
INTERLEAVING COVERAGE CRITERIA ORIENTED TESTING OF

MULTITHREADED APPLICATIONS

by

Mehmet Çağrı Çalpur

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

February, 2012

INTERLEAVING COVERAGE CRITERIA ORIENTED

TESTING OF MULTITHREADED APPLICATIONS

APPROVED BY:

iii

c© Mehmet Çağrı Çalpur 2012

All Rights Reserved

INTERLEAVING COVERAGE CRITERIA ORIENTED

TESTING OF MULTITHREADED APPLICATIONS

Mehmet Çağrı Çalpur

CS, Master’s Thesis, 2012

Thesis Supervisor: Cemal Yılmaz

Keywords: Software Testing, Covering Arrays, Concurrent Programs,

Instrumentation, Interleaving Coverage

Abstract

Concurrent programs run several to thousands of processes or threads in

parallel and the correctness of the outcome is critical. Successful tests for

deterministic systems can not be applied to concurrent programs, because

of their non-deterministic behavior. Exhaustive testing is not applicable

because of the search space and testing costs. We have designed a testing

algorithm that produces Sequence Covering Arrays of a concurrent program’s

execution segments, and tests these interleaving sequences. We provide a

coverage metric that works as a measure to define the ratio of covered test

possibilities. Our approach relies on the sequence covering arrays to cover all

interleavings, while requiring least amount of testing. This thesis presents the

Interleaving Coverage Criteria-oriented testing of multithreaded programs,

it’s utility programs to take over the control of applications to run tests and

the case studies that we have done to show the efficiency of the system against

exhaustive testing and its variants.

v

ÇOK KANALLI UYGULAMALARIN SERPİŞTİRME

KAPSAMA KRİTERİYLE TEST EDİLMESİ

Mehmet Çağrı Çalpur

CS, Yüksek Lisans Tezi, 2012

Tez Danışmanı: Cemal Yılmaz

Anahtar Kelimeler: Yazılım Testi, Kapsama Dizileri, Koşut Zamanlı

Programlar, Enstrümantasyon, Serpiştirme Kapsama

Özet

Koşut zamanlı programlar binlerce paralel çalışan programdan oluşabilir ve

bunların doğru çalışabilmesi çok önemlidir. Başarılı deterministik testler

koşut zamanlı programlarda, deterministik olmayan davranışları nedeniyle

kullanılamaz. Etraflı testler ise keşfedilemeyecek kadar büyük test uzayına

sahip oldukları için pratikte kullanılamamaktadır. Tasarladığımız test al-

goritması program bölümleri ile eşleşen Düzen Kapsama Dizileri üreterek,

serpiştirme düzenlerini test eder. Kapsadığımız test olasılıklarını ölçümleyecek

bir test birimi oluşturduk. Bizim yaklaşımımız düzen kapsama dizileri kul-

lanarak az test ile bütün serpiştirmeleri kapsamaktır. Bu tezde çok kanallı

uygulamaların serpiştirme kapsama kriteriyle test edilmesi, bu testin yardımcı

programları, vaka araştırmaları ve etraflı testler ve türevlerine üstünlüğü an-

latılmaktadır.

vi

Acknowledgements

I wish to express my gratitude to my advisor Cemal Yılmaz for proposing

this challenging and interesting project and for all of his advice, encourage-

ment and guidance along the way.

Thanks to my family and beloved friends for their love and support.

vii

Contents

1 Introduction 1

1.1 Motivation . 2

2 Background 4

2.1 Defects in Multithreaded Applications 4

2.1.1 Data Race . 4

2.1.2 Deadlock . 4

2.1.3 Atomicity Violation . 4

2.1.4 Order Violation . 5

2.2 Java Platform . 6

2.2.1 Java Virtual Machine 7

2.3 Multithreaded Java . 8

2.3.1 Thread Scheduling . 9

2.3.2 Synchronization and Thread Notification 10

2.4 Java Bytecode Instrumentation 12

2.4.1 A Sample Java Program 12

2.4.2 BCI Libraries . 14

2.5 JBOSS Javassist Bytecode Instrumentation Library 15

2.6 Sequence Covering Arrays . 16

3 Related Works 18

3.1 Exhaustive Testing . 18

viii

3.2 Reachability Testing . 18

3.3 Concurrency Testing with BCI 19

4 The Thread Scheduler 20

4.1 Mutual Exclusion Principle 20

4.2 Atomic Execution Blocks . 21

4.2.1 Atomic Block Decomposition Example 22

4.3 Thread Scheduler Algorithm and Implementation 23

4.3.1 Thread Scheduler Methods 25

4.4 Instrumenting Files . 43

4.4.1 Interpreting and Running Java Programs 44

4.4.2 Implementation . 45

4.5 Caveats . 56

5 Interleaving Coverage Criteria Oriented Testing of Multi-

threaded Applications 59

5.1 Thread Interleaving Coverage Analysis 63

5.1.1 Exhaustive Testing . 64

5.1.2 Coverage Criteria Oriented Testing 64

6 Case Studies 66

6.1 Benchmarking Application . 66

6.2 Real Applications . 70

7 Concluding Remarks 80

ix

8 Future Work 83

x

List of Figures

1 A deadlock example where Thread 1 holds the lock for re-

source 1 and Thread 2 holds the lock for resource 2, both

threads are in a waiting state to acquire the lock for the other

resource. 5

2 An atomicity violation example where programmer assumes

synchronizing R1 in Thread 1 will secure the atomicity of the

operation. Eventhough the lock is held, a concurrently run-

ning thread, Thread 2, may change the contents of the shared

resource R2. 5

3 An order violation example, bug depends on the scheduling

of the threads invoking the methods given in figure. Block Ex-

ecution Orders box gives two schedules that executes properly

and yields to a bug. 6

4 Visual representation of the components constituting the Java

Platform . 7

5 Multithreading Concept of Java Platform 9

6 A sample java program (a) and some parts of its binary file

(b), (c), (d) . 14

7 ByteCode Instrumentation Example 16

8 Sequence Covering Arrays vs Exhaustive Testing 17

9 Atomic Blocks of a Thread. 22

xi

10 The Thread Scheduler Algorithm. The algorithm shows how

the threads are controlled in the testing environment. Thread

Scheduler is the intermediary system, delivering messages from

the testing environment and executing the orders of the tester. 25

11 BlockThread Method . 26

12 UnblockThread Method . 26

13 Sync Method . 28

14 NextThreadToSchedule Method 29

15 ThreadHasStarted Method . 30

16 ThreadIsAboutToEnd Method 31

17 myMonitorEnter Method . 33

18 Original bytecode of the run() method of a thread. Indented

region is where the object to be synchronized is loaded and

lock is acquired by the monitorenter instruction. 34

19 Instrumented bytecode of the run() method of a thread. In-

dented region is where the myMonitorEnter method is exe-

cuted. “invokestatic #196” is the instruction representing the

method call. The other indented invocations are for generating

the parameter passed to the myMonitorEnter method. “nop”

instructions are where the original code for synchronization was. 35

xii

20 myMonitorExit Method. The working of Thread Scheduler’s

locking mechanism is clearly seen here. The concept is similar

to the original methods of the JVM. A lock can be acquired

multiple times by its holder and here monitorexit operation

makes sure the lock count is decreased properly as intended. . 37

21 myWait Method. A thread calls myWait() to release the lock

of the synchronized object. This is an exit point for an atomic

block. When the waiting thread is rescheduled to run, this

point will the starting point of the new atomic block. 38

22 Bytecode decomposition of the run() method of an original

example program. 39

23 Bytecode decomposition of the run() method of the instru-

mented example program. Indented block is the instrumented

call of myWait() and the wait()-nop switch. 40

24 myNotify Method . 42

25 myInterrupt Method. An interrupted thread’s waiting status

is reset to ready and an Interrupted Exception is thrown. . . . 42

26 myJoin Method. A running thread that calls join changes its

status to waiting. This status is reset when the joined thread

is finished. 43

27 ProcessClassFile method. 49

28 ProcessMethods Method . 50

29 MethodInf Class . 51

xiii

30 InvokeNode Class . 52

31 InstrumentThreadStartStop method 53

32 ProcessAccessFlag Method . 55

33 Reverse Engineered method in an instrumented class file. The

get method, the class object (objectArrayList) it is called from

and the parameter list (index) is reverse engineered to form the

correct statement and used as parameter of myMonitorEnter

and myMonitorExit methods. 58

34 A thread interleaving graph showing the execution order of

atomic blocks. 60

35 Another thread interleaving graph showing the execution order

of atomic blocks. The atomic blocks 0 and 4 are two distinct

blocks that starts the thread execution. 61

36 The expected number of exhaustive tests versus the expected

number of t-way sequence interleaving coverage tests. The

number of t-way sequences covered with only one test shows

the efficiency of this method. 62

37 The formula of calculating the number of thread t-way subse-

quences. 65

38 The number of t-way sequences for various values of m and n

and respective Exhaustive Testing tests. 67

39 Sample Benchmarking Application Code 68

40 The comparison of real applications coverage ratios. 81

xiv

List of Tables

1 Execution information message gathered from the injected

code in a tested program. The injected method was executed

at line 27 of the specified class. 24

2 Atomic Block information format. This information is parsed

to define the atomic block that has been recently executed. It

is stored as a thread interleaving of Thread-0. Line number of

-1 is the start of run() method. 30

3 Results of benchmarking tests with t = 2. 67

4 Results of benchmarking tests with t = 3. TSCA Algorithm

significantly increases the coverage ratio, while keeping the

required tests at minimum. 69

5 Results of benchmarking tests with m = 5, n= 5 and t = 2,3,4

for TSCA tests. 69

6 The Coverage information after each test of Clean Project. t

= 3 . 79

7 The Coverage information after each test of DiningPhiloso-

phers Project. t = 3. The table shows that after test # 3 new

blocks are found and new sequences are added to our coverage 79

xv

8 The testing information about the real applications, t = 3. (*)

TSCA method can not be used and coverage ratio for TSCA

tests does not exist. Only random exploration and greedy

algorithms are used for testing. 80

xvi

1 Introduction

Software testing is one of the most crucial parts of software development life

cycle. A software system, especially today’s large scale, heavy traffic, mission

critical systems, is naturally error-prone. Whether the error is a result of its

programmers’ mistake, compiler-generated faulty code or a design error, even

the smallest error may cause a ripple effect and produce inconvenient results

for the users. Unnoticed software errors may have financial or even lethal

consequences.

Uncovering software errors (bugs) require extensive testing of the system

under certain test inputs repeatedly. The idea of testing with various inputs

is to reveal different execution paths, where the program might fail. Re-

ducing non-determinism of a program is required to cover all possible paths.

Administering certain test inputs is the key to eliminate the non-determinism

in sequential programs.

Software systems usually handle simultaneous stimuli, which requires

concurrent processes. However, testing of concurrent programs are not as

straightforward as sequential programs. Adapting sequential testing proce-

dures to concurrent programs fails to provide full coverage of the execution

paths. The behavior of the program depends on external factors as well as

program inputs. And while the scale of software systems exhibit rapid in-

crease, exhaustive testing of every possibility is getting more and more costly,

if not impossible.

1

Concurrent programs utilize parallel working components, these are called

processes and threads. Our study focuses on threads, specifically Java threads.

Threads in a program use the same memory space for execution, whereas pro-

cesses run in separate memory spaces. The shared memory model of threads

is a useful simplification for the programming practice. On the other hand,

parallelism of the program execution results in data integrity issues, race

conditions and execution ordering related bugs.

1.1 Motivation

In this thesis we propose a system for testing of multithreaded java programs.

We assume that a computer program, that consists of threads that run in

parallel, is a collection of execution segments (Blocks). Critical sections

are the segments, where concurrency affects the behaviour of the system and

non-critical segments are mutually exclusive. Our system parses these

segments, defines them with unique identification information and enumer-

ates the segments in order to build up an execution order to simulate various

behaviours of the system with a constant test input.

A concurrent program, even the least complex one, with a small num-

ber of blocks require immense number of tests to cover all execution order

possibilities to perform exhaustive testing. We believe that applying the se-

quence covering arrays (SCA) concept into testing computer software would

dramatically reduce the number of tests and time required to test a program.

By grouping up blocks of a program in sequence covering arrays and con-

2

catenating these arrays to build an execution order, our approach achieves

very high test coverage ratios.

The first part of the system is a controller/interface, which consists of two

sub-components. The first component is a Java bytecode analyzer and instru-

menter, which is used to find and modify all concurrency related code of an

application. The second component is our concurrency library and schedul-

ing interface. The concurrency library is a modification of Java Platform’s

Object and Concurrency libraries. Our concurrency methods replace the

original methods by utilizing the instrumenter component. The scheduling

interface identifies the blocks that are executed and informs our scheduler.

The second part of the system is a scheduler, which processes the block

information sent by the Thread Scheduler Interface. The block information

is used to keep track of the states of thread interleavings. The scheduler is

capable of analyzing the currently available thread state information, exe-

cuted block information, possible upcoming thread interleaving information

and previous block schedules, in order to decide the course of execution. The

scheduler’s purpose is to dictate the execution order of threads according

to some coverage criteria. The scheduler tries to accomplish the coverage

criteria and test as many interleavings as possible to observe the concurrent

behaviour and expose bugs.

3

2 Background

2.1 Defects in Multithreaded Applications

2.1.1 Data Race

Data race bugs occur when two threads try to access a shared variable si-

multaneously without proper synchronization, which means that the shared

variable lacks a mutual exclusion mechanism such as a common lock.

2.1.2 Deadlock

A deadlock occurs when a thread enters a waiting state because of a resource

requested by the thread is being held by another waiting thread, which also

waits for another resource. If the thread is unable to change its state indefi-

nitely because the resources requested by it are being used by other waiting

threads respectively, in a circular fashion. When none of the threads have the

opportunity to release the locks they previously acquired, then the system is

said to be in a deadlock (Figure 1).

2.1.3 Atomicity Violation

A computer code, instruction or a set of instructions, is atomic, when the

code can not be interrupted during its execution. Atomicity is achieved in

hardware and can be simulated in software. Atomic instructions supported

by the hardware is used to implement atomic methods in software. Atomicity

violation bugs are caused by concurrent execution unexpectedly violating the

4

Thread 1 Thread 2
R1 R2

Figure 1: A deadlock example where Thread 1 holds the lock for resource
1 and Thread 2 holds the lock for resource 2, both threads are in a waiting
state to acquire the lock for the other resource.

atomicity of a certain code region (Figure 2). Atomicity violation bugs do not

cause deadlock, but they compromise the integrity of the result of execution.

Thread 1 Thread 2
synchronized(R1){
 R1 = A;
 R1 *= R2;
}

[R1 = A * R2] or [R1= A * R2’] ?

{
.......
 R2 = R2’;
.......
}

Figure 2: An atomicity violation example where programmer assumes
synchronizing R1 in Thread 1 will secure the atomicity of the operation.
Eventhough the lock is held, a concurrently running thread, Thread 2, may
change the contents of the shared resource R2.

2.1.4 Order Violation

A group of program segments can be programmed with the intention to be

executed in a specific order. If the desired order between execution blocks

5

can not be enforced, then the result of the execution is bugged. Like the

atomicity violation bugs, order violation bugs are associated with the in-

tegrity of execution, but they may result in a deadlock situation in case of

poorly timed wait() and notify() operations. Figure 3 shows an example of

the order violation bug, the situation in the figure shows the ”losing a notify”

bug pattern.

Thread 1
void update(){
 synchronized(object){
 object.foo();
 }
}
void waitForSignal(){
{
 synchronized(object){
 try{
 object.wait();
 } catch(Exception e){.....}
 }
}

Thread 2
void signal(){
 synchronized(object){

 object.notify();
 }
}

Block A

Block B

Block C

Block Execution Orders

...A....B....C......

....A...C....B

Figure 3: An order violation example, bug depends on the scheduling of
the threads invoking the methods given in figure. Block Execution Orders
box gives two schedules that executes properly and yields to a bug.

2.2 Java Platform

The Java Platform is a popular programming platform, widely used by pro-

grammers for commercial and academic purposes. One of the main reasons

behind its popularity is the promise of cross-platform usability. The word

”Platform” is used instead of ”Language”, because of the fact that Java offers

a programming language, a virtual machine environment to run the programs

6

written in the language, specifications for the implemented concepts and sup-

port for various environments such as embedded systems, mobile devices and

peripheral devices.

Figure 4: Visual representation of the components constituting the Java
Platform

2.2.1 Java Virtual Machine

A virtual machine(VM) is basically an imitation of a cpu or a computer

system as a whole, which processes the commands generated by a compiler

or interpreter for java programming language. The VM is an abstract system

and the programs that run on the VM do not interact with the hardware

7

system directly. The VM, however, must be compatible with the system it is

running on. Therefore, there has to be specific VMs for any combination of

hardware and operating systems. These VMs all offer the same functionality

for the programs running on them. That is the reason for the cross-platform

usability.

The JVM is defined by the Java Virtual Machine Specification. The

JVM specification defines the bytecode instructions, class file format and the

verification algorithm. Java Bytecodes are a set of instructions run by the

VM. The Class file is a binary format that constitutes the java bytecode and

class structure information. The verification algorithm is used to inspect the

programs that will run on the machine for correctness and malicious intent.

Programs which fail the verification test are prevented from running, thus

protecting the integrity of the VM and the system it runs on.

2.3 Multithreaded Java

Java threads are independent flow of controls that share the same heap mem-

ory (Figure 5). In a computer system with multiple CPUs each thread may

run simultaneously in its own CPU. In a single CPU environment there are

some scheduling algorithms, which controls the execution of threads. Every

thread has a priority value and the execution frequency of threads depends

on the priorities associated with them.

Java thread model is controlled by the JVM and the java.lang.Thread

class. java.lang.Thread implements the functions that control the cre-

8

Figure 5: Multithreading Concept of Java Platform

ation, execution and finalization of threads. JVM controls the synchroniza-

tion of threads by granting access to shared resources and scheduling threads

to run.

2.3.1 Thread Scheduling

Thread scheduling is basically organizing the threads’ competition for using

the CPU. This competition can be regulated by the programmer, the JVM

or the operating system. There are various implementations about han-

dling the threads. Green Threads model is the simplest and widely used

thread implementation of early days of Java. The VM is responsible for the

threads and operating system does not interfere. Lately, operating system

9

level thread implementations are more common. Windows Native Threads,

Solaris Native Threads and Native Posix Thread Library are examples of

operating system level implementations. The variety in this area is caused

by the lack of a precisely defined scheduling model by the Java Specification.

2.3.2 Synchronization and Thread Notification

The purpose of synchronization is to coordinate access to shared resources.

Multiple threads trying to access a shared resource creates a problem called

race condition. The synchronized keyword acts like a mutex lock and

allows the programmer access to a resource. The lock prevents other threads

from using the resource as long as the lock is held by a thread. A method,

block or a class can be declared synchronized. Synchronizing a method

is practically the same as synchronizing a block. It is a better practice

to keep the synchronization scope as small as possible, in order to prevent

synchronization problems.

Each java object has an associated monitor that is used to implement

the locking mechanism. The JVM provides two instructions for monitors,

monitorenter and monitorexit are mnemonics for bytecodes that con-

trol the locking of an object. When a synchronized keyword is used the

associated block is bounded by monitorenter and monitorexit instruc-

tions. Only one thread may obtain the monitor of an object and additional

locks can be obtained by that thread. Each time a locking thread enters

synchronized block for an object, the monitorenter instruction in-

10

creases the lock count of the object and each monitorexit decreases the

lock count by one. The lock can be obtained by a thread when the lock count

is 0.

The java.lang.Object Class implements the wait() and notify()

methods. These methods are used to control the thread execution that de-

pends on a certain event to occur. In other words, these methods handle

the communication between threads. However, these methods can not re-

place the synchronization mechanism. Thus these concepts should be used

in collaboration.

The wait() method waits for a condition to occur, and must be called

from within a synchronized method or block. Calling the wait() method

releases the lock of the caller object prior to waiting and reacquires the lock

before continuing execution.

The notify() method informs a thread that the condition thread is

waiting for has occured, and must be called from within a synchronized

method or block. When the notify() method is called from the object,

there is no way to know which thread is notified. The waiting thread that

received the notification wakes up and tries to grab the lock and resume

execution.

The notifyAll() method notifies all the threads waiting on the object

that the condition has occured. The method must be called from within a

synchronized method or block. The uncertainty of the notify() method

11

increases the probability of an erroneous behaviour. The notified thread may

wait for another event to occur and execution halts.

2.4 Java Bytecode Instrumentation

Bytecode instrumentation (BCI) is a technique in which bytecode is injected

directly into a Java class to achieve some purpose that the class did not

originally support. This process has a variety of uses for programmers who

want to modify a class without changing the source, or want to change the

class definition dynamically at run time for purposes like hotfixing.

2.4.1 A Sample Java Program

1 public class HelloWorld
2 {
3 public stat ic void printMessage ()
4 {
5 System . out . p r i n t l n (”He l lo World ! ”) ;
6 }
7 public stat ic void main (St r ing args [])
8 {
9 printMessage () ;

10 }
11 }
12 (a) HelloWorld . java

1 000000 cafebabe magic = ca f e ba be
2 000004 0000 minor ve r s i on = 0
3 000006 0032 major v e r s i on = 50
4
5 (b) HelloWorld . class F i l e Header

1 000008 0025 37 cons tant s
2 00000a 0a00070016 1 . Methodref class #7 name−and−type

#22

12

3 00000 f 0900170018 2 . F i e l d r e f class #23 name−and−type
#24

4
5 000024 07001 e 7 . Class name #30
6 000027 010006 8 . UTF length=6
7 00002a 3 c696e69743e < i n i t>
8 000030 010003 9 . UTF length=3
9 000033 282956 ()V

10
11 0000 e5 0 c00080009 22 . NameAndType name #8 de s c r i p t o r

#9
12 0000 ea 07001 f 23 . Class name #31
13 0000 ed 0 c00200021 24 . NameAndType name #32 d e s c r i p t o r

#33
14
15 00011b 010010 30 . UTF length=16
16 00011 e 6 a6176612f6c616e672f4 f626a656374 java / lang /Object
17 00012 e 010010 31 . UTF length=16
18 000131 6 a6176612f6c616e672f53797374656d java / lang /System
19 000141 010003 32 . UTF length=3
20 000144 6 f7574 out
21 000147 010015 33 . UTF length=21
22 00014a 4 c6a6176612f696f2 f5072696e745374 Ljava/ i o /Pr intSt
23 00015a 7265616d3b ream ;
24
25 (c) HelloWorld . class Constant Pool

1 Method 1 :
2 0001 e0 0009 ac c e s s f l a g s = 9
3 0001 e2 000 f name = #15<printMessage>
4 0001 e4 0009 d e s c r i p t o r = #9<()V>
5 0001 e6 0001 1 f i e l d /method a t t r i b u t e s :
6 f i e l d /method a t t r i b u t e 0
7 0001 e8 000a name = #10<Code>
8 0001 ea 00000025 l ength = 37
9 0001 ee 0002 max stack : 2

10 0001 f0 0000 max l o c a l s : 0
11 0001 f2 00000009 code l ength : 9
12 0001 f6 b20002 0 g e t s t a t i c #2
13 0001 f9 1203 3 ldc #3
14 0001 fb b60004 5 i nvok ev i r t u a l #4
15 0001 f e b1 8 return
16 0001 f f 0000 0 except ion tab l e e n t r i e s :
17 000201 0001 1 code a t t r i b u t e s :
18 code a t t r i b u t e 0 :

13

19 000203 000b name = #11<LineNumberTable>
20 000205 0000000a l ength = 10
21 Line number t ab l e :
22 000209 0002 l ength = 2
23 00020b 00000004 s t a r t pc : 0 l i n e number : 4
24 00020 f 00080005 s t a r t pc : 8 l i n e number : 5
25
26 (d) HelloWorld . class printMessage () Method

Figure 6: A sample java program (a) and some parts of its binary file (b),
(c), (d)

The bytecode decomposition of a simple java program in Figure 6 shows

the main parts of a java class file. The first columns in Figure 6 (b),

(c), (d) are the hexadecimal indexes of bytes in the binary file. The second

column corresponds to the actual bytes in the file in hexadecimal, every two

digit is one byte of information. The last column is the human readable

interpretation of the class file. The data in Figure 6 is generated by the

utility program DumpClass.java, that comes with the “Programming for the

Java Virtual Machine” book by Joshua Engel.

2.4.2 BCI Libraries

There are various bytecode instrumentation libraries for use, some of them

are JBOSS Javassist, Jakarta Bytecode Engineering Library (BCEL) and

ObjectWeb ASM. These libraries offer different concepts in their functionality

and implementation. In our system JBOSS Javassist was used for handling

bytecode instrumentation.

14

Main use for a bytecode instrumentation library is decoding the binary

class file of a java program, gather information about the components of

the program and store the information in abstract objects that are more

understandable by a user that has little or no knowledge of bytecode in-

strumentation. They provide simple source code level, java code injection

methods. These methods enable the user to add java statement(s) at the

start or end of the program. These methods are used to inject Aspect Ori-

ented Programming related code into the binary file or generating a new

class file from stratch with its variables, contructor and methods.

2.5 JBOSS Javassist Bytecode Instrumentation Library

Javassist is a Java bytecode instrumentation library supported by the JBOSS

community. It has been chosen for the project because of the features offered

by the library and the ease of use. Our instrumentation program required

to work on both source code level and bytecode level. Despite having a few

unsupported requirements Javassist provided us to perform the tasks required

for the project. The instrumentation program both uses the Javassist library

and extends it for some of the missing functionality.

Figure 7 shows a simple example of a target synchronization block (List-

ing 1) and the source code representation of the program snippet after utiliz-

ing our instrumentation program to remove monitorenter, monitorexit

bytecode instructions and replace them with myMonitorEnter() and

myMonitorExit() methods of our scheduler. Javassist’s support for byte-

15

1 synchronized (ob j e c t) {
2 ob j e c t . f oo () ;
3 }

1 {
2 ThreadScheduler . myMonitorEnter (object , l o c a t i o n) ;
3
4 ob j e c t . f oo () ;
5
6 ThreadScheduler . myMonitorExit (ob j e c t , l o c a t i o n) ;
7 }

Figure 7: ByteCode Instrumentation Example

code level manipulation was crucial for tracking down the bytecodes that

will be removed from the class file, inserting the new method definitions and

inserting the bytecode instructions to invoke these newly added methods

from the related method in the original program. The Javassist verifica-

tion utility was used to determine any errors that might prevent running the

instrumented program in the virtual machine.

2.6 Sequence Covering Arrays

Testing a software is generally the most costly part of the software lifecycle,

requiring both time and money. In order to accept a system fault-proof, the

system must be tested exhaustively by trying every possible combination of

options and input. The need to increase the testing performance opened way

to a concept called Covering Arrays.

Covering arrays are used to break up the testing process of N parameters

with m variations into a subset of t elements. These t-wise sequences can be

16

compressed into arrays of N elements. The number of tests required to cover

all t-way pairs is significantly lesser than the number of exhaustive tests. A

comparison of exhaustive versus sequence covering array testing is given in

Figure 8.

N = 5
m = 3
t = 3
of Exhaustive tests: mN = 243
of t-way sequences: 2730
of Sequence Covering Arrays: 18

Figure 8: Sequence Covering Arrays vs Exhaustive Testing

17

3 Related Works

3.1 Exhaustive Testing

Exhaustive testing of software for all possible inputs and is a conclusive way

of testing the correctness. However it has very little practical use, due to the

infeasibility of testing vast amount of input space. Coppit et. al. proposed

bounded exhaustive testing [14]. In bounded exhaustive testing, the system

is tested for all inputs up to some level. But they argue that the system

they tested still couldn’t handle large data sets. Kuhn et. al. proposes

the Pseudo-Exhaustive Testing, which is based on empirical observation of

fault triggering variables [15]. They introduce implementing Covering Array

concept to test for all conditions generated by the subsequnces of variables.

3.2 Reachability Testing

The non-deterministic behaviour of concurrent programs and the cost of

exhaustive testing forced researchers to restrict the number of tests to ex-

pose software errors. Hwang et. al. [11] presented a combination of non-

deterministic testing and deterministic testing, which is called reachability

testing. If a program with a specific input contains a finite number of ex-

ecution blocks, performing the test with same setup many times would lead

to an exhaustive testing of the program that can reach all possible states.

18

3.3 Concurrency Testing with BCI

Java Bytecode Instrumentation is a popular approach for researchers in Soft-

ware Testing and Aspect-Oriented Programming areas [6, 7, 8, 26]. BCI

proves itself to be a powerful tool for providing flexibility of using real Java

applications for testing without the need for the source code. Baur proposed

recording of program executions that lead to a software failure and with the

help of bytecode instrumentation replays the execution to reproduce the soft-

ware error [6]. Bruening proposed the ExitBlock algorithm, which is a basis

for our Thread Scheduler’s atomic execution blocks. ExitBlock algorithm

analysis a concurrent program to observe all possible behaviors [7]. Bounds

implements an instrumentation system to test an application’s performance

[8]. Gschwind et. al. [26] uses bytecode instrumentation for gathering de-

tailed information of a program’s execution trace and object manipulation.

19

4 The Thread Scheduler

Thread Scheduler Interface is a software package that needs to be installed

in the machine where the program that is going to be tested is running. It

consists of a Thread Scheduler program and instrumentation program written

in Java, javassist BCI library .jar file and a test initiator script that registers

our test environment to the Interleaving Coverage Criteria-oriented Tester

system and runs the instrumented program to be tested for software errors.

The Thread Scheduler program oversees the execution of the multi-

threaded application with the information it receives by the injected synchro-

nization, concurrency and thread related methods implemented in Thread

Scheduler. The Thread Scheduler dictates its own scheduling schema to the

running multithreaded application. It receives this scheduling schema from

the Testing System and forces the specified thread to run and halt according

to the schedule.

4.1 Mutual Exclusion Principle

Mutual exclusion principle is associating a shared object with a lock ob-

ject and letting at most one thread to obtain the object’s lock(s) during the

execution of a program. Our Thread Scheduler Interface assures this mu-

tual exclusiveness by injecting its own synchronization and communication

methods into the program. Once the target program is instrumented, the

thread scheduler keeps track of the locks of an object and updates the locks’

20

status every time myMonitorEnter() and myMonitorExit() methods

are called. The Thread Scheduler Interface also regulates the execution of

threads and assures that only one thread is active during an execution of

an atomic block. These properties proves that the Thread Scheduler fully

undertakes the scheduling and synchronization duties of the JVM.

4.2 Atomic Execution Blocks

In this thesis, we define an atomic block as the code segment that starts

from a point where thread execution resumes and the point the thread’s exe-

cution is finished when reaching a monitorexit or end of run() method.

By this definition an atomic block may include both critical and non-critical

code segments and the base rule is reaching the method that releases the

lock of the synchronized object. The atomicity of these segments are as-

sured by our Thread Scheduler implementation. As it was mentioned in

the previous section, when a thread is scheduled to run, and released to

execute by the Thread Scheduler, it can execute without interruption until

reaching either the release of a lock for a synchronized object by invoking

myMonitorExit() or end of execution. End of execution is tracked by the

threadIsAboutToEnd() method.

Atomic blocks are also the deciding factor for the coverage criteria of our

Testing System. In order to generate the thread interleavings and use these

interleavings to cover more unchartered thread schedules, we generate t-way

sequence covering arrays of atomic blocks and keep track of the number of

21

covered sequences. The rest of the uncovered sequences are used to generate

Thread Schedules that will help increase the coverage. This concept will be

explained in Chapter 5.

4.2.1 Atomic Block Decomposition Example

Figure 9 demonstrates an example of parsing atomic blocks in a thread

execution lifetime. The start and end points of each atomic block are marked

with an informative comment in the figure.

1 public void run () {
2 // S ta r t o f Block 1
3 ThreadScheduler . threadHasStarted (l o c a t i o n) ;
4 ThreadScheduler . myMonitorEnter (lock , l o c a t i o n) ;
5 l ock . update () ;
6 ThreadScheduler . myNotify (l ock) ;
7 try {
8 ThreadScheduler .myWait(lock , l o c a t i o n) ;
9 // End o f Block 1

10 // S ta r t o f Block 2
11 } catch (Inter ruptedExcept ion e) {
12 e . pr intStackTrace () ;
13 }
14 ThreadScheduler . myMonitorExit (lock , l o c a t i o n) ;
15 // End o f Block 2
16 // S ta r t o f Block 3
17 ThreadScheduler . threadIsAboutToEnd (l o c a t i o n) ;
18 // End o f Block 3
19 }

Figure 9: Atomic Blocks of a Thread.

Atomic block 1 starts from the first line of the run() method. The

thread is at a waiting state at this point in execution. When the Thread

Scheduler gives permission to the thread, it executes until the Thread Sched-

22

uler’s myWait() method is invoked. myMonitorExit() is nested in this

method, so there is no inconsistency for the end of Atomic Block 1, it ends

the execution of an atomic block at the time of releasing the synchronized

object’s lock.

Atomic block 2 starts from the end of atomic block 1, where the

execution stopped with myMonitorExit(). myMonitorExit() returns

to myWait() method and then myMonitorEnter() is invoked to regain

the object’s lock and the blocked thread is once again released to execute.

We have defined the boundaries for atomic blocks in the previous section.

An atomic block end when the call to release a lock is invoked or the thread

execution ends. In Figure 9, even though the critical section ends at the end

of atomic block 2, there is still code to be executed. The thread need to be

scheduled again in order to resume execution from the end of atomic block 2

to execute the last line of code that finishes the run() method. This block

becomes the atomic block 3.

The details of the Thread Scheduler’s methods and how they control the

execution of threads will be thoroughly explained in their respective sections.

4.3 Thread Scheduler Algorithm and Implementation

The Thread Scheduler is a library of methods that override synchro-

nization and thread controlling methods in java.lang.Thread class and

java.lang.Object class. The instrumentFiles.java program of

the Thread Scheduler package is used on the pre-compiled class files of pro-

23

Class Name Thread Name Line # of Code
TwoStage Thread-0 27

Table 1: Execution information message gathered from the injected code in a
tested program. The injected method was executed at line 27 of the specified
class.

gram to be tested. This program instruments the bytecode of the program

by adding the necessary control methods in the tested program and removing

the original methods that is used by the JVM to control synchronization and

Thread execution. instrumentFiles.java program will be explained in

detail in the following sections.

The Thread Scheduler receives execution related data from the tested

program each time an atomic block starts and ends the execution. The

methods that deliver these data differ by the job they need to perform but

the contents of execution data itself is a constant with a strict format. Table

1 shows the structure of this message that contains execution information.

The execution information is the concatenation of the class file information

that the thread recently executed instructions from, the name of the thread

executing and the line number of the code that this instrumented method is

called.

The Thread Scheduler works as the intermediary system (See Figure 10).

It is responsible for delivering the execution information gathered from the

test environment to the Tester. The Tester processes this information and

applies the coverage criteria to the scheduling process in order to produce a

schedule that will achieve better coverage of untested interleaving arrange-

24

BEGIN:
 FOREACH (new Thread i initialized)
 register thread i
 send newThread info to Coverage-oriented Tester
 END FOREACH

 startTesting();

 WHILE (Unfinished threads remaining)
 getNextThreadToSchedule();
 sync(); //Handle Synchronization
 runCurrentThread();
 END WHILE

 endTesting();
END

Figure 10: The Thread Scheduler Algorithm. The algorithm shows how the
threads are controlled in the testing environment. Thread Scheduler is the
intermediary system, delivering messages from the testing environment and
executing the orders of the tester.

ments. The overridden synchronization and threading methods are explained

in the next section.

4.3.1 Thread Scheduler Methods

BlockThread method (Figure 11) and UnblockThread method (Fig-

ure 12) are the two methods used to control the execution of the registered

threads. A dummy object of the MyThreadInfo class is used as the syn-

chronization object. A thread under the control of the Thread Scheduler

waits on this object if BlockThread method is called and resumes execu-

tion if the UnblockThread method is called. These methods are not in-

strumented into the target application, and are used internally in the Thread

Scheduler methods.

25

1 public stat ic void blockThread (MyThreadInfo thread) {
2 synchronized (thread . l o ck) {
3 while (thread . blocked) {
4 try {
5 thread . l o ck . wait () ;
6 } catch (Inter ruptedExcept ion e) {
7 System . out . p r i n t l n (e . getMessage ()) ;
8 }
9 }

10 thread . blocked = true ;
11 }
12 }

Figure 11: BlockThread Method

1 public stat ic void unblockThread (MyThreadInfo thread) {
2 synchronized (thread . l o ck) {
3 thread . blocked = fa l se ;
4 thread . l a s tEntryLocat ion = thread . nextEntryLocat ion ;
5 thread . nextEntryLocat ion = null ;
6 currentThread = thread ;
7 thread . l o ck . n o t i f yA l l () ;
8 }
9 }

Figure 12: UnblockThread Method

The MyThreadInfo object is the utility object of the Thread Scheduler.

It contains the information used by the rest of the methods of the Thread

Scheduler.

Sync method (Figure 13) is the main controller method. The method

is responsible for synchronization of threads by calling BlockThread on

the currentThread and unblockThread for the next thread in the scheduling

26

order. Sync method also invokes the NextThreadToSchedule method,

which communicates with the Tester, asking for the thread to be scheduled

next. When testing is finished sync method informs the Tester to finalize

the test and complete the calculations.

NextThreadToSchedule method (Figure 14) exchanges information

with the Tester. The availability information of the registered threads are

sent to update the Tester’s understanding of the tested application’s state.

In return, Tester decides which thread will receive permission to run and in-

forms the Thread Scheduler. The method then returns the scheduled thread’s

information to sync() method.

ThreadHasStarted method (Figure 15) is a method injected into the

tested application’s threads’ first line of the (run()) method. Correctness of

the bytecode injection operation for this method is very important, because

this method is a thread’s first contact point with the Thread Scheduler and

the Tester. The thread is registered to the Tester and Thread Scheduler

system. The execution of the newly started thread is blocked here at the start

of the run() method and stays blocked until the Tester decides to schedule

this thread for execution for the first time.

ThreadIsAboutToEnd method (Figure 16) is a method injected into

the tested application’s threads’ last line of the (run()) method. The invoking

thread’s execution is about to be finished. This method is responsible for

releasing any threads that have previously joined this thread and waiting

for it to finish execution. These joined threads are once again free to be

27

1 public stat ic void sync (S t r ing block) {
2 i f (t e s t Ju s tS t a r t ed) {
3 t e s t Ju s tS t a r t ed = fa l se ;
4 try {
5 // Wait f o r a shor t time f o r the threads
6 // to r e g i s t e r at the s t a r t o f a t e s t
7 Thread . s l e e p (2000) ;
8 } catch (Inter ruptedExcept ion e) {
9 e . pr intStackTrace () ;

10 }
11 }
12 MyThreadInfo nextThread = nextThreadToSchedule (b lock) ;
13
14 // i f we are f i n i s h e d
15 i f (nextThread . thread == null) {
16 System . e x i t (0) ;
17 }
18 // the same thread i s s e l e c t e d
19 // so l e t i t run
20 i f (nextThread . thread == currentThread . thread) {
21 currentThread . l a s tEntryLocat ion = currentThread .

nextEntryLocat ion ;
22 currentThread . nextEntryLocat ion = null ;
23 return ;
24 }
25 // save the curren t thread
26 MyThreadInfo previousThread = currentThread ;
27 // unb lock the next thread
28 unblockThread (nextThread) ;
29 // b l o c k the currentThread
30 blockThread (previousThread) ;
31 }

Figure 13: Sync Method

28

1 public stat ic MyThreadInfo nextThreadToSchedule (S t r ing block) {
2
3 MyThreadInfo tempThread = NOTHREAD;
4 S t r i ngBu f f e r updateBuf fer = new St r i ngBu f f e r () ;
5 for (I t e r a t o r i t = myThreads . va lue s () . i t e r a t o r () ; i t . hasNext () ;

) {
6 tempThread = (MyThreadInfo) i t . next () ;
7 int av a i l a b l e = 0 ;
8 i f (! tempThread . wa i t ingForNot i fy)
9 {

10 av a i l a b l e = 1 ;
11 }
12 updateBuf fer . append (”#setThreadAv | ”+userName+progName+” | ”+

tempThread . thread . getName ()+” | ”+ava i l a b l e) ;
13 }
14 i f (updateBuf fer . l ength () == 0) {
15 sendMessage (updateBuf fer . t oS t r i ng ()) ;
16 } else {
17 St r ing updateResult = sendReceiveMessage (updateBuf fer .

t oS t r i ng ()) ;
18 }
19 St r ing returned = ”NOTHREAD” ;
20 // Get the newly schedu l ed thread
21 returned = sendReceiveMessage (” getNext | ”+userName+progName+” | ”

+block) ;
22
23 return (returned . equa l s (”NOTHREAD”)) ? NOTHREAD : getTINFO(

returned) ;
24 }

Figure 14: NextThreadToSchedule Method

29

1 public stat ic void threadHasStarted (St r ing l o c a t i o n) {
2 // ge t the curren t thread which c a l l e d t h i s method
3 Thread newThread = Thread . currentThread () ;
4
5 // r e g i s t e r the thread
6 MyThreadInfo newThreadInfo = new MyThreadInfo (newThread) ;
7 newThreadInfo . nextEntryLocat ion = l o c a t i o n ;
8
9 // Reg i s t e r the thread to the Tester Program

10 sendMessage (” regThread | ”+userName+progName+” | ”+newThread .
getName ()+” |1 ”) ;

11 // Reg i s t e r the thread to the Schedu ler
12 myThreads . put (newThread , newThreadInfo) ;
13
14 // b l o c k i t r i g h t away
15 blockThread (newThreadInfo) ;
16 }

Figure 15: ThreadHasStarted Method

Class Name Thread Name Line # of Code
Start TwoStageThread Thread-0 -1
End TwoStage Thread-0 27

Table 2: Atomic Block information format. This information is parsed to
define the atomic block that has been recently executed. It is stored as a
thread interleaving of Thread-0. Line number of -1 is the start of run()
method.

scheduled by the Thread Scheduler. The thread is unregistered from the

Tester and the Thread Scheduler system. This method also marks the end

of an atomic block so the atomic block information (See Table 2) is created

and the sync() method is called to continue testing by scheduling a new

thread or finish testing if no more threads are registered.

30

1 public stat ic void threadIsAboutToEnd (St r ing l o c a t i o n) {
2 Thread thread = Thread . currentThread () ;
3 MyThreadInfo threadIn fo = myThreads . get (thread) ;
4
5 // Release the threads which have jo ined curren t thread
6 i f (th readIn fo . j o i n e r s . s i z e ()>0){
7 while (! th r ead In fo . j o i n e r s . isEmpty ()) {
8 MyThreadInfo j o i n e r = (MyThreadInfo) th readIn fo . j o i n e r s .

remove (0) ;
9 i f (j o i n e r . wa i t ingForNot i fy == true) {

10 j o i n e r . wa i t ingForNot i fy = fa l se ;
11 }
12 else {
13 System . out . p r i n t l n (”Bug ! execut ion should not ente r t h i s

b lock ”) ;
14 }
15 }
16 }
17 // Combine the boundary l o c a t i o n s o f the atomic b l o c k to form

up
18 // Atomic Block Informat ion
19 St r ing block = threadIn fo . id + ” : ” + threadIn fo .

l a s tEntryLocat ion
20 + ” $ ” + l o c a t i o n ;
21 // Unreg i s t e r the thread from the Tester
22 sendMessage (”unregThread | ”+userName+progName+” | ”+thread .

getName ()) ;
23 // Unreg i s t e r the thread from the Thread Schedu ler
24 myThreads . remove (thread) ;
25
26 // sync
27 sync (block) ;
28 }

Figure 16: ThreadIsAboutToEnd Method

31

myMonitorEnter method (Figure 17) is injected into the tested appli-

cation to replace the original bytecodes generated for synchronized keyword.

Javassist library was instrumental for this process. The library enabled us to

locate the original bytecode segment used to achieve synchronization. These

bytecodes are switched with nop instructions (Figures 18, 19), which means

”no operation”. These instructions are required for the changes to pass the

Java verification algorithm. Comparing the indented parts of original and

instrumented bytecode segments in (Figures 18, 19) shows that the rest of

the code remains untouched to execute properly. After that new function call

is injected into the bytecode of the method that is being instrumented. This

involves both changing the contents of the method and the constant pool of

the class, so that the required classes, variables and definitions are included.

myMonitorEnter method has two types of usage, first type is already

mentioned; injection into the tested code. The second type of usage is the

Thread Scheduler’s own use by invoking the method from other thread con-

trol related methods (see Figure 21) to gather the lock for the synchro-

nized object and resume execution of the scheduled thread. For example,

myWait() method’s last method invocation before returning is myMoni-

torEnter() to release the thread had halted in the myWait() method.

32

1 public stat ic void myMonitorEnter (Object lock , S t r ing l o c a t i o n)
{

2 // f i nd the l o c k
3 MyLockInfo myLockInfo = myLocks . get (l o ck) ;
4 i f (myLockInfo == null) {
5 myLockInfo = new MyLockInfo (l ock) ;
6 myLocks . put (lock , myLockInfo) ;
7 }
8
9 // f i nd the thread ho l d ing the l o c k

10 Thread threadHold ingI t = myLockInfo . current lyHeldBy . thread ;
11
12 // current thread w i l l b l o c k on a l o c k
13 i f ((threadHold ingI t != null) && (currentThread . thread !=

threadHold ingI t)) {
14 currentThreadWil lBlock () ;
15 }
16
17 // Otherwise go ahead and acqu i re the l o c k
18 myLockInfo . current lyHeldBy = currentThread ;
19 myLockInfo . lockCount++;
20
21 // Current thread w i l l resume i t s execu t i on
22 i f (currentThread . i n t e r rup t ed) {
23 currentThread . thread . i n t e r r up t () ;
24 currentThread . i n t e r rup t ed = fa l se ;
25 // throw new In te r rup t edExcep t i on () ;
26 }
27 }

Figure 17: myMonitorEnter Method

33

1 Method 1 :
2 000472 0001 ac c e s s f l a g s = 1
3 000474 0025 name = #37<run>
4 000476 0026 d e s c r i p t o r = #38<()V>
5 000478 0001 1 f i e l d /method a t t r i b u t e s :
6 f i e l d /method a t t r i b u t e 0
7 00047a 0020 name = #32<Code>
8 00047 c 000002 cb length = 715
9 000480 0003 max stack : 3

10 000482 0006 max l o c a l s : 6
11 000484 000001bd code l ength : 445
12 000488 b20005 0 g e t s t a t i c #5
13 00048b bb0006 3 new #6
14 00048 e 59 6 dup
15 00048 f b70007 7 i nvok e sp e c i a l #7
16 000492 1208 10 ldc #8
17 000494 b60009 12 i nvok ev i r t u a l #9
18 ∗∗∗∗∗∗∗∗
19 0004b3 2a 43 a load 0
20 0004b4 b40003 44 g e t f i e l d #3
21 0004b7 59 47 dup
22 0004b8 4c 48 a s t o r e 1
23 0004b9 c2 49 monitorenter
24 0004ba 2a 50 a load 0
25 0004bb b40003 51 g e t f i e l d #3
26 0004be b6000f 54 i nvok ev i r t u a l #15
27 0004 c1 b20005 57 g e t s t a t i c #5
28 0004 c4 bb0006 60 new #6

Figure 18: Original bytecode of the run() method of a thread. Indented
region is where the object to be synchronized is loaded and lock is acquired
by the monitorenter instruction.

34

1 000d60 12b6 817 ldc #182
2 000d62 b600b5 819 i nvok ev i r t u a l #181
3 000d65 b800b8 822 i n v ok e s t a t i c #184
4 000d68 b600a1 825 i nvok ev i r t u a l #161
5 000d6b b600b5 828 i nvok ev i r t u a l #181
6 000d6e 12b9 831 ldc #185
7 000d70 b600b5 833 i nvok ev i r t u a l #181
8 000d73 b800b8 836 i n v ok e s t a t i c #184
9 000d76 b600bb 839 i nvok ev i r t u a l #187

10 000d79 04 842 i c o n s t 1
11 000d7a 32 843 aaload
12 000d7b b600bd 844 i nvok ev i r t u a l #189
13 000d7e b600bf 847 i nvok ev i r t u a l #191
14 000d81 b600c1 850 i nvok ev i r t u a l #193
15 000d84 b800c4 853 i n v ok e s t a t i c #196
16 000d87 00 856 nop
17 000d88 00 857 nop
18 000d89 00 858 nop
19 000d8a 00 859 nop
20 000d8b 00 860 nop
21 000d8c 00 861 nop
22 000d8d 00 862 nop
23 000d8e 2a 863 a load 0
24 000 d8f b40003 864 g e t f i e l d #3
25 000d92 b6000f 867 i nvok ev i r t u a l #15
26 000d95 b20005 870 g e t s t a t i c #5
27 000d98 bb0006 873 new #6
28 000d9b 59 876 dup

Figure 19: Instrumented bytecode of the run() method of a thread. Indented
region is where the myMonitorEnter method is executed. “invokestatic
#196” is the instruction representing the method call. The other indented
invocations are for generating the parameter passed to the myMonitorEnter
method. “nop” instructions are where the original code for synchronization
was.

35

myMonitorExit method (Figure 20) is also injected into the tested

application to replace the original bytecode for monitorexit. The instru-

mentation for this method is more complex than instrumenting the code

for replacing monitorenter. There is one entry point for a synchronized

block, while there are various exit points. This is due to the fact that in

case of an exception, which may also be coded separately to catch different

versions, there has to be a lock release to handle the exception without dead-

locking the system. In the instrumentation all monitorexit instructions

are replaced with nop instructions, because the Thread Scheduler is the only

synchronization authority and assures atomicity of the blocks and mutually

exclusively running of threads. There is no need to gain a native monitor

for the synchronized objects, the Thread Scheduler handles its own monitor

system. The rest of the exception catching mechanism remains intact and

performs accordingly.

myWait method (Figure 21) is the ThreadScheduler’s interpretation of

the java.lang.Object class’ wait method. The thread’s state is changed

to waiting and myMonitorExit is called to block the thread’s execution.

When another thread notifies the lock object and the Thread Scheduler se-

lects the waiting thread to run, myMonitorEnter is called and the thread

resumes execution. Figures 22, 23 explicitly shows the bytecode changes for

the wait() and myWait() methods. Original myWait method has a timed

version which has the same functionality, but the thread waits for a specified

36

1 public stat ic void myMonitorExit (Object lock , S t r ing l o c a t i o n) {
2 // f i nd the l o c k
3 i f (l o ck != null) {
4 MyLockInfo myLockInfo = myLocks . get (l o ck) ;
5
6 // decrement the l o c k count
7 myLockInfo . lockCount−−;
8 i f (myLockInfo . lockCount == 0) {
9 // No body i s ho l d ing the l o c k

10 myLockInfo . current lyHeldBy = NOTHREAD;
11 }
12 }
13 currentThread . nextEntryLocat ion = l o c a t i o n ;
14
15 // ge t the b l o c k executed
16
17 St r ing block = currentThread . id + ” : ”
18 + currentThread . l a s tEntryLocat ion + ” $ ” + l o c a t i o n ;
19
20 // Now schedu l e the next thread
21 sync (block) ;
22 }

Figure 20: myMonitorExit Method. The working of Thread Scheduler’s
locking mechanism is clearly seen here. The concept is similar to the original
methods of the JVM. A lock can be acquired multiple times by its holder and
here monitorexit operation makes sure the lock count is decreased properly
as intended.

37

1 public stat ic void myWait(Object lock , S t r ing l o c a t i o n)
2 throws Inte r ruptedExcept ion {
3
4 // Change the wa i t ing f l a g to t rue
5 currentThread . wa i t ingForNot i fy = true ;
6
7 // Add CurrentThread to the l i s t o f t h reads wa i t ing on l o c k

o b j e c t
8 MyLockInfo myLockInfo = myLocks . get (l o ck) ;
9 myLockInfo . addThread (currentThread) ;

10
11 // Release the l o c k and sync f o r another thread
12 myMonitorExit (lock , l o c a t i o n) ;
13 i f (currentThread . i n t e r rup t ed) {
14 // currentThread . thread . i n t e r r u p t () ;
15 // currentThread . i n t e r r up t e d = f a l s e ;
16 throw new Inte r ruptedExcept ion () ;
17 }
18 // myNotify () or myNoti fyAl l () method i s c a l l e d and
19 // ThreadScheduler r e s chedu l ed thread
20 // Re−acqu i re l o c k and resume execu t i on
21 myMonitorEnter (lock , l o c a t i o n) ;
22 }

Figure 21: myWait Method. A thread calls myWait() to release the lock of
the synchronized object. This is an exit point for an atomic block. When
the waiting thread is rescheduled to run, this point will the starting point of
the new atomic block.

amount of time before reentering the competition to regain the synchronized

object’s monitor.

38

1 000430 b60009 45 i nvok ev i r t u a l #9
2 000433 b6000c 48 i nvok ev i r t u a l #12
3 000436 b6000d 51 i nvok ev i r t u a l #13
4 000439 2a 54 a load 0
5 00043a b40003 55 g e t f i e l d #3
6 00043d b6000e 58 i nvok ev i r t u a l #14
7
8 // o r i g i n a l wai t () method c a l l from the o b j e c t
9 000440 2a 61 a load 0

10 000441 b40003 62 g e t f i e l d #3
11 000444 b6000f 65 i nvok ev i r t u a l #15
12 000447 a70008 68 goto 76
13 00044a 4e 71 a s t o r e 3
14 00044b 2d 72 a load 3
15 00044 c b60011 73 i nvok ev i r t u a l #17
16 00044 f 840201 78 i i n c 2 1
17 000452 a7 f fba 79 goto 65545
18 000455 2b 82 a load 1
19 000456 c3 83 moni torex i t
20 000457 a7000a 84 goto 94
21 00045a 3a04 87 a s t o r e 4
22 00045 c 2b 89 a load 1
23 00045d c3 90 moni torex i t
24 00045 e 1904 91 aload 4
25 000460 bf 93 athrow
26 000461 b1 94 return
27 000462 0003 3 except ion tab l e e n t r i e s :
28 000464 003d s t a r t pc = 61
29 000466 0044 end pc = 68
30 000468 0047 handler pc = 71
31 00046a 0010 catch type = 16

Figure 22: Bytecode decomposition of the run() method of an original ex-
ample program.

39

1 000919 04 230 i c o n s t 1
2 00091a 32 231 aaload
3 00091b b6007b 232 i nvok ev i r t u a l #123
4 00091 e b6007e 235 i nvok ev i r t u a l #126
5 000921 b60080 238 i nvok ev i r t u a l #128
6 000924 b80086 241 i n v ok e s t a t i c #134
7 000927 a7000d 244 goto 257
8 00092a 3a05 247 a s t o r e 5
9 00092 c 1905 249 aload 5

10 00092 e b60088 251 i nvok ev i r t u a l #136
11 000931 a70003 254 goto 257
12 000934 00 257 nop
13 000935 00 258 nop
14 000936 00 259 nop
15 000937 00 260 nop
16 000938 00 261 nop
17 000939 00 262 nop
18 00093a 00 263 nop
19 00093b a70008 264 goto 272
20 00093 e 4e 267 a s t o r e 3
21 00093 f 2d 268 a load 3
22 000940 b60011 269 i nvok ev i r t u a l #17
23 000943 840201 274 i i n c 2 1
24 000946 a7 f f 6 a 275 goto 65661

Figure 23: Bytecode decomposition of the run() method of the instrumented
example program. Indented block is the instrumented call of myWait() and
the wait()-nop switch.

40

myNotify method (Figure 24) is the Thread Scheduler’s interpretation

of the java.lang.Object class’ notify method. Original JVM implemen-

tation of this method makes a random thread selection from the waiting

threads list of the synchronized object. The Thread Scheduler version has

the same functionality. This method is responsible for readying a thread for

execution by changing its state, but does not initiate execution. In order

to execute a notified thread, the Thread Scheduler should chose to schedule

this ready-to-run thread. myNotifyAll method works the same way as the

myNotify, but all of the threads on the waiting list of the lock is notified

to be ready.

myInterrupt method (Figure 25) is the Thread Scheduler’s interpre-

tation of the java.lang.Thread class’ interrupt method. This method

interrupts the thread waiting on any kind of blocking method implemented in

java.lang.Thread or java.lang.Object and throws InterruptedException.

myJoin method (Figure 26) is the Thread Scheduler’s interpretation of

the java.lang.Thread class’ join method. A running thread joining to

another thread blocks itself until the joined thread has finished. A joined

thread can be interrupted.

myYield and mySleep methods are dummy methods that does not af-

fect the execution under the control of the Thread Scheduler. Implementing

the functionality of these methods would contradict with the mutually ex-

clusive execution of threads and the atomic block definitions of the Thread

Scheduler algorithm. Yield method simply skips the execution of the cur-

41

1 public stat ic void myNotify (Object l ock) {
2 MyLockInfo myLockInfo = myLocks . get (l o ck) ;
3
4 Vector wai t ing = new Vector () ;
5
6 MyThreadInfo tempThread = null ;
7 for (I t e r a t o r i t = myThreads . va lue s () . i t e r a t o r () ; i t . hasNext ()

;) {
8 tempThread = (MyThreadInfo) i t . next () ;
9 // Check f o r the wa i t ing s t a t e

10 // Store t h e s e th reads f o r s e l e c t i o n in the next par t
11 i f (tempThread . wa i t ingForNot i fy == true
12 && myLockInfo . wait ingThreads . conta in s (tempThread)) {
13 wai t ing . add (tempThread) ;
14 }
15 }
16
17 Random r = new Random(System . cur rentT imeMi l l i s ()) ;
18 tempThread = (MyThreadInfo) wai t ing . get (r . next Int (wa i t ing . s i z e

())) ;
19 // Change thread s t a t e
20 tempThread . wa i t ingForNot i fy = fa l se ;
21 // Remove the s e l e c t e d thread from the wa i t ing l i s t
22 myLockInfo . removeThread (tempThread) ;
23 }

Figure 24: myNotify Method

1 public stat ic void myInterrupt (Thread thread) {
2 MyThreadInfo tempThread = myThreads . get (thread) ;
3 MyLockInfo myLockInfo = searchLocks (tempThread) ;
4
5 i f (tempThread . wa i t ingForNot i fy == true && myLockInfo != null)

{
6 tempThread . wa i t ingForNot i fy = fa l se ;
7
8 myLockInfo . removeThread (tempThread) ;
9 }

10 tempThread . i n t e r rup t ed = true ;
11 }

Figure 25: myInterrupt Method. An interrupted thread’s waiting status is
reset to ready and an Interrupted Exception is thrown.

42

1 public stat ic void myJoin (Thread thread , S t r ing l o c a t i o n)
2 throws Inte r ruptedExcept ion
3 {
4 currentThread . wa i t ingForNot i fy = true ;
5
6 MyThreadInfo threadIn fo = myThreads . get (thread) ;
7 threadIn fo . addThread (currentThread) ;
8
9 // sync f o r another thread

10 myMonitorExit (null , l o c a t i o n) ;
11
12 i f (currentThread . i n t e r rup t ed) {
13 throw new Inte r ruptedExcept ion () ;
14 }
15 }

Figure 26: myJoin Method. A running thread that calls join changes its
status to waiting. This status is reset when the joined thread is finished.

rently running thread without a proper waiting mechanism, the thread is free

to run if scheduled immediately after yield. The original implementations of

these methods do not release the lock of an object and our implementa-

tion requires a myMonitorExit to define an atomic block. The bytecode is

instrumented to replace these methods with the dummy methods.

4.4 Instrumenting Files

The Thread Scheduler is a library of methods that enables controlling a

computer program written in Java language. In this thesis, our purpose is

to control the program in order to test for the concurrency bugs, covering as

much of the atomic block interleavings as possible and exposing the errors.

The Test System is used on the pre-compiled applications. Therefore we

43

need to modify the application at the bytecode level, so the Thread Sched-

uler becomes operational and takes over the thread control and synchro-

nization processes. InstrumentFiles.java is the utility program that

automates the instrumentation process. The program processes all class

files of the application and instruments them. InstrumentFiles.java

uses the Javassist Bytecode Instrumentation Library for this purpose, the

library is extended for special needs of our testing system.

4.4.1 Interpreting and Running Java Programs

The java source code needs to be compiled into a special kind of file (class)

that contains special instructions. The JVM understands the file format and

interprets the bytecode to the platform depended machine code. A program

is executed in the JVM by loading the class files of the application into

the virtual machine and executing the instructions. The JVM verifies the

integrity of these files before executing a program in order to protect the

computer system. Javassist BCI library provides methods that check the

code and automatically updates the files. Important structural information

like program counters, code length information, constant pool entries, ex-

ception tables and jump instructions are updated by the library, so that the

instrumented application runs in the VM.

44

4.4.2 Implementation

Javassist implements a ClassPool object that adds all the class files in a spec-

ified directory. First of all InstrumentFiles program creates a ClassPool

object and adds all the instrumentation target class files in the pool.

The Thread Scheduler is a set of methods that is invoked from inside the

tested programs. A java program must import any external library in or-

der to use the methods defined in them. The first task of instrumentation

is importing the Thread Scheduler package into the ClassPool object, by

calling importPackage(String packageName) method. This method

forces all files to import the specified package. The ProcessClassFile()

method is the top level instrumentation method. This method is called for

every class file in the pool.

ProcessClassFile method (Listing 27) starts the process by extracting

the class information into a CtClass object. Then this class’ type is checked

out to filter out the abstract and interface classes, which are not instrumented

by the program. The methods of the class is extracted into a CtMethod array.

The class file is checked for any kind of synchronization and thread control

methods and objects and these are stored in a vector (prMethods) to be

processed. The CtMethod array is processed to find, replace and rewrite the

bytecodes.

45

1 stat ic void p r o c e s sC l a s sF i l e (ClassPool pool , S t r ing cname) {

2 Vector prMethods = new Vector () ;

3 Vector<invokeNode> i nvoke In f o s = new Vector<invokeNode>() ;

4 cname = cname . sub s t r i ng (0 , cname . indexOf (” . ”)) ;

5 try {

6 CtClass cc = pool . get (cname) ;

7 boolean i n t e r f a c eC l a s s = Modi f i e r . i s I n t e r f a c e (cc .

g e tMod i f i e r s ()) ;

8 boolean ab s t r a c tC l a s s = Modi f i e r . i sAbs t r a c t (cc . g e tMod i f i e r s

()) ;

9 i f (! i n t e r f a c eC l a s s && ! ab s t r a c tC l a s s) {

10 // Get the l i s t o f methods implemented in the c l a s s f i l e

11 CtMethod [] ctMethods = cc . getDeclaredMethods () ;

12 // Search the Constant Pool f o r Methods t ha t needs to be

13 // instrumented

14 prMethods = processMethods (cname , pool) ;

15 for (int i = 0 , n = ctMethods . l ength ; i < n ; i++) {

16 i f (ctMethods [i] . getName () . equa l s (”main”)) {

17 instrumentMainStartStop (cname , ctMethods [i] . getName () ,

18 pool) ;

19 System . out

20 . p r i n t l n (”Control Methods f o r Main i n s e r t e d ! ”) ;

21 } else {

22 i f (prMethods . s i z e () > 0) {

23 for (int k = 0 ; k < prMethods . s i z e () ; k++) {

24 MethodInf mi = (MethodInf) prMethods

25 . elementAt (k) ;

46

26 // Get the invoca t i on in format ion the methods in

27 // prMethods

28 invoke In f o s . addAll (getInvoke (mi . cpIndex ,

29 mi . name , cname , ctMethods [i] . getName () ,

30 pool)) ;

31 }

32 for (int k = invoke In f o s . s i z e () − 1 ; k >= 0 ; k−−) {

33 invokeNode inode = (invokeNode) i nvoke In f o s

34 . elementAt (k) ;

35 // In s e r t the rep lacement code f o r the

36 // instrumented methods

37 replaceCode (inode .methodName , inode . objectName ,

38 inode . po s i t i on , inode . or ig ina lOpcode ,

39 pool , cname , ctMethods [i] . getName ()) ;

40 }

41 System . out

42 . p r i n t l n (” Fin i shed i n s e r t i n g Cont r o l l e r ’ s

s ub s t i t u t e codes !\n”) ;

43 }

44 // Modify the run () method to i n s e r t

45 // thread con t r o l methods f o r the s t a r t /end o f the

46 // method

47 i f (ctMethods [i] . getName () . equa l s (”run”)

48 && ! methodExists (ctMethods , ”main”)) {

49 System . out . p r i n t l n (” Instrument ing run () method : ”) ;

50 instrumentThreadStartStop (cname ,

51 ctMethods [i] . getName () , pool) ;

47

52 }

53 System . out

54 . p r i n t l n (” Instrument ing Cont r o l l e r ’ s monitor

methods”) ;

55 instrumentMonitors (cname , ctMethods [i] . getName () , pool

) ;

56 System . out

57 . p r i n t l n (”\nRemoving rep laced methods ’ bytecode ”) ;

58 instrumentRemoves (invoke In fo s , pool , cname ,

59 ctMethods [i] . getName ()) ;

60 System . out . p r i n t l n (”Checking method ac c e s s f l a g ”) ;

61 // Turn a synchronized method in t o a normal method

62 // Thread Schedu ler has the con t r o l over sync

63 proces sAcces sF lag (cname , ctMethods [i] . getName () , pool)

;

64 i f (i + 1 == n)

65 cc . w r i t eF i l e () ;

66 invoke In f o s . c l e a r () ;

67 }

68 }

69 }

70 } catch (Exception e) {

71 e . pr intStackTrace () ;

72 }

73 }

48

Figure 27: ProcessClassFile method.

ProcessMethods method (Figure 28) searches the constant pool for

method references. If any of the thread synchronization related methods are

found, the method’s properties are stored in a plain old java object (POJO)

of class MethodInf (Figure 29). ProcessClassFile method later searches

for these methods for injecting replacement code and removing the original

invocations.

getInvoke method finds the invocations of synchronization methods,

their parameters and callers. This information is stored in a POJO, called

invokeNode (Figure 30), for removal and insertion of related synchronization

code. The invokeNode object has the opcode for the method invocation and

the index of this invocation in the bytecode.

The bytecode of the processed class’ method is searched byte by byte to

find a method invocation opcode, when an invocation opcode is found the

method called by it is checked with the synchronization method that is being

searched for. If there is a match the bytecode is checked to find the object

used for synchronization. This method could be called as a bytecode level

lexical analyzer and parser. All access types of the methods, all return type

of methods and all possible combinations of parameters are considered to find

out the correct synchronized object. If the method is synchronized, the syn-

chronization object would be the class itself for synchronized static

methods. If it is another kind of method, the synchronized object could be

49

1 /∗
2 ∗ Search the cons tant poo l f o r the synchron i za t i on methods
3 ∗ Store the method in f o in a vec to r and re turn the l i s t
4 ∗/
5 public stat ic Vector processMethods (S t r ing cname , ClassPool pool

) {
6 Vector c lassMethods = new Vector () ;
7 CtClass cc ;
8 try {
9 cc = pool . get (cname) ;

10 ConstPool cp = cc . g e tC l a s sF i l e () . getConstPool () ;
11
12 for (int i = 0 ; i<cp . g e tS i z e () ; i++){
13 try{
14 // throws excep t i on when current index i s not a

methodref
15 St r ing mName = cp . getMethodrefName (i) ;
16
17 i f (mName. equa l s (” no t i f y ”) | |mName. equa l s (” n o t i f yA l l ”) | |

mName. equa l s (”wait ”)
18 | |mName. equa l s (” s l e e p ”) | |mName. equa l s (” y i e l d ”) | |

mName. equa l s (” i n t e r r up t ”) | |
19 mName. equa l s (” j o i n ”)) {
20 MethodInf mi = new MethodInf (i ,mName) ;
21
22 classMethods . add (mi) ;
23 System . out . p r i n t l n (mName) ;
24 }
25 }catch (Exception c) {}
26 }
27 }catch (Exception e) {
28 e . pr intStackTrace () ;
29 }
30 return c lassMethods ;
31 }

Figure 28: ProcessMethods Method

50

1 class MethodInf{
2 public St r ing name ;
3 public int cpIndex ;
4 public boolean i sSynched = fa l se ;
5
6 public MethodInf (int index , S t r ing name) {
7 this . name = name ;
8 cpIndex = index ;
9 }

10 public MethodInf () {
11 name = null ;
12 cpIndex = −1;
13 }
14 public St r ing getName () {
15 return name ;
16 }
17 public void setName (St r ing name) {
18 this . name = name ;
19 }
20 public int getCpIndex () {
21 return cpIndex ;
22 }
23 public void setCpIndex (int cpIndex) {
24 this . cpIndex = cpIndex ;
25 }
26 }

Figure 29: MethodInf Class

51

1 class invokeNode{
2 St r ing methodName ;
3 St r ing objectName ;
4 int po s i t i o n ;
5 St r ing or ig ina lOpcode ;
6
7 public invokeNode (St r ing mName, S t r ing oName , int pos , S t r ing

origOpcode) {
8 this . methodName = mName;
9 this . objectName = oName ;

10 this . p o s i t i o n = pos ;
11 this . o r ig ina lOpcode = origOpcode ;
12 }
13 }

Figure 30: InvokeNode Class

a parameter, global variable, local variable or even the returned object of

another method call. Every legal expression type is considered to find the

correct synchronized object. Finding the synchronized object is important,

because it is a parameter of our Thread Scheduler’s methods and also there

could be multiple synchronized objects in an application. The integrity of the

tested application is the most important criteria to uncover the real software

errors.

replaceCode method is used to insert the Thread Scheduler version of

the synchronization method found in a method. This newly added code is

inserted with Javassist’s CtMethod class’ insertAt() method. The Line

Number Table of the method is checked for the place original method is

called. The Line Number Table holds the program counter for the bytecode

of the method. The replacement method is inserted in the bytecode at this

program counter.

52

1 public stat ic void instrumentThreadStartStop (St r ing cname ,
S t r ing mname, ClassPool pool) {

2 CtClass cc ;
3 try {
4 cc = pool . get (cname) ;
5 CtMethod m = cc . getDeclaredMethod (mname) ;
6
7 // In s e r t b e f o r e the method body
8 m. i n s e r tB e f o r e (”{ThreadScheduler . threadHasStarted (t h i s .

g e tC la s s () . getSimpleName ()+\” , \”+Thread . currentThread ()
. getName ()+\” , \”+Thread . currentThread () . getStackTrace ()
[1] . getLineNumber ()) ;} ”) ;

9 // In s e r t a f t e r the method body
10 m. i n s e r tA f t e r (”{ThreadScheduler . threadIsAboutToEnd (t h i s .

g e tC la s s () . getSimpleName ()+\” , \”+Thread . currentThread ()
. getName ()+\” , \”+Thread . currentThread () . getStackTrace ()
[1] . getLineNumber ()) ;} ”) ;

11 } catch (NotFoundException e) {
12 e . pr intStackTrace () ;
13 } catch (CannotCompileException e) {
14 e . getCause () ;
15 e . getReason () ;
16 }
17 }

Figure 31: InstrumentThreadStartStop method

InstrumentThreadStartStop method (Figure 31) is used to insert the

threadHasStarted() and threadIsAboutToEnd() methods into the

run() method. The functionality of these methods were explained in the

previous section. Javassist offer an easy way to instrument the start and end

points of the code. Instrumenting these parts of the code doesn’t require the

complex opcode searching methods explained earlier.

InstrumentMonitors method is a specific version of getInvoke()

method searching for the monitorenter and monitorexit instructions.

53

The synchronized object is determined and the replacement code is inserted

into the bytecode of the processed method.

Previously explained methods handled the insertion process for the re-

placement code. InstrumentRemoves method is used for removing the

method calls for the original methods and all instruction opcodes related

to these methods. The removals must the last actions done on a class file

because Javassist can produce valid class files only by this order. Otherwise

the modified class file could not pass the verification algorithm of the JVM.

The InstrumentMonitors() method was used to process the syn-

chronized blocks inside a method. If the method itself is synchronized,

the monitor instrumentation should be handled as if it was instrumenting

a thread start-stop. The first and last lines of the method is instrumented by

the ProcessAccessFlag method (Figure 32), with the Thread Scheduler’s

monitor methods. For synchronized methods, access flag must be altered to

normal method flag, since the Thread Scheduler now has the control with

the instrumented methods.

54

1 public stat ic void proces sAcces sF lag (S t r ing cname , S t r ing mname,
ClassPool pool) {

2 CtMethod method ;
3 try {
4 method = pool . getMethod (cname , mname) ;
5 MethodInfo minfo = method . getMethodInfo () ;
6 int acce s sF lag = minfo . ge tAcces sF lags () ;
7 int synch = acce s sF lag & In t eg e r . pa r s e In t (”100000” , 2) ;
8 int stat icMethod = acce s sF lag & In t eg e r . pa r s e In t (”1000” , 2) ;
9 i f (synch == 32) {

10 i f (stat icMethod == 8) {
11 method . i n s e r tB e f o r e (”{ThreadScheduler . myMonitorEnter (”+

cname+” . c l a s s , t h i s . g e tC la s s () . getSimpleName ()+\” ,
\”+Thread . currentThread () . getName ()+\” , \”+Thread .
currentThread () . getStackTrace () [1] . getLineNumber ()) ;}
”) ;

12 method . i n s e r tA f t e r (”{ThreadScheduler . myMonitorExit (”+
cname+” . c l a s s , t h i s . g e tC la s s () . getSimpleName ()+\” ,
\”+Thread . currentThread () . getName ()+\” , \”+Thread .
currentThread () . getStackTrace () [1] . getLineNumber ()) ;}
”) ;

13 }
14 else {
15 method . i n s e r tB e f o r e (”{ThreadScheduler . myMonitorEnter ($0

, t h i s . g e tC la s s () . getSimpleName ()+\” , \”+Thread .
currentThread () . getName ()+\” , \”+Thread .
currentThread () . getStackTrace () [1] . getLineNumber ()) ;}
”) ;

16 method . i n s e r tA f t e r (”{ThreadScheduler . myMonitorExit ($0 ,
t h i s . g e tC la s s () . getSimpleName ()+\” , \”+Thread .
currentThread () . getName ()+\” , \”+Thread .
currentThread () . getStackTrace () [1] . getLineNumber ()) ;}
”) ;

17 }
18 // Remove the synchronized b i t
19 minfo . s e tAcce s sF lag s (accessFlag −32) ;
20 }
21 } catch (NotFoundException e) {
22 e . pr intStackTrace () ;
23 } catch (CannotCompileException e) {
24 e . pr intStackTrace () ;
25 }
26 }

Figure 32: ProcessAccessFlag Method

55

4.5 Caveats

The Thread Scheduler aims to acquire full control of the concurrently run-

ning threads from the JVM. Instrumenting the class files with the provided

methods makes this objective achievable. But the Thread Scheduler’s and

the Tester’s accuracy highly depends on the JVMs processing of the main

method and initialization of threads. If the Thread Scheduler is started by

the main method of the testing program very early on the initialization pro-

cess. Some of the threads might get blocked from running which may cause

abrupt stops of the Testing System. Therefore, even if its startTesting()

method is called prematurely, the Thread Scheduler must suspend its execu-

tion for a short time to let each thread to register itself to the system. This

is required because of the Tester Algorithm. The first run of the tester is

an exploratory run which tries to identify as many distinct blocks (thread

interleavings) as possible.

For purposes of simplicity, our test applications are assumed to have their

main methods in a certain format. The main() method initializes the threads

that will run concurrently, calls the start() methods to run the threads. After

initializing and starting every thread, the main method alerts the Thread

Scheduler to start testing and closes. The problem mentioned in the previous

paragraph seems to be related with this assumption. It is related, but to a

lesser degree. The previous problem is due to the inner mechanics of the

JVM to initialize and run the threads. This assumption is made to reduce

the complexity of the test system and the possibility of deadlocks depending

56

on synchronization in the main thread even before the control of the system

is handed over to the Thread Scheduler.

The Javassist BCI library had some restrictions on the availability of some

operations on the bytecode of a class file. The library allowed us to use global

variables and parameters, but this was not enough to instrument a class file

with our code. The programs may deal with parameters, function calls and

local variables as their synchronized variables. The Javassist Library does

not allow access to local variables declared in the processed method. We have

extended the Javassist library to allow accessing these variables. We need

the target application to be compiled with a special argument ”-g” to access

the local variable tables and finding out the object that we are looking for.

The compilation argument ”-g” means keeping the debugging information in

the class file. We have also implemented the reverse engineering methods

to build the source code for a method with arguments. This source code

would later be used as an argument for our Thread Scheduler’s methods.

This is especially useful if a reverse engineered method’s returned object is

the synchronized object (See figure 33).

57

1
2 {
3 int index = 1 ;
4 synchronized (ob j e c tAr rayL i s t . get (index)) {
5
6 }
7
8 }
9

Listing 1: Original Code Segment

1
2 {
3 int index = 1 ;
4 ThreadScheduler . myMonitorEnter (ob j e c tAr rayL i s t . get (index)) ;
5
6 ThreadScheduler . myMonitorExit (ob j e c tAr rayL i s t . get (index)) ;
7
8 }
9

Listing 2: Instrumented Code Segment

Figure 33: Reverse Engineered method in an instrumented class file. The get
method, the class object (objectArrayList) it is called from and the parameter
list (index) is reverse engineered to form the correct statement and used as
parameter of myMonitorEnter and myMonitorExit methods.

58

5 Interleaving Coverage Criteria Oriented Test-

ing of Multithreaded Applications

The concurrency related errors have been researched for some time. Data

race, deadlock and atomicity bug topics have been intensely researched and

are easier to test with conventional testing techniques. Our research focuses

on the Ordering Errors, which is directly affected by the scheduling of

the concurrent threads. Catching ordering related bugs require testing every

possible ordering of thread schedules. But exhaustive testing for all possible

schedules requires extensive amount of tests and almost impossible to cover.

Our approach is dividing the concurrent threads into smaller execution

units, called atomic blocks. Atomic blocks have been explained in the pre-

vious section. These atomic blocks generates a graph of blocks, showing

the thread interleavings, Katayama et. al [10] calls them Event Interactions

Graph. This graph is dynamically updated as the tests continue and new

atomic blocks are found. Figure 34 is an example of a Thread with 6 blocks.

The figure shows that the the thread has a starting block numbered 0, we

can say that 0 is the starting atomic block of this thread, unless our Tester

finds a new Block that starts from the same line but finishes in a different

place (Ex: 35). First interleaving figure also has two looping blocks. A loop

complicates our testing system since it allows more interleaving sequences to

be legal, also increasing the number of tests to reach full coverage.

59

Figure 34: A thread interleaving graph showing the execution order of atomic
blocks.

Interleaving Coverage Criteria is based on dividing a thread’s execution

into smaller units and checking a batch of very small subsequences of inter-

leavings for the coverage of exhaustive schedules. These subsequences are

based on Sequence Covering Arrays. Even a very small number of atomic

blocks would lead to an unmanageable number of schedules. A full schedule

to finish a test covers a big number of these subsequences (Figure 36). We

have defined the length of these subsequences as t and they are called t-way

sequences. Our tests have been done with sequence lengths of 2, 3 and 4.

The Interleaving Coverage Criteria Oriented Tester is a hybrid testing

system. The tester tries to increase the t-way sequence coverage, while trying

60

Figure 35: Another thread interleaving graph showing the execution order of
atomic blocks. The atomic blocks 0 and 4 are two distinct blocks that starts
the thread execution.

to uncover ordering related bugs. The tester algorithm starts with a random

sweep of the system, uncovering as much atomic blocks as possible. The

tester schedules the registered threads randomly, this approach is similar to

what Stoller proposed in [9]. After each scheduling choice a new atomic

block is found. These blocks are added to their thread’s interleaving tree,

with the information of the previous thread. The thread interleaving tree

is required to filter out the sequences that would be impossible to reach.

This is a performance increasing measure. The tester knows which way to go

61

N = 6 : # of atomic blocks
t = 3

Test 1 Schedule = [1, 2, 3, 4, 5, 6]
of Exhaustive Tests: 6! = 720
of Interleaving Coverage tests = 120
of Covered t-way sequences with 1 test = 10
[1, 2, 3] [2, 3, 4] [3, 4, 6]
[1, 2, 4] [2, 3, 5] [4, 5, 6]
[1, 2, 5] [2, 3, 6]
[1, 2, 6] [3, 4, 5]

Figure 36: The expected number of exhaustive tests versus the expected
number of t-way sequence interleaving coverage tests. The number of t-way
sequences covered with only one test shows the efficiency of this method.

with and leaving out impossible schedules reduces the number of tests and

sequences to be covered.

The second test type implemented into the system is Thread Sequence

Covering Array (TSCA) testing. We have previously mentioned employing

sequence covering arrays for thread interleavings. The TSCA testing ap-

proach applies this concept to make an abstraction for scheduling the threads.

The tester already has a t value assigned and we prepare predefined sched-

ules of threads with the t-way sequence covering rule. To schedule a thread

with a TSCA, the entries of the TSCA are checked for availability and the

matching thread which is available to be scheduled is chosen. when the first

entry is not available at any time the next entry is checked for availability

and this continues until a matching pair of TSCA choice and available thread

62

is found. Applying the TSCA testing algorithm significantly increased the

coverage ratio of our tests.

The last testing type is Temporary Sequence Covering Array (TempSCA)

testing. All previous scheduling information is stored by the tester. After the

random testing and TSCA testing is finished, if there are uncovered t-way

schedules left, the Tester selects t-way sequences and finds the schedules that

leads to each atomic block in the selected t-way sequence. These distinct

schedules that reach these atomic blocks are then combined into a single

schedule. TempSCA testing uses this schedule to test the application. This

approach tries to increase the coverage ratio of t-way sequences as much as

possible.

5.1 Thread Interleaving Coverage Analysis

Ordering related errors are likely to occur because of the programmer’s as-

sumptions on the behaviour of the system and the thread handling strategy

of the JVM. Catching ordering related errors is harder because the JVM does

not guarantee behaving and controlling the schedule the way it does during

error-free executions of the application. The thread scheduling may change

due to the load of the system or a rare input to the system may lead to an

unexpected code segment to execute.

Sequence Covering Arrays offer an efficient way of testing the execution

segments. In a schedule prepared by our tester, we can assume that any

t-1 successors of a block in a test schedule is covered by our system. In the

63

exhaustive testing environment, a tester would need to schedule each of these

blocks immediately after a selected block in order to count these segments

covered. However when we think about the threads in the application, a

threads execution may never affect another thread or on the contrary these

threads would be highly coupled. Our approach is based on this exclusiveness

of the blocks.

5.1.1 Exhaustive Testing

A concurrent program that has m threads, each having n atomic blocks.

Equation (1) can be used to calculate the number of exhaustive schedules.

For a fairly small example of m = 5 and n = 5, the number of schedules

becomes 623,360,743,125,120. The total number of schedules makes it al-

most impossible to test, even if we assumed a test to take 1 microsecond to

complete, we would need 173,000 hours to test.

m−1∏
i=0

(
mn− in

n

)
(1)

5.1.2 Coverage Criteria Oriented Testing

In this testing method, we assure that any combination of t-way sequences are

tested. The number of sequences are becomes larger as the number of blocks

but they are still significantly smaller than an exhaustive test. Another point

is that these t-way sequences are compressed into thread schedules and even

one test of random sweep would cover a large number of t-way sequences.

64

0 ≤ ai ≤ t

0 ≤ ai

M = m ∗ n

∑
a1+a2+...+am=t

M∏
i=1

n−ai+i∑
k=1

(n− k

ai − 1

)(
t−

i−1∑
j=1

aj

ai

)
Figure 37: The formula of calculating the number of thread t-way subse-
quences.

The test results will be given in the next chapter. If we take the example from

the Exhaustive Testing section, m threads, each having n atomic blocks, the

number of t-way sequences can be calculated with the following equation in

Figure 37. For m = 5, n = 5 and t = 3, the number of t-way sequences

becomes 10,550. The number of tests to reach full coverage becomes only 63.

65

6 Case Studies

The Interleaving Coverage Criteria Oriented Test System have been tested

with various sample concurrent applications. A project was used for bench-

marking purposes to show the strength of our proposed system againts the

exhaustive testing. As we have previously mentioned, an application that

contains m threads and n atomic blocks per thread, exhaustive testing has

a boundary of mnmn. Figure 38 clearly shows the ineffectiveness of the

exhaustive testing for concurrent systems. Our Sequence Covering Array ap-

proach remains scalable even when the number of blocks rise rapidly. The

execution times for each test remains constant because of the efficiency of

the thread scheduling algorithm. Only time consuming action done by the

system is generating the t-way sequences for larger numbers. This is a one

time process and its space complexity is inversely proportional to time. Only

the uncovered sequences are stored in the data structure.

6.1 Benchmarking Application

The benchmarking application (Figure 39) is a straightforward program.

The class extends the Thread class and has a combination of critical and

non-critical sections. Our algorithm guarantee high coverage levels for each

value of sequence length t. For t = 2, our system reaches full coverage in just

3 tests for any number of m and n (Table 3).

66

Figure 38: The number of t-way sequences for various values of m and n and
respective Exhaustive Testing tests.

m: # of Threads n: # of Blocks t: length # of Tests Interleaving Coverage
5 5 2 3 100 %
10 5 2 3 100 %
15 5 2 3 100 %
20 5 2 3 100 %
25 5 2 3 100 %
30 5 2 3 100 %
40 5 2 3 100 %
50 5 2 3 100 %

Table 3: Results of benchmarking tests with t = 2.

67

1 public class S ing l e extends Thread{
2
3 private int stop = 5 ;
4 SharedObject l ock ;
5 SharedObject lock2 ;
6
7 public S ing l e (SharedObject lock , SharedObject lock2) {
8 this . l o ck = lock ;
9 this . l o ck2 = lock2 ;

10 }
11
12 public void run () {
13
14 System . out . p r i n t l n (”\ nS ing l e : (”+this . getName ()+”) Non−

C r i t i c a l Sec t i on 1 , va lue : ”+lock . t oS t r i ng ()) ;
15
16 synchronized (l o ck) {
17 lock . update () ;
18 System . out . p r i n t l n (”\ nS ing l e : (”+this . getName ()+”)

C r i t i c a l Sec t i on 1 , va lue : ”+lock . t oS t r i ng ()) ;
19 }
20
21 System . out . p r i n t l n (”\ nS ing l e : (”+this . getName ()+”) Non−

C r i t i c a l Sec t i on 2 , va lue : ”+lock . t oS t r i ng ()) ;
22
23 synchronized (l o ck) {
24 lock . update () ;
25 System . out . p r i n t l n (”\ nS ing l e : (”+this . getName ()+”)

C r i t i c a l Sec t i on 2 , va lue : ”+lock . t oS t r i ng ()) ;
26 }
27
28 System . out . p r i n t l n (”\ nS ing l e : (”+this . getName ()+”) Non−

C r i t i c a l Sec t i on 3 , va lue : ”+lock . t oS t r i ng ()) ;
29
30 synchronized (lock2) {
31 lock . update () ;
32 System . out . p r i n t l n (”\ nS ing l e : (”+this . getName ()+”)

C r i t i c a l Sec t i on 3 , va lue : ”+lock2 . t oS t r i ng ()) ;
33 }
34
35 System . out . p r i n t l n (”\ nS ing l e : (”+this . getName ()+”) Non−

C r i t i c a l Sec t i on 4 , va lue : ”+lock . t oS t r i ng ()) ;
36
37 synchronized (l o ck) {
38 lock . update () ;
39 System . out . p r i n t l n (”\ nS ing l e : (”+this . getName ()+”)

C r i t i c a l Sec t i on 4 , va lue : ”+lock . t oS t r i ng ()) ;
40 }
41 }
42 }

Listing 3: Original Code Segment

Figure 39: Sample Benchmarking Application Code

68

m:
of
Threads

n:
of
Blocks

t:
length

TSCA
tests

Coverage
TSCA

Greedy
Tests

Coverage
%

Total
Tests

of
Exhaus-
tive
Tests

5 5 3 8 93.47% 61 100% 70 6.23x1014

10 5 3 14 96.69% 146 100% 161 4.91x1031

15 5 3 20 94.46% 379 99.67% 400 1.61x1078

20 5 3 22 94.48% 546 96.97% 569 2.43x10116

25 5 3 26 97.14% 86 98.87% 113 1.97x10157

30 5 3 28 96.19% 15 96.87% 44 2.4x10200

40 5 3 32 96.61% 12 96.95% 45 5x10291

50 5 3 34 96.02% 3 96.29% 38 3.55x10388

Table 4: Results of benchmarking tests with t = 3. TSCA Algorithm sig-
nificantly increases the coverage ratio, while keeping the required tests at
minimum.

m: # of Threads n: # of Blocks t: length # of Tests Interleaving Coverage
5 5 2 3 100 %
5 5 3 8 93.47 %
5 5 4 28 72.68 %

Table 5: Results of benchmarking tests with m = 5, n= 5 and t = 2,3,4 for
TSCA tests.

TSCA testing is very important for increasing the coverage percentage of

the system. For t = 3, the influence of the TSCA is given in the Table 6.1.

The number of tests to reach 100 % coverage takes more tests than t = 2.

The comparison of t = 2,3,4 is given in Table 5.

The information in tables 3 and would be misleading. In these tables a t

value of 2 seems enough to reach maximum interleaving coverage. The TSCA

algorithm is a divide and conquer type of algorithm and bigger sequence

lengths are closer to the real problem and they produce better simulation

69

of the real system. So we have a trade-off situation, increase the length of

sequences to reach more accurate behaviour, while risking exponential growth

on number of tests or decreasing the sequence length to predict the behavior

from a narrower view of the system.

6.2 Real Applications

The Interleaving Coverage Criteria Oriented Tester has been tested on real

concurrency application examples from the University of Nevada Lincoln’s

Software-artifact Infrastructure Repository (SIR). The examples that are

suitable for testing according to our assumption have been tested. Figures

?? and ?? are examples of these applications. We have tested for ordering

related errors and while our Tester was trying to explore every legal inter-

leaving combination, We have observed this errors in these programs. The

applications in these figures have strictly coupled threads that have to ex-

ecute in some particular order. Our Tester forces the program out of this

scheduling pattern to uncover the ordering errors. Figure 6 show the cover-

age ratio of the system as the tests are administered.

The Clean Project of the SIR

1 public class Main {

2 stat ic int iF i r s tTask =1;

3 stat ic int iSecondTask=1;

70

4 stat ic int i t e r a t i o n s =12;

5

6 public stat ic void main (St r ing [] a rgs) {

7 i f (args . l ength < 3) {

8 System . out . p r i n t l n (”ERROR: Expected 3 parameters ”) ;

9 } else {

10 iF i r s tTask = In t eg e r . pa r s e In t (args [0]) ;

11 iSecondTask = In t eg e r . pa r s e In t (args [1]) ;

12 i t e r a t i o n s = In t eg e r . pa r s e In t (args [2]) ;

13 Main t= new Main () ;

14 System . out . p r i n t l n (” S ta r t i ng . . . ”) ;

15 // t . run () ;

16 Event new event1 = new Event () ;

17 Event new event2 = new Event () ;

18 System . out . p r i n t l n (” f j h g j ”) ;

19 for (int i =0; i<iF i r s tTask ; i++)

20 new FirstTask (new event1 , new event2 , i t e r a t i o n s) . s t a r t () ;

21 for (int i =0; i<iSecondTask ; i++)

22 new SecondTask (new event1 , new event2 , i t e r a t i o n s) . s t a r t () ;

23 }

24 }

25 }

Listing 4: Main.java

1 public class Event {

2 public int count = 0 ;

3

71

4 public synchronized void waitForEvent (int remote count) {

5

6 i f (remote count == count)

7 try {

8 wait () ;

9

10 }catch (Inter ruptedExcept ion e) {} ;

11 }

12

13 public synchronized void s i g n a l e v en t () {

14 count = (count + 1) % 100 ;

15 System . out . p r i n t l n (” s i g n a l e v en t () count : ”+count) ;

16 n o t i f yA l l () ;

17 }

18 }

Listing 5: Event.java

1 public class FirstTask extends Thread {

2 int i t e r a t i o n s ;

3 Event event1 , event2 ;

4

5 public FirstTask (Event e1 , Event e2 , int i t e r a t i o n s) {

6 this . event1 = e1 ;

7 this . event2 = e2 ;

8 this . i t e r a t i o n s=i t e r a t i o n s ;

9 }

10

72

11 public void run () {

12 System . out . p r i n t l n (” F i r s t task s t a r t ”) ;

13 int count = 0 ;

14 count = event1 . count ;

15 for (int i =0; i<i t e r a t i o n s ; i++) {

16 System . out . p r i n t l n (” 1 : event1 . waitForEvent () ; ”) ;

17 event1 . waitForEvent (count) ;

18 count = event1 . count ;

19 System . out . p r i n t l n (” 1 : Count : ”+count+ ” i : ”+i) ;

20 System . out . p r i n t l n (” 1 : event2 . s i g n a l e v en t () ; ”) ;

21 event2 . s i g n a l e v en t () ;

22 }

23 System . out . p r i n t l n (” F i r s t task stop ”) ;

24 }

25 }

Listing 6: FirstTask.java

1 public class SecondTask extends Thread {

2 int i t e r a t i o n s ;

3 Event event1 , event2 ;

4

5 public SecondTask (Event e1 , Event e2 , int i t e r a t i o n s) {

6 this . event1 = e1 ;

7 this . event2 = e2 ;

8 this . i t e r a t i o n s=i t e r a t i o n s ;

9 }

10

73

11 public void run () {

12 System . out . p r i n t l n (”Second task s t a r t ”) ;

13 int count = 0 ;

14 count = event2 . count ;

15 for (int i =0; i<i t e r a t i o n s ; i++) {

16 System . out . p r i n t l n (” 2 : event1 . s i g n a l e v en t () ; ”) ;

17 event1 . s i g n a l e v en t () ;

18 System . out . p r i n t l n (” 2 : event2 . waitForEvent (count) ; ”) ;

19 event2 . waitForEvent (count) ;

20 count = event2 . count ;

21 System . out . p r i n t l n (” 2 : Count : ”+count+ ” i : ”+i) ;

22 }

23 System . out . p r i n t l n (”Second task stop ”) ;

24 }

25 }

Listing 7: SecondTask.java

The TwoStage Project of the SIR

1 public class Main{

2 stat ic int iTthreads=1;

3 stat ic int iRthreads=1;

4 stat ic TwoStage t s ;

5 stat ic Data data1 , data2 ;

6

7 public stat ic void main (St r ing [] a rgs) {

8 i f (args . l ength < 2) {

74

9 System . out . p r i n t l n (”ERROR: Expected 2 parameters ”) ;

10 } else {

11 iTthreads = In t eg e r . pa r s e In t (args [0]) ;

12 iRthreads = In t eg e r . pa r s e In t (args [1]) ;

13 data1=new Data () ;

14 data2=new Data () ;

15 t s = new TwoStage (data1 , data2) ;

16 for (int i =0; i<iTthreads ; i++)

17 new TwoStageThread (t s) . s t a r t () ;

18 for (int i =0; i<iRthreads ; i++)

19 new ReadThread (t s) . s t a r t () ;

20 }

21 }

22 }

Listing 8: Main.java

1 public class Data {

2 public int value ;

3 public Data () {

4 value=0;

5 }

6 }

Listing 9: Data.java

1 public class ReadThread extends Thread {

2 TwoStage t s ;

3 public ReadThread (TwoStage t s) {

75

4 this . t s=t s ;

5 }

6

7 public void run () {

8 t s .B() ;

9 }

10 }

Listing 10: ReadThread.java

1 public class TwoStage {

2

3 public Data data1 , data2 ;

4

5 public TwoStage (Data data1 , Data data2) {

6 this . data1=data1 ;

7 this . data2=data2 ;

8 }

9

10 /∗

11 ∗ This method i s used to s imu la t e two s t a g e acces s

12 ∗ In f i r s t s tage , i t modify the va lue o f data1

13 ∗ In the second stage , i t modify the va lue o f data2

accord ing to data1

14 ∗ I t assumes t ha t data2 . va lue=data1 . va lue (This assumption

i s used to

15 ∗ s imu la t e in some database app l i c a t i on , the two va l u e s in

d i f f e r e n t

76

16 ∗ t a b l e s must be c on s i s t an t .

17 ∗/

18 public void A () {

19

20 // This i s the f i r s t s t a g e

21 synchronized (data1) {

22 data1 . va lue=1;

23 }

24

25 // read ing may happen here , data w i l l be i n c on s i s t an t . . .

26

27 // This i s the second stage , us ing the r e s u l t o f s t age1

to c a l c u l a t e

28 synchronized (data2) {

29 // i f o ther th reads modify data1 . va lue , i n cons i s t ancy

w i l l happen

30 data2 . va lue=data1 . va lue+1;

31 }

32 }

33

34 public void B () {

35

36 int t1=−1, t2=−1;

37 synchronized (data1) {

38 i f (data1 . va lue==0) return ; //The f i r s t s t a g e has not

begun .

39 t1=data1 . va lue ;

77

40 System . out . p r i n t l n (”data1 : ”+data1 . va lue+” was modi f i ed

e l sewhere , t1 : ”+t1) ;

41 }

42 synchronized (data2) {

43 t2=data2 . va lue ;

44 System . out . p r i n t l n (”data2 : ”+data2 . va lue+” , t2 : ”+t2) ;

45 }

46 i f (t2 != (t1+1))

47 throw new RuntimeException (”bug found”) ;

48 }

49 }

Listing 11: TwoStage.java

1 public class TwoStageThread extends Thread {

2 TwoStage t s ;

3 public TwoStageThread (TwoStage t s) {

4 this . t s=t s ;

5 }

6

7 public void run () {

8 t s .A() ;

9 }

10

11 }

Listing 12: TwoStageThread.java

78

Test # Total Sequences Covered Sequences Coverage % Covered this run
1 9928 6090 61.34 % 6090
2 9928 7479 75.33 % 1389
3 9928 8005 80.63 % 526
4 9928 8260 83.19 % 255
5 9928 8268 83.27 % 8
6 9928 8285 83.45 % 17
7 9928 8288 83.48 % 3
8 9928 8296 83.56 % 8
9 9928 8302 83.62 % 6
10 9928 8305 83.65 % 3
11 9928 8474 85.35 % 169
12 9928 8476 85.37 % 2
13 9928 8480 85.41 % 4
14 9928 8490 85.51 % 10
15 9928 8509 85.70 % 19
16 9928 8518 85.79 % 9
17 9928 8521 85.82 % 3
18 9928 8531 85.92 % 10
19 9928 8536 85.97 % 5
20 9928 8537 85.98 % 1
21 9928 8545 86.06 % 8

Table 6: The Coverage information after each test of Clean Project. t = 3

Test # Total Sequences Covered Sequences Coverage % Covered this run
1 5550 4734 85.29% 4734
2 5806 4990 85.94% 256
3 10540 10177 96.55% 5187
4 10540 10202 96.79% 25
5 10540 10382 98.50% 180
6 10540 10531 99.91% 149
7 10540 10532 99.92% 1
8 10540 10540 100% 8

Table 7: The Coverage information after each test of DiningPhilosophers
Project. t = 3. The table shows that after test # 3 new blocks are found
and new sequences are added to our coverage

79

Project m n t TSCA
tests

Coverage
TSCA

Greedy
Tests

Coverage
%

Total
Tests

of Ex-
haustive
Tests

Clean 4 6 3 8 61.34% 48 86.06% 57 2,3x1012

Bounded
Buffer

4 7 3 8 11.34% 2415 70.29% 2424 9, 3x1010

Dining
Philoso-
phers

5 4 3 8 85.29% 6 100% 15 3x1011

Two
Stage

4 4 3 -* -* 894 89.56% 895 2, 6x106

Table 8: The testing information about the real applications, t = 3. (*)
TSCA method can not be used and coverage ratio for TSCA tests does not
exist. Only random exploration and greedy algorithms are used for testing.

7 Concluding Remarks

Concurrency is one of the biggest pitfalls in today’s Software Engineering

practice. Our everyday lives depend on applications that has to serve a large

number of the people at the same time. Concurrent programs are prone

to software errors and these errors are harder to spot. Therefore testing a

concurrent application requires efficient programs that are able to expose

weaknesses of an application. The best way to find all weaknesses is exhaus-

tive testing but it is practically impossible to exhaustively test a relatively

small program.

In this thesis, we envision a test process that aims to obtain a full coverage

under a given thread interleaving coverage criterion. The coverage criterion

implicitly defines the space of interesting thread interleavings for testing.

Given a coverage criterion, our ultimate goal is to cover all required inter-

80

Figure 40: The comparison of real applications coverage ratios.

leavings in a minimum number of thread schedules, thus to reduce the cost

of testing. In this work, we however addressed only a practical instantiation

of this vision. Our coverage criterion was to cover all t-way combinations of

atomic blocks (not necessarily to be consecutive), so that all ordering errors

caused by the interaction of t or less number of atomic blocks can reliably

be revealed. To evaluate the proposed approach, we conducted a series of

experiments. Although carried out in a small scale, the results of our exper-

iments suggest that 1) using t-way sequence coverage criterion is an effective

81

way of revealing ordering errors and 2) the proposed approach can obtain

reasonable coverage at a fraction of the cost compared to exhaustive testing.

82

8 Future Work

Our project focuses on the applicability of the Sequence Covering Arrays to

concurrency bug checking, especially ordering errors. The need to implement

such an approach was a necessity to produce an efficient way of testing instead

of the extremely costly exhaustive search. The Tester program proved to

be useful in reducing the number of tests and testing the ordering related

errors. The Tester system is a hybrid system and a future direction for the

project would be increasing the effectiveness of the TempSCA approach to

produce high density coverage schedules. If we are to produce a better block

reachability based testing scheduler, we need to know the interaction between

threads, that we do not know in our current approach. This is not an easy

extension to go with, because it would require through code analysis to find

the dependencies of threads. The statement to statement code analysis would

require a more complex Instrumenter/Analyzer tool.

The second improvement to our system would be increasing the types

of coverage supported by our Tester. Currently we are supporting Sequence

Covering Arrays and thread interleavings depending on these sequences. This

approach is efficient for testing ordering errors, but implementing another

coverage criteria may improve the systems performance and lets the tester

cover more types of concurrent software bugs and bug patterns.

83

References

[1] Scott Oaks, Henry Wong, Java Threads. O’Reilly, 3rd Edition, 2004.

[2] Joshua Engel, Programming for the Java Virtual Machine. Addison Wes-

ley, 1999.

[3] Shan Lu, Weihang Jiang, Yuanyuan Zhou, A Study of Interleaving Cov-

erage Criteria. ESEC/FSE, 2007.

[4] Shan Lu, Soyeon Park, Eunsoo Seo, Yuanyuan Zhou, Learning from Mis-

takes A Comprehensive Study on Real World Concurrency Bug Charac-

teristics. ASPLOS, 2008.

[5] Eitan Farchi, Yarden Nir, Shmuel Ur, Concurrent Bug Patterns and How

to Test Them. Parallel and Distributed Processing Symposium, 2003.

[6] Marcel Christian Baur, Instrumenting Java Bytecode to Replay Execu-

tion Traces of Multithreaded Programs. Diploma Thesis, 2003.

[7] Derek L. Bruening, Systematic Testing of Multithreaded Java Programs.

Master’s Thesis, 1999.

[8] Richard Bounds, Virtual Time Execution. Master’s Thesis, 2009.

[9] Scott D. Stoller, Testing Concurrent Java Programs using Randomized

Scheduling. Proc. Second Workshop on Runtime Verification (RV), 2002.

84

[10] Tetsuro Katayama, Eisuke Itoh, Zengo Furukawa, Test-case Generation

for Concurrent Programs with the Testing Criteria Using Interaction

Sequences. APSEC, 1999.

[11] Gwan-Hwan Hwang, Kuo-Chung Tai, Ting-Lu Huang, Reachability

Testing: An Approach to Testing Concurrent Software. International

Journal of Software Engineering and Knowledge Engineering, 1995.

[12] Yu Lei, Richard Carver, A New Algorithm for Reachability Testing of

Concurrent Programs. ISSRE, 2005.

[13] Cormac Flanagan, Stephen N. Freund, Atomizer: A Dynamic Atomicity

Checker For Multithreaded Programs. POPL, 2004.

[14] David Coppit, Jinlin Yang, Sarfraz Khurshid, Wei Le, Kevin Sullivan,

Software Assurance by Bounded Exhaustive Testing. International sym-

posium on Software testing and analysis, 2004.

[15] D. Richard Kuhn, Vadim Okun, Pseudo-Exhaustive Testing for Soft-

ware. Proceedings of the 30th Annual IEEE/NASA Software Engineer-

ing Workshop, 2006.

[16] Yaniv Eytani, Klaus Havelund, Scott D. Stoller, Shmuel Ur, Toward a

Framework and Benchmark for Testing Tools for Multi-Threaded Pro-

grams. Conc. & Comp.: Practice & Experience Vol 19, 2007.

[17] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Find-

ing and Reproducing Heisenbugs in Concurrent Programs. Proceedings

85

of the 8th USENIX conference on Operating systems design and imple-

mentation, 2008.

[18] Madan Musuvathi, Shaz Qadeer, Iterative Context Bounding for Sys-

tematic Testing of Multithreaded Programs. PLDI, 2007.

[19] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,

Thomas Anderson, Eraser: A Dynamic Data Race Detector for Mul-

tithreaded Programs. ACM Transactions on Computer Systems Vol 15,

1997.

[20] Rajagopalan Sirinivasan, Sandeep K. Gupta, Melvin Breuer, An

Efficient Partitioning Strategy for Pseudo-Exhaustive Testing. 30th

ACM/IEEE Design Automation Conference, 1993.

[21] Liqiang Wang, Scott D. Stoller, Runtime Analysis of Atomicity for Mul-

tithreaded Programs. IEEE Transactions on Software Engineering, 2006.

[22] Jacob Burnim, Koushik Sen, Asserting and Checking Determinism for

Multithreaded Programs. Proceedings of the the 7th joint meeting of

the European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering, 2009.

[23] William Perry, Effective methods for software testing. John Wiley &

Sons, 3rd Edition, 2006.

[24] Zhifeng Lai, S. C. Cheung, Detecting Atomic-Set Serializability Viola-

tions in Multi-threaded Programs through Active Randomized Testing.

86

Proceedings of the 32nd ACM/IEEE International Conference on Soft-

ware Engineering, 2010.

[25] Koushik Sen, Race Directed Random Testing of Concurrent Programs.

Proceedings of the ACM SIGPLAN conference on Programming lan-

guage design and implementation, 2008.

[26] Thomas Gschwind, Johann Oberleitner, Improving Dynamic Data Anal-

ysis with Aspect-Oriented Programming. Proc. Software Maintenance

and Reengineering, 2003.

[27] Jan Tretmans, Testing Concurrent Systems: A Formak Approach. CON-

CUR, 1999.

87

	Introduction
	Motivation

	Background
	Defects in Multithreaded Applications
	Data Race
	Deadlock
	Atomicity Violation
	Order Violation

	Java Platform
	Java Virtual Machine

	Multithreaded Java
	Thread Scheduling
	Synchronization and Thread Notification

	Java Bytecode Instrumentation
	A Sample Java Program
	BCI Libraries

	JBOSS Javassist Bytecode Instrumentation Library
	Sequence Covering Arrays

	Related Works
	Exhaustive Testing
	Reachability Testing
	Concurrency Testing with BCI

	The Thread Scheduler
	Mutual Exclusion Principle
	Atomic Execution Blocks
	Atomic Block Decomposition Example

	Thread Scheduler Algorithm and Implementation
	Thread Scheduler Methods

	Instrumenting Files
	Interpreting and Running Java Programs
	Implementation

	Caveats

	Interleaving Coverage Criteria Oriented Testing of Multithreaded Applications
	Thread Interleaving Coverage Analysis
	Exhaustive Testing
	Coverage Criteria Oriented Testing

	Case Studies
	Benchmarking Application
	Real Applications

	Concluding Remarks
	Future Work

