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ABSTRACT

The past decade has withessed the developmenuacess of coarse-grained network
models of proteins for predicting many equilibriygroperties related to collective modes of
motion. Curiously, the results are usually robostdrds the different methodologies used for
constructing residue networks from knowledge of élkperimental coordinates. In the first
part of the thesis, we present a systematical sbiighetwork construction strategies, and we
study their effect on the predicted properties giginisotropic Network Model (ANM). The
analysis is based on the radial distribution fusrctand the spectral dimensions of a large set
of proteins as well as a newly defined quantitye #ngular distribution function. In the
second part of the study, we apply ANM to the welbxed atomistic coordinates of a 32-
chain C12&:is-1,4-polybutadiene system to test the extent ofiegiplity of the method. 15-
60 ns long molecular dynamics (MD) simulations aeeried out for a wide variety of
temperatures and pressures. The mean-square fiootaof the central carbon atoms
obtained by applying ANM on a few snapshots arenshto be in good agreement with
values from full MD simulations. This leads to pidaverage flexibility values of the
system under different conditions. We extend théhodology to approximate the virial of
the system. In the third part, to understand theoolasters’ behavior and influence on the
polymer’s viscoelastic and thermodynamic propertéiferent nanoclusters having 10 to
150 atoms are embedded in thie1,4-polybutadiene matrix. First, the diffusion tfaxent
and zero shear viscosity are calculated from thmeulsitions and compared with the
experimental results obtained with rotational veoweter. In addition, correlation times of
C-H bond vectors of simulation at four differentnigeratures were compared with the C-
NMR experiments oftis-1,4-polybutadiene with highis-content polybutadiene (%98s,
%3 trans and %d4vinyl). The agreement between simulation results andrarpnts confirm
that the united atom force field used in the sirmokes well-describes the dynamics of the
real system. It is also possible to manipulate raeidal properties by tuning the interaction
strength of the nanoclusters with the chains. Feopractical point of view, we can assume
that bulk modulus is not much affected by the ifze¢he nanocluster, whereas it linearly
increases as the interaction strength changes fmonmal to strong. Another
thermodynamical quantity, glass transition tempgea(l) increases from ~176 K to ~184 K
as the nanoclusters are introduced to the polymat. M, decreases to ~178 K as their

interaction strength is made much stronger tharstdwedard value.



OZET

Gectgimiz on yilda toplu hareket modlar ile ilgili pegok denge 6zelini tahmin
etmek icin proteinlerde kaba-6lgekligamodelleri geltirilip basarih  bir sekilde
uygulanmgtir. Deneysel kordinat bilgilerinderglar olusturularak kullanilan farkh yontemler
genellikle iyi sonuclar vermektedir. Tezin ilk bdhiinde, & orgiuleme stratejilerinin
sistematik bir catmasi ve Anizotropik & Modeli (AAM) kullanilarak tahmin edilen
Ozellikler Gzerindeki etkisi againldi. Analizler ¢cok sayidaki proteinin ortak ngad dasilim
fonksiyonu, bu tezde tanimlanan acisal g fonksiyonu ve spektral boyuta
dayanmaktadir. Camanin ikinci boliminde ise, 32-zincirli 128 carbatomundan olgan
cis-1,4-polibutadien eriyik sisteminin dengesktarindaki atomlarinin koordinatlarina AAM
uygulanmgtir ve yontemin uygulanabiligh test edilmgtir. 15-60 ns uzunigundaki molekul
dinamik (MD) benzetimleri gegibir sicaklik ve basin¢ arginda yapilmgtir. Bir ka¢ anlik
gorantiye AAM uygulanarak elde edilen merkezi karbatomlarinin ortalama kare
dalgalanmalarinin MD benzetim gkxleri ile uyumluluk igerisinde oldiw gdsterilmgtir. Bu
degerler, sistemin farkli kallar altinda ortalama esneklikleri tahmin etmekinic
kullaniimistir. Ayrica, uygulanan metod sistemin yakkaviral deserlerini elde etmek icin
geniletilmistir. Uctinct bolimde, nanopargaciklarin polimeriskaielastik ve termodinamik
Ozellikleri Gzerindeki davragive etkisini anlamak igin, 10 ila 150 atomdan salu farkl
buyuklukteki nanoparcaciklais-1,4-polibltadien matrisi icerisinde galmistir. Ilk olarak,
diftizyon katsayisi ve sifir kayma viskozitesi bééme sonuclarindan hesaplagme dénme
viskozimetre ile elde edilen deney sonuclari ileskastiriimistir. Buna ek olarak, dort farkh
sicaklikta hesaplanan C-H gavektorlerinin  korelasyonlari  yuksekcis yapidaki
polibitadienden elde edilgiiC-NMR deneyleri ile kanlastiriimistir. Benzetim sonuclar ve
deneyler arasinda uyumluluk kullanilan hjike atom kuvvet alaninin gercek sistem
dinamiklerini iyi sekilde betimlediini onaylamaktadir. Zincirler ile nanoparcaciklar
arasindaki etkilgm gucuna dgistirerek polimerin mekanik 6zelliklerini de gatirmek
mumkuandur. Esneklik modull etkgieni normalden c¢ok gucliye dstirdikce dgrusal
olarak artmakta, oysa ki, pratik anlamda nanopakcdmyutundan etkilenmemektedir.
Incelenen dier bir termodinamik Ozellik olan camsi gegicaklgl ise nanoparcgaciklar
sisteme entegre edilince ~176 K'den ~ 184 K'esagtistermekte, ancak etkjlen standart
degerin ¢ok Uzerindeki gucli gerlerde uygulaninca tekrar nanopargaciksiz durumdin
polimer deerine yakin (~ 178 K) dinektedir.
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1. INTRODUCTION

Soft materials science, focusing on such versatiaterials as proteins,
polymers, self-assembled micellar structures, cemplfluids, liquid crystals,
elastomers, soft ferroelectric materials, foamsl gels, is an active area of scientific
research and technological applications. Soft mait@ys a role in a wide variety of
important processes and applications, as well aalliiving systems. Due to their
complex nature, understanding and controlling tekalior of soft materials through
the relationship between their structures, dynamésl function requires an
interdisciplinary approach using theoretical modetsnplementing computational and
experimental findings. The ultimate goal is to emgr and design materials with
specific functions having the desired macroscopécimanical, thermal and dynamical
properties by selectively manipulating microscogarameters such as chemical
composition, or choice of interacting species. Bach such goals, studying the
equilibrium and dynamical properties of proteinattprovide excellent models for self-
assembled polymeric materials proves useful.

The physical properties of polymers starting froasib structure information
was pioneered by Flory and others in the late 194QsDespite the limitations of
Flory-Huggins theory for the thermodynamics of naseolecules, such as its use of a
lattice model, random mixing, and incompressibibtysumptions, it is still useful in
understanding and predicting the qualitative bebrawef polymer solutions, melts and
mixtures. Recently other theoretical methods, idiclg scaling arguments [2] and
renormalization group theory [3], enabled a morerdhgh understanding of the
polymer properties and behavior on larger lengthlesc [4]. According to these
theories, many important properties of polymeristeyns are not universal, but rather
depend on the details of local packing and to fhexisic architecture of the polymer.
For example, the dynamics of linear polymer chamghe melt depends strongly on
chain length: for short, unentangled chains, theadyics is determined by a balance of

viscous and entropic forces; for long chains, togmal constraints are more dominant

[1].

In addition to theoretical and experimental develepts, classical atomistic

simulations, in particular molecular dynamics (M8&inulations [5], have become a
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common tool for investigating the properties ofymoér and biomolecular systems in
the last decades. Because of their remarkableesatgim resolution, femtosecond time
scales, and more realistic energetic environmerid, $#nulations assist experimental
techniques by providing insight into observed psses [6]. MD simulations, basically
an integration of the classical equations of maqtigenerating the trajectory of
configuration space in time, can provide detailefbrimation on the behavior at the
atomistic level, but are generally limited to timeales up to the order of hundreds of
nanoseconds, which is not enough to explain mateyasting phenomena occurring on
the order of seconds. The technique of dissipapiagicle dynamics (DPD) was
introduced by Hoogerbrugge and Koelmann in ordeffiltothe gap between the
atomistic simulation methods and continuum fluiddels without applying lattice
models [7]. DPD uses group of atoms called “beawsVing via classical equations of
motion, interacting by soft potentials and prededircollision rules. The momentum of
the interacting blocks is conserved providing arbggnamic solution for the system.
After the formulation of the underlying physics ngpistatistical mechanics and mapping
bead interactions onto Flory-Huggins mean fieldotlyeof polymers by Espanol and
Warren [8], many polymeric systems such as polymelts [9] and polymer chains
[10, 11], block copolymers [12, 13], and randomstaers [14, 15] have been
investigated by DPD. The results were found to tegood agreement with other
theories and experiments, and provides a routgdaerating initial morphologies for

further use in multi-scale approaches [16].

Alternative coarse-grained models have been degdlap study properties of
proteins. Globular proteins show diversified stames and sizes, yet, it has been
claimed that they display a nearly random packih@mino acids with strong local
symmetry on the one hand [17], and that they ayelag structures that occupy specific
lattice sites, on the other [18]. It was later shaat this classification depends on the
property one investigates, and that proteins dyspéanall-world” properties, where
highly ordered structures are altered with few addal links [19]. Furthermore,
packing density of proteins scales uniformly witkeit size [20, 21] which causes them

to show similar vibrational spectral characterstic those of solids [22].

Dynamical studies of folded proteins draw muchrdita to their importance in
relating the structure of the proteins to theircsie function and collective behavior.
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Protein dynamics is generally both anisotropic amalective. Internal motional

anisotropy is a consequence of the general lackyoimetry in the local atomic

environment, while the collectivity is mainly cadsby the dense packing of proteins
[23].

Theoretical studies on fluctuations and collectivetions of proteins are based
on either molecular dynamics (MD) simulations ormal mode analysis (NMA).
Since, in molecular simulations with conventionabmaic models and potentials,
computational effort is demanding for larger progewith more than a few hundreds of
residues, coarse grained protein models with sfreglgoverning potentials have been
employed. Of these, Anisotropic Network Model (ANM)particular, has shown great
success in the description of the residue flucbmgtiand the collective behavior of
proteins [24-26].

While heterogeneity is ever-present in proteinglilgg to the specific functions
carried-out in the cell environment, it may be ¢edan polymers in a plethora of ways.
These include polymer mixtures, copolymers, usinifer@nt solvents as well as
including nanofillers to obtain various propert@sinterest. In this work, we shall be
mainly interested in the latter because it posespan problem. While it is clear that
the interfacial region between the nanofiller ahd polymeric chains has a significant
impact on the properties of nanocomposites, queiviet understanding of the structure
and morphology of the polymer interacting with nsecelde surfaces is still developing.
Together with dynamical and mechanical analysigoldgy is extensively used in
nanoscale composites to probe the extent, stryctune properties of the interfacial
region [27] and it has been found that the extedt@operties of the interfacial region
depend on the nanofiller/matrix interactions. Insthvork, the effect of nanofiller
interaction strength as well as nanofiller size rmachanical and thermodynamical

properties is systematically studied for the finste in the literature.

In this thesis, we shall first study the extentpoédictions of elastic network
models on the well-studied protein systems. Wel shah seek to understand the extent
of applicability of ANM to oligomeric systems, exeliiied by polybutadiene melts.
We shall then use nanoclusters to probe the livisapelastic properties of the melts.
Finally, we shall use these nanoprobes to manipytabperties of polymers. These
include mechanical strength, which is directly tethto force constants derived by
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ANM, as well as the glass transition temperatureictvis shown to be both upshifted

and restored by playing with van der Waals (vdvw@riaction strength.

1.1. Residue Network Construction and Predictions of Estic Network Model

NMA using a single parameter harmonic potentiall [@&cessfully predicts the
large amplitude motions of proteins in the natiteges [29]. Within the framework of
this model, proteins are modeled as elastic netsvatkose nodes are residues linked by
inter-residue potentials that stabilize the foldedformation. The residues are assumed
to undergo Gaussian-distributed fluctuations alibatr native positions. The springs
connecting each node to all other neighboring nedesf equal strength, and only the
atom pairs within a cut-off distance are considewdthout making a distinction
between different types of residues. This modeh s simplicity, speed of calculation
and relying mostly on geometry and mass distributbthe protein, demonstrates that
a single-parameter model can reproduce complex atdmal properties of
macromolecular systems. By separating different pmments of normal modes, e.g.
collective (low-frequency) motions, the nature afamformational change, for example

due to the binding of a ligand, can also be anayheroughly [30].

Following the uniform harmonic potential introducedginally by Tirion [31],
residue level application of elastic network modpéssed the way for the concept
Gaussian Network Model (GNM), which is based onéhergy balance of the system
at the energy minimum, and is a purely thermodyoatreatment [29, 32]. Elastic
models based on the force balance around each[B8Hed to the development of the
ANM [24]. In the past few years, variant methodsGNXIM and ANM [34, 35] have
been introduced. The applications of these modelsidany proteins show successful
results in terms of predicting the collective babawf proteins. Despite numerous
applications comparing the theoretical and expemtaiefindings on a case-by-case
basis [36-40], only a few attempted a statisticabeasment of the models. A
methodology that evaluates the number of modes ssacg to map a given
conformational change from the degree of accurdtgioed by the inclusion of a given
number of modes, showed the results to be protepemtdent [41]. In another study
where 170 pairs of structures were systematicallglysed, it was shown that the
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success of coarse-grained elastic network modejshmamproved by recognizing the

rigidity of some residue clusters [42].

To date, the structures that form the basis ofrteevork models have been
generated from certain rules of thumb. In GNM, wahtoes not include directionality
and is therefore a one-dimensional model, the €ostelation shell between the, Gr
Cs atoms of the residues is used as the rule forctmmectedness of a given pair of
residues (ca. 6.7 — 7.0 A) [29]. In the three-digienal ANM, values in the range of 8
— 14 A are found in the literature based on theument that (i) the eigenvalue
distributions obtained from the modal decompositoa similar to those obtained from
the full-atom NMA description of proteins, or (ithese provide atomic fluctuation
profiles that display the largest correlation witile experimental B-factors. Voronoi
tessalation of the space defined by the centrahallys C, or G) atom into non-
intersecting polyhedra constitute another route fteees one from defining a cut-off
distance [43]. Atom-based network construction apphes have also been used. A
review of the variety of network construction mete@ublished by Csermedy al. is
also available in the literature [44].

In this thesis, we use a systematic approach ange lset of globular proteins with
varying architectures and sizes to find a basisMuoy the network models work well to
define certain properties of the system. This ezmbis to assess the various residue-
based approaches used in the construction of tfweories. We define a direction based
radial distribution function for this purpose, asdow that the orientation of newly
added links samples a spherically symmetric caolacbf directions beyond a given
distance of interacting residues. We show thatnikigvork construction is free of the
cut-off distance problem once a certain baselinestiold is accessed, if one is
interested in the collective motions and the flatian patterns of the residues.
Implications for the limitations of the ANM methddgy are also discussed due to

functionality-related predictions based on the ngbsbal motions.
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1.2. Properties of Polybutadiene Melts Probed by Nanochkters

Polymer nanocomposites are polymer matrix comp®gitevhich the fillers are
less than 100 nm in at least one dimension. Thesapasites have exhibited
extraordinary properties such as increasing th&ielenoduli by an order of magnitude
while maintaining glass transtion temperature [48]defining feature of polymer
nanocomposites is that the small size of the §lllyads to a dramatic increase in
interfacial area as compared to traditional contpssiThis interfacial area creates a
significant volume fraction of interfacial polymevith properties different from the
bulk polymer even at low loadings. The propertiesl atructure of this interfacial
region are not yet known quantitatively, presenanchallenge both for controlling and

predicting the properties of polymer nanocomposites

One of the challenges in developing polymer nangusites for advanced
technology applications is a limited ability to giet the properties. While the
techniques exist to tailor the surface chemistrg amucture of nanoparticle surfaces
[46], the impact of the nanoscale filler surface the morphology, dynamics, and
properties of the surrounding polymer chains canbet quantitatively predicted.
Therefore, the properties of a significant volumeefion of the polymer, the interfacial
polymer, are unknown, making it difficult to pretlibulk properties. One of the
challenging goals in nanocomposite science is by funderstand the impact of the
interfacial region on both composite properties dadhave the ability to model

behavior of nanocomposites

The structure and properties of the interfacialaegre not only different from
the bulk, but are also critical in controlling pespes of the overall nanocomposite.
Since the interfacial region properties must plagignificant role in increasing the
composite modulus, for amorphous polymer matrigess hypothesized that the
interfacial region in the nanotube composites isegion of polymer with reduced
mobility and associated higher stiffness [47, 48].

In amorphous polymer matrices, it is qualitativalyderstood that an attractive
interface will decrease the mobility of the polynobiains and a repulsive interface will

increase the mobility [49]. One method for probitings change in mobility of the
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polymer chains in the interfacial region is to measthe glass transition temperature,
using either differential scanning calorimetry beology typically dynamic mechanical
analysis [50, 51]. Studies using these methods shatithe glass transition temperature
of a polymer nanocomposite can be raised or lowettdthe addition of nanoparticles

with attractive and repulsive interaction with thatrix, respectively [52, 53].

Recent experiments have helped demonstrate thasoapic additives can alter
the properties of polymeric materials in severgbamiant ways. The elastic constants,
the toughness, and the modulus at frequencies @kewnd of the plateau modulus of
the composite can be very different from those hed pure polymer [27, 54, 55].
Depending on the nature of the interactions betwkemanoparticles and the polymer
matrix, the plateau modulus can either incr¢&4¢or decrease [27] suggesting that the
addition of these particles modifies the properties the polymer matrix in

unanticipated ways.

Although experimental work [56, 57] points to auetion in molecular mobility
in the region of the interface, little is known abthe origin of this immobilization. It is
experimentally challenging to generate equilibrateell-dispersed homogeneous
nanoparticle/polymer samples, rendering it diffictd establish general principles
regarding the manner in which nanopatrticles affedymer properties. So, it is more
efficient to undertake a study of a nanocompositstesn using a molecular modeling
approach. The structure and dynamics of the natiolgapolymer matrix interface
have only recently started to become studied usirodp simulation techniques [58-61].
Bitsanis et al. [62] give a review of some of thely work in the field and describe
their MD simulations of liquid systems of relatiyeshort freely jointed chains in the
vicinity of a plain wall. Beside these MD simulai® Binder and co-workers have used
dynamic MC simulations using the bond-fluctuatiaitite model to study similar

systems using an even more coarse-grained appje@.cé4].

Until now, several hypotheses have been proposedratmnalize the
reinforcement of polymeric materials by nanopagsciThese include interaction zone
arguments, originally put forth to explain experirtad result§65] and, more recently,
supported by molecular simulations [66)ich arguments propose that a layer near the
surface of the particles exhibits dramatically eliéint properties than those of the bulk
material [67, 68] .Some experimental studies have speculated thatdénsity of
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entanglements near the surfaces of the nanopartecl@gher than in the bulk [274nd

others have suggested that long polymer chainswsap around several particles,
forming a “bridge network” where the particles ftino as physical cross-links [54].
The evidence in support of such mechanisms has ibe@ect, or has been extracted

from simulations of unentangled chain molecules.

In this thesis results are presented of a systemsaidy of a model polymer matrix
reinforced by a nanoparticle. The nanoparticle a®leted with atomistic detail which
allows us to determine the dynamical and mechamcaperties as well as glass
transition temperature of the bulk reinforcing pha® make connections with
micromechanical modeling. The nanoparticles th&ract via vdw interactions with
the chains are incorporated and the effect of acteyn strength is varied. Furthermore,
the effect of the size of the nanoparticle as aelthain length is studied. We note that
the majority of the systems studied hee are belbgv éntanglement limit of the

polymers.

1.3. General Approach

The systems of interest in the present study avteims, polymeric melts pure as
well as having embeded nanoparticles. Our intenesproteins stems from our
experience in coarse-graining these self-organimdral molecular structures. Since
we wish to extend this knowledge to synthetic systewe study the general properties
of oligomers/polymers. Finally, we will combine tkerowledge-base obtained in these
to predict the properties of stnthetic structules incorporate spherical nanoparticles

of various size and interaction strength.

For each system, we will first construct the stiuetin the way suitable to the
simulation technique that will be used: MD or ANM/e will then compare the radial
distribution function (RDF) profiles obtained by each approach. We will thetraet
macroscopic properties of interest.
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1.3.1. System structure construction

For each system different structure constructiol b applied. For proteins, the

coordinates of the backbone geometry will be oleifrom the x-ray data that is

available in Protein Data Bank (PDB) [69]. In these of polymers, the equilibriated

coordinates obtained from MD simulations will beedsfollowing an appropriate

amorphous cell construction procedure (in Matei&lsdio Program) [70]. To construct

systems and to check the consistency of their gépeoperties the following steps will

be followed:

Construction of amorphous system with polymersgotigrs of different molecular

weight (MW), type, temperature, and other environtakconditions of interest.
Obtaining pair correlation functiog(r)

Obtaining thermodynamical properties such as clergtc ratio or atomic

fluctuations to compare with known experimentalresl.

1.3.2. Network construction and related microscopic propeties

b.

The steps followed in network construcion are devics:

Obtaining appropriate cutoff distance that providdé® same neighborhood
information as the RDF.

Applying ANM to the equilibriated backbone geometwy the system that is

obtained from the constructed network .

Obtaining dynamical and static physical propersash as B-factors, vibrational
frequency distribution, total energy and partitfanction of the network.
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1.3.3. Extraction of Properties

We calculate the following properties to gain are@ understanding of the

microscopic effect of local heterogeneities to obables:

a. Macroscopically measurable thermal, mechanical stnactural properties such as
heat capacity, isothermal compressibility)( elastic modulus, intrinsic viscosity)(

glass transition temperaturgy), radius of gyrationRy) etc.

b. Kinetic properties such as diffusion coefficient time macroscopic scale, and

various relaxation times of chain units on the wscopic scale.

This protocol is applied for different sets of imguarameters such as density,
polymer type and length (MW), in order to obtaintpat macroscopic (material)

properties and how thay are related to these ipgtameters.
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2. THEORETICAL BACKGROUND AND METHODS

2.1.Theory
2.1.1. Radial and angular distribution functions

The radial distribution function (RDFY(r), is a measure of the correlation
between the locations of particles within a systeneasured as the probability of
finding another particle at a distanag,from a chosen particle, normalized by the

volume element and computed through the relation:

_ 1 N N
o) N;Z‘ ~(R=R)) for i, =R -R 2.1)

where N is the number of particle®; is the position vector of, particle ando is

Kronecker delta function.

The RDF is a useful tool to describe the structofea molecular system,
particularly those of liquids. In an ordered soRRDF has an infinite number of sharp
peaks whose separations and heights are charéctefighe lattice structure. RDF can
be deduced experimentally from X-ray or neutrorirddtion studies, thus providing a

direct comparison between experiment and simulation

We are not only interested in the number distrinutf particles around a given
node, but also concentrate on the link structure Weéat all neighbors of a node
equivalently, and we find that agis increased with the addition of new neighbors to
each node, the resultant vector, @ node due to all its neighbor$, converges to a

certain location:
Q; = XA Ry (2.2)
whereR;; is the unit vector connecting residue paiesdj, andA;; are the elements of
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the adjacency matrix. An example is shown on aégiduea-helical protein (PDB
code: lenh) in figure 2.1, where the length of @ vector is proportional to. and
demonstrate that at small the neighbors of a node are at distinct locatiovieereas
with increasing, the new nodes are added in a spherically symeaémanner so that
the resultant vectorQ;, is only slightly modified. The resultant vectoi®m the
Voronoi tessalated network structure is also shdimnyellow) and is found to be

different from the converged ones.

interior

exterior

(b)

Figure 2.1.(a) The negative of the resultant vectors actmg¢he nodes;-Q;, exemplified by a
54 residue protein (PDB code: 1enh). The lengtiaoh red vector is proportional to the cut-off
distance used in network constructiof the shortest at 7 A and the longest at 15 A. The
yellow vector is the resultant obtained from thewmeks obtained from the Voronoi
tessalations. (b) Part of the helix marked by thease in (a) is magnified; “exterior” refers to
the solvent contacting part of the helix, and “iiftt¢ marks the side facing the core of the

protein.

To quantify this behavior, we define the angulastrithution function (ADF),
which is the distribution of angular changep, of the resultant vector obtained from

the contacting residues at a distanter+dr to the reference residue:
cosAg;(r) = (ZinjRij)r : (ZinjRij)r+dr = Qilr * Qilr+ar (2.3)

wheredr is a small perturbation on the distamce
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2.1.2. From g(r) to thermodynamic relations

Importance of the radial distribution function carfeom the fact that when the
total potential energy of thd-body is assumed to be pair-wise additive,

Uy (R, fy) = Zu(rij)
<] (2.4)

where the summation runs over all pairs of padide the system, then all the

thermodynamic functions of the system can be relaig(r) [71].
In order to calculate all thermodynamic propertiese has to have three
equations of state. In terms gfr), the most convenient triplet is that of energy,

pressure and chemical potential.

The total energy is the sum of mean kinetic andmpedential energy:

E
Nk T

_3,.° Iu(r)g(r,p,T)4ﬂr2dr
2 2K,TY (25)

wherep is the densityN/V) andkg is the Boltzmann constant. The pressure is rekated

g(r) through:

2

p r 2
- ru'(r)g(r)4mr “dr
ko T 6kBT£ (r)g(r)

(2.6)

The last thermodynamic property, which is non-meats, is the chemical
potential. Introducing a coupling paramefewhich ranges from O to 1, to replace the
interaction of the central molecule (1) with ﬁﬁ‘e*nolecule of the system, total potential

energy may be modified to:

UGinf© =Y £ulr) + T u,)
j=2 2<i<j<N (2.7)
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The chemical potential finally will have the form:

1l o

H =lnpt® + pjju(r)g(r;{)4nr2drdf

kBT kBTO 0 (2
.8)

where 4 is a constant called the thermde Broglie wavelength, defined as
(h¥2zmksT)"2. Once these three equations of state are knowa,can in principle

obtain any thermodynamical property of interesbtigh the relevant relationship.

Thus, in order to compute any thermodynamic prgpeoim a knowledge of the
molecular distribution functions, one needs to kribe potential at a given point as a
function of distancey(r) and the coupling parametérFor mechanical properties, such
as the heat capacity or coefficient of thermal espen, the latter is not necessary.

2.1.3. Prediction of the effective intermolecular potentid u(r)

When we take the logarithm and then take the gnadwith respect to the position
of one of then molecules of both sides of the definition of ctaten function,
g" (rs,..rn) [71]:

0 g ) [Je™ Ou)dr,,.dry 2
Ing™(r.,..,ry) = =12.n
Iy II ePdr,,.dr, :

(2.9)

wheren is the number of particles in the interactiorbpdy) and-[0,U is the force

acting on moleculgdue to molecules fixed at positiof).., .

So the right hand side of the equation gives thamierce acting opaveraged
over the configurations of other particles. We iditus ong®(r,r»), since it may be
experimentally determined from x-ray or neutronfrdiftion and we can have this

information directly from the pair correlation furan g(r). The integration of this mean
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force over all otheN-2 particles approximates the intermolecular paaéni(r), when

the density of the system is sufficiently low.

J‘D Ing®(r,,r,) =Ing*(r,,r,) = u(r,r,) =u(r) (2.10)

wherer is relative distance between the particles (1)(@pd
2.1.4. Anisotropic network model as a coarse-grained meth

In ANM that was originally developed for proteiregach node is represented by
the a-carbon coordinates of the residues in a foldedeprp and the interactions
between them are considered to be due to harmastenfals. Nodes within the
predetermined cutoff distancg are coupled by elastic springs having a uniforncdo
constanty. Thus the overall potential of the molecule isegivby the sum of all

harmonic potentials among interacting nodes suah th

V=33 AR -R) (2.11)

i

Here A; is theijth element of the Kirchhoff matriX’ of inter-residue contacts.
This term is equal to 1 if the distance betweenesocandj, R, is smaller than the
cutoff distance r,, zero otherwise.R% is the equilibrium distance between
corresponding residues. For a networkNohodes, the Hessian matrix is38 x 3N
matrix formed by a number & super elementslj; . The off-diagonal super elements
of Hjj (i # ), obtained from the second derivative of the tpitential with respect to

node positions, are given by

X Xy XX, X,Z,

ij <ij
Hy =2 X, Y vz,
(Rj)
Zij Xij Zij Yij Zij Zij (212)
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where X;;, Y, andz; are the Cartesian components of the distance v&@fo The
pseudo-inverse dfl is the3N x 3N covariance matrixC, that can be expressed in terms

of the N-6 non-zero eigenvaluég and corresponding eigenvectoksof H as:
1
c =) —uu, (2.13)

Here, the eigenvectonsy represent the spatial dependence (direction) oh ea
modeA,. The smallest nonzero eigenvalgorresponding to the lowest frequency is
assumed to carry information on the most collectivernal modes of motion. The
residue fluctuations are predicted by the ANM fesiduei from the trace ofC;.
Theoretically, they are related to the B-factorsedained from x-ray crystallografic

data through the relation,

B, = (8m2ksT/3y) tr(Cy) (2.14)
wherekg is the Boltzmanionstant and is the absolute temperature. The value isf
determineda posteriori if experimental data are availablend does not affect the

fluctuation profile of residues.

2.2.Methods and Systems Studied

2.2.1. Molecular dynamics (MD) simulation

Molecular dynamics is the integration of classisgwton equations to generate
successive configurations of the system in time Ts&jectory of particles, defined by

their positions and velocities, may be obtainednftbe Newton’s second law:

mf =1, (2.15)

wheref;, m, andr; are force exerted on, mass and position of partjalespectively.
The force is the gradient of potential on particlerhich is defined as the sum over all

the effective interactions of all other particleshn:

30



;= _0U(r..ry)
or, (2.16)

The solution of equation 2.16 reproduces a trajgobd atomic coordinates and
velocities. In principal using this information, @mmay compute any property of
interest, for example the total mean energy byragithe kinetic and potential energies
of each particle’s position and velocity, averagovgr consecutive time intervals,

<E>= 1‘2 E
L5 (2.17)
Heat capacity may then be obtained by the relation:
<B’>-<E>?
q:#
ke (2.18)

In practice, one is limited by computational pow&ince the molecular
potentials have complex forms, there is no analtsolution of the equations of
motions. Numerical methods and algorithms are use@btain the trajectories of
particles. The potential energyl, can be separated into non-bonded and bonded

interactions:
U (rl"'rN ) = U bonded (rl"'rN ) + U non-bonded (rl"'rN ) (219)
Non-bonded potential is composed of 1-body, 2-bady higher body terms,

U non—-bonded (rl"'rN) = Zv(ri) + zzu(ri,r]‘ ) *. (220)

i j>i

however, for simplicity higher order terms are meggd and the pair potential is used.
The v(r) term represents the applied external potential, the two body interaction

potential, u(r;,r;) equals tou(r;). There are numerous experimental and theoretical
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models on how to define these potentials, Lenarskdopotential being the most

commonly used:

u, =52 (2.21)

r.12

In the presence of charges, a Columbic interaagBoalso added. For simplest
intramolecular interaction potential, vibrationabrmonic form can be used by
including summation over all bonds and bond bendingles in addition to a periodic

function of torsional angles:

1, 2 1 1 o
Uintra = & z ki(ry —=ry) += z kij'gk Gy — geq)z - z z kiﬁl @+cosmg,, —))
2 bonds 2 bond 2 torsional m

angles angles (2 . 22)

wherek;, kg, andk, are constants that depend on the identity of thms participating
in the interactionrs andfe, are the average bond length and anglendy depend on

the rotameric states of the torsional angle.

A reliable simulation force-field package has theedfication of the strength
parameters and constants and/or other additiomaistéhose have been obtained by
matching experimental and/or quantum mechanica, dad have been tested for a

wide variety of systems.

Using these potentials and current computers, oag simulate systems of 10
particles up to time scales of sub-microsecondssitmulations of oligomer/polymer
systems, different techniques that utilize coamsgring of the system have been
developed to predict properties of much larger esyst at long time scales that are
currently not accessible through MD.

2.2.2. Molecular modeling and simulation details for PBD nelts

Monodisperse 32 chainis-1,4-polybutadiene melt system with 32 repeating

units (G2g) was used in all of the simulations, unless othegvspecified. To see the
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thermal and pressure effects, different temperatarel pressures (see table 2.1) were
carried out under isothermal-isobaric (NPT) corahs.

Table 2.1.Summary of MD Simulations at the data collectitage

Pressure (atm) Temperature (K) Sim. Time (ns)
1 300, 340, 380, 410,430  55,15,15,15,15
1000 300, 340, 380, 410, 430 15
2000 380 15
3000 380 30

United-atom model was employed according to thekvebrGee and Boyd [72].
With little sacrifice in accuracy, united-atom mogbeovides a higher computational
efficiency when compared to other all-atom foredds. Each Cklgroup in the chain is
represented as an interacting node (see figure ZI®) force field-parametrization
details of the model are listed in table 2.2.

cH P ocn
2

B,

CH, CH, CH; CH,

Figure 2.2.United-atom model representationcié-1,4-PB

In order to have physically and thermodynamicalBalistic systems, the
procedure below was applied prior to the data cbde stage:

1. Amorphous cell construction afs-1,4-polybutadiene with Materials Studio 4.4

suite of programs [73] (density was chosen to m#tehexperimental value of
0.92 gr/cnd)

2. Minimization at 300 K with NAMD Program [74] (10 ps

3. NPT simulation at extremely low density (approxima# A cubic sized chains
immersed into 300 A length box ) and 300 K (50 ps)

4. NPT simulation at 1Datm at 300 K in order to reduce the characteristiio of
the chainsC,, to match experimental values (150 ps)
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5. NPT simulation at 1 atm and 430 K in order to retlaex system (1 ns)

6. Data collection stage with NPT simulation at diffet temperatures and

different pressures as indicated in table 2.1.

For all simulations, 1 fs integration time step wased. Temperature and
pressure of the system were maintained constarthenMD simulations at their

prescribed values by employing the Langevin thetatdsarostat. For the non-bonding

interaction cut-off distance of 10 A was used vsititching distance of 8 A.

Table 2.2.Force-field parameter of united-atom model usedf® simulations [75]

Interaction Potential Form Parameters
sy Ve TpkellT T RN )
1 158.5 1.54
183.8 1.5
3 246.9 1.34
Bending v, = 1 (-6, S ke(kcal/mol. ©)
2 racf) (deg.)
1 115 111.65
2 89.4 125.89
1 6
Torsion U (@) :5; k,@-coshg) Type ki  kokcal/mol) ks Ky ks ke
3 - 242 - - - -
2 1.033 -0.472 0.554 0.263 0.346 0.164
1 -0.888 -0.619 -3.639 -0.666 -0.247 -0.190
12 6
Nonbond Vv, =4 (?J —(?J Type & (kcal/mol) Fmin(A)
ij ij
1 0.0936 4.5
2 0.1 3.8
3 0.1015 4.257
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2.2.3. Network construction from PBD melt simulations

A polymer ofN monomers is treated as a residue-based strucibeze the CH
atom of each repeating butadiene unit is considasea node, of which the coordinates
are obtained from fully relaxed constant pressur® Bimulations. The network
information is contained in thE x N adjacency matrixA, of inter-residue contacts,
whose elements;; are taken to be one (1) for contacting pairs afeso andj, and zero
(0) otherwise. We establish a link between two isodethey are within a cut-off
distancer; of each other.

For cut-off selection, we chose different cut-offwes (rc:=5, 7.5,10 and 12.5
A) and calculated the correlation of the RMS-flattan obtained from ANM with the
RMS-fluctuation from MD simulation. Correlation &MS-fluctuation of ANM and
MD atrq:=5 A is close to zero and reaches to a plategur¢ap0.5) arq,= 7.5 A and
for higher cut-off values correlation does not iy, displaying very similar RMS-
fluctuation patterns as depicted in the figure BBice, higher cut-off values do not
improve correlation, cut-off value of 7.5 A was eka for network construction in

order to decrease the amount of processing time.

RMS-fluctuation is obtained from ANM by obtainindet trace ofC; as
explained in the section 2.1.4. ANM is applied ® donsecutive time frames each
separated by 1 ns and the averages are reportedRWIs-fluctuations obtained from
the MD simulation were calculated directly from thD trajectory. After computing
the average, y, z coordinates of the selected atoms, the RMS distaficcach atom
from that position were computed for 1500 time fesnmof 10 ps intervals. In the
calculations of the RMS-fluctuations both from tA&M and MD were applied
periodic boundary conditions (PBC). The proceduorelie PBC correction is explained
in Appendix A.
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Figure 2.3.RMS-fluctuations obtained from ANM for differentitcoff values (c=7.5
A, 10 Aand 12.5 A).

2.2.4. Simulation details for PBD melts with nanoprobes

Nanoclusters having radii ranging from 3.16 A td27A (number of atoms from 10
to 150) are embedded in tlees-1,4-polybutadine (32 chains each with 32 repeating
units of the butadiene monomer) in order to obtaendiffusion coefficient and predict
the zero-shear viscosity of the polymer as welloasnderstand nanoclusters’ behavior
and influence on the polymer’s thermodynamic progsr The nanoclusters with 10, 40
and 150 atoms are depicted in the figure 2.4. A&snlmber of the atoms increases, the

nanoclusters obtain to more spherically-symmetiot

In this study, seven set of cluster sike=< 10, 20, 30, 40, 70, 100 and 150) for four
temperature sets (at 280, 330, 380 and 430 K) wanducted (table 2.3). Sinces-1,4-
polybutadiene of molecular weight (MW) 55000 gfchas aTg approximately at 170
K [76], the simulation temperatures were choser ambve 170 K.

Table 2.3.0verview of the simulations for 32 PBD chains &fr@peat units

Temperature Ensemble  Simulation Nanoclusters Size
(K) Time(ns)
280 npt 60 0,10,20,30,40,70,100,150
330 npt 40 0,10,20,30,40,70,100,150
380 npt 20 0,10,20,30,40,70,100,150
430 npt 20 0,10,20,30,40,70,100,150
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The fundamental properties of the atoms constgutive nanocluster are taken to be
similar to that of silicon. Thus, the atomic ma$she atoms are 32 g/mol, and the well
depth for non-bonded interactions between paiegtais occurs at 0.854 kcal/mol. The
van der Waals radius is taken to be 4 A. The gartioordinates of the nanocluster are
obtained from the Cambridge Cluster Database [A@d]those pairs that are within 2.23
A of each other are connected by springs with gpeconstank = 150 kcal/mol. These
particles otherwise interact with each other aredrést of the polymeric chains via vdw
forces depicted by the Lennard Jones potential.oNarticle atom - polymeric chain
atom interactions are obtained via geometric meantfe well-depth, and arithmtic
mean for the vdw radii, unless otherwise specifladall simulations, cutoff distance on
non-bonded interactions are 10 A, which are smabthi¢h a switching function set on
at 8 A. Time step is 2 fs and data are recordéatertvals of 1000 steps (2 ps).

One nanocluster was embedded into the polymer xnamd this polymer-
nanocluster composite was equilibrated for 2 nseuridatm pressure. This procedure
was repeated for nanoclusters with sizes from IMtatoms. For the nanoclusters with
more than 70 atoms, since they cannot be embeddectig into the polymer matrix,
the nanocluster is first located on the edge ofgblymer box. The resulting larger
periodic box was simulated for 1 ns under 1000 atessure until a homogenous
mixture was obtained and further equilibriated unfleatm pressure to reach room

temperature density.

Figure 2.4.Atomic configurations of the nanoclusters of diffiet sizesN=10, 40, 150)
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2.2.5. Network construction from proteins and protein datasets

A protein of N residues is treated as a residue-based structinexre the ¢
atom of each amino acid is considered as a nodkthencoordinates of the protein are
obtained from the protein data bank (PDB) [69]. Hleéwork information is contained
in the N x N adjacency matrixA, of inter-residue contacts, whose elemenisafe
taken to be 1 for contacting pairs of nodesdj, and zero otherwise. We determine the
presence of a contact using two approaches, ormving a selected cut-off distance,
and the other using Voronoi tessellations. In tbener approach, the criterion for
contact is that the two nodes are within a cutdiétancer. of each other. In the latter,
Voronoi cells are formed from the PDB coordinatésCq atomssuch that the three
dimensional space is uniquely and completely subdd/ into polyhedra whose
surfaces are defined by the intersection of conpdemhes built midway between the
nodes of the network. Thus, pairs of nodes shaiggmmon plane are taken to be in
contact. This methodology allows eliminating th@ick of a cut-off distance so that an
unambiguous network construction is achieved [18], We have utilized the freely
available Voro3D program for this purpose [43]. &ltitat the nodes in these networks
have an average distance of 6.6 A to their neighterd an average contact number of
10.5.

We base our calculations on a set of 595 proteits sequence homology less
than 25%and sizes spanning 54-1021 residues [79]. Thigpreet is identical to that
used in previous statistical analyses on residiar& published by Atilgan et al. [19,
80]. Forty-five of the proteins in the set have éwhan 100 residues, the number of
proteins in the ranges (101-200), (201-300), (300%4and more than 400 residues are
234, 122, 108, and 86, respectively. A list of thié proteins used, their sizes, and
distributions appear in the Supplementary Matariakference [80].

In addition, we have studied the location dependesfccertain properties. For
this reason, we calculate residue depth from thiéasa of the protein [81, 82]. We
classify residues that are deeper than 4 A as @oe,the rest of them as surface
residues. The choice of this value is based on féoe that the size of spatial
fluctuations, as calculated from MD simulations BRTI, of the surface and interior

residues converge to the same value at the praigiamical transition [83]. For the
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distinction of core/surface residues, we use aeduliisthe original protein data set that
has a total of 60 representatives with sizes inrdinge 140 — 320 amino acids. Finally,
we also study the eigenvalue spectra of proteins(equation 2.13), which is affected
by the size of the systems. We therefore choossuthset of 26 proteins for whidth =
150 + 10.

2.2.6. Viscosity measurement experiments

The experimental results are obtained by Bohlin (Rigdational Viscosimeter
at 10 Hz and a strain value of 1 with a similar ezolar weight polybutadiene having a

%60trans, %20vinyl, %20cis microstructure.

2.3. Properties Calculated

2.3.1. Diffusion coefficient and zero-shear viscosity caldations

The nanoclusters in the polymer melt experiencekinds of forces: Brownian

random force and frictional force. So the equatbmotion is defined as;

dv(t) _
at

m

f8(®) —yv(t) (2.23)

Mean Square Displacement (MSD) is calculated bintaknsemble average on

3D coordinates of the nanocluster center all owersimulation time.
< Ar?(t) > =< [x(t + At) — x(£)]? + [y(t + At) — y(©)]? + [z(t + At) — z(D)]? > (2.24)

When the log of MSD is plotted against log of tistep,4t, the slope is one for
Newtonian fluid obeying the below relation:

_ 2
D = lim rO-TOr> (2.25)
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Zero shear viscosityy,, may be derived via the Stokes-Einstein equation
(below) with usingD obtained from MSD:

__ kpT
% 6maD

(2.26)

wherekg is the Boltzmann constank, the temperature of the systeay,the radius of
nanocluster an®, the diffusion coefficient.

The diffusion coefficients are obtained from the M8urve where the slope is
close to one, satisfying the condition of longends in equation 2.25. An example of
MSD curve of nanocluster with 150 atoms is giverfigure 2.5. WherD is plotted
against 14, the slope of the line fitted to the data pointseg the inverse of zero shear
viscosity,n, multiplied by the factorkgT/6 7.

N

log(MSD(A?))

log (At(fs))

Figure 2.5.Mean square displacements vs. time for diffusiogffocient calculation

2.3.2. Dynamical properties

Time correlations#) from the*C-NMR experiments are calculated from the
time decay of the second orientational autocori@iafunction (OACF),M (t), of the
butadiene C-H bond vectors via:

My(t) = [3 < cos?6(t) > —1] (2.27)
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where 6(t) is the angle between two orientations of the Ceddat times 0 ant 7. is
obtained from the integral of the OACF as [84]:

7, =fwdt (2.28)

M5 (0)—M; ()

Time correlations from the simulation are extracbgdfitting best exponential

decay lines tM,(t):

My(t) =1[3(2DnB2) _ g (2.29)

<m(0).m(0)>
wherem(t) is the bond orientation vector of the butadiend Gend.

Another dynamical property of interest is the resice (or escape) time;)
[85]which is an average time of a atom/moleculeescape from a given region. It is
used to obtain information on the dynamical behawfopolymer chains that are close
to the surface of the nanocluster. We have caledlatby monitoring the number of
atoms residing at a distance of one vdw radiusinfpke exponential decay function is

fitted to the curve of number of residing atoms Veith respect to simulation time step:
N, =< N, > exp (—t/t,) (2.30)

whereN; is the number of particles left at the indicategioa.

2.3.3. Mechanical properties

The mechanical properties of materials are of gmaabrtance in engineering
applications. When a mechanical force is applied gpecimen, the deformation of the
specimen is described in terms ofstess-strain behavior. In an atomistic calculation,

the internal stress tensor can be obtained usangdkcalled virial expression:
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0o=- Vio [(Z{Ll mi(viviT)) + (Zi<j rUfUT)] (231)

where index runs over all particles 1 throudli m v andf; denote the mass, velocity

and force acting on particleandV, denotes the (undeformed) system volume.

For small deformations, the relationship betweensinesses and strains may be

expressed in terms of a generalized Hooke's law:
Oim = Cimnk Enk (2-32)
wheree is the strain tensor ar@lis the stiffness matrix.

The stiffness matrixC is a symmetric 6x6 matrix, and hence a maximur@lof
coefficients are required to describe the stressrsbehavior of an arbitrary material
fully. For an isotropic material, the stress-straighavior may be fully described by
specifying only two independent coefficients. Thesulting stiffness matrix may be

written as:

A

+

A A+ 2u
0 (2.33)
0

0

o
ocox®T oo oo
oOxT| oo oo
T oocoo oo

where . andu are referred to as the Lame coefficients. Foriffmdropic case, the
familiar moduli (Young, Bulk and Shear Modulus, pestively) may be written in

terms of the Lame coefficients as follows:

3A+2p

E = uG) (2.34)
K =A+2/3u (2.35)
G=p (2.36)
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Originating in the work of Theodorou and Suter [8élastic moduli may be
estimated by using a completely static method. rAftaving constructed an energy-
minimized series of amorphous structures confied periodic cube, each structure is
subjected to twelve deformations; three pairs iraxial tension/compression and three
pairs involving pure shear, followed by a reminiation to restore a state of detailed

mechanical equilibrium.

Each of these deformations corresponds to settiegod the components of the
strain vector to some small value (for example 0.001), while keeping all other
components fixed at zero. The elastic stiffnesdfiadents may then be obtained by
estimating the second derivatives of the defornrmagioergy with respect to strain using
a finite difference formula (for the diagonal compats only), and by calculating
AcilAgj for each of the six pairs of applied strains, veéhwrepresent, in vector notation,
elements of the stress tensor obtained analyticadigg the virial equation. Although
this methods gave good agreement for the diagdealentsC;; of the stiffness matrix
for the glassy polypropylene samples studied in Theodorou and Suter's original
work, generally it should be assumed that numersaimation of second derivatives
(of the energy) will be less precise than estimmatibthe first derivatives (of the stress)
[87]. In this work we use the implementation of therk of Theodorou and Suter by
the Materials Studio Program for all shear modalisulations.

The bulk moduluK > 0 can also be formally defined by the equation:

—_yr
K=-V— (2.37)
whereP is pressureY is volume, andP/dV denotes the partial derivative of pressure
with respect to volume. The inverse of the bulk oiod gives a substance's isothermal
compressibility. It is more precise to calculate bulk modulus from the fluctuations of
the periodic box volume using simulations at comspeessure by the relationship,

_ kpT<V>
<V2>—<V>2

(2.38)
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2.3.4. Glass transition temperature

Thermodynamic transitions are classified as fimst-second-order. In a first-
order transition there is a transfer of heat betwsgstem and surroundings and the
system undergoes an abrupt volume change. In andawder transition, there is no
transfer of heat, but the heat capacity does charfdge volume changes to
accommodate the increased motion of the wigglingindy but it does not change
discontinuously [88]. lllustrative plots of specifvolume vs. temperature are shown in

figure 2.6 for amorphous and crystalline polymers.

T Crystalline T Amorphous
First Order Second Order

Tm T T, T
Figure 2.6.Graphical schema of volume-temperature curvesrigstalline and

amorphous polymer (reproduced from [88]).

When an amorphous polymer is heated, the temperatumhich it changes
from a glass to the rubbery form is called the gfmansition temperaturé&,. A given
polymer sample does not have a unique valu&gobecause the glass phase is not at
equilibrium. The measured value ®§ will depend on the molecular weight of the
polymer, on its thermal history and age, on thesaueament method, and on the rate of
heating or cooling [89]. In this thesis we calcal#te approximate value @f from the
intersection of the fitted curve to the two diffetgphase/slope) curves of specific

volume vs. temperature data.
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3. RESIDUE NETWORK CONSTRUCTION AND PREDICTIONS OF
ELASTIC NETWORK MODEL

3.1. Structural Heterogeneity of Amino acid Distributions in Proteins.

The RDF,g(r), of the residues is presented in figure 3.ladfstances up 20 A,
recorded at 0.1 A resolution. We find that thetfgisarp peak im(r) ends at ca. 6.7 A
corresponding to the first coordination shell (itae range within which residue pairs
are found with the highest probability), the secaondrdination shell occurs at 8.5 A.
Broader peaks ending at 10.5 and 12 A are idedtifis the third and fourth
coordination shells. At larger distanceggr) monotonically decreases, indicating that
the coarse-grained residue beads do not experfenitesr ordering in the liquid-like
environment. In figure 3.1a we also display the ADf®), for the same set of proteins
in the same distance range. We find that the maak® of ADF and RDF overlap, the
only difference in the general character of the tgiribution functions being found in
the third and fourth coordination shells. In RDFe find that a similar number of
particles per unit volume exist in these two cooation shells (same height in the
distribution). The ADF provides the additional infeation that, due to the asymmetry
in the intensities of the third and fourth coordioa shells, these particles are clustered
in relatively more ordered directions in the thsldell, quantified by the increase in
ADF to ca. 5°. The ADF provides the valuable infatian that the additional particles
are taken into account as more concentric sphestuals of 0.1 A diameter are added
(recall figure 2.1), have a preferred directionahfistering at the regions of higher
number density. Conversely, at larger distancesntw neighbors carry directionality
that cancel each other out, as would be expectad & random packing of spheres,

quantified by the monotonical decrease(q).
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Figure 3.1.(a) Radial and angular distribution functionst(lefixis: RDF; right y-axis: ADF)
obtained by averaging over 595 proteins. (b) ADémputed separately for the core and

surface residues for a subset of 60 proteins.

Since globular proteins may be considered to beemaal of a core region
surrounded by a molten layer of surface residu@g [Bis of interest to distinguish the
topological differences between the core and thiase (figure 3.1b). We observe that
core residues have larger angular changes in thdtaet vector,Q; (equation 2.2)
compared to the surface residues. Note that tlcédraof surface residues is ca. 0.6 for
these proteins, being somewhat larger for the smaized ones [19]. Thus, the
resultant vector on the surface residues rapidiyvemges to a given directionality
specific to each residue at short distances, thitiadal links at higher distances
arriving in directions that cancel out. The overstiuctural heterogeneity is detected
much clearly in theg(e) of the core residues. However, the heterogeneitye first
coordination shell is more pronounced over thathefsecond for the surface residues,
possibly due to the loose packing in this regiohisTeffect is reversed in the core. In
addition, the structural asymmetry between thedtlaind fourth coordination shells is
found to originate from the structure of the casidues. The dissimilar behavior of the
core and surface regions is also observed in Figure. Asr increases, the orientation
of the vectors are more scattered in the interindicating its isotropic nature;

conversely, the orientation of the vectors at timéage rapidly converges.

3.2. Density of Vibrational Normal Modes.

The vibrational normal mode spectgéy), of proteins was originally studied by

ben-Avraham for five proteins with sizes in thegarof 39 — 375 residues, the data
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collapsing on a single curve, especially in thevsioode region [22, 91]. The density of
states was found to increase linearly with the desgpy in this region, implying a
spectral dimension af; = 2 and deviating from the Debye model of elastitids where
the expected value is [92]. The anomalous spediraknsions of proteins was also
confirmed by inelastic neutron scattering experitaemeasurements, which yielddd

~ 1.4 for hen egg white lysozyme [93]. More recendly equation of state relating the
spectral dimension, fractal dimension and the size protein was developed based on
the coexistence of stability and flexibility in é@d proteins [94].

10 T T
2 o N
2 o
e | 2
T 60 1 o
g } E or
E 40| 12A g (:;
Z Voronoi 1 &
§ 20' ~~~~~~~ ;’.’_ 1+
0] " e 1 1 1 1 1
10 20 30 10 15 20 25 30

modes,w cut-off distance, . (A)
Figure 3.2.(a) The change of the density of vibrational modés), with the cut-off distance,
r., used in network construction. The main figureBigs the results far, in the first (. = 7 A)
to above the fourth coordination shell range (up@d). Also shown, in dashed lines, is the
frequency distribution of the Voronoi tessalatetiveeks. The inset displays the results for
very larger, values (up to 30 A). The data is an average oget af 26 proteins in the size
range of 150 + 10 residues. (b) Spectral dimensigof the networks, obtained from power
law best-fits to the cumulative density of mod&&p) o w% for the first 70 modes in each set
of data. Goodness of fit is 0.98 or better in alles. The thin dashed lines are included to guide
the eye for the cross-over in the rate of changk with r.. Also indicated on the figure are the
d; of the Voronoi tessalated networks that occumatld), and the theoretical limitdt= 3

when all nodes are interconnected- «).

In the original ANM study, the cut-off distance dsi network construction
was roughly chosen to mimic this distribution oé tnodes [24], which was 13 A for
the retinol binding protein studied therein; howeg\e wide range of cut-off distances
appear in the literature based on other criterg,descussed in the Introduction.

Nevertheless, constructing networks with harmorateptials whose spectra closely
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mimic the vibrational modes from all-atom systenegras to be the most plausible
approach, since this implies that the curvaturethefenergy functions used in the two
approaches are adequately approximated, so thadiébrium properties would be
described properly.

In figure 3.2a, we display the dependence of normal mode spectra averaged
over 26 proteins of size 150 + 10 residues, enghisto disregard the size effect in the
calculations [the latter was addressed in refer®ifi@é4] and [95] In general, the low-
frequency band of the graph is responsible fordaagnplitude collective motions
related to function, whereas the high-frequencydo@fers to small amplitude motions
of individual residues. We find that at = 7 A (where neighbors are from the first
coordination shell), the distribution is characted by a direct drop in density with
increasing frequency; at this value, most protdiage additional zero eigenvalues,
apart from the six due to the rigid body motionkeTuniversal behavior of the slow
vibrational modes of proteins is recovered at highevalues. Above the cut-off
distances that include the fourth coordinationIsfrgl> 12 A), a shoulder in the higher
frequency region first appears, then broadens &s increased. At > 16 A, a two-
peaked density profile that is uncharacteristigpufteins sets in (inset to figure 3.2a).
For the networks obtained with Voronoi tessalati¢aashed line in figure 3.2a), the
distribution shows a flat behavior, also unchanastie of proteins. Also note that,
although the average distance between adjacensrisd®6 A in these systems, their

behavior is markedly different from that of thewetks with similar cut-offs (e.g.c =

7A)

Thus, arr. value in the range of 8 — 16 A captures the gérsévape of protein
vibrational spectra. Yet, inasmuch as one utilimesvork models to study collective
motions of proteins as a superposition of sevenal frequency modes, it is important
to capture the distribution in the slow mode regudrthe protein in more detail. This
region is intimately related to material propertieharacterized by the spectral
dimensiongds. In figure 3.2b, we plot the spectral dimensiohthese systems, obtained
from power law best-fits to the cumulative densifymodes,G(w) x w% for the first
70 modes in each set of data [wdB(w)/do = g(w)]. The dimensions approach the
Debye model value of 3 agis increased (dotted line in the figure 3.2b). Epectral

dimension of the Voronoi tessalated networks is arf@l is commensurate with that of
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the network at. = 9 A. The spectral dimensions in therange from the second to the
fourth coordination shell, (8 — 12 A increase frdmalow ds = 1 to ca.ds = 1.5.
Furthermore, a crossover in the rate of changbhespectral dimension with the cut-off
distance occurs at = 16 A, the slope reducing from ca. 0.13 to hhi§ tvalue; the
crossover is accompanied by the shifd{o> 2. Thus, it is plausible to use the cut-off
value up to 16 A so as to capture both the gersdvape of the vibrational spectra of

proteins, as well as the spectral dimension thstrilges the density of slow modes.

3.3. Biological Significance.

The level of success of the studies in relationtite method of network
construction in proteins has not been addressadmgsically. We find for a number of
proteins that the correlation between the meanssgihactuations of ¢ atoms and the
theoretical predictions of equation 2.14 improvettas cut-off distance is increased.
This curious observation is valid up to very larg&alues; i.e. for some proteins, even
when all residues are interconnected, the fluataatiof individual residues are
faithfully predicted. One example is displayed igufe 3.3 for a 263 residueclass
protein (PDB code: larb), where the residue-byetesiexperimental B-factors (middle
curve in gray in figure 3.3a) are compared withesal/selected theoretical models: A
relatively low correlation is obtained at = 8 A; in particular, the fluctuations of
surface loop residues 15 — 20 and 135 — 145 arestwvmated due to the absence of
important core-region contacts that are not takea account at this cut-off distance.
Ther. = 15 A model captures the experimentally deterchifiectuation patterns, which
remains unaltered at higher cut-offs. The fluctuadi predicted by the Voronoi
tessalated network model are somewhat chaotic, riogethe correlations with
experiment. The Pearson correlation coefficients wide range of cut-off distances are
plotted in figure 3.3b, along with the value obtdrfrom Voronoi tessalated networks
(dashed line). We emphasize that the behavior ekiemdpby figure 3.3 is not unique

to this protein, but is rather a common propertglbproteins.
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Figure 3.3.(a) Comparison of the X-ray B-factors (gray, maldurve) with fluctuation
profiles predicted from various models (at 8, 15, 25 A and network construction with
Voronoi tessalations) for the 268 residue achrorotavdyticus protease (PDB code: larb). (b)
Pearson correlation coefficients at a wide rangeutff distances for the same protein; those
that correspond to the detailed fluctuation prsfité figure 3.3a are shown with filled circles

and that with the cut-off free Voronoi tessalatestlie is marked by the dashed line.

In summary, with our analysis over a large setai-homologous proteins, the
degree of success of network models of proteirsh@®vn to converge as the cut-off
distance used in constructing the network from RIEB coordinates of the protein is
increased. A choice of high in the vicinity of 16 A covers the neighborhoodusture
of an arbitrary protein and its eigenvalue spedtayever, for large proteins, this will
introduce a large number of interactions which wiinder the matrix inversion
procedure rather cumbersome. In such cases, oneasast to computg(r), g(p) and
d(w) curves and spectral dimensions for the particotatein to choose an optimury)
for large proteins the number of nodes will be higgough to obtain statistics for
smooth curves where the peaks may be discernedroblem that cannot be
circumvented for small system sizes. We note tlettvark models are useful in
describing the properties related to the fluctusionear the minimum of the
conformational energy well, and its curvature. Hoere they will not succeed in
providing information of the dynamical propertigstioe protein, unless a methodology
for updating the Hessian along the reaction coatéims introduced.
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4. PREDICTIONS OF THERMODYNAMIC MEASURABLES OF CIS-1,4-
POLYBUTADIENE BY ANM

4.1. Thermodynamical and Structural Properties

The variation of specific volume X with T at 1 atm and 1000 atm, as obtained
from MD simulations, and depicted in figure 4.ladicates that increases linearly as
T is increased for both pressure sets. Howeverspeeific volume values obtained
from MD simulation at 300 K is slightly higher théime experimental value @£1.086
cm’gr. The linearity of the specific volume with ieasing temperature is in
accordance with the empirical Tait equation whigtvalid for most of the amorphous

polymers [96].

Another important thermodynamic parameter that rhayobtained from the

simulations is the isothermal compressibiliy,

_ <VZI>—<y>?
Kp =————
kpT<V>

(4.1)
where kg is the Boltzmann constant and is the temperature of the system. It is
observed that as depicted in the figure 4#&bjncreases in a non-linear form with
increasingTl at 1 atm, whereas increases very little at 1060 (@tmost independent of
temperature for high pressures). The predictedevédukr at 300 K is 11.3x1¢° pa*
and is in agreement with the experimental valu2x@™® Pa') reported by
DiBennedetto for a 1,4 PBD sample of unspecifiedrastructure at 298 K [97].

Chain conformational properties in the simulatedymer and the effect of
temperature and pressure on the overall size ofntaeromolecular chain may be
discussed in terms of characteristic raty, calculated from the mean-square chain

end-to-end distance R&>, through the equation:

<R2%>
“n="11

(4.2)

51



1.5 T T T 3 T T T
@) (b)
1.4F -~ P=1atm 4 - P=1 atm
- -# P=1000 atm — -+ P=1000 atm
D13 1<% |
mE . 9‘
(8] X
;’ 1.2F 1 \'.’_
././././. ¥ 10F 7
11b i ‘/‘___‘/‘—‘
1.0 L L L 0 1 1 1
300 350 400 450 300 350 400 450
Temperature (K) Temperature (K)

Figure 4.1.(a) Temperature dependence of isothermal compiss{xt) and (b)

specific volumey) at 1 atm obtained from MD simulations.

wheren denotes the number of links in the chain backbam#l? the average squared
skeletal bond length. The temperature and pressfiest on C, for the simulated
polymer is presented in figure 4.2, is observed to remain practically constant over
the temperature range at 1 atm with a variance.®f 1.5 A. This result agrees well
with the experimental data of Fetters et al. [I®ttthe ratio R>/M in 1,4 PBD
remains the same in the temperature range 298-41AtKL000 atm,C, remains
constant with a much lower standard deviation andreiasing slightly as the

temperature is increased from 300 to 430 K.

7] 1 1 1

-~ P=1 atm
-2 P=1000 atm

w

1 1 1
300 350 400 450
Temperature (K)

Figure 4.2.Characteristic ratio of thes-1,4-PBD obtained from MD simulations at

different temperatures.

The effect of temperature and pressure on the Ilstcatture is investigated by

using the intermolecular pair distribution functj@gr). Only one of spatoms of the
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butadiene monomer were chosen as the center osrfodeoarse-graining. RDFs were

obtained from these nodes and are depicted indigLB.
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Figure 4.3.Radial distribution function (RDF) of 14 sets oDMiimulations

At all pressure and temperature sets, we find Ri2E has a sharp peak around
6 A corresponding to the first coordination shelhé¢ sp with ~1.33 A bond length,
three sp with ~1.52 A bond length) between the® sioms of two butadienes.Two
broader peaks, one in the range 6.5 - 8 A and tifner dn the range 8 -10 A constitute
the second and third coordination shells, respelstiBecause of the rotational freedom
of three sp bonds, the tail of the first peak correspondingjrst coordination shell has
a shoulder vanishing at 4 A. Moreover, a few brpadks with very small probabilities
beyonf 10 A appear as higher order coordinatiarilshAfter approximately 15 A, all

the peaks converge to one, indicating no ordergyghd this distance.
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4.2. Thermal Fluctuations

The fluctuations of the polymers and proteins dftaeir functionality and also
give information about the globular and local monsowhich can be checked with the
experimental techniques such as XRD and Nuclear nglizg Resonance (NMR).
Average thermal fluctuations, which are definedaaglom deviations of a system from
its equilibrium, may be calculated by the root megnare displacement (RMSD) (see
section 2.1.4).

In figure 4.4, the vector normalized average RM3ugs of chains calculated
from ANM and MD are compared to see the effectenfiperature and pressure on the
fluctuations of the chains. Averaging was appliéeravector normalizing (.u'=1)
each RMSD value of all nodes. The RMSD values fldRiM and MD are in good
correlation showing similar qualitative behaviorckuas at the end of the chains
increasing 3-4 folds when compared to the centethef chains. This behavior is
expected since the ends of the chains are not cteth@nd have higher degrees of
freedom with respect to the center of the chaiherd are some peaks and irregularities
in the fluctuations obtained from ANM and MD data3800 atm which also results in
lower correlations. Thus, the limit of applicabiliof ANM to PBD is around 3000 atm,
where the system is rigid and loses elasticity.

P =1atm P = 1000 atm T=380K
0. r r 0. r r 0. : r
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Figure 4.4.Normalized RMSD averaged over all chains obtainesh ANM and MD

simulation for different temperatures at 1 atm,@@@mn and for different pressures at

380 K.

The correlations of the RMSD values of chains atsdifrom ANM and MD

are in increasing trend for higher temperaturesbfath 1 atm and 1000 atm case and
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decreasing trend for higher pressure values whenetimperature is fixed to 380 K (see
figure 4.5).
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Figure 4.5.Pearson correlation factors,of chain fluctuations between those

calculated from MD simulations and ANM

Due to the high correlations between MD obtainadttfiations and ANM
predictions; we use this data to calculate thecéffe spring constant between chain
units. The spring constants (or average stiffnesshe bonds which are related to the
average fluctuations of the atoms are obtained ftbenratio of trace of covariance
matrix, C, (equation 2.13) to the average of RMS-fluctuaiabtained from MD
simulations multiplied by the prefactokgT:

tr(Cii)
<ARZ?>yp

As seen in the figure 4.6a, linear fit to the sgroonstants of the atoms has a
negative slope indicating that spring constants areersely proportional to
temperature, whereas for the pressure set (figusb) 4pring constants are linearly
increasing as the temperature increases. In fdstnwhe temperature is low, the atoms
in the system fluctuate less from their equilibripoint and give rise to lower value of
stiffness, and when the pressure is increasedsytbiem goes in a more compact form

with motions in a smaller volume with higher frequag resulting in higher stiffness.
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4.3. Predicting the Second Virial Coefficients

The second virial coefficientbf), which is an experimentally obtainable
thermodynamic quantity, was predicted by ANM. Setovirial coefficient was

obtained from Hessian matrix (derivation detaiks iar Appendix B);

ANM _ _ Y pTrpg _
b = oL R"(H - D)R

(4.4)

whereH is the Hessian matriR is the coordinate vector of all atoms relativeenter
of mass of the systerD, is the identity matrixb, may also be calculated from the RDF;

2m o0,
b§DF=§fO g' (Mridr

(4.5)
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Figure 4.6.Comparison of spring constants for different (@ssure and (b)

temperature sets.

whereV is the volume of the simulated system aryg is the derivative of the RDF
with respect ta. In the equation 4.5, the small deviations in RigF give rise to big
fluctuations during the integration, so we obtaineguivalent form using integration by
parts, leading to,

BEPF = (25t — [7 7 g(r)3r2dr)

(4.6)

wherer o is taken as 20 A (approx. half of the simulatiox kength).

The calculated values tf from different sets of temperatures and pressures a
listed in the table 4.1. Although the predicteduesl obtained by ANM have lower
values than the calculated values from the MD satnahs, when normalized, the fitted
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lines are highly correlated and behave qualitagiveimilar. For fixed values of
pressures, 1 atm and 1000 atm, normalizedecrease as the temperature is increased
(figure 4.7a and figure 4.7b), and when the pressuincreased for fixed temperature
for 380 K, we see a positive correlation with regpé& pressure (figure 4.7c).
Normalization in figures 3.10a-c is carried outlsdicat the maximum value is set to 1

and the minimum to O in each case.

Table 4.1.Second virial coefficients obtained from RDF andM construction

Temperature ~ Pressure box bRPF biNM
(K) (atm) dimension
(A)

300 1 47.9 437.2 64.8
340 1 48.4 367.4 57.4
380 1 48.9 317.1 41.6
410 1 49.6 280.6 37.6
430 1 50.2 259.5 27.6
300 1000 46.5 482.9 120.0
340 1000 46.9 413.7 63.7
380 1000 47.1 363.3 70.7
410 1000 47.4 329.7 47.6
430 1000 47.7 307.5 39.1
380 1 48.9 317.1 41.6
380 1000 47.1 363.3 70.7
380 2000 46.5 382.9 384.6
380 3000 45.9 400.5 723.1
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Figure 4.7.Normalized second virial coefficients at (a) camstpressure of 1 atm, (b)

constant pressure of 1000 atm, (c) and at constenggerature of 380 K
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5. LINEAR VISCOELEASTIC PROPERTIES OF POLYBUTADIENE M ELTS
PROBED BY NANOCLUSTERS: MD SIMULATIONS AND
EXPERIMENTS

5.1. Radial Distribution Function (RDF) of Polymer with Nanoclusters

Radial distribution functions calculated from thédMimulations are shown in
figures 5.1, 5.2 and 5.3. The effect of atom tyieepperature and cluster size to the
configuration of the system was investigated. Aorshdistances (less than atomic
diameter)g(r) is zero. This is due to the strong repulsive éardAt long distancesyr)

approaches to a constant value which indicateg tlsero long-rang order.

In figure 5.1, pair correlations of two differentomic types are compared for
the same temperature (330 K) and same nanoclusée(\s= 10 atoms). The first (and
large) peaks occurs at 1.54 A and 1.34 A corresipgn@spectively to shand sp type
atoms. The radial distribution function then hasarfpeaks, corresponding to higher
coordination shells, which have much smaller intgnsompared to the first peak
(resulting from bonding in consecutive repeat ynifnce the polymer systems in our
simulations have % 10€is content, second peak of’spave smaller probability when
compared to spwhich is in a more rigid environment. In figure25we do not see
much effect of nanocluster size on thé BPF; however, there are small perturbations
in the first three peaks of $RDF. Similarly there are small perturbations to $ffeand
sp’ type atomic RDFs when the temperature is chanfigeré 5.3). In particular, long
range order of Sptype atoms are affected more than thé gpe atomic pair

distributions.

5.2. Diffusion Coefficient and Zero-Shear Viscosity

The calculated values of diffusion constants fongeratures 330 K, 380 K and
430 K and the curves obtained from these tablesliaedr fits to obtain zero-shear

viscosities are given in the Appendix D.
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Viscosities that are obtained from four differentmglation sets as well as
experiments on PBD described in section 2.3.6 kxttel in figure 5.4. Both viscosities
from simulation and experiments have increasingaiidigmic character as the
temperature decreases. Calculated values aretddke experimental values except at

280 K at which experimental values is approximagtimes larger.

lOC T ] )
0 -~ Sim.
éi 10f -= Exp. .
2>
‘0
3 1t i
12
>

0. 1 1 1

%50 300 350 400 450

Temperature (K)

Figure 5.4.Comparison of zero-shear viscosity with respectetoperature obtained

from simulations and experiment

5.3. Dynamical Properties

Correlation timest., (equation 2.28) of C-H bond vectors of simulatairfour
different temperatures were compared in figure \&ith the 3C NMR experimental
data from the literature [84]. In figure 5.5, expeental 7. values belong to high cis-
content-polybutadiene ( %98s, %3 trans and %4vinyl). The values obtained from
simulation are in good agreement qualitatively vitie experimental values, except at
280 K where the deviation is larger. C-H bond rotat are approximately 2.5 orders of

magnitude more active at 430 K when compared todhee at 280 K.

60



1000 T T T

-~ Sim.

100 = Exp.-NMR

T (PS)

10F

1 1
350 400

1
300
Temperature (K)

1
250 450
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In order to see the effect of temperature and the af the nanocluster on the
dynamical behavior of polymer chains, we obtairezliresidue times; (equation 2.30)
with respect to size and temperature (figure 5)6ae see that as the temperature
increases, residence time of the chains decreAsdsigher temperatures, the chains
spend less time at the surface of the nanoclustexddition, for the larger nanocluster
sizes, chains spend more time in the vicinity & grobe, which indicates additional
interactions with the polymer chains. Converselychsa size dependent behavior is not
observed for the relaxation times of these chaindecreases from ~210 ps to ~130 ps
as the temperature increase from 280 K to 430 Kereds it increases two-fold (~100
ps to ~200 ps) as the size of the nanocluster aser® from ~3 to ~7 nm. From the
results it is observed that 150 K difference in teeperature corresponds to 4 A

difference of particle radius.
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To see the effect of vdw interaction strength;(-) on the dynamical behaviour
of interacting nodes (the nodes within one vdw tengf the nanocluster surface ) of
PBD, <sic is increased fromesi.c=0.1 kcal/mol up toesi.c=1.5 kcal/mol, where the
standard value in the previous sets of simulatias €s;.c=0.3 kcal/mol. Bothr; andz.
are calculated from the dataseflof 330 K and\ = 150 atoms. From the figure 5.7a, it
is observed thai has an asymtotic exponential association typebeha 7, show this
character apparently by increasing two-fold fronD6-Js (lowest interaction strength)
to ~200 ps (highest interaction strength). In fegbr7b,z. increases from 20 ps (pure
PBD) to 80 ps until 5i.c=0.75 kcal/mol and drops to below 70 ps untdi.c=1.5
kcal/mol. Presence of the cluster slows down thgenarientation movement, therefore
the relaxation rate. This leads to the stickinghef nodes to the nanocluster surface.

300 T T T 100 T T T

() (b)
L] 8of i
3 °
200 E 3 g . 60 I
[0) %) B T
o o
= O P g
100F - s
20k & 4
¥~ No Cluster Limit
1 1 1 s s 1
8.0 0.5 1.0 15 8.0 0.5 1.0 15
-€c.si -€c-si

Figure 5.7.(a) Effect of vdw interaction strength tpand (b)t. at T=330 K andN=150

atoms

5.4. Mechanical Properties

In this section, we investigate the effect of falifferent parameters (vdw
interaction strength, nanocluster size, temperanceMW) on the mechanical behavior
of the polymer nanocomposite. To see the effectavfocluster size, we seils-c=0.3
kcal/mol andT=330 K. From the figure 5.8a, it is seen that freeny small sizesN=10
atoms) up to moderate sized=/0 atoms andN=100 atoms) K increases ~%5 but
drops to the starting value ofN = 10 atoms as the nanocluster size is further asaé
to N=150 atoms. So, from practical point of view, wa& @ssume tha is not much
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affected by the size of the nanocluster. And foolbserve the effect of vdw interaction

stregth orK, we setfT=330 K andN=150 atoms, and we have calculated Khealues,
for a set of vdw interaction strengths<(~=0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.25 and 1.5
kcal/mol). In figure 5.8bK does not change untilesi.c=0.75 kcal/mol and starts to

increase linearly until esi.c=1.5 kcal/mol. This increase is approximately 8%.
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Figure 5.8.(a) Effect of cluster size and (b) vdw interaction sgth to bulk modulus

calculated from inverse @&f

The effect of the other parameter of interest, mdkr weight, was studied by
increasing the chain size 4-fold by keepihgt 330 K and\ at 150 atoms. In figure
5.9, K is plotted with respect to vdw interaction stréndor two sets of molecular
weights. Increasing the MW caused a slight increasK. It is observed that this

increase does not exceed %20.
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Figure 5.9.Effects of vdw interaction strength, MW to bulk mubgis that are calculated

from inverse ok
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To see the effect of parameters of interest orarsheodulus,G, a different
method (see section 2.3.3) was used. In additiosirtaulation sets indicated above,
three more simulations with molecular weights of #BD that are Y4, %2, 2, 4 and 8
times that of the original system are carried #unbm each simulation, ten snapshots
are obtained from the last 5 ns piece of the sitrarialeach 0.5 ns apart) for further
analysis in the MS Program. The averaged value$ afver these snapshots for
different parameters are plotted with their staddamror in figure 5.10. In all of the
figures,G values are always approximately 2-fold less tlKtvalues (see figure 5.8)
which is characteristic for polymer& values have an increasing trend with the with
increasing MW and, whereasG has a bump aN=70 atoms and an increase from
N=100 atoms tdN=150 atoms. The characteristic curvessdhave similar behaviour as
we have seen foK (see figure 5.8) except for the caseNsfl50 atoms. FON=150

atoms,G starts to increase as opposed to decreasing afdtd
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Figure 5.10.Effect of (a) molecular weight, (b) nanoclusteresiand (c) vdw

interaction strength on shear modulus.

5.5.Glass Transition Temperature

In order to calculatdy, the PBD system witiN = 150 atoms withesi.c = 0.1
kcal/mol (weak), esi.c = 0.3 kcal/mol (normal) andcesi.c = 1.5 kcal/mol (strong) and
pure PBD are simulated for the temperatures fro® K30 200 K with 5 K step and
from 200 K to 240 K with 10 K step. Changes in spevolume with temperature are
shown in figure 5.11. For each type of systemsyesihave two kinks: one small peak

at temperatures less than 150 K and one apparakthsween 160 K and 180 K. The
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temperatures corresponding to the latter transeu@n176 K for the pure PBD system,
177 K for the system with the weak interaction g, 184 K for the system with the
standard interaction strength and 178 K for theéesgswhere there is strong interaction
between the nanocluster and the PBD chains. Aaegrti these result3, increases as
the nanoclusters are introduced to the polymer iedt decreases as the interaction

strength increases further from the standard value.

l.lr_ T T T T T T
pure pbd standard vdw

pbd+7nm weak vdw
pbd+7nm standard vdw

e <« m o

pbd+7nm strong vdw

1.05(

1 1 1 1
180 200 220 240

Temperature (K)

1
120 140 160

Figure 5.11.Change irspecific volume with respect to temperature fodpeng T,
In figure 5.12, the effect of MW oiiy is obtained from from three sets of

molecular weights; MW=1x, 4x and 8x. As the MW i@ases]yis observed to shift to

higher temperatures according to the Fox-Flory eicgdiequation [99]:

T,(MW) = T,(w) — N;‘;W . (5.1)

1.12 T T T T T T T T T T T T

1 1 1 1 1 1 1 1 1 1 1 1
120 130 140 150 160 170 180 190 200 210 220 230 240 250
Temperature (K)

Figure 5.12.Change irspecific volume with respect to MW forst.c= 1.5 kcal/mol
(strong vdw interaction)
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6. CONCLUSION AND FUTURE WORK

In this work we first studied the extent of predios of elastic network models on
the well-studied protein systems. We than seekeduriderstand the extent of
applicability of Anisotropic Network Model (ANM) toligomeric systems, exemplified
by polybutadiene melts. We than used nanoclustergrobe the linear viscoelastic
properties of these melts. Finally, we used thes®probes to manipulate properties of
polymers. These include mechanical strength, wisctirectly correlated with force

constants derived by ANM, as well as the glasssitem temperature.

In the first part of the thesis, the extent of pcedns of elastic network models on
the well-studied protein systems is studied. Desthieir different topological structures
and sizes, a statistical analysis of a large nunolbdolded proteins leads to common
features. In particular, the radial and angulatridistion functions provide the degree
of (in)homogeneity in the protein as well as a diative description of the location of
the coordination shells. Depth dependent analysisvs that the densely packed core
region of the protein has a different local struetbuilt around it compared to its
surface. In the core of the protein, the secondhimrs have a non-random distribution
that is more pronounced than the first neighborghé surface residues, the reverse is

observed (figure 3.1b).

Calculations at a variety of cut-off distances ugedhetwork construction reflect
that the dimensionality of the system approachas o regular crystals whemgw)
scales withw? only at unrealistically high. values (figure 3.2b). The modal spectrum
resembles that obtained from all-atom calculatwith realistic atom-atom interaction
potentials in the region above the second cooridinahells up to a cut-off distance of
16 A (figure 3.2a). At this threshold, the spectiahension shifts from the region of
ds = 1-2 to above 2, accompanied by a crossovesirate of change (figure 3.2b).

Network constructed by using Voronoi tessalatioos, the other hand, fail to
correctly define the local interactions while treyccessfully incorporate the long-range

pairwise interactions. In particular, the mode rilisttions (figure 3.2a) and the spectral
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dimensions measured at the slow mode region (figuBd) do not represent the
experimentally and theoretically well-characterizedapes for proteins. Therefore,
these network models will provide misleading infatran on the properties that rely
mostly on local interactions (e.g. residue flucimas, figure 3.3). On the other hand,
they are expected to be very effective in foreagspiroperties that depend on a correct
incorporation of the long-range contacts, as wasmty demonstrated by their success

in predicting the folding rates of two-state prate[100, 101]

In the second part, in order to understand thenéxitapplicability of ANM to
polymeric systems, we have successfully simulaiddl model ofcis-1,4-PBD over a
range of pressures and temperatures well abogtags transition temperaturgy(~175
K). With MD simulations, we are able to analyze adain useful predictions for the
fluctuations, spring constants and second viri@ficdents at different pressures and
temperatures. Macroscopic properties such R <Cp, v, k7 are obtained priori to
check whether or not the system fully relaxes amedipts similar values to the
experimentally measured ones obtained for bulk PBtems. By predicting
thermodynamic properties and showing correlatioANM with the experiments in the
literature as well as MD simulation results, we dnassessed the validity and range of

applicability of ANM.

The simulated systems have very similar structanal conformational properties
with small differences in the second and third estineighbors as confirmed by RDFs.
However, these small local differences and arramgesn result in considerable
differences in thermodynamical properties which @&@stimated qualitatively by

applying ANM to the relaxed coordinates of the egsbbtained from MD simulations.

RMSD values of the chains obtained by ANM and MI@ &ighly correlated,
yielding values in the range 0.7 - 0.95. When ayedaover all atoms, the trends of
these RMSD values from different temperatures amggures are in good agreement
with the expected qualitative trends with the exigepof highest pressure studied, 3000
atm and the lowest temperature studied, 300 K. I&ip values of spring constants
and the second virial coefficients estimated by AldM qualitatively correlated with

the values obtained from MD directly.
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In the third part of the thesis, we use nanoclgsterprobe the linear viscoelastic
properties of these melts and to manipulate proggerof polymers by playing
parameters such as temperature, size, vdw intenastrength between the nanocluster
and polymer. First, we calculated the diffusion fGoents of the polymer and by
fitting these coefficients to the Einstein-StokeuBtion, zero-shear viscosity of the
polymer is predicted. The viscosity results haverbeompared with those for %60 cis-
content PBD chains of similar molecular weight mead by rotational viscosimeter.
The estimated viscosity results have close valogkd experimental results, having the
expected logarithmic trend. The relaxation time<Cefl vectors are also in very good
guantitative agreement with NMR measured valuesfigoing that the united atom

force field used in the simulations well-describies dynamics of the real system.

RDF for different temperature and nanocluster sizas also extracted in order to
see the effect of these parameters on the configned properties. It is observed that
despite the size and temperature slightly modthesdifferent coordination shells, there
is no obvious change in the RDF in the bulk ofgiistem.

In order to see the underlying mechanism of dynahiehaviour of polybutadine
chains in the vicinity of the nanoclusters and thkaxation times of chain nodes {sp
atoms in the butadiene monomer), residence tiy)ea(d correlation timezrf) have
respectively been calculated from MD simulationscd&pe and correlation times reach a
plateau as the interaction strength increasesusedhe polymer chains are stick to the
surface more tightly and their translational an@mtational movements are much more
restricted.

It is also possible to manipulate mechanical prigehy tuning the interaction
strength of the nanoclusters with the chains. Apipnately 7 % increase in the bulk
modulus and 25 % increase in the shear moduluslai@ned by changing the vdw
interaction strength from weak to strong. Furthemn®W affects both bulk and shear
moduli. However, increasing the size of the nanstelts has an increasing effect on
both bulk and shear modulus upNe70 atoms, further increase of the size decreases
the bulk modulus to the values of the smaller saed increases the shear modulus

further. From practical point of view, we can assutmatKk is not much affected by the
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size of the nanocluster, where&s linearly increases as the interaction strength

increases from normal to strong values.

Ty increases as the nanoclusters are introducecetpdlymer melt and decreases
as the interaction strength increases away fronstiwedard valu€elyis increased from
~176 K for pure PBD up to ~184 K for the standant@iaction strengthilyalso have an

increasing trend by MW in accordance to theoretsglectations.

For future work, first in order to obtain the chang chain order near the
nanocluster surface, both translational order, wantified by RDF, and orientational
order parameters will be extracted for differeritcfeparameters. The latter in in fact an
extension of ADF, developed in Chapter 3, and leenlstudied in detail for a series of
amorphous materials (ref Steinhardt 1983). Thesmiatic order details will be used to
understand the underlying mechanism that lead ® dhserved mechanical and
dynamical property variations in the bulk polymbr.addition, the observed effect of
vdw strength on moduli andly will be explained using thermodynamical arguments
based on entropy-enthalpy balance. The currentoappr may further be applied to
polymers with different chain architecture suctcapolymers, those incorporating ring
groups and branching. Finally, the interaction lestw the nanocluster and polymer
chains may be modified by adding explicit or partiaarges to the nanocluster atoms,
or direct covalent bonds to the chains to see ifcese further enhance the modulus or

other macroscopic properties.
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APPENDICES

APPENDIX A: Application of Periodic Boundary Conditions (PBC)

To implement PBC in practice, at least two stemsra¥eded. The first is to have an
atom (or a node) which leaves the simulation celboe side to enter back from the other side.
This is of course a simple operation, and couldirbplemented in the code by three
statements: e.g. (for the x dimension, assuming an orthogoml cell centered on the origin).
And second is to make sure that every distancedsrtwatoms has a length and direction which
corresponds to the minimum image criterion. This ba achieved in the direction (which

should be repeated in all 3 dimensions) as follows:

f (periodicx) then if (periodicx) then

if (x< -xsze/2.0) x=x+xsize dx = x(j) - x(i)

if (x>= xgize/2.0) x=x-xsize if (dx> xsize/2.0) dx = dx - xsize

endif if (dx <= -xsize/2.0) dx = dx + xsize
endif

Handling PBC in Constrcuting Connectivity and Hessan Matrices

Figure A.1 depicts the graphical representatiorthef application of PBC to 2D box
with 4 interacting points. The corresponding Coninéyg (Kirchhoff) Matrix is shown in the
inset. The total number of connections of the pltB is increased one more in the diagonal
entry if it is within the cut-off distance after\iag mirror-image in the-direction. The non-
diagonal (3,4) and (4,3) entries does not changeilaly, only the diagonal elements of the
Hessian Matrix are increased as the mirrored pesticome to the interaction range of the other
particles within the cut-off value. (For 3D the mirimage is calculated in 2 direction in each
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APPENDIX B: Derivation of Second Virial Coefficient (b,) from ANM

The pressure of a system consists of two termsj {@lgermodynamical) term and the
virial term.

NkgT

1 _
P = Pigeai + Pyiriar = —,— = ;Z{'V:f Y ivafij 1 (B.1)

In network models, force ar pair is given by—y;;AR;; ; thus, the(f;;.7;;) termis;

= —yi[(R; — Ry — (Rjo — Rio)] - (Rj — Ry) (B.2)
:yij(Rij)z + ]/lj(RUORU (BB)
=Yij (Rl-j)z (B.4)

For the whole system, the virial coefficient beceme

p4ANM — ﬁRT(H —D)R (B.5)

71



APPENDIX C: Derivation of Isothermal Compressibility («r) from ANM

Using simple elastic network model potential) = ARTTART) for the interacting
pairs (or nodes), the isothermal compressibilitegsial to equation C.1. Upon integration, we
obtain the relation ok, to the multiplication of the eigenvalues, omittitigose equal to zero
due to the pseudo-inversion, obtained from Kircli@dnnectivity) Matrix.

Kr = % J, exp (#) dv (C.1)
= & o) V2 (€2)
= H G ©3
= O (C4)
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APPENDIX D: Details of the Diffusion Coefficients ad Viscosity Predictions

Table D.1.Details of the diffusion coefficients of PBD+Clustt T=330 K

cluster size  r (A) 1/r slope y- diff.coef.

(# of atoms) intercept
10 3.162243 0.316231 1.003 -4.216 1.01356E-07
20 3.858489 0.259169 1.002 -4.414 6.42464E-08
30 4.372635 0.228695 1.003 -4.356 7.34258E-08
40 4778822 0.209257 1.003 -4.18 1.10116E-07
70 5.6718 0.176311 1 -4.365 7.19198E-08
100 6.303312 0.158647 1.004 -4.741 3.02586E-08
150 7.147039 0.139918 1.002 -4.626 3.9432E-08

Table D.2.Details of the diffusion coefficients of PBD+Clustt T=380 K

cluster size  r(A) 1/r slope y- diff.coef.

(# of atoms) intercept
10 3.162243 0.316231 1.018 -3.767 2.85003E-07
20 3.858489 0.259169 1.001 -3.948 1.87866E-07
30 4.372635 0.228695 0.9949 -3.985 1.72524E-07
40 4.778822 0.209257 0.8979 -3.219 1.00658E-06
70 5.6718 0.176311 1.001 -4.082 1.3799E-07
100 6.303312 0.158647 1.003 -4.847 2.37055E-08
150 7.147039 0.139918 1.001 -4.609 4.10061E-08

Table D.3.Details of the diffusion coefficients of PBD+Clustt T=430 K

cluster size  r (A) 1/r slope y- diff.coef.

(# of atoms) intercept
10 3.162243 0.316231 1.001 -3.522 5.01013E-07
20 3.858489 0.259169 1.001 -3.675 3.52248E-07
30 4.372635 0.228695 1.001 -3.981 1.7412E-Q7
40 4778822 0.209257 1.002 -4.092 1.34849E-07
70 5.6718 0.176311 1.002 -4.089 1.35784E-07
100 6.303312 0.158647  1.002 -4.092 1.34849E-07
150 7.147039 0.139918 1.001 -4.462 5.7524E-08
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Figure D.1.Predictions of zero-shear viscosities from diffuscoefficients foT=330
K, 380 K, and 430 K
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