 > K for any possible z. That is, all subsets of Φ containing at most 2K

columns should be linearly independent.

• Stability: In addition to uniqueness, tractability of the sparse representation

necessitates that each signal should be stably determined. That is, perturbations

in the sparse coefficients should lead to similar perturbations in the measurements,

i.e., ‖∆x‖2 and ‖Φ(∆x)‖2 should be comparable.

A common means for imposing these two requirements is the restricted isometry property

[1] which plays an important role in the theory of compressed sensing:

Theorem 2.1 (Restricted isometry property). A matrix Φ is said to satisfy the L-RIP

for any positive integer L if there exists a restricted isometry constant (RIC) δL ∈ (0, 1)

satisfying

(1− δL)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δL)‖x‖22, (2.7)

for all x where ‖x‖0 ≤ L.

The nature of the RIP can be better understood by the following proposition which can

be seen as a natural extension of the uniqueness and stability requirements: A system

satisfying the RIP for some constant acts almost like an orthonormal system for sparse
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linear combinations of its columns [1]. In other words, Φ approximately preserves the

distance between any two K-sparse vectors if it satisfies 2K-RIP. In particular, the lower

bound in (2.7) implies the uniqueness condition, and the upper bound represents the sta-

bility, which is especially important for robust recovery from perturbed measurements.

Since RIP represents these two properties together, it provides means for developing

exact recovery guarantees of sparse signals from lower dimensional observations.

Analysis in [1, 4] state that certain random matrices satisfy the RIP with high probabil-

ities, when some specific conditions hold for K based on M and N . Random matrices

with independent and identically distributed entries that follow Gaussian or Bernoulli

distributions are stated to satisfy the K-RIP with high probabilities if

M ≥ cK log

(
N

K

)
, (2.8)

where c is a function of the restricted isometry constant δK . On the other hand, in

case the columns of the observation matrix are selected randomly among the columns

of the discrete Fourier transform matrix, the number of necessary measurements can be

obtained as

M ≥ cK log6N. (2.9)

Some improvements on these bounds have also been reported in the literature (see for

example [96–99]). Motivated by the fact that they satisfy RIP with high probabilities

when these bounds hold, random observation matrices are frequently utilized in com-

pressed sensing in order to provide more compact representations of sparse signals.

Utilization of matrices satisfying RIP with high probabilities allows for theoretical analy-

sis of the recovery algorithms via development of upper bounds on the RIC to guarantee

exact recovery of sparse signals. That is, exact recovery guarantees of algorithms may

be stated in terms of specific upper bounds on RIC. Via the conditions on the num-

ber of measurements for satisfying RIP, these bounds may be related to the number of

necessary measurements chosen from specific random ensembles as well. Relaxing the

upper bound, i.e. allowing for a larger RIC, can be interpreted as reducing the number

of necessary measurements for exact recovery. As a consequence, RIP-based theoretical

exact recovery guarantees have been stated for many sparse signal recovery algorithms

such as [1, 4, 7, 17, 18, 28, 30, 100, 101] in terms of upper bounds on RIC.
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Before concluding the discussion of RIP, we also would like to mention the following

simple, yet important property of RIC:

Lemma 2.1 (Monotonicity of RIC). Assume that the matrix Φ satisfies L-RIP with

δL. Then, for any positive integer C > L, we have

δC ≥ δL.

This states that RIC increases monotonically with the number of nonzero indices allowed.

We exploit this property later in the following chapters while developing exact recovery

guarantees for recovery algorithms.

2.4 Sparse Signal Recovery Algorithms

In the literature, there is a vast number of sparse signal recovery methods which attack

the problem from different perspectives. In this section, we provide a brief review of these

methods in five categories. Note that this specific categorization is chosen in order to

provide a structured review of algorithms, while other categorizations are also obviously

possible1. In addition, some methods do not strictly fall into one of the categories we

present below. Especially some algorithms which we list among the greedy pursuits can

also be grouped into different classes. However, we choose a broad categorization, and

review such algorithms in the class which they are most similar to.

2.4.1 Greedy Pursuit Approaches

The greedy pursuit methods are fundamentally based on search mechanisms which iter-

atively expand or refine a sparse estimate. This family includes algorithms which select

one coefficient per iteration as well as algorithms which select or modify multiple coeffi-

cients per iteration, where each iteration may be followed by a pruning (or thresholding)

step. In addition, we also cover some techniques with tree search structures in this

category, as such structures also resemble the greedy algorithms.

1A partially overlapping categorization and overview of the mainstream sparse signal recovery meth-
ods can be found in a recent publication of Tropp and Wright [5]
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Historically, matching pursuit (MP) [68] is the first greedy pursuit algorithm. MP starts

with an empty support estimate for x. At each iteration, it expands the support estimate

by addition of the index which corresponds to the dictionary column having the highest

magnitude inner product with the residue2, while the corresponding entry of x is set

equal to this inner product. The residue is also updated accordingly. The iterations

are run until either a predefined number (i.e., K) of atoms is selected, or the residue

is small enough. A major drawback of MP is that it does not take into account the

nonorthogonality of the dictionary columns. Due to this nonorthogonality, setting the

value of the selected entry equal to the corresponding inner product at each iteration is a

suboptimal choice. MP tries to address this issue by refining the nonzero elements of the

recovered vector using the orthogonal projection coefficients of the observation vector

onto the selected support after the termination of the algorithm. This choice, however,

is also not optimal, since the stagewise selection of indices is still suboptimal due to

the fact that the residue is not orthogonal to the selected support set at intermediate

iterations.

The orthogonal matching pursuit (OMP) algorithm [6] is one of the most acknowledged

greedy algorithms, due to its simplicity and empirically competitive recovery perfor-

mance. OMP extends the MP algorithm by a stagewise orthogonality condition which

addresses the nonorthogonality of the columns of Φ. In order to avoid suboptimal selec-

tion of indices, OMP performs the orthogonal projection of the observation vector onto

the selected support set after each iteration. By this way, the residue is assured to be

orthogonal to the set of selected columns, increasing the reconstruction accuracy. As for

the recovery guarantees, theoretical analyses of OMP have been first performed either

using a coherence parameter [91] or via probabilistic analysis [20, 94]. Recently, RIP

has also been utilized for theoretical analysis of OMP both with only K steps [7, 95]

and with more than K steps [8–10]. We further visit OMP in the next chapter, which

discusses its theoretical and empirical performance in detail.

More sophisticated pursuit methods, which select multiple columns per iteration, have

also been of interest to the CS researchers. For example, stagewise OMP (StOMP)

[102] selects at each step all of the dictionary columns whose absolute inner products

with the residue are higher than an adaptive threshold depending on the `2 norm of

2The residue of the ith iteration is the vector ri = y −Φx̂i, where x̂i is the estimate of x after the
ith iteration.
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the residue. Alternatively, regularized OMP (ROMP) [27, 101] groups the atoms with

similar magnitude inner products together at each iteration, and selects the group with

maximum energy. Due to this regularization, the ROMP algorithm is equipped with

theoretical performance guarantees based on a RIP bound. A recent proposal, the

generalized OMP algorithm (GOMP) [28, 103] extends OMP by selecting a fixed number

of nonzero elements at each iteration with respect to the highest inner product with the

residue. GOMP is also supported by RIP-based theoretical exact recovery guarantees.

Another set of greedy pursuit algorithms including compressive sampling matching pur-

suit (CoSaMP) [18] and subspace pursuit (SP) [17] combine selection of multiple nonzero

elements per iteration with a pruning step. These algorithms keep a support estimate

of K indices throughout the iterations. At each iteration, they first expand the support

estimate by the αK indices (α = 1 for SP and α = 2 for CoSaMP), corresponding to the

dictionary atoms having the maximum absolute inner product with the residue. Follow-

ing this expansion, they compute the coefficients for indices in the support estimate by

orthogonal projection of y onto the subspace defined by the support estimate. Before

going for the next iteration, they finally prune the support estimate to retain only indices

corresponding to the K largest coefficients. CoSaMP and SP are provided with theo-

retical guarantees, showing that these two stage schemes achieve exact reconstruction

when the dictionary satisfies some RIP condition.

Recently, Maleki and Donoho have presented an algorithmic framework called two stage

thresholding (TST) [16], into which algorithms such as SP and CoSaMP fall. As

the name suggests, this framework involves algorithms that employ two stage itera-

tive schemes. The first stage is similar to the simple iterative thresholding algorithms:

The sparse estimate is first updated in the direction opposite to the gradient of the

residue3, which is followed by thresholding in order to get a new sparse estimate. The

optimal values of the nonzero elements are then computed by the orthogonal projection

of y onto the selected support set. Finally, a second thresholding operator is applied

on these coefficients. This second thresholding which further imposes sparsity on the

support estimate, yields the support estimate of the corresponding iteration. The eval-

uation of TST-type algorithms in [16] announces an optimum TST version, which turns

out to be a modified SP algorithm with pre-computed optimum step sizes.

3This becomes equivalent to choosing the indices having highest magnitude inner products with the
residue when the consequent thresholding operation is configured to keep a fixed number of largest
elements. With this specific setting, CoSaMP and SP can be obtained as TST-type algorithms.
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One other family of the greedy pursuits is the iterative thresholding algorithms [29–

34]. The iterative hard thresholding (IHT) [29, 30] algorithm typically first updates the

approximation of x in the direction opposite to the gradient of the residual error at

each iteration. The sparsity constraint is then imposed by pruning the approximation

either by thresholding or keeping only a predefined number of the largest entries. [30]

establishes that IHT algorithms enjoy RIP-based theoretical exact recovery guarantees

similar to those of CoSaMP and SP. [34] presents the accelerated IHT algorithm, which

utilizes acceleration methods to improve the convergence speed, while the performance

guarantees of the original IHT method are preserved. In [31], Cevher proposes the Nes-

terov Iterative hard thresholding method, which incorporates the Nesterov’s proximal

gradient method [104] to update the approximation of x. This method provides no a

priori performance guarantee, but still an online performance guarantee.

Gradient pursuits algorithms [35, 36] attempt at obtaining a fast approximation of the

OMP algorithm by applying gradient-based acceleration techniques for the orthogonal

projection step. Gradient pursuit [35] employs a gradient step to modify the sparse ap-

proximation at each iteration instead of the orthogonal projection. The more effective

approximate conjugate gradient pursuit, which employs an approximate conjugate gra-

dient step at each iteration, performs close to OMP with reduced computational com-

plexity and storage requirements. Recently, an extension of the idea, stagewise weak

gradient pursuits [36] incorporate selection of multiple columns per iteration, based on a

threshold directly related to the maximum inner product among the dictionary columns

and the residue.

CS literature also contains a number of unsophisticated tree search based methods which

may also be counted among greedy (or, to be exact, semi-greedy) methods. The tree

search based OMP (TB-OMP) [38] employs a tree search that opens B children per

leaf node at each iteration. A rather flexible version of this is the flexible TB-OMP

[39], where the branching factor B is decreased at each level in order to reduce the tree

size. Another straightforward tree search appears in the fast Bayesian matching pursuit

(FBMP) [40], where each iteration first opens all children of the leaf nodes, and then

retains the best D among all opened nodes with respect to their posterior probabilities.

These tree search based structures can be seen as rather straightforward applications of

tree search in CS. Though some of these methods employ simple techniques for reducing

the tree size, their applications are limited to small-scale problems due to large tree
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Figure 2.3: Growth of the search tree during recovery with TB-OMP and FBMP in
comparison to the single-path OMP algorithm. Each node in the graph represents a
chosen index of x at different iterations of an algorithm. Tree-based methods consider
and evaluate multiple indices at each level of the tree. In this particular example, TB-
OMP explores B = 2 children per leaf node at each iteration, while FBMP explores all
children of the best D = 2 nodes at each level. The best nodes at each level of FBMP

are marked as color-filled.

sizes that appear in practice. Figure2.3 illustrates the growth of the search tree during

the recovery with TB-OMP and FBMP methods in comparison to the single-path OMP

algorithm.

The randomized OMP algorithm [79], which aims at improving the OMP recovery from

noisy measurements, yields an estimate of the minimum mean-squared error solution by

averaging multiple sparse representations which are obtained by running a randomized

version of OMP several times. At each run, the indices in the support estimate are

selected at random with probabilities depending on their inner products with the residue.

The final estimate is then obtained by combination of the multiple representations with

an appropriate weighting scheme.

There has also been efforts to accelerate matching pursuit type algorithms by reducing

the complexity of the inner product computation. One example is the tree-based pursuit

[37], which provides a mechanism for clustering the vectors in the dictionary in a tree

structure. In the proposed tree structure, each inner node is a common representation

of its child nodes, while the leaf nodes are themselves the dictionary atoms. With

this structure, the selection of the best candidate dictionary atom can be performed

iteratively from the root of the tree to the best tree leaf by following the best candidate

node at each level. This leads to a reduction in the complexity of the search for the

best atom at the expense of a slight reduction in the performance of MP. [37] applies
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this idea to MP only, while incorporation of the clustered tree structure into other MP

variants is also trivial.

2.4.2 Convex Optimization

This important class of sparse signal recovery algorithms is based on relaxation of the

`0 norm minimization in the sparse signal recovery problem with `1 norm minimization.

The motivation for this replacement is that the `1 norm minimization provides the closest

convex approximation to the `0 norm minimization problem. This translation of the

problem makes the solution possible via computationally tractable convex optimization

algorithms.

In the noise-free case, the convex form of (2.3) is written as:

x = arg min ‖x‖1 subject to y = Φx. (2.10)

Similarly, the mixed formulation may also be put into convex form as

x = arg min
1

2
‖y −Φx‖2 + τ‖x‖1, (2.11)

where larger τ values imply solutions with smaller `1 norm. Among other convex for-

mulations, the LASSO [105] formulation, which also takes the observation noise into

account, can be written as

x = arg min ‖y −Φx‖22 subject to ‖x‖1 ≤ β. (2.12)

Another common formulation for the noisy case parameterizes the error norm explicitly:

x = arg min ‖x‖1 s.t ‖y −Φx‖2 ≤ ε. (2.13)

Historically, `1 norm minimization for sparse approximation has first appeared in basis

pursuit (BP) [66]. This method is based on solving the convex optimization problem in

(2.10) by linear programming (LP) techniques. Employing well known LP techniques,

this problem can be solved in polynomial time. The LP-equivalent of (2.10), discussion
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of simplex and interior point methods for BP, and details of the algorithm can be found

in [66].

In addition to BP, [106] also proposes a similar primal-dual interior-point framework for

solving the `1 norm minimization problem. More recently, [107] applies a primal log-

barrier approach for a quadratic reformulation of the `1 norm minimization problem in

the mixed form. Implementations of the standard primal-dual and log-barrier methods

are available in the `1-magic software package [108].

Pivoting algorithms have also been utilized for solving the `1 norm minimization prob-

lem. Homotopy method of [109] is proposed for solving a noisy overdetermined `1-

penalized least squares problem. A similar approach is applied to the noiseless under-

determined `1 norm minimization problem by Donoho and Tsaig in [110].

The restricted isometry property plays an important role for the applicability of the `1

norm minimization instead of the original `0 norm minimization problem. Extensive

analyses of the necessary RIP conditions for the `1 relaxation, convergence issues, and

bounds on the number of necessary measurements can be found in the literature [1,

2, 4, 100, 111]. These analyses show that the `0 and `1 norm minimization problems

lead to the same K−sparse representation if the observation matrix satisfies RIP with

δ2K <
√

2− 1.

2.4.3 Nonconvex Optimization

Though employing nonconvex optimization techniques for sparse signal recovery has not

been as popular as the convex or greedy methods, there still exists some nonconvex

sparse signal recovery approaches which we would like to pronounce here.

A nonconvex formulation of the CS reconstruction problem can be obtained via lp norm

relaxation of (2.3) [41]

min ‖x‖pp subject to y = Φx. (2.14)

for 0 < p < 1. [41] develops RIP-based theoretical results for the nonconvex relaxation,

which show improvements over the convex relaxation.

Chartrand has suggested a number of different techniques for solving (2.14). An itera-

tive method based on the lagged-diffusivity algorithm is developed in [41]. [42] adopts
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the projected gradient descent algorithm with some regularization for finding the global

minimum of (2.3). The nonconvex minimization scheme is applied to the reconstruc-

tion of magnetic resonance images in [43] where Fourier-based algorithms for convex

minimization are extended to the nonconvex case. An iterative reweighted nonconvex

minimization method is also developed in [44].

Another nonconvex method is the smoothed `0 (SL0) [72], which is based on minimizing

a smoothed nonconvex approximation Fρ(x) instead of ‖x‖0. The minimization of Fρ(x),

where the parameter ρ controls the quality of the approximation, is performed using the

graduated nonconvexity principle [112]. The algorithm starts with the minimization of

a coarse approximation, and improves the quality of the approximation at each step by

modifying ρ. At each iteration, the result from the previous iteration is used as the

starting point in order to avoid falling into the local minima of Fρ(x). A number of

different approximations to the `0 norm are pronounced in [72], while the algorithm is

demonstrated for only one of them using the steepest descent method for solving the

minimization problem at each iteration. The method is also employed for the error

correction problem in [113].

2.4.4 Bayesian Methods

Another family of sparse signal recovery algorithms is the Bayesian methods, which

follow the Bayesian inference for solving the recovery problem. Before we provide a short

summary of such methods, note that, in a general perspective, the convex formulation

of the sparse signal reconstruction problem can also be obtained by Bayesian techniques

as a maximum a posteriori estimation problem which utilizes a Laplacian prior for the

entries of the unknown sparse signal. However, the motivation behind the most convex

methods is replacing the `0 norm with its closest convex approximation, the `1 norm,

and not maximum a posteriori estimation. Therefore, we find it more convenient to

differentiate the convex methods as a different class of algorithms than the Bayesian

ones.

The sparse Bayesian learning (SBL) [80] of Tipping provides a framework for exploit-

ing sparsity in the regression and classification problems. In [80], the solution to the

SBL problem is obtained via relevance vector machines, which resemble the well-known

support-vector machines. For CS purposes, the regression case is of greater interest: For
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sparse Bayesian regression, a Bayesian model is developed by incorporating hyperpa-

rameters into a hierarchical Gaussian prior of weights. These hyperparameters promote

sparsity by favoring vanishing weights in the corresponding hyperpriors (which incor-

porate some uninformative fixed parameters). The regression problem is then solved

by maximizing the marginal likelihood of the observations via the maximum likelihood

method. A fast iterative algorithm for solving the relevance vector machine problem is

also introduced in [85]. In [48], Ji et.al. employ this fast algorithm for the CS recon-

struction scenario. This Bayesian compressive sensing framework provides full posterior

density function for the underlying sparse signal, from which not only the sparse signal

but also the “error bar”, i.e. reliability of the reconstruction, can be estimated. In

addition, the authors also propose to use this framework for adaptive optimization of

the compressed sensing measurements.

Another sparsity-promoting Bayesian approach for the regression and classification prob-

lems is provided in [88]. This technique employs a Laplace prior of weights, which is

realized by an equivalent hierarchical Bayesian model utilizing zero-mean Gaussian pri-

ors with independent and exponentially distributed variances. The dependency on the

exponential distribution is then further simplified by the adoption of a Jeffreys nonin-

formative hyperprior.

Using the Laplace prior to model the sparsity of signals is also investigated in [49]. In

this case, the Laplace prior is imposed by a three-stage hierarchical model: The first two

stages consist of zero-mean Gaussian weight priors with independent and exponentially

distributed variances, while the third stage models the parameter of the exponential dis-

tribution by a Gamma hyperprior. The authors develop a mechanism that estimates all

the incorporated hyperparameters from the model via the maximum likelihood method.

They also provide a practical fast greedy algorithm which has tractable computational

complexity.

An insightful analysis of the SBL framework is provided in a series of publications of Wipf

et.al. [82, 83, 86]. In [86], they provide an analysis of the local and global minima of SBL,

showing that the global minimum of SBL is the maximally sparse solution. However,

convergence errors are introduced when the algorithm finds some other sparse solutions

occurring at the local minima. The nonseparable weight prior of SBL is analyzed in

[83] in comparison to the general sparse signal recovery formulation which imposes a



Sparse Signal Recovery Problem 22

separable weight prior. The nonseparable weight prior is shown to reduce the number

of local minima effectively. In addition, Wipf et.al. also provide iterative reweighted `1

and `2 norm minimization methods for solving the SBL problem [81, 82].

2.4.5 Iterative Reweighted Methods

This section outlines a number of sparse signal reconstruction algorithms which employ

iterative reweighted structures. In fact, the methods we group into this category start

with different formulations of the problem, such as the Bayesian approach or convex

minimization, while they end up with a common iterative reweighted scheme which is

based on stagewise refining of the sparse estimate via consequent weighted `p norm mini-

mizations where the weights are chosen adaptively throughout the iterations. Therefore,

it is also possible to categorize these methods into other classes with respect to their ini-

tial formulations. However we find it more appropriate to classify them into a common

family because of the similar iterative reweighted structures they end up with.

A reweighted `1 norm minimization scheme is proposed in [45] by Candes et.al.. This

approach is based on iterative refining of the solution of the unweighted `1 norm min-

imization problem. Each iteration of this approach solves a reweighted `1 norm mini-

mization problem, where the weight for each coefficient is selected inversely proportional

to the magnitude of the coefficient obtained after the previous iteration. In other words,

larger coefficients get smaller weights, and vice versa (with some regularization for small

coefficients to avoid dividing by zero). Thus, these weights decrease the difference be-

tween the `0 norm, which penalizes all nonzero coefficients equally, and the `1 norm,

where larger coefficients get larger penalties.

Iterative support detection (ISD) [46] is another iterative scheme based on reweighted `1

norm minimization. Similar to the method proposed by Candes in [45], ISD also starts

with the solution of the unweighted `1 norm minimization problem. At each iteration,

ISD first identifies a support estimate for the underlying sparse signal by applying an

adaptive threshold on the estimate of the previous iteration. The weights of the `1

norm minimization problem are then selected such that only the indices out of the

detected support estimate are penalized4. As the detected support estimate contains

4That is, the weights of the indices which are already in the detected support set are set as 0. Hence,
this reweighted `1 norm is only computed over the indices out of the detected support set.
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larger magnitude elements, this reweighting scheme avoids large contributions of these

elements to the `1 norm, making the resultant weighted `1 norm minimization problem

more sensitive to smaller nonzero elements.

In [47], Daubechies et.al. concentrate on an iterative reweighted `2 norm minimization

scheme. The proposed algorithm applies iterative reweighted least squares minimization

where the weights are selected inversely proportional to the magnitudes of the coefficient

estimates from the previous iteration with some quadratic regularization. Each iteration

of this IRLS minimization yields the smallest weighted `2 norm solution of the sparse

signal recovery problem. The final solution is obtained as a limiting case by adaptively

decreasing the regularization term.

The sparse Bayesian method of Wipf et.al [81–83] also employs iterative reweighted

schemes to solve the SBL problem with nonseparable priors. An iterative reweighted `1

norm minimization scheme is developed in [81] to solve the SBL problem with nonsep-

arable priors, while [82] derives an iterative reweighted `2 norm minimization approach

for the same purpose. [82] and [83] evaluate the performance of these methods in com-

parison to the ones with separable priors in the literature.

Iterative reweighting has also been applied for the nonconvex formulation of the sparse

signal recovery problem. [44] provides an iterative reweighted nonconvex minimization

procedure by appropriate selection of the weights of IRLS such that the weighted mini-

mization problem resembles `p norm with decreasing regularization for 0 < p < 1. The

algorithm converges to the minimum `p norm solution in the limit as the regularization

term vanishes.



Chapter 3

Theoretical and Empirical

Analyses of Orthogonal Matching

Pursuit with Different

Termination Criteria

3.1 Introduction

Orthogonal matching pursuit (OMP) [6] is one of the most widely recognized greedy

algorithms for the sparse signal recovery and approximation problems. OMP aims at

iterative detection of the support of the underlying sparse signal by identifying the best

match to the residue among the dictionary atoms at each iteration. Due to its simplicity

and empirically competitive performance, OMP and its variants have been frequently

used in sparse problems such as [3, 20, 28, 35, 91, 114].

Theoretical analysis of OMP has been of interest to the CS community since the intro-

duction of the algorithm. Initially, theoretical analyses of OMP have been performed

either using a coherence parameter [91] or via probabilistic analysis [20, 94]. Recently,

the restricted isometry property (RIP) has been demonstrated to provide a straightfor-

ward K-step analysis of OMP [95]. The obtained RIP condition has been later improved

in [7].

24
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On the other hand, OMP is known to provide better empirical recovery performance

when it is allowed to run for more than K iterations. To get an intuitive understanding,

let us consider that the dictionary satisfies L-RIP with some 0 < δL < 1 where M > L >

K. Then, selecting L indices in the support estimate improves the recovery, as soon as

the correct support is a subset of the selected indices1. Motivated by this observation,

exact recovery of OMP with more than K iterations has also been recently analysed [8–

10]. These studies state RIP-based guarantees for exact recovery of all K-sparse signals

via OMP within 6K to 30K iterations.

In this chapter, we aim at providing a recovery analysis of the OMP algorithm regarding

both theoretical and empirical aspects. For this purpose, we extend the theoretical

analysis in [7] to cover for more than K iterations, and then demonstrate OMP recovery

with phase transitions in comparison to some other mainstream recovery algorithms.

In particular, we concentrate on the residue-based termination rule, which terminates

when the residue of the observed vector gets small enough, in contrast to the sparsity-

based termination, which limits the number of iterations by K. To avoid ambiguity, we

use the term OMPK to indicate the sparsity-based termination rule, and OMPe for the

residue-based termination.

3.1.1 Outline and Contributions

Before presenting our theoretical analyses, we find it important to discuss the OMP

algorithm in short, and summarize the recent theoretical developments about it. For

this purpose, we first provide a brief overview of the OMP algorithm in Section 3.2.

In addition, Section 3.3 outlines the recent developments on the RIP-based theoretical

analysis of OMP.

As for the theoretical analyses, we develop a model by extending the findings of [7]

to cover more than K iterations in Section 3.4. In Theorem 3.2, we derive RIP-based

online guarantees for the success of an OMPe iteration. Next, we present online recovery

guarantees for OMPe in Theorem 3.3, which is obtained by generalizing Theorem 3.2

for all consequent iterations. Since both Theorem 3.2 and Theorem 3.3 depend on

the number of correct and false indices in a particular support estimate, generalization

1In this case, the null space of the selected support set contains only the null vector due to the L-RIP.
Therefore, the solution of the corresponding projection problem is unique.
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of these results for all K-sparse signals necessitates assuring the existence of support

estimates with sufficiently large number of correct detections. Unfortunately, we cannot

provide such guarantees. However, OMPe obviously enjoys all theoretical guarantees

of OMPK for the noise-free case2. Furthermore, Section 3.4.4, which deals with the

validity of the developed online guarantees in practice, states that Theorem 3.3 becomes

less restrictive than Theorem 3.1 when the number of correct and false detections in the

support estimate satisfy some conditions. Under these conditions, it becomes possible

to satisfy Theorem 3.3 although Theorem 3.1 fails. If satisfied under these conditions,

Theorem 3.3 provides online exact recovery guarantees for K-sparse signals within 3
2K

iterations. This number is clearly less than the 6K to 30K iterations, which are necessary

for the state-of-the-art exact recovery guarantees of [8], [9], and [10].

Finally, we present empirical phase transition curves for three different types of sparse

signals in order to demonstrate the recovery performance of OMP in comparison to some

other mainstream algorithms. In addition, we provide histograms of the number of false

indices after successful OMPe termination in Section 3.5.2. This demonstrate that the

upper bound on the number of false indices which the online guarantees require is loose

in practice.

3.1.2 Notation

Before proceeding further, we present the notation we use throughout this chapter. First,

let x ∈ RN denote the K-sparse signal of interest, and x̃i be the recovery of x after the

ith iteration of OMP. M represents the number of observations, where K < M < N .

We define the dictionary as Φ = [φ1 φ2 ... φN ], where φi ∈ RM is the ith column vector

in Φ. The observation vector is referred to as y ∈ RM , where y = Φx. T denotes

the correct support of x. T l = {t1, t2, ..., tl} is the support estimate for x after the

lth iteration of OMP, where ti is the index selected at the ith iteration. nc and nf

are the number of correct and false indices in T l, respectively, i.e., |T ∩ T l| = nc and

|T l −T | = nf , where |A| denotes the number of elements in the set A. ΦJ denotes the

matrix consisting of the columns of Φ indexed by the set J . Similarly, xJ is the vector

consisting of the elements of x indexed by the set J . Finally, rl is the residue after the

orthogonal projection of y onto ΦT l by the end of the lth iteration.

2It is obvious that the first K steps of both variants are identical. In parallel, Theorem 3.1 is a special
case of Theorem 3.3. This theoretically guarantees this intuitive fact.
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3.2 Orthogonal Matching Pursuit

OMP is a simple forward greedy algorithm that searches for the support of x by identi-

fying one element per iteration. It starts with an empty support estimate, i.e., T 0 = ∅,

x̃0 = 0 and r0 = y. At each iteration l, OMP first selects the index of the dictionary

atom that best matches the residue rl−1 of the previous iteration via

tl = arg max
n

|〈φn, rl−1〉|. (3.1)

The support estimate is then expanded by the addition of the selected index as

T l = T l−1 ∪ {tl} . (3.2)

Following the expansion of the support, the sparse estimate is updated by the projection

of y onto the subspace defined by T l, which is obtained by solving the least-squares

problem

x̃lT = arg min
α

‖y −ΦT lα‖2. (3.3)

Next, the residue is updated as

rl = y −Φx̃l. (3.4)

The OMP algorithm repeats the steps above until the specified termination criterion is

fulfilled. After termination, x̃l yields the recovered sparse vector.

The last two steps, (3.3) and (3.4), ensure the orthogonality of the residue to the subspace

defined by the selected support estimate, which is very important since the dictionary

columns are not orthogonal to each other. Dealing with the nonorthogonality of the

dictionary, the orthogonal projection step leads to optimal selection of indices at each

iteration.

It is possible to employ a variety of termination criteria for OMP. For example, the

algorithm may be run until the residue does not decrease anymore, or ‖Φ∗rl‖∞ gets

smaller than a predefined threshold. However, in this chapter, we concentrate on the

sparsity-based and residue-based termination criteria. For this purpose, we define a com-

bined criterion that can represent both of these simultaneously. That is, the algorithm

terminates if

(l ≥ Kmax) ∨ (‖rl‖2 ≤ ε‖y‖2) (3.5)
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Algorithm 3.1 ORTHOGONAL MATCHING PURSUIT

input: Φ, y, termination criterion

initialize: T 0 = ∅, x̃0 = 0, r0 = y, l = 0

while not converged do

l = l + 1

tl = arg max
n

|〈φn, rl−1〉|

T l = T l−1 ∪ {tl}
x̃lT l = arg min

α
‖y −ΦT lα‖2

rl = y −Φx̃l

end while

return x̃l

With this definition, the sparsity-based criterion can be employed by setting Kmax = K

and ε = 0. Note that this criterion requires an a priori estimate of K, which is not

available in many practical situations. On the other hand, residue-based termination

can be imposed by choosing Kmax high enough (i.e., Kmax � K), and ε small enough

with respect to the noise level or measurement errors.

The pseudo-code of the entire OMP algorithm is given in Algorithm 3.1. The procedure

is very simple, and can be implemented with a few lines of code in MATLAB. In addition,

the empirical performance of OMP is quite competitive in practice. These two facts have

brought OMP a wide reputation as a well-acknowledged greedy sparse approximation

algorithm.

3.3 Recent Developments on the Theoretical Analysis of

OMP

Explaining the empirically competitive performance of OMP via extensive theoretical

analyses has been of interest to the CS community since the introduction of the algo-

rithm. First contributions on the theoretical analyses of OMP have concentrated either

on a coherence parameter or probabilistic analysis. [91] presents an OMP analysis based

on the coherence parameter µ = maxi,j |〈φi, φj〉|. This work states that OMP will re-

cover any K-sparse signal via Φ if µ < 1
2K−1 . An alternative to the coherence based
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analysis involves probabilistic measures. [20] states that M = O(K logN) random mea-

surements are sufficient for exact recovery of x with high probability if Φ is drawn from

a suitable random distribution. This result is further improved in [94] by showing that

a lower number of measurements is sufficient for asymptotic recovery. However, these

probabilistic analyses do not guarantee that any such fixed matrix will provide exact

recovery of all sparse instances.

Recently, Davenport and Wakin have presented a very straightforward K-step analysis

of OMP based on RIP [95]. Their work states that OMP guarantees exact recovery of

any K-sparse signal from noise-free measurements in K iterations if Φ fulfills RIP with

a restricted isometry constant (RIC) satisfying δK+1 < 1
3
√
K

. Lately, this result has

been further improved by Wang and Shim in [7] which provides a less restrictive RIP

bound for OMP. According to these RIP bounds, OMP requires M = O(K2 log(N))

measurements for exact recovery in K iterations.

As our analysis is based on extending the findings of Wang and Shim, we present their

result formally in the following theorem:

Theorem 3.1 (Exact recovery condition for OMP [7]). OMP perfectly recovers any

K-sparse signal from noise-free measurements in K iterations if the observation matrix

Φ satisfies RIP with

δK+1 <
1√

K + 1
. (3.6)

In [7], Theorem 3.1 is proven by induction. It can be shown that (3.6) guarantees the

success of the first iteration. Then, this result can be generalized to all of the following

iterations, guaranteeing exact recovery of any K-sparse signal in exactly K iterations.

Note that Theorem 3.1 represents a special case of Theorem 3.3, which is introduced

below.

Due to the intuitive improvements in the OMP recovery accuracy with more than K

iterations, theoretical analyses have also been performed for developing more general

exact recovery guarantees. Zhang has shown that OMP can exactly recover all K-

sparse signals within 30K iterations when the observation matrix satisfies RIP with

δ31K ≤ 1
3 [8]. In addition, his work also involves error bounds for recovery from noisy

observations. In [9], Foucart has reduced the number of iterations necessary for exact

recovery to 12K with a RIP condition based on δ22K ≤ 1
6 . Recently, the number of
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necessary iterations has been further reduced by Wang and Shim in [10], which derives

exact recovery guarantees within 6K OMP iterations for observation matrices satisfying

RIP with δb8.93Kc < 0.03248. According to these analyses, the number of measurements

OMP requires for exact recovery reduces to O(K log(N)) when more than K iterations

are allowed.

3.4 Theoretical Analysis of OMP

3.4.1 Preliminaries

The analyses we present in this chapter are based on a number of preliminary results.

Below, we present these preliminary results including a number of observations which

are well-known in the CS community as well as some results which we derive in this work

for our purposes. Specifically, Lemma 3.1 presents a direct consequence of RIP, while

Lemma 3.2 and Corollary 3.1 are taken from [17] and [18], respectively. Lemma 3.3

follows from Corollary 3.1 by some simple derivation, and Remark 3.1 is a direct con-

sequence of Lemma 3.3. Finally, we derive Lemma 3.4, which we will later exploit for

comparing the RIP bound of Theorem 3.1 with our result. The proofs are omitted ei-

ther when they are very trivial, or when they are already presented in the corresponding

references. In addition, note that, the results below hold when the observation matrix

Φ satisfies RIP with the given values of RIC. This dependency is omitted in the text

below for the sake of the clearness.

Lemma 3.1 (Direct Consequence of RIP). Let I ⊂ {1, 2, ..., N}. For any arbitrary

vector z ∈ R|I|

(1− δ|I|)‖z‖2 ≤ ‖Φ∗IΦIz‖2 ≤ (1 + δ|I|)‖z‖2.

Lemma 3.2 (Lemma 1 in [17]). Let I, J ⊂ {1, 2, ..., N} such that I ∩ J = ∅. For any

arbitrary vector z ∈ R|J |

‖Φ∗IΦJz‖2 ≤ δ|I|+|J |‖z‖2.

Corollary 3.1 (Corollary 3.4 in [18]). For every positive integer c and r

δcr < cδ2r.
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Lemma 3.3. For any positive integer K

δK+1 >
δ3dK2 e

3
,

where dze denotes the ceiling of z, i.e., the smallest integer greater than or equal to z.

Proof. Lemma 3.3 is a consequence of Corollary 3.1. We first replace c = 3 and r =
⌈
K
2

⌉
into (3.7). By rearranging terms, we get

δ2dK2 e >
δ3dK2 e

3
.

K + 1 ≥ 2
⌈
K
2

⌉
holds by the definition of the ceiling operator. Then, we obtain δK+1 ≥

δ2dK2 e due to the monotonicity of RIC. Hence, we can write

δK+1 ≥ δ2dK2 e

>
δ3dK2 e

3
.

This completes the proof.

Remark 3.1 (Direct consequence of Lemma 3.3). Theorem 3.1 is violated if

δ3dK2 e ≥
3√

K + 1
. (3.7)

Proof. Combining (3.7) with Lemma 3.3, we get δK+1 >
1√
K+1

. This clearly contradicts

Theorem 3.1.

Lemma 3.4. Assume K ≥ 25. There exists at least one positive integer nc < K that

satisfies
3√

K + 1
≤ 1√

K − nc + 1
. (3.8)

Moreover, such values of nc are bounded by

K > nc ≥
8K + 4

√
K − 4

9
. (3.9)

Proof. Set K − nc = sK where 0 < s < 1. Replacing s into (3.8), we get

3√
K + 1

≤ 1√
sK + 1

.
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Arranging the terms, we obtain the following bound for s:

s ≤

(√
K − 2

3
√
K

)2

.

Then, the lower bound for nc is obtained as

nc = (1− s)K

≥ 8K + 4
√
K − 4

9
. (3.10)

On the other hand, nc < K requires sK = K − nc ≥ 1. Hence, K should satisfy

K ≥ 1

s

≥

(
3
√
K√

K − 2

)2

.

Rearranging terms we get

K ≥ 5
√
K,

which is satisfied when K ≥ 25. Combining this with (3.10), we conclude that (3.8) is

satisfied if

K > nc ≥
8K + 4

√
K − 4

9

for K ≥ 25.

3.4.2 Success Condition for a Single OMPe Iteration

Having presented the necessary preliminary results, we can now move on to the analysis

of OMPe. We start with the success of a single iteration, for which the theorem below

states a sufficient condition depending on the number of correct and false indices in the

corresponding support estimate.

Theorem 3.2. Let |T l ∩ T | = nc and |T l − T | = nf after the lth iteration. Then the

iteration l + 1 will be successful, i.e., tl+1 ∈ T − T l, if Φ satisfies RIP with

δK+nf+1 <
1√

K − nc + 1
. (3.11)



Theoretical and Empirical Analyses of OMP 33

Proof. As rl is the projection error of y onto ΦT l , we have rl ⊥ ΦT l . Therefore,

〈φi, rl〉 = 0, ∀i ∈ T l. (3.12)

Then, we can write

‖Φ∗T ∪T lr
l‖22 =

∑
i∈T ∪T l

〈φi, rl〉2

=
∑

i∈T −T l

〈φi, rl〉2, (3.13)

where the righthand side of (3.13) contains only K − nc nonzero terms. Combining

(3.13), and the norm inequality, we obtain

‖Φ∗T ∪T lr
l‖∞ ≥

1√
K − nc

‖Φ∗T ∪T lr
l‖2. (3.14)

Next, rl can be written as

rl = y −ΦT l x̃lT l

= ΦT xT −ΦT l x̃lT l

= ΦT ∪T lz,

where z is a vector of length K + nf . By Lemma 3.1, we obtain

‖Φ∗T ∪T lr
l‖2 = ‖Φ∗T ∪T lΦT ∪T lz‖2

≥ (1− δK+nf
)‖z‖2. (3.15)

Replacing (3.15) into (3.14) yields

‖Φ∗T ∪T lr
l‖∞ ≥

1− δK+nf√
K − nc

‖z‖2. (3.16)

Remember that the selection rule for the index tl+1 at iteration l + 1 is defined as

tl+1 = arg max
i

∣∣∣〈φi, rl〉∣∣∣ . (3.17)
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Combining this definition with (3.16), we obtain

|〈φtl+1
, rl〉| = ‖Φ∗rl‖∞

≥ ‖Φ∗T ∪T lr
l‖∞

≥
1− δK+nf√
K − nc

‖z‖2.

Now, suppose that iteration l + 1 fails, i.e., tl+1 /∈ T ∪ T l. Then, we can write

|〈φtl+1
, rl〉| = ‖φ∗tl+1

ΦT ∪T lz‖2

≤ δK+nf+1‖z‖2.

by Lemma 3.2. Clearly, this never occurs if

1− δK+nf√
K − nc

‖z‖2 > δK+nf+1‖z‖2

or equivalently √
K − nc δK+nf+1 + δK+nf

< 1 (3.18)

Following the monotonicity of RIC, we know that δK+nf+1 ≥ δK+nf
. Hence, (3.18) is

guaranteed when √
K − nc δK+nf+1 + δK+nf+1 < 1,

which is equivalent to

δK+nf+1 <
1√

K − nc + 1
. (3.19)

Hence, tl+1 ∈ T ∪ T l when (3.19) holds. We also know that 〈φi, rl〉 = 0 for all i ∈ T l.

Therefore, a selected index cannot be selected again in the following iterations, i.e.,

tl+1 /∈ T l. Combination of tl+1 ∈ T ∪T l and tl+1 /∈ T l finally leads to tl+1 ∈ T −T l. To

conclude, given nc and nf , (3.19) guarantees that iteration l + 1 will be successful.

Theorem 3.2 and Theorem 3.1 are naturally related. Theorem 3.1 is based on the

fact that the RIP condition in (3.6) guarantees exact recovery of an iteration, provided

that all previous iterations have been successful. The dependency on the success of

all previous iterations is necessary for exact recovery in K iterations3. In contrast,

3Note that the success condition of an OMPK iteration corresponds to the case nf = 0 in (3.11).
The proof of Theorem 3.1 presented in [7] is based on this restricted condition.
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Theorem 3.2 removes the dependency of the success condition of an OMP iteration on

the success of all previous iterations in order to allow for false detections in the support

estimate. This generalizes the success condition of a single iteration to a broader extend

which can handle failures among previous iterations. However, as a trade-off, we end up

with an online guarantee that depends on the number of correct and incorrect indices

in the support estimate of a specific iteration.

3.4.3 Online Recovery Guarantees for OMPe

Online recovery guarantees for OMPe can be obtained by generalization of Theorem 3.2

to all the following iterations until the successful termination of the algorithm. That is,

the conditions in Theorem 3.2 do guarantee the success of not only a particular iteration,

but also all the following ones. This is stated in the following theorem:

Theorem 3.3. Let |T l ∩ T | = nc and |T l − T | = nf after iteration l. Then, OMPe

perfectly recovers a K-sparse signal in a total of K + nf iterations if Φ satisfies RIP

with

δK+nf+1 <
1√

K − nc + 1
. (3.20)

Proof. We prove Theorem 3.3 by induction. According to Theorem 3.2, (3.20) already

guarantees success of the iteration l+ 1. As a result of this, tl+1 ∈ T −T l, and Tl+1 will

contain nc+1 correct indices. Next, the right hand side of (3.20) increases monotonically

with the number of correct indices in the support estimate:

1√
K − nc + 1

<
1√

K − nc − 1 + 1
.

Hence, the iteration l+2 requires a less restrictive RIP condition than the iteration l+1

does. Therefore, (3.20) also guarantees the success of the iteration l + 2 in addition to

the iteration l + 1. By induction, this applies to all of the following iterations, as each

of them requires a less restrictive RIP condition. Consequently, after K − nc additional

iterations, the support estimate will contain K correct indices, i.e., T ⊂ TK+nf
, where

the number of total iterations becomes l +K − nc = K + nf . (3.20) finally guarantees

that the orthogonal projection coefficients of y onto TK+nf
yield exactly x.
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Being an extension of Theorem 3.2, Theorem 3.3 also depends on the number of correct

and incorrect indices in a particular support estimate. This allows online recovery guar-

antees which cover more than K iterations. Yet, this also prevents us from generalizing

our results as exact recovery guarantees for all K-sparse signals, since the existence of

intermediate steps with enough correct indices in addition to a small number of false

indices is hard to guarantee. We cannot provide a proof of this for the time being,

leaving it as a future work. However, we investigate the possibility of the existence of

such support estimates in the next section for some particular conditions. In addition,

we also would like to refer the reader to Section 3.5.2, where we investigate the number

of incorrect indices empirically by histograms. These histograms demonstrate that nf

is indeed bounded in practice.

Note that the equivalency of Theorem 3.1 with Theorem 3.3 when nf = nc = 0 is a

natural consequence. From a general perspective, Theorem 3.3 is a generalization of

Theorem 3.1 to cover for more than K iterations. That is, it imposes exact recovery

guarantees for OMP in K iterations if (3.20) is satisfied with nf = nc = 0. Otherwise,

it provides an online recovery condition which allows for more than K iterations.

3.4.4 On the Validity of the Online Guarantees

In order for the online recovery condition in Theorem 3.3 to be meaningful, it should also

be shown that this condition can be satisfied online at some intermediate iteration in case

the K-step recovery condition of Theorem 3.1, fails. For this purpose, we provide below

a comparison of the RIP conditions in Theorem 3.3 and Theorem 3.1. This comparison

proves that Theorem 3.3 requires a less restrictive bound on the RIC than Theorem 3.1

does when nc and nf are large and small enough, respectively.

In order to state that (3.20) implies a less restrictive condition than (3.6) at least for

some particular cases, we need to compare the corresponding bounds:

δK+1 <
1√

K + 1
←→ δK+nf+1 <

1√
K − nc + 1
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Unfortunately, the right and left-hand sides of the two constraints are related in the

same direction:

δK+nf+1 ≥ δK+1,

1√
K − nc + 1

≥ 1√
K + 1

.

Hence, it is not possible to compare these two conditions directly. Intuitively, when

nf is small, and nc is large, we expect Theorem 3.3 to be less restrictive. To illustrate,

consider nf = 1 and nc � nf . In this case, Theorem 3.3 requires an RIP condition based

on δK+2 instead of δK+1 of Theorem 3.1. That is, the two RIC’s are practically very

close to each other. However, the upper bound in (3.20) is significantly larger than the

one in (3.6) because of nc being large. Hence, (3.20) becomes practically less restrictive

in this situation.

Despite the intuitive reasoning, exact mathematical comparison of these two conditions

is tricky, since it is not easy to obtain a tight bound on
δK+nf+1

δK+1
for all nf . However,

even by employing a loose bound on
δK+nf+1

δK+1
, we can show that (3.20) becomes less

restrictive than (3.6) for some particular cases:

Theorem 3.4. Assume that K ≥ 25, 1 ≤ nf <
⌈
K
2

⌉
, and nc satisfies

K > nc ≥
8K + 4

√
K − 4

9
(3.21)

at iteration l. Then, (3.20) becomes less restrictive than (3.6) at iteration l. In such

a case, the online recovery guarantees of Theorem 3.3 might be satisfied, even though

K-step recovery cannot be guaranteed. Moreover, if Theorem 3.3 is satisfied under these

conditions, OMPe is guaranteed to provide exact recovery within 3
2K iterations.

Proof. Assume that

δK+nf+1 ≥
3√

K + 1
. (3.22)

Since nf <
⌈
K
2

⌉
, we observe that 3

⌈
K
2

⌉
≥ K + nf + 1. Following the monotonicity of

RIC, we obtain

δ3dK2 e ≥
3√

K + 1
. (3.23)

Remark 3.1 guarantees failure of (3.6) for this case4.

4This accomplies with the OMPK failure following the assumption nf ≥ 1.
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On the other hand, Lemma 3.4 leads to

3√
K + 1

≤ 1√
K − nc + 1

when (3.21) is satisfied, and K ≥ 25. Hence, there exists some δK+nf+1 where

3√
K + 1

≤ δK+nf+1 ≤
1√

K − nc + 1
.

Clearly, δK+nf+1 values in this range satisfy (3.20).

To conclude, when the parameters K, nf , and nc satisfy the assumptions, there exists

some δK+nf+1 which fulfill (3.20), though (3.6) does not hold for δK+1. Then, (3.20)

becomes less restrictive than (3.6), and the online recovery guarantees of Theorem 3.3

might still be satisfied even though K-step recovery cannot be guaranteed for this range

of parameters. In such a case, Theorem 3.3 guarantees exact recovery within 3
2K itera-

tions since nf <
⌈
K
2

⌉
and all the following iterations are guaranteed to be successful.

Theorem 3.4 states one particular case where the online guarantees of Theorem 3.3 turn

into a less restrictive condition than the K-step exact recovery guarantees. Although

we cannot yet generalize them, the presented online recovery guarantees can explain

recovery of at least some particular sparse instances by OMPe in practice. Moreover,

when the conditions of Theorem 3.4 are satisfied, exact recovery is possible within 3
2K

iterations. This number is clearly much less than the 6K iterations which are needed

for exact recovery of all K-sparse signals with OMPe.

Note that the assumptions K ≥ 25 and (3.21) in Theorem 3.4 rely on nf <
⌈
K
2

⌉
. This

upper bound is chosen specifically in order to be able to establish (3.23). In other words,

both K ≥ 25 and (3.21) actually apply for the boundary condition nf =
⌈
K
2

⌉
−1. These

conditions are necessary to prove Theorem 3.4. However, we believe that these bounds

are loose. We intuitively expect that Theorem 3.4 also holds for smaller lower bounds

on K and nc. That is, the online recovery guarantees are expected to turn into less

restrictive conditions for smaller K and nc values as well. Moreover, these bounds may

be further improved with a tighter upper bound on nf . Unfortunately, we cannot yet

prove these, since the proof requires a tighter upper bound on
δK+nf+1

δK+1
, which we are not

able to incorporate into the analysis. Nonetheless, we analyse nf for successful OMPe
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recoveries via histograms in the next section. These indicate that the bound nf <
⌈
K
2

⌉
is usually loose in practice.

3.5 Empirical Analysis

3.5.1 Phase Transitions

In this section, we compare the empirical recovery performances of OMPe and OMPK

with basis pursuit (BP) [66] and subspace pursuit (SP) [17] via phase transitions. The

simulations include three different distributions for the nonzero elements of the sparse

test vectors. The nonzero elements of the so-called Gaussian sparse signals are drawn

from the standard Gaussian distribution, while those of the uniform sparse signals are

distributed uniformly in [−1, 1]. The last ensemble involved is the constant amplitude

random sign (CARS) sparse signals (following the definition in [16]) where the nonzero

elements have unit magnitude with random signs. For OMPe, the termination parameter

is selected as ε = 10−6 and the number of maximum allowable iterations is Kmax = M .

We compute the empirical phase transitions in order to provide an extensive evaluation

over a wide range of K and M . For this purpose, let’s first define the normalized

measures λ = M
N and ρ = K

M for the number of observations and for the sparsity level,

respectively. We fix N = 250, and alter M and K to sample the {λ, ρ} space for

λ ∈ [0.1, 0.9] and ρ ∈ (0, 1]5. We randomly generate 200 sparse instances for each {λ, ρ}

tuple. Next, we draw a random Gaussian observation matrix for each test instance and

run each of the candidate recovery algorithms. Specifying the exact recovery criterion

as ‖x − x̃‖2 ≤ 10−2‖x‖2,6 where x̃ denotes the recovery of x, we count the number of

exactly recovered samples in each test. Then, we compute the phase transitions using

the methodology described in [16]. This methodology uses a generalized linear model

with logistic link to describe the exact recovery curve over ρ for each λ. Using this

model, we detect the ρ value which yields 50% exact recovery probability. The empirical

phase transition curve is finally obtained by combining the detected ρ values over the

5The λ axis is sampled with a resolution of 0.1, while the corresponding ρ values are chosen densely
around the phase transition region for a specific λ in order to obtain a fine modelling of the transition
region.

6This exact recovery condition is the same as the one in [16]. This choice has been made for the
compatibility of the computed phase transitions with [16].
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Figure 3.1: Empirical phase transitions of OMPe, OMPK , BP, and SP for the re-
covery of Gaussian, uniform, and CARS sparse signals from noise-free observations.
The entries of the observation matrices are selected as independent and identically dis-
tributed Gaussian random variables. The results are obtained over 200 trials. The axes

labels are defined as ρ = K
M and λ = M

N where N = 250.

whole λ range7. This procedure is repeated for the Gaussian, uniform, and CARS sparse

signals to reveal the effect of nonzero element distribution.

Figure 3.1 depicts the phase transition curves of OMPe, OMPK , BP, and SP for the

Gaussian, uniform, and CARS sparse signals. OMPe yields better phase transitions

than OMPK does for all distributions, as we intuitively expect. On the other hand, the

recovery performance of OMP highly depends on the coefficient distribution, while BP

is robust to it, and SP shows less variation than OMP does. At one end stands the

Gaussian sparse signals, where OMPe outperforms BP and SP. For the uniform sparse

signals, OMPe might also be considered as the optimal algorithm among the candidates

when the whole λ range is taken into account. In contradiction to these, the performance

of OMP degrades severely for the CARS ensemble, which is indeed referred to as the

most challenging case for the greedy algorithms in the literature [16, 17].

These results clearly indicate the dependency of the OMP recovery performance on the

coefficient distribution. When the nonzero values cover a wide range, such as for the

Gaussian distribution, the performance of OMP is boosted. In contrast, nonzero values

of equal magnitude constitute the most difficult recovery problem for OMP. In fact, this

7Note that, due to narrow phase transition regions [16], the region below the phase transition curve
promises exact recovery with high probability for the corresponding recovery method.
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dependency can be better explained by some basic analytical observations on ‖Φ∗T y‖∞.

Assuming that the columns of Φ are normalized, we can write the upper bound on

‖Φ∗T y‖∞ as

‖Φ∗T y‖∞ = max
t∈T
|φ∗tΦT xT |

= max
t∈T
|φ∗tΦT −txT −t + φ∗tφtxt|

≤ max
t∈T
|φ∗tΦT −txT −t|+ |φ∗tφtxt|

≤ max
t∈T

δK‖xT −t‖2 + |xt|. (3.24)

First, we consider the case where there are no restrictions on the nonzero values of x.

The Gaussian sparse signals can be seen an example of this case. For simplicity, let us

set a = ‖xT −t‖2. Clearly, 0 ≤ a ≤ ‖x‖2 in this setting. Hence, the upper bound on

‖Φ∗T y‖∞ is given by

max
0≤a≤‖x‖2

aδK +
√
‖x‖22 − a2. (3.25)

We simply take the derivative of (3.25) with respect to a, and set it equal to zero:

δK −
a√

‖x‖22 − a2
= 0. (3.26)

Then, the a value that maximizes (3.25) is found as

a =
δK‖x‖2√

1 + δ2
K

. (3.27)

Replacing this into (3.25), we obtain

δK‖xT −t‖2 + |xt| ≤
√

1 + δK
2‖x‖2. (3.28)

Consequently, the upper bound on ‖Φ∗T y‖∞ is obtained as

‖Φ∗T y‖∞ ≤
√

1 + δK
2‖x‖2 (3.29)

when there are no restrictions on the nonzero values of x. Note that this upper bound

defines the range which the values of the correlation vector at correct indices span during

the first iteration.
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Now, let’s consider the CARS case, where |xt| = 1 and ‖xT −t‖2 =
√
K − 1 for every

t ∈ T . In this case, the upper bound on ‖Φ∗T y‖∞ is given by

|Φ∗T y|∞ ≤ 1 + δK
√
K − 1. (3.30)

The upper bound in (3.30) is obviously much smaller than the one in (3.29) in practice.

(In order to compare them, fix the energy of x, i.e., replace ‖x‖2 =
√
K into (3.29).) This

constitutes no problems if Theorem 3.1 is satisfied. Consider, however, that Theorem 3.1

fails: In that case, the elements of Φ∗y at indices out of T are more likely to exceed

|Φ∗T y|∞ if x is a CARS sparse signal, since ‖Φ∗T y‖∞ is typically smaller for this kind

of signals. Hence, the probability of failure at the first iteration becomes higher for the

CARS sparse signals8. In other words, the maximum element of the correlation vector is

less likely to be in the correct support for the CARS sparse signals, i.e., the correlation

maximization step fails with higher probability. As a result of this, it is natural that the

failure rates of OMP-type algorithms increase when the range which is spanned by the

absolute values of the nonzero elements of the underlying sparse signals decreases. The

CARS signals have the smallest range of span, hence the worst performance of OMP-

type algorithms naturally appears for these signals. Note that this behaviour can be

expected in common for all algorithms which employ a similar correlation maximization

step. For example, Figure 3.1 indicates that the performance of SP, which employs a

similar correlation maximization step, also decreases for sparse signals with constant

amplitude nonzero elements.

3.5.2 Empirical Success and Failure Rates of OMPe Iterations

Theorem 3.4 is based on the assumption nf <
⌈
K
2

⌉
, which leads to the other constraints

on K and nc, i.e., K ≥ 25 and (3.21). Hence, satisfying the limit on the number of

failed iterations is critical for Theorem 3.4. On the other hand, the bound nf <
⌈
K
2

⌉
may also be loose for many practical examples, making these constraints too restrictive

in practice. Therefore, it is worth to investigate the number of failed iterations until the

termination in order to validate these constraints.

8Note that, though we skip it here, a similar analogy might be carried out to the following iterations
as well.
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Figure 3.2: Histograms of failed OMPe iterations (nf ) over 200 perfectly recovered
Gaussian sparse vectors. nf = 0 corresponds to the samples which are successfully
recovered by OMPK . OMPK perfectly recovers 119 out of 200 samples when M = 125,
N = 40 (λ = 0.5, ρ = 0.32), and 97 out of 200 samples for M = 150, N = 52 (λ = 0.6,
ρ = 0.347). OMPe recovers all samples perfectly in both cases. The number of failed

OMPe iterations do not exceed K/4 for both cases.

For this purpose, we choose two examples from the recovery simulations above, and

investigate the histograms of nf until the successful termination of OMPe. The successful

termination criterion is important here, as OMPe may run until it reaches the maximum

number of iterations (M) in case of a failure, which makes the resultant histograms

noninformative. Therefore, we consider two cases where OMPe perfectly recovers all of

the test instances, while OMPK cannot, namely M = 125, K = 40 (λ = 0.5, ρ = 0.32)

and M = 150, K = 52 (λ = 0.6, ρ = 0.347). The histograms of failed iterations are

depicted in Figure 3.2. OMPK can only recover 119 out of 200 test instances perfectly

for the first case, and 97 for the latter. For these instances, OMPe also provides perfect

recovery with no failed iterations, hence these correspond to the region nf = 0 in the

plots. On the other hand, OMPe takes a number of wrong steps before finally finding the

correct solution in the rest of the recovery problems where OMPK fails. We observe that

the number of these wrong steps is smaller than the upper bound
⌈
K
2

⌉
− 1. Actually, in

both of the tests OMPe never takes more than K/4 wrong steps. Hence, the assumption

nf <
⌈
K
2

⌉
turns out to be empirically loose at least for these two cases.
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3.6 Discussion and Future Work

In this chapter, we have discussed theoretical and empirical analyses of the OMP re-

covery from noise-free observations with the termination criterion based on the residual

power. This type of termination criterion presents a more suitable objective than set-

ting the number of iterations equal to K when the aim is finding an exact K-sparse

representation, rather than obtaining the best K-sparse approximation.

The theoretical analyses in Section 3.4 state an online recovery condition for OMPe based

on the number of correct and false indices in the support estimate of an intermediate

iteration. Though we cannot cast this condition into exact recovery guarantees for all

K-sparse signals due to the lack of a proof for the existence of such support estimates,

we still state that it may be satisfied online if nc and nf satisfy some bounds where

OMPK recovery already fails.

On the other hand, the state-of-the-art results necessitate 6K to 30K iterations for

exact recovery of all K-sparse signals with OMPe [8–10]. Although these guarantees

are valid for all K-sparse signals, the number of iterations needed for obtaining them is

mostly beyond the practical limits. In addition, the exact recovery condition that can

be guaranteed in 6K iterations necessitates RIP with δb8.93Kc, which clearly requires

that b8.93Kc ≤ M9. Hence, even if OMP would run for 6K steps, this condition still

necessitates M ≥ b8.93Kc. In many practical applications, M will be chosen less than

6K or b8.93Kc, in which case these exact recovery guarantees cannot be valid anymore.

In contrast, according to Theorem 3.4, the conditions presented in this chapter may

be imposed to provide online guarantees for recovery within possibly less than 3
2K

iterations. This number is clearly well below the number of iterations required for the

state-of-the-art exact recovery guarantees, such as [8], [9], and [10].

We have also demonstrated the recovery performance of OMPK and OMPe via sim-

ulations involving sparse signals with different nonzero coefficient distributions. The

phase transitions presented in Section 3.5.1 reveal that OMPe is capable of providing

better recovery rates than BP and SP when the nonzero elements follow the Gaussian

or uniform distributions. Finally, we have presented histograms of the number of failed

9Otherwise, it would not be possible to satisfy b8.93Kc-RIP for any δb8.93Kc.
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iterations in order to test the validity of the upper bound nf <
⌈
K
2

⌉
. These histograms

indicate that this upper bound is not only valid, but also loose in practice.

The results developed in this chapter provide a basis for the theoretical analysis of

the A?OMP algorithm in Chapter 5. Furthermore, future work may be conducted on

theoretical guarantees for the existence of support estimates satisfying the necessary

conditions in order to generalize the developed online conditions as exact recovery guar-

antees for all K-sparse signals. Moreover, these conditions may be further improved by

incorporating a tighter bound on either
δK+nf+1

δK+1
or nf as future work. To conclude, we

believe that these findings will provide a basis for improving the theoretical analyses of

OMP and its variants as part of future work in the field.



Chapter 4

A? Orthogonal Matching Pursuit:

Best-First Search for Compressed

Sensing

4.1 Introduction

Tree search techniques have been occasionally utilized in straightforward manners for

sparse signal recovery in the CS literature. For example, the tree search based orthogonal

matching pursuit (TB-OMP) [38] employs a tree search that opens the best B children

of each leaf node at each iteration. A rather flexible version of this method is the

flexible TB-OMP [39], where the branching factor B is decreased at each level in order

to reduce the tree size. Another straightforward tree search also appears for the fast

Bayesian matching pursuit [40], which iteratively opens all children of the leaf nodes, and

retains the best D among all opened nodes with respect to their posterior probabilities.

These methods, however, can be seen as trivial applications of the tree search for sparse

signal recovery purposes. The common practice shared by these methods can be simply

outlined as opening a fixed number of children of all nodes at the deepest level, pruning

these leaves, and then proceeding to the next level. Such applications of the tree search

lack a number of important features which increase the efficiency and performance of

the search, such as selection and extension of the best path on-the-fly, allowance of

paths with different lengths in the tree, and appropriate pruning schemes. As a result of

46
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such deficiencies, not only these rather unsophisticated tree search based techniques are

suboptimal, but also their application remains limited only to a few dimensional sparse

signal recovery problems due to large tree sizes appearing in practice.

The A? search [11–15] is an efficient best-first search technique which is frequently uti-

lized in problems such as path finding, graph traversal, and speech recognition. One of

the most important features of the A? search is its flexibility to allow for the existence

of paths with different lengths in the tree. Via an appropriate auxiliary cost function,

A? search makes comparison of such paths possible, allowing for iterative selection and

expansion of the best path in the tree. This property promotes A? search as an efficient

technique for utilization of the tree search in the sparse signal recovery problem.

This chapter introduces a semi-greedy sparse signal recovery algorithm based on the

A? search technique. This algorithm, called A? orthogonal matching pursuit (A?OMP),

utilizes the A? search to find the optimal solution of the sparse signal recovery problem

on a search tree where the most promising path is iteratively expanded in a way similar to

the well-known orthogonal matching pursuit (OMP) algorithm. Utilization of the best-

first search allows for the efficient evaluation of multiple paths during the search, and

hence promises improvements over the OMP-like algorithms, which can be considered

as single path search techniques.

This combination of A? search and OMP is not straightforward: It necessitates appropri-

ately defined cost models which enable the A? search to perform the stage-wise residue

minimization in an intelligent manner, in addition to the effective pruning techniques

which make the algorithm tractable in practice. We address the former by the intro-

duction of three cost models, which allow for the comparison of paths with different

lengths. These include two novel dynamic structures, which better comply with our

needs, in addition to the conventional additive one. As for the pruning capability, we

provide a number of strategies which, together with the cost model parameters, enable

a complexity-accuracy trade-off. The effectiveness of the proposed pruning techniques

in addition to the dynamic cost models is demonstrated via a number of reconstruc-

tion simulations. These simulations, including different nonzero coefficient distributions,

Gaussian and Bernoulli type random observation matrices, noise contaminated measure-

ments, and images, demonstrate that utilization of the best-first search is able to improve

the reconstruction accuracy from compressed measurements.
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To avoid some possible misunderstanding, we would like to note that the tree search in

the context of the A?OMP algorithm is completely general to all kinds of sparse signals.

That is, A?OMP is neither specific for the tree-sparse signals nor does it make use of

a tree-structured overcomplete basis as for the tree-based OMP algorithm [51]. The

algorithm is not specific for any other structured sparse signals as well. Furthermore,

A?OMP aims at finding a closer approximation to the true solution with the minimum

`0 norm, thus the objective is to improve reconstruction quality not to decrease compu-

tational complexity of finding a greedy solution, such as in the list decoding [115].

The findings of this chapter have been partially published in the Digital Signal Processing

journal [116]. A preliminary version of this work has also been presented at the 2011

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP

2011) [117].

4.1.1 Outline

This chapter is organized as follows: We first summarize the A? search technique in

Section 4.2. Section 4.3 is devoted to the discussion of the A?OMP algorithm, together

with the novel cost functions and pruning methods. In Section 4.4, we describe the

AStarOMP software, which we have developed for the purpose of fast and robust recovery

via A?OMP, and discuss the related implementation issues. We finally demonstrate the

reconstruction performance of A?OMP in comparison to the basis pursuit (BP) [66],

subspace pursuit (SP) [17], and OMP [6] algorithms in Section 4.5, before concluding

the chapter with a short summary of our findings.

4.2 A? Search

4.2.1 Fundamentals of the A? Search

A? search [11–15] is an iterative tree search technique which is based on finding the tree

path that minimizes or maximizes some evaluation function. The A? search mechanism

iteratively selects the most promising path in the tree, i.e., the one with the optimum

value of the evaluation function, and expands this path by opening some of its children.
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These steps are repeated until the chosen path fulfills some termination criterion, for

example a specific number of nodes, or a specific value of the evaluation function.

The presentation of the A? search in this section relies on some particular choices re-

garding our particular problem. One of them is the choice of the evaluation function,

which, in general, may involve minimization, maximization or any other meaningful op-

timality criterion that allows for distinguishing the best path among the others. Having

said that, we concentrate merely on the minimization problem in the rest of this section,

since our problem can be represented as a minimization over some evaluation function

based on the residue (see the next section for a detailed formulation). Furthermore, this

chapter utilizes a sparsity-based termination criterion for A?OMP, hence the discussion

below is limited to the specific selection of the A? search termination criterion as finding

an optimal path of length K, which denotes the sparsity level of the underlying signal.

That is, we discuss the case where the A? search terminates when a path of length K

turns out to be the one with minimum cost.

First, we would like to define some notation and concepts which ease the introduction

of the A? search technique. Let T i
li

= {ti1, ti2, . . . , tili} denote the set of nodes on the ith

tree path, where li denotes the number of nodes and tij is the jth node on the ith path,

sorted by the order of selection. In addition, define g(T i
li

) as the evaluation function for

the path T i
li

. Next, we introduce two definitions:

Definition 4.1 (Complete path). A path is called complete if the number of nodes

along that path is equal to the maximum number of possible nodes1.

Definition 4.2 (Partial path). A path is called partial if the number of nodes along

that path is less than the maximum number of possible nodes.

Mathematically, we are interested in finding the optimal complete path T̃K that leads

to the minimum value of the evaluation function, i.e.,

T̃K = arg min
T i
K

g(T iK). (4.1)

A? search aims at finding this optimal complete path by selection and expansion of

only one path per iteration. This process leads to a search tree which contains paths

1A path is restricted to K nodes in this chapter, hence completeness of path i translates as li = K
for now. However, this number is extended to Kmax > K in the next chapter in order to impose the
residue-based termination criterion, hence we prefer stating a general definition here.
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with different lengths. This is in fact one of the most important flexibilities of the

A? search technique. However, it also introduces a fundamental problem: Paths with

different lengths cannot be effectively compared using an evaluation function which

directly depends on the number of nodes on a path, since such an evaluation function

would unfairly favor longer paths, leading to suboptimal choices. In order to deal with

this difficulty, A? search owns a correction mechanism that utilizes an auxiliary function

to compensate for the unexplored nodes along a path.

For a path T i
li

of length li ≤ K, the auxiliary function d(T i
li

) should be defined such that

d(T iK) = 0 and

d(T ili) ≥ g(T ili)− g(T ili ∪ ZK−li), ∀ZK−li , (4.2)

where ∪ denotes concatenation of two paths, and ZK−li is a sequence of K − li nodes

whose concatenation with T i
li

results in a complete path. With this definition, the

auxiliary function d(T i
li

) is larger than or equal to the decrement in the evaluation

function g(·) that any complete extension of the path T i
li

could yield.

Now, we define the cost function as

f(T ili) = g(T ili)− d(T ili). (4.3)

Let us consider a complete path T 1
K and a partial path T 2

l2 of length l2 < K. Combining

(4.2) and (4.3),

g(T 1
K) ≤ g(T 2

l2 ∪ ZK−l2), ∀ZK−l2 (4.4)

is guaranteed if

f(T 1
K) ≤ f(T 2

l2). (4.5)

That is, (4.5) is sufficient to assure that T 1
K has a lower cost than all of the possible

complete extensions of T 2
l2 . Therefore, selection of the most promising path can be ac-

complished by minimizing the cost function f(T i
li

), once the auxiliary function is defined

appropriately to satisfy (4.2).

We can now outline the A? search as follows: We start with an initial tree which consists

of all possible paths with single nodes. At any iteration of the search, the tree path with

the minimum cost is chosen for expansion. All children of this path are explored by

adding the corresponding leaf nodes to the tree. This selection and expansion process is
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iterated until the chosen path turns out to be complete2. This path is returned as the

final decision.

Before concluding this section, we would like to point out two important issues. First,

satisfying (4.2) may be either impossible or unpractical. In that case, the algorithm

should employ suboptimal cost models. This issue is discussed further in Section 4.3.4

in relation to the different A?OMP cost models. In addition, exploring all children of the

most promising path at each iteration may also be intractable in practice. Therefore,

we modify A? search in Section 4.3.3 by introducing pruning techniques such as limiting

the number of explored paths per iteration and limiting the total number of paths in

the tree.

4.2.2 Different Auxiliary Function Structures

The auxiliary function plays an important role in the performance of the A? search

algorithm, since an unappropriate choice would lead to selection of suboptimal paths,

and possibly to failure of the search. In a minimization problem, a reasonable selection

methodology for the auxiliary function is to mimic the decay of the cost function over the

unexplored nodes. For this purpose, we find it beneficial to consider different structures

for the auxiliary function, which exploit different properties of the decay in the cost of

a path.

The typical choice for the auxiliary function, which has been introduced above, employs

an additive structure following [13]. Based on this structure, it is possible to define

auxiliary functions with different forms. In Section 4.3.4, we derive two different cost

models starting from this structure. For the first one, which we call additive cost model,

we assume that each node is expected to decrease the cost by a constant value, i.e., the

auxiliary function becomes equal to a constant times the number of unexplored nodes in

the path. Second, we introduce an adaptive cost model, where the expected decrease in

the cost is determined adaptively with respect to the decrease that has occurred during

the addition of the previous node to the path. The simulation results given in Section 4.5

state that this adaptive model improves the performance of the A? search in the sparse

signal recovery problem.

2As before, the discussion is restricted to the sparsity-based termination assumption. Any other
termination criterion is obviously possible, such as the residue-based criterion of the next chapter.



A? Orthogonal Matching Pursuit 52

Addition is only one of the possible structures for the auxiliary function. The auxiliary

function may also be selected in other forms depending on the structure of the underlying

problem. Below, we propose a second structure which employs a multiplicative auxiliary

function model. The resultant form, which is based on the assumption that each node

reduces the cost by some constant rate 0 < α < 1, is called the multiplicative cost model:

fMul(T ili) = αK−l
i
g(T ili). (4.6)

These two structures will form the basis for the introduction of the A?OMP cost models

in Section 4.3.4. As details of these structures make much sense in the context of

A?OMP, the related discussion will be extended in Section 4.3.4, in combination with

the path selection mechanism of A?OMP.

4.3 Sparse Signal Reconstruction using A? Search

The A?OMP algorithm casts the sparse signal recovery problem as a tree search for the

correct support of the K-sparse x among a number of dynamically evolving candidate

subsets. These candidate subsets are stored as paths from the root node to leaf nodes of

the search tree, where each node represents an index in the support of x, or equivalently

a column of the dictionary Φ. The search tree is built up and evaluated iteratively

by the A? search. The search starts with candidate subsets of single elements. At each

iteration, the tree is expanded by appending new dictionary atoms to the most promising

path, which is selected to minimize a cost function based on the residue. In this way,

A?OMP performs a multi-path search for the best one among all possible K-element

subsets of Φ. Though the A?OMP search tree actually restricts the search to a set of

iteratively generated candidate subsets, it is general with the capability of representing

all possible K-element subsets of Φ. Figure 4.1 illustrates evaluation of a sample search

tree.

Incorporation of a multi-path search strategy is motivated by the expectation that it

would improve the reconstruction accuracy especially where a single-path algorithm

such as OMP fails because of the linear dependency of the dictionary atoms. In cases

where the search over a single path yields a wrong representation, the correct one will

mostly be in the set of closely related candidate representations. This issue is discussed
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Figure 4.1: Evaluation of the search tree during A?OMP algorithm. The search is
started with a single initial path. Two children of the best path is opened per iteration.

theoretically in the next chapter, where we state an RIP condition to guarantee that

at least one of the nodes explored at an iteration is among the correct support of x.

This condition turns out to be less restrictive than the RIP condition for the success

of OMP, which can be seen as a search where only a single node is explored. By a

properly configured multi-path search, i.e., by proper selection of the cost model and

pruning parameters as discussed below, correct paths can be distinguished from the

other candidates. In such a case, the proposed multi-path strategy increases the recovery

performance especially when too few measurements are provided.

Below, we first define the notation we use for the rest of this chapter. Then, we describe

utilization of the tree search for A?OMP in three main steps: Initialization of the search

tree, selection of the most promising, or the best, path, and expansion of the selected

partial path. Next, we state a complete definition of A?OMP before discussing the

complexity-accuracy trade-off via the provided search parameters.

4.3.1 Notation

We denote the K-sparse signal of interest by x ∈ RN . M represents the number of

observations. φi ∈ RM is the ith column of the dictionary, i.e., Φ = [φ1 φ2 ... φN ].

The observation vector is referred to as y ∈ RM , where y = Φx. We represent the tree

paths by T i
li

= {t1, t2, . . . , tli}, as defined in Section 4.2.1. Note that T i
li

also denotes the

support estimate of the corresponding path. ri is the residue of path i, and x̂i is the
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estimate of x by the ith path. The best path at a certain time is referred to as b. Let

ΦJ denote the matrix of the columns of Φ indexed by J , and xJ denote the vector of

the elements of x indexed by J . Finally, S refers to the set of all paths in the search

tree.

4.3.2 Initialization of the Search Tree

For an N -dimensional signal, A? search originally initializes the search tree by N paths

with length one. This is unpractical in most cases since N is usually large. In fact, only

K � N dictionary atoms are relevant to y. Moreover, each iteration expands the tree

with multiple children of the selected partial path, which introduces repetitions among

the candidate paths. Hence, the search might be started with less paths than N to

address the tractability issues. As a consequence, we limit the initial search tree to the

I � K subsets, each of which contains one of the I atoms having the highest absolute

inner product with y. Note that another possibility would be selecting a dynamic range

of atoms whose absolute inner products with y are greater than a certain threshold.

4.3.3 Expansion of the Selected Partial Path

In the typical A? search, all children of the most promising partial path are added to the

search tree at each iteration. In practice, this results in too many search paths because of

the high number of possible children: To illustrate, let the length of the selected partial

path be l. The leaf node of this path has N − l ≈ N children since l < K � N . Hence,

each iteration considers approximately N new paths. Consequently, given K � N ,

the upper bound on the number of paths involved overall in the search is obtained as

I ×NK−1. Since a search tree with that many nodes is not tractable, we employ three

pruning strategies in order to limit the tree size:

4.3.3.1 Extensions per Path Pruning

For our purposes, the specific ordering of nodes along a path is unimportant. At each

step, we require only to add one of the K correct atoms to the representation, and

not a specific one of them. In addition, most of the dictionary atoms are irrelevant

to y since we typically have K � N . Moreover, the tree search visits repetitions of
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the candidate paths at different branches by its nature. Combining all these reasons,

expanding only a few children of the selected partial path becomes a reasonable sacrifice.

At each A?OMP iteration, we expand the search tree only by the B children which have

the highest absolute inner product with the residue of the selected path. This strategy

is similar to the branching factor of the TB-OMP. Note that another reasonable choice

would be considering only the children whose absolute inner products with the residue

are higher than a threshold.

Extensions per path pruning decreases the upper bound on the number of paths from I×

NK−1 to I×BK−1. Practically, I and B are chosen much smaller than N . Consequently,

the number of paths explored throughout the search decrease drastically. Finally, we

would like to note that I × BK−1 is only a very loose upper bound. The number of

explored paths turns out to be much smaller than this bound in practice, as demonstrated

by the recovery simulations below.

4.3.3.2 Tree Size Pruning

Even though the number of extensions per path is limited to B, addition of new paths

at each iteration still increases the memory requirements, as the corresponding residues

should also be stored. To reduce the memory requirements, we adopt a strategy similar

to the “beam search”, and limit the maximum number of paths in the tree by the beam

width P . When this limit is exceeded, the worst paths, i.e., the ones with maximum

cost, are removed from the tree until P paths remain.

Figure 4.2 illustrates the extensions per path pruning and the tree size pruning rules

where P = 4 and B = 3. Figure 4.2a depicts a search tree with four paths at the

beginning of an iteration. The cost of each path is indicated as Ci. The path 4, which

has the minimum cost, is selected as the best path. Let the best B children of the

path 4 be the nodes 2, 8, and 9, ordered with descending correlation to the residue. In

Figure 4.2b, the best child 2 is directly appended to the path 4. Note that appending

the best child to the chosen path is safe since this does not increase the number of paths

in the tree. Figure 4.2c depicts addition of the second child 8, after which there appear

five paths on the tree. As the tree size is limited to P = 4, the path 2, which has the

maximum cost, is removed by the tree size pruning rule. Finally, we consider the node

9 in Figure 4.2d for exploration. Observe that the resultant path has higher cost than
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Figure 4.2: Evaluation of the search tree during a single iteration of the A?OMP
algorithm

the other four paths in the tree. In this case, the tree size pruning rule does not allow

addition of this path to the search tree.
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Figure 4.3: Path Equivalency: The paths 1 and 2 are equivalent as the first three
nodes of the path 1 contain only the nodes in the path 2. The path 3 is not equivalent
to the path 1 as the node 5 is not an element of the first three nodes of the path 1.
Orthogonal projection ensures the path 2 to select node 5 as the next one, while there

is no guarantee that the path 3 will select the node 7 next.

4.3.3.3 Equivalent Path Pruning

Avoiding insertion of equivalent paths to the search tree is also important for improving

the search performance. For this purpose, we define the following path equivalency

notion which covers not only the permutations of nodes along a path, but also paths

with different lengths:

Definition 4.3 (Equivalent path). Let T 1
l1 and T 2

l2 be two paths with l1 ≥ l2. Let us

define T 1,p
l2

as the partial path that consists of the first l2 nodes in T 1
l1 , i.e., T 1,p

l2
=

t11, t
1
2, . . . , t

1
l2 . T 1

l1 and T 2
l2 are equivalent if and only if T 1,p

l2
and T 2

l2 share the same set of

indices. In this case, orthogonality of the residue to the selected support ensures that

T 1,p
l2

and T 2
l2 represent exactly the same path. Consequently, insertion of T 2

l2 into the

tree is unnecessary, as T 1,p
l2

has already been expanded by one of the previous iterations.

Figure 4.3 illustrates the path equivalency. The path 2 and the first three nodes of path

1 share the same set of indices, which makes the paths 1 and 2 equivalent. Orthogonal

projection ensures that the node 5 will be among the best children of the path 2. On

the contrary, the paths 1 and 3 are not equivalent as the first three nodes of the path 1

and the path 3 do not share the same set of nodes. There exists no guarantee that node

7 will be among the best children of the path 3.

Let us now summarize the extension of a selected partial path T b with these three

pruning rules: First, the best B children of T b are chosen as the dictionary atoms having

highest magnitude inner product with the residue. Next, we obtain B new candidate

paths, each of which is formed by appending one of these B children to T b. We apply

the equivalent path pruning rule by eliminating the candidates which are equivalent to

the already explored paths in the tree. For each of the remaining candidate paths, we

first compute the residue via the orthogonal projection of y onto the subspace obtained
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by extension of T b with the new index, and then the cost as discussed below. Then, we

remove T b from the tree, and add the candidate paths to the tree. Finally, we prune

the tree if the number of paths exceeds P .

4.3.4 Selection of the Most Promising Path

In the sparse signal recovery problem, a natural criterion for choosing the most promising

path is the minimum residual error. Consequently, the evaluation function for the path

T il can be written as

g(T ili) =
∥∥ri∥∥

2
=
∥∥y −Φx̂i

∥∥
2
. (4.7)

where x̂i is obtained as orthogonal projection coefficients of the residue onto the subspace

defined by the set T i
li

.

As discussed in Section 4.2, A? search employs an auxiliary function to compensate

for the different path lengths appearing in the search tree. Definition of the auxiliary

function is important for the simultaneous comparison of the multiple paths in the search

tree. By proper evaluation of these paths, though any single one of them is limited to the

RIP condition of OMP algorithm alone, A?OMP can relax the required RIP condition

for exact recovery, increasing the probability of finding a final path that is not altered

by the linear dependency of the atoms in the dictionary.

Ideally, the auxiliary function should mimic the decay of the residue along a path. In

addition, it should also satisfy (4.2) to guarantee the optimality of the most promising

path selection. Unfortunately, both of these are not practical. The former is impossible

since the decay in the residue cannot be predicted precisely. On the other hand, and

more vitally, the latter is not tractable for most cases, since it necessitates too many

paths to be explored during the search unless some very specific assumptions are made

on the nonzero elements of x. Therefore, we need some reasonable assumptions in order

to obtain cost models which lead to high recovery rates. Below, we suggest three different

cost models which exploit different assumptions about the residue.



A? Orthogonal Matching Pursuit 59

4.3.4.1 The Additive Cost Model

The additive cost model assumes that the K columns of Φ corresponding to the nonzero

indices of x make on the average equal contributions to ‖y‖2. That is, we assume that

the average contribution of a dictionary atom is δe =
‖y‖2
K . Then, the unopened K − l

nodes for the path T il are expected to reduce ‖ri‖2 by (K − l)δe. Combining this with

(4.2), the additive auxiliary function should satisfy

dAdd(T ili) ≥ (K − li)
‖y‖2
K

. (4.8)

Consequently, we define the additive auxiliary function as

dAdd(T ili) = β(K − li)
‖y‖2
K

, (4.9)

where β is a constant greater than 1. Finally, we obtain the additive cost function as

fAdd(T ili) = ‖ri‖2 − β
(K − li)

K
‖y‖2 . (4.10)

Here, β acts as a regularization constant. If it is large, shorter paths are favored,

making the search explore more candidates. When it becomes smaller, the search prefers

longer paths. Note that favoring shorter paths increases the number of paths opened

throughout the search, which improves the recovery accuracy at the expense of increased

complexity. Hence, β should be chosen to balance the available computational power or

time restrictions and the recovery performance.

Note that δe =
‖y‖2
K may not hold for each particular path. However, we observe that

(4.8) requires this assumption only on the average in order to satisfy (4.2). Observe that

the auxiliary function is mostly computed over a group of unexplored nodes instead of a

single node. In such a case, it is practically sufficient when this group of unopened nodes

make equal contributions on the average. Moreover, we intuitively expect the search

to first select larger nonzero elements of x. Hence, vectors with smaller magnitude

coefficients are generally left to the deeper levels of the search tree, where satisfying

(4.2) becomes more critical. Since such vectors have smaller contributions to ‖y‖2, the

additive auxiliary function satisfies (4.2) with higher probabilities at this more critical

stages of the tree.
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4.3.4.2 The Adaptive Cost Model

The auxiliary function can also be chosen dynamically by modifying the expectation on

the average contribution of an unopened node on-the-fly as

δe =
∥∥rili−1

∥∥
2
−
∥∥rili∥∥2

, (4.11)

where ril denotes the residue obtained after the first l nodes of the ith path. As for the

additive case, we incorporate β > 1 to obtain the adaptive auxiliary function as

dAdap(T ili) = β(
∥∥rili−1

∥∥
2
−
∥∥rili∥∥2

)(K − li). (4.12)

The adaptive cost function can then be written as follows:

fAdap(T ili) =
∥∥rili∥∥2

− β(
∥∥rili−1

∥∥
2
−
∥∥rili∥∥2

)(K − li), (4.13)

where the role of the regularization constant β is very similar to the additive case.

Empirical justification of the adaptive cost model is very similar to the additive case.

As above, the decrement of the residual norm in (4.11) may not be satisfied for each

particular node. However, the adaptive cost model mostly necessitates that the adaptive

auxiliary function in (4.12) satisfies (4.2) on the average over a group of unexplored

nodes. Hence, as for the additive case, it is practically sufficient when the adaptive

auxiliary model is valid on the average.

4.3.4.3 The Multiplicative Cost Model

As defined in Section 4.2.2, the multiplicative cost model employs a weighting function

which depends on the assumption that each node reduces the cost by a constant ratio,

α. For our purposes, the multiplicative cost function is defined as

fMul(T ili) = αK−l
i ∥∥ri∥∥

2
. (4.14)

where α should be chosen between 0 and 1. The role of α is very close to that of β for

the additive structure. When α is close to 0, short paths are assigned very small costs,
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making the search to prefer them. On the contrary, if we choose α close to 1, weighting

is hardly effective on the cost function, hence longer paths will be favored.

Similar to the additive structures above, the multiplicative cost model also needs to

be valid only on the average. That is, a particular node may violate the underlying

assumption, but it is empirically enough if a group of unexplored nodes satisfy it, which

is more likely to occur. In addition, since the A? search is configured to select first the

vectors with higher contributions to y, the residue is expected to decrease slower among

the deeper levels of the search tree, which are better covered by the multiplicative model.

In contrast to the additive one, the adaptive and multiplicative cost models adjust the

expected decay in ri dynamically throughout the search. These dynamic structures

are expected to provide a better modeling of the decay in ‖ri‖, and hence improve the

recovery accuracy. The simulation results in Section 4.5 indicate that they indeed yield

higher recovery rates than the additive model.

4.3.5 A? Orthogonal Matching Pursuit

Having discussed the fundamental stages of the A?OMP algorithm, we can now com-

plete the discussion by defining the termination criterion. In this chapter, we employ a

sparsity-based termination criterion, which stops the search when the best path is com-

plete. We will extend this criterion in the next chapter in order to get a more powerful

A?OMP version.

We can now outline A?OMP: I out of the P paths, which are kept in a stack, are

initialized as the I vectors which have the highest absolute inner product with y, and

the remaining P − I paths are left empty. The cost for the empty paths is ‖y‖2, hence

they will be removed first. In each iteration, first, we select the path with minimum

cost. We, then, expand the best B children of the selected path applying the pruning

rules discussed in Section 4.3.3. The search continues to select and expand the best path

iteratively until the selected path has length K.

The pseudo-code for the algorithm is given in Algorithm 4.1. Note that, for generality

purposes, the termination criterion is specified as (lb ≥ Kmax) ∨ (‖rb‖2 ≤ ε‖y‖2). The

sparsity-based criterion is imposed by setting Kmax = K, and ε = 0, while this structure

also allows for other termination criteria via appropriate selection of these parameters.
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Algorithm 4.1 A? ORTHOGONAL MATCHING PURSUIT

define: P , I, B, ε, Kmax, f(·), (α or β)

input: Φ, y

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

initialize:

T i = ∅, ri = y, ∀i = 1, 2, . . . , P . empty paths

∆T = arg max
J ,|J |=I

∑
j∈J |〈φj ,y〉|

for i← 1 to I do . I paths of length 1

n = ith index in ∆T
T i = {n}
ri = y − 〈y, φn〉φn

end for

b = 1 . initial best path

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

iterate:

while (lb < Kmax) & (‖rb‖2 > ε‖y‖2) do

∆T = arg max
J ,|J |=B

∑
j∈J |〈φj , rb〉| . child nodes to be explored

T̃ = T b . store best path

w = b . first replace the best node

for i← 1 to B do

n = ith index in ∆T
T̂ = T̃ ∪ {n} . candidate path

z = arg min
ẑ
‖y −ΦT̂ ẑ‖2 . orthogonal projection

r̂ = y −ΦT̂ z . update residue

if (f(T̂ ) < f(T w) & . tree size pruning

(T̂ /∈ S) then . equivalent path pruning

T w = T̂ , rw = r̂

end if

w = arg max
i∈1,2,...,P

f(T i) . replace worst path

end for

b = arg min
i∈1,2,...,P

f(T i) . best path

end while

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

return T b
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4.3.6 Complexity vs. Accuracy

The complexity of A?OMP approach mainly arises from two time consuming operations:

The inner product checks between the residue and the dictionary atoms, which necessi-

tates both calculation and sorting of the inner products, and the orthogonal projection

of the residue onto the subspace defined by the selected support set. The number of

inner product checks is directly equal to the number of iterations. The orthogonal pro-

jection, on the other hand, is necessary for each path, except the I initial paths and

the paths which are pruned by the equivalent path pruning. Let ni and neq denote the

number of iterations and the number of detected equivalent paths, respectively. Then,

the number of orthogonal projections computed becomes B(ni−1)−neq. Consequently,

the important factors that govern the complexity of A?OMP are, first, the number of

iterations and, second, the number of equivalent paths detected. However, it is not pos-

sible to find some reasonable approximations of these. The only approximation to the

number of paths is the upper bound which trivially assumes that every possible node

on the tree is explored. Such an upper bound is obviously far away from being realistic.

In order to provide an insight to this issue, we investigate ni and neq experimentally in

Section 4.5.1.1.

On the other hand, the pruning strategies introduced in Section 4.3.3 can be seen as a

trade-off between the accuracy and complexity of A?OMP. If we set I = N , B = N , and

P =∞, the algorithm will perform an exhaustive search, which is prohibitively complex.

On the other hand, setting I = 1 and B = 1 yields the simple OMP algorithm. A choice

between the accuracy and complexity of the search can be made by adjusting the pruning

parameters in between the two ends. The accuracy is expected to increase with these

parameters, as demonstrated in Section 4.5.1.3. In practice, these parameters, of course,

may not be increased after some point because of tractability issues. In addition, with

respect to the results in Section 4.5.1.3, it is also questionable whether any further

performance improvement can be achieved after some point.

The cost model is also extremely important in the complexity-accuracy trade-off. An

appropriate modeling of the decay in the residue improves the ability to predict the

branches on which the solution lies. Therefore, the auxiliary function is important for

both choosing the best path and pruning. With an appropriate choice, the trade-off

between the complexity and accuracy is boosted in the favor of accuracy, such as for the
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dynamic cost functions which improve the reconstruction ability (see the first example

in Section 4.5).

In addition, the auxiliary function parameters α and β also affect the complexity-

accuracy trade-off. Choosing β � 1 or 0 < α � 1 makes the search favor shorter

paths, leading to improvements in the recovery accuracy with longer search times. On

the contrary, when β and α are close to 1, the algorithm performs similar to OMP. These

improvements are, of course, also expected to have some limits, for example, decreasing

α does not improve the performance after some point, as demonstrated in Section 4.5.1.3.

In order to get the best out of the search parameters, they should better be considered

together. For example, reducing α increases the number of paths explored throughout

the search. Consequently, a lower α value should be accompanied by an increment in

the beam width P in order to improve the recovery accuracy. This also holds when β

or B are increased, which similarly increase the number of paths involved in the search.

The results of the recovery simulations in Section 4.5.1.3 further illustrate this issue.

4.4 AStarOMP Software for Fast Recovery with A? Search

In order to provide means for fast and robust sparse signal recovery with the A?OMP

algorithm, we have developed the AStarOMP software package 3 [118]. The AStarOMP

software is designed for efficient handling of the implementation-related problems of

the A?OMP algorithm, such as the storage and management of the search tree, the

computation of the orthogonal projection, etc. AStarOMP incorporates a trie4 structure

to implement the A? search tree in an efficient way. This trie structure allows for

compact storage of the search tree in addition to efficient handling of tree operations

such as addition of nodes and equivalent path detection, as discussed below. On the

other hand, the orthogonal projection is performed using the QR factorization technique.

In addition, the code for AStarOMP is developed in a flexible manner so that the

corresponding A? search implementation is easily portable to other similar subset search

3The AStarOMP software package, the code, documentation, and the related MATLAB implemen-
tation are available at http://myweb.sabanciuniv.edu/karahanoglu/research/.

4A trie, or a prefix tree is defined as an ordered tree structure that is used to store a dynamic set in
computer science.

http://myweb.sabanciuniv.edu/karahanoglu/research/
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problems. Below, we discuss these issues, while the reader is referred to the AStarOMP

documentation for further implementation details.

4.4.1 Trie Structure in AStarOMP

The AStarOMP software incorporates a trie structure which implements the A? search

tree in an efficient way. The trie structure of AStarOMP provides an efficient storage of

the A? search tree where the nodes of each path are sorted with respect to decreasing

priorities. Before the A? search starts, the priorities are calculated for each dictionary

atom with respect to its similarity with the observation. The atoms which have higher

absolute inner product to the observation get higher priorities. This priority order based

on the correlation with the observation promises a number of important advantages.

First, it reduces the tree size and the storage requirements by exploiting common nodes

between paths. Second, it not only speeds up both the equivalent path detection and new

path addition processes, but also allows for combination of them as a single operation.

By the nature of the tree search, there exists a high number of common nodes between

the paths in the search tree. This, however, does not necessarily translate into the

efficiency of the tree representation, as the ordering of these nodes is also important to

reduce the tree size. In fact, the common nodes should appear at the same levels of

different paths in order to reduce the storage needs. By the proposed priority-based

ordering, AStarOMP aims at exploiting the common nodes as much as possible. As a

consequence of this ordering, any specific set of nodes should appear in the same priority

order, which is independent from the order of selection. Moreover, we intuitively expect

that the atoms which are highly correlated to the residue are subject to be selected by

more paths during the search. By the proposed priority ordering, such atoms are placed

at lower levels of the trie. Combining these two advantages, the proposed priority-based

ordering increases the number of shared nodes. This decreases the tree size, and hence

the storage requirements.

Another advantage of using the proposed ordered structure is the ease of checking for

equivalent paths. Without this ordering, the complexity of checking for equivalent paths

would be very high since the nodes are free to appear at any level along any path.

However, when the nodes in each path are sorted in the predefined order of decreasing

priority, we can easily identify the location where a candidate node may exist in the trie
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by traversing that particular path from leaf to the root. That is, for each path extension,

we can easily identify the potential parent of the prospective node, and consequently,

the level at which this prospective node should lie if an equivalent path is to exist in

the tree. To illustrate, let’s assume that we would like to add the node n to the path

T . In addition, let T̃ represent the prospective path which this insertion would lead to.

Via traversal of T from its leaf node towards the root, we can easily find the potential

parent node of n. We observe that the potential parent node of n, call it node pn, breaks

the path T into two subpaths: Let T s,1 be the part of T consisting of the node pn and

its ancestors, and T s,2 be the part of T below the node pn, i.e., the set of all of the

descendants of pn on the path T . Similarly, define T̃ s,1 as the part of T̃ consisting of

the node pn and its ancestors, and T̃ s,2 be the part of path T̃ below the node pn. By

this definition, T s,1 and T̃ s,1 share the same set of nodes, that is they are equivalent.

Therefore, existence of T̃ s,1 in the tree is obvious, and need not be checked. On the other

hand, T̃ s,2 is obtained as the ordered concatenation of n and T s,2. Consequently, if an

equivalent of the prospective path T̃ is to exist in the tree, T̃ s,2 should already be below

the node pn. Moreover, the specific ordering of the nodes along T̃ s,2 is already known as

a by-product of the traversal of T from the leaf node to the node pn during the search

for the parent node. Hence, the equivalent path detection is significantly simplified as a

result of the priority-based ordering provided by the trie structure: To detect equivalent

paths, we only need to check the existence of the ordered subpath T̃ s,2 under the node

pn, whose location can be easily obtained. Note that both finding pn and checking for

the existence of T̃ s,2 can be performed in linear time with the priority-based ordering.

Otherwise, the detection of equivalent paths would require checking the equivalency of

all tree paths to the prospective path, which is prohibitively complex. Equivalent path

detections with and without the priority based ordering are compared in Figure 4.4.

Finally, the priority-based ordering provides another similar advantage for the addition

of new paths to the tree. Observe that addition of the new path T̃ is quite similar to

the equivalent path detection for the same path: In fact, extension by the new node n

is equivalent to the addition of the subpath T̃ s,2 under the node pn. Therefore, all the

advantages listed above for the equivalent path detection are also valid for the addition

of new paths. Moreover, the nature of the search provides another more significant

advantage: Observe that the equivalent path detection should already be performed

prior to each addition operation, since new extensions are only added to the tree if there
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Figure 4.4: Comparison of equivalent path detection with tree (left) and trie (right)
structures. b denotes the best path on both structures. Assume we expand b with node
3. The corresponding equivalent paths are marked by * signs on both sides. On the
left side, where no ordering is involved, the equivalent path appears on an arbitrary
branch, and equivalent path detection requires a complex check over all paths in the
tree. In contrast, the trie structure on the right side employs priority based ordering.
For simplicity, we assume that the priority of each node is equivalent to its label, smaller
labels appearing before the larger ones. As a result of this ordering, the equivalent path
appears at a specific location. Observe that we can identify the potential parent of the
new node 3 as the node 2. Then, we observe that nodes 3 and 4 exist as a subpath
under the parent node 2, and simply detect the equivalent path. In addition, if the
equivalent path would not exist, we would just identify the location of the new node 3
after the equivalent path check, and place it exactly at the location of the equivalent

path.

exists no equivalent paths in the tree. Following the similarity of the path addition

and the equivalent path detection, it is trivial to combine the two processes. That is,

the equivalent path detection may be performed as a by-product of the path addition

without any extra cost. Exploiting this fact, AStarOMP traverses a tree path only once

per each addition operation. During this traversal, the subpath T̃ s,2 and the parent node

pn are found. Then, it searches node by node for the existence of the ordered subpath

T̃ s,2 under pn. If one of the nodes is not found in the specific order, then we conclude

that there are no paths equivalent to the new one in the tree, and add this specific node

with all of its children along T̃ s,2 to the tree. Otherwise, if all nodes in T̃ s,2 are found,

then there exists an equivalent path in the tree, and no addition operation is performed.
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4.4.2 Computation of the Orthogonal Projection in AStarOMP

As for solving the orthogonal projection, a number of least squares solvers can be em-

ployed. One of these alternatives is using the pseudo-inverse of the matrix which is

composed of the selected columns from the dictionary. This method requires no addi-

tional storage per path except the residue, however is very slow due to the computation

of the pseudo-inverse at each extension. Among other faster alternatives, we may count

the Cholesky decomposition and the QR factorization. Among these two, the Cholesky

decomposition is usually deemed for being slower than the QR factorization method,

while it also requires less amount of storage. The QR factorization, on the other hand,

is one of the fastest means for solving such least squares problems. Hence, AStarOMP

utilizes the QR factorization method to solve the least squares problem for comput-

ing the orthogonal projection of the residue onto the subspace defined by the selected

support estimate at each expansion.

With the QR factorization method, it is possible to obtain the projection residue without

explicitly solving for the projection coefficients, which are not necessary for our purposes

at intermediate iterations. We only need to solve for the Q and R matrices, with which

the residue might be obtained. Hence, AStarOMP computes the projection coefficients

only once to obtain the final estimate after the termination of the search. Moreover, in

our case, the projection problem is incremental, that is, at each expansion, a new vector

needs to be added to the projection basis. In this case, the QR factorization technique is

extremely efficient since the Q and R matrices may be stored for further use. To exploit

this advantage, each candidate path in the AStarOMP search tree stores a structure

called the “side information”, which contains the related QR factorization data and the

residue. When a path is to be expanded, this side information structure is extended by

the selected basis vector, and stored for the new path.

Note that, not all paths in the tree, but only the P best ones should hold this side

information, since the other ones have in fact been pruned, and will not be expanded.

AStarOMP does not actually remove these pruned paths from the trie, but marks them

as pruned. This is necessary to prevent the search from opening any paths equivalent

to the pruned ones in the later stages. On the other hand, the leafs of the P candidate

paths are kept in a separate list which is sorted by the cost of these paths. The side

information structures are also kept in this list. This allows AStarOMP to store only
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P side information structures. In addition, selection of the best and worst paths do not

necessitate any additional sorting operation, since the list is already sorted. Finally,

keeping a fixed number of side information structures is advantageous since this limits

the storage requirements. The AStarOMP software has been implemented efficiently

to allocate these side information structures just before the start of the search. The

allocated side information structures are then dynamically assigned to the paths in the

search stack. Hence, no additional memory allocation operation is necessary during the

search.

As part of future work, the AStarOMP software package can be extended with the

Cholesky decomposition, providing the user the possibility of choosing the appropriate

approach depending on the problem size. The Cholesky decomposition might be useful

especially when the recovery problem at hand is large, since it requires less memory than

the QR factorization method.

4.4.3 Reusability of the Developed Code

As for the reusability of the developed code, AStarOMP has been implemented as a

library consisting of two main components. One of these components consists of the

A? search implementation, which is independent from any specific structures related

to the sparse signal recovery problem. This structure allows for further reusability of

the developed A? search implementation for other similar search problems, such as the

subset search, as well. On the other hand, the problem specific path expansion and

evaluation routines are collected in another class which is derived from a base OMP

implementation. This separate class allows for easy implementation of any OMP-like

greedy algorithm. These two components interact through an interface class, which

allows for importing any similar search problem by simple modification of its function

calls. Hence, the code can be easily ported for any similar search problem without

modifying the actual A? search implementation.

As a result of this structure, both the A? search and OMP routines are available as

separate packages which can easily be ported into any other similar problems. There-

fore, the developed software provides means for not only the solution of other similar

search problems by the modified A? search implementation provided but also efficient

implementation of other OMP-like greedy sparse signal recovery approaches.
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4.5 Empirical Analyses

In this section, we demonstrate sparse signal recovery via A?OMP in two different prob-

lems in comparison to the BP, SP, and OMP algorithms. The first of these problems

is the recovery of synthetically generated 1D signals with different nonzero coefficient

distributions from noise-free and noisy measurements. With this simulation set, the

recovery performance of A?OMP is investigated thoroughly with respect to the sparsity

level, the observation length, and the observation matrix type in addition to the demon-

stration of the complexity-accuracy trade-off via modification of the search parameters.

The second problem, which involves recovery of sparse images, serves for the purpose of

testing the proposed approach with realistic sparse coefficients.

As the A?OMP algorithm is run with a sparsity-based termination criterion in this

chapter, OMP is also terminated after K iterations in the simulations below. Note that

this corresponds to the OMPK of the previous chapter.

The recovery simulations for A?OMP are performed using the AStarOMP software.

The other algorithms are run using freely available tools such as the `1−magic [108] and

Sparsify [119] software packages.

4.5.1 Reconstruction of Synthetically Generated 1D Data

In this section, we evaluate three versions of A?OMP using the additive, adaptive, and

multiplicative cost models. These are abbreviated as Add-A?OMP, Adap-A?OMP, and

Mul-A?OMP, respectively. The experiments cover different nonzero coefficient distri-

butions, including the uniform and Gaussian distributions as well as binary nonzero

coefficients. We investigate reconstruction via Gaussian and Bernoulli observation ma-

trices and compare different A?OMP parameters. Finally, we demonstrate A?OMP for

sparse signal recovery from noisy observations.

All the simulations in this section are repeated over 500 randomly generated K-sparse

samples. Reconstruction accuracies are given in terms of both the exact reconstruction

rate and the average normalized mean-squared-error (ANMSE), which is defined as the

average ratio of the square of the `2 norm of the reconstruction error to ‖x‖22 over

the 500 test samples. For the noisy scenarios, we give the reconstruction error in the



A? Orthogonal Matching Pursuit 71

10 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

E
xa

ct
 R

ec
on

st
ru

ct
io

n 
R

at
e

 

 

10 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

A
ve

ra
ge

 N
M

S
E

 

 
OMP
BP
SP
Mul. A*OMP
Add. A*OMP
Adap. A*OMP

OMP
BP
SP
Mul. A*OMP
Add. A*OMP
Adap. A*OMP

Figure 4.5: Reconstruction results over sparsity for the uniform sparse signals em-
ploying Gaussian observation matrices.

decibel scale, which we call the distortion ratio. Unless given explicitly, the following

are common in all simulations: The A?OMP parameters were set as I = 3, B = 2,

P = 200, β = 1.25, and α = 0.8. Test samples have length N = 256 from which

M = 100 random observations are taken. For each test sample, we employ an individual

observation matrix Φ whose entries are drawn from the Gaussian distribution with mean

0 and standard deviation 1/N .

4.5.1.1 Different Coefficient Distributions

The first set of simulations employ sparse signals with nonzero coefficients drawn from

the uniform distribution in [−1, 1]. We refer to these signals as uniform sparse signals

in the rest of this chapter. The results of these simulations are depicted in Figure 4.5

for K ∈ [10, 50]. In this test, Adap-A?OMP and Mul-A?OMP clearly provide lower

ANMSE than BP, SP, and OMP, except for K = 50 where BP provides lower recovery

error. Due to the sparsity-based termination, the ANMSE of OMP is the worst, while

that of SP is only slightly better. BP provides lower error than SP and OMP, however it

is still worse than A?OMP except for K = 50. Even the Add-A?OMP, which employs no

dynamic cost model, yields lower error than BP up to K = 40. In addition to ANMSE,

Mul-A?OMP, on general, yields higher exact recovery rates than the other candidates.

Though SP yields high ANMSE, its exact recovery frequency competes with that of

Mul-A?OMP up to K = 30, and even exceeds it slightly at K = 30. For Add-A?OMP,
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Figure 4.7: Number of misidentified entries per test sample for K = 30.

the situation is contrary: Despite the low ANMSE values, its exact reconstruction rate

is even worse than that of the OMP algorithm. These results indicate that the static

cost model of Add-A?OMP most of the time fails at smaller nonzero coefficients. The

adaptive and multiplicative cost models, which dynamically adjust the expected decay

in ‖r‖2 individually for each path, are clearly more effective in compensating for the

path length differences.

As for SP, the exact recovery rate is much better than the ANMSE values promise. This

indicates that the amount of recovery error SP introduces per failure is much higher

than that of the A?OMP algorithm. To visualize this fact, the probability density

estimates of the ANMSE are depicted in Figure 4.6 for SP and Mul-A?OMP. These

are computed using Gaussian kernels over ANMSE of the test vectors which cannot be

exactly reconstructed for K = 30. The figures show that the ANMSE values are on

the order of 10−3 for Mul-A?OMP, while they range up to 0.8, with mean about 0.3 for

SP. This arises from the difference in the average number of misidentified elements per

failure, which is shown in Figure 4.7 for K = 30. Mul-A?OMP has misidentified only
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one or two of the 30 nonzero components, while SP has missed 9 to 16 components, and

on the average about 12 per failure. These figures indicate that if the reconstruction is

not exact, SP almost completely fails, however A?OMP can still reconstruct the sparse

vector with a small amount of error, which is less than 1% of the signal norm for K =

30.

As discussed in Section 4.3.6, the two important factors for the complexity of A?OMP

are the average number of A?OMP iterations per vector and the average number of

equivalent paths detected per vector. Table 4.1 lists the average A?OMP iterations per

vector in this scenario in comparison to the upper bound on the number of A?OMP

iterations. This upper bound can easily be obtained as I × (2K−1 − 1) for B = 2 by

assuming that all of the opened partial paths are selected one by one as the best path

throughout the search. The actual number of iterations is incomparably lower than this

upper bound. Moreover, though the upper bound increases exponentially with K, the

actual number of iterations exhibit a much lower slope. The second important factor, the

average number of equivalent paths per vector is given in Table 4.2. These numbers are

comparable to the number of iterations, which states the effectiveness of the equivalent

path pruning rule. These results indicate that pruning and proper selection of the cost

model make it possible to run the search for cases where the upper bound becomes

unpractically high.

Table 4.1: Average A?OMP iterations per vector for the uniform sparse signals

K

10 20 30 40

Mul-A?OMP 13.8 164 1695 4177

Adap-A?OMP 19 167.4 2443 6109

Upper Bound 1533 1.57× 106 1.61× 109 1.65×1012

Table 4.2: Average equivalent paths per vector for the uniform sparse signals

K

10 20 30 40

Mul-A?OMP 4.4 114.1 975.2 1776

Adap-A?OMP 11.2 126.6 1355 1831
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Finally, in order to provide an insight about the speed of the search, we list in Table 4.3

the average run times for Mul-A?OMP, Adap-A?OMP, and OMP on a modest Pentium

Dual-Core CPU at 2.3GHz. These numbers are obtained using the AStarOMP software

and a comparable OMP implementation developed using similar code pieces specially for

obtaining comparable run times. Note that the indicated run times may be improved by

appropriate means. For example, the structure of A?OMP makes parallel processing of

the B candidates possible at each iteration. Moreover, the search can easily be modified

to open more than one promising path per iteration in parallel. Hence, these run times

can be significantly reduced by parallel programming techniques.

Table 4.3: Average run time in sec. per vector for the uniform sparse signals

K

10 20 30 40

OMP 0.0012 0.0025 0.0036 0.0050

Mul-A?OMP 0.0022 0.0261 0.3158 0.8292

Adap-A?OMP 0.0032 0.0276 0.4601 1.1525

For the second set of simulations, we employ Gaussian sparse vectors, whose nonzero

entries are drawn from the standard Gaussian distribution. Figure 4.8 depicts the AN-

MSE and exact reconstruction rates for this test. In this scenario, Mul-A?OMP provides

clearly better reconstruction than BP, SP, and OMP. We observe that it provides both

lower ANMSE and higher exact reconstruction rate than its competitors. SP yields the

second best exact reconstruction rate, however, its ANMSE is the worst, as a conse-

quence of the almost complete failure of an incorrect reconstruction.

In order to question the choice of the observation matrix, we repeat the last scenario with

observation matrices whose nonzero entries are drawn from the Bernoulli distribution.

The ANMSE values and the exact reconstruction rates for this test are illustrated in

Figure 4.9. Comparing Figure 4.9 with Figure 4.8, we observe that the ANMSE values

remain quite unaltered for Mul-A?OMP and BP, while those for SP increase. Mul-

A?OMP leads to the least amount of error for Bernoulli-type observation matrices as

well. As for the exact reconstruction, only BP keeps the same rates as above, while the

rates of all others fall. However, Mul-A?OMP still provides the highest exact recovery

rates in general. BP and SP compete with Mul-A?OMP until K = 25, where SP is
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Figure 4.8: Reconstruction results over sparsity for the Gaussian sparse signals using
Gaussian observation matrices.
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Figure 4.9: Reconstruction results over sparsity for the Gaussian sparse signals using
Bernoulli observation matrices.

slightly better. When K further increases, Mul-A?OMP has the highest exact recovery

frequency.

The next problem is the reconstruction of binary sparse signals, where the nonzero coef-

ficients are selected as one. The results of this simulation set are shown in Figure 4.10.

We observe that BP clearly yields better reconstruction than the others in this case.

SP also performs better than A?OMP. The failure of A?OMP is related to the fact that

this is a particularly challenging case for OMP-type of algorithms [17]. Consider the

discussion in Section 3.5.1 about the narrow spread of the correlation vector between

the observations and the dictionary atoms for OMP-type algorithms. As explained, this
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Figure 4.10: Reconstruction results over sparsity for the binary sparse signals using
Gaussian observation matrices.

narrow range leads to the suboptimality of the correlation maximization process, and

hence increases the failure rate of algorithms which involve a correlation maximization

step. In contrast, for sparse binary signals, `0 norm of the correct solution is exactly

equal to its `1 norm, which might be considered as an advantage for BP in this particular

scenario.

4.5.1.2 Performance over Different Observation Lengths

Another interesting test case is the reconstruction ability over the observation length M .

Figure 4.11 depicts the recovery performance over M for the uniform sparse signals where

K = 25. For each M value, a single Gaussian observation matrix is employed to obtain

observations from all signals. We observe that Mul-A?OMP is the best in terms of the

exact recovery rates, while SP and BP compete it for M ≥ 90 and M ≥ 100, respectively.

The ANMSE of Mul-A?OMP is also lower than the others except for the case of M = 50

where BP provides lower error than Mul-A?OMP. Note that 50 observations are already

too few for exact recovery in this case since 2K = 50. Therefore, even BP almost

completely fails though it yields the lowest ANMSE for M = 50.
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Figure 4.11: Reconstruction results over observation length for the uniform sparse
signals where K = 25 using a single Gaussian observation matrix for each M .

4.5.1.3 Comparison of Different Search Parameters

Choosing the search parameters is an important issue for the A?OMP algorithm. This

issue has been discussed above in Section 4.3.6, indicating two main points: The recon-

struction performance of A?OMP might be increased by modifying the search parameters

to explore more paths in the search at the expense of more iterations and longer search

times. In order to demonstrate this, we consider two scenarios, where we first alter α,

and next B together with P .

Figure 4.12 depicts the performance of Mul-A?OMP over α for the uniform sparse signals

with K = 30 and K = 35. The dashed and solid lines indicate results for P = 200

and P = 5000, respectively. For K = 30, the reconstruction performance increases

when α is reduced from 0.95 to about 0.8, whereas any further reduction of α does not

significantly affect the performance. In addition, there is hardly any difference between

selecting P = 200 and P = 5000. This suggests that setting P = 200 and α ≈ 0.8

seems to be enough for K = 30. When K = 35, however, more paths are involved in the

search, and increasing P improves the reconstruction. When P = 200, reducing α below

0.9 does not improve the performance but slightly degrade it. On the contrary, if P is

increased to 5000, the reconstruction is improved until α is reduced to 0.8, below which

the reconstruction performance does not change anymore with α. Though not given in

the figures, the authors have observed that setting P > 5000 has hardly any effect on the

reconstruction. These results demonstrate that reducing α improves the reconstruction
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Figure 4.12: Reconstruction results over α for the uniform sparse signals using Gaus-
sian observation matrices.
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Figure 4.13: Reconstruction results for the sparse binary signals for B = 2 and B = 3
using Gaussian observation matrices.

until some convergence point. Table 4.4 lists the average number of search iterations

while α and P are varied. We observe that decreasing α and increasing P increase

the number of paths explored during the search. This clarifies the complexity-accuracy

trade-off which leads to improved recovery performance at the expense of increased

complexity.

Next, we illustrate the performance of Mul-A?OMP with B = 2 and B = 3 for the

sparse binary signals in Figure 4.13. The experiment is repeated for P = 200 and

P = 1000, which are depicted by dashed and solid lines, respectively. We observe that

increasing B from 2 to 3 improves the reconstruction. This improvement is further
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Table 4.4: Average Mul-A?OMP iterations per vector with respect to α and P for
the uniform sparse signals with K = 35

α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

P = 200 4158 3927 3565 2932 1353

P = 5000 58204 51710 41781 25527 4026

enhanced by increasing P from 200 to 1000 when K ≥ 25, where a larger search stack

can better cover for the increased number of paths involved in the search. Table 4.5

lists the average number of search iterations, which increase with B and P . Hence, the

improvement is obtained at the expense of complexity as above.

Table 4.5: Average Mul-A?OMP iterations with respect to B and P per vector in the
sparse binary problem

P = 200 P = 1000

B=2 B=3 B=2 B=3

K = 10 48 114 48 114

K = 20 1046 2095 1275 7159

K = 30 3424 4249 12278 18240

The results in this section explain how the performance of A?OMP can be adjusted by

the search parameters. The mechanism behind is simple: Increasing the number of paths

explored by the search improves the results until a convergence point, at the expense

of increasing the complexity. According to the experimental results, one advantage is

that even with modest settings such as I = 2, P = 200, and α = 0.8 employed in the

experiments, A?OMP can provide higher exact recovery rates and lower error than the

other candidates for the uniform and Gaussian sparse signals. This indicates that the

A?OMP recovery, at least in these cases, is quite robust against the choice of search

parameters.

4.5.1.4 Reconstruction from Noisy Observations

In order to evaluate the recovery performance of A?OMP in noisy situations, we alter

the observation model as

y = Φx + n (4.15)
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Figure 4.14: Average distortion ratio over SNR for reconstruction of sparse signals
from noisy observations using Gaussian observation matrices.

where n represents some additive noise component. We model n as white Gaussian noise,

and alter the signal-to-noise ratio (SNR), which is defined as 20 log ‖y‖2‖n‖2 , for obtaining

a general performance measure. Figure 4.14 illustrates the recovery results from these

observation vectors which are contaminated by white Gaussian noise at different SNR

levels. Here, K is 25 and 30 for Gaussian and uniform sparse signals, respectively.

During these simulations, the regularization parameter of BP is adjusted proportional

to the true SNR level. The results are shown in terms of the distortion ratio, which is in

the decibel scale, for a better match with the SNR levels. We observe that Mul-A?OMP

produces less distortion than BP, SP, and OMP for about 10 dB and higher SNR. When

the SNR decreases, BP starts being slightly more effective than the other algorithms.

4.5.2 Reconstruction of Images

We finally simulate the reconstruction ability of A?OMP on some commonly used images

including “Lena”, “Tracy”, “cameraman”, etc. In this experiment, the images are recon-

structed in 8× 8 blocks which provide important advantages for reducing both the com-

plexity of the search and the memory requirements. First, without block-processing, the

reconstruction problem requires searching among N = 5122 = 262144 dictionary atoms.

However, block-processing reduces the problem to 4096 subproblems with N = 64, which

is more efficient as each subproblem requires a search in a 4096-fold reduced dimension-

ality. Second, block-processing reduces the total number of search paths drastically. To
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illustrate, let’s set B = 2. From Section 4.3.3, the number of search paths for each

K-sparse block is upper bounded by I × 2(K−1). Then, for the whole image, the upper

bound becomes 4096× I × 2(K−1) = I × 2(K+11). If no block processing were involved,

the upper bound would be I×2D where D, which denotes the sparsity level of the whole

image, would clearly be much larger than K+ 11. Finally, block-processing also reduces

the length of the involved paths. Note that the block structure is shared by all of the

involved recovery methods.

Despite the reduction in the complexity of the recovery process, the applicability of

the block recovery as proposed above is still an important issue for practical compressed

sensing of images. In fact, the use of this block recovery approach may be justified by the

following intuitive observations: First, whenever it is possible to take the measurements

of the whole image via some mask, measurements of an individual block may also be

taken using a similar structure which may be obtained by setting the values of the mask

corresponding to the other blocks as zero. That is, the mask may be configured such

that only a single block of the image is observed through it at a time. On the other

hand, future research may also facilitate the possibility of using individual masks for all

image blocks in parallel, which would allow for taking simultaneous observations from

all blocks. Such a strategy could even increase the efficiency of the observation process

in addition to the simplification of the recovery problem, since each pixel would only

contribute to a highly reduced number of local observations.

The simulations are performed with five 512× 512 grayscale images using the 2D Haar

Wavelet basis Ψ. Note that in this case, the dictionary is not Φ itself, but the holographic

basis V = ΦΨ. That is, x denoting the sparse wavelet coefficient vector of interest, the

image itself is obtained as Ψx after the recovery of x from the observation y = ΦΨx.

The images are first preprocessed such that each 8× 8 block is K-sparse in the 2D Haar

Wavelet basis where K = 14. A single observation matrix Φ of size M × N , which is

randomly drawn from the Gaussian distribution with mean 0 and standard deviation

1/N , is employed to compute the measurements of length M = 32 from each block.

Mul-A?OMP and Adap-A?OMP are run for both B = 2 and B = 3. We select I = 3

and P = 200. The cost function parameters are set as α = 0.5 and β = 1.25. Here, α

is reduced in order to compensate for the reduction in the auxiliary function due to the

small K value.



A? Orthogonal Matching Pursuit 82

Original Image

BP Reconstruction

SP Reconstruction

Mul. A*OMP Reconstruction

Figure 4.15: Reconstructions of the image “Lena” using BP, SP, and Mul-A?OMP
with B = 3

Table 4.6 lists the peak signal-to-noise ratio (PSNR) of the reconstructed images. A?OMP

clearly yields better reconstruction than the other methods. Increasing B from 2 to 3

further improves the reconstruction performance. A?OMP improves PSNR up to 5.8 dB,

and on the average 4.4 dB over BP. As an example, Figure 4.15 depicts reconstruction of

“Lena” using SP, BP, and Mul-A?OMP with B = 3. That Mul-A?OMP reconstruction

provides lower error can be observed better in Figure 4.16 which illustrates the absolute

error per pixel for the BP and Mul-A?OMP reconstructions. For BP, errors are concen-

trated around the boundaries and detailed regions, while Mul-A?OMP clearly produces

less distortion all around the image.
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Figure 4.16: Reconstruction error per pixel of image “Lena” for Mul-A?OMP with
B = 3 and BP.

Table 4.6: PSNR values for images reconstructed using different algorithms

BP OMP SP
Mul-A?OMP Adap-A?OMP

B=2 B=3 B=2 B=3

Lena 33.5 29.6 27.5 36.4 38.3 35.2 37

Tracy 40.6 36.8 33.9 44.8 46.4 44.5 45.5

Pirate 31.7 27.7 25.3 33.6 34.5 32.8 34.2

Cameraman 34.4 30.7 28.5 38.4 40.2 36.7 39.5

Mandrill 28.3 24.4 22.1 30.3 31.3 29.3 30.8

4.6 Summary

In this chapter, we have introduced a novel CS reconstruction approach, A?OMP, which

is based on an effective combination of OMP with A? search. This semi-greedy method

performs a tree search which favors the paths minimizing the cost function on-the-

fly. In order to compare paths with different lengths, novel dynamic cost functions,

which exhibit better recovery rates in the provided experiments, have been proposed.

Pruning strategies have been introduced to limit the complexity, run time, and memory

requirements of the search. A complexity-accuracy trade-off has also been provided via

adjustment of the search parameters. In the presented demonstrations, A?OMP, with

some modest settings, performs better reconstruction than BP and SP not only for the

uniform and Gaussian sparse signals but also for sparse images. Moreover, it shows

robust performance under the presence of noise for SNR values higher than 10 dB. To
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conclude, the demonstrated reconstruction performance of A?OMP indicates that it is

a promising approach which is capable of producing significant improvements in the

recovery accuracy.



Chapter 5

Theoretical and Empirical

Analyses of A?OMP With a

Novel Adaptive Cost Model

5.1 Introduction

This chapter concentrates on the theoretical and empirical analyses of the A?OMP al-

gorithm with a novel adaptive cost model. Our main contribution is the theoretical

analysis of A?OMP, which includes not only exact recovery guarantees, but also the-

oretical comparison of two different termination criteria. The former states an RIP

condition for exact recovery of sparse signals from noise-free measurements via A?OMP.

The latter provides a theoretical understanding of the improvements in the recovery per-

formance when the residue-based termination is employed instead of the sparsity-based

one, which has been utilized in Chapter 4. As for the second important contribution of

this chapter, we introduce a novel dynamic cost model, the adaptive-multiplicative cost

model, which enhances the efficiency of the search by significant reduction of the run

times. These claims are also supported by the extensive empirical recovery analyses pro-

vided. These analysis reveal two important aspects: First, the residue-based termination

criterion improves both the accuracy and the speed of the A?OMP recovery. Second,

the adaptive-multiplicative cost model effectively reduces the number of explored paths,

which further accelerates the search.

85
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A preliminary version of this chapter, including introduction of the adaptive-multiplicative

cost model and some of the experiments, have been presented at the 2012 European Sig-

nal Processing Conference (EUSIPCO-2012) [120].

5.1.1 Definitions

Let us first clarify the notation used in this chapter: As before, we denote the K-sparse

signal of interest by x ∈ RN . M represents the number of observations. The observation

matrix is defined as Φ = [φ1 φ2 ... φN ], where φi ∈ RM denotes the ith column of Φ.

The observation vector is referred to as y ∈ RM , where y = Φx. We define T as the

correct support of x. T i, ri, li, and f(T i) denote the support estimate, residue, length,

and cost of the ith path, respectively. x̂i is the estimate of x by the ith path. The best

path at a certain time is referred to as b. ∆T represents the set of indices selected during

the expansion of path b, i.e., the indices of B largest elements in |Φ∗rb|. Finally, ΦJ

denotes the matrix of the columns of Φ indexed by J , and xJ is the vector composed

of the elements of x indexed by J .

As discussed in Chapter 4, different termination criteria may be imposed by modification

of the termination parameters Kmax and ε. The sparsity-based termination, utilized in

Chapter 4 by setting Kmax = K and ε = 0, searches for an exactly K-sparse represen-

tation. Below, we refer to this version of A?OMP as A?OMPK . On the other hand,

the residue-based termination is denoted by A?OMPe, where Kmax > K and problem-

specific ε is selected very close to zero for noise-free observations, or small enough with

respect to the noise level in the noisy case.

5.1.2 Outline

We present the main theoretical contributions of this chapter in Section 5.2, where we

develop RIP-based guarantees for exact recovery of sparse signals from noise-free mea-

surements via A?OMP. Our analysis method is similar to the OMP analyses presented

in Chapter 3. We first develop conditions for the success of a single A?OMP iteration

in Section 5.2.2. This result forms a basis for the rest of the theoretical analysis. In

Section 5.2.3, we derive a RIP condition for exact recovery via A?OMPK . This condi-

tion turns out to be less restrictive than the one developed in [7] for exact recovery with
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OMPK . In Section 5.2.4, we present conditions for exact recovery of a sparse signal via

A?OMPe. In addition, we show that exact recovery guarantees of A?OMPK represent a

special case of these conditions. Section 5.2.5 compares the exact recovery conditions of

A?OMPe and A?OMPK . This clarifies that A?OMPe possesses a less restrictive exact

recovery condition than A?OMPK . In a more general perspective, this result is paral-

lel to the findings of Chapter 3, where OMP has been shown to have a less restrictive

condition with the residue-based termination.

In Section 5.3, we discuss the adaptive-multiplicative cost model, which is an adaptive

extension of the multiplicative cost model introduced in the previous chapter. This

cost model allows for more flexibility when choosing the auxiliary function parameter

α. That is, α may be chosen larger than the multiplicative cost model allows. This

accelerates the search by reducing the number of explored nodes.

Finally, Section 5.4 presents extensive empirical analyses of A?OMPe in comparison to

basis pursuit (BP) [66], subspace pursuit (SP) [17], OMP [6], iterative hard thresholding

(IHT) [30], iterative support detection (ISD) [46], and smoothed `0 (SL0) [72]. The most

important ones among the presented results are the empirical phase transition graphs

which are obtained by a set of computationally expensive experiments involving different

signal characteristics. These clearly reveal the recovery abilities of A?OMPe. In addition,

we also investigate the recovery rates and average error for noisy and noise-free cases.

Comparison of the run times illustrates the acceleration of the algorithm by both the

adaptive-multiplicative cost function and the residue-based termination. Moreover, we

test a hybrid of OMP and A?OMPe for further speed up. Finally, A?OMPe recovery is

demonstrated on images.

5.2 Theoretical Analysis of A?OMP

5.2.1 Preliminaries

We first concentrate on two preliminary lemmas which are necessary for the analysis in

the rest of this chapter. These statements are analogous to the ones presented prior to

the theoretical discussion of OMP in Section 3.4. In particular, Lemma 5.1 follows from

Lemma 3.3 by some simple derivation, and Lemma 5.2 is similar to the Lemma 3.4 of
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Chapter 3, except for the introduction of B. In fact, Lemma 3.3 and Lemma 3.4 are

special cases of Lemma 5.1 and Lemma 5.2 for B = 1.

Lemma 5.1 (Direct consequence of Lemma 3.3). For positive integers K and B,

δK+B >
δ3dK/2e

3
,

where dze denotes the ceiling of z, i.e., the smallest integer greater than or equal to z.

Proof. Lemma 3.3 already states that Lemma 5.1 holds for B = 1. By monotonicity of

the RIC, δK+B ≥ δK+1 when B > 1. Hence, Lemma 5.1 also holds for B > 1.

Lemma 5.2. Assume K ≥ (3+2
√
B)2. There exists at least one positive integer nc < K

such that
3
√
B√

K +
√
B
≤

√
B

√
K − nc +

√
B
. (5.1)

Moreover, nc values which satisfy (5.1) are bounded by

K > nc ≥
8K + 4

√
BK − 4B

9
. (5.2)

Proof. Set K − nc = sK where 0 < s < 1, and replace this into (5.1):

3
√
B√

K +
√
B
≤

√
B√

sK +
√
B
.

It can trivially be shown that s is bounded by

0 < s ≤

(√
K − 2

√
B

3
√
K

)2

.

Then, we obtain the lower bound for nc as

nc = (1− s)K

≥ 8K + 4
√
BK − 4B

9
. (5.3)
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Now that nc < K, we can write sK = K − nc ≥ 1. This translates as

K ≥ 1

s

≥

(
3
√
K√

K − 2
√
B

)2

,

from which we deduce the assumption K ≥ (3 + 2
√
B)2.

Combining this with (5.3), we conclude that the nc values bounded by (5.2) satisfy (5.1)

when K ≥ (3 + 2
√
B)2.

5.2.2 Success Condition of an A?OMP Iteration

Let us define the success condition for an A?OMP iteration as ∆T containing at least

one correct index, i.e., ∆T ∩ {T − T b} 6= ∅. Theorem 5.1 establishes an RIP condition

for the success of an iteration given the number of correct and incorrect indices in the

support estimate of the best path T b:

Theorem 5.1. Let nc = |T b ∩ T | and nf = |T b − T |. When path b is expanded, at least

one index in ∆T is in the correct support of x, i.e., ∆T ∩ {T − T b} 6= ∅, if Φ satisfies

RIP with

δK+nf+B < min

( √
B

√
K − nc +

√
B
,
1

2

)
. (5.4)

Proof. Remember that ∆T is defined as

∆T = arg max
J ,|J |=B

∑
j∈J
|〈φj , rb〉|.

By some simple derivation, it can be shown that this is equivalent to

∆T = arg max
J ,|J |=B

‖Φ∗J rb‖2. (5.5)

Since rb is the orthogonal projection error of y onto ΦT b , rb ⊥ ΦT b . Therefore,

〈φi, rb〉 = 0, ∀i ∈ T b.
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Consequently, we write

‖Φ∗T ∪T br
b‖22 =

∑
i∈T∪T b

〈φi, rb〉2

=
∑

i∈T−T b

〈φi, rb〉2. (5.6)

The right hand side of (5.6) contains only K−nc nonzero terms. Then, combining (5.5),

(5.6), and the norm inequality, we get

‖Φ∗∆T rb‖2 = max
J ,|J |=B

‖Φ∗J rb‖2 ≥ c‖Φ∗T ∪T br
b‖2, (5.7)

where c is defined as

c , min

(√
B

K − nc
, 1

)
.

Next, the residue can be written as

rb = y −ΦT b x̂bT b

= ΦT xT −ΦT b x̂bT b

= ΦT ∪T bz, (5.8)

where z ∈ RK+nf . Using Lemma 3.1, (5.7), and (5.8), we write

‖Φ∗∆T rb‖2 ≥ c‖Φ∗T ∪T bΦT ∪T bz‖2

≥ c(1− δK+nf
)‖z‖2. (5.9)

Now, suppose that the A?OMP iteration fails, i.e., ∆T ∩ T = ∅. Then,

‖Φ∗∆T rb‖2 = ‖Φ∗∆TΦT ∪T bz‖2 ≤ δK+nf+B‖z‖2

by Lemma 3.2. Clearly, this never occurs if

c(1− δK+nf
)‖z‖2 > δK+nf+B‖z‖2

or equivalently
δK+nf+B

c
+ δK+nf

< 1. (5.10)
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Following the monotonicity of RIC, δK+nf+B ≥ δK+nf
. Hence, (5.10) is satisfied when(

1
c + 1

)
δK+nf+B < 1, or equivalently

δK+nf+B <
c

1 + c

< min

( √
B

√
K − nc +

√
B
,
1

2

)

by the definition of c. This condition guarantees that ∆T ∩ T 6= ∅. Moreover, since

〈φi, rb〉 = 0 for all i ∈ T b, we know that ∆T ∩ T b = ∅. Hence, we conclude ∆T ∩ {T −

T b} 6= ∅, that is the A?OMP iteration is successful when (5.4) holds.

Theorem 5.1 does not directly imply any exact recovery guarantees. However, it is used

below as a basis for developing the exact recovery guarantees of A?OMP. Note that we

assume that
√
B ≤

√
K − nc, and skip the term 1

2 in Theorem 5.1 for simplicity most

of the time in the rest of this chapter. This assumption can be justified by the fact that

B is chosen small, such as 2 or 3, in practice.

5.2.3 Exact Recovery Conditions for A?OMPK

Exact recovery via A?OMPK requires some conditions on the best path selection in

addition to Theorem 5.1. For this purpose, we need to present some definitions. First,

remember that the path i is defined as complete in Section 4.2.1 if li = Kmax. For

A?OMPK , this condition turns out to be li = K since Kmax = K. In addition, we

introduce the following definitions:

Definition 5.1 (Optimal path). Path i is called optimal if T i ⊂ T .

Definition 5.2 (Optimal pruning). Pruning is defined as optimal if it does not remove

all of the optimal paths from the search tree.

Definition 5.3 (Optimal cost condition). The optimal cost condition is defined as

F (T̂ i) < F (T j), ∀T̂ i ∈ Sopt, ∀T j ∈ {SK − Sopt}, (5.11)

where SK and Sopt denote the sets of all complete paths and all optimal paths, respec-

tively.
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In words, the optimal cost condition assures that the cost of an optimal path is lower than

that of any nonoptimal complete path. Once satisfied, this guarantees that A?OMPK

either terminates at an optimal path or there are no optimal paths in the search tree.

Theorem 5.2 exploits these definitions to develop exact recovery guarantees for A?OMPK :

Theorem 5.2. Assume that the optimal cost condition holds and the pruning is optimal.

Set I ≥ B. Then, A?OMPK perfectly recovers any K-sparse signal from noise-free

measurements if the observation matrix Φ satisfies RIP with

δK+B <

√
B√

K +
√
B
. (5.12)

Proof. Let us start with the initialization. Replacing nc = nf = 0 into Theorem 5.1,

(5.12) assures success of the initialization since I ≥ B.

Next, assume that A?OMPK selects an optimal path of length l, where nc = l and

nf = 0. By Theorem 5.1, expansion of this path is successful if

δK+B <

√
B√

K − l +
√
B
. (5.13)

Since l > 0, (5.13) is less restrictive than (5.12). Hence, expansion of an optimal path

is guaranteed to be successful when (5.12) holds.

Now, we have shown that there exists one or more optimal paths after the initialization

when (5.12) holds. Moreover, we have also shown that expansion of an optimal path in-

troduces at least one longer optimal path, and by assumption pruning cannot remove all

of the optimal paths. Altogether, these guarantee existence of at least one optimal path

in the tree at any iteration. Under these conditions, the optimal cost condition in (5.11)

assures selection of optimal paths before termination. That is, the search cannot termi-

nate at a suboptimal path. Instead, optimal paths are chosen for expansion, until the

search terminates at an optimal complete path. Therefore, we conclude that A?OMPK

guarantees exact recovery of any K-sparse signal from noise-free measurements if (5.12)

and the other assumptions are satisfied.

The assumptions in Theorem 5.2 may at first seem restrictive. However, intuitive rea-

soning states that these are not only quite reasonable, but also necessary in practice.

First, since the ordering of nodes along a path is unimportant, there exists K! possible
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paths which represent the correct solution x. That is, there exists a large number of

optimal paths in the tree in case (5.12) holds, while it is sufficient that not all but only

one of them satisfies the assumptions. In addition, optimal paths tend to have very

small costs, which make them less likely to be pruned. Finally, obtaining theoretical

guarantees for the optimal cost condition is hard, since this requires cost models which

are neither trivial nor practical. The former follows from the fact that we cannot ex-

actly predict the decay of the residue along unexplored nodes. Yet, the latter is more

important: In practice, the cost model should be efficient, i.e., A?OMP should explore

as few nodes as possible. Hence, cost models which explore too many nodes should be

avoided. As a result, practical implementations have to deal with cost models which

cannot guarantee (5.11), such as the ones we employ. Therefore, we build our analysis

on the expectation that the optimal cost condition holds for some optimal paths, which

is justified by intuitive discussion of the cost models (see the introduction of the cost

models in Chapter4) in addition to the empirical recovery performance A?OMP provides

in the simulations.

We observe that the RIP condition δK+1 <
1√
K+1

of Theorem 3.1, which guarantees

exact recovery via OMPK [7], can be obtained as a special case of Theorem 5.2 when

B = I = 1. Moreover, when the exact recovery conditions of OMPK and A?OMPK

are compared, (5.12) is clearly less restrictive, which explains the improved recovery

accuracy of A?OMPK over OMPK .

5.2.4 Exact Recovery with A?OMPe

When Kmax > K, we need to extend the definitions of the previous section. First, note

that path i is now complete if li = Kmax > K. In addition, we introduce the following

terms:

Definition 5.4 (Potentially-optimal path). Path i is called potentially-optimal (p-optimal)

if K + nf ≤ Kmax and Φ satisfies RIP with

δK+nf+B <

√
B

√
K − nc +

√
B
, (5.14)

where nc and nf are the number of correct and false indices in the particular path i as

before.
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Definition 5.5 (Potentially-optimal pruning). Pruning is defined as p-optimal if it does

not remove all of the p-optimal paths from the search tree.

Definition 5.6 (Potentially-optimal cost condition). The p-optimal cost condition is

defined as

F (T̂ i) < F (T j), ∀T̂ i ∈ Sp-opt, ∀T j ∈ {SKmax − Sp-opt},

where SKmax and Sp-opt denote the set of all complete paths and the set of all p-optimal

paths, respectively.

Next, a recovery condition for A?OMPe is stated in Theorem 5.3 using the lemma

discussed below:

Lemma 5.3. Let path i be p-optimal with nc correct and nf incorrect indices. Then,

expansion of path i introduces at least one p-optimal path with nc + 1 correct indices.

Proof. By p-optimality, expansion of path i is successful and introduces at least one

path, say j, with nc + 1 correct and nf incorrect indices. Moreover, the upper bounds

which (5.4) imposes on the RIC for the paths i and j are related as

√
B

√
K − nc +

√
B
<

√
B

√
K − nc − 1 +

√
B
,

where the left and right hand sides are the uppers bounds for path i and j, respectively.

Since the upper bound on the required RIC is larger for path j, and path i satisfies

(5.4), path j also satisfies (5.4). In addition, K + nf ≤ Kmax also holds for path j, as

the successful expansion of path i does not alter nf . Consequently, path j is p-optimal.

Therefore, we conclude that expansion of path i introduces at least one p-optimal path

with nc + 1 correct indices.

Theorem 5.3. Set ε = 0 and Kmax ≤ M − K. Let Φ be full rank. Assume that the

p-optimal cost condition holds and the pruning is p-optimal. Then, A?OMPe perfectly

recovers a K-sparse signal from noise-free measurements if the search, at any step,

expands a path with K + nf ≤ Kmax and RIC satisfying

δK+nf+B < min

( √
B

√
K − nc +

√
B
,
1

2

)
. (5.15)
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Proof. First, by (5.15) and K + nf ≤ Kmax, the best path b at this certain iteration

is clearly p-optimal. Combining Lemma 5.3 with the p-optimal pruning assumption, a

single p-optimal path guarantees existence of p-optimal paths until the termination of

the search. In addition, since each expansion of a p-optimal path introduces at least

one correct index, iterative expansion of p-optimal paths leads to a superset of T with

maximum Kmax elements. The orthogonal projection of y onto such a set gives the

correct solution when (5.15) holds.

On the other hand, as ε = 0, termination of the search requires that the residue vanishes.

Since Kmax ≤ M −K and Φ is full rank, the residue may vanish if and only if T is a

subset of the support estimate1. Hence, the search terminates either when the recovery

is successful with ‖rb‖2 = 0, or a complete path which is not p-optimal becomes the

best path, where ‖rb‖2 > 0. By the p-optimal cost condition, the latter cannot happen

when the tree contains p-optimal paths. Once they exist, the p-optimal paths must be

chosen for expansion. Doing this iteratively, the search identifies a superset of T , which

yields the correct solution.

Since (5.15) and K + nf ≤ Kmax lead to the p-optimality of the selected path, Theo-

rem 5.3 may also be alternatively stated as an exact recovery guarantee based on the

expansion of a p-optimal path at some intermediate iteration. However, for the sake

of completeness of Theorem 5.3, we have chosen to state the conditions explicitly. In

addition, the condition ε = 0 translates into a very small ε in practice to account for

the numerical computation errors. However, to assure theoretical correctness, we state

this condition as ε = 0 in Theorem 5.3.

As Theorem 5.3 depends on the existence of a p-optimal path, it does not directly

guarantee exact recovery of all K-sparse signals. We unfortunately cannot provide the-

oretical guarantees for the existence of intermediate (i.e., neither complete nor empty)

p-optimal paths. However, we can assure them in a special case: Observe that (5.15)

and (5.12) are equal when nc = nf = 0. This states that the empty set is p-optimal

when (5.12) is satisfied. Consequently, (5.12) guarantees the existence of at least one

p-optimal path in the search tree for any K-sparse signal. Therefore, (5.12), together

with the other assumptions in Theorem 5.3, implies guarantees for exact recovery of all

1Due to Φ being full rank, linearly dependent subsets of Φ should contain at least M + 1 columns.
Hence, any other solution of the recovery problem contains at least M −K + 1 nonzero entries.
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K-sparse signals from noise-free measurements via A?OMPe. Moreover, Theorem 5.2

can be obtained as a special case of Theorem 5.3 where nc = nf = 0.

5.2.5 Theoretical Comparison of the Two Different Termination Cri-

teria

Though Theorem 5.2 is a special case of Theorem 5.3, we have not yet clarified if it

is possible to satisfy Theorem 5.3 despite failure of Theorem 5.2. In other words, we

question whether the search may find a p-optimal path even when (5.12) fails. We

address this issue in the following theorem.

Theorem 5.4. Assume K ≥ (3 + 2
√
B)2. If 1 ≤ nf ≤ dK/2e −B and nc satisfies

K > nc ≥
8K + 4

√
BK − 4B

9
(5.16)

at some intermediate iteration, (5.15) becomes less restrictive than (5.12). Hence, it is

possible to satisfy Theorem 5.3 though Theorem 5.2 is violated.

Proof. Assume that

δK+nf+B ≥
3
√
B√

K +
√
B
. (5.17)

Since nf ≤ dK/2e−B, we can write 3dK/2e ≥ K+nf +B. Following the monotonicity

of RIC, we obtain

δ3dK/2e ≥
3
√
B√

K +
√
B
. (5.18)

Then, by Lemma 5.1

δK+B >

√
B√

K +
√
B
,

which clearly contradicts (5.12).

On the other hand, Lemma 5.2 yields

3
√
B√

K +
√
B
≤

√
B

√
K − nc +

√
B

for nc satisfying (5.16) and K ≥ (3+2
√
B)2. That is, there exists some range of δK+nf+B

such that
3
√
B√

K +
√
B
≤ δK+nf+B ≤

√
B

√
K − nc +

√
B
.
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This range satisfies (5.15). Therefore, when the parameters K, nf , and nc satisfy the

necessary conditions, there exists some δK+nf+B which fulfill (5.15), though (5.12) fails

for δK+B. Hence, it is possible for the search to find a p-optimal path in the intermediate

iterations and satisfy Theorem 5.3 even if Theorem 5.2 is violated.

Theorem 5.4 clarifies that A?OMPe can perfectly recover a range of sparse signals, for

which A?OMPK possesses no exact recovery guarantees. In addition, remember that

A?OMPe also enjoys the exact recovery guarantees of A?OMPK . Hence, we conclude

that A?OMPe provides means for exact recovery of a wider range of sparse signals than

A?OMPK . This reveals that the residue-based termination is more beneficial for the re-

covery of sparse signals from noise-free observations than its sparsity-based counterpart.

Before closing this section, it is also worth to discuss the assumption nf ≤ dK/2e − B

in Theorem 5.4. Note that the OMPe equivalent of this condition, which is obtained

as nf < dK/2e by setting B = 1, has been discussed in Section 3.4.4. Similar to the

OMPe case, the assumptions K ≥ (3 + 2
√
B)2 and (5.16) in Theorem 5.4 also rely on

nf ≤ dK/2e − B, which is chosen specifically to establish the bound (5.18) on δ3dK/2e.

In fact, both K ≥ (3 + 2
√
B)2 and (5.16) actually apply at the boundary condition

nf = dK/2e − B. This condition is sufficient to prove Theorem 5.4, however, it is not

really necessary in practice. Similar to its OMPe analogue, Theorem 3.4, we intuitively

expect Theorem 5.4 to be valid for smaller K and nc values when nf is also small. Hence,

A?OMPe is expected to improve the recovery accuracy not only for K ≥ (3 + 2
√
B)2,

but also for smaller K values. Moreover, the lower bound on nc would also decrease if

a bound on δK+nf+B/δK+B could be established for smaller nf values. This translates

as a smaller number of correct indices in the support estimate will be sufficient for

exact recovery if the number of incorrect indices decrease. Unfortunately, we cannot

extend Theorem 5.4 for a tighter bound on nf , as we could neither do for Theorem 3.4.

However, the empirical recovery analysis in Section 5.4 indicate that A?OMPe improves

the recovery accuracy even when K < (3 + 2
√
B)2.

5.3 The Adaptive-Multiplicative Cost Model

As discussed in the previous chapter, A?OMP requires properly defined cost functions

for the simultaneous handling of paths with different lengths. The choice for the cost
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function plays a major role in the performance of the algorithm, especially in terms of

the complexity-accuracy trade-off. For this purpose, a number of cost structures have

already been introduced in Section 4.3.

Among the proposed structures, the multiplicative cost model, which has been defined

in (4.14), relies on the expectation that each unexplored node decreases the residue by

a constant rate αMul ∈ (0, 1). In order to extend this model for paths longer than K,

we simply replace K with Kmax:

fMul(T i) = αKmax−li
Mul

∥∥ri∥∥
2
.

This definition of the multiplicative model can now be employed with the residue-based

termination criterion. Note that the residue-based termination allows for a larger αMul

than the sparsity-based termination. As a result, we utilize larger αMul values in this

chapter than the ones in the previous chapter. This significantly improves the termina-

tion speed of the algorithm due to the reduction in the number of the nodes explored

throughout the search.

Adaptive cost structures can adapt themselves to the actual decrement in the residue.

Being motivated by the empirical improvements with the adaptive cost model in Chap-

ter 4 over the additive one, we define an adaptive extension of the multiplicative model,

which is called the adaptive-multiplicative cost model, as

fAMul(T i) =

αAMul

∥∥ri
li

∥∥
2∥∥∥rili−1

∥∥∥
2

Kmax−li ∥∥rili∥∥2
, (5.19)

where ril denotes the residue after the first l nodes of the path i, li is the length of path

i, and αAMul ∈ (0, 1] is the cost function parameter.

The adaptive-multiplicative cost model relies on the following assumption: Each un-

explored node reduces the energy of the residue by a rate proportional to the decay

occurred during the last expansion of the path. This rate is modeled by the auxiliary

term αAMul

∥∥ri
li

∥∥
2
/
∥∥∥rili−1

∥∥∥
2
, while the exponent Kmax−li extends the auxiliary function

to all unexplored nodes along path i. The motivation behind this choice can be explained

as follows: As the search is expected to select the nodes in the order of descending ab-

solute inner products with y, a node is more likely to produce less reduction in
∥∥ri∥∥

2
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than its ancestors do. This may obviously be violated for some particular nodes, similar

to the other proposed cost models. However, the auxiliary term of the cost function is

mostly computed over a group of nodes instead of a single one. Hence, it is practically

sufficient when the decay in the residue obeys this assumption over a group of nodes.

Moreover, the tree usually contains multiple optimal/p-optimal paths which can lead

to the correct solution if chosen. Therefore, that some particular paths violate this as-

sumption does not actually harm the recovery performance. Hence, similar to the other

proposed cost models, the adaptive-multiplicative cost model also needs to be valid only

on the average, i.e., any particular sequence of nodes may violate it, however, we expect

it to hold in general and lead the search to the correct solution.

As for the cost model parameter α, the adaptive structure of the adaptive-multiplicative

cost model allows for a larger choice than the multiplicative model does. This reduces the

auxiliary term on the average and makes the search favor longer paths. Consequently,

the search explores fewer nodes and terminates faster. This speed up is demonstrated

in Section 5.4.

5.4 Empirical Analyses of A?OMPe

In this section, we illustrate the recovery performance of A?OMPe in comparison to

A?OMPK , BP, SP, OMPe, IHT, ISD, and SL0 in various scenarios. In the simulations,

we employ the adaptive-multiplicative and multiplicative cost models which are denoted

as AMul-A?OMP and Mul-A?OMP, respectively. First, we evaluate Mul-A?OMP and

AMul-A?OMP in terms of the exact recovery rates, average recovery error and run

times. In order to generalize the results to a wide range of M and K, we provide the

empirical phase transition curves which are obtained using the procedure in [16]. Then,

we investigate recovery from noisy observations. We also demonstrate a hybrid of OMPe

and A?OMPe which accelerates the recovery significantly. Finally, we test our proposal

on images to illustrate the recovery performance for more realistic cases. Note that in

the rest of this chapter, we skip the subscript in OMPe, since this is the only version of

OMP employed in the following simulations.
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5.4.1 Experimental Setup

Unless given explicitly, the experimental setup is as follows: We set I = 3, B = 2, and

P = 200. ε is chosen as 10−6 in the noiseless case, while it is selected with respect to

the noise level in the noisy scenarios. Each test is repeated over a randomly generated

set of sparse samples. For each sample, Φ is drawn from the Gaussian distribution with

mean zero and standard deviation 1/N . The average normalized mean-squared-error

(ANMSE) is defined as

ANMSE =
1

L

L∑
i=1

‖xi − x̂i‖22
‖xi‖22

(5.20)

where x̂i is the reconstruction of the ith test vector xi, and L is the number of test

samples. For the noisy examples, we specify the distortion ratio as 10 log10(ANMSE),

in order to better relate the recovery distortion to the signal-to-noise ratio (SNR).

The cost model parameter is selected as αMul = 0.8 for Mul-A?OMPK . As the residue-

based termination criterion allows for a larger value, it is relaxed to αMul = 0.9 for

Mul-A?OMPe. Since the AMul model also allows for larger choices than the Mul model,

we choose an even larger value, αAMul = 0.97, for AMul-A?OMPe. As a result of these

increments, the A?OMP algorithm is accelerated significantly.

The nonzero entries of the test samples are selected from four different random ensem-

bles. The nonzero entries of the Gaussian sparse signals are drawn from the standard

Gaussian distribution. Nonzero elements of the uniform sparse signals are distributed

uniformly in [−1, 1], while those of the binary sparse signals are set to 1. The con-

stant amplitude random sign (CARS) sparse signals have nonzero elements with unit

magnitude and random sign.

The recovery simulations for A?OMP are performed using the AStarOMP software pack-

age [118]. The other algorithms are run using freely available software such as `1−magic

[108], Sparsify [119], Threshold-ISD [121], and the MATLAB implementation of SL0

[122].

5.4.2 Exact Recovery Rates and Reconstruction Error

The first set of simulations involve the exact recovery rates and ANMSE for the Gaussian,

uniform, and binary sparse signals. For this case, we set N = 256 and M = 100, whereas
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K ∈ [10, 45] and Kmax = 55. Each test set consists of 500 randomly generated sparse

vectors.

The recovery results for the Gaussian and uniform sparse signals are depicted in Fig-

ure 5.1 and 5.2, respectively. We observe that the A?OMP variants yield similar ANMSE

values, whereas the residue-based termination significantly improves the exact recovery

rates. It is also evident that A?OMPe is better than A?OMPK at identifying smaller

magnitude coefficients, which hardly change the ANMSE, however increase the exact

recovery rates. In comparison to the other algorithms, the A?OMP variants perform

significantly better recovery. At the best, A?OMPe provides exact recovery until K = 40

and K = 35 for the Gaussian and uniform ensembles, respectively. These breakpoints

are clearly far beyond the other algorithms.

To reveal the benefits of the adaptive-multiplicative cost model over the multiplicative

one, we plot the average run time per vector in Figure 5.3. The figure is limited to

the OMP and A?OMP algorithms, which are tested using the AStarOMP software.

The other algorithms are ignored as they run in the MATLAB environment, because

of which their run times are not comparable. We observe that both the residue-based

termination and the adaptive-multiplicative cost model significantly accelerate A?OMP

due to the relaxation of α to larger values. Since AMul-A?OMPe can afford the largest

α, it is significantly faster than the other A?OMP variants. These findings confirm the

claim in Section 5.3 that increasing α reduces the number of explored nodes, and hence

accelerates A?OMP2.

In Figure 5.4, we illustrate the recovery performance for the binary sparse signals, which

are known as the most challenging case for greedy algorithms [16, 17]. As expected, `1

norm minimization is the best performer in this simulation. As above, A?OMP recovery

is significantly improved with the utilization of the residue-based termination criterion.

Although A?OMPK performs worse than SP, we observe that A?OMPe outperforms all

the greedy alternatives involved in the tests.

2Note that the complexity-accuracy trade-off, discussed in the previous chapter, is also valid for the
adaptive-multiplicative cost model. That is, decreasing αAMul would further improve the recovery, but
also increase the run time of the search.
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Figure 5.1: Recovery results over sparsity for the Gaussian sparse signals.
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Figure 5.2: Recovery results over sparsity for the uniform sparse signals.
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Figure 5.3: Average run time of A?OMP per vector with the AStarOMP software.
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Figure 5.4: Recovery results over sparsity for the binary sparse signals.

5.4.3 Phase Transitions

Empirical phase transitions provide important means for practical evaluation of sparse

signal recovery algorithms, since they reveal the recovery performance over the feasible

range of M and K. Let us first define normalized measures for the observation length

and sparsity level as λ = M
N and ρ = K

M . As discussed in [16], the phase transition curve

is mostly a function of λ. That is, it remains unaltered when N changes. Hence, phase

transition curves allow for general characterization of the recovery performance.

In order to obtain the phase transition curves, we fix N = 250, and alter M and K
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to sample the {λ, ρ} space for λ ∈ [0.1, 0.9] and ρ ∈ (0, 1]3. For each {λ, ρ} tuple, we

randomly generate 200 sparse instances and run AMul-A?OMPe, OMP, BP, SP, ISD

and SL0 algorithms for the recovery. Setting the exact recovery criterion as ‖x− x̂‖2 ≤

10−2‖x‖2,4 where x̂ is the recovery of x, we count the number of exactly recovered

samples in each test. The phase transitions are then obtained using the methodology

described in [16]. That is, for each λ, we employ a generalized linear model with logistic

link to describe the exact recovery curve over ρ, and then find the ρ value which yields

50% exact recovery probability. Combining the results over the whole λ range, we end up

with the empirical phase transition curve5. This procedure is repeated for the Gaussian,

uniform, and CARS sparse signals to reveal the effect of nonzero element distribution6.

First, it is worth to discuss the optimal choice of Kmax. Consider the normalized measure

ρmax = Kmax/M . This definition helps us to identify the optimal ρmax values over the

whole λ range. Due to the robustness of the phase transitions with respect to N , we can

then select Kmax = ρmaxM using the optimal ρmax value for a particular λ. In order to

find an optimal formulation for ρmax as a function of λ, we have run a number of recovery

simulations, where we have observed that the phase transition of AMul-A?OMPe is quite

robust to the choice of Kmax, with a perturbation up to %3 in the phase transition

curve. Hence, the recovery accuracy is mostly independent of Kmax
7. Yet, based on

our experience from these experiments, we propose to choose ρmax = 0.5 + 0.5λ taking

into account both the accuracy and the complexity of the search8. The phase transition

curves below are obtained with this setting.

The resultant empirical phase transition curves are depicted in Figure 5.5. These in-

dicate that AMul-A?OMPe yields better phase transitions than the other algorithms

for the Gaussian and uniform sparse signals. Contrarily, for the CARS case, BP and

ISD perform better than the other algorithms involved, while AMul-A?OMPe is the

third best. As for the effect of the coefficient distribution on the recovery performance,

3The λ axis is sampled with a resolution of 0.1, while the corresponding ρ values are chosen densely
around the phase transition region for a specific λ in order to obtain a fine modelling of the transition
region.

4This exact recovery condition is the same as the one in [16]. This choice has been made for the
compatibility of the computed phase transitions with [16].

5Note that, due to narrow phase transition regions [16], the region below the phase transition curve
promises exact recovery with high probability for the corresponding recovery method.

6This procedure is the same as the computation of phase transitions in Chapter 3.
7Obviously, Kmax should be chosen large enough, i.e., larger than the underlying sparsity level.
8Observe that with this choice, Kmax is assured to be larger than the phase transition region, i.e.,

larger than the maximum sparsity level which AMul-A?OMPe can exactly recover for all λ values and
involved distributions.
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Figure 5.5: Phase transitions of AMul-A?OMPe, BP, SP, OMP, ISD, and SL0 for the
Gaussian, uniform, and CARS sparse signals.

we observe that BP is robust, whereas the phase transition curves for AMul-A?OMPe

and OMP exhibit the highest variation among different nonzero element distributions.

When the nonzero values cover a wide range, such as for the Gaussian distribution, the

performances of A?OMPe and OMP are boosted. In contrast, nonzero values of equal

magnitude expectedly turn out to be the most challenging case for these two. These

observations indicate that OMP-type algorithms are more effective when the nonzero el-

ements span a wide range of magnitudes. Remember that we have discussed this issue in

Section 3.5.1 with a simple analytical reasoning for OMP, which states that the spread

of the elements in the correlation vector between the observation and the dictionary

atoms is narrower for CARS type signals. This increases the error rate of OMP-type

algorithms, including A?OMP, for such signals.

Comparison of the phase transition curves with the theoretical guarantees of A?OMP

leads to an important conclusion. According to Section 5.2, the exact recovery conditions

of A?OMP require an RIC which is inversely proportional to
√
K. In the literature, such

conditions are acknowledged to necessitate M ≈ O(K2 log(N)) measurements for exact

recovery, i.e., M ∝ K2, [4, 123–125]. On the other hand, the empirical phase transitions

in Figure 5.5 imply that the number of necessary measurements for exact recovery exhibit

a much smaller slope with increasing K. In fact, we may deduce from these curves that

approximately M ∝ K
2
3 measurements are enough to exactly recover x in practice9.

9Though we have not made extra efforts to find the best match with the empirical phase transitions,

the curves obtained by setting M ≈ cK
2
3 , where c is a constant depending on N , turns out to be close
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This suggests that the presented theoretical guarantees are loose especially for large K

values. Consequently, the empirical exact recovery rates of A?OMP promise being, at

least asymptotically, better than the rates which the presented theoretical analysis may

guarantee.

5.4.4 Recovery from Noisy Observations

In order to evaluate the empirical recovery performance of A?OMPe in noisy situations,

we alter the observation model as

y = Φx + n (5.21)

where n represents some additive observation noise. We model n as white Gaussian

noise, and alter SNR, which is defined as 20 log ‖y‖2‖n‖2 , for the purpose of obtaining a

general performance measure. Figure 5.6 illustrates the recovery performance over SNR

where K = 30 and K = 25 for the Gaussian and uniform sparse signals, respectively.

As mentioned before, the termination parameter ε is adjusted proportional to the true

SNR level in these simulations. The regularization parameter of BP is also adjusted in

a similar fashion. We observe that A?OMP is superior to the other algorithms except

for 5dB SNR where BP is slightly better. In addition, A?OMPe improves the recovery

accuracy slightly over A?OMPK for low SNR values. Figure 5.7 depicts the average

A?OMP run times in this scenario. Similar to the previous examples, AMul-A?OMPe

is significantly faster than the other A?OMP variants.

5.4.5 A Hybrid Approach for Faster Practical Recovery

Based on the results above, it is possible to speed up the recovery from noise-free obser-

vations using a hybrid of OMP and AMul-A?OMPe. First, OMP provides exact recovery

up to some mid-sparsity range. Moreover, there are regions where AMul-A?OMPe pro-

vides exact recovery while OMP also yields quite high recovery rates. In these regions,

we can facilitate faster recovery without sacrificing the accuracy by a simple two stage

hybrid scheme: We run OMP first, and then AMul-A?OMPe only if OMP fails. This

enough to the curves in Figure 5.5. Note that we do not intend to find a precise relation between M
and K, and the exponent 2

3
is only a rough indicator of the relation between the two quantities.
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Figure 5.6: Average recovery distortion over SNR in the noisy recovery scenario. K
is selected as 30 and 25 for the Gaussian and uniform sparse signals, respectively.
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Figure 5.7: Average run time per vector of A?OMP in the noisy recovery scenario
using the AStarOMP software. K is selected as 30 and 25 for the Gaussian and uniform

sparse signals, respectively.

strategy reduces the number of AMul-A?OMPe runs and accelerates the algorithm, if

we can properly identify OMP failures. This is indeed not difficult: Assuming that

K+Kmax-RIP holds, OMP is successful when the residue vanishes. Consequently, the

hybrid approach runs AMul-A?OMPe only when ‖r‖2 > ε after OMP. Moreover, we use

the order by which OMP chooses the vectors in consequent iterations in order to set the

priorities of trie nodes in the AStarOMP software. That is, a vector OMP chooses first

gets higher priority, and is placed at the lower levels of the search trie. This reduces not
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Figure 5.8: Performance of the hybrid scheme for the Gaussian sparse vectors.

only the trie size but also the cost of path additions.

The recovery results for the hybrid approach are depicted in Figure 5.8 in comparison

to the OMP and AMul-A?OMPe algorithms. We observe that AMul-A?OMPe and the

hybrid approach yield identical exact recovery rates, while the latter is significantly

faster. This acceleration is proportional to the exact recovery rate of OMP. That is,

the hybrid approach is faster when the exact recovery rate of OMP is higher. These

results show that this hybrid approach is indeed able to detect the OMP failures, and

run AMul-A?OMPe only for those instances.

5.4.6 Image Recovery Examples

As for a more realistic case, we demonstrate recovery of two 512 × 512 images below.

The recovery of these images is performed in blocks of size 8 × 8 as in the previous

chapter. The aim of this block processing is to break the recovery problem into a

number of smaller and simpler subproblems. To exploit compressibility of the images,

we perform the reconstruction in the 2D Haar Wavelet basis Ψ. Note that, in this case,

the reconstruction dictionary is not the observation matrix Φ itself, but ΦΨ. That is,

x denoting the sparse wavelet coefficient vector of interest, the image itself is obtained

as Ψx after the recovery of x from the observation y = ΦΨx. In the first example, the

image “bridge” is preprocessed prior to the recovery such that each 8×8 block isK-sparse
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in the 2D Haar Wavelet basis, i.e., for each block only the K largest magnitude wavelet

coefficients are kept. As for the second example, the image “butterfly” is recovered

without any such preprocessing. From each block of the images, M = 32 observations

are taken, where the entries of Φ are randomly drawn from the Gaussian distribution

with mean zero and standard deviation 1/N . The search parameters of AMul-A?OMP

are selected as I = 3 and P = 200, while B varies in {2, 3}. Due to the different settings

of the two problems, AMul-A?OMP is run with different Kmax and αAMul values, as

discussed below.

5.4.6.1 Demonstration on a Sparse Image

The first example is the recovery of the image “bridge”, which, as indicated above, is

first preprocessed such that each 8× 8 block is K-sparse in the 2D Haar Wavelet basis,

where K = 12. For this sparse case, Kmax is selected as 20 while αAMul is reduced to

0.85 in order to compensate for the decrement in Kmax, which decreases the auxiliary

term in (5.19).

Recovery results for the preprocessed sparse image “bridge” are shown in Figure 5.9.

The upper left panel of Figure 5.9 is the preprocessed image “bridge” itself, while BP

and AMul-A?OMPe recoveries are depicted in the other panels. We observe that BP

provides a peak signal-to-noise ratio (PSNR) value of 29.9 dB, while AMul-A?OMPe

improves the recovery PSNR to 42.1 dB for B = 2 and to 49.3 dB for B = 3. A careful

investigation of the recovered images yields that AMul-A?OMPe improves the recovery

especially at detailed regions and boundaries.

5.4.6.2 Demonstration on a Compressible Image

The second image recovery example in this section deals with a harder problem since

the image “butterfly” is not sparse. In this case, we exploit the compressibility of this

image in the transform domain, and aim at recovering the best K-sparse approximation

to the image in this domain. Due to the different structure of the recovery problem

than the one above, AMul-A?OMP should better be run with a different setting in

this case. We set Kmax = 12, that is, we are interesting in recovering the largest 12

wavelet coefficients for each block. On the other hand, after working with a number of
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Figure 5.9: Recovery of the image “bridge” using BP and AMul-A?OMPe.

compressible images, we have observed that increasing the auxiliary term reduces the

quality of the approximation. Therefore, αAMul is selected as 0.9710. For this case, we

demonstrate AMul-A?OMP only with B = 311.

Figure 5.10 shows the recovery results for the image “butterfly”, which is depicted on

the left panel of the figure. The middle and right panels of Figure 5.10 are the BP

and AMul-A?OMPe recoveries of the image, respectively. In this case, both BP and

10This set of parameters was observed to yield optimal AMul-A?OMP recovery accuracy over a set of
other images as well.

11Note that modifying B and I does not significantly alter the recovery performance.
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Figure 5.10: Recovery of the image “butterfly” using BP and AMul-A?OMPe. BP
and AMul-A?OMPe yield 27.8 and 27.5 dB PSNR, respectively.

AMul-A?OMPe recoveries end up with very close PSNR values12. In particular, BP and

AMul-A?OMPe yield 27.8 and 27.5 dB PSNR, respectively13. We observe that the two

approximations are also close in terms of the perceptual quality, while each algorithm

performs better than the other on some particular regions of the image.

5.5 Summary

In this chapter, our fundamental goal has been the theoretical analysis of the A?OMP

algorithm. For this purpose, we have first derived an RIP condition for the exact recovery

of any K-sparse signal from noise-free measurements with A?OMPK . Next, we have

extended this result to A?OMPe, which utilizes the residue-based termination criterion

instead of the sparsity-based one. In particular, we have stated that a K-sparse signal

can be recovered with A?OMPe if the search selects a p-optimal path for expansion where

the notion of p-optimality is based on the number of correct and incorrect indices in the

support estimate. Interestingly, the exact recovery guarantees of A?OMPK represent

a special case of this condition. This has led to the conclusion that A?OMPe enjoys

at least the same general exact recovery guarantees as A?OMPK . Further comparison

of the two has also revealed that the recovery condition of A?OMPe represents a less

restrictive requirement than that of A?OMPK . This result encourages utilising the

12We have observed similar behavior for a set of other images as well.
13Note that the PSNR value of the best 12-sparse representation of the image “butterfly”, i.e., the

maximum PSNR value that can be obtained with any algorithm searching for the best 12-sparse repre-
sentation, is 32.3 dB.
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residue-based termination criterion instead of the sparsity-based one for recovery from

noise-free observations.

In addition, we have also introduced the novel adaptive-multiplicative cost model, which

extends the multiplicative model in an adaptive manner. This model allows for a larger

choice of the auxiliary model parameter, which reduces the number of nodes explored

throughout the search. As a result of this reduction, the AMul cost model accelerates

the search without sacrificing the recovery accuracy.

Lastly, we have demonstrated the empirical recovery performance of AMul-A?OMPe by

extensive simulations, including sparse signals with different characteristics in addition

to noisy and noise-free observations. The results of these experiments support that

AMul-A?OMPe possesses better recovery capabilities and shorter execution times than

A?OMPK . A?OMP variants perform better recovery than BP, SP, IHT, OMP, SL0, and

ISD for the uniform and Gaussian sparse signals. With constant magnitude nonzero

elements, such as for the binary and CARS sparse signals, AMul-A?OMPe still provides

better recovery accuracy than the greedy alternatives involved, while BP yields the

most accurate recovery among the candidates for such signals. Among the experiments,

we have also presented a hybrid approach, which first applies OMP, and then AMul-

A?OMPe only if OMP failure is detected. The experiments have shown that this hybrid

approach accelerates the recovery without sacrificing the accuracy. Finally, we have

demonstrated AMul-A?OMPe on images, where we have observed that both algorithms

perform very close when the underlying image is compressible, whereas AMul-A?OMPe

promises significant improvements in the recovery accuracy over BP for sparse images.



Chapter 6

Forward-Backward Pursuit: A

Novel Two Stage Algorithm for

Sparse Signal Recovery

6.1 Introduction

In this chapter, we introduce a novel two stage greedy algorithm, which is called forward-

backward pursuit (FBP), for sparse signal recovery. As the name indicates, FBP employs

forward selection and backward removal steps which iteratively expand and shrink the

support estimate of the underlying sparse signal. With this structure, FBP falls into

the general category of two stage thresholding (TST) algorithms [16], which present a

framework for methods based on the iterative utilization of two stages with thresholding.

Though FBP can be seen close to the other TST-type algorithms such as subspace

pursuit (SP) [17] and compressive sampling matching pursuit (CoSaMP) [18], it involves

a fundamental difference from these: In contrast to SP and CoSaMP, the forward and

backward step sizes of FBP are not the same. Utilization of a larger forward step than

the backward one allows for the iterative expansion of the support estimate, which, to

the best of our knowledge, appears for the first time in the context of TST algorithms.

Due to the utilization of different forward and backward step sizes, FBP possesses some

important advantages over both the other TST algorithms and forward greedy schemes

113
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such as the orthogonal matching pursuit (OMP) algorithm [6]. As for the TST schemes,

CoSaMP and SP require a priori estimate of the sparsity level, K, which is most of the

time not available in practice. On the contrary, FBP allows for the expansion of the

support estimate from scratch until the residual error of the observation is either small

enough with respect to the noise level or vanishes for the noiseless case. Hence, FBP

does not require K a priori in contrast to SP and CoSaMP. Additionally, the backward

step of FBP can remove some possibly misidentified atoms from the support estimate,

which is an advantage over the forward greedy algorithms.

Another forward-backward greedy approach, namely the FoBa algorithm, has been in-

vestigated in [84] for the sparse learning problem. Though both FoBa and FBP consist

of iterative forward and backward steps, they have some fundamental differences: First,

the FoBa algorithm employs strict forward and backward step sizes of one. On the

contrary, the forward step size of FBP is greater than 1, while the backward step size,

which should be smaller than the forward step size, might also be chosen greater than

one. By increasing the difference between the forward and backward step sizes, FBP

terminates in less iterations. Second, FoBa takes a number of forward steps before it

takes a backward step depending on an adaptive decision criterion, while FBP employs

no criterion for the backward step1, which immediately follows each forward step. Fi-

nally, FoBa has been applied for the sparse learning problem, whereas we propose and

evaluate FBP for sparse signal recovery from compressed measurements.

The findings of this chapter have been presented at the 2012 European Signal Processing

Conference (EUSIPCO-2012) [126] in a partial form.

6.1.1 Outline

This chapter is organized as follows: The FBP algorithm is introduced in Section 6.2.

Section 6.3 discusses the relations of the FBP algorithm to the TST-type algorithms

and the forward greedy methods. Section 6.4 is devoted to the analyses of the empirical

recovery performance of FBP. The recovery abilities of FBP are demonstrated on sparse

signals with different nonzero coefficient distributions in noiseless and noisy observation

scenarios in addition to images in comparison to BP, SP, and OMP. These results show

that FBP can perform better recovery than SP and BP in most scenarios. This indicates

1Note that this is not trivial as in the FoBa case when the backward step size is greater than one.



Forward-Backward Pursuit 115

that SP, which is announced as the globally optimum TST scheme in [16], is not neces-

sarily optimal for all nonzero element distributions2. Finally, we conclude this chapter

with a brief summary of our findings in Section 6.5.

6.2 The Forward-Backward Pursuit Algorithm

Forward-backward pursuit is an iterative algorithm, which employs two stages at each

iteration. The first stage of FBP, the forward step, is meant for expanding the support

estimate by α indices, where α > 1. We call α the forward step size. These α indices

are chosen as the maximum magnitude elements of the correlation vector between the

residue and the dictionary columns. The second stage of FBP is the backward step

which prunes the support estimate by removing β indices where β < α. Analogous to

α, β is referred to as the backward step size. In order to decide which indices will be

removed, the projection coefficients of the atoms in the support estimate are computed

by orthogonal projection of the observation vector onto the subspace represented by the

support estimate. Then, the indices corresponding to the smallest magnitude coefficients

are pruned. The orthogonality of the residue to the subspace defined by the pruned

support estimate is ensured by a second projection of the residue onto this subspace.

These forward and backward steps are iterated until the energy of the residue either

vanishes or is less than a threshold, which is proportional to the energy of the observed

vector.

An important issue for the performance of FBP is the choice of the forward and backward

step sizes. The forward step size α should be chosen larger than 1. It is possible to

choose α as large as problem-specific constraints allow, while a reasonable approach

would obviously be selecting it small in comparison to the observation length M in

order to avoid linearly dependent subsets in the expanded support estimate after the

forward step. As for the backward step, by the definition of FBP, β should be smaller

than α. This choice is necessary for the support estimate to be enlarged by α−β indices

at each iteration. As discussed below in relation to the other TST schemes, this leads

to an advantageous mechanism in which no a priori estimate of the sparsity level K is

2In [16], the optimality is discussed in terms of the worst case performance of the greedy algorithms,
which corresponds to the recovery of sparse signals with constant magnitude nonzero elements. In that
case, the modified SP turns out to be the best TST scheme. However, our results indicate that this is
not necessarily true for other distributions.
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required. As for finding an empirically optimal rule for choosing α and β, we present

phase transition curves of FBP with various α and β choices among the simulation

results below. It turns out that choosing α ∈ [0.2M, 0.3M ] and β = α − 1 leads to the

optimal recovery performance in practice, whereas the algorithm is also quite robust to

other choices of α and β as well.

6.2.1 Notation

Let us clarify the notation used in the rest of this chapter: As before, we denote the

K-sparse signal of interest by x ∈ RN . M represents the number of observations. The

observation matrix is defined as Φ = [φ1 φ2 ... φN ], where φi ∈ RM denotes the ith

column of Φ. The observation vector is referred to as y ∈ RM , where y = Φx. T i and

ri denote the support estimate and the residue after the ith FBP iteration, respectively.

T̃ i is the expanded support estimate after the forward step of the ith iteration. Finally,

ΦJ denotes the matrix of the columns of Φ indexed by J , and xJ is the vector of the

elements of x indexed by J .

6.2.2 The Proposed Method

The FBP algorithm can now be outlined as follows: We initialize the support estimate

as T 0 = ∅, and the residue as r0 = y. At iteration k, first the forward step expands

T k−1 by indices of the α largest magnitude elements in Φ∗rk−1. This builds up the

expanded support set T̃ k. Then the projection coefficients are computed by the orthog-

onal projection of y onto ΦT̃ k . The backward step prunes T̃ k by removing the β indices

with the smallest magnitude projection coefficients. This produces the final support

estimate T k of the kth iteration. Finally, the projection coefficients w for the vectors

in ΦT k are computed via the orthogonal projection of y onto ΦT k , and the residue is

updated as rk = y −ΦT kw. The iterations are carried on until ‖rk‖2 < ε‖y‖2. After

termination of the algorithm at the lth iteration, T l gives the support estimate for x,

and the corresponding nonzero elements are set equal to the projection coefficients of y

onto T l. The pseudo-code of FBP is given in Algorithm 6.1.

As for the termination parameter ε, we choose it very small in practice (on the order of

10−6 for the experiments in this chapter) when the observations are noise-free. For noisy
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Algorithm 6.1 FORWARD-BACKWARD PURSUIT

input: Φ, y

define: α, β, Kmax, ε

initialize: T 0 = ∅, r0 = y, k = 0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

while true do

k = k + 1

forward step:

Tf = arg max
J :|J |=α

∥∥Φ∗J rk−1
∥∥

1

T̃ k = T k−1 ∪ Tf
w = arg min

w

∥∥y −ΦT̃ kw
∥∥

2

backward step:

Tb = arg min
J :|J |=β

‖wJ ‖1

T k = T̃ k − Tb
projection:

w = arg min
w

‖y −ΦT kw‖2
rk = y −ΦT kw

termination rule:

if
∥∥rk∥∥

2
≤ ε ‖y‖2 or

∣∣T k∣∣ ≥ Kmax then

break

end if

end while

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

x̃ = 0

x̃T k = w

return x̃

observations, ε should be selected depending on the noise level. To avoid the algorithm

running for too many iterations in case of a failure, the maximum size of the support

estimate is also limited by Kmax.
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6.3 Relations to Other Greedy Algorithms

6.3.1 Two Stage Thresholding Algorithms

Two stage thresholding is defined as a general class of algorithms where the forward step

consists of a modification of the sparse estimate followed by thresholding and projection

of the residue onto the selected support, and the backward step consists of a second

thresholding operation, which is also mostly followed by projection of the residue onto

the pruned support estimate.

The most common examples of the TST-type algorithms are SP and CoSaMP. As for

FBP, these algorithms are also based on iterative expansion and shrinkage of the support

estimate. They allow for both the addition and removal of cK nonzero indices per

iteration, where c = 1 for SP and c = 2 for CoSaMP. The main drawback of these

algorithms is the equal forward and backward step sizes, as a result of which the support

size should be kept fixed between the iterations. That is, these algorithms iteratively

refine a support estimate with fixed size. Hence, they require an a priori estimate of the

underlying sparsity level K. This is an important handicap for the practical application

of these algorithms, since K is mostly unknown.

In [16], Maleki and Donoho propose an optimum TST scheme, which turns out to be

a tuned version of the SP algorithm. They suggest utilizing an optimally tuned sup-

port size for a given {M,N} pair. The tuning is performed using sparse signals with

constant amplitude random sign (CARS) nonzero elements, which constitute the most

difficult recovery problem for greedy methods. The optimum support size is selected

proportional to the sparsity ratio K
M corresponding to the 50% exact recovery rate for

the actual M
N ratio. The motivation behind this choice is selecting the support size as

large as the maximum sparsity level which SP can exactly recover for the actual values

of M and N . As the optimum K
M rate is pre-computed for each M

N value, the support

size can be decided on-the-fly using the actual M and N values. The resultant tuned

SP algorithm turns out to be best-performing TST scheme for the CARS sparse signals

according to the empirical results in [16]. On the other hand, these results3 also indicate

that overestimating the support size degrades the recovery accuracy. Hence, though this

3See Figure 5 in [16], where choosing the support size larger than the actual sparsity level degrades
the recovery performance. According to this figure, the support size of SP should be exactly equal to
the actual sparsity level for optimal performance.
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tuned algorithm is acknowledged as the optimum TST scheme in [16], its performance

is usually worse than the SP algorithm which requires an oracle to predict the actual

sparsity level. Therefore, we employ the SP algorithm with an oracle, and not the tuned

TST, in our experiments below. In addition, [16] only covers the empirical performance

in the worst case scenario for the greedy methods involving the CARS sparse signals.

Actually, the performances of greedy methods vary greatly for different distributions

as demonstrated below by our empirical results. Though the CARS experiment is the

limiting worst case, other greedy algorithms, such as OMP and FBP, yield better recov-

ery results when the underlying sparse signals do not have constant amplitude nonzero

elements.

In contrast to SP and CoSaMP, the FBP algorithm does not require an a priori estimate

of the sparsity level K. Unlike the tuned TST, it does not necessitate a tuning of

the support size either. As explained above, FBP enlarges the support estimate by

α− β indices at each iteration until termination of the algorithm, which is based on the

residual power instead of the sparsity level. Hence, neither the forward and backward

steps nor the termination criterion require an estimate of the sparsity level. Among the

simulations presented in the next section, we demonstrate a simple empirical strategy for

choosing optimal step sizes, according to which, these can be chosen as a fixed ratio of

the observation length. Moreover, the simulation results also indicate that the algorithm

is quite robust to the choice of the forward and backward step sizes. This makes the

FBP algorithm easily applicable in practice in contrast to SP and CoSaMP. However,

this advantage comes at a cost, at least for now: The theoretical guarantees of FBP

cannot be provided in a way similar to the SP or CoSaMP algorithms, which make

use of the support size being fixed as K after the backward step. Consequently, we

cannot provide the theoretical analysis of FBP in this work, and leave this as a possible

research direction for the future. Note that, however, most of the theoretical analysis

steps of SP or CoSaMP also hold for FBP. In addition, success of the forward step

may be guaranteed with a condition similar to that for success of an A?OMP iteration

presented in the previous chapter. The success condition for the backward step, however,

still remains open.
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6.3.2 Forward Greedy Algorithms

Sparse signal recovery schemes that enlarge the support estimate iteratively via forward

selection steps can be classified as forward greedy algorithms. These involve algorithms

that employ a forward step size of one, such as the matching pursuit (MP) [68] and

OMP algorithms, in addition to more complicated methods which utilize selection of

multiple indices at each forward step. Examples for the latter include MP variants such

as the regularized OMP (ROMP) algorithm [27, 101], the generalized OMP algorithm

(GOMP) [28, 103], and the Stagewise OMP (StOMP) algorithm [102].

The forward greedy algorithms have a fundamental drawback by definition: Since they

possess no backward removal mechanism, any index that is inserted into the support

estimate cannot be removed. That one or more incorrect elements remain in the support

until termination may cause the recovery to fail. FBP, on the contrary, employs a

backward step, which provides means for removal of atoms from the support estimate.

This gives FBP the ability to cover up for the errors made by the forward step.

6.4 Empirical Analyses

This section is reserved for the demonstration of the FBP recovery performance in com-

parison to the basis pursuit (BP), SP, and OMP algorithms. For this purpose, we run

recovery simulations involving different nonzero coefficient distributions, noiseless and

noisy observations, and images. First, we compare the exact recovery rates, average

recovery error, and run times of FBP with those of OMP, SP, and BP for signals with

nonzero elements drawn from the Gaussian distribution. In order to generalize the re-

sults to a wide range of M and K along with different nonzero element distributions, we

provide the empirical phase transition curves, which are obtained using the procedure

defined in [16]. Meanwhile, these phase transition curves also serve for the purpose of

investigating the optimal α and β choices. We also compare these phase transitions

with those of the A?OMP algorithm from Chapter 5. Next, we demonstrate recovery

from noisy observations. Finally, we test our proposal on images to illustrate the recov-

ery performance for realistic coefficient distributions. Note that we run OMP with the

residue-based termination criterion in the simulations below. Consequently, the abbre-

viation OMP, where we intentionally skip the subscript in the rest of this chapter, refers
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actually to the version OMPe. In addition, OMP shares the same set of termination

parameters, i.e., ε and Kmax, with FBP.

6.4.1 Exact Recovery Rates and Reconstruction Error

First, we compare the exact recovery rates, recovery error, and run times of FBP using

various α and β values with those of OMP, SP, and BP. In these simulations, the signal

and observation sizes are fixed as N = 256 and M = 100 while K varies in [10, 50].

For each K, the recovery simulations are repeated over 500 test samples with randomly

located nonzero elements. The nonzero elements of these samples are drawn randomly

from the standard Gaussian distribution. As before, we call this type of sparse signals

the Gaussian sparse signals. For each test sample, a different observation matrix is

drawn randomly from the Gaussian distribution with mean zero and standard deviation

1/N . ε is set to 10−6 and Kmax is 55 for both FBP and OMP. The recovery error is

expressed in terms of the average normalized mean-squared-error (ANMSE), which is

computed for each K over all involved K-sparse test samples as

ANMSE =
1

500

500∑
i=1

‖xi − x̂i‖22
‖xi‖22

(6.1)

where x̂i is the recovery of the ith test vector xi. In addition, we present the exact

recovery rates, which represent the ratio of perfectly recovered test samples to the whole

test data. The exact recovery condition is specified as ‖x − x̂‖2 ≤ 10−2‖x‖2, where x̂

denotes the recovery of x.

Figure 6.1 and 6.2 depict the reconstruction performance of FBP with various choices

of α and β for the Gaussian sparse signals in comparison to the OMP, BP, and SP

algorithms. Figure 6.1 is obtained by varying α in [2, 30], while the backward step

size is selected as β = α − 1 for each different forward step size. That is, the support

estimate is expanded by one element per iteration, whereas the forward step size varies.

For Figure 6.2, the forward step size is fixed as α = 20, and the backward step size

is altered in [13, 19]. This corresponds to changing the increment in the support size

per iteration with a fixed forward step size. The run times of the FBP, SP, and OMP

algorithms are also compared, while BP is excluded as it is incomparably slower than

the other three algorithms.
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Figure 6.1: Reconstruction results over sparsity for the Gaussian sparse vectors. For
FBP, β = α− 1.
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Figure 6.2: Reconstruction results over sparsity for the Gaussian sparse vectors. For
FBP, α = 20.

According to Figure 6.1, increasing α while keeping the support increment α − β fixed

improves the recovery performance of FBP. We observe that the exact recovery rates of

FBP are significantly better than the other candidates for all choices of α, even including

the modest choice α = 2. BP, SP, and OMP start to fail at around K = 25, where FBP

is still perfect for all choices of α. Moreover, for α ≥ 20, the FBP failures begin only

when K > 30. As for the ANMSE, FBP is the best performer when α ≥ 20. With

this setting, BP can beat FBP in ANMSE only when K > 40. In addition, FBP yields
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better recovery than OMP and SP for all choices of α.

In Figure 6.2, we observe that increasing β for a fixed α also improves the recovery

performance. In this case, the exact recovery rates of FBP increase significantly with the

backward step size, while the corresponding ANMSE values remain mostly unaltered.

This indicates that when β is increased, nonzero elements with smaller magnitudes,

which do not significantly improve the recovery error, can be more precisely recovered.

In comparison to the other algorithms involved in the simulation, FBP is clearly the

best performer for β > 15. Even with β = 15, FBP is still the best algorithm when both

the exact recovery rates and ANMSE are considered together. Similar to the previous

test case, BP can produce lower ANMSE than FBP only for K > 40.

As for the run times, we expectedly observe that increasing α or β slows down FBP. This

is due to the decrease in the increment of the support size per iteration, which increases

the number of iterations and the number of required orthogonal projection operations.

Moreover, the dimensions of the orthogonal projection operations also increase with the

forward step size. On the other hand, increasing α−β decreases the number of necessary

iterations. As a result, FBP terminates faster. More important for this example, we

observe that the run times of FBP, SP, and OMP are very close when α = 20 and

β ≤ α − 2. In case α = 20 and β = 17, the speed of FBP and OMP are almost the

same, whereas the reconstruction performance of FBP is significantly better than the

other algorithms involved. With α = 20 and β = 15, FBP is even faster than OMP and

SP, while its performance is still better than these in general4.

To summarize the findings of this section, we observe that FBP performs better recovery

than all other candidates in general for the Gaussian sparse signals. That its performance

is better than the SP algorithm indicates that it also yields better recovery than the

optimally tuned TST of [16] for this type of sparse signals. Moreover, these improvements

can be obtained in quite short run times, which are equal to or better than those of the

OMP and SP algorithms.

4Note that the speed of FBP can be further improved by removing the orthogonal projection operation
after the backward step, at the expense of a slight degradation in the recovery performance.
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6.4.2 Phase Transitions

The phase transitions are important for the empirical evaluation of sparse signal recov-

ery algorithms over a wide range of the sparsity level and the observation length. Below,

we present the empirical phase transition curves of the FBP algorithm obtained from re-

covery simulations involving three different nonzero element distributions in comparison

to those of the OMP, SP, and BP algorithms. The first one of these distributions is the

uniform sparse signals where the nonzero elements are distributed uniformly in [−1, 1].

The second type is the Gaussian sparse signals which have been investigated for the ex-

act recovery rates and ANMSE above. The last ensemble involved is the CARS sparse

signals where nonzero elements have unit magnitude with random sign. Below, we first

compare the phase transitions of FBP with different α and β choices for the uniform

sparse signals in order to investigate the optimality of these over the observation length.

These simulations provide us an empirical strategy about how to choose the FBP step

sizes in relation to M . Next, we compare FBP with a fixed setting to BP, OMP, and

SP for all three test sets.

To explain how we obtain the empirical phase transitions, let us first define normalized

measures for the observation length and the sparsity level as λ = M
N and ρ = K

M . To

obtain the empirical phase transition curves, we keep the signal length fixed at N = 250,

and alter M and K to sample the {λ, ρ} space for λ ∈ [0.1, 0.9] and ρ ∈ (0, 1]5. For each

{λ, ρ} tuple, we randomly generate 200 sparse test signals and run FBP, OMP, BP, and

SP algorithms for the recovery of each sparse signal. We employ an individual Gaussian

observation matrix for each sparse signal. The termination parameters are selected as

ε = 10−6 and Kmax = M for FBP and OMP. Specifying the exact recovery condition

as ‖x − x̂‖2 ≤ 10−2‖x‖2,6 where x̂ denotes the recovery of x, the exact recovery rates

are obtained for each {λ, ρ} tuple and each algorithm. The phase transitions are then

obtained using the methodology described in [16]. That is, for each λ, we employ a

generalized linear model with logistic link to describe the exact recovery curve over ρ,

5The λ axis is sampled with a resolution of 0.1, while the corresponding ρ values are chosen densely
around the phase transition region for a specific λ in order to obtain a fine modelling of the transition
region.

6This exact recovery condition is the same as the one in [16]. This choice has been made for the
compatibility of the computed phase transitions with [16].
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and then find the ρ value which yields 50% exact recovery probability7. Combining the

results over the whole λ range, we end up with the empirical phase transition curve8.

The phase transitions provide us important means for finding an empirical way of choos-

ing α and β optimally. As discussed in [16], the phase transition curve is mostly a

function of λ. That is, it remains unaltered when N changes. Moreover, the transition

region turns out to be narrower with N increasing. These claims are also supported by

some other publications in the literature, such as [102, 110, 127, 128]. Hence, in order

to find an optimal set of step sizes for FBP, we need to have a look at the empirical

phase transitions with different α and β choices. For a better understanding of their

optimality, α and β should not be fixed but be proportional to M . Trying to find fixed

α and β values is subject to fail mainly for very low or very high λ values. In other

words, it would not be possible to find a fixed optimal set {α, β} for the whole λ range

even when we fix N . This is, however, possible when α is proportional to M , and β is

related to the chosen α value. In order to find an optimal choice, we run two distinct

sets of simulations: First, we vary α in [0.1M, 0.4M ], whereas β = α − 1. Then we fix

α = 0.2M , and select β either in [0.7α, 0.9α] or as α− 1.

The phase transitions obtained by the procedure described above are depicted in Fig-

ure 6.3 for the Gaussian, uniform, and binary sparse signals. The graphs on the left side

of Figure 6.3 illustrate phase transitions with different α values, while those on the right

side show the changes with respect to different β values. These graphs indicate that

the performance of FBP fundamentally improves with α and β, except for very high α

choices. Another exception is the recovery of sparse signals with constant magnitude

nonzero elements, which constitute the hardest problem for this type of algorithms. For

this case, which is represented by the CARS ensemble, we observe that the gain with α

is not significant, and the phase transitions remain unaltered when β changes. Another

important observation that can be deduced from these results is that the performance

of FBP is quite robust to the step size choices.

Concentrating on the forward step, the graphs on the left side of Figure 6.3 reveal that

the phase transitions are stably improved with α until α = 0.3M for the uniform and

Gaussian sparse signals. Choosing α = 0.4M , in contrast, improves the phase transitions

7Note that, due to narrow phase transition regions [16], the region below the phase transition curve
promises exact recovery with high probability for the corresponding recovery method.

8This procedure is the same as the computation of phase transitions in Chapter 3 and Chapter 5.



Forward-Backward Pursuit 126

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

ρ

 

 
FBP, α=0.1M

FBP, α=0.2M

FBP, α=0.3M

FBP, α=0.4M

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

ρ

 

 
FBP, β=α−1

FBP, β=0.9α
FBP, β=0.8α
FBP, β=0.7α

β=α−1 α=0.2M

Uniform Sparse Signals

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

ρ

 

 
FBP, α=0.1M

FBP, α=0.2M

FBP, α=0.3M

FBP, α=0.4M

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

ρ

 

 
FBP, β=α−1

FBP, β=0.9α
FBP, β=0.8α
FBP, β=0.7α

Gaussian Sparse Signals

β=α−1 α=0.2M

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

ρ

 

 
FBP, α=0.1M

FBP, α=0.2M

FBP, α=0.3M

FBP, α=0.4M

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

ρ

 

 
FBP, β=α−1

FBP, β=0.9α
FBP, β=0.8α
FBP, β=0.7α

Binary Sparse Signals

α=0.2Mβ=α−1

Figure 6.3: Phase transitions of FBP with different forward and backward step sizes
for the uniform, Gaussian, and CARS sparse signals.
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only for the mid-λ region, while the results get worse especially for the high λ values9.

The reason for this degradation is the high value that α = 0.4M takes when M is large.

As a result of this large forward step size, the size of the expanded support estimate

exceeds M after the forward step when K is also large, i.e., the expanded support

estimate already becomes larger than the spark10 of the dictionary, before the solution

can be found. This leads to an ill-posed orthogonal projection problem, and causes the

recovery to fail. Hence, we suggest using α = 0.3M for a globally optimum FBP scheme,

while this value might be increased if the recovery problem lies in the mid-λ region. On

the other hand, taking into account the computational complexity, we observe that there

is not a significant decrement in the recovery performance when α is chosen smaller. As

a consequence of this observation, we select α = 0.2M below for faster termination, and

show that even this choice already leads to better phase transitions than OMP, BP, and

SP for the uniform sparse signals. In fact, the graphs on the left side of Figure 6.3 state

that the recovery performance of FBP is quite robust to the choice of the forward step

size.

As for the backward step, it is obvious that the recovery accuracy decreases with β for

the Gaussian and uniform sparse signals. However, we are also interested in observing

how fast this occurs. The results state that the loss is slight for the low λ range. Though

this degradation increases slightly with λ, we observe that the recovery performance of

FBP is quite robust to the choice of the backward step size in addition to its stability

over the forward step size, which has been discussed above. In comparison to the phase

transitions of the other algorithms, which are not plotted on this figure but are available

below in Figure 6.4, FBP provides better phase transition curves even with β = 0.7α for

the uniform and Gaussian sparse signals, while BP can do slightly better only for the

λ region around 0.8 − 0.9. Remember that the β/α ratio commands the increment in

the support size per FBP iteration. Reducing this ratio decreases the number of FBP

iterations, and hence accelerates the recovery process. Therefore, these results reveal

that it is possible to reduce the complexity of FBP until β is about 0.7α, while the phase

9We do not increment α over 0.4M , however note that doing so would even further narrow the mid-λ
range where the recovery is slightly improved, and widen the high λ region where the performance is
degraded.

10Spark of a dictionary is defined as the smallest number for which RIP cannot be satisfied with any
δ > 0. Obviously, spark of an M × N dictionary cannot exceed M , since any set of M + 1 columns is
linearly dependent.
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Figure 6.4: Phase transitions of FBP, BP, SP, OMP, and AMul-A?OMPe for the
Gaussian, uniform, and CARS sparse signals.

transition curves are still better than those of the BP, SP, and OMP algorithms for the

recovery of uniform and Gaussian sparse signals.

Figure 6.4 compares the phase transition curves of FBP to those of A?OMP, OMP, BP,

and SP for the Gaussian, uniform, and CARS sparse signals, where the step sizes of

FBP are fixed as α = 0.2M and β = α− 1. First, we observe that A?OMP outperforms

FBP for all cases. This is an expected behavior since A?OMP is a much sophisticated

semi-greedy approach which employs a complicated, and hence time consuming, tree

search. FBP, on the other hand, is a fast greedy algorithm that can solve the recovery

problem faster, but possibly less accurately. The difference in the run times of the two

approaches is obvious when one considers that FBP is approximately as fast as OMP,

while A?OMP is naturally much slower than it. As for the comparison with the other

algorithms, FBP is the best performer for the Gaussian and uniform sparse signals. On

the contrary, BP outperforms the others in the CARS case. For this case, SP also turns

out to be partially and slightly better than FBP.

As before, we observe that the phase transition of BP is robust to the nonzero coefficient

distribution, whereas the performances of the greedy and semi-greedy methods degrade

for the CARS case. We observe that FBP, A?OMP, and OMP curves show the highest

variation among different distributions. This finding is similar to our observations for

OMP and A?OMP in the previous chapters. The performances of these algorithms

are boosted when the nonzero values cover a wide range, such as for the Gaussian
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distribution. On the other hand, nonzero values with equal magnitudes are the most

challenging case due to the correlation maximization step. This behaviour is related to

the decreased spread of the elements at the desired locations of the correlation vector for

the CARS type signals, which has been discussed in Section 3.5.1 regarding the OMP

algorithm.

6.4.3 Recovery from Noisy Observations

Next, we simulate recovery of sparse signals from noise-contaminated observations. For

this purpose, we alter the observation model as

y = Φx + n (6.2)

where n represents some additive observation noise. We model n as white Gaussian

noise, and alter the signal-to-noise ratio (SNR), which is defined as 20 log ‖y‖2‖n‖2 , from 5

to 40 dB for the purpose of obtaining a general performance measure. In this simulation,

FBP is run with α = 20 and β = 17, i.e., α = 0.2M and β = 0.85α, as we have seen

above that OMP and FBP require similar run times for this choice. ε is selected with

respect to the noise level, such that the remaining residual energy becomes equal to the

noise energy after termination. The regularization parameter of BP is also adjusted in

a similar fashion. The simulation is repeated for 500 Gaussian and 500 uniform sparse

signals, where N = 256 and M = 100. For each test example, we employ an individual

Gaussian observation matrix. The sparsity levels are selected as K = 30 and K = 25

for the Gaussian and uniform sparse signals, respectively. Kmax is 55 as in the first set

of simulations. Figure 6.5 depicts the recovery error for the noisy Gaussian and uniform

sparse signals, while the run times are compared in Figure 6.6. Note that we express the

recovery error in the decibel (dB) scale, calling it the distortion ratio, in order to make

it better comparable with the SNR. Clearly, FBP yields the most accurate recovery

among the candidate algorithms for both distributions, while BP can do slightly better

than FBP only when SNR is about 5 dB. In addition, the run times reveal that FBP is

not only the most accurate algorithm in this example, but is also as fast as OMP when

α = 20 and β = 17. Note that, increasing β beyond 17 would improve the recovery

accuracy of the FBP algorithm, while the algorithm would require a slightly longer run

time.
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Figure 6.5: Average recovery distortion over SNR in case of noise contaminated
observations. K = 30 and K = 25 for the Gaussian and uniform sparse signals,

respectively.

5 10 15 20 25 30 35 40
0

2.5

5

Gaussian sparse signals

SNR (dB)

R
un

 T
im

e 
pe

r 
V

ec
to

r 
(m

s)

 

 

5 10 15 20 25 30 35 40
0

2.5

5

Uniform sparse signals

SNR (dB)

R
un

 T
im

e 
pe

r 
V

ec
to

r 
(m

s)

 

 

OMP

SP

FBP, α=20,β=17

OMP

SP

FBP, α=20,β=17

Figure 6.6: Average run time per test sample in case of noise contaminated observa-
tions. K = 30 and K = 25 for the Gaussian and uniform sparse signals, respectively.

6.4.4 Image Recovery Examples

To test FBP in a more realistic case, we demonstrate recovery of two 512× 512 images

below. As in the previous chapters, the recovery of these images is performed in blocks of

size 8×8, with the motivation of breaking the recovery problem into a number of smaller
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and simpler subproblems. The reconstruction is performed in the 2D Haar Wavelet

basis Ψ since the images are compressible in this domain. Note that, in this case, the

reconstruction dictionary is not the observation matrix Φ itself, but its multiplication

with the 2D Haar Wavelet basis, i.e., ΦΨ. That is, x denoting the sparse wavelet

coefficient vector of interest, the image itself is obtained as Ψx after the recovery of x

from the observation y = ΦΨx. For the first test, the image “bridge” is preprocessed

such that each of its 8×8 blocks is K-sparse in the 2D Haar Wavelet basis, i.e., only the

K largest magnitude wavelet coefficients are kept for each block. In the second case, the

image “butterfly” is recovered without any such preprocessing. M = 32 observations are

taken from each block of the images, where the entries of Φ are randomly drawn from

the Gaussian distribution with mean zero and standard deviation 1/N . The termination

parameter of FBP is selected as ε = 10−6. The forward step is selected as α = 10, while

the backward step size is either β = 9 or β = 7. Due to the different settings of the two

problems, FBP is run with different Kmax values, as discussed below.

6.4.4.1 Demonstration on a Sparse Image

The first example is the recovery of the sparse image “bridge”. As discussed above, the

sparseness of the image “bridge” is ensured by preprocessing prior to the recovery where

each 8× 8 block is forced to be K-sparse in the 2D Haar Wavelet basis by keeping the

largest magnitude coefficients only. The sparsity level is selected as K = 12. For this

sparse case, Kmax is selected as 20.

Figure 6.7 shows the preprocessed test image “bridge” on the upper left panel, while

the BP recovery is on the upper right panel. FBP recovery with α = 10, β = 7 can be

found on the lower left panel, and FBP recovery with α = 10, β = 9 is on the lower

right panel. In this example, BP provides a peak signal-to-noise ratio (PSNR) of 29.9

dB, whereas the much simpler and faster FBP algorithm improves the recovery PSNR

up to 32.5 dB when α = 10 and β = 9. A careful investigation of the recovered images

shows that FBP is able to improve the recovery at the detailed regions and edges. This

example demonstrates that the simpler FBP algorithm is able to perform more accurate

and faster recovery of a sparse signal with a realistic nonzero coefficient distribution

than the much more sophisticated `1 norm minimization approach.
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Figure 6.7: Recovery of the image “bridge” using BP and FBP. BP recovery yields
29.9 dB PSNR, while FBP provides 31.5 dB PSNR for α = 10, β = 7 and 32.5 dB

PSNR for α = 10, β = 9.

6.4.4.2 Demonstration on a Compressible Image

As the underlying image “butterfly” is not sparse, the second image recovery example

in this section has to deal with a harder problem. In this case, the goal of the recovery

is obtaining the best K-sparse approximation by exploiting the compressibility of the

image in the Wavelet transform domain. Since the recovery problem has a different

structure of than the one above, FBP has better be run with Kmax = 12 in order to
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The image "butterfly" FBP recoveryBP recovery

Figure 6.8: Recovery of the image “butterfly” using BP and FBP. BP and FBP yield
27.8 and 27.4 dB PSNR, respectively.

impose the actual goal of recovering the largest 12 wavelet coefficients for each block.

For this test, we demonstrate FBP recovery only with α = 10 and β = 9.

The recovery results for the image “butterfly” are depicted in Figure 6.8. The image

“butterfly” can be seen on the left panel of the figure, while the middle and right panels

of Figure 6.8 show the BP and FBP recoveries of the image, respectively. As for the

PSNR, both of the algorithms end up with similar values11. In particular, BP and FBP

yield 27.8 and 27.4 dB PSNR, respectively12. A careful visual comparison reveals that

each of the algorithms perform somewhat better than the other one on some particular

regions of the image, while the two approximations are very similar in terms of the total

perceptual quality.

6.5 Summary

In this chapter, we have introduced the forward-backward pursuit algorithm for recovery

of sparse signals from compressed measurements. FBP, which incorporates iterative

forward and backward steps, falls into the category of TST algorithms [16]. The forward

step enlarges the support estimate by α atoms, while the backward step removes β < α

atoms from it. Hence, this two stage scheme iteratively expands the support estimate

for the sparse signal, without requiring the sparsity level K a priori, as SP or CoSaMP

11In fact, we have observed that such a behavior is common for a set of images as well.
12Note that the best 12-sparse representation of the image “butterfly” has 32.3 dB PSNR. That is,

the maximum PSNR value that can be obtained with any algorithm searching for the best 12-sparse
representation is 32.3 dB.
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do. In comparison to forward greedy algorithms, FBP provides a backward step for

removing possibly misidentified atoms from the solution at each iteration.

The recovery performance of FBP has been demonstrated in Section 6.5 in comparison

to the OMP, SP, and BP algorithms. The simulations contain recovery of sparse signals

with different distributions of the nonzero elements and recovery from noisy observations

in addition to the demonstration of the algorithm on images. The results indicate that

except for sparse signals with constant amplitude (the CARS ensemble), FBP can pro-

vide better exact recovery rates than the OMP, BP, and SP algorithms. We observe that

the choice α = 0.3M and β = α− 1 leads to the optimum empirical FBP performance,

while α and β can be decreased in order to speed up the algorithm with a slight sacrifice

of the recovery performance due to the robustness of the algorithm demonstrated by

the phase transition curves. In case of the CARS sparse signals, where the `0 and `1

norms are equal, BP turns out to be the most accurate algorithm, outperforming the

greedy candicates. The noisy recovery examples state that FBP is also robust to the

observation noise, and provides more accurate recovery under noise than OMP, BP, and

SP for the Gaussian and uniform sparse signals. Finally, the demonstration of FBP on

images indicates the recovery abilities of the algorithm for signals with realistic nonzero

element distributions. We have observed that the FBP recovery of a sparse image is

better than the corresponding BP recovery. On the other hand, FBP and BP yield very

close recovery accuracies for compressible images, while FBP is obviously faster.

Finally, in order to avoid any misinterpretation, we would like to note that our findings

do not contradict with the results of Maleki and Donoho in [16]. The results in [16]

indicate that the tuned SP algorithm is the optimal TST scheme for the CARS ensemble.

Our results for the CARS case are parallel to this: SP performs better than FBP and

OMP in the CARS scenario, where BP is the best performer. However, [16] does not

contain adequate analysis for other types of sparse signals. Our results show that FBP

provides better recovery than SP and BP when the magnitudes of nonzero elements

are not comparable. We observe that the FBP performance gets even better when

the magnitudes of nonzero elements start spanning a wider range, as for the Gaussian

distribution. These indicate that SP is not necessarily the optimum TST scheme for

all nonzero element distributions. From a global perspective, the CARS sparse signals

are the most difficult case for greedy algorithms, and hence the corresponding recovery

results can be taken as the worst case performance for greedy algorithms. Therefore, as
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pronounced in [16], SP has the best worst-case performance among the TST schemes,

while it is outperformed by FBP when the nonzero elements do not have comparable

amplitudes anymore.



Chapter 7

A Mixed Integer Linear

Programming Approach for

Sparse Signal Recovery

7.1 Introduction

In this chapter, we propose using mixed integer linear programming (MILP) techniques

to solve for an equivalent of the sparse signal recovery problem, which has been defined

in Chapter 2 as the following `0 norm minimization

minimize ‖x‖0

subject to Φx = y, (7.1)

where x ∈ RM×1 is the K-sparse signal of interest, Φ ∈ RM×N is the observation matrix,

and y ∈ RM×1 denotes the vector of “compressed” observations. Previous works in the

CS literature have examined the use of linear programming (LP) techniques intensively

for the sparse signal recovery problem, however, MILP has not been yet explored for

this purpose.

Exploiting MILP via the formulation presented in this chapter has a fundamental advan-

tage over the mainstream sparse signal recovery methods: The proposed formulation is

not an approximation of the `0 minimization problem in (7.1) as for the other methods,

136
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but it turns out to be equivalent to (7.1). Consequently, the solution of the proposed

formulation is exactly equal to the sparsest solution of the original recovery problem,

once it is feasible.

In order to obtain the MILP equivalent of (7.1), we introduce in Section 7.2 an auxiliary

binary vector z of length N , on which the nonzero indices of x are located by ones.

Then, (7.1) can be cast into an equivalent MILP problem which is based on the joint

optimization of z and x. Even though MILP problems are mostly NP-hard, addition of

a few additional constraints based on a number of reasonable assumptions allow for the

solution of this modified problem in reasonable time. In Section 7.3, the tractability of

the proposed method is demonstrated by a number of simulations for recovery of sparse

signals from noise-free measurements. These simulations not only reveal the performance

of the proposed approach for recovery of sparse signals with different characteristics, but

also compare it to a number of well-known algorithms in the field such as the subspace

pursuit (SP), basis pursuit (BP), orthogonal matching pursuit (OMP), iterative hard

thresholding (IHT), iterative support detection (ISD), smoothed `0 (SL0), and A*OMP.

7.2 The Equivalant MILP Formulation of the Sparse Sig-

nal Recovery Problem

The MILP equivalent of (7.1) may be obtained by exploiting a fundamental observation

about the sparse signal recovery problem: (7.1) may be considered as an optimization

problem involving two subproblems which should be solved simultaneously. The first

one of these problems is identifying the locations of the nonzero elements in x, i.e., the

support of x, and the other one searches for the values of these nonzero elements. Below,

we introduce an auxiliary vector to define the former, while the latter appears as bound

constraints on x depending on the introduced auxiliary vector.

7.2.1 Problem Formulation

Let T be the support of x, and xT be the vector consisting of the elements of x indexed

by T . Next, we define the binary auxiliary vector z = [z1 z2 . . . zN ]T to mark the
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nonzero locations of x such that

zi =


1, if i ∈ T ;

0, otherwise.

(7.2)

Now, the original problem (7.1) can be equivalently written as

minimize eT z

subject to Φx = y,

clzi ≤ xi ≤ cuzi, i = 1, · · · , N, (7.3)

zi ∈ {0, 1}, i = 1, · · · , N,

where e is a vector of ones, and cl, cu ∈ R are chosen large enough so that the range

[cl, cu] covers all of the nonzero values in x. The bound constraints given in the third

line of (7.3) force the nonzero elements of x to appear only at the locations marked by

z. These enable us to solve for x and z simultaneously.

Though (7.3) is already enough for finding the correct support of x, we also define the

sparsity constraint as

eT z ≤ rM, (7.4)

where 0 < r ≤ 1. This constraint sets an upper limit on the sparsity of the recovered

vector, hence reduces the size of the feasible solution space. We discuss the choice of r

below.

7.2.2 Implementation of the MILP Formulation

Next, we define a combined representation to implement the MILP formulation of the

sparse signal recovery problem. For this purpose, let us first introduce an auxiliary

vector

f = [zT xT ]T . (7.5)

We also define the weight vector

w = [eT 01×N ]T , (7.6)
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where 0b×c ∈ Rb×c denotes a matrix consisting of zeros only. Using these two definitions,

the MILP equivalent of the sparse signal recovery problem (7.1) can be implemented as

minimize wT f

subject to Aeqf = beq,

Aineqf ≤ bineq, (7.7)

zi ∈ {0, 1}, i = 1, · · · , N,

where

Aeq = [0M×N Φ] , (7.8)

beq = y, (7.9)

Aineq =



−cu 0 1 0

. . .
. . .

0 −cu 0 1

cl 0 −1 0

. . .
. . .

0 cl 0 −1

1 · · · 1 0 · · · 0



,

︸ ︷︷ ︸
2N

(7.10)

bineq = [01×2N rM ]T . (7.11)

Note that (7.8) and (7.9) represent the observation constraint Φx = y. The first 2N

rows of (7.10) and (7.11) represent the bound constraints on the nonzero elements of x,

i.e., clzi ≤ xi ≤ cuzi, while the last rows of these correspond to the sparsity constraint

(7.4).

7.2.3 Practical Issues

There exists a number of tools available to solve the MILP problems. In this work, we

employ the IBM ILOG CPLEX optimization studio [129] to solve the problem (7.7). In

practice, (7.7) might take too long to solve due to the large size of the feasible solution

space, even when powerful solvers like CPLEX are employed. The parameters cl, cu,
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and r are very important for tractability of the optimization process, since they provide

means for reducing the size of the feasible solution space. Below, we discuss proper

choices of these parameters.

The parameters cl and cu define the range which the nonzero values of x are allowed

to span. If the chosen range is narrower than the actual range for x, failure of the

recovery is obvious. On the other hand, if the range [cl, cu] is chosen too wide, then the

bound constraints are clearly not tight enough, and they are not useful in reducing the

size of the search tree employed in solving the MILP by the solver. Consequently, the

computational effort increases along with the solution time. Hence, cl and cu should

be chosen properly. Having said that, our main concern in this work is not finding the

optimal [cl, cu] range, but demonstrating the application of MILP in the sparse signal

recovery problem. Hence, we do not attempt at finding the optimal cl and cu range, but

employ appropriate assumptions during the simulations.

The sparsity constraint (7.4) also plays an important role in practice. Note that r = 1

is a natural upper bound due to the problem definition. Choosing r smaller, on the

other hand, reduces the size of the feasible solution space, and therefore allows for faster

termination of the algorithm. However, as for cl and cu, r should also not be chosen

smaller than the actual sparsity level, since this makes the actual solution infeasible.

For many practical applications, K is not known a priori, however K � M holds

in general. In accordance, we choose r = 0.5, i.e., ‖x‖0 ≤ 0.5M in the simulations

below, while this choice might be modified according to the a priori information about

a particular recovery problem. In addition, choosing r = 0.5 also provides another

important advantage. Following the assumption that Φ is full row rank, this choice

guarantees that the optimization problem has only one possible solution when K ≤ M
2 .1

This allows us to configure the optimization parameters such that CPLEX returns the

first solution it encounters, without running until the actual termination point where all

MILP subproblems are covered. This results in faster termination of the algorithm.

1This follows from the uniqueness of any K-sparse solution when 2K-RIP is satisfied. See Chapter 2
for a discussion of the uniqueness property.
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7.3 Simulations

Below, we demonstrate the performance of the proposed MILP solution for the sparse

signal recovery problem in comparison to A?OMP, BP, SP, OMP, IHT, ISD, and SL0.

As discussed above, the MILP problem is solved by running the “cplexmilp” optimizer

of the CPLEX optimization studio [129] from the MATLAB environment. We set a time

limit of 100 seconds on CPLEX for each recovery, and terminate the optimization just

after the first feasible solution is found. That is, if no solution is found in 100 seconds,

the algorithm is assumed to fail2. As discussed above, we set r = 0.5.

As for the other algorithms, A?OMP is run using the AStarOMP software, as before.

The others are run using freely available software such as `1−magic [108], Sparsify [119],

Threshold-ISD [121], and the MATLAB implementation of SL0 [122]. A?OMP and

OMP are run using the residue-based termination criterion with ε = 10−6. That is,

they run until ‖r‖2 ≤ ε‖y‖2, where r denotes the residue of the observation y. A?OMP

parameters are set as I = 3, B = 2, and P = 200, and the adaptive-multiplicative cost

model is employed with α = 0.97. For SL0, we decrement the smoothing parameter σ

slowly by 0.95 in order to reduce the risk of falling into local minima.

In the simulations, the candidate algorithms are run to recover sparse signals with

different characteristics from noise-free measurements. Each test is repeated over 100

randomly generated sparse samples. The signal length is chosen as N = 256, while

M = 100. The sparsity level K varies in [10, 50]. For each test sample, the elements of

Φ are modelled as independent and identically distributed Gaussian random variables

with mean zero and standard deviation 1/N . The recovery results are expressed in terms

of the average normalized mean-squared-error (ANMSE) and the exact recovery rates.

The ANMSE is defined as

ANMSE =
1

100

L∑
i=1

‖xi − x̂i‖22
‖xi‖22

(7.12)

where x̂i is the reconstruction of the ith test vector xi.

The tests involve sparse samples with different characteristics. The nonzero entries of

these samples are selected from four different random ensembles. The nonzero entries of

2Obviously, the MILP optimization does not actually fail. It may find the solution if the time
constraint is removed, however, we would like to demonstrate a tractable application of MILP in the
sparse recovery problem.
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the so-called Gaussian sparse signals are drawn from the standard Gaussian distribution.

Nonzero elements of uniform sparse signals are distributed uniformly in [−1, 1]. In ad-

dition to these, we consider two types of sparse signals with constant amplitude nonzero

elements: The nonzero elements of the binary sparse signals are set to 1. Finally, the

constant amplitude random sign (CARS) sparse signals involve nonzero elements with

unit amplitude and random sign.

Figure 7.1(a) depicts the recovery results for binary sparse signals. For this case, we

assume that the nonzero coefficients of x lie in [0, 1], i.e., cl = 0 and cu = 1. The other

algorithms are also provided with some similar a priori information. Interestingly, we

observe that once such a priori information is available, the proposed MILP formulation

leads to the exact recovery of all binary sparse signals with sparsity level K ∈ [10, 50]. In

practice, this provides a clear advantage for problems where the sparse signal is known

to have nonzero elements with equal or similar values.

As for the CARS case, which is similar to the binary problem except the random sign,

we set cl = 0 and cu = 1. Figure 7.1(b) depicts the superior recovery accuracy of MILP

formulation for this case. We observe that the highest exact recovery rate is obtained by

employing MILP. In addition, the ANMSE for the MILP formulation is exactly related

to the exact recovery rate. That is, if MILP is able to find a solution in at most 100

seconds, this solution is correct. Otherwise, an empty solution is returned, and the

normalized mean-squared-error of this solution is equal to unity. Hence, the ANMSE

becomes equal to one minus the exact recovery rate of the MILP formulation. This

indicates that the solution found by the MILP is exactly equal to the exact solution of

the original `0 norm minimization problem, as discussed above.

The recovery results for the Gaussian and uniform sparse signals are illustrated in Fig-

ures 7.2(a) and 7.2(b). For the uniform sparse signals, we assume that the signal is

known to lie in [−1, 1], that is cl = −1 and cu = 1. For the Gaussian ensemble, we set

−cl = cu = ‖x‖∞. We observe that MILP formulation still yields the highest accuracy

for the uniform sparse signals, whereas A*OMP performs very close to it. When the

nonzero entries are normally distributed, A*OMP has the highest recovery accuracy,

while SL0 and ISD also perform better than MILP. Clearly, the recovery accuracy of

MILP degrades when the range which is spanned by the nonzero elements of the un-

derlying sparse signals gets wider. Among the examples we considered, Gaussian sparse
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(a) Binary sparse signals
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Figure 7.1: Average recovery results for the binary and CARS sparse signals. Each
test is repeated over 100 random test samples. The signal length is 256, and the
observation length is 100. The observation matrices are drawn from the Gaussian

distribution.

signals are ones with the widest span of nonzero elements, hence they constitute the

case where MILP shows the worst performance3.

In addition to the recovery accuracy, the run times of the MILP optimization are also

3 This is again related to the constraint on the run time of the search. If the algorithm were allowed
to run freely until it finds the first feasible solution, this solution would be the correct one for any type
of sparse signals. However, as mentioned above, we keep the time constraint for the tractability of the
proposed approach.
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(b) Uniform sparse signals

Figure 7.2: Average recovery results for the uniform and Gaussian sparse signals.
Each test is repeated over 100 random test samples. The signal length is 256, and
the observation length is 100. The observation matrices are drawn from the Gaussian

distribution.

extremely important for the evaluation of the proposed approach. In fact, most integer

programming problems are naturally NP-hard. However, the average run times depicted

in Table 7.1 state that the proposed formulation can be solved in reasonable time for the

recovery of sparse signals having constant amplitude nonzero elements with appropriate

assumptions which effectively reduce the size of the feasible solution space. We observe

that the run time increases when K exceeds 40 for CARS case. This is due to the failed
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recoveries, for each of which the algorithm runs for 100 seconds. For cases where MILP

formulation provides exact recovery of all signals, the run times are reasonable for many

applications.

Table 7.1: Average run time in seconds per sparse vector

K

10 20 30 40 50

Binary 0.18 0.19 0.19 0.2 0.34

CARS 0.23 0.27 0.37 22.1 81.9

7.4 Conclusions and Future Work

In this chapter, we have concentrated on a new formulation for the sparse signal re-

covery problem. This formulation casts the problem into an equivalent MILP problem.

Though MILP problems are mostly NP-hard, introduction of appropriate constraints

help making it tractable for our case.

We have demonstrated the sparse signal recovery performance of the proposed approach

via a number of simulation experiments involving sparse signals with different character-

istics. These simulations indicate that the proposed approach yields high recovery rates

when the underlying sparse signals have equal amplitude nonzero elements. Especially

for the binary sparse signals we have observed that the MILP formulation yields exact

recovery until K = M
2 under some appropriate assumptions. Moreover, the algorithm

is reasonably fast for such signals. The recovery accuracy of the proposed approach,

however, begins to degrade when the nonzero elements vary in amplitude, in which case

some other candidates yield similar or better recovery accuracy. That is, the MILP

optimization actually requires longer run time than the allowed time interval to find the

solution in these problems, hence it returns an empty solution for a higher number of test

samples in the limited time. Taking the complexity of the proposed algorithm also into

account, we may conclude that the proposed approach is favorable for the recovery of

sparse signals with constant or similar amplitude nonzero elements, especially the binary

ones, where it provides both high recovery accuracy and reasonably high termination

speed.
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Before concluding, we would like to note that future work on the constraints is necessary

to take the full advantage of the MILP in sparse signal recovery. Methods for finding

tight bounds on the nonzero elements of the underlying sparse signals might especially

be of interest. In addition, it is also worth investigating other possible constraints to

further reduce the size of the feasible solution space. One example of the latter might

be exploiting structured sparsity, where the size of the feasible region may be further

reduced by problem-specific signal structures. In addition, the presented MILP refor-

mulation is quite suitable to be solved with the Benders decomposition technique [130]

of integer programming. Implementing this formulation with Benders decomposition

may alleviate the computational burden, and hence, may decrease the run times for the

search. Finally, we believe that rapid advancements in computer hardware will be a

vital key for the practical use of such methods in the near future.



Chapter 8

Summary and Future Work

8.1 Summary

In this dissertation, we have concentrated on search-based methods for recovery of sparse

signals from reduced sets of measurements. For this purpose, we have not only intro-

duced novel recovery techniques, but also presented a RIP-based theoretical analysis of

the well-known OMP algorithm.

In Chapter 3, we have developed an online RIP-based recovery condition for OMP with

more iterations than the sparsity level K of the underlying sparse signal. Though we

cannot convert this online condition into exact recovery guarantees for all K-sparse

signals, we show that it might still be satisfied online despite failures among the first K

iterations if the number of correct and incorrect indices in the support estimate satisfy

some bounds. In comparison to the state-of-the-art exact recovery guarantees which

require 6K to 30K iterations [8–10], our online recovery condition may guarantee exact

recovery within 3
2K iterations when these bounds hold. Furthermore, the bound on the

number of incorrect indices is also supported by histograms, showing that this bound

becomes even loose in the recovery simulations performed. In addition, Chapter 3 also

contains a number of empirical results which compare the recovery performance of OMP

with SP and BP via phase transitions.

Chapters 4 and 5 have been devoted to the application of best-first search for the sparse

signal recovery problem. For this purpose, we have introduced the A?OMP algorithm

which combines the A? search technique with OMP-like extension of the tree branches in

147
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Chapter 4. A? search provides powerful means for solving the sparse recovery problem

due to its ability to deal with different path lengths simultaneously via its auxiliary

function mechanism. For this purpose, we have discussed a number of cost models

which allow for effective compensation of the path length differences in our specific

recovery problem. In addition, we have defined a number of pruning techniques in order

to keep the size of the search tree limited. The proposed cost models and pruning

techniques effectively reduce the tree size, and hence, make the search tractable in

practice. This issue has been discussed in Chapter 4 in terms of the complexity-accuracy

trade-off it allows for. In Chapter 5, we have presented RIP-based theoretical analysis

of A?OMP. Our fundamental theoretical finding reveals the strong recovery abilities of

A?OMP which requires a less restrictive RIP condition than OMP. Moreover, we have

also compared different termination criteria, which has led us to the observation that

employing the residue-based termination is more optimal than the sparsity-based one. In

addition to these theoretical findings, the simulation results in Chapters 4 and 5 present

an extensive empirical evaluation of A?OMP in comparison to other mainstream recovery

approaches. These results unveil the strong recovery abilities of A?OMP, especially with

the adaptive-multiplicative cost model and residue-based termination which improve

both the speed and accuracy of the search.

Next, we have introduced FBP, which is a novel iterative TST-type algorithm, in Chap-

ter 6. Similar to other TST-type algorithms, such as SP and CoSaMP, FBP also incor-

porates consequent forward and backward stages at each iteration. However, in contrast

to SP and CoSaMP, the backward step size of FBP is not equal to the forward step

size, but is smaller than it. As a result of this, FBP allows for iterative expansion of the

support from scratch. This removes the need of an oracle to provide the sparsity level,

which other TST algorithms require a priori. The simulation results, which have been

presented in Chapter 6, not only illustrate the recovery performance of the proposed

approach, but also discover the optimal choice for the forward and backward step sizes.

Supported by the phase transitions, the forward and backward step sizes can be simply

selected as a fixed ratio of the number of observations. This makes the FBP algorithm

a tractable TST-scheme that can be employed trivially in practice.

Finally, we have presented a new formulation for the sparse signal recovery problem

in Chapter 7. The presented formulation can be solved by MILP techniques, where

the feasibility of the solution follows from addition of some reasonable constraints. In
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contrast to other sparse signal recovery algorithms, the obtained MILP problem is ex-

actly equivalent to the original sparse recovery problem. Hence, its solution is exactly

equal to the desired sparsest one if a feasible solution can be found. This observation

is supported by the presented simulation results, where the proposed approach either

finds the correct solution in some limited time or the search is terminated without any

solution. Despite the MILP problems are mostly NP-hard, these results demonstrate

the tractability of the solution with proper definition of the constraints which reduce

the size of the feasible solution space. To conclude, we have observed that MILP tech-

nique is especially effective for sparse signals with constant amplitude nonzero elements,

where the recovery accuracy is superior to the other mainstream algorithms under some

reasonable assumptions. Specifically, if the underlying sparse signals are binary, MILP

provides perfect recovery when K ≤ M
2 .

8.2 Suggestions for Future Work

The findings of this dissertation may provide a basis for possible future work in the field

regarding a number of perspectives.

First, the online recovery guarantees of OMP, developed in Chapter 3, may be both

improved and generalized by future research. For the former, tighter bounds should be

established on the number of correct and false indices which guarantee that the devel-

oped online condition becomes less restrictive than the K-step exact recovery condition

in a particular iteration. Such tighter bounds would confirm the validity of the presented

online condition for a larger portion of sparse signals. As for the latter, theoretical guar-

antees for the existence of support estimates satisfying the necessary conditions should

be developed. That is, in case the existence of support estimates with a sufficiently high

number of correct indices in addition to a sufficiently small number of false indices could

be guaranteed, it would be trivial to generalize the developed online condition as an

exact recovery guarantee for all K-sparse signals.

The A?OMP method, presented in Chapter 4 and Chapter 5, may also benefit from the

future work suggested above for the theoretical guarantees of OMP. Since the theoretical

analysis of A?OMP is very close to that of OMP, improvements on the online recovery
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guarantees of OMP may also be trivially translated for A?OMP. In addition, we be-

lieve that the algorithm may also be significantly improved as part of future research

regarding a number of other perspectives. First, it would be possible to improve not

only the accuracy but also the speed of the search by some modifications of the path

extension mechanism such as exploring not only a single node but a group of nodes, i.e.,

a subpath, during each extension of the best path. It might also be beneficial to decide

the lengths of these subpaths online using adaptive strategies which depend on mea-

sures such as the correlation between the residue and the dictionary atoms, the residual

power, or the path length. Similar adaptive strategies may also be employed for decid-

ing the number of explored children online as well. As another possible modification,

structured sparsity, which covers sparsity models such as tree-structured dictionaries,

block sparsity, clustered sparse signals, etc., might be incorporated with the proposed

tree search strategy to exploit specific properties of the underlying sparse problem when-

ever possible. For such extensions, it would be sufficient to replace the path extension

mechanism of A?OMP with a model-based one. As a result of using a problem-specific

path extension mechanism, both the recovery accuracy and the speed of the algorithm

may be improved. Furthermore, it is also possible to incorporate any matching pursuit

strategy for exploring the children of the best path instead of the OMP-like extension.

Such strategies may improve the recovery speed and the recovery accuracy as well. On

the other hand, the speed of the algorithm may benefit from any strategy that speeds

up the correlation or orthogonal projection steps. Regarding the correlation step, one

possible strategy is clustering the dictionary atoms in a tree structure as for the tree-

based pursuit algorithm [37]. This strategy represents the dictionary by a tree where

each inner node is a common representation of its child nodes, while the leaf nodes are

themselves the dictionary atoms. Then, selection of the B best dictionary atoms can

be performed iteratively from the root to the leaves by following the best B candidate

nodes at each level. Finally, the proposed multiplicative and adaptive multiplicative

cost models may be also employed with the A? search in other search problems as well.

We believe these cost models would increase the performance and the efficiency of the

A? search in many applications.

As for the FBP method of Chapter 6, theoretical exact recovery guarantees still remain

open as an important future research direction. As part of the future work, the al-

gorithm may also significantly benefit from varying the step sizes online, which could
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improve not only the speed but also the accuracy of the FBP recovery. For example, the

backward step size might be selected very small for the first iterations, and then itera-

tively increased during the recovery process until it is comparable to the forward step

size. Another, perhaps more sophisticated, strategy might be adaptive selection of the

step sizes throughout the recovery. One possible means for this purpose is exploiting the

correlations of the dictionary atoms to the residue. In addition to these, FBP may also

easily benefit from structured sparsity as for A?OMP whenever possible. Moreover, any

strategy that speeds up the correlation or the orthogonal projection step would speed

up FBP as well.

We also foresee a number of interesting future research directions regarding the MILP

formulation developed in Chapter 7. First of all, future work on the constraints, which

are very important for the termination speed of the algorithm, is necessary to take the

full advantage of the MILP optimization in the sparse signal recovery problem. Among

the constraints, methods for estimating tight bounds on the values of the nonzero ele-

ments of the underlying sparse signals would be of great interest. In addition, it is also

worth investigating other possible constraints to further reduce the size of the feasible

solution space. One example of the latter is exploiting structured sparsity whenever

possible. In such cases, the size of the feasible region may be significantly reduced by

appropriate constraints exploiting problem-specific signal structures. Finally, the pre-

sented MILP reformulation is quite suitable to be solved with the Benders decomposition

technique [130] of integer programming. Implementing this formulation with the Ben-

ders decomposition may alleviate the computational burden, and hence, may decrease

the run times for the search.

To conclude, there exists a number of possible future research directions based on the

findings of this dissertation. Hence, we believe that our findings will play an important

role for the future work in the field.
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