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Abstract

A function �eld over a �nite �eld which has the largest possible number of ratio-

nal places, with respect to Hasse-Weil bound, is called maximal. The most important

example of a maximal function �eld is the Hermitian function �eld H. It has the

largest possible genus among maximal function �elds de�ned over the same �nite

�eld, and it is the unique function �eld with this genus, up to isomorphism. More-

over, it has a very large automorphism group. Until recently there was no known

maximal function �eld which is not a sub�eld of H. In 2009, Giulietti and Korch-

máros constructed the �rst example of a maximal function �eld over the �nite �eld

Fq6 , where q is a prime power, which is not sub�eld of H over the same �nite �eld.

They also determined the automorphism group of this example. Later, a general-

ization of Giulietti and Korchmáros construction to Fq2n for any odd number n ≥ 3

was given by Garcia, Güneri and Stichtenoth and was shown to be maximal.

In this thesis, we determine the automorphism group of the generalized Giulietti-

Korchmáros function �eld. Moreover, some sub�elds of the generalized Giulietti-

Korchmáros function �eld and their genera are also determined.
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GENELLE�T�R�LM�� GIULIETTI- KORCHMÁROS FONKS�YON C�SM�N�N

OTOMORF�ZMA GRUBU VE ALTC�S�MLER�

Mehmet Özdemir

Matematik, Doktora Tezi, 2011

Tez Dan�³man�: Doç. Dr. Cem Güneri

Tez E³ Dan�³man�: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: fonksiyon cisimleri, maksimal e�griler, Weierstrass noktalar�,

otomor�zma grubu, altcisimler.

Özet

Sonlu cisim üzerinde tan�ml� ve Hasse-Weil s�n�r�na göre olas� en büyük say�da

rasyonel yer say�s�na sahip fonksiyon cismine maksimal denir. En önemli maksimal

fonksiyon cismi örne�gi Hermitian fonksiyon cismi H'dir. H, ayn� sonlu cisim üz-

erinde tan�ml� maksimal fonksiyon cisimleri aras�nda en büyük cinse sahiptir, ve bu

cinse sahip, izomor�zma denkli�gine göre, tek maksimal fonksiyon cismidir. Ayr�ca

oldukça büyük bir otomor�zma grubuna sahiptir. Çok yak�n zamana kadar H'in

altcismi olmayan bir maksimal fonksiyon cismi örne�gi bulunamam�³t�r. 2009 y�l�nda

Giulietti ve Korchmáros Fq6 sonlu cismi üstünde, q bir asal say� kuvveti olmak üzere,

ve ayn� sonlu cisim üzerinde tan�ml� Hermitian fonksiyon cisminin altcismi olmayan

ilk maksimal fonksiyon cismi örne�gini in³a ettiler. Ayr�ca bu fonksiyon cisminin oto-

mor�zma grubunu da buldular. Daha sonra Garcia, Güneri ve Stichtenoth, Giulietti-

Korchmáros fonksiyon cisminin herhangi bir tek tam say� n ≥ 3 için Fq2n üzerinde

tan�ml� genellemesini buldular ve genelle³tirilmi³ Giulietti-Korchmáros fonksiyon cis-

minin de maksimal oldu�gunu gösterdiler.

Bu tezde genelle³tirilmi³ Giulietti-Korchmáros fonksiyon cisminin otomor�zma

grubu tarif edilmi³tir. Ayr�ca, bu cismin baz� alt cisimleri ve bu alt cisimlerin cinsleri

de bulunmu³tur.
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CHAPTER 1

INTRODUCTION

In this chapter, we will recall some of the basic concepts and facts about algebraic

function �elds over �nite �elds that will be used in later sections. We will also

review earlier works on maximal function �elds which are relevant to this thesis.

Our preference will be the language of function �elds although the notion of curve

and relevant geometric terminology will also be used sometimes. Since the theory

of function �elds and curves are essentially equivalent, this should not cause any

confusion.

1.1 Basics

Let F/K be an algebraic function �eld of genus g and D be a divisor of F . The

Riemann-Roch space associated with D is de�ned as

L(D) = {x ∈ F | (x) ≥ −D} ∪ {0}. (1.1)

We denote the dimension of L(D) by `(D). This dimension can be computed via

Riemann-Roch theorem [13, Theorem 1.5.15] which states that

`(D) = degD + 1− g + `(W −D), (1.2)

where W is a canonical divisor of F .

For any place P of F the integer n is called a pole number of P if there exists

an element x ∈ F with (x)∞ = nP , where (x)∞ denotes the pole divisor of x. Oth-

erwise, n is called a gap number of P . It is immediately seen from the de�nition of

L-space that n is a gap number for P if and only if L(nP ) = L((n − 1)P ). The
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set of pole numbers of P is a semigroup, and there are exactly g gap numbers for a

rational place P of F [13, Theorem 1.6.8].

The sequence of gap numbers at a rational place P is called the gap sequence

at P . All but �nitely many rational places of a function �eld have the same gap

sequence. Such places are called ordinary places of F/K. A non-ordinary place is

called a Weierstrass point. If g ≥ 2 and K is algebraically closed then a function

�eld F has a Weierstrass point [9, Corollary 7.57, Theorem 7.103].

Let F ′/K ′ be another function �eld of genus g′ such that F ′ ⊃ F and K ′ ⊃ K.

Assume further that F ′/F is a �nite separable extension. Then, Hurwitz Genus

Formula [13, Theorem 3.4.13] yields

2g
′ − 2 =

[F
′
: F ]

[K ′ : K]
(2g − 2) + degDiff(F

′
/F ), (1.3)

where Diff(F ′/F ) is the di�erent divisor of F ′/F de�ned by

Diff(F
′
/F ) =

∑
P∈PF

∑
P ′ |P

d(P
′ |P )P

′
. (1.4)

Here d(P
′|P ) stands for the di�erent exponent of P

′
over P . Later, we will see that

there is a useful way of calculating d(P
′ |P ) in �nite Galois function �eld extensions.

We will now recall some properties of Galois extensions of function �elds (i.e. F ′/F

is a �nite Galois extension). Throughout, vP denotes the discrete valuation of F/K

associated with the place P .

Lemma 1.1.1. [13, Lemma 3.5.2, Theorem 3.7.1] Let F
′
/F be an algebraic exten-

sion of function �elds, P ∈ PF , P
′ ∈ PF ′ with P

′ |P . For an automorphism σ of

F
′
/F , the set σ(P

′
) = {σ(x) | x ∈ P ′} is a place of F

′
. Moreover, we have

(a) vσ(P ′ )(x) = vP ′ (σ
−1(x)) for any x ∈ F ′ .

(b) σ(P
′
) lies over P . Hence, Aut(F ′/F ) acts on the set of places of F

′
lying over

P .

(c) e(σ(P ′)|P ) = e(P ′|P ) and f(σ(P ′)|P ) = f(P ′|P ), where e(P ′|P ) and f(P ′|P )

stand for rami�cation index and relative degree of P ′ over P , respectively.
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(d) If we further assume that F ′/F is Galois, then Aut(F ′/F ) acts transitively on

the set of places of F ′ lying over P (i.e. for any P1 and P2 above P there exists

σ ∈ Aut(F ′/F ) such that σ(P1) = P2.

We will now recall properties of some special types of Galois extensions, namely

Kummer extensions and Artin-Schreier extensions.

Proposition 1.1.1. [13, Proposition 3.7.3] Let F/K be an algebraic function �eld

with K containing all n-th roots of unity, where n > 1 is relatively prime to the

characteristic of K. If u ∈ F is an element that satis�es

u 6= wd for all w ∈ F and d | n, d > 1, (1.5)

then the extension F (y)/F with yn = u is called a Kummer extension of F . We

have:

a) The polynomial φ(t) = tn − u is the minimal polynomial of y over F . The

extension F (y)/F is Galois of degree n. Its Galois group is cyclic, and the

automorphisms of F (y)/F are given by σ(y) = ζy, where ζ is an n-th root of

unity in K.

b) Let P ∈ PF and P
′ ∈ PF (y) with P

′|P . Then

e(P ′|P ) =
n

rP
and d(P ′|P ) =

n

rP
− 1, (1.6)

where rP := gcd(n, vP (u)).

Proposition 1.1.2. [13, Proposition 3.7.8] For an algebraic function �eld F/K of

characteristic p > 0, suppose that u ∈ F is an element which satis�es the condition

u 6= wp − w for all w ∈ F. (1.7)

The extension F (y)/F with yp − y = u is called an Artin-Schreier extension of F .

For P ∈ PF we de�ne the integer mP by

mP =

 m if there exists z ∈ F satisfying vP (u− (zp − z)) = −m < 0 and p - m

−1 if vP (u− (zp − z)) ≥ 0 for some z ∈ F .

Then we have:
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(a) F (y)/F is a Galois extension of degree p with cyclic Galois group. The auto-

morphisms of F (y)/F are given by σ(y) = y + ν, where ν = 0, 1, ..., p− 1.

(b) P is unrami�ed in F (y)/F if and only if mP = −1.

(c) P is totally rami�ed in F (y)/F if and only if mP > 0. In this case, the

di�erent exponent d(P
′ |P ) is given by

d(P
′|P ) = (p− 1)(mP + 1). (1.8)

For a Galois extension of function �elds F
′
/F with Galois group G = Gal(F

′
/F ),

the i-th rami�cation group of P
′ |P for i ≥ −1 is de�ned as

Gi(P
′ |P ) := {σ ∈ G | vP ′ (σ(z)− z) ≥ i+ 1 for all z ∈ OP ′}. (1.9)

For simplicity, we will write Gi(P
′
) instead of Gi(P

′ |P ). G−1(P
′
) and G0(P

′
) are

special subgroups of Gal(F
′
/F ) and they are also denoted by GZ(P

′
) and GT (P

′
),

respectively. It is easy to see that

GZ(P
′
) = {σ ∈ Gal(F ′/F ) | σ(P

′
) = P

′}. (1.10)

GZ(P
′
) and GT (P

′
) are called decomposition and inertia groups of P

′
over P , respec-

tively. The inertia group GT (P
′
) is a normal subgroup of GZ(P

′
), and the orders of

these groups are

|GZ(P
′
)| = e(P

′ |P ) · f(P
′ |P ), |GT (P

′
)| = e(P

′ |P ) [13, Theorem 3.8.2]. (1.11)

The following proposition gives more information about higher rami�cation groups.

Proposition 1.1.3. [13, Proposition 3.8.5] Let Gi be the i-th rami�cation group of

P
′
over P . We have:

a) G−1 ⊇ G0 ⊇ ... ⊇ Gi ⊇ Gi+1 ⊇ ... and Gm = {id} for m su�ciently large.

b) Let σ ∈ G0, i ≥ 0 and let t be a P
′
-prime element. Then

σ ∈ Gi ⇐⇒ vP ′ (σ(t)− t) ≥ i+ 1. (1.12)
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c) If charF = p > 0 then G1 is a normal subgroup of G0. The order of G1 is a

power of p, and the factor group G0/G1 is cyclic of order relatively prime to

p.

The following useful theorem is known as Hilbert's Di�erent Formula. It relates

the di�erent exponent d(P
′ |P ) and the rami�cation groups Gi(P

′
).

Theorem 1.1.1. [13, Theorem 3.8.7]) Let F
′
/F be a Galois extension of function

�elds and P
′ ∈ PF ′ be a place lying over P ∈ PF . Then

(i)

d(P
′ |P ) =

∞∑
i=0

(|Gi(P
′
)| − 1). (1.13)

(ii) If P
′ |P is totally rami�ed (i.e., Gal(F

′|F ) = G0(P
′ |P )) and t ∈ F ′ is a prime

element of P
′
, then

d(P
′ |P ) =

∑
id 6=σ∈Gal(F ′/F )

vP ′ (σ(t)− t). (1.14)

1.2 Maximal Function Fields and Automorphism Groups

of Function Fields

Let F/K be an algebraic function �eld of genus g with constant �eld K, where

K is a �nite �eld. Let N(F ) denote the number of rational places of F . By the

Hasse-Weil theorem [13, Theorem 5.2.3], this number is bounded by

|N(F )− (|K|+ 1)| ≤ 2
√
|K|g. (1.15)

A function �eld is called maximal if its number N(F ) of rational places attains the

upper bound in the above inequality. If |K| is not square and F/K is maximal then

we have

N(F ) = |K|+ 1 + 2g
√
|K| (1.16)

which implies that g = 0. So, F is a rational function �eld in this case. Hence, we

will always assume that |K| is square, i.e. K = Fq2 for some prime power q. Hence,

F/K is maximal if and only if

N(F ) = q2 + 1 + 2gq. (1.17)
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Remark 1.2.1. Let F be a maximal function �eld over Fq2 and Fr = FFq2r be a

constant �eld extension of F/Fq2 for an odd integer r. Then, Fr is also a maximal

function �eld over Fq2r .

Example 1.2.1. The most well-known example of a maximal function �eld is the

Hermitian function �eld H = Fq2(x, y) which is de�ned by

xq + x = yq+1. (1.18)

H can be considered as a Kummer extension of Fq2(x) of degree q + 1. There are

q2 + 1 degree one places of Fq2(x), namely the unique pole (x =∞) of x and places

(x = a) for a ∈ Fq2 . We have r(x=∞) = gcd(q + 1,−q) = 1 which by, Proposition

1.1.1, implies

e(R∞|(x =∞)) = q + 1 d(R∞|(x =∞)) = q, (1.19)

where R∞ is the unique degree one place of H lying above (x = ∞). We also have

r(x=a) = gcd(q + 1, 1) = 1 where (x = a) ∈ PFq2 (x) with aq + a = 0. This gives

e(Ra0|(x = a)) = q + 1 d(Ra0|(x = a)) = q, (1.20)

where Ra0 is the unique degree one place of H lying above (x = a). The places

(x = a) ∈ PFq2 (x) with aq
2 − a = 0 and aq + a 6= 0 split into q + 1 degree one places

Rab with aq + a = bq+1 in H by Kummer's theorem (see [13, Corollary 3.3.8]). This

shows that N(H) = (q2 − q)(q + 1) + q + 1 = q3 + 1. Any place P of Fq2(x) which

is not rational is unrami�ed as rP = gcd(q + 1, vP (xq + x)) = gcd(q + 1, 0) = q + 1

which implies d(R|P ) = 0 for R|P . Now we can calculate the genus g(H) of H by

Hurwitz genus formula. We have

2g(H)− 2 = −2(q + 1) + q · q + q, (1.21)

hence, g(H) = q(q−1)
2

. As q3 + 1 = q2 + 1 + 2g(H)q, H is a maximal function �eld

over Fq2 .

Remark 1.2.2. Let Hr = HFq2r be a constant �eld extension of H with r an odd

positive integer. Then Hr is also maximal by Remark 1.2.1. Note that a rational

place inH is unrami�ed inHr/H and there exists a unique rational place inHr lying

6



over it [13, Lemma 5.1.9]. For the places Rab of Hr lying above (x = a) ∈ PFq2r (x)

with a ∈ Fq2r \ Fq2 , we have

r(x=a) = q + 1 e(Rab|(x = a)) = 1, (1.22)

where aq+a = bq+1. Hence such a place Rab is a rational place of Hr. Therefore, the

rational places of Hr apart from Rab with a ∈ Fq2 and R∞ lie above some rational

place (x = a) with a ∈ Fq2r \Fq2 , and these places split completely in Hr. Note that

not all places (x = a) with a ∈ Fq2r \ Fq2 split in Hr . This can easily be seen by

comparing N(Hr) = q2r + 1 + q(q− 1)qr (since Hr is maximal) and the number that

is obtained if each (x = a) with a ∈ Fq2r \ Fq2 splits completely.

Theorem 1.2.1. (Ihara) [13, Proposition 5.3.3] If F/Fq2 is a maximal function

�eld, then

g(F ) ≤ q(q − 1)

2
. (1.23)

So, H has the maximum possible genus among all maximal function �elds over

Fq2 . In fact, it is the unique maximal function �eld, up to isomorphism, with this

genus [12].

Finding new maximal function �elds with di�erent genera has been of signi�cance

for a long time. One of the main problems is to describe the following set:

M(q2) = {g ≥ 0 | there exist a maximal function �eld F/Fq2 with genus g}.

(1.24)

By Theorem 1.2.1, the largest number in this set is q(q−1)
2

, which comes from the

Hermitian function �eld. The following result is due to Serre.

Theorem 1.2.2. [10, Proposition 6] Let F/K be an algebraic function �eld which

is maximal. Then, any sub�eld E of F with K $ E is also maximal.

Serre's result can be used to obtain new maximal function �elds from old ones

by considering the automorphism group Aut(F/K) of the maximal function �eld

F and then �nding �xed �elds of some subgroups of Aut(F/K) inside F . The

automorphism group of a function �eld F/K is the set

Aut(F/K) = {σ ∈ Aut(F ) | σ(k) = k for all k ∈ K}. (1.25)

7



If K is a �nite �eld then Aut(F/K) is a �nite group. In characteristic 0, the

cardinality of the automorphism group is bounded by Hurwitz Bound

Aut(F/K) ≤ 84(g(F )− 1) [9, Theorem 11.56]. (1.26)

In prime characteristic, however, automorphism groups can be much larger (see [9,

Theorem 11.127]). The Hermitian function �eld is also interesting in this respect

since it has a large automorphism group. Let us now describe it.

Automorphism Group of Hermitian Function Field: Let H be the Hermi-

tian function �eld over Fq2 . The automorphism group of H, which will be denoted

by A, is

A = {σ ∈ Aut(H) | σ(a) = a for all a ∈ Fq2}. (1.27)

The group A is known [14, 15], and it is described as follows. Let R∞ be the unique

common pole of x and y in H. Then, the group

A(R∞) = {σ ∈ A | σ(R∞) = R∞} (1.28)

consists of the following set of automorphisms (cf. [7, Eqn. (2.2)]):

σ(y) = ay + b σ(x) = aq+1x+ abqy + c (1.29)

a ∈ F∗q2 , b ∈ Fq2 , cq + c = bq+1

Clearly, |A(R∞)| = q3(q2 − 1). Note that A(R∞) is the decomposition group of

R∞ in the extension H/FA, where FA is the �xed �eld of A. There is an another

automorphism w of H which is an involution (cf. [7, Eqn. (2.7)]):

w(y) =
y

x
w(x) =

1

x
(1.30)

The automorphism group A of H is generated by w and A(R∞), i.e.

A =< A(R∞), w > . (1.31)

A is isomorphic to PGU(3, q2), and its order is q3(q2−1)(q3 +1). Clearly, this order

violates the Hurwitz Bound (1.26).
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Remark 1.2.3. Let H = HFq2 be a constant �eld extension of H, where Fq2 is the

algebraic closure of Fq2 . Let Ā be the automorphism group of H, i.e.

Ā = {σ ∈ Aut(H) | σ(a) = a for all a ∈ Fq2}. (1.32)

Then, each automorphism in the automorphism group A of H induces an auto-

morphism in Ā, and likewise any automorphism in the group A(R∞) gives us an

automorphism in Ā(R̄∞) (cf. Eqn. (1.28)), where R̄∞ ∈ PH is the unique place

lying above R∞. By [15, Theorem 7], we further have

|Ā| = q3(q2 − 1)(q3 + 1), (1.33)

|Ā(R̄∞)| = q3(q2 − 1), (1.34)

which are the orders of A and A(R∞) respectively. Therefore, a constant �eld

extension of H has the same automorphism group as H.

The subgroups of A were extensively investigated, and a large class of the sub-

�elds of the Hermitian function �eld is known and described in [2] and [7]. By Serre's

result, these are also maximal over Fq2 and hence yield members for the set M(q2).

For a long time, all known examples of maximal function �elds were shown to be

sub�elds of H. In the next section, we will present the �rst example of a maximal

function �eld which is not a sub�eld of the Hermitian function �eld.

1.3 GK and Generalized GK Function Field

Let q be a prime power and consider the function �eld E = Fq6(x, y, z) over Fq6 with

de�ning equations

xq + x = yq+1 (1.35)

yq
2 − y = z

q3+1
q+1 . (1.36)

E was introduced by Giulietti and Korchmáros [8], and therefore will be called the

GK function �eld.

Theorem 1.3.1. [8] The GK function �eld E is maximal over Fq6 with

g(E) =
(q3 + 1)(q2 − 2)

2
+ 1 N(E) = q8 − q6 + q5 + 1. (1.37)

9



GK function �eld was later generalized by Garcia, Güneri and Stichtenoth to a

family of function �elds Cn over Fq2n for any odd integer n ≥ 3 as follows [5]:

Generalized GK Function Field: Let n ≥ 3 be an odd integer, and consider the

function �eld Cn over Fq2n de�ned by the following equations:

xq + x = yq+1 (1.38)

yq
2 − y = z

qn+1
q+1 (1.39)

Theorem 1.3.2. [5] Cn is a maximal function �eld over Fq2n for any odd integer

n ≥ 3 with

|N(Cn)| = q2n+2 − qn+3 + qn+2 + 1 g(Cn) =
(q − 1)(qn+1 + qn − q2)

2
. (1.40)

Remark 1.3.1. (i) Cn coincides with the GK function �eld for n = 3.

(ii) If q = 2, the GK function �eld is a sub�eld of the Hermitian function �eld

over F26 [8, page 235]. For q > 2, the GK function �eld C3 is not a sub�eld of the

Hermitian function �eld over Fq6 [8, Theorem 5]. However, for n > 3 it is not known

yet whether Cn is a sub�eld of the Hermitian function �eld, which is de�ned by

xq
n

+ x = yq
n+1 (1.41)

over Fq2n .

(iii) Recently, Duursma and Mak [3] showed that Cn is not a Galois sub�eld of the

Hermitian function �eld, i.e. for n ≥ 3 there is no embedding of Cn over Fq2n into

H such that H/Cn is Galois.

We will now describe the rational places of Cn [5]. We henceforth assume that

K = Fq2n . The pole (x =∞) of x in K(x) is totally rami�ed in Cn/K(x), we denote

the unique place of Cn above (x = ∞) as P∞. Observe that P∞ is also totally

rami�ed over K(y) and over K(z), i.e. P∞ is the unique pole of x,y and z. Any

degree one place of Cn apart from P∞ lies over the places (x = a) in K(x), (y = b)

in K(y), (z = c) in K(z), where a, b, c ∈ K satisfy

aq + a = bq+1 (1.42)

bq
2 − b = c

qn+1
q+1 (1.43)

We will denote this place by Pabc. The diagrams in Figures 1.1, 1.2, 1.3, 1.4 and 1.5

will be useful to visualize the rational places of Cn with their rami�cation indices.
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Cn = K(x, y, z)

q

??
??

??
??

??
?

m

��
��

��
��

��
�

Xn = K(y, z)

q2

??
??

??
??

??
?

m

��
��

��
��

��
�

K(z)

H = K(x, y)

q

??
??

??
??

??
?

q+1
��

��
��

��
��

�

K(y)K(x)

Figure 1.1: Field extensions and extension degrees, m = qn+1
q+1

.

P∞

e=q

??
??

??
??

??
?

e=m

��
��

��
��

��
�

T∞

e=q2

??
??

??
??

??
?

e=m

��
��

��
��

��
�

(z =∞)

R∞,

e=q

??
??

??
??

??
?

e=q+1
��

��
��

��
��

�

(y =∞)(x =∞),

Figure 1.2: Places at ∞ with rami�cation indices, m = qn+1
q+1

.

Pab0

e=1

??
??

??
??

??
?

e=m

��
��

��
��

��
�

Tb0

e=1

??
??

??
??

??
?

e=m

��
��

��
��

��
�

(z = 0)

Rab

e=1

??
??

??
??

??
?

e=q+1
��

��
��

��
��

�

(y = b)(x = a)

Figure 1.3: Places Pabc with aq + a = 0, m = qn+1
q+1

.

11



Pab0

e=q+1

??
??

??
??

??
?

e=m

��
��

��
��

��
�

Tb0

e=1

??
??

??
??

??
?

e=m

��
��

��
��

��
�

(z = 0)

Rab

e=1

??
??

??
??

??
?

e=1
��

��
��

��
��

�

(y = b)(x = a)

Figure 1.4: Places Pabc with aq
2 − a = 0 and aq + a 6= 0, m = qn+1

q+1
.

Pabc

e=1

??
??

??
??

??
?

e=1

��
��

��
��

��
�

Tbc

e=1

??
??

??
??

??
?

e=1
��

��
��

��
��

�

(z = c)

Rab

e=1

??
??

??
??

??
?

e=1
��

��
��

��
��

�

(y = b)(x = a)

Figure 1.5: Places Pabc with aq
2 − a 6= 0.
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In these diagrams, H denotes the constant �eld extension of the Hermitian func-

tion �eld over Fq2 to the �eld K. Since n is odd, it is also maximal (cf. Remark

1.2.1). Xn is de�ned by the equation (1.39). Its maximality was proved by Abdon,

Bezerra and Quoos in [1]. As it is shown in the diagram of poles, poles of x in

K(x), y in K(y) and z in K(z) are denoted by (x = ∞), (y = ∞) and (z = ∞),

respectively. The common pole of y and z in K(z, y) is T∞, and the common pole

of x and y in K(x, y) is R∞. We will now explain how the information in these

diagrams can be deduced.

We will also denote the degree one places of K(x, y) and K(y, z) lying below Pabc

as Rab ,Tbc, respectively. The degree one places of K(x), K(y) and K(z) lying below

Pabc are (x = a), (y = b) and (z = c), respectively. From the de�ning equations

(1.38) and (1.39), we can deduce

zq
n+1 = (yq

2 − y)q+1

= yq+1((yq+1)q−1 − 1)q+1

= (xq + x)

(
(xq + x)q

xq + x
− 1

)q+1

=

(
xq

2 − x
xq + x

)q+1

(xq + x).

So, we reach the following equation:

zq
n+1 =

(
xq

2 − x
xq + x

)q+1

(xq + x). (1.44)

The polynomial f(T ) = T q
n+1−

(
xq2−x
xq+x

)q+1

(xq +x) is irreducible over K(x). Hence

Cn = K(x, z), and it is a Kummer extension of K(x) of degree qn + 1. With the

notation in Proposition 1.1.1, we have

r(x=∞) = gcd

qn + 1, v(x=∞)

(xq2 − x
xq + x

)q+1

(xq + x)


= gcd(qn + 1,−q3) = 1.

Therefore, e(P∞|(x =∞)) = qn + 1.
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a ∈ K, aq
2 − a = 0, aq + a 6= 0 :

r(x=a) = gcd

qn + 1, v(x=a)

(xq2 − x
xq + x

)q+1

(xq + x)


= gcd(qn + 1, q + 1) = q + 1.

Therefore, e(Pab0|(x = a)) = qn+1
q+1

.

a ∈ K, aq + a = 0 :

r(x=a) = gcd

qn + 1, v(x=a)

(xq2 − x
xq + x

)q+1

(xq + x)


= gcd(qn + 1, 1) = 1.

Therefore, e(Pab0|(x = a)) = qn + 1.

a ∈ K, aq
2 − a 6= 0:

r(x=a) = gcd

qn + 1, v(x=a)

(xq2 − x
xq + x

)q+1

(xq + x)


= gcd(qn + 1, 0) = qn + 1.

Therefore, e(Pabc|(x = a)) = 1.

Combining these observations with the rami�cation structure in H/K(x) (cf. Ex-

ample 1.2.1 and Remark 1.2.2), we conclude that the place R∞ and the rational

places Rab ∈ PH with aq
2 − a = 0 (i.e. a ∈ Fq2) are totally rami�ed in Cn/H. The

other rational places in H split completely in the extension Cn/H.

The extension Cn/K(y) is Galois as the extensions H/K(y) and Xn/K(y) are

both Galois (Artin-Schreier and Kummer extensions, respectively). In the extension

Xn/K(y) , we have

r(y=∞) = gcd

(
qn + 1

q + 1
, v(y=∞)(y

q2 − y)

)
= gcd

(
qn + 1

q + 1
,−q2

)
= 1.

Therefore, (T∞|(y =∞)) = qn+1
q+1

.

b ∈ K, bq
2 − b = 0 :

r(y=b) = gcd

(
qn + 1

q + 1
, v(y=b)(y

q2 − y)

)
= gcd

(
qn + 1

q + 1
, 1

)
= 1.
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Therefore, e(Tb0|(y = b)) = qn+1
q+1

.

b ∈ K, bq
2 − b 6= 0 :

r(y=b) = gcd

(
qn + 1

q + 1
, v(y=b)(y

q2 − y)

)
= gcd

(
qn + 1

q + 1
, 0

)
= qn + 1.

Therefore, e(Tbc|(y = b)) = 1.

In the extension Cn/Xn, rami�cation occurs only at T∞ and it is a total rami�ca-

tion. The other rational places of Xn split completely in Cn (see [5, Theorem 2.6]).

Hence, in the extension Cn/K(y) rami�cation occurs at the places Pab0 with a ∈ Fq2

and P∞. The rami�cation indices are

e(Pab0|(y = b)) =
qn + 1

q + 1
e(P∞|(y =∞)) = q

(qn + 1)

q + 1
. (1.45)

As far as the extension Cn/K(z) is concerned, the extension Xn/K(z) is an Artin-

Schreier extension. For L ∈ PK(z), we have

mL = −1 for L 6= (z =∞) and m(z=∞) =
qn + 1

q + 1
. (1.46)

Therefore, the only rami�ed place in Xn/K(z) is (z =∞) ∈ PK(z), and it is totally

rami�ed (see [13, Proposition III.7.10]). As mentioned above, there is only one

(total) rami�cation in Cn/Xn at the place T∞ ∈ PXn . Hence, the only rami�ed place

in Cn/K(z) is (z =∞), which is totally rami�ed.
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CHAPTER 2

THE AUTOMORPHISM GROUP OF THE

GENERALIZED GK FUNCTION FIELD

In this chapter, we will describe the automorphism group of Cn explicitly. For C3, the

automorphism group was computed by Giuliettti and Korchmáros in [8]. Recall that

K stands for the �nite �eld K = Fq2n , where n denotes an odd integer greater than

or equal to 3. Throughout, we will also denote Cn and Xn by C and X , respectively,

for simplicity.

2.1 The Group G(P∞)

Let G denote the automorphism group of C. In this section, we will determine the

subgroup

G(P∞) = {σ ∈ G | σ(P∞) = P∞}, (2.1)

where P∞ is the unique pole of x, y, z in PC. Recall that A denotes the automorphism

group of the Hermitian function �eld, which is given in (1.31).

Theorem 2.1.1. Every automorphism σ ∈ A(R∞) of H can be extended to an

automorphism σ̂ ∈ G(P∞) in exactly qn+1
q+1

ways, and the set

Â(R∞) = {σ̂ ∈ G | σ̂|H ∈ A(R∞)} (2.2)

is a subgroup of G(P∞) of order qn+1
q+1

q3(q2 − 1).

Proof. Recall that σ ∈ A(R∞) is of the form (cf. Eqn. 1.29)

σ(y) = ay + b σ(x) = aq+1x+ abqy + c, (2.3)
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where a ∈ F∗q2 , b ∈ Fq2 , cq + c = bq+1. We want to show that σ can be extended to

an automorphism σ̂ : C → C. We set

σ̂(z) = dz with d
qn+1
q+1 = a, (2.4)

where d is an element in the algebraic closure of Fq2 . Since a ∈ F∗q2 , we have

dq
2n−1 = (d

qn+1
q+1 )(qn−1)(q+1) = (aq

2−1)
qn−1
q−1 = 1. (2.5)

This implies that d ∈ K. We now need show that σ̂ preserves the equations (1.38)

and (1.39). As σ̂|H is an automorphism of H, σ̂ preserves (1.38). Regarding Eqn.

(1.39), we have

σ̂(yq
2 − y) = (ay + b)q

2 − (ay + b) = a(yq
2 − y) = σ̂(z

qn+1
q+1 ) = (dz)

qn+1
q+1 . (2.6)

Since we have d
qn+1
q+1 = a, Eqn. (2.6) turns into the original equation. Thus, σ̂ is an

automorphism of C. Moreover, by Lemma 1.1.1 we have σ̂ ∈ G(P∞) as P∞ is totally

rami�ed in C/H. Since |A(R∞)| = q3(q2− 1) and each automorphism in A(R∞) can

be extended in qn+1
q+1

di�erent ways, the proof is �nished.

Our aim is to show that Â(R∞) = G(P∞). The following lemma will be impor-

tant for our proof.

Lemma 2.1.1. {1, y, ..., yq2−1} is an integral basis of X/K(z) at the places L ∈ PK(z)

with L 6= (z = ∞), and {1, x, ..., xq−1} is an integral basis of C/X at the places

T ∈ PX with T 6= T∞.

Proof. Let P ∈ PC with P 6= P∞, T ∈ PX with P |T and L ∈ PK(z) with T |L. Since

all places P 6= P∞ are unrami�ed in the extension C/K(z) (cf. Section 1.3), we have

d(P |T ) = d(T |L) = 0. (2.7)

Let f(t) = tq
2 − t − z

qn+1
q+1 be the minimal polynomial of y over K(z), and g(t) =

tq + t− yq+1 be the minimal polynomial of x over X . Then, we have

d(P |T ) = vP (g
′
(x)) = 0 and d(T |L) = vT (f

′
(y)) = 0. (2.8)

Hence by [13, Theorem 3.5.10], we have that {1, y, ..., yq2−1} is an integral basis of

X/K(z) at the place L, and {1, x, ..., xq−1} is an integral basis of C/X at the place

T .
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Before passing to the next lemma, recall that the pole divisors of x, y and z in

C are as follows

(x)∞ = (qn + 1)P∞, (y)∞ =
qn + 1

q + 1
qP∞, (z)∞ = q3P∞. (2.9)

Proposition 2.1.1. For any m ≥ 0, the set

B =

{
xiyjzk | i(qn + 1) + j

(
qn + 1

q + 1
q

)
+ kq3 ≤ m with

0 ≤ i ≤ q − 1, 0 ≤ j ≤ q2 − 1 and k ≥ 0
}

(2.10)

is a K-basis for L(mP∞). Moreover, the elements in B have pairwise distinct pole

orders at P∞.

Proof. All the elements in L(mP∞) have either no pole or just a unique pole at P∞

with pole order at most m. Let

L∞ =
⋃
m≥0

L(mP∞) (2.11)

be the set of elements of C which do not have a pole outside P∞. Clearly,

L∞ =
⋂

P∈PC ,P 6=P∞

OP =
⋂

T∈PX ,T 6=T∞

( ⋂
P∈PC ,P |T

OP

)
. (2.12)

For every T ∈ PX with T 6= T∞, one has

⋂
P∈PC ,P |T

OP =

q−1⊕
i=0

OTx
i (2.13)

by [13, Corollary 3.3.5] and Lemma 2.1.1. Therefore,

⋂
P∈PC ,P 6=P∞

OP =

q−1⊕
i=0

( ⋂
T∈PX ,T 6=T∞

OT )xi. (2.14)

Likewise,

⋂
T∈PX ,T 6=T∞

OT =
⋂

L∈PK(z),L6=(z=∞)

( ⋂
T∈PX ,T |L

OT

)
=

q2−1⊕
j=0

( ⋂
L∈PK(z),L6=(z=∞)

OL

)
yj.

(2.15)

In the rational function �eld K(z), the intersection⋂
L∈PK(z),L 6=(z=∞)

OL (2.16)
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is equal to the polynomial ring K[z]. So, we have

L∞ =
⋂

P∈PC ,P 6=P∞

OP =

q−1⊕
i=0

q2−1⊕
j=0

( ⋂
L∈PK(z),L 6=(z=∞)

OL

)
xiyj =

q−1⊕
i=0

q2−1⊕
j=0

K[z]xiyj.

(2.17)

Hence, every element w ∈ L(mP∞) can be written in the form

w =
∑
i,j,k

aijkx
iyjzk, (2.18)

where aijk ∈ K and 0 ≤ i ≤ q − 1, 0 ≤ j ≤ q2 − 1, k ≥ 0. It remains to

show that the elements of the form xiyjzk have pairwise distinct pole orders at

P∞. For this, we need to prove the following statement for any i, j, k, i
′
, j
′
, k
′
with

0 ≤ i, i
′ ≤ q − 1, 0 ≤ j, j

′ ≤ q2 − 1 and k, k
′ ≥ 0:

vP∞(xiyjzk) 6= vP∞(xi
′

yj
′

zk
′

) if (i, j, k) 6= (i
′
, j
′
, k
′
). (2.19)

Equivalently,

i(qn + 1) + j
qn + 1

q + 1
q+ kq3 6= i

′
(qn + 1) + j

′ qn + 1

q + 1
q+ k

′
q3 if (i, j, k) 6= (i

′
, j
′
, k
′
).

(2.20)

Assume that 0 ≤ i, i
′ ≤ q − 1, 0 ≤ j, j

′ ≤ q2 − 1, k, k
′ ≥ 0 and that

i(qn + 1) + j
qn + 1

q + 1
q + kq3 = i

′
(qn + 1) + j

′ qn + 1

q + 1
q + k

′
q3. (2.21)

Eqn. (2.21) implies that i ≡ i
′

mod q and hence i = i
′
. Now, we have

j
qn + 1

q + 1
q + kq3 = j

′ qn + 1

q + 1
q + k

′
q3, (2.22)

which yields

j
qn + 1

q + 1
+ kq2 = j

′ qn + 1

q + 1
+ k

′
q2. (2.23)

It follows from Eqn. (2.23) that

j
qn + 1

q + 1
≡ j

′ qn + 1

q + 1
mod q2. (2.24)

This implies that j ≡ j
′
mod q2, which means j = j

′
. Hence, we also have k = k

′
.

Corollary 2.1.1. For any n ≥ 3, the pole numbers of P∞ are{
i(qn + 1) + j

qn + 1

q + 1
q + kq3 | i, j, k ∈ N with 0 ≤ i < q, 0 ≤ j < q2, k ≥ 0

}
.

(2.25)
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Corollary 2.1.2. (i) The set of elements {1, z} forms a K-basis for L(q3P∞) for

n ≥ 5. For n = 3, {1, y, z} is a basis for L(q3P∞).

(ii) For n ≥ 3, a K-basis for L
(
qn+1
q+1

qP∞

)
is {1, y, z, ..., zr} with

rq3 ≤ qn + 1

q + 1
q < (r + 1)q3. (2.26)

(iii) For n ≥ 3, a K-basis for L((qn + 1)P∞) is {1, x, z, ..., zs, y, yz, ..., yzr} with

rq3 ≤ qn + 1

q + 1
< (r + 1)q3 and sq3 ≤ qn + 1 < (s+ 1)q3. (2.27)

Proof. We will use Proposition 2.1.1.

(i) We want to �nd the elements xiyjzk such that i(qn + 1) + j q
n+1
q+1

q+ kq3 ≤ q3. We

have i = 0. If k = 0 and n > 3 then j = 0, and if k = 0 and n = 3 then j = 0 or

j = 1. This gives the desired result.

(ii) For the inequality i(qn + 1) + j q
n+1
q+1

q + kq3 ≤ qn+1
q+1

q, we have again i = 0. If

j = 1 then k = 0 , and if j = 0 then k can take the values 1, 2, ..., r with r as in

Eqn. (2.26).

(iii) Regarding the inequality i(qn + 1) + j q
n+1
q+1

q + kq3 ≤ qn + 1, we have i = 0 or

i = 1. If i = 1 then j and k are both zero. If i = 0 then j = 0 or j = 1. If j = 0

then k can be 1, ..., s, where s is as in Eqn. (2.27). If j = 1 then we have kq3 ≤ qn+1
q+1

and hence k can be 1, 2, ..r with r as in Eqn. (2.27).

Lemma 2.1.2. Let F/K be a function �eld. For P ∈ PF and σ ∈ Aut(F/K) with

σ(P ) = P , we have σ(L(mP )) = L(mP ) for any m ≥ 0.

Proof. Since σ is an automorphism and σ(P ) = P , we clearly have σ(Q) 6= P for

any place Q ∈ PC that is di�erent from P . Therefore, for a ∈ L(mP ) we have

vQ(σ(a)) = vσ−1(Q)(a) ≥

 −m , if Q = P

0 , if Q 6= P .

Hence, σ(a) ∈ L(mP ) which implies that σ(L(mP )) ⊆ L(mP ). Since σ is aK-linear

bijection, it preserves the dimension of L(mP ). Hence, σ(L(mP )) = L(mP ).

The following theorem is the main result of this section.
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Theorem 2.1.2. For n ≥ 3, the mapping

ψ : G(P∞) → A(R∞)

σ̂ 7→ σ̂|H

is an epimorphism and its kernel is Gal(C/H).

Proof. First, we will show that ψ maps G(P∞) to A(R∞). Any automorphism

σ̂ ∈ G(P∞) maps the L spaces in Corollary 2.1.2 into themselves by Lemma 2.1.2.

So, σ̂(x) ∈ L((qn + 1)P∞), σ̂(y) ∈ L(q q
n+1
q+1

P∞) and σ̂(z) ∈ L(q3P∞). Since a basis

for L(q3P∞) depends on the value of n (cf. Corollary 2.1.2), we have two cases:

Case 1 n ≥ 5: By Corollary 2.1.2 and Lemma 2.1.2, any σ̂ ∈ G(P∞) has to satisfy

σ̂(z) = dz + e σ̂(y) = ay + P (z) (2.28)

σ̂(x) = hx+ a0y + a1yz + ...+ aryz
r +B(z), (2.29)

where a, d, e, h, a0, ..., ar ∈ K, and q3 degP (z) ≤ qn+1
q+1

q, q3r ≤ qn+1
q+1

, q3 degB(z) ≤

qn + 1.

Note that x, y, z and their images under σ̂ must have the same pole orders at P∞.

Therefore, a,d and h must be di�erent from 0. If we plug (2.28) and (2.29) in the

de�ning equations (1.38) and (1.39) of C, we obtain the following:

(dz + e)
qn+1
q+1 = (ay)q

2 − ay + P (z)q
2 − P (z) (2.30)

(hx)q+(a0y)q+ ...+(aryz
r)q+B(z)q+hx+a0y+ ...+aryz

r+B(z) = (ay+P (z))q+1

(2.31)

Since σ̂ is an automorphism of C, Eqns. (2.30) and (2.31) must yield the original

Eqns. (1.38) and (1.39) up to a nonzero factor inK. So, we compare these equations.

We �rst consider the term e(dz)
qn+1
q+1
−1 on the left hand side of Eqn. (2.30). Since

q2 degP (z) < qn+1
q+1
− 1 and q2 - qn+1

q+1
− 1, it is impossible to get a term in z of

degree qn+1
q+1
− 1 on the right hand side of the equation. So, we have e = 0. If

P (z)q
2 − P (z) 6= 0, then the right hand side of (2.30) contains z-terms which do

not exist on the left hand side. So, P (z)q
2 − P (z) = 0 and hence P (z) = b ∈ Fq2 .

Therefore,

(dz)
qn+1
q+1 = (ay)q

2 − ay, (2.32)
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which implies that d
qn+1
q+1 = aq

2
= a by Eqn. (1.39).

Regarding Eqn. (2.31), since there is no term in Eqn. (1.38) containing the terms

yqziq for 0 ≤ i ≤ r and iq < qn+1
q+1

, we have a1 = ... = ar = 0. As Eqn. (1.38) does

not contain any term containing z and degB(z) < qn+1
q+1

, B(z) must be a constant

polynomial i.e. B(z) = c for some c ∈ K. Note, in particular, that σ̂(H) ⊆ H and

hence σ̂|H is an automorphism of H. So, Eqn. (2.31) becomes

(hx)q+(a0y)q+cq+hx+a0y+c = (ay+b)q+1 = (ay)q+1+(ay)qb+abqy+bq+1. (2.33)

This yields

cq + c = bq+1, hq = h = aq+1, a0 = abq. (2.34)

Therefore, any σ̂ ∈ G(P∞) is of the form

σ̂(z) = dz σ̂(y) = ay + b (2.35)

σ̂(x) = aq+1x+ abqy + c, (2.36)

where a ∈ F∗q2 , b ∈ Fq2 , cq + c = bq+1 and d
qn+1

q+1 = a. So, we have ψ(σ̂) = σ̂|H = σ ∈

A(R∞) for n ≥ 5.

Case 2 n = 3: We will use the same procedure. σ̂(y), σ̂(x) are of the same form

as in Eqns. (2.28) and (2.29). For σ̂(z), we have

σ̂(z) = dz + uy + e with d, u, e ∈ K, d 6= 0. (2.37)

If we apply σ̂ to Eqn. (1.39), we get

(dz + uy + e)
qn+1
q+1 = (ay)q

2 − ay + P (z)q
2 − P (z). (2.38)

If we consider the term (uy + e)(dz)
qn+1
q+1
−1 on the left hand side of (2.38), we see

that u = e = 0 and P (z) = b ∈ Fq2 . Then, we reduce to the case n ≥ 5 and the

same argument can be given.

We have proved that ψ(σ̂) ∈ A(R∞) for any n ≥ 3. ψ is obviously a homomor-

phism, and it is onto by Theorem 2.1.1. The kernel of ψ consists of the extensions

of the identity automorphism of H, and these automorphisms are of the form

σ(z) = dz with d
qn+1
q+1 = 1. (2.39)
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The set such automorphisms form the Galois group of the Kummer extension C/H

by Proposition 1.1.1. This completes the proof.

2.2 P∞ is a Weierstrass Point of C

In this section, we will show that P∞ is a Weierstrass point of C. We will also

describe the places which have the same pole numbers as P∞. We start with the

following Lemma.

Lemma 2.2.1. The extension C/K(z) is Galois for any n ≥ 3. The Galois group

of this extension consists of automorphisms of the form

σ̂(y) = y + b σ̂(x) = x+ bqy + c σ̂(z) = z, (2.40)

where b ∈ Fq2 and cq + c = bq+1.

Proof. It is enough to check that σ̂ preserves the de�ning equations (1.38) and (1.39)

of C. Note that σ̂|H ∈ A(R∞) by (1.29). Thus, σ̂ preserves Eqn. (1.38). Regarding

Eqn. (1.39), we have

σ̂(yq
2 − y) = (y + b)q

2 − (y + b) = yq
2 − y = σ̂(z

qn+1
q+1 ) = z

qn+1
q+1 . (2.41)

So, σ̂ is an automorphism of C. The number of such automorphisms is q3. As the

degree of the extension C/K(z) is also q3, C/K(z) is Galois, and its automorphisms

are described by (2.40).

The following Lemma will be our main tool in determining the rational places

which have the same pole numbers as P∞.

Lemma 2.2.2. [15, Page 625] Let P be a rational place of C. Then, k is a gap

number for P if and only if there exists t ∈ L(W ) such that vP (t) = k− 1, where W

is a canonical divisor of C whose support does not contain P .

Now we need to have a canonical divisor.

Lemma 2.2.3. (2g(C)− 2)P∞ is a canonical divisor of C.

Proof. We consider the extension C/K(z). By [13, Eqn. (4.37)], the divisor of the

di�erential dz is

(dz) = −2(z)∞ +Diff(C/K(z)). (2.42)
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Since (dz) is canonical divisor, we have deg(dz) = 2g(C) − 2. We have observed in

Chapter 1 that P∞ is the only rami�ed place in C/K(z), and P∞ is the only pole of

z. Therefore, the support of the divisor (dz) only contains the rational place P∞.

Hence, (dz) = (2g(C)− 2)P∞.

Remark 2.2.1. For σ ∈ Aut(F/K) and P ∈ PF , P and σ(P ) have the same pole

numbers and the same degrees. Motivated by this, we would like to determine the

rational places of C which have the same pole numbers as P∞.

Lemma 2.2.4. For n ≥ 5, P∞ is the only degree one place of C with the pole

numbers given in (2.25).

Proof. Consider any rational place Pabc of C that is di�erent from P∞. Our aim is to

show that q3 is a gap number at Pabc. Since q3 is a pole number at P∞ , our result

will follow.

Since (2g(C)− 2)P∞ is a canonical divisor of C and Pabc is not in its support, it

is enough to �nd a function t ∈ L((2g(C) − 2)P∞) such that vPabc
(t) = q3 − 1 (cf.

Lemma 2.2.2). We know by our analysis in Section 1.3 that P∞ is the only rami�ed

place in C/K(z). Hence,

vPabc
((z − c)q3−1) = (q3 − 1)e(Pabc|(z = c)) = q3 − 1, (2.43)

where (x − c) ∈ PK(z) is the place lying below Pabc. It is clear that P∞ is the only

pole of (z − c)q3−1 in C. Moreover,

vP∞((z − c)q3−1) = (q3 − 1)e(P∞|(z =∞)) = −(q3 − 1)q3 (2.44)

where (z =∞) ∈ PK(z) is the in�nite place lying below P∞. For n ≥ 5, we have

q3(q3 − 1) ≤ 2g(C)− 2 = (q − 1)(qn+1 + qn − 2)− 2 (2.45)

Hence (z − c)q3−1 ∈ L((2g(C)− 2)P∞) and the proof is �nished.

Now, for n = 3 we determine the rational places of C that have the same pole

numbers as P∞ . We will need the following Lemma.

Lemma 2.2.5. For n = 3, every automorphism of H can be extended to C.
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Proof. The automorphism group of H over K is generated by the group A(R∞) and

the involution automorphism w given by (1.30) (cf. Remark 1.2.3). We know by

Theorem 2.1.1 that every automorphism σ ∈ A(R∞) can be extended to C for any

n ≥ 3. So, for n = 3 it is enough to show that the involution w can be extended

to an automorphism ŵ of C. For n = 3, we can extract from the de�ning equations

(1.38) and (1.39) that

zq
3+1 = (yq

2 − y)q+1

= (yq
3 − yq)(yq2 − y)

= (yq+1)q
2 − (yq+1)

q3+1
q+1 − (yq+1)q + yq+1

= (xq + x)q
2 − (xq + x)

q3+1
q+1 − (xq + x)q + (xq + x)

= xq
3

+ x− (xq + x)
q3+1
q+1 .

Hence, we have C = K(x, z) with

zq
3+1 = xq

3

+ x− (xq + x)
q3+1
q+1 . (2.46)

We de�ne the map ŵ which extends w by

ŵ(z) =
z

x
. (2.47)

It is easy to see that ŵ preserves Eqn. (2.46):

zq
3+1

xq3+1
=
xq

3
+ x

xq3+1
−
(
xq + 1

xq+1

) q3+1
q+1

=
xq

3
+ x− (xq + x)

q3+1
q+1

xq3+1
(2.48)

So, ŵ is a automorphism of C with ŵ|H = w.

Lemma 2.2.6. For n = 3, the set of degree one places which have the same pole

numbers as P∞ is

S = {Pab0 | a ∈ Fq2} ∪ {P∞}. (2.49)

Proof. It follows from the de�ning equations of C that the set of places of C lying

above (z = 0) ∈ PK(z) is {Pab0 | a ∈ Fq2} (see also Figures 1.3 and 1.4). Since the

extension C/K(z) is Galois (Lemma 2.2.1), these places have the same pole number

distribution (cf. Remark 2.2.1) for n ≥ 3. Moreover, for n = 3 the elements z and z
x
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are prime elements of P000 and P∞, respectively. Since the involution automorphism

ŵ of C take z to z
x
, we have

ŵ(P000) = P∞. (2.50)

Hence, by Remark 2.2.1, all the places in S have the same pole numbers for n = 3.

We want to show that no other rational place of C has the same pole numbers.

Now, consider the rational places Pabc with a ∈ Fq6\Fq2 . Note that all such places

are unrami�ed over Fq6(x), Fq6(y) and Fq6(z) (cf. Figure 1.5). We set x̂ = x − a,

ŷ = y − b and ẑ = z − c and rewrite Eqn. (1.39) as

(ẑ + c)
q3+1
q+1 = (ŷ + b)q

2 − (ŷ + b), (2.51)

where c
q3+1
q+1 = bq

2 − b. Observe that we have

(ẑ+ c)
q3+1
q+1 = (ẑq + cq)q−1(ẑ+ c) = ẑ

q3+1
q+1 + ...− ẑqcq2−2q+1 + ẑc

q3+1
q+1
−1 + c

q3+1
q+1 , (2.52)

where ẑ-terms are ordered with respect to their degrees. So, we can rewrite Eqn.

2.51 as

ẑc
q3+1
q+1
−1 + ŷ = −ẑ

q3+1
q+1 − ...+ ẑqcq

2−2q+1 + ŷq
2

. (2.53)

We set t := ẑc
q3+1
q+1
−1 + ŷ. Applying strict triangle inequality on the right side, we

conclude

vPabc
(t) = q. (2.54)

We can replace the term xq + x in (2.46) by yq+1 to obtain

xq
3

+ x = yq
3+1 + zq

3+1. (2.55)

If we write the above equation in variables x̂, ŷ, and ẑ, we obtain

(x̂+ a)q
3

+ (x̂+ a) = (ŷ + b)q
3+1 + (ẑ + c)q

3+1, (2.56)

where aq
3

+ a = bq
3+1 + cq

3+1. Hence, Eqn. (2.56) becomes

x̂− bq3 ŷ − cq3 ẑ = −x̂q3 + bŷq
3

+ ŷq
3+1 + cẑq

3

+ ẑq
3+1. (2.57)

We set

u := x̂− bq3 ŷ − cq3 ẑ. (2.58)
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We have vPabc
(u) = vPabc

(−x̂q3 +bŷq
3
+ŷq

3+1+cẑq
3
+ẑq

3+1) ≥ q3 by triangle inequality.

Since u has unique pole at P∞ of order q3 + 1 (cf. Eqn. (2.9)), we have

vPabc
(u) = q3 or vPabc

(u) = q3 + 1. (2.59)

Note that u ∈ L((2g(C)− 2)P∞) since

vP∞(u) = −(q3 + 1) ≥ −q5 + 2q3 − q2 + 2.

Hence if vPabc
(u) = q3 then q3 + 1 is a gap number at Pabc (cf. Lemma 2.2.2).

However q3 + 1 is a pole number for P∞. Now suppose vPabc
(u) = q3 + 1. We set

s := utq
2−2q+1x̂q−2 = (x̂− bq3 ŷ − cq3 ẑ)(ẑc

q3+1
q+1
−1 + ŷ)q

2−2q+1x̂q−2. (2.60)

Note that vP∞(s) = −(q2 − 2q + 1)q3 − (q3 + 1)(q − 1) by strict triangle inequality.

Moreover, P∞ is the only pole of s. Since

−(q2−2q+1)q3−(q3+1)(q−1) = −(q5−q4+q−1) ≥ −(2g(C)−2) = −(q5−2q3+q2−2)

(2.61)

holds for any q ≥ 2, we have s ∈ L(2g(C)− 2)P∞). By (2.54), we have

vPabc
(s) = (q3 + 1) + (q2 − 2q + 1)q + (q − 2)

= 2q3 − 2q2 + 2q − 1

= 2(q3 − q2 + q)− 1.

Hence, 2q3 − 2q2 + 2q is a gap number for Pabc. Since
q3+1
q+1

q = q3 − q2 + q is a pole

number at P∞, we conclude the proof.

Automorphism Group of C: As before G denotes Aut(C/K). As seen in the

proof of Theorem 2.1.2, the subgroup G(P∞) of G consists of automorphisms of the

form

σ(x) = aq+1x+ abqy + c σ(y) = ay + b σ(z) = dz, (2.62)

where a ∈ F∗q2 , b ∈ Fq2 , cq+c = bq+1, d
qn+1
q+1 = a. We also know, by Lemma 2.2.5, that

the elements in the automorphism group A =< A(R∞), w > of H can be extended

to C for n = 3. Let Â denote the set of all these extensions. The following is our

main result.
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Theorem 2.2.1. (i) For n ≥ 5, we have G = G(P∞).

(ii) For n = 3, we have G = Â.

Proof. (i) By Remark 2.2.1 and Lemma 2.2.4, any automorphism σ ∈ G must map

P∞ to itself. So, G = G(P∞).

(ii) Consider the �xed �elds of G and its subgroup Gal(C/K(z)) in C/K, which are

CG and K(z), respectively. Places Pab0 ∈ PC (with a ∈ Fq2) lie over (z = 0) ∈ PK(z).

Moreover, The involution ŵ maps P000 to P∞. Since C/CG is Galois, places in the

set S = {Pab0 | a ∈ Fq2} ∪ {P∞} lie over some place Q ∈ PCG . Furthermore, there is

no other place in C which lie over Q by Lemma 2.2.6. Hence, we have

|G| = |G(P∞)|(q3 + 1) = |Â| (2.63)

This completes the proof.
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CHAPTER 3

SOME SUBFIELDS OF C

In this chapter, we will describe some subgroups of the automorphism group G of C

and �nd the genera of the �xed �elds corresponding to these subgroups. For n ≥ 5,

the automorphism group of C is exactly the group G(P∞) by Theorem 2.2.1. So, we

will concentrate on the subgroups of G(P∞). Note that a large class of sub�elds of

C for n = 3 was found in [4].

3.1 Preliminaries

Let U be a subgroup of G(P∞), and CU the �xed �eld corresponding to U . In

this section, we will describe the computation of the genus of CU . We start with

investigating the di�erent exponents and rami�cation indices of the places in the

extension C/CG(P∞). Consider, as before, the following set of places in PC:

S = {Pab0 | a ∈ Fq2} ∪ {P∞}. (3.1)

For the element

t =
zq

n−3

x
, (3.2)

we have

vP∞(t) = −qn−3q3 − (−qn − 1) = 1 (3.3)

by (2.9). Thus, t is a prime element for P∞. If Q is the place lying below P∞, then

by Theorem 1.1.1, we have

d(P∞|Q) =
∑

id6=σ∈G

vP∞(σ(t)− t). (3.4)
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For the summands, we have

vP∞(σ(t)− t) = vP∞

(
(dz)q

n−3

aq+1x+ abqy + c
− zq

n−3

x

)

= vP∞

(
zq

n−3
(dq

n−3
x− aq+1x− abqy − c)

x(aq+1x+ abqy + c)

)
= vP∞(zq

n−3

) + vP∞(dq
n−3

x− aq+1x− abqy − c)− vP∞(x)

−vP∞(aq+1x+ abqy + c)

= −qn + vP∞(dq
n−3

x− aq+1x− abqy − c) + (qn + 1) + (qn + 1),

where a ∈ F∗q2 , b ∈ Fq2 , cq + c = bq+1, d
qn+1
q+1 = a. So, this value depends on

vP∞

(
x(dq

n−3 − aq+1)− abqy − c
)
. If dq

n−3 6= aq+1, then the valuation is −(qn + 1).

If dq
n−3

= aq+1, then we also have dq
n−3

= dq
n+1, which yields

dq
n−qn−3+1 = 1. (3.5)

Note that qn− qn−3 + 1 - q2n− 1 = |F∗q2n|. Hence d = 1, in which case a = 1 as well.

So, for a = d = 1, we have

vP∞(dq
n−3

x− aq+1x− abqy − c) = vP∞(−abqy − c) =

 −
qn+1
q+1

q, b 6= 0

0, b = 0.

Hence,

vP∞(σ(t)− t) =


qn+1
q+1

+ 1, a = d = 1, b 6= 0

qn + 2, a = d = 1, b = 0

1, else.

(3.6)

Lemma 3.1.1. The places in S are the only rami�ed places of C in the extension

C/CG(P∞) with

e(P∞) = (q2 − 1)q3 q
n + 1

q + 1
(3.7)

d(P∞) =
(q5 + q2 − q − 1)(qn + 1)

q + 1
− 1 (3.8)

e(Pab0) = (q − 1)(qn + 1), d(Pab0) = (q − 1)(qn + 1)− 1. (3.9)

Proof. Note thatG(P∞) is the decomposition group of P∞ in the extension C/CG(P∞).

Since P∞ is rational we have f(P∞) = 1 in C/CG(P∞). Hence, we have (cf. Eqn.

(1.11))

e(P∞) = |G(P∞)| = (q2 − 1)q3 q
n + 1

q + 1
. (3.10)
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By (3.4) and (3.6), we have

d(P∞) = (q2 − 1)q

(
qn + 1

q + 1
+ 1

)
+ (q − 1)(qn + 2)

+

(
(q2 − 1)q3 q

n + 1

q + 1
− (q3 − 1)− 1

)
=

qn + 1

q + 1

(
(q3 − q) + (q − 1)(q + 1) + (q5 − q3)

)
+ (q3 − q) + (q − 1)− q3

=
qn + 1

q + 1
(q5 + q2 − q − 1)− 1.

In the extension H/HA(R∞), the set of rami�ed places of H apart from R∞ is

T = {Rab | a ∈ Fq2} (see [7, Page 149]). (3.11)

Note that [H : HA(R∞)] = A(R∞) = q3(q2 − 1). There are q3 places of the form

(3.11) in H with f(Rab) = 1. Hence,

q3(q2 − 1) = q3 · e(Rab)

and we have

e(Rab) = q2 − 1.

Recall that the set of all rami�ed rational places of C, except for P∞, in C/H is

{Pab0 | a ∈ Fq2}. The places of H in T are exactly the places lying below this set

(see Figures 1.3 and 1.4).

Since

[C : CG(P∞)] = |G(P∞)| = q3(q2 − 1)
qn + 1

q + 1

and

[C : H].[H : HA(R∞)] =
qn + 1

q + 1
· q3(q2 − 1),

we have CG(P∞) = HA(R∞). Hence,

e(Pab0) =
qn + 1

q + 1
(q2 − 1). (3.12)

Since the rami�cation is tame, we immediately obtain the di�erent exponent. Using

Eqn. (1.44), which de�nes C over K(x), we see that a nonrational place of C does

not ramify in C/H. By [7, Page 149], the places {Rab | a ∈ Fq2} are the only

rami�ed places in H/HA(R∞). Hence, a higher degree place in C cannot ramify in

C/CG(P∞).
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We will associate each automorphism in G(P∞) given by (2.62) with a quadruple

[a, b, c, d]. Then

G(P∞) = {[a, b, c, d] | a ∈ F∗q2 , b ∈ Fq2 , cq + c = bq+1, d
qn+1
q+1 = a}. (3.13)

The group structure of G(P∞) is as follows:

[a1, b1, c1, d1].[a2, b2, c2, d2] = [a1a2, a2b1 + b2, a
q+1
2 c1 + a2b

q
2b1 + c2, d1d2] (3.14)

id = [1, 0, 0, 1] (3.15)

[a, b, c, d]−1 = [a−1,−a−1b, a−(q+1)cq, d−1] (3.16)

By Lemma 2.2.1, the subgroup Gal(C/K(z)) of G(P∞) has order q3. Since G1(P∞)

is normal in G(P∞) with order relatively prime to q (cf. Lemma 1.1.3), we have

|G1(P∞)| = q3 as well. Uniqueness of G1(P∞) implies that

G1(P∞) = Gal(C/K(z)) = {[1, b, c, 1]|b ∈ Fq2 , bq+1 = cq + c}. (3.17)

Our next goal is to investigate C/CU for a subgroup U of G(P∞). If |U | = pum with

p - m, U has a p-Sylow subgroup Ũ of order pu. Since G1(P∞) is the unique p-Sylow

subgroup of G(P∞), Ũ is also contained in G1(P∞). Hence,

U ∩G1(P∞) = Ũ . (3.18)

Moreover, if U has another p-Sylow subgroup U
′
, then by the same argument U

′
is

contained in G1(P∞). But, this would imply that |U ∩ G1(P∞)| > pu, which is a

contradiction. We �x the following notation.

VU = {b ∈ Fq2 | there is c ∈ Fq2 such that [1, b, c, 1] ∈ U}.

WU = {c ∈ Fq2 | [1, 0, c, 1] ∈ U}.

T = {Rab ∈ PH | a ∈ Fq2}

L = U ∩Gal(C/H).

J = {σ ∈ A(R∞) | σ = σ̂|H for some σ̂ ∈ U}.
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Note that VU is the image of the homomorphism

U ∩G1(P∞) → K

[1, b, c, 1] 7→ b.

Moreover, WU is in one-to-one correspondence with the kernel of this homomor-

phism. Hence, we have

| U |= mpu, | VU |= pv, | WU |= pw with u = v + w for some v and w. (3.19)

We now apply Hurwitz genus formula to the extension C/CU . Since all rami�ed

places of C in the extension C/CG(P∞) are in S, we have

(q − 1)(qn+1 + qn − q2)− 2 = mpu(2g(CU)− 2) + d(P∞) +
∑

P∈S,P 6=P∞

d(P ). (3.20)

By (3.4) and (3.6), we have

d(P∞) =
∑

id 6=σ̂∈U

vP∞(σ(t)− t)

= (pw − 1)(qn + 2) + (pv+w − pw)

(
qn + 1

q + 1
+ 1

)
+mpu − pu.(3.21)

Note that Pab0 ∈ S is tamely rami�ed in C/CU . Since f(Pab0) = 1, we have

p - e(Pab0) = |G(Pab0)|.

Hence, by Lemma 1.1.3, we have

G1(Pab0) = G2(Pab0) = · · · = {id}. (3.22)

Hence,∑
P∈S,P 6=P∞

d(P ) =
∑

P∈S,P 6=P∞

(|G(P )| − 1) =
∑

id6=σ̂∈U

|{P ∈ S | P 6= P∞, σ̂(P ) = P}|.

(3.23)

The following lemma describes how to calculate the expression in (3.23).

Lemma 3.1.2. Let U be a subgroup of G(P∞) as above. Then we have∑
id6=σ̂∈U

| P ∈ S | P 6= P∞, σ̂(P ) = P |= (|L|− 1)q3 + |L|
∑

id6=σ∈J

|{R ∈ T | σ(R) = R}|.

(3.24)
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Proof. Since L is a subgroup of U , we can write U as a disjoint union of its cosets

mod L as

U = L ∪

(
r−1⋃
i=1

Ai

)
, (3.25)

where r = |U |
|L| − 1 and Ai = σ̂iL = {σ̂iµ | µ ∈ L} for some σ̂i ∈ U \ L. For P ∈ S

and µ ∈ Gal(C/H) we have µ(P ) = P since the places in S are totally rami�ed in

C/H. So, we have∑
id6=σ̂∈L

|{P ∈ S | P 6= P∞, σ̂(P ) = P}| = (|L| − 1)(|S− 1|) = (|L| − 1)q3. (3.26)

Moreover, for σ̂ ∈ U \ L we have σ̂µ(P ) = σ̂(P ) = P if and only if σ̂|H(R) = R,

where R ∈ PH is the unique place lying below P . So, for each 1 ≤ i ≤ r − 1, we

have∑
σ̂∈Ai

|{P ∈ S | P 6= P∞, σ̂(P ) = P}| = |L| · |{R ∈ T | σ̂i|H(R) = R}|. (3.27)

This completes the proof.

We also have (see [7, Theorem 4.4])∑
id 6=σ∈J

| R ∈ T | σ(R) = R| = m̂pu + d(qpv − pu)− qpv, (3.28)

where |J | = m̂pu for some m̂ ≤ m and d = gcd(m̂, q + 1).

Some Subgroups of G(P∞): Recall that n ≥ 5 is an odd integer. We now

determine some subgroups U of G(P∞). In the literature [2, 7], certain subgroups

of A(R∞) in the automorphism group of H have been described. These subgroups

consist of automorphisms

[a, b, c] ∈ A(R∞) with aµ = 1 (3.29)

for some µ and possible extra conditions on b and c. Our aim is to extend such

subgroups J of A(R∞) to a subgroup Ĵ of G(P∞) in a way that

Ĵ ∩Gal(C/H) = {id}. (3.30)

Then, for a subgroup I of Gal(C/H), we will set

U := I × Ĵ . (3.31)
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In this case, U ∩Gal(C/H) ' I.

Consider a subgroup J ⊆ A(R∞) with gcd
(
µ, q

n+1
q+1

)
= 1 in (3.29). We de�ne

Ĵ := {[a, b, c, d] | d
qn+1
q+1 = a, dµ = 1}. (3.32)

Let R(µ) be the set of µth roots of unity in Fq2 . Then the homomorphism

R(µ) → R(µ)

ξ 7→ ξ
qn+1
q+1

is a bijection as gcd
(
µ, q

n+1
q+1

)
= 1. This implies that there is a unique d ∈ Fq2n

with d
qn+1
q+1 = a and dµ = 1. Hence, |Ĵ | = |J |. With our previous notation, we have

|L| = |I| and |U | = |L||J |. This will be the setting in Examples 3.2.1 through 3.2.9

in the next section.

3.2 Examples

Note that Gal(C/H) is a cyclic group of order qn+1
q+1

. Hence there exists a subgroup

I of Gal(C/H) of order `, for each divisor ` of qn+1
q+1

. Throughout, we assume that

q = pk.

Example 3.2.1. Let p be an odd prime and v, w be integers 0 ≤ v ≤ k − 1,

0 ≤ w ≤ k such that pk−v(pk−w−1)
2

is an integer. Then, by [7, Theorem 3.2] and its

proof there exists a subgroup J of A(R∞) of order pv+w. For C/CU , we have by

(3.21)

d(P∞) = (pw − 1)(qn + 2) + (pv+w − pw)(
qn + 1

q + 1
+ 1) + `pv+w − pv+w. (3.33)

By Lemma 3.1.2 and Eqn. (3.28), we also have∑
P∈S,P 6=P∞

d(P ) = (`− 1)q3. (3.34)

Now, we apply Hurwitz genus formula (cf. Eqn. (3.20)) to C/CU and obtain

(q − 1)(qn+1 + qn − q2)− 2 = (2g(CU)− 2)`pv+w + d(P∞) +
∑

P∈S,P 6=P∞

d(P ). (3.35)
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Then

qn+2 − qn − q3 + q2 − 2 = 2g(CU)`pv+w − `pv+w + pw + pwqn + pv+w q
n + 1

q + 1

−pw q
n + 1

q + 1
− qn − 2 + `q3 − q3.

So, we have

2g(CU)`pv+w = qn+2 + q2 − pwqn − pw − pv+w q
n + 1

q + 1
+ pw

qn + 1

q + 1
+ `q3 + `pv+w

= q2(qn + 1)− pw(qn + 1) +
qn + 1

q + 1
(pw − pv+w) + `(pv+w − q3)

=
qn + 1

q + 1
(q2(q + 1)− pw(q + 1) + pw − pv+w) + `(pv+w − q3)

=
qn + 1

q + 1
(q3 + q2 − pv+w − pwq) + `(pv+w − q3).

Hence,

g(CU) =

qn+1
q+1

(q3 + q2 − pv+w − pwq) + `(pv+w − q3)

2`pv+w
. (3.36)

Example 3.2.2. For p = 2 and for all v an w with 0 ≤ v ≤ w < k, there exists

a subgroup J of A(R∞) with order 2v+w by [7, Corollary 3.4.ii]. Calculations for

g(CU) are the same as in Example 3.2.1. We replace p by 2 and obtain

g(CU) =

qn+1
q+1

(q3 + q2 − 2v+w − 2wq) + `(2v+w − q3)

`2v+w+1
. (3.37)

Example 3.2.3. For p = 2 and for all integers v, w satisfying

w | k, w | v, v | 2k, 1 ≤ v ≤ k and
2v − 1

2w − 1
| (2k + 1), (3.38)

there is a subgroup J of A(R∞) of order 2v
′
+w for any v

′
with 0 ≤ v

′ ≤ v (see [7,

Corollary 3.4.i, Corollary 3.4.iii] and their proofs). In order to calculate g(CU), it is

su�cient to replace p and v in Example 3.2.1 by 2 and v
′
, respectively. We obtain

g(CU) =

qn+1
q+1

(q3 + q2 − 2v
′
+w − 2wq) + `(2v

′
+w − q3)

`2v
′+w+1

. (3.39)

Example 3.2.4. We assume that p 6= 2. Let s be the order of p in (Z/mZ)∗ and

r =

 order of p in (Z/m
2
Z)∗) if m is even

s if m is odd.
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Let m be a divisor of q − 1. Then, for every 0 ≤ v ≤ k with s | v, and for every

0 ≤ w ≤ k − 1 with r | w A(R∞) has a subgroup J of order mpv+w by [2, Theorem

1]. We have

d(P∞) = (pw− 1)(qn + 2) + (pv+w− pw)(
qn + 1

q + 1
+ 1) + (pv+w− pw) +m`pv+w− pv+w.

(3.40)

and ∑
P∈S,P 6=P∞

d(P ) = (`− 1)q3 + `(mpv+w + d(qpv − pv+w)− qpv), (3.41)

where d = gcd(m, q+ 1). Now, we apply Hurwitz genus formula to C/CU and obtain

qn+2 − qn − q3 + q2 − 2 = (2g(CU)− 2)m`pv+w +m`pv+w + `(dqpv − dpv+w − qpv)

+qnpw + 2pw − qn − 2 +
qn + 1

q + 1
(pv+w − pw) +m`pv+w

−pv+w.

We have

2g(CU)m`pv+w = qn(q2−pw)+(q2−pw)+
qn + 1

q + 1
(pw−pv+w)−`(q3+dqpv−dpv+w−qpv).

Hence,

g(CU) =
(qn + 1)(q2 − pw) + ( q

n+1
q+1

)(pw − pv+w)− `(q3 + dqpv − dpv+w − qpv)
2m`pv+w

.

(3.42)

Example 3.2.5. Let m ≥ 1, d ≥ 1 and 0 ≤ w ≤ k be integers satisfying:

(i) m | (q2 − 1) and d = gcd(m, q + 1)

(ii) Let s := min{r ≥ 1 | pr ≡ 1 mod (m/d)} an assume that s divides w.

Then, there exists a subgroup J of A(R∞) of order mpw by [7, Proposition 4.6] and

its proof. This subgroup consists of the elements in the form [a, 0, c] with am = 1.

Assume that gcd(m, q
n+1
q+1

) = 1. Computation of g(CU) is same as in Example 3.2.4

for v = 0 i.e.,

d(P∞) = (pw − 1)(qn + 2) +m`pw − pw (3.43)

and ∑
P∈S,P 6=P∞

d(P ) = (`− 1)q3 +mpw + dq − dpw − q, (3.44)

where d = gcd(m, q + 1). So, we have

g(CU) =
(qn + 1)(q2 − pw)− `(q3 + dq − dpw − q)

2`mpw
. (3.45)
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Example 3.2.6. We assume that p 6= 2. Let m be a divisor of (q2 − 1) with m not

dividing q− 1. Let s and r be the order of p in (Z/mZ)∗ and (Z/m
d
Z)∗, respectively.

Then, by [2, Theorem 2] there exists a subgroup J of A(R∞) of order mpv+w if the

following conditions hold:

(i) 0 ≤ v ≤ k, v | 2k, v - k and s - v

(ii) v
2
≤ w ≤ k and r | w.

By the same calculations as in Example 3.2.4, we have

g(CU) =
(qn + 1)(q2 − pw) + ( q

n+1
q+1

)(pw − pv+w)− `(q3 + dqpv − dpv+w − qpv)
2`mpv+w

,

(3.46)

where d = gcd(m, q + 1).

Example 3.2.7. For p = 2, let s | k and 0 ≤ h ≤ s. Then for each 1 ≤ v ≤ k − 1

with v = s+ h, and for each s ≤ w ≤ k − 1, there exists a subgroup J of A(R∞) of

order 2v+w when the value 2k−v−1(2k−w− 1) is an integer ([2, Theorem 4]). We have

g(CU) =

qn+1
q+1

(q3 + q2 − 2v+w − 2wq) + `(2v+w − q3)

`2v+w+1
. (3.47)

Example 3.2.8. Let k be even number such that 4 does not divide k. Let s be an

odd integer with s | k and 0 ≤ h ≤ s. Then, for each 1 ≤ v ≤ k − 1, such that

v = 2s + h, and for all 2s ≤ w ≤ k − 1 there exists a 2-subgroup J of A(R∞) of

order 2v+w when 2n−v−1(2n−w − 1) is an integer ([2, Theorem 5]). We have

g(CU) =

qn+1
q+1

(q3 + q2 − 2v+w − 2wq) + `(2v+w − q3)

`2v+w+1
. (3.48)

Example 3.2.9. Let k = 2et with e, t ∈ N and t ≥ 3 odd. For each divisor j of

t, let hj be the order of 2 in (Z/tZ)∗ and rj = Φ(j)
hj

where Φ is the Euler function.

Then for all 1 ≤ w ≤ k− 2 such that w = 2e
[
1 +

∑
j
t
6=1 ljhj

]
with 0 ≤ lj ≤ rj, there

exists a 2-subgroup of A(R∞) of order pv+w with v = w+ 1 ([2, Theorem 6]). Then

by the same calculations as in example 3.2.1 for p = 2 and v = w + 1, we have

g(CU) =

qn+1
q+1

(q3 + q2 − 22w+1 − 2wq) + `(22w+1 − q3)

`22w+2
. (3.49)

Remark 3.2.1. (i) For n = 3, genera of the sub�elds that we described in these

examples coincide with the genera of the sub�elds corresponding to the subgroups

of G(P∞) that were found in [4].

38



(ii) Our examples yield some new genera for the set M(q2) (cf. Eqn. (1.24)) which

are di�erent from those obtained in [2], [4] and [7]. Below, we list some of new

genera for q = 35, 210, 39. All of these numbers are obtained from Example 3.2.1.

q = 35 : 301, 963

q = 210 : 7656, 3572, 1530, 714, 1735, 1506, 702, 300, 140, 341, 743, 156, 72, 77, 35.

q = 39 : 11235, 78723, 19680, 24601, 2115, 528, 661, 144, 2808, 3511, 4131, 1032,

1291, 181, 291, 99, 31, 24.
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