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ABSTRACT 
 

There is a great need for a well-controlled nanogap fabrication technique 
compatible with NEMS applications.  Theoretically, a displacement sensor based on 
vacuum tunnel junction or a nanogap can be capable of performing quantum-limited 
measurements in NEMS applications.  Additionally, in the context of nanoelectronics, 
nanogaps are widely demanded to characterize nanostructures and to incorporate them 
into nanoscale electronic devices.  Here, we have proposed and implemented a 
fabrication technique based on the controlled shrinkage of a lithographically defined 
gap between two suspended structures by thermal evaporation.  We have consistently 
produced rigid and stable metallic vacuum tunneling junctions at nanometer or sub-
nanometer sizes.  The fabricated nanogaps were characterized by I-V measurements and 
their gap sizes and potential barrier heights were interrogated using the Simmons’ 
model.  Throughout this work, high tensile stress silicon nitride thin films were 
preferred for the fabrication of suspended structures because they have high resonance 
frequencies with low dissipation, they are mechanically stable, and they are resilient to 
stiction problem.  However, high-stress nitride structures experience a complex shape 
deformation once they are suspended.  The shape deformation is undesired when the 
precise positioning of the structures is required as in nanogap fabrication.  We 
developed a new method in which the built in stress gradient is utilized to tune the 
distance between two suspended structures.  The technique was simulated by finite 
element analysis and experimentally implemented to demonstrate a gap tuning 
capability beyond the lithographic resolution limits.   
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ÖZET 
 
NEMS uygulamaları ile uyumlu, kontrollü bir nanoaralık üretim yönteminin 

geliştirilmesine büyük ihtiyaç duyulmaktadır.  NEMS alanında yapılan teorik 
çalışmalar, vakum tünelleme eklemi ya da nanoaralık kullanımına dayalı bir yer 
değiştirme sensörünün, kuantum sınırında ölçümler yapabileceğini göstermektedir.  
Ayrıca nanoelektronik uygulamalarında, nanoyapıları karakterize etmek ve bu yapıları 
nano boyutta aygıtlara yerleştirmek için nanoaralıklara gereksinim duyulmaktadır.  Bu 
çalışmada, askıda duran yapılar arasında litografik olarak belirlenmiş bir aralığın ısıl 
buharlaştırma ile kontrollü olarak daraltılmasına dayalı bir yöntem önerilmiş ve 
uygulanmıştır.  Nanometre ya da nanometre altı boyutlarda sabit ve kararlı nanoaralıklar 
tutarlı bir şekilde üretilmiştir.  Üretilen nanoaralıklar I-V ölçümleri ile karakterize 
edilmiş ve Simmons’ modeli kullanılarak aralığın boyutu ve potansiyel bariyer 
yüksekliği belirlenmiştir.  Yüksek rezonans frekansı ve mekanik kalite faktörüne sahip 
asılı yapılar elde edebilmek ve üretim esnasında yapışma probleminden etkilenmemek 
için, çalışma boyunca yüksek çekme gerilimli silikon nitrit ince filmler tercih edilmiştir.  
Fakat, yüksek stresli nitrit filmler serbest hale getirildikleri zaman şekil 
deformasyonuna uğramaktadırlar.  Nanoaralık üretiminde olduğu gibi, yapıların 
konumunun muhafaza edilmesi gereken durumlarda şekil deformasyonu sorunlara sebep 
olmaktadır.  Bu çalışmada, içsel stres gradyantı kullanılarak, asılı yapılar arasındaki 
mesafeyi kontrol edebilen yeni bir yöntem geliştirilmiştir.  Geliştirilen teknik, sonlu 
eleman analizi ile simule edilmiş ve deneysel olarak gerçeklenmiştir.  Simulasyon ile 
deney sonuçlarının karşılaştırılması sonucu, geliştirilen tasarımın litografik 
çözünürlüğün ötesinde bir aralık ayarlama kapasitesine sahip olduğu gösterilmiştir.  
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CHAPTER 1 

 

INTRODUCTION 

1.1   Context and Motivation 

Quantum mechanics predicts unexpected behaviors that are not complied with the 

common sense of human beings.  However, the validity of the theory has been proved 

experimentally over and over, especially for single particles like electrons and phonons.  

On the other hand, quantum mechanical behaviors are not observed in the macroscopic 

world that we live in.  Since the foundation of quantum mechanics, there has been a 

great interest to understand the interface between the quantum mechanical microscopic 

world and the classical, Newtonian, deterministic macroscopic world by answering the 

questions of:  Can we observe the quantum mechanical properties of a macroscopic 

system?  What conditions have to be satisfied?  Theoretical and experimental studies 

have been carried on extensively to comprehend the extent of quantum mechanics in 

macroscopic world 1-4.  It has found that a macroscopic system has to be cooled-down to 

its ground state to reveal its quantum mechanical properties 5.  Thus, the system itself 

and its environment must satisfy extreme conditions like sub-mK temperature and 

ultrahigh resonance frequency 4-7.  Additionally, the measurement device coupled to the 

macroscopic structure should be a quantum mechanically ideal detector because not 

only the observed but also the observer affects the results of the measurement in 

quantum mechanics 8-10.   

 

Nano-electro-mechanical systems, NEMS are promising candidates for the direct 

study of the quantum mechanics in macroscopic world because they have kHz-GHz 

resonant frequencies, high mechanical quality factors and small masses 11-12.  As a result 
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of their diminished size, they can be cooled down to extremely low temperatures using 

cryostats.  Different detection schemes have been proposed, theoretically analyzed and 

experimentally implemented to perform measurements on nanomechanical resonators at 

the quantum limit 3, 11-21.  One of the most promising ideas is to unify the sensitivity of 

an electron tunnel junction with the extraordinary mechanical properties of a 

nanoresonator.  Following the invention of scanning tunneling microscope, STM 22, the 

idea of using tunnel junctions as a motion detector was first proposed by gravitational 

wave community to detect very weak forces 23-27.  The theoretical calculations of that 

time suggested that vacuum tunneling transducers can reach quantum limit in the 

position measurements of a macroscopic structure 28-30.  Parallel with the advancements 

in nanotechnology, quantum-limited displacement detection based on tunnel junctions 

have regained a substantial theoretical interest 31-37.  On the other hand, the experimental 

realization of a tunnel junction-nanomechanical resonator embedded system is 

nontrivial from the engineering point of view 18.  A metal tip has to be coupled to a 

suspended nanomechanical structure with a nanometer or sub-nanometer gap in 

between.  However, the existing nanogap fabrication methods are not entirely 

compatible with the realization of such a system 38-40.   

 

The underlying motivation of this thesis is to establish a novel method for the 

fabrication of vacuum tunnel junctions compatible with NEMS applications.  We have 

proposed and implemented a fabrication technique based on the controlled shrinkage of 

a lithographically defined gap between two metal tips or a metal tip and a nanoresonator 

by thermal evaporation 41.  In the experimental implementations a high stress silicon 

nitride thin film is used for the fabrication of free mechanical devices 41, 42.  High tensile 

stress suspended structures are demanded in NEMS applications because they have high 

resonance frequencies with low dissipation, they are mechanically stable, and they are 

resilient to stiction problem 43-46.  However, during this study we figured out that the 

high-stress nitride structures experience a complex shape deformation once they are 

released from the layers underneath.  The shape deformation becomes problematic when 

the precise positioning of the structures is required such as tunnel junction-nanobeam 

embedded systems.  Consequently, the motivation of finding a solution to this problem 

has led to the second important outcome of this study.  We proposed and implemented a 

new design where the distance between two suspended structures after wet etch can 

easily be tuned beyond the lithographic resolution limits 42.   
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1.2   Structure of the Thesis 

Chapter 2 presents the basic definitions, theoretical concepts and experimental 

aspects of quantum measurement on mesoscopic systems and nano-electro-mechanical 

systems, NEMS.  The chapter initially addresses the question of why we cannot observe 

quantum mechanics in our classical, macroscopic world.  This is followed by the 

discussion on the criteria that a mesoscopic system and its environment must satisfy to 

reveal the quantum mechanical features of the system.  Then, the role of Heisenberg 

Uncertainty Principle on quantum measurements is explained and the Standard 

Quantum Limit of a simple harmonic oscillator is calculated.  In the second part of the 

chapter, NEMS and their basic operating principles are introduced.  After that, the most 

essential components of NEMS, nanoresonators and their physical properties such as 

resonant frequency and mechanical quality factor are explained.  Finally, different 

actuation and detection methods from literature are presented.   

 

In Chapter 3, the theoretical and experimental aspects of the vacuum tunnel 

junctions, VTJ or nanogaps are provided.  These two terms are used interchangeably 

throughout the thesis.  First of all, the physics of electron tunneling and its applications 

are discussed.  Then, different nanogap fabrication methods from literature like 

electromigration, mechanically controllable break junction, electrodeposition, etc. are 

presented with an emphasis on their weaknesses and strengths.  After that, Simmons’ 

Model, a theoretical model of tunnel junctions, is discussed in detail 47.  This model is 

widely used in literature for the characterization of fabricated nanogaps by fitting the 

experimental data to the Simmons’ equation.  Same model is also utilized in Chapter 5 

for the characterization of nanogaps fabricated during this work.  In the last part, the 

idea of using VTJ as a displacement detector is introduced.  The theoretical calculations 

show that VTJ detectors are promising candidates for motion detection at quantum 

limit.  However, there are technical challenges for the experimental realization of a 

nanoresonator-tunnel junction embedded system.  

 

Chapter 4 explains the device fabrication techniques and methods developed and 

implemented during this work.  The recipes and process parameters of each fabrication 

step are provided in detail.  Two process flows for metal tip-metal tip and suspended 

doubly clamped beam-metal tip systems are formulated. 
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Chapter 5 describes a new nanogap fabrication method that we have successfully 

developed and implemented during this work.  The method is based on the controlled 

shrinkage of lithographically defined gaps using in-situ controlled thermal evaporation.  

High stability gaps with sub nanometer dimensions have been produced with this 

method.  First of all, the sample preparation procedure and the details of the home-made 

in-situ controlled thermal evaporation system are provided.  Then, the experimental 

results of three successfully fabricated nanogaps are presented using high-magnification 

SEM images and electrical measurements.  The characteristics of nanogaps such as gap 

size and potential barrier height are interrogated by fitting the current-voltage 

measurements of the device to the Simmons’ equation.  The chapter ends with a 

discussion on the experimental outcomes and future directions. 

 

In Chapter 6, we proposed and implemented a new design which utilizes the high 

tensile stress in Si3N4 thin films to control the gap size between two suspended 

structures.  During device fabrication, we realized that the lithographically defined gap 

widens once the high stress Si3N4 structures are released from the oxide layer.  The 

nanogap fabrication is impaired seriously by this widening of the gap problem and 

hence, a novel solution to this problem is sought and found.  The chapter starts with the 

problem statement and continues with the literature review on the use of high-tensile 

stress thin films in nanomechanics.  It is followed by a discussion on the new device 

geometries that we designed and implemented.  The change in the gap width of real 

devices is compared with the finite element analysis results.  The chapter finishes by 

addressing the capability of this new design to control the gap width between two 

suspended structures made of high tensile stress thin film.    

 

Chapter 7 concludes the main body of the thesis and provides future directions. 
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CHAPTER 2 

 

QUANTUM MEASUREMENT AND NANOMECHANICS 

2.1   Quantum Measurement in Mesoscopic Systems  

The validity of quantum theory has been proved in tiny objects like electrons, 

phonons and single molecules.  It is observed that they obey the extraordinary rules of 

quantum mechanics.  On the other hand, macroscopic objects are ordinarily governed by 

classical Newtonian mechanics.  One of the fundamental inquiries of physics is to 

discover the extent to which the quantum mechanics can be applied in macroscopic 

world.  It is believed that the quantum features of a macroscopic system can be unveiled 

under extreme conditions.  Theoretical and experimental studies have been carried out 

to comprehend these conditions and satisfy them in real world.  In quantum mechanics 

both the observed and the observer affect the result of the measurement.  Here, first the 

basic criterion that a system itself must satisfy to enter the quantum regime, low thermal 

occupation number, is discussed.  Then, the fundamental constraints and uncertainties 

specific to the measurement process itself are presented.  Throughout these theoretical 

calculations the macroscopic object is assumed to behave like a simple harmonic 

oscillator. 

2.1.1 Quantum-Classical Transition 

Theoretically it is possible to unveil the quantum mechanical features of an 

ordinarily classical object when the thermal fluctuation energy (k�T) does not obscure 
the mechanical quanta energy (ℏω) 6, 9, 48-50:   
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                                                        ℏω ≥ k�T.                                                  (2.1) 
 

Here ℏ is the Planck’s constant, ω 2π⁄  is the oscillator’s resonance frequency, k� is the 
Boltzmann constant and T is the equilibrium temperature of the oscillator and its 

environment.  This condition necessitates a harmonic oscillator which has GHz-range 

resonance frequency and operates at sub-K temperature.  A quantity called “thermal 

occupation number, nth” is introduced to more elaborately define the quantum-classical 

transition criteria for a harmonic oscillator 48:  

 

                                                    〈n"#〉 = �
% + 'eℏ( )*+⁄ − 1-��

.                                 (2.2) 

 

Thermal occupation number can be interpreted as the average number of phonons in the 

oscillator for a given state.  If the energy of each phonon is given by ε = ℏω, the total 
energy of the oscillator becomes E = 〈n"#〉ε 50.  Accordingly, the 1 2⁄  term in Equation 

2.2 corresponds to the ground state energy of the harmonic oscillator.  It has already 

mentioned that the basic criterion to enter the quantum realm is to eliminate the classical 

fluctuations which demands very high ℏω k�T⁄  ratio.  In other words, low thermal 

occupation number is desired for quantum measurements.  In the extreme case when the 

temperature goes to absolute zero, thermal occupation number approaches to 1 2⁄ , 

which means cooling the oscillator to its ground state.  In Figure 2.1, the thermal 

occupation number versus oscillator’s resonance frequency is plotted for five different 

temperatures between 1 mK and 300 K.  The highest mechanical resonance frequencies 

that are experimentally realized are on the order of GHz for nanoresonators 20, 51.  

Therefore, the temperature has to be smaller than 100 mK to approach the ground state 

of the nanoresonator.  In today’s technology, temperatures below 10 mK can be 

achieved in cryogen free dilution refrigerators using 3He/4He mixture. 
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Figure 2.1:  The thermal occupation number versus the resonant frequency is plotted for 
temperatures 1 mK, 10 mK, 100 mK, 4 K and 300 K. 

2.1.2 Heisenberg Uncertainty Principle and Standard Quantum Limit  

In quantum mechanics, cooling the oscillator down to its ground state is not 

sufficient to observe the quantum behavior of the system.  Quantum mechanics also 

enforce some constraints on the sensitivity of the measurement process.  The physical 

ultimate limit of the measurement accuracy is determined by the Heisenberg 

Uncertainty Principle 52:  

 

                                                    ∆x∆p ≥ ℏ 2⁄  .                                                 (2.3) 

 

In this equation, ∆x  and ∆p  represent the root-mean-square deviations of 
oscillator’s position and momentum from their mean values, respectively.  The 

uncertainty principle implies that an object cannot have precisely defined values of 

position and momentum simultaneously.  Despite the fact that the uncertainty relation is 

a fundamental property of a quantum object’s physical state, it can also be interpreted as 

the uncertainty in the measurement of observables such as position and momentum 50: 

 

                                         ∆x3456784349"∆p:48"78;5"<=9 ≥ ℏ 2⁄  .                               (2.4) 
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In this interpretation, ∆x3456784349"  is the error in the measurement of the 
position of the oscillator and ∆p:48"78;5"<=9 is the perturbation on the oscillator caused 
by the measurement process 50.  The position can be measured with arbitrary accuracy 

for one single instant measurement.  On the other hand, the accuracy is limited for 

continuous measurements as a result of the back action of the momentum uncertainty on 

the succeeding position measurement and vice versa.  The minimum uncertainty in 

position for two consecutive measurements is called as the “standard quantum limit” 50.   

 

The standard quantum limit of a simple harmonic oscillator in its ground state can 

be calculated using Heisenberg representation.  In this representation, the equations of 

motion for the position and momentum of an oscillator are given by 53: 

 

                                   x>t@ = x>0@ cos>ωt@ + >p>0@ mω@⁄ sin >ωt@ ,                         (2.5) 
  

                                    p>t@ = −mωx>0@ sin>ωt@ + p>0@cos >ωt@ .                           (2.6) 
 

The corresponding variances of position and momentum are calculated as 6:  

 

                         ∆x>t@ = F>∆x>0@cos >ωt@@% + '>∆p>0@ mω⁄ @sin>ωt@-%
 ,               (2.7) 

 

                          ∆p>t@ = G>−mω∆x>0@sin >ωt@@% + >∆p>0@cos>ωt@@% .                 (2.8) 
 

In these equations, ∆H>0@  is the initial error in the position and ∆I>0@  is the 
momentum perturbation coming from the first measurement and their relation is given 

by the uncertainty principle: ∆I>0@ ≥ ℏ 2∆H>0@⁄ .  When this inequality is inserted into 

Equation 2.7, the variance of position can be written as a function of the initial error in 

position only: 

 

                        ∆x>t@ ≥ F>∆x>0@cos >ωt@@% + '>ℏ 2mω∆x>0@⁄ @sin>ωt@-%
 .            (2.9) 
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When Equation 2.9 is differentiated with respect to ∆H>0@ and equalized to zero, 
the initial error in position which minimizes the time dependent variance of position can 

be found:   

 

                                               ∆H>0@JKL = Gℏ 2�M⁄ ≡ ∆HOPQ .                              (2.10) 
 

The standard quantum limit, SQL is the ultimate limit to the accuracy of a simple 

harmonic oscillator’s position measurement.  In other words, SQL is theoretically the 

best sensitivity a displacement sensor can achieve.  In real world, the sensitivity of the 

measurement is further deteriorated due to the back-action force that the detector exerts 

on the oscillator and the unavoidable noises added by the electronic equipment like 

amplifiers.  Mechanical oscillators with higher SQL are demanded in quantum 

measurements because the sensitivity of the motion detector should approach the SQL 

of the oscillator.  Equation 2.10 shows that SQL is inversely proportional with term 

�M.  As a result of their low masses, this term is much smaller for the nanoresonator 
than for the bulk structures.  For instance, a typical nanoresonator with a mass of 10-16 

kg and resonance frequency of 100 MHz will result in a SQL of 3x10-14 m.  On the 

other hand, a daily-life bulk structure with a mass of 10 kg and resonance frequency of 

1 kHz will have a SQL of 3x10-20 m.  The SQL of nanoresonator is six orders of 

magnitude larger than the SQL of a bulk structure.  Therefore, theoretically, 

nanoresonators should reveal their quantum mechanical properties at a much larger 

length scale. 

 

In summary, most basically, two criteria must be satisfied to perform quantum 

measurements on macroscopic bodies.  First of all, the mechanical oscillator should 

resonate at GHz frequencies and operate at sub-100 mK temperatures to cool down to 

its quantum ground state.  Secondly, the displacement detector’s sensitivity should 

approximate the SQL of the oscillator which is more viable for nanoresonators.  In this 

context, nanomechanical devices are favored as a result of their diminished size, low 

mass and high resonance frequency.  
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2.2   Nano-electro-mechanical systems (NEMS)   

2.2.1 Introduction to NEMS 

A typical NEMS consists of a mechanical resonator coupled to a detector of 

comparable size.  At least one of resonator’s dimensions should be in nanometer range. 

The basic working principle of NEMS is similar to conventional electromechanical 

systems and is illustrated in Figure 2.2.  In NEMS, transducers are employed to convert 

electrical signal to mechanical stimuli or vice versa.  The input transducer, in other 

words the actuator, converts the electrical signal to physical stimuli to drive the 

mechanical element.  This process is called as “actuation”.  On the other hand, the 

output transducer, a sensor or a detector, measures one of the physical properties of the 

mechanical element and converts it to an electrical signal.  The process is called as 

“detection”.  The geometry and the size of the mechanical element vary from system to 

system and there are many different actuation and detection techniques. 

 

 
 

Figure 2.2:  The basic operation principle of NEMS is illustrated.  
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Ultrafast and ultrasensitive mass 54, displacement 55, and strain 56 measurements 

can be performed using NEMS.  As a result of their diminished size, nanomechanical 

resonators have extraordinary mechanical properties such as small inertial mass and 

very high resonance frequency 13.  Therefore, besides metrology, NEMS also serve the 

fundamental research on the interesting internal dynamics of a nanoresonator such as 

energy dissipation and mechanical quality factor issues 43-45.  Last but not least, NEMS 

are promising systems for the detection of quantum mechanical behavior in 

macroscopic objects.  Despite their diminished size, nanoresonators are still 

macroscopic structures which consist of billions of atoms and have many degrees of 

freedom.  Therefore, their properties and behavior under ordinary conditions are 

explained by classical, Newtonian mechanics.  Nonetheless, when the extreme 

conditions of GHz mechanical resonance frequency, sub-100 mK operating temperature 

and ultra-small effective mass are satisfied, quantum mechanical behavior of the 

mechanical structure can be revealed.  In the previous section, it has been shown that 

these extreme conditions can be fulfilled using nanomechanical structures.  A quantum 

mechanically ideal position detector which has femtometer-range sensitivity and can 

keep up with the GHz speed of the resonator is demanded for this kind of 

measurements.  In the following sections, first the mechanical properties of a 

nanoresonator will be discussed and then, the most prominent actuation and 

displacement detection techniques from literature will be presented. 

2.2.2 Nanoresonators  

One of the fundamental elements of the NEMS devices is the nanomechanical 

resonator.  Nanomechanical resonators are suspended structures with minimum one 

clamp point.  They are confined to nanometer scale in at least one degree of freedom 

(width, thickness or length).  Different geometries are utilized for the fabrication of 

nanoresonators such as doubly-clamped beam 16-19, 43-46, 51, cantilever 57-59 and paddle 20, 

60.  In this work, we prefer to study and use doubly clamped flexural nanobeam which is 

also the most extensively employed geometry in literature.  Therefore, the resonant 

frequency of fundamental modes and the mechanical quality factor are explained only 

for this particular geometry.   
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A doubly clamped beam as illustrated in Figure 2.3 can be modeled using the 

continuum theory.  The resonance frequencies for the fundamental flexural modes are 

calculated by the classical Euler-Bernoulli Beam equation under the assumptions of 61: 

 

1. The beam is a prismatic, untwisted and straight structure composed of an 

isotropic, linear elastic material. 

2. The length of the beam is much larger than the width and thickness of the beam. 

3. Displacements from the equilibrium are very small compared to the length of the 

beam. 

 

 
 

Figure 2.3:  The illustration of a doubly clamped beam is given.  L, t and w are the 
length, thickness and width of the beam, respectively. 

 

The resonance frequency of the fundamental modes of a doubly-clamped beam is 

given by the equation 62: 

 

                                                          RL = SLGT U⁄ >V W%⁄ @ .                                    (2.11) 
 

In this equation, T is the Young’s modulus, U is the density, W is the beam length and V 
is the width of the resonator in the direction of the motion.  SL is a constant which 
depends on the mode number, n and can be calculated numerically.  For instance, the 

first normal mode which is the fundamental mode has a resonance frequency of 63: 

 

                                               RX = 1.027GT U⁄ >V W%⁄ @ .                                (2.12) 
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According to this formula, the natural resonance frequency of a nanoresonator 

depends not only on the dimensions of the structure but also on the properties of the 

material used.  The width of an in-plane flexural nanobeam is equal to the thickness of 

the thin film used for the fabrication which is typically on the order of 100 nm.  In Table 

2.1, the fundamental resonance frequencies of a doubly clamped beam with L = 2 µm 

and w = 100 nm are calculated for different materials using Equation 2.12.  These 

calculations show that stiffer materials with high elastic modulus such as silicon nitride 

or silicon carbide produce higher resonance frequencies.  Experimentally, one of the 

highest resonance frequencies reported for a doubly clamped beam is over 1 GHz for 

SiC 51.  Recently, a much higher resonance frequency over 6 GHz is reported using a 

multilayer (Al-AlN-Al) paddle geometry 20.      

 

Table 2.1.  The fundamental resonance frequency of a doubly clamped beam with 
dimensions L = 2 µm and w = 100 nm are calculated for four different materials.  

 
 

Young’s 
Modulus, E 
(GPa) 64 

Density, U 
(kg/m3) 64 

Fundamental 
Resonance 
Frequency, RX 

(Hz) 

Si 129-187 2330 215 MHz 

Silicon 
Dioxide, SiO2 

73 2200 154 MHz 

Silicon Nitride, 
Si3N4 

304 3300 256 MHz 

Silicon 
Carbide, SiC 

430 3300 305 MHz 

 

The other important parameter of a nanoresonator is the mechanical quality factor.  

It is a measure of the damping for a resonator and is affected by various dissipation 

sources such as the metal layers on the structure 65 and the viscosity of the environment 

(vacuum, air or fluid) 66, 67.  High mechanical quality factors are demanded for improved 

sensitivities.  Unfortunately, experimental results show that the mechanical quality 

factor decreases as the dimensions of the nanoresonator diminish 13.  Nonetheless, 

quality factors over one million has been reported for nanoresonators using high tensile 

stress materials 46. 
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2.2.3 Actuation of Nanomechanical Oscillators   

The actuation is performed to drive a nanoresonator to one of its resonance 

modes.  The resonance frequency and the quality factor of the nanoresonator can be 

experimentally determined as a result of actuation.  There are various high frequency 

actuation techniques such as magnetomotive 18, 51, 62, 63, 68, capacitive 69, thermal 56, 

dielectric force 65, piezoelectric 70, and ultrasonic 60 actuation.  Each technique has its 

own advantages or disadvantages and the preference depends on the application.  For 

instance, in magnetomotive actuation, a Lorentz force is applied to the resonator by 

passing an alternating current through the beam in the presence of a strong magnetic 

field.  The nanobeam has to be metallized in magnetomotive actuation to pass the 

current.  This is the most widely used actuation technique in NEMS since most of the 

nanoresonators are already metallized for fabrication or detection purposes and strong 

magnetic field is generally available in sub-K cryostats.  On the other hand, the metal 

coating reduces the quality factor of the nanoresonator.  Therefore, in some applications 

alternative techniques that do not demand metallization of the nanobeam such as 

piezoelectric and dielectric force actuation are preferred to obtain higher mechanical 

quality factors.  The pictures of two different actuation scheme, magnetomotive and 

dielectric force, are presented in Figure 2.4.       

 

 
 

Figure 2.4:  The schematic on the left illustrates the woking principle of magnetomotive 
actuation 62.  The colored-SEM image on the right shows the dielectric force actuation 
where the beam is polarized and excited by the four nearby gold electrodes (yellow) 65. 
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2.2.4 Motion Detection with NEMS  

The position measurement of a nanomechanical resonator can be performed by 

several different techniques such as single electron transistor 14, 16, 71-73, optical 

interferometry 69, 74-76, and atomic point contact 18 to name a few.  As mentioned before, 

a position detector should have a sensitivity of femtometer range and operate at GHz 

frequencies to be able to perform displacement measurements at quantum limit.  In most 

cases, the sensitivity of the detector is limited by the back-action force which is the 

perturbation that the detector applies on the nanoresonator during the measurement 11.  

Therefore, the back-action noise should be quantum-limited for a quantum mechanically 

ideal detector.   

 

One of the most widely implemented and studied displacement detector in NEMS 

community is the single electron transistor, SET.  It is a capacitive transducer based on 

an intrinsically quantum mechanical phenomenon, coulomb-blockade 73.  It consists of a 

metal island between two metal junctions and a gate electrode that is capacitively 

coupled to the island and the nanoresonator as shown in Figure 2.5 16.  The gate 

capacitance changes as the nanoresonator oscillates which in turn modulates the 

potential of the metal island.  The change in island potential is reflected to the drain-

source current.  Briefly, one can deduce the nanoresonator’s motion by monitoring the 

drain-source current.   

 

 
 

Figure 2.5:  The schematic and the colored-SEM image of an SET are given 16.  
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A conventional SET cannot operate at high frequencies because the high 

impedance of the device and the parasitic capacitances from the wiring limits the 

operation bandwidth by 1/RC.  Schoelkopf et. al. developed a new method called as 

“reflectometry” to increase the speed of SET from kHz frequencies to MHz range 14.  

This method has also been employed to increase the increase the speed of other high 

impedance applications such as atomic point contact 18, scanning tunneling microscope 
77. As shown in Figure 2.6, the high impedance of the SET is matched down to the 

impedance of the coaxial cables using an LC transformer.  A high frequency read-out 

circuit system follows the LC transformer to amplify and transmit the signal coming 

from SET.  One of the best sensitivity achieved using radio-frequency SET is 4.3 times 

the quantum limit for a 19.7 MHz nanobeam at 56 mK 17.  This measurement could not 

reveal any quantum signatures because the thermal occupation number of the nanobeam 

was high (nth = 58).  Despite the fact that many state-of-art experiments have been 

carried out using radio-frequency SET, none of them could observe quantum 

mechanical behavior of a nanoresonator.  Recent theoretical studies showed that the 

displacement sensitivity of the SET cannot reach the quantum limit because of the 

excessive back-action force that the SET applied on the nanobeam.  It is theoretically 

calculated that the back-action noise is larger than the maximum allowed by quantum 

mechanics and SET is not an ideal amplifier for quantum measurements 10, 73, 77.   

 

 
 

Figure 2.6:  The working principle of reflectometry method developed for radio-
frequency SET is illustrated 14.   
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The other popular motion detection method in NEMS is the optical interferometry 
74.  In this method, a laser beam is aligned to the midpoint of the nanoresonator.  The 

amount of the reflected light changes as a result of the nanoresonator’s motion and a 

photo-detector determines the modulations in the reflected light to interpret the 

displacement of the nanoresonator.  Optical detectors can operate at high-frequencies, 

they are non-destructive and the back-action noise is quantum-limited.  They are 

especially preferred in application where the metallization of the nanoresonator is 

avoided to increase the mechanical quality factor.  Despite these advantages, optical 

interferometry is ultimately limited by a physical phenomenon called diffraction 74, 79.  

The diffraction phenomenon limits the resolution of the optical sensor when the width 

of the nanoresonator becomes smaller than the wavelength of the light which is the case 

for NEMS applications 13.     

 

 
 

Figure 2.7:  The illustrations which show operation principle of the optical 
interferometry (a) and the diffraction limit (b) are given 13.  
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In addition to these two common techniques, atomic point contact displacement 

detection is noteworthy because it shares parallel motivation with this thesis 18.  In this 

method, a gold doubly-clamped beam is coupled to a gold metal tip through an atomic 

point contact formed by electromigration.  The nanobeam is actuated by magnetomotive 

force and the speed of the detection is increased by using reflectometry method.  The 

displacement of the nanobeam is deduced from the modulation in the tunneling current 

across the atomic point contact as shown in Figure 2.8 18.   

 

 
 

Figure 2.8:  A colored SEM image of the atom point contact displacement detector and 
the schematic that illustrates its working principle are shown 18.   

  

Even though the electron tunneling is intrinsically a quantum mechanical 

phenomenon, they reported that the sensitivity of the detector is 42 times the standard 

quantum limit.  The sensitivity is diverged from the quantum limit due to the excessive 

back action force created by the momentum transfer of the tunneling electrons 18.  There 

are two drawbacks of this method:  

 

1. The suspended structures are made entirely out of gold and hence the resonance 

frequency and the quality factor of the nanobeam are not high enough to enter 

the quantum regime.  The use of metal for the entire structure is an unavoidable 

result of the fabrication method employed to form the atomic point contact.      
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2. The coupling strength between the nanoresonator and the metal tip has to be fine 

tuned to obtain a quantum ideal detector 2, 10, 32, 33.  Experimentally, the coupling 

strength corresponds to the distance between the resonator and the metal tip and 

it is different for a tunnel junction and a point contact 80.  Therefore, it must be 

ensured that the device is fabricated and operated at tunneling regime.  

 

Numerous other alternative NEMS devices are proposed and implemented with 

the motivation of approaching the quantum limit.  Recently, a prominent study has been 

reported by Cleland and his group 20.  They managed to cool down a macroscopic 

resonator to its quantum ground state.  In this study, a multilayer drum-shape resonator 

with a 6 GHz dilatational resonance frequency is coupled to a quantum-bit as shown in 

Figure 2.9.  Such high resonance frequency is achieved as a result of the extraordinary 

geometry and multilayerness of the resonator.  They managed to create single quantum 

excitations in the resonator which is the first sign of quantum control over a 

macroscopic mechanical system   

 

 
 

Figure 2.9:  The SEM image of the “quantum-drum” with 6 GHz resonance frequency 
and the illustration of detection technique using quantum qubit are given 20. 
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CHAPTER 3 

 

VACUUM TUNNEL JUNCTIONS (VTJ) / NANOGAPS 

3.1   Introduction  

In classical mechanics a particle cannot overcome a potential barrier that is higher 

than its total energy.  On the other hand, in quantum mechanics there is a probability 

that the particle will pass across the potential barrier.  This phenomenon is known as 

“quantum tunneling” 80, 81.  When numerous number of electrons are incident to a 

potential barrier, a tunneling current can be detected as a result of this probabilistic 

nature.  The tunneling current density is given by the equation 81: 

 

                                               [ = >	%� 4]%W^ℏ⁄ @exp >− 2W ^⁄ @ .                              (3.1) 
 

In this equation e is the charge of the electron, V is the bias voltage, L is the 

thickness of the barrier, and ℏ is the Planck’s constant.  δ is the characteristic scale of 
length for tunneling and it is calculated by:  

 

                                                          ^ = ℏ G2�e>f − T@⁄  .                                      (3.2) 

 

Here, me is the mass of the electron, U is the height of the potential barrier and E is the 

kinetic energy of the electron.  If the tunneling occurs through a vacuum between two 

metal electrodes, (U-E) term corresponds to the work function of the metal.  The 

exponential term in Equation 3.1 implies that the tunneling current density dramatically 

depends on the distance between the metal electrodes, L.  For the typical values of 

metals’ work functions (4-5 eV), the characteristic scale of length, δ is approximately    
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1 Å.  Hence, Equation 3.1 suggests that a 1 Å variation in the L corresponds to an order 
of magnitude change in the tunneling current.  This sensitivity of the tunneling current 

to L forms the basis of a well known application: scanning tunneling microscope,    

STM 22.  In STM, a tunnel junction/nanogap is formed between an atomically sharp 

metal tip and a metal surface and the tunneling current is monitored as the tip scans the 

surface (Figure 3.1).  The tunneling current modulates as the height of the surface 

features changes.  STM can measure the surface topography with a sensitivity of      

0.01 Å 82. 
 

 
 

Figure 3.1: The illustration shows the basic operation principle of scanning tunneling 
microscope, STM 83. 

 

Beyond the microscopy, tunnel junctions or nanogaps embedded in nano-scale 

devices are highly demanded in nanotechnology.  In STM, a bulk system consisting of 

complicated electronics and piezo materials is used to approach the metal tip to the 

sample surface in a controlled manner.  On the other hand, the realization of a nanogap 

in small-sized devices such as NEMS necessitates special fabrication techniques.  In this 

chapter, first the importance of nanogaps in today’s technology will be underlined and 

the existing fabrication techniques in literature will be presented.  Secondly, Simmons’ 

Model, which is a widely used theoretical model for the characterization of nanogaps, 

will be introduced.  Finally, a displacement detector based on tunneling current will be 

discussed from theoretical and experimental points of view.            
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3.2   Fabrication of VTJ / Nanogaps  

 A vacuum tunnel junction, VTJ or a nanogap is composed of two metal tips with 

a nanometer or sub-nanometer gap.  In this work, VTJ and nanogap terms are used 

interchangeably and both correspond to devices that operate in the tunneling regime.  

Nanogaps can be used to electrically probe nanostructures such as single molecules     
40, 84, nanocrystals 85, and biomolecules 86, 87.  Conventional silicon technology has 

almost reached its limit and nanostructures are intended to be used as the active building 

blocks of next generation integrated circuits 88-90.  Nanogaps are needed to study the 

electrical properties of nanostructures and to integrate them into the electronic devices.  

Nanogaps can also be used in the context of displacement detection of nanoresonators 

as mentioned in section 2.2.4 18, 26.   

 

Even the resolution of the state of the art micro/nano fabrication techniques such 

as electron or ion beam lithography is not enough for the direct patterning of vacuum 

tunneling junctions which require sub-nanometer resolution.  Therefore, alternative 

efficacious fabrication techniques are required for the realization of nanogaps.  A 

diverse range of nanogap fabrication techniques can be found in literature.  Most of 

them are based on either the breaking or etching of metallic constrictions or the 

reduction of originally wide gaps using various deposition techniques.  The two most 

common methods, nanogap formation by electromigration 39, 91-99 and mechanically 

controllable break junctions 86, 100-106, and the other noteworthy techniques 107-120 will be 

discussed in the following subsections.    

3.2.1 Electromigration 

Electromigration has been known for a long time as a failure mechanism in 

microelectronic circuits 121.  It is first utilized for the fabrication of a nanogap by Park 

et. al.
39.  When a current is passed through a metal, the moving electrons transfer some 

of their momentum to the ion cores by inelastic scattering.  If the current density and 

hence the momentum transfer are large enough, the ion cores can start to move 

gradually which results in the actual displacement of the material 38.  For the fabrication 

of a nanogap, a large current density is passed through a thin metallic nanowire or a 

metal constriction until a break occurs as result of the movement of the metal atoms.   
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There are two important parameters in electromigration: current density and 

temperature 96.  The current density determines the number of moving electrons and the 

amount of momentum transfer to the ion cores.  The temperature affects the mobility of 

the ion cores and the conductivity of the metal which in turn changes the current density 

under constant bias.  Control over these two parameters during processing is very 

crucial for the successful formation of nanogaps using electromigration.  Therefore, 

electromigration is generally performed at cryogenic temperatures to avoid over-heating 
95 and the applied power is controlled with a feedback mechanism throughout the 

processing 96.   

 

Nanogaps below 5 nm have been reported many times using electromigration 91-99.  

On the other hand the main problem with electromigration is that it is a self-terminating 

process and the exact position and size of the nanogap cannot be predetermined.  Even 

though it is possible to apply this method in ambient environment 97, special conditions 

such as low temperature and high vacuum are required for the fabrication of smaller and 

cleaner nanogaps.  Last but not least, another drawback of this method is the metal 

debris remained inside the gap after fabrication which degenerates the electrical 

behavior of the junction 38.      

 

 
 

Figure 3.2:  The SEM image of an electromigrated nanogap and the conductance of the 
circuit with respect to applied bias during fabrication are given 93. 
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3.2.2 Mechanically Controllable Break Junctions 

Mechanically controllable break junctions, MCBJ was first invented by Moreland 

and Ekin in 1985 122.  In this technique, a three-point bending mechanism is used to 

break a metal wire as shown in Figure 3.3 38.  A notched metal wire is glued on a 

flexible substrate and the two ends of the substrate are fixed using counter supports.  An 

upward force is applied to the middle of the substrate where the notch is placed.  The 

amount of the force is finely adjusted using piezo materials to be able to bend the 

substrate in a controlled manner until the wire is fractured 40.  Once the nanogap is 

formed, it is possible to fine tune the gap size using the delicate piezoelectric system.  

The fabrication is generally performed in low temperature and high vacuum to obtain 

cleaner nanogaps.  The main advantages of this technique are; the gap size can be 

adjusted continuously and the fabricated nanogaps are very stable (0.2 pm/h) 100.  

Nanogaps with different sizes, from point contact to tunneling regime can be realized 

and the discrete universal conductance steps can be observed using MCBJ technique  
100-106.  

 

 
 

Figure 3.3:  The working principle of mechanically controllable break junction using 
three-point bending mechanism is illustrated 38. 
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MCBJ method is very useful for studying the electronic behavior of 

nanostructures and exploring the characteristic of atomic point contact and tunnel 

junctions such as quantum conductance and tunneling current.  However, this method is 

not compatible with integrated micro/nano devices because of the bulky bending 

mechanism made of delicate piezo materials.   

3.2.3 Other Methods and Conclusion 

Electromigration and MCBJ are based on the breaking of a metal constriction.  On 

the other hand, nanogaps cam also be formed by filling wider gaps using a deposition 

technique such as chemical electrodeposition 107-111, e-beam deposition 112, 

electroplating 113,114, focused ion beam deposition 116, atomic layer deposition 118-119 and 

thermal evaporation 120.  As mentioned before, even the advanced lithography 

techniques like e-beam and focused ion beam lithography can consistently define gap 

widths around 10 nm at best.  In order to obtain nanogaps, these lithographically 

defined wider gaps must be narrowed down by further depositing material to the very 

ends of the tips.  The crucial point is to control gap width during deposition and to be 

able to cease the deposition as soon as the gap size is reduced to a desired value.  

However, such a control mechanism is not available in all of the mentioned deposition 

methods.  Some of them are combined with another technique such as electromigration 

or MCBJ to sustain the control over the fabrication process 110,113 while some other are 

contended with statistical results and low yield 120.   

 

Chemical electrodeposition/dissolution technique is performed in a solution and 

the size of the nanogap can be reversible narrowed or widened by either depositing 

atoms to the electrodes or etching atoms from the junction.  Meanwhile the gap size can 

be in-situ monitored and controlled with a feedback mechanism as shown in Figure 3.4 
107.  The main disadvantage of this technique is that the device has to be immersed in a 

conducting solution which may not be desired in many applications.  Another 

interesting method is developed by Gupta and Willis using atomic layer deposition, 

ALD and in-situ control mechanism 118, 119.  This technique utilizes the prominent 

features of ALD such as slow, controllable deposition and formation of smooth, clean 

surfaces.  However, this technique requires a dedicated ALD system and only nanogaps 

made of copper are demonstrated which are oxidized when they are exposed to air.      
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Figure 3.4:  The schematic illustrated the working principle of chemical 
electrodeposition technique used for the fabrication of nanogaps 107. 

 

 
 

Figure 3.5:  The schematic view and the SEM image of a nanogap fabricated by atomic 
layer deposition are shown 118.  

 

When the context of this thesis is taken into account, the most remarkable study 

from literature is the nanogap fabrication using thermal evaporation 120.  In this work, a 

batch of metal electrodes with an undercut are defined on a silicon oxide substrate using 

e-beam lithography and isotropic etching.  A second thermal coating is performed for a 

predetermined thickness to shrink the originally wide gaps.  The distance between the 

metal electrodes are inspected using SEM after deposition.  The gap sizes around one 

nanometer are chosen for electrical characterization.  The method is demonstrated only 

for gold but there is no material constraint as long as it can be thermally evaporated.  On 
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the other hand, the fabrication yield is very low for this technique since there is no in-

situ monitoring or a feedback mechanism during thermal evaporation.  It is reported that 

4 out of 10 devices are short-circuited after deposition and the other 6 devices have gap 

sizes ranging from sub-nm to 5 nm 120.  Consequently, this method embraces a 

statistical approach with random results rather than presenting a well-controlled 

fabrication process. 

 

 
 

Figure 3.6:  The fabrication steps of nanogap formation using thermal evaporation are 

illustrated 120. 

 

In summary, although all of these methods successfully produce nanogaps, they 

either suffer from low yield or material constraints or have fabrication setups that are 

not compatible with NEMS applications.  Therefore, there is still a great need for a 

well-controlled fabrication technique for the realization of clean nanogaps at a 

predetermined size. 
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3.3   Characterization of VTJ / Nanogaps:  Simmons’ Model  

The resolution of the conventional imaging techniques such as SEM is not enough 

for the direct measurement of gap sizes smaller than few nanometers.  Some advanced 

imaging techniques with higher resolution such as atomic force and transmission 

electron microscope have been used to measure the nanogaps in a very limited number 

of applications 99, 117.  The most common method used to characterize the nanogaps is 

the electrical measurements.  The size of a nanogap can be determined by fitting the 

current-voltage characteristics of the device to a theoretical model.  The most well-

known theoretical model in literature was formulated by Simmons in 1963 47.  This 

model has also been used for the characterization of nanogaps fabricated for this thesis. 

 

The Simmons’ model derives formulae for the current flow through a rectangular 

potential barrier.  The current density-voltage relations are formulated for three ranges: 

low voltage, intermediate voltage and high voltage (Figure 3.7).  In this figure, iQ and 
ij are the chemical potentials for the left and right electrodes, s (Å) and φ (eV) are the 
thickness and height of the potential barrier and V is the applied bias.  The formulae are 

presented in practical units for each voltage range and they can easily be applied to real 

life experimental results.   

 

 
 

Figure 3.7:  The illustrations of a rectangular barrier between two metal electrodes are 
given for low, intermediate and high voltage ranges 47. 
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1. Low-voltage range (� ≈ 0) :  When the applied bias is closed to zero, the 
current density, J (Ampere/cm2) changes linearly with voltage, V (Volts).   
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2. Intermediate-voltage range >� < � 	⁄ @ :  For the applied biases smaller than the 
potential barrier height, there is a complex nonlinear relationship between the 

current density and voltage as given in Equation 3.4.  The first term in the curly 

bracket corresponds to the electron tunneling from left electrode to the right 

electrode and the other way around for the second term.  This region 

corresponds to the tunneling regime and the fabricated tunnel junctions are 

generally operated and measured in this region.  
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3. High-voltage range >� > � 	⁄ @ :  The tunnel junction enters field emission 
regime for applied biases higher than the height of the potential barrier.  Such 

high voltages are avoided during the characterization of tunnel junctions because 

the atomic arrangement is modified at the very end of the metal electrodes under 

large electric field.   

    

The tunneling current can be calculated by multiplying the current density with 

the tunneling area.  There are three parameters to be interrogated; area A (cm2), 

potential barrier height φ (eV) and gap width s (Å), when the measured current-voltage 
data of the device is fitted to the Simmons’ equation for intermediate range.  On the 

other hand in real applications the area is fixed to the cross section of a single atom to 

avoid large errors in fitting 41, 120.  The details on the application of Simmons’ model to 

experimental results will be further discussed in Chapter 5. 
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3.4   VTJ as a Displacement Sensor  

The tunneling current exponentially depends on the barrier thickness, in other 

words the distance between the metal electrodes, as given in Equation 3.1.  When one of 

the metal tips is placed on a mechanical resonator, the tunneling current between the 

fixed metal tip and the resonator changes dramatically as the resonator oscillates.  In 

theory, the displacement of the resonator can be deduced by measuring the tunneling 

current.  The idea of using a VTJ as a displacement sensor was first proposed by the 

gravitational wave-antenna community for the detection of very weak gravitational 

forces that act upon a gravitational wave-antenna 23-30, 123.  Here, the antenna is the 

mechanical resonator and a VTJ is formed by placing a metal tip within one nanometer 

proximity of resonator’s mid-point (Figure 3.8).  When a bias of V0 is applied between 

the metal tip and the resonator that are separated by distance d, a tunneling current of I0 

flows across the tunnel junction.  In this representation, I0 is the nominal value which 

equals to the tunneling current when the resonator is not moving and the width of the 

tunnel junction is fixed to d.   

 

 
 

Figure 3.8:  The schematic illustrates the working principle of VTJ displacement 
detector 27. 
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When the resonator moves, the gap width and hence the tunneling current change 

accordingly.  The relation between the tunneling current and the displacement of the 

resonator, x is given by:  

 

                                                        κx)(II 2exp0=  ,                                                 (3.5) 

 

where m = G2�e� ℏ⁄ .  Here me is mass of the electron, φ is the work function of the 

metal assuming that the gap is absolute vacuum and ℏ is the Planck’s constant.  The 
VTJ can be modeled as a resonator under a bias of V0: 

 

                                                
( ) )2exp(00 kxRIVR −==  .                                        (3.6) 

 

Here, R0=V0/I0 represents the nominal resistance of the VTJ.  The typical values for the 

nominal current and nominal resistance are on the order of nano-Amperes and hundreds 

of mega- to giga-Ohms for d=1 nm 25-27.   

3.4.1 Theoretical Aspects 

 

The theoretical calculations performed by gravitational wave community suggest 

that the displacement imprecision of a tunnel junction detector is determined by two 

factors: shot noise and back-action 23-30, 123.  The shot noise is the intrinsic current 

fluctuations as a result of the discrete nature of electron charges.  Shot noise is 

intrinsically a quantum mechanical phenomenon and for quantum-ideal position 

detection it should not be overcome by other types of noises such as the noise from the 

following amplifiers 25, 26.  The back-action is the force that the detector exerts on the 

resonator and it is caused by the momentum kicks of tunneling electrons 28 and it has 

been shown that, the main advantage of the tunnel junction detectors over capacitive 

detectors is the reduced back-action force 25, 26.  The theoretical calculations for both 

factors are shown to be quantum-ideal by these early studies 23-30, 123.  Even though the 

calculations are carried out in the context of bulk antennas, it is concluded that the 

maximum sensitivity is obtained for small mechanical oscillator masses 26.  The recent 

technical advances in NEMS have promoted the theoretical interest in vacuum tunnel 
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junctions in the context of quantum-limited displacement detection in mesoscopic 

structures 8, 10, 31-37, 124.  These calculations also suggest that tunnel junction 

displacement detector can be capable of reaching the quantum limit of a 

nanomechanical resonator.  

3.4.2 Experimental Aspects 

The theoretical studies confirm that the noise of a tunnel junction displacement 

detector is quantum-limited and it is possible to perform quantum measurements on 

mesoscopic systems using this detector.  Nonetheless, there are serious technical and 

engineering problems with the realization of such a system.  First of all, the fabrication 

of a tunnel junction-nanoresonator embedded device is a challenging task.  We already 

know that the distance between the metal tip and the resonator should be on the order of 

one nanometer to be able to operate in the tunneling regime with the optimum coupling 

constant.  In STM, the metal tip is approached to the sample surface until a tunnel 

junction is formed by using a bulk, slow and delicate mechanism.  However, such an 

approaching mechanism cannot be used in NEMS applications where the measurements 

are fast and the dimensions are small.  Therefore, the metal tip and the nanoresonator 

must be in-situ fabricated and have a minimal mechanical loop to form a stable tunnel 

junction in between.     

 

As mentioned before, there are many different techniques for the fabrication of 

nanogaps but they either suffer from material constraints or use bulk mechanism or fail 

to control the final gap size.  Recently an atomic point contact displacement detector has 

been implemented by Flowers-Jacobs et. al. 18.  In this experiment, the atomic point 

contact is fabricated using electromigration.  As a result of the requirements of the 

fabrication method the beam and the metal tip are made entirely out of gold which 

results in the deterioration of the resonance frequency and quality factor.  The resistance 

of atomic point contact (33 kΩ) is very low compared to typical tunnel junctions formed 

by STM 18.  The resistance of the tunnel junction determines the coupling strength of 

the detector which must be optimized and well-controlled for maximum sensitivity.  

However, electromigration is a self-terminating process and the control over final gap 

size is limited.  Last but not least, even though it is performed in cryogenic temperatures 

and ultrahigh vacuum, the cleanness and chemical purity of the gap is not guaranteed in 
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electromigration.  The author comments that the experimental results might have been 

significantly affected by the contaminants in the gap.  Therefore, a fabrication method 

that can produce clean tunnel junctions at a predetermined size must be developed and 

employed.  The method should be capable of using stiff materials like silicon nitride or 

silicon carbide to obtain higher resonance frequencies.  Finally, it should not contain 

any bulk or delicate approaching mechanisms that are not compatible with NEMS 

applications.       

 

The other technical problem with the realization of tunnel junction detector is the 

operating speed.  In fact the tunneling process is inherently fast since it is a quantum 

mechanical phenomenon.  The fundamental limit on the speed of a tunneling 

measurement is given by the number of tunneling electrons per unit time, I/e.  This limit 

entails an operation bandwidth of 1 GHz for a tunneling current of 1 nA due to shot 

noise 77.  However, this intrinsic high speed of quantum tunneling is dropped off 

dramatically in real life applications.  The typical impedance values of tunnel junctions 

are very high ranging from mega- to giga-Ohms and there are unavoidable parasitic 

capacitances on the order of pico-Farad originating from bonding pads and following 

microscopic wiring and electronic components.  The parasitic capacitance parallel to the 

high impedance reduces the operation bandwidth to kHz 10121 −≈RCπ .  The 

experimental bandwidth of a tunnel junction detector can be increased by using the 

reflectometry technique which is originally developed to increase the speed of a single 

electron transistor 14.   

 

Kemiktarak et. al. managed to increase the bandwidth of an STM to 10 MHz 

which allows a 100 times faster surface topography imaging compared to a 

conventional STM 77.  Using this radio-frequency STM, they also performed 

displacement measurement on a micromechanical membrane with a sensitivity of ~15 

fm Hz-1/2 77.  In another experimental work, Flowers-Jacobs et. al. achieved to 

characterize a nanobeam with a resonance frequency of 60 MHz using reflectometry 

technique 18.  In this technique, the high impedance of the tunnel junction (MΩ-GΩ) is 

matched down to the characteristic impedance of coaxial cables (50Ω or 75Ω) using an 

LC transformer.  In Figure 3.9, Rt represents the impedance of the tunnel junction.  The 

inductance and capacitance values of the following L-shape matching circuit are chosen 

such that the output impedance of the RtLC circuit is equal to the characteristic 
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impedance of the coaxial cable.  When a microwave signal (carrying signal) is sent to 

the tunnel junction, there will be no reflection if the impedances of the coaxial cable and 

the RtLC circuit are perfectly matched.  However, the resistance of the tunnel junction 

changes as the nanobeam oscillates and hence, a mismatch occurs in the resonant 

circuit.  Consequently, some of the incident wave will be reflected depending on the 

amount of mismatch.  The resonance frequency and the quality factor of the nanobeam 

and the noise properties of the tunnel junction detector can be determined by measuring 

the reflected wave.  The frequency of the carrying signal also depends on the choice of 

L and C values used in the tank circuit.     

 

 
 

Figure 3.9:  The schematic illustrates the reflectometry technique used to increase the 
operation bandwidth of a tunnel junction 77. 

 
All in all, experiments show that the operation bandwidth of a tunnel junction 

detector can be increased using reflectometry technique.  However, the main obstacle 

for the realization of tunnel junction-nanobeam embedded system is the absence of a 

high-yield, well-controlled fabrication method which satisfy the requirements of NEMS 

applications.  In this thesis, we proposed and implemented a nanogap fabrication 

method which will hopefully fulfill this need. 
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CHAPTER 4 

 

NANOFABRICATION 

4.1   Introduction 

Fabrication of extremely small devices from a wafer requires high technology 

facilities and equipments.  This kind of technology is mainly developed for the 

fabrication of integrated circuits but it also forms the basis for more state-of-art 

applications like electromechanical devices.  The devices fabricated during this thesis 

are at nanometer scale and hence, in addition to the micron-scale technologies of 

integrated circuits, more advanced techniques like electron beam lithography (EBL) is 

required.  Formation of tunnel junction/nanogap is not possible even with EBL and 

special, unique and novel methods beyond the standard micro/nano fabrication 

techniques have to be developed for this purpose.  This technique will be discussed in 

the next chapter. 

 

This chapter explains the nanofabrication methods employed, the recipes 

formulated, and the process flows developed during this thesis.  The process flow for 

device fabrication has been modified and improved many times in accordance with the 

problems faced and the solutions found for those problems.  The device fabrication is 

mainly performed in faculty clean room and scanning electron microscope facilities and 

Nanotechnology Research and Application Center located at Sabancı University.  The 

devices are patterned using various nano/micro fabrication techniques like electron 

beam lithography, photolithography, dry etch, wet etch, thermal metal coating etc.    
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4.2   Fabrication Methods  

4.2.1 Wafer Preparation and Standard Cleaning 

The wafer used in this work is 4-inch Si (100) at the bottom, 1 µm thermally 

grown SiO2 in the middle and 100 nm LPCVD grown Si3N4 at the top (NOVA 

Electronic Materials).  The tensile stress of the Si3N4 layer is 800 MPa.  The wafers are 

cut into 2x2 cm squares with a diamond scriber. The standard cleaning starts with 5 

minute ultrasonic ACE and then the samples are rinsed consecutively in three ACE and 

three IPA beakers for 30 seconds.  The samples are flashed with either ACE or IPA 

during the transfer from one beaker to the other.  When the samples are removed from 

the last IPA beaker, they are blow-dried using N2 gun and baked on hotplate at 120º C 

for 5 minutes for dehydration.   

4.2.2 Electron Beam Lithography (EBL) 

4.2.2.1 Introduction to EBL 

EBL is a widely used fabrication technique where sub-micrometer resolution is 

desired.  In this method, the sample is uniformly covered with a thin layer of chemical 

called “resist”.  The chemical structure of the resist changes when it is exposed to 

electrons.  If it is a positive resist, the region that is exposed to electrons becomes 

soluble in a special solution called as “developer”.  If it is a negative resist, the 

unexposed regions are soluble and the exposed regions become insoluble in the 

developer.  After development, the patterned resist can serve as an etch mask or can be 

used for lift-off processes. 

 

The primary resist used in this thesis is Polymethyl-methacrylate (PMMA).  

PMMA is a positive resist and commercially available in different solvents, at different 

concentrations and molecular weights.  The molecular weight determines the sensitivity 

and resolution of the process.  Higher molecular weight means smaller molecular chain 

scissions during lithography.  PMMA with higher molecular weight is less sensitive to 

the electrons which mean the development rate is slower and the resolution is better 

compared to the low molecular weight PMMA.  On the other hand, for coarse 
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applications low molecular weight PMMA is preferred since the required exposure dose 

is less and hence the exposure time is shorter for sensitive resists.  PMMA can be 

dissolved in different solvents like anisole, chlorobenzene, and Methyl isobutyl ketone 

(MIBK).  The viscosity of the resist changes with concentration.  The thickness of the 

coated-resist depends on the concentration and the spin-speed.  Thickness versus spin-

speed curves for different concentrations and different solvents are generally provided 

by the manufacturer.  Most of the solvent evaporated during spinning but still the coated 

sample should be baked either on hot-plate or in oven at a certain temperature to get rid 

of the remaining solvent and to cure the resist before exposure. 

 

After resist coating and baking, the next step in EBL is to expose the resist using a 

focused electron beam.  For this purpose either a dedicated system or a modified 

conventional scanning electron microscope (SEM) can be used.  In SEM, the electrons 

extracted from the source (gun), are accelerated and focused through a column using 

electrical and magnetic coils.  The amount of the current, the energy of the electrons and 

the size of the beam that reaches the sample surface can be controlled by changing the 

SEM parameters like aperture size, accelerating voltage, working distance.  The 

ultimate resolution of the lithography depends on the beam spot size.  Therefore the 

image resolution should be optimized carefully before the pattern writing, by 

performing focusing, stigmation, and gun and aperture alignment.  Once the beam is 

optimized, a hardware controller directly writes the designed pattern on the sample by 

deflecting the scan coils which controls the position of the beam.  This step is called as 

“exposure”.  During exposure, the electrons that are incident on the sample interact with 

resist and sample through elastic and inelastic scatterings.  The interaction volume, 

shape, and depth depend on the chemical composition and surface topography of the 

resist and sample, and the energy of the incident electrons.  The interaction volume 

refers to the regions that are exposed by electrons and these regions will be removed 

after development.  The pear-shaped interaction volume naturally leads to a negative 

profile after development which is beneficial for lift-off processes.   

 

Following the exposure, the samples are put in a solution called “developer”.  For 

positive resists like PMMA, the developer dissolves the exposed regions.  Therefore, 

only unexposed resist regions remain on the wafer after the development.  MIBK is the 

most widely used developer of PMMA.  The development rate of pure MIBK is very 
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fast and it is hard to control the development time.  Therefore, for better control and 

higher resolution, mixtures of MIBK and IPA are used.  Some other development 

methods have been introduced in literature like cold development with MIBK 125 and 

water-IPA ultrasonic development 126, 127.  These methods claim higher resolution for 

certain applications compared to standard room temperature MIBK/IPA mixture.   

4.2.2.2 EBL at Sabancı University  

The SEM at Sabancı University is a Zeiss Leo Supra 35VP field emission 

microscope.  It is equipped with Gemini Column technology and the electron source is a 

Schottky field emission gun.  SEM is a tool designed to provide ultra high resolution 

imaging by raster scanning a highly focused electron beam across the sample.  On the 

other hand, the movement of the electron beam has to be directly controlled for 

patterning.  For this purpose, Nabity Pattern Generation System (NPGS) has been 

purchased and installed on the existing SEM to be able to use it as a patterning tool as 

well.  NPGS is an external computer and it allows the user to control the movement of 

the electron beam through a digital to analog converter (DAC).  The software also 

allows the user to control the SEM parameters that are crucial for EBL like aperture 

size, magnification, beam step size, and beam dwell time.  The system can also transmit 

necessary parameters from the SEM to the control computer through an analog to digital 

converter (ADC) like beam current, working distance, stage coordinates. 

 

The basic operation steps of the NPGS system can be given as: 

 

1. Gold plated sample holders are specifically designed and machined for EBL 

applications by our research group.  To collect and measure the beam current, 

there is a Faraday cup on the sample holder which is a 1 mm diameter and 2 mm 

deep hole painted with carbon.  Before placing the sample in the SEM, four 

corners are scratched with a diamond scriber.  These scratches will be used for 

plane correction of the sample before exposure.  Then the sample placed on the 

holder with a single.  A single, soft clamp is preferred other than two to avoid 

bending of the sample.  The sample holder is placed on the SEM holder and the 

chamber is evacuated. 
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2. The SEM stage is lifted up until the distance between the sample and the gun 

(working distance) is approximately 5-6 mm.  When the vacuum is ready, the 

gun is energized.  The aperture size and the extra high tension (EHT) voltage are 

adjusted in the beginning of the process before any SEM adjustments.  The 

aperture size determines the amount of the beam current and hence affects the 

minimum spot size of the beam.  For high resolution applications on small 

writing fields (<100 µm) small aperture sizes, i.e. low beam currents, are 

preferred.  Our SEM has six different aperture sizes: 7.5-10-20-30-60-120 µm.  

While the standard imaging aperture is 30 µm, 10 µm-aperture is mostly used 

for fine patterning EBL applications.  EHT voltage determines the penetration 

depth of the electron beam into the substrate which ultimately affects the shape 

of the interaction volume and hence the sidewall profile of the resist.  The choice 

of EHT voltage depends on the process type and resists thickness.   

 

3. Once the aperture size and EHT voltage are set, the SEM parameters like 

working distance (focus), aperture alignment and stigmation should be adjusted.  

The adjustments should be repeated until a high resolution image at high 

magnifications like x500k is obtained.   

 

4. When all the SEM adjustments are done, the beam current is measured by 

pointing the beam into the faraday cup on the sample holder.  The typical beam 

current for 10 µm aperture ranges between 10-30 pA depending on the EHT 

voltage and the condition and age of the electron source.      

 

5. Since the surface of the sample is usually not perfectly flat, the optimum 

working distance changes over the sample surface.  A 4-point plane correction is 

performed to automatically adjust the working distance during pattern writing.  

For this purpose, the focus adjustment is done on four corners and the NPGS 

software records the position and working distance of each corner.  Using these 

data, it performs a plane correction and it automatically corrects the working 

distance when the stage moves to a new position.    

 

 



40 

 

6. When SEM adjustments are completed, the pattern should be prepared.  NPGS 

uses a drawing program called DesignCAD.  The user can design the alignment 

and writing patterns using this program.  When the pattern is ready, the writing 

conditions should be specified using “run file editor” of NPGS.  In this run file 

editor, the user uploads the alignment and writing CAD files and enters the 

magnification, step size, beam current, aperture size, and exposure dose.  Once 

the run file editor is ready the exposure will be performed automatically by 

NPGS.  When the writing is completed, the gun is turned off and the SEM is 

vented to take off the sample. 

 

EBL process is completed when the samples are developed after the exposure.  

The installation and calibration of the NPGS system and process optimization for 

different EBL applications are performed by our research group.  Mainly two processes, 

monolayer and bilayer, are developed during this thesis using PMMA and both of them 

are for lift-off applications. 

 

MONOLAYER PROCESS: 

 

1. PMMA COATING:  The sample is spin-coated in the clean room with high 

resolution 950K MW PMMA-C2.  PMMA is dripped on the sample using a 

glass pipette, and then the sample is spun at 500 rpm for 3 seconds and at 6000 

rpm for 45 seconds.  The uniformity of the resist thickness is critical to be able 

to obtain the same resolution everywhere on the sample.  Therefore the surface 

of the sample should be free of dirt and dust before coating.  Additionally, for 

better adhesion of the resist to the sample surface, dehydration bake should be 

performed before spin coating.  The thickness of the 950K MW PMMA-C2 at 

6000 rpm is approximately 100 nm. 

 

2. PREBAKE:  The sample should be baked on hotplate at 180° C for 1 hour. 

 

3. EBL:  In monolayer process, lower EHT voltages are preferred so that, in 

addition to the primary beam, the back-scattered electrons can also dose the 

lower parts of the resist.  In this case, the interaction volume gets wider from the 

surface of the resist towards the resist-sample interface and leads to a negative 



 

profile after development.  The EHT voltage, working distance, and aperture 

size for monolayer process are 15 kV, 5

exposure dose depends on the pattern size and pattern density.  Therefore, before 

the fabrication of real samples, the optimum dose is determined by performing a 

dose array for each different pattern. 

 

4. DEVELOPMENT:  1:3 MIBK:IPA solution is used for the development of 

PMMA.  The development time depends on the resist thickness and exposure 

dose.  For 100 nm thick PMMA, the development time is 40 seconds for the 

optimum exposure dose.  The development is generally followed by a dip or 

rinse in pure IPA and then N

suggest that if the samples are directly N

the line edge roughness will be reduced

observe that after metallization, the edges of the sa

smoother.  As a result, we have abandoned the IPA dip/rinse step during 

development.  Figure 4

shows the SEM images of metal tips fabricated with monolayer process and the 

alignment accuracy of the EBL system.  It is possible to fabricate two metals tips 

with a sub-10 nm gap in between and the alignment accuracy of the system is 

sub-µm. 

 

Figure 4.1:  The illustration shows the EBL process using monolayer PMMA.
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profile after development.  The EHT voltage, working distance, and aperture 

size for monolayer process are 15 kV, 5-6 mm, and 10 µm,
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lignment accuracy of the EBL system.  It is possible to fabricate two metals tips 

10 nm gap in between and the alignment accuracy of the system is 

.1:  The illustration shows the EBL process using monolayer PMMA. 
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Figure 4.2:  The SEM images of metal tips fabricated with monolayer process and the 
alignment accuracy of the EBL system are given.  These images show that a sub-10 nm 
gap between two metal tips can be patterned using monolayer process and the alignment 

accuracy of the system is on the order of sub-µm. 
 

BILAYER PROCESS: 

 

Even though monolayer process yield good results most of the time, for densely 

packed, close and small structures it may fail due to proximity effect.  For this kind of 

patterns, lift-off applications using bilayer process are more successful.  There are two 

advantages of bilayer process.  First, the proximity effect is reduced by decreasing the 

number of backscattered electrons by using high EHT voltage.  Second, the undercut is 

more pronounced since a more sensitive resist is used as bottom layer.  The process 

flow for bilayer process is given as:   

 

1. PMMA COATING and PREBAKE:  The sample is first spin-coated with high 

sensitivity 495K MW PMMA-C2 (500 rpm for 3 seconds and at 6000 rpm for 

45 seconds).  The sample is baked on hotplate at 180° C for 1 hour.  For the top 

layer, 950K MW PMMA-A2 is used.  In order to avoid the intermixing of two 

layers, the sample is spun at 100 rpm while dripping the second layer and then at 

6000 rpm for 45 seconds.   The sample is once again baked on hotplate at 180° 

C for 1 hour after coating of the second layer.  The thicknesses of the 495K MW 

PMMA-C2 and 950K MW PMMA-A2 at 6000 rpm are approximately 130 nm 

and 60 nm respectively. 

 



 

2. EBL:  As stated before, to reduce the proximity effect, high EHT voltages are 

preferred.  The in

there is an undercut after development because of the difference in the 

sensitivity of the resists.  The EHT voltage, working distance, and aperture size 

for monolayer process are 30 kV, 5

exposure dose depends on the pattern size and pattern density.  

 

3. DEVELOPMENT:  The samples are developed in 1:3 MIBK:IPA solution for 

40 seconds and directly N

of patterns that include small openings inside the structures, there have been 

serious lift-off problems with standard development using MIBK/IPA.  For 

those specific patterns, development is performed in ultrasonic bath of 7:3 

IPA:deionized water

process and Figure 4

MIBK:IPA and IPA:deionized water development.  

 

Figure 4.3:  The illustration shows the EBL process using bilayer PMMA.
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EBL:  As stated before, to reduce the proximity effect, high EHT voltages are 

preferred.  The interaction volume is fairly straight through the resist layers but 

there is an undercut after development because of the difference in the 

sensitivity of the resists.  The EHT voltage, working distance, and aperture size 

for monolayer process are 30 kV, 5-6 mm, and 10 µm respectively.  The 

exposure dose depends on the pattern size and pattern density.  

DEVELOPMENT:  The samples are developed in 1:3 MIBK:IPA solution for 

40 seconds and directly N2 blow dried without any IPA dip/rinse.  In a number 

ns that include small openings inside the structures, there have been 

off problems with standard development using MIBK/IPA.  For 

those specific patterns, development is performed in ultrasonic bath of 7:3 

IPA:deionized water for 10 seconds.  Figure 4.3 illustrates the bilayer

process and Figure 4.4 shows the SEM images of the structures fabricated using 

MIBK:IPA and IPA:deionized water development.   

 
 

.3:  The illustration shows the EBL process using bilayer PMMA.
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mm, and 10 µm respectively.  The 

exposure dose depends on the pattern size and pattern density.   

DEVELOPMENT:  The samples are developed in 1:3 MIBK:IPA solution for 

blow dried without any IPA dip/rinse.  In a number 

ns that include small openings inside the structures, there have been 

off problems with standard development using MIBK/IPA.  For 

those specific patterns, development is performed in ultrasonic bath of 7:3 

.3 illustrates the bilayer EBL 

.4 shows the SEM images of the structures fabricated using 

.3:  The illustration shows the EBL process using bilayer PMMA. 
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Figure 4.4:  SEM images of the structures fabricated using MIBK:IPA (left) and 
IPA:deionized water (right) development are given.  Ultrasonic IPA:deionized water 
development is preferred for more complicated structures with small openings as shown 

on the right SEM image. 

4.2.3 Photolithography 

Photolithograph is a widely used method for the fabrication of micron size 

structures.  The resolution of EBL is almost two orders of magnitude better than the 

resolution of the photolithography.  On the other hand, EBL is a time consuming 

process compared to photolithography because it is based on the direct writing of the 

pattern.  Therefore, EBL is preferred only for the critical structures that require sub-

micron resolution while photolithography is preferred for less critical, large area, 

micron size structures.  In photolithography, the sample is spin-coated with a special 

polymer called “photoresist” which is sensitive to ultraviolet light.  Then the sample is 

illuminated through a pre-patterned mask which has opaque and transparent parts on it.  

The light goes though the transparent parts of the mask and exposes the photoresist 

while the regions under opaque parts stay unilluminated.  If a positive photoresist is 

used, the illuminated parts become dissolvable in the developer and the unilluminated 

parts remain on the sample and if it is a negative photoresist, vice versa. 

 

The photolithography processes are carried at Sabancı University clean room 

using Karl-Süss MA6 Mask Aligner.  The power of the ultraviolet light is 1.8 mW/cm2.  

The chrome on quartz masks are designed using AutoCAD and produced by ML&C 

GmbH.  An image reversal photoresist AZ5214E and its developer AZ726MIF are used 

for both negative and positive lithography applications (Microchemicals GmbH).  
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Positive lithography is mainly used for wet and chemical etch mask applications and 

negative lithography is used for lift-off applications.   

 

The most critical point while performing photolithography is that the sample and 

the mask should be in contact without any gap during exposure.  Otherwise, the light 

diffracts from the edges of the chrome and deteriorates the resolution.  For this purpose 

the sample and the mask holders of the aligner are calibrated to maintain a full contact.  

Also the resist residues on the mask are cleaned in every use and the edge beads of the 

coated samples are scratched before exposure for the same purpose.  The process 

recipes developed by our research group have yielded a resolution of 3-5 µm.   

         

POSITIVE PROCESS: 

 

1. SPIN-COATING:  The sample is first spin-coated with AZ5214E (1000 rpm for 

2 seconds and at 6000 rpm for 45 seconds).   

2. PREBAKE:  The sample is baked on hotplate at 100° C for 2 minutes.  The 

thickness of the resist is 1.4 µm. 

3. MASK EXPOSURE:  The sample is illuminated through mask for 120 seconds. 

4. DEVELOPMENT:  The sample is developed in AZ726MIF for 30 seconds and 

then rinsed in DI-water and N2 blow-dried.  

 

NEGATIVE PROCESS: 

 

1. SPIN-COATING:  The sample is first spin-coated with AZ5214E (1000 rpm for 

2 seconds and at 6000 rpm for 45 seconds).   

2. PREBAKE:  The sample is baked on hotplate at 90° C for 2 minutes.  The 

thickness of the resist is 1.4 µm.  

3. MASK EXPOSURE:  The sample is illuminated through mask for 20 seconds. 

4. POSTBAKE:  The sample is baked on hotplate at 115° C for 2 minutes. 

5. FLOOD EXPOSURE:  The sample is illuminated without any mask for 180 

seconds. 

6. DEVELOPMENT:  The sample is developed in AZ726MIF for 90 seconds and 

then rinsed in DI-water and N2 blow-dried. 



 

Figure 4.5:  The illustration shows 

 

Figure 4.6:  The optical microscope image which shows the resolution of the 
photolithography process developed during this thesis is given.
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.5:  The illustration shows both negative and positive photolithography 

processes. 

 
 

.6:  The optical microscope image which shows the resolution of the 
photolithography process developed during this thesis is given.

 

both negative and positive photolithography 

.6:  The optical microscope image which shows the resolution of the 
photolithography process developed during this thesis is given. 
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4.2.4 Metallization and Lift-off 

After EBL or photolithography the designed patterned can be transferred to the 

sample by metal coating.  Metal coating is mainly performed by electroplating, electron 

beam evaporation, or thermal evaporation.  A box coater (Nanovak) is used for the 

thermal coating of metals like chromium, nickel, titanium and gold at Sabancı 

University.  The metal atoms are adhered on wafer surface where the resist is removed 

after development.  When the sample is placed in ACE after evaporation, the resist and 

the metal on top of it go away but the metal adhered on the wafer remains.  This process 

is called as “lift-off”. 

 

The sidewall profile of the resist is important for successful lift-off results.  The 

sidewalls of the resist should have a negative profile in other words a pronounced 

undercut.   Otherwise the resist sidewalls will also be covered with metal which makes 

the subsequent lift-off worse or even impossible.  Additionally, temperature control 

during thermal evaporation is crucial.  The overheating of the sample effects the lift-off 

in two ways: First, the profile of the resist sidewall is ruined and second, the resist goes 

through glass-transition and becomes insoluble in ACE.  Therefore, the evaporation is 

performed in steps by letting the sample to cool down to room temperature in between.  

The overheating problem is much more critical for PMMA than photoresist.       

4.2.5 Dry Etching (ICP-RIE) 

In dry etching process, the material is basically removed by ion/atom 

bombardments.  The ions/atoms are formed and accelerated towards the sample in a 

plasma chamber.  The nature of the etching can be physical, chemical or both.  The etch 

rate and the etch profile depends on the ion density in the chamber, momentum of the 

ions when they hit the sample surface and the chemical composition of the reactive 

gases and the etched material.  These parameters are tuned by controlling the pressure, 

gas flow, DC bias, forward RF-power and ICP-power of the RIE system.  In these 

experiments dry etching is applied for two purposes: First, for the stripping of the resist 

residues (ashing) after lithography and second, for the anisotropic etching of the 

insulating layers like Si3N4 and SiO2.  Almost all of the dry etch processes are carried 

on DSE PM2000 ICP-RIE system located in the faculty clean room and only a couple of 

last samples are etched using Oxford PlasmaLab System 100 ICP 300 Deep RIE located 
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at Sabancı University Nanotechnology Research and Application Center (SUNUM).  

The recipes used in DSE system have been developed by our research group and the 

recipe used in Oxford system has been provided by manufacturer. 

 

OXYGEN PLASMA: 

 

Oxygen plasma etching is a chemical process and it successfully etches organic 

materials like resist residues, from the surface of the sample.  After lithography, a very 

thin layer of resist still remains on the surface in the developed areas.  This thin layer of 

resist residue obstructs the adhesion of the metal film to the wafer.  It is observed that, 

the metal structures easily peel-off during subsequent wet etch or wire bonding steps 

because of poor adhesion.  Therefore, it is important to get rid of the PMMA or 

photoresist residues before metal coating.  Even though there are some chemicals used 

for stripping, they still leave sub-nanometer or nanometer thick residue on the surface.  

On the other hand, that oxygen plasma is shown to be able to remove all unexposed 

residue 129.  The etch time is critical because over-etch can spoil the resist sidewall 

profile.  In addition to resist stripping, oxygen plasma is also used for cleaning of the 

plasma chamber since etch byproducts stick on chamber walls and affects the 

subsequent etchings.  The oxygen plasma parameters used in this work are 30 sccm O2 

flow, 0.07 mBar pressure, and 100W forward RF-power.  The etch time is 5 seconds for 

PMMA after EBL and 15 seconds for AZ5214E after photolithography.  The chamber 

cleaning process is generally done at least for 5 minutes. 

 

CHF3 /O2 PLASMA: 

 

The dry etching recipe using CHF3/O2 gas mixture is developed for the 

anisotropic etching of Si3N4.  The nanomechanical doubly-clamped beam fabricated in 

this work is made of Si3N4. Therefore, 100 nm thick nitride layer has to be etched 

vertically using a thin, gold etch mask.  The only fluoride based gas at Sabancı 

University clean room was sulfur hexafluoride (SF6) but the processes using this gas or 

its mixture with oxygen etched the nitride layer isotropically and sputtered the gold 

mask which resulted in unwanted short-circuits on the device.  The results of SF6 

etching using DSE system is given in Figure 4.7.  
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Figure 4.7:  The SEM images and EDX analysis that show the results of SF6 etching 
using DSE system are given.  The SEM image on top left exhibits the isotropic nature of 
the etching and the image on top right shows the contamination which shunts the active 
device and the wafer surface.  The EDX analysis at bottom proves that the contaminant 
is made of gold and it comes from the sputtering of the gold mask during dry etch. 
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Figure 4.8:  The SEM image shows the result of 
gas composition can etch the nitride layer anisotropically without damaging the gold 
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Because of the problems with SF6, another fluoride-based gas, trifluoromethane 

) is decided to be used.  For this purpose, a new line parallel to 

has been designed and built by our research group.  A new recipe is developed for the 

anisotropic etching of the nitride layer using CHF3/O2 gas mixture.  The new process is 

optimized such that a vertical profile at a reasonable etch rate is achieved without 

damaging the metal mask so there is no metal contamination on the device after dry 

The process parameters are 50 sccm CHF3, 5 sccm O2, 60W RIE Power, 600W 

ICP Power, and 0.15 mBar pressure.  The use of ICP power allows us to 

number density of the ions without changing the momentum of the ions.  The etch rate 

using this recipe is approximately 40-45 nm/minute for LPCVD nitride.  In order to etch 

100 nm nitride layer, 3 minute etch is performed.  When fluorocarbon

are used for etching of insulating layers, an organic residue is formed on the surface of

.  Oxygen plasma for 3 minutes is performed after each dry etch, before 

the subsequent wet etch to remove the organic residue from the sample surface.  The 

ed samples are given in Figure 4.8.  The sidewall of the oxide layer 

is not totally vertical but it is not crucial since this layer will be removed in the 

subsequent wet etch step.  The DSE system was suffering from turbo pump problems 

which caused serious variations in the etch rate and etch profile from sample to sample 

even though the exact same recipe was used.  Because of this problem, the recipe has 

tuned for many times.  We switched to a newly arrived system when the old 

system has completely broken down. 

  

.8:  The SEM image shows the result of CHF3/O2 etching in DSE system.  This 
gas composition can etch the nitride layer anisotropically without damaging the gold 

mask. 
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SF6 PLASMA: 

 

The last samples fabricated during this work are etched using pure SF6 Plasma in 

Oxford PlasmaLab System.  The recipe is provided by the manufacturer and the 

parameters are 45 sccm SF6, 50W RIE Power, 2000W ICP Power, and 10 mTorr 

pressure.  During etching the stage temperature is kept at 5ºC and He back-cooling is    

5 sccm.  The etch rate for LPCVD nitride is 400nm/min and the etch profile is 

anisotropic.  A 3-minute oxygen plasma is performed after nitride etch to get rid of the 

organic residues formed during SF6 Plasma.  The process has yielded repeatable results 

in terms of both etch rate and etch profile.  The etch rate and profile is homogenous 

throughout the sample and the process leaves a smooth, residue free surface after 

etching as shown in Figure 4.9.  The metal surface is not damaged during etching.  This 

recipe etches both the nitride and the oxide layers vertically. 

 

   
 

Figure 4.9:  The SEM images show the result of SF6 etching in Oxford system.  This 
recipe provides high etch rates (400nm/min) with vertical sidewalls for LPCVD silicon 

nitride. 
 
 
 
 
 
 



 

4.2.6 Wet Etching

Wet etching is a pure chemical process and it results in isotropic profile in most 

cases.  In this work, the sacrificial layer of SiO

HF is preferred since it only etches SiO

nitride layer.  In the beginning, the etching is performed by diluting HF (38

de-ionized water.  Unfortunately, the etch rate of diluted HF is not stable since the 

number of fluoride ions in the solution decreases in time a

in order to keep the etch rate stable, commercially available buffered oxide etcher, BOE 

(a mixture of HF and ammonium fluoride) is used.  The etch profile of the oxide after 

wet etch is given in Figure 4

 

Figure 4.10:  The SEM image of the device after isotropic etching of oxide layer using 

4.2.7 Wafer Dicing

The samples are fabricated as a 4x4 array of 1.4 mmx1.4 mm squares.  The array 

is fractured at the end of the process flow.  Earlier, the cutting is performed manually by 

diamond scriber and unfortunately an important number of samples are ruined during 

this manual cutting.  In the final phase of this work, a newly arrived dicer (DISCO DAD 

320 Automatic Dicing Saw) has been used to precisely cut the samples.  The samples 

are covered with a protective layer of photoresist and diced before the etching steps 

since the dicing process will ruin the suspended structures.  
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.2.6 Wet Etching 

Wet etching is a pure chemical process and it results in isotropic profile in most 
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are covered with a protective layer of photoresist and diced before the etching steps 
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4.2.8 Wire Bonding 

Once the fabrication of the devices is completed, each device is glued on a chip 

carrier using an adhesive like epoxy or silicon.  Then the wire connections from the 

contact pads on the device to the leads of the chip carrier are performed.  For this 

purpose a wire bonder (Kulicke and Sofa) is used.  In this method, a thin gold wire 

(diameter of 18.5 µm) is bonded both to the contact pad and to the chip-carrier contact 

lead by applying ultrasonic vibration and vertical force.  For successful bonding, the 

contact pads should be thick (200 nm) and wide (min 100 µm) enough and the adhesion 

between the contact pad metal and the wafer should be strong.  The adhesion is 

promoted by getting rid of any organic residue on the wafer before metal coating using 

oxygen plasma and by coating a 10 nm chromium layer before gold evaporation.  

Chromium is especially preferred as the adhesion layer since it is not affected from the 

subsequent HF wet etching.  For instance, another widely used adhesion metal, titanium 

cannot be used in this work since it is etched by HF.          

4.3   Device Fabrication Process Flow 

4.3.1 Tunnel Junction/Nanogap Fabrication 

Vacuum tunnel junction or nanogap device consists of two metal tips suspended 

in the air with nm or sub-nm gap in between.  The resolution of the standard 

nanofabrication methods is not enough for the direct fabrication of nm or sub-nm gaps.  

In this work, a wider gap is further shrunk using controlled thermal evaporation which 

will be discussed in detail in the next chapter.  The original gaps of width 10-30 nm are 

fabricated with EBL and made suspended in the air with dry and wet etching to avoid 

short-contact during subsequent controlled thermal evaporation.  The schematic which 

shows the final form of the device before controlled thermal evaporation is given in 

Figure 4.11.  The process flow has been modified and optimized many times due to 

unpredictable technical and methodological problems faced during fabrication.  The 

developed recipes and their problems are summarized along with the final successful 

one. 

 



 

Figure 4.11:  The schematic illustrates the side view and top view (inset) of the tunnel 
junction/nanogap device used in controlled thermal evaporation experiments.

 

PROCESS FLOW 1: 

 

The DesignCAD drawing and the pictures of the optical mask used in the first 

developed process flow are

 

Figure 4.12:  DesignCAD drawing 

54 

 
.11:  The schematic illustrates the side view and top view (inset) of the tunnel 
tion/nanogap device used in controlled thermal evaporation experiments.

The DesignCAD drawing and the pictures of the optical mask used in the first 

developed process flow are given in Figure 4.12.   

 
.12:  DesignCAD drawing and the pictures of the optical mask used in the first 

developed process flow are given. 

 

.11:  The schematic illustrates the side view and top view (inset) of the tunnel 
tion/nanogap device used in controlled thermal evaporation experiments. 

The DesignCAD drawing and the pictures of the optical mask used in the first 

 

and the pictures of the optical mask used in the first 
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1. The alignment markers shown with red are transferred to the sample with 

negative photolithography and metal evaporation (5nm Cr/50 nm Au). 

 

2. Two metal tips that are separated by 10-30 nm are patterned with monolayer 

EBL and transferred to the sample using metal coating (5nm Cr/30 nm Au).  The 

position of the metal tips is determined using alignment markers.  

 

3. The contact pads shown with yellow are fabricated using negative 

photolithography and metal evaporation (10nm Cr/200 nm Au).  These contact 

pads partly overlap with EBL metal tips and form the bonding areas for wire 

bonding.  

 

4. The evaporation mask shown in purple is fabricated using positive 

photolithography in order to protect the areas other than active region, from the 

subsequent etching and thermal evaporation steps. 

 

5. The nitride layer is isotropically etched with old DSE system using SF6/O2 

plasma.  Vertical sidewall profile could not be achieved in this system with 

SF6/O2 gas configuration.  The oxide layer is etched isotropically using HF:de-

ionized water.  

 

6. The samples are cut with diamond scriber, pasted on chip carrier using PMMA 

and wire bonded.  The optical microscope and SEM images of the first 

fabricated devices are given in Figure 4.13.  
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Figure 4.13:  The optical microscope (a) and SEM (b) images of the devices fabricated 
using “Process Flow 1” are given. 

 

Two problems arose from this process flow: 

 

1. Wire Bonding Problem:  Gold contact pads were ruptured and peeled off from 

the sample surface during wire bonding even though very weak ultrasonic 

powers and vertical forces were used.  This problem pointed towards the poor 

adhesion between the contact pad and wafer.  The first thought was that long wet 

etching using high concentration HF might cause the problem.  However, a 

series of controlled experiments showed that, PMMA residues remained on the 

surface after EBL induced the adhesion problem.  The simplest solution was to 

change the order of contact pad and metal tip fabrication in the process flow.  In 

this way, first the contact pads were formed when there was no PMMA residue 

on the surface and then the metal tips were placed using EBL.  This method has 

solved the wire bonding problem.  

 

2. Evaporation Mask and Short Circuit Problem:  The evaporation mask that was 

initially used to protect the inactive regions resulted in short-circuit problems 

during controlled thermal evaporation.  When the surface and sidewalls of the 
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evaporation mask were coated with a few nm gold, short-circuitry between metal 

tips was formed as shown in Figure 4.14.  Since the controlled thermal 

evaporation method is based on the in-situ monitoring of the conductance 

between the metal tips, the short-circuit problem completely ruins the sample.  

Therefore, the use of evaporation mask has abandoned and removed from the 

process flow. 

 

 
 

Figure 4.14:  The short-circuit problem which shows up when the evaporation mask is 
coated with gold atoms during controlled thermal evaporation is described on the SEM 

image. 
 

PROCESS FLOW 2: 

 

A new process flow has been developed by finding solutions to the problems 

arose in “Process Flow 1”: 

 

1. Contact pads are formed using negative photolithography and metal 

evaporation (10nm Cr/200 nm Au).   

 

2. Metal tips are formed using EBL and metal evaporation (5nm Cr/30 nm 

Au).  

3. Si3N4 layer is etched isotropically using SF6/O2 plasma. 
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4. The oxide layer is etched isotropically using HF:de-ionized water.  

 

5. Samples are cut, pasted on chip-carrier and wire bonded. 

 

   
 

Figure 4.15:  The tilted and top view SEM images of one of the devices fabricated using 
“Process Flow 2” are given. 

 

The first samples produced with this process flow were quite successful and used 

in control thermal evaporation experiments.  However, the same process flow has failed 

in the latter samples.  It was observed that some shiny materials like dirt contaminated 

the devices after etching steps.  Some of these dirt-like structures were touching both 

the metal parts and wafer surface and resulted in short-circuitry during controlled 

thermal evaporation.  As discussed earlier in Part 4.2.5, the EDX analysis showed that 

these dirt-like structures were made of gold and they were sputtered from the sample 

surface and reattached during dry etching.  Firstly, it was thought that covering the gold 

surface with a more durable material like titanium would prevent the sputtering during 

dry etch and the titanium layer would be removed later during wet etch.  Unfortunately, 

titanium layer did not solve the contamination problem.  Secondly, the PMMA residue 

remained on the developed areas were thought to spoil the adhesion of the thin Cr/Au 

film and hence the metals were ruptured from the surface of the wafer during dry etch.  

At this point the oxygen plasma recipe was developed to remove the PMMA residue 

after development and before metal coating.  Oxygen plasma has definitely improved 

the film quality of the metal structures and yielded cleaner lift-off results but it did not 

solve the metal contamination problem as seen in Figure 4.16.  As the final solution, the 

dry etch gas configuration has been changed from SF6/O2 to CHF3/O2 and a totally new 

dry etch recipe has been developed.   
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Figure 4.16:  When the image in the middle (O2 plasma after development) is compared 
to the image on the left (no O2 plasma after development), it is observed that the quality 
of the metal film is better and the edges are cleaner.  On the other hand, the image on 

the right shows that O2 plasma does not solve the contamination problem. 
 

The other problem was that, the separation between the metal tips significantly 

increased after wet etching as shown in Figure 4.17.  Literature search and controlled 

experiments have revealed that the metals tips move away from each other because of 

the contraction and buckling of the high tensile stress nitride thin film once the oxide 

layer beneath it is removed after wet etch.  The problem and the solution are discussed 

in detail in Chapter 6. 

 

 
 

Figure 4.17:  The SEM images show that an originally 21 nm gap width is increased to 
207 nm after wet etch. 
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PROCESS FLOW 3: 

 

All the problems other than the widening of the gap have been solved and the 

process flow has been finalized successfully.   

 

1. The alignment markers are patterned using photolithography, O2 plasma and 

metal coating (5nm Cr/50 nm Au). 

 

2. Metal tips nm are patterned using monolayer EBL, O2 plasma and metal coating 

(5nm Cr/30 nm Au).   

 

3. The contact pads are patterned using photolithography, O2 plasma and metal 

coating (10nm Cr/200 nm Au).   

 

4. Si3N4 layer is etched anisotropically using CHF3/O2 gas configuration without 

damaging the metal layers.  Succeeding oxygen plasma is performed after dry 

etch to remove the organic byproducts. 

 

5. The oxide layer is etched isotropically using BOE.  

 

6. The samples are fragmented using dicer, pasted on chip carrier using silicon and 

wire bonded.  Silicon is preferred to PMMA for pasting since it is softer and it 

blocks the mechanical vibrations better.   
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Figure 4.18:  The SEM images of the devices fabricated using “Process Flow 3” are 
given.  The top images show the increase in the gap width from 27 nm after EBL (left) 
to 52 nm after wet etch (right).  The bottom image reveals that CHF3/O2 plasma etches 

the nitride layer vertically without contaminating the sample. 

4.3.2 Tunnel Junction-Nanobeam Embedded System Fabrication 

One of the main motivations of this thesis is to fabricate a nanomechanical doubly 

clamped beam which is coupled to a vacuum tunnel junction.  The device consists of a 

metalized suspended beam and a metal tip with a nanogap in between as depicted in 

Figure 4.19.  

 

 
 

Figure 4.19:  The schematic illustrates the isometric view of tunnel junction-nanobeam 
embedded system. 
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The final process flow developed for the tunnel junction fabrication is applied 

successfully to the tunnel junction-nanobeam embedded system.  A new 

photolithography mask is designed and developed for the new pattern.  Bilayer EBL is 

preferred for cleaner lift-off results.  The anisotropy of the silicon nitride dry etch is 

critical for nanobeam fabrication since the geometry of the beam affects the mechanical 

characteristics of the resonator such as resonance frequency and dissipation.  The 

former devices are fabricated using CHF3/O2 in DSE system and then switched to 

SF6/O2 in Oxford system.  The thickness of the nanobeam is determined by the 

thickness of the nitride thin film which is 100 nm.  Wet etch time is adjusted such that 

the entire oxide layer under the nanobeam is etched and the structure becomes 

suspended.  In other words, wet etch time is determined according to the width of the 

nanobeam.  The LPCVD silicon nitride thin film has high tensile stress and it is 

mechanically stable.  As a result, there is no need for a special method like critical point 

drying after wet etch.  The samples are first gently rinsed in de-ionized water for 5 

minutes.  Then the samples are immersed in a low surface tension liquid like IPA or 

methanol for another 5 minutes.  Finally the samples are dried with nitrogen gun.  No 

series stiction problem has occurred during nanobeam fabrication.  SEM images of the 

one of the fabricated devices are given in Figure 4.20. 
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Figure 4.20:  The top view SEM image of a metal tip-nanobeam embedded device is 
given.  The length, width and thickness of the nanobeam are 5 µm, 500 nm and 100 nm 
respectively (top).  The side view SEM images of another device are given from 

different angles (bottom).   
 

The widening of the gap after wet etch is also observed for metal tip-nanobeam 

embedded system.  In Figure 4.21, it is shown that the originally 10 nm gap width 

increases to 100 nm after wet etch.  This problem is caused by the intrinsic high tensile 

stress of the nitride film and it is not related to the recipes or the process flow applied.  

Since it is an intrinsic problem, a novel solution has been developed to solve this 

problem as discussed in Chapter 6.   
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Figure 4.21:  The top view SEM images show the increase in the gap width from 13 nm 
after EBL (left) to 108 nm after wet etch (right).  The side view of the same device after 

wet etch is given at the bottom. 
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CHAPTER 5 

 

CONTROLLED FABRICATION OF VACUUM TUNNEL JUNCTIONS 

5.1   Introduction 

Vacuum tunnel junction or nanogap can be basically defined as two metallic 

electrodes with a few-nanometer or a sub-nanometer gap in between.  As mentioned 

earlier in Chapter 3, nanogaps find a wide range of applications in high end and state of 

the art technologies.  Conventional lithographic techniques like EBL cannot yield the 

sub-nanometer resolution required for such applications and hence advanced novel 

techniques have to be developed for the realization of nanogaps.  A diverse range of 

nanogap fabrication techniques have been discussed in Chapter 3.  Although these 

methods successfully produce nanogaps, they either suffer from low yield or have 

inherent bulky structures incompatible with integrated electronic or 

nanoelectromechanical device applications.  Therefore, there is still a great need for a 

well-controlled fabrication technique for the realization of clean nanogaps.   

 

In this work, we introduce a new method in which high stability vacuum tunneling 

gaps are produced via controlled-shrinkage of a wider gap by thermal evaporation.  

Therefore, it is possible to consistently produce rigid and stable nanogaps with about 1 

nm or less gap size.  In this chapter, first the experimental details of sample preparation 

and controlled thermal evaporation are given.  Then the details of three, successfully 

fabricated devices are provided.  The fabricated nanogaps are characterized using 

Simmons’s model.  The stability of the tunnel junctions are tested with further electrical 

measurements.  The results are analyzed and discussed in detail.  
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5.2   Experimental Setup  

5.2.1 Sample Preparation 

The devices were fabricated on a Si wafer with a thermally grown 1 µm SiO2 layer 

on top of the Si and a 100 nm thick LPCVD grown Si3N4 layer on top of the oxide 

layer.  The primary metallic tips or the nanobeam-metal tip system were patterned with 

EBL and metallized by 5 nm Cr / 30 nm Au.  10-50 nm gaps between metal tips were 

routinely achieved using EBL.  The nitride layer was vertically etched using either 

CHF3 or SF6 reactive ion etching while the metal pattern was serving as an etch mask.  

The oxide layer was isotropically removed by chemical etching in BOE and the metal 

tips became suspended in air.  The devices were bonded on a chip carrier by using a soft 

adhesive to minimize the transfer of mechanical stress to the device during its handling.  

The fabrication steps are illustrated in Figure 5.1 and the details of device fabrication is 

provided in the previous chapter.   

 

 
 

Figure 5.1:  The fabrication steps of the device: (a) Top view of the device fabricated.  
The dashed line shows the position of the cut for the crossectional views shown in (b) to 
(e).  (b) PMMA coated on top of LPCVD nitride thin film, then exposed and developed, 
(c) a thin layer of Cr/Au coated and lifted-off, (d) the pattern is transferred to nitride 
layer using ICP-RIE, (e) the sacrificial oxide layer etched using BOE to form an 

undercut under the metal electrodes. 
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5.2.2 Controlled Thermal Evaporation 

The main motivation of this work is to produce nanogaps by filling the 

lithographically defined gap between the metal tips which is about 20-40 nm.  This is 

done by further coating the tips with Au by thermal evaporation.  The evaporation is 

performed under a vacuum of 10-7 mBar and the gold deposition rate is kept at 1 Å/s.  In 

order to keep the sample temperature as low as possible, deposition is performed in a 

number of steps as needed with cool down phases in between.  Although the evaporated 

Au atoms land vertically on the metal tips, they also overhang at the sides and result in 

the reduction of the gap size.  Even though it varies from sample to sample, we found 

that the swelling at the sides is in average between 1/7 and 1/9 of the coated thickness.  

A mechanical mask is employed to prevent formation of any parallel conductance 

elsewhere.  Throughout the evaporation, temperature, pressure, film thickness and 

evaporation rate are monitored continuously.  The gap is DC biased and the current flow 

across it is measured at 5 Hz rate during the evaporation.  A threshold current is set 

before the evaporation and the system compares the measured current and the threshold 

current throughout the evaporation.  As the gap shrinks to about a nanometer, a 

tunneling current starts to flow between the electrodes.  As soon as the tunneling current 

exceeds the pre-set threshold current, the evaporation is immediately halted by shutting 

off the evaporator source current.  The working principle of the experimental setup is 

given in Figure 5.2. 

 

A home-made, high vacuum thermal evaporation system has been designed, built 

and functionalized by our research group to perform nanogap fabrication experiments.  

The schematic and the real pictures of home-made thermal evaporator are given in 

Figure 5.3 and Figure 5.4, respectively.  The details of the system are as follows: 

 

1. The system basically consists of a stainless steel base with vacuum 

feedthroughs and a glass belljar.  The high vacuum is sustained with a 

turbo pump (Varian TV-301) and a scroll pump (Varian SH-110).  It takes 

approximately 1 hour for the system to reach the operating pressures of  

10-6 to 10-7 mBar.  The pressure is monitored continuously using an ion 

gauge. 
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Figure 5.2:  The figure illustrates the working principle of the controlled thermal 
evaporation. 

 

2. Thermal evaporation is performed by heating a resistive element like a 

tungsten boat or basket, by passing through a high current.  The material to 

be coated is placed on the source and the coating starts when the sample is 

taken to a temperature which produces sufficient vapor pressure.  Our 

system has three separate sources for the use of different materials like 

gold, chromium, and titanium.  The sources are heated using a high current 

power supply (Agilent N5762A, 8V, 165A, 1320W).    

 

3. The chip carrier is placed in a socket to which the electrical wires are 

connected (Figure 5.4).  The socket is screwed to a small sample holder 

which can be inserted to different locations on the top plate.  By changing 

the location of the sample holder, the evaporation angle between the 

source and the sample can be adjusted.  Additionally, the stage of the 

sample holder is rotatable through a vacuum step motor.  Both the 

direction (clockwise, counterclockwise or alternating) and speed of the 

rotation are controlled with a home-made electronic system. 
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Figure 5.3:  The figure illustrates the “home-made” thermal evaporation system 
 

4. The deposition rate and thickness can be monitored and controlled using a 

quartz crystal inside the chamber and a thickness monitor/controller unit 

(Inficon XTC2).  A quartz crystal’s resonance frequency shifts with the 

additional mass of deposited material.  Thickness monitor calculates the 

deposition rate and total thickness of the thin film from the shift in the 

quartz crystal’s resonance frequency.  In addition to monitoring, XTC2 

controls the output current of the power supply to adjust the deposition 

rate.  For more accurate measurements, a water cooling system is installed 

to cool down the quartz crystal and minimize the thermal drift during 

evaporation.   

 

5. The most important and unique feature of the home-made thermal 

evaporator is the in-situ conductance measurement.  The sample is 

electrically connected to a source/measure unit (Agilent 4156C 

semiconductor parameter analyzer).  The unit is controlled from the PC 

using LabView Program and it can be operated either in sweep or 
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sampling mode.  In the sampling mode, it applies a constant DC bias to the 

sample and measures the current simultaneously during evaporation.  A 

threshold current is determined before the evaporation and the system 

constantly compares the measured current with the predetermined 

threshold current.  As the deposition proceeds, the gap becomes narrower 

and narrower and at some point, it enters the tunneling regime that causes 

a very sharp increase in the measured current.  When the measured current 

reaches the threshold value, the PC immediately terminates the 

evaporation by halting the power supply.  At the end of this process, a 

vacuum tunnel junction is formed at a predetermined resistance.  The 

typical values we practice are a bias voltage of 100 mV-2V and a 

tunneling current of 10-20 pA, which forms a tunnel junction with a 

resistance of GΩ-TΩ.  The values of the tunneling resistance and hence the 

tunneling gap can easily be tuned by simply changing either the bias 

voltage or the threshold current.  This method offers great control over the 

process and increases the fabrication yield.  Sweep mode basically stands 

for I-V measurement and is performed by applying a linearly 

increasing/decreasing bias and measuring the current.  I-V measurements 

are required for the characterization of fabricated nanogaps. 
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Figure 5.4:  The pictures of the outside (top) and inside (bottom-left) of home-made 
thermal evaporator and the sample holder (bottom-right) are given. 

5.3   Results of the Experiments and Characterization of Nanogaps 

During this work, stable nanogaps are successfully fabricated and characterized 

for three samples.  The number of successful experiments is restrained because of the 

“widening of the gap sizes after release” problem as mentioned in the previous chapter.  

In most of the samples, initially 20-40 nm gap sizes increased to over 100 nm after wet 

etch.  The coating thickness during controlled thermal evaporation should be close to 

µm range in order to be able to fill such wide gaps.  The increase in the coating 

thickness impairs the experiments in three ways.  First of all, the risk of unwanted 

parallel conductance from other parts of the sample increases drastically for thicker 

coatings.  Secondly, the sample goes through more heat and cool cycles as the number 

of evaporation steps increases.  As a result, metal layers buckle and curve due to 

successive thermal expansions and contractions.  Last but not least, when the inner 

surface of the bell jar is coated with gold, the thermal radiation from the boat is trapped 

inside and causes an increase in the sample temperature.  In other words, the maximum 
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sample temperature reached during experiment is higher for thicker coating because the 

bell jar becomes a stronger reflector.  The over-heating of the sample causes shape 

distortions on the metal layers and increases the thermal noise which hinders the 

experiment.  All in all, wide gaps are not suitable for nanogap fabrication using 

controlled thermal evaporation.  Experiments performed on numerous samples with 

different gap sizes showed that, for nanogap fabrication, the gap size should be smaller 

than 40 nm before controlled thermal evaporation.  During this work a new method is 

developed to treat the gap widening problem which is discussed in the next chapter.  

Here, the details of nanogap fabrication and characterization of three samples with sub-

40 nm initial gaps are given in chronological order. 

 

SAMPLE 1: 

 

The initial gap size of Sample 1 was 22 nm.  A constant bias of 100 mV was 

applied between the metal tips during evaporation.  The threshold current was set to 20 

pA which means a 5 GΩ tunnel junction resistance was targeted.  The gold deposition 

rate was kept low at 1 Å/s to sustain a better control over the halting instance when the 

nanogap is formed.  The evaporation was performed in steps of 10 nm to avoid the over-

heating of the sample.  The sample was waited to cool-down to room temperature after 

each evaporation step.  The evaporation was immediately halted when the preset 

threshold current was reached in the 8th evaporation step.  At the end of the experiment, 

the total thickness of gold coated was 78 nm.  The swelling at the sides is approximately 

1/7 for this sample.  The pressure was 4x10-6 mBar before the experiment and it did not 

rise significantly during evaporations since the deposition was carried at low rate and 

for short durations.  The maximum temperature reached during the whole process was 

75°C.  The SEM images of the sample before and after controlled thermal evaporation 

are given in Figure 5.5 and Figure 5.6, respectively.   
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Figure 5.5:  The top-view (left) and tilted (right) SEM images of Sample 1 before 
controlled thermal evaporation are given.  The initial gap size of the device is 22 nm. 
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Figure 5.6:  The SEM images taken at different magnifications and from different 
viewpoints are given.  The gap size cannot be measured directly using SEM because of 
over 3 nm resolution of the microscope and three dimensional nature of the sample. 

 

The gap size cannot be determined directly using SEM since the resolution of this 

imaging technique is not enough to measure sub-nanometer features.  Besides, the three 

dimensional nature of the sample makes it inconceivable to specify the exact position 

and size of the nanogap.  Even so, they nicely reveal the shrinkage of lithographically 

defined wide gaps as a result of thermal evaporation until they form a nanogap.  

 

The SEM images after evaporation show that the gold thin film layers of the metal 

tips were curved up during evaporation and the nanogap was formed between the gold 

coated on the underlying chromium thin film.  The device consists of multiple layers of 

oxide, nitride, chromium, gold with different thermal expansion coefficients and it went 

through multiple heat and cool cycles during the experiment.  We think that the 

mismatch in the thermal expansion coefficients might have been exerted a stress on the 

gold layer and bended it.  Therefore, the temperature must be kept as low as possible 

during experiments to minimize this thermal oriented stress.   
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The current versus time graphs during and after thermal evaporation are given in 

Figure 5.7.  In the first graph, it is seen that when the measured current exceeded the 

preset threshold current of 20 pA, the evaporation was immediately halted.  The system 

continued to measure the current for another 8 minutes after the evaporation to observe 

the behavior of the device while it was cooling down.  The DC bias was 100 mV for 

both during and after evaporation measurements.  The tunneling current increases from 

20 pA to 250 pA in 8 minutes after evaporation.  During this measurement, the device is 

cooled down to room temperature after evaporation and the metal tips might have 

approached to each other due to the change in the stress on thin films. As a result, the 

tunneling current increased when the tips came closer.  The desired tunneling resistance 

was 5 GΩ according to the applied bias and preset threshold current but it decreased to 

400 MΩ, 8 minutes after nanogap formation.    

 

Sampling measurements were continued to follow the change in the tunneling 

current in time.  Two tunneling current measurements were performed 1 hour and 16 

hours after the experiment.  The applied bias was 1 V for both cases and tunneling 

resistance versus time graphs are given in Figure 5.8.  The tunneling resistance is 

calculated by dividing the applied bias by the measured tunneling current.  After 1 hour, 

the resistance increased from 400 MΩ to around 4 GΩ which is close to the preset 

value.  Then the resistance once again decreased to 2 GΩ after 16 hours and remained 

stable for the rest of the measurements.  All in all, the resistance of the fabricated 

nanogap fluctuated for 16 hours until it stabilized.  The tunneling current or the 

tunneling resistance also fluctuated randomly throughout the measurements.  According 

to Simmons model, the tunneling current is affected by the gap size, potential barrier 

height, and the emission area for a given bias.  Therefore, fluctuations in any of these 

parameters are reflected in the tunneling current.  The gap size might fluctuate due to 

thermal stress and the mechanical vibrations coming from outside.  The potential barrier 

height might be affected from the contaminations on the metal surface and in the gap 

which can change over time.  The change in the atomic arrangement at the tip also 

affects the emission area and potential barrier height.  Last but not least, there is 

relatively small external noise coming from the wiring and electrical measurement 

devices.  In summary, the tunneling current can fluctuate due to multiple reasons but it 

is considered as a stable nanogap as long as it stays in the tunneling regime.   
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Figure 5.7:  The time-current graphs of Sample 1 during (top) and just after (bottom) 
thermal evaporation are given.  The sample was under constant bias of 100 mV for both 

graphs. 
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Figure 5.8:  Tunneling resistance versus time graphs are given for 1 hour (top) and 16 
hours (bottom) after nanogap formation.  The applied bias was 1 V for both cases and 
the tunneling resistance was calculated by dividing the applied bias by the measured 

tunneling current. 
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Once the tunnel junction was stabilized, I-V measurements were performed to 

confirm and characterize the nanogap.  In order to prove that the device was in the 

tunneling regime, the measured I-V characteristics of the device were fitted to the 

Simmons model 47.  As discussed in detail in Chapter 3, the device shows ohmic 

behavior when the applied bias is very small, i.e. V ≈ 0 (Equation 3.3).  The I-V curve 
given in Figure 5.9 is obtained by averaging 4 successive measurements to minimize the 

random noise and it is seen that the current changes linearly with applied bias as the 

model suggest for this interval.  

 

 
 

Figure 5.9:  The I-V curve of Sample 1 for V ≪ φ e⁄  is given.  The device exhibits 
ohmic behavior for extremely low biases as the Simmons’ model suggests. 

 

The most suitable interval of the model to fit the data and extract the tunnel 

junction parameters like gap size and potential barrier height is the intermediate-voltage 

range, V < φ e⁄ .  The current density for this interval is given by Equation 3.4 and the 

tunneling current can easily be calculated by multiplying the current density by current 

emission area:  
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In this equation, I (A) is the tunneling current, J (A/cm2) is the current density, s 

(Å) is the gap width, V is the applied bias, φ (eV) is the height of the potential barrier 

between the electrodes, and A (cm2) is the current emission area.  There are three 

unknown parameters to be extracted by fitting the experimental data to the Simmons’ 

model: gap size, potential barrier height, and current emission area.  If the current 

emission area, A is taken as a free parameter, it produces large errors and nonphysical 

results which imply an area smaller than a single atom.  Same problem has been 

mentioned in similar previous works 118, 120, 132.  As a solution, the emission is 

considered to be between the two closest atoms at the very end of the metal tips.  In 

other words, the emission is taken only from a single atom and the emission area is 

equal to the cross-sectional area of the single atom.  In this work the tunneling occurs 

between gold atoms and the radius of gold atom is 1.44 Å which gives an emission area 

of A = πr2 = 6.51×10-16 cm2.  Therefore, there are only two parameters left to be 

extracted by fitting the experimental data to the theoretical model: s and φ.    

 

The fitting was performed using Mathematica.  Before fitting, data from 4 

measurements were averaged to minimize the noise and the offset coming from the 

measurement unit was corrected.  All the data were collected at room temperature and 

in air.  A least square error minimization code was written to determine the appropriate 

initial values of the parameters.  It is important to find the proper initial values before 

fitting, otherwise this complex nonlinear function might be stuck in a local minimum 

instead of the global minimum.  The fitting algorithm was run using the initial values 

calculated by least square error minimization.  The fitting algorithm calculated the gap 

size and the potential barrier height as  s = 9.260 ± 0.038 Å  and φ = 1.050 ±
0.009 eV, respectively.  These fitting results with low error values and the consistency 
of the data and the fitting curve as seen in Figure 5.10 proved that the fabricated device 

is compatible with the Simmons’ model.        
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In theory, for a rectangular barrier, if the metal tips and the gap are completely 

free of contamination and the measurement is performed under absolute vacuum, the 

potential barrier height should be equal to the work function of the metal used.  As the 

pressure increases, the particles on the metal surface and within the gap change the   

potential barrier shape and height.  The effective potential barrier height decreases with 

the loss of vacuum.  Previous STM measurements show that the potential barrier height 

between a gold metal tip and gold surface is around 1 eV in air 133.  Therefore, the 

potential barrier height of φ = 1.05 ± 0.009 eV is compatible with literature values.  
During the measurements, the sweep interval is kept between -2.5 V and 2.5 V.  Higher 

biases were avoided since ultra high electrical field might have ruined the device.  Also, 

for voltages V > 2 φ e⁄ , Equation 5.1 gives complex values which cannot be used in 

fitting.  

 

 
 
Figure 5.10:  The experimental data (blue dots) and the curve obtained from fitting to 
the Simmons’ model (red line) are given for intermediate voltages (V < φ e⁄ ).  The 

measurement is taken at room temperature, in air. 
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In addition to the model fitting, the device was also measured for opposite 

polarities to investigate the symmetry of the tunnel junction.  As seen in Figure 5.11 the 

current values of Sample 1 are measured for biases between -2.5 V and 2.5 V.  Even 

though, the general behavior of the device is similar for opposite polarities, the 

corresponding current values are slightly different for voltages with the same absolute 

values.  When the polarity of the bias is reversed, the metal tip which acts as the 

electron emission source is also switched.  The emission area and the potential barrier 

height might slightly change from tip to tip as a result of different atomic arrangement 

which results in these minor differences in the current values.     

 

All in all, the small errors in φ and s and the consistency of the experimental data 

with the model prove that the fabricated device is a stable tunnel junction with 

subnanometer gap size.  The extracted potential barrier height is compatible with the 

previous results in the literature and the device behaves in an expected manner for 

opposite polarities.     

 

 
 

Figure 5.11:  The voltage sweep measurement of Sample 1 for both negative and 
positive polarities is presented. 
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SAMPLE 2: 

 

The second nanogap fabrication was performed on a tunnel junction-nanobeam 

embedded system and the initial gap size was 27 nm.  The threshold current was set to 

15 pA and a constant bias of 2 V was applied between the metal tips during evaporation.  

Thus, a tunnel junction resistance of ~1.33 TΩ was targeted in this experiment.  A 

higher DC bias was preferred compared to the first sample to obtain a higher tunneling 

resistance.  The first three evaporation steps were performed at higher rates (3-5 Å/s) for 

higher thicknesses (20 nm) since the tunneling junction was unlikely to be formed at 

this point.  The rest of the evaporation was carried out in 5 nm steps with lower 

deposition rate (1 Å/s) to avoid the overheating of the sample and to be able to stop the 

evaporation instantly when the junction is formed.  Just like Sample 1, Sample 2 was 

waited to cool-down to room temperature after each evaporation step.  The preset 

threshold current was reached when the total thickness of gold coated was 120 nm and 

the evaporation was automatically halted at this instant.  The swelling at the sides is 

approximately 1/9 for this sample.  The pressure was 1.2x10-6 mBar during evaporation.  

The maximum temperature reached throughout the whole process was 53°C.  The SEM 

images of the sample before and after controlled thermal evaporation are given in 

Figure 5.12 and Figure 5.13, respectively.   

 

  
 

Figure 5.12:  The top-view SEM images of Sample 2 at different magnifications are 
presented.  Sample 2 is a tunnel junction-nanobeam embedded system (left) and the 

initial gap size is 27 nm (right). 
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Figure 5.13:  The SEM images of Sample 2 taken after controlled thermal evaporation 
are shown for different magnifications and viewpoints. 

 

As seen in Figure 5.13, The SEM images taken after the experiment can not reveal 

the exact gap size because of the inadequate resolution and three dimensional structure.  

Just like Sample 1, gold thin film layers of the metal tips were curved up during 

evaporation as a result of thermal oriented stress.  The curving was less pronounced in 

Sample 2 since the maximum temperature reached during the whole process was lower 

than the first one.   
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Figure 5.14:  The time-current graphs of Sample 2 during (top) and just after (bottom) 
thermal evaporation are given. 
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The I-V graphs of Sample 2 during and after thermal evaporation are given in 

Figure 5.14.  In the first graph, the tunneling current is increased slowly with time as the 

evaporation proceeded and the evaporation was halted as soon as the measured current 

exceeded the preset threshold current of 15 pA.  While the device was cooling down to 

room temperature after the experiment, the system continued to measure the tunneling 

current for another 15 minutes.  The tunneling current decreased from 15 pA to around 

4-5 pA at the end of the measurement.  The decrement occurred in a discrete manner 

which suggested that the gap size increased in abrupt steps as a result of the cooling of 

the device and the atomic rearrangement under high electrical field.     

 

The sweep measurements were taken to characterize Sample 2, once the tunneling 

current was stabilized.  This time, the measurements were carried at two different 

vacuum values of 
 = 3 × 10�� mBar  and  
 = 3 × 10�� mBar .  The mathematical 
procedure explained for Sample 1 was exactly used for Sample 2 to find the best-fitting 

curve.  Because of the reasons mentioned previously, the emission area was assumed to 

be the cross-sectional area of a single gold atom (A = πr2 = 6.51×10-16 cm2).  The free 

parameters of φ and s were extracted by fitting the experimental data to Equation 5.1.  

The effective barrier height and the gap size are calculated as � = 3.983 ± 0.039 eV 
and t = 9.878 ± 0.087 Å  for 
 = 3 × 10�� mBar  and � = 3.917 ± 0.033 eV  and 
t = 9.540 ± 0.071 Å for  
 = 3 × 10�� mBar .  The experimental data and the curves 
obtained by fitting to Simmons’ model are given in Figure 5.15 for both pressure 

values.  Once again, the small error values in the extracted parameters and visual 

coherence between the experimental data and fitting curve prove that the fabricated 

device is a stable tunnel junction with subnanometer gap size.  

 

The calculated potential barrier heights are similar for two different pressure 

values.  These results suggest that �  does not depend on the pressure of the 
environment.  On the other hand, theoretically the effective potential barrier height 

should decrease with increasing pressure.  There are other factors that affect the 

potential barrier height like the shape of the barrier and the chemical purity of the metal 

tips and the gap 134-137.  Numerous controlled measurements have to be performed on a 

large number of tunnel junctions to understand the role of environment pressure on the 

effective potential barrier height.  
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Figure 5.15:  The experimental data (blue dots) and the fitting curves (red line) are 
given for intermediate voltages (� < � 	⁄ ).  The measurements were performed at room 
temperature for pressures, 
 = 3 × 10�� ���� (top) and 
 = 3 × 10�� ���� (top). 
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The sweep measurements were repeated nine times in a 50 hour-period in order to 

test stability of fabricated tunnel junction.  All the I-V measurements were fitted to the 

Simmons’ model.  The extracted potential barrier heights (�@ and the gap sizes (s) are 
presented in Figure 5.16.  The error bars represent the error values in the extracted 

parameters.  As seen from the graphs, the potential barrier height varies between 3.5 and 

4.5 eV and the gap size varies between 8 and 12 Å for 50 hours.  The two graphs 

indicate a correlation between the gap size and the potential barrier height since one 

parameter increases while the other one decreases and vice versa.  In order to better 

understand the correlation between the two free parameters, the barrier height is taken 

as φ = 3.89 eV for all set of curves and the data is fit to Equation 5.1 with the only free 
parameter s.  The fixed value of �  is calculated by averaging the potential barrier 
heights given in Figure 5.16.  The gap size over 50-hour period is calculated using free 

and fixed � and the results are compared in Figure 5.17.  The gap size varies between 9 
and 11 Å when potential barrier height is fixed.   

 

 
 

Figure 5.16:  The potential barrier heights (top) and the gap sizes (bottom) with 
corresponding error values were obtained for nine measurements taken at different 

times in a 50 hour-period. 



 88

 
 

Figure 5.17:  The gap separation with corresponding error values over 50 hours time is 
calculated by taking potential barrier height, φ, as a free parameter (black squares) and 

as a fixed parameter of 3.89 eV(red circles). 
 

All in all, both parameters remain in a reasonable interval and do not change 

significantly over time.  These measurements prove that the fabricated device has high 

stability and can operate in the tunneling regime for more than 2 days.  On the whole, a 

stable subnanometer size tunnel junction has successfully been fabricated on Sample 2 

using controlled thermal evaporation.  The fitting curves and the extracted parameters 

with small error values prove that the device is compatible with the Simmons’ model.  
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SAMPLE 3: 

 

Two metal tips which were initially 35 nm apart were used for the third nanogap 

fabrication experiment. A constant bias of 100 mV was applied between the metal 

electrodes and the threshold current was set to 10 pA.  The targeted tunnel junction 

resistance was 10 GΩ for this sample.  30 nm thick depositions at 3 Å/s rate were 

performed for the first three evaporation steps.  The rest of the evaporation was carried 

out in 10 nm steps with 1 Å/s deposition rate.  Just like the previous experiments, the 

sample was cooled down to room temperature after each evaporation step.  The 

evaporation was halted as soon as the measured current exceeded the pre-set threshold 

current.  A total of 130 nm gold had been coated at the time the deposition stopped.  

The swelling at the sides is approximately 1/7 for this sample.  The pressure was on the 

order of 10-7 mBar during evaporation.  The maximum temperature reached throughout 

the whole process was 45°C and when the deposition halted in the last cycle the 

temperature was 28ºC.  The SEM images of the sample before and after controlled 

thermal evaporation are given in Figure 5.18 and Figure 5.19, respectively.  The SEM 

images in Figure 5.19 reveal that two small grains at the tip ends were grown to close 

the gap and formed the tunneling junction.  In contrast to previous samples, the metal 

layers did not curve up during this experiment.  Although the scanning electron 

microscope cannot resolve the gap, views from various angles verify sub-resolution 

separation of less than 5 nm.   

 

  
 

Figure 5.18:  The top-view (left) and tilted (right) SEM images of Sample 3 before 
controlled thermal evaporation are given.  The initial gap size of the device is 35 nm. 
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Figure 5.19:  The SEM images of Sample 3 after controlled thermal evaporation are 
presented for various magnifications, from different viewing angles. 

 

The current values during and after in-situ controlled thermal evaporation are 

shown in Figure 5.20.  There are minor fluctuations in current before the 10 pA 

threshold is reached.  This is possibly due to atom dynamics at the tip ends which result 

in momentary jumps in the gap conductance.  However once the threshold was reached, 

the junction was formed irreversibly.  The measurement was continued for another 15 

minutes after evaporation but, the current exceeded the preset compliance level of the 

parameter analyzer (100 pA) and could not be measured correctly after 70 seconds.  

Therefore only the first 70 seconds after the evaporation is included in the graph.  The 

increase in the tunneling current after the experiment might originate from thermal 

relaxation of the device or the atomic rearrangement at the metal tip ends.  Despite the 

increase in the tunneling current and the fluctuations, further sampling measurements 

with higher compliance levels showed that the device was stabilized in a short while 

and remained in tunneling regime. 
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Figure 5.20:  The graph shows the progress of the current flow between the electrodes 
before and after controlled thermal evaporation. 

 

When the tunnel junction became stable, the sample was characterized using its 

current-voltage measurements.  The I-V measurements were repetitively recorded over 

days and in spite of the fluctuations the overall behavior remained stable.  The sweep 

measurements were performed in air, at room temperature.  Once again, the I-V 

characteristics were analyzed by Simmons’ model to be able to estimate the gap 

separation and the potential barrier height.  Assuming that the tunneling current flows 

through the single atom at the tip end, the area is taken as A = πr2 = 6.51×10-16 cm2. On 

the other hand, s and � are the parameters to be interrogated from the experimental data 
by fitting it to Equation 5.1 for intermediate voltages (V < φ e⁄ ).  According to the best 

fit curve to the measurement (Figure 5.21), the potential barrier height is calculated to 

be φ = 0.770 eV while the gap width is s = 11.32 Å with standart errors of 0.005 eV 
and 0.05 Å respectively.  The potential barrier height of Sample 3 is consistent with the 

results of Sample 1 and the previous studies in literature 133.    
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Figure 5.21:  Red dots represent the measured current versus voltage characteristics of 
Sample 3 and the black line is the fitted curve to Simmons’ model.  The measurements 

were performed at room temperature, in atmospheric pressure. 
 

 
 

Figure 5.22:  The variation of the calculated gap separation, s, over 55 hours time is 
given.  The potential barrier height, φ, is taken as 0.77 eV. 
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The results of the fitting to the curves taken from the same sample over the period 

of two days gave similar results.  In order to see the stability of gap size, the barrier 

height is taken as φ = 0.770 eV for all these set of curves and the data is fit to Equation 
5.1 with the only free parameter s.  Graph in Figure 5.22 shows the variation of the 

calculated gap separation, s, over 55 hours time.  It is observed that s tend to fluctuate 

with an amplitude of ~1 Å in between adjacent measurements.  Sample 3 remained in 

the tunneling regime over 4 weeks.   

  5.4   Discussions and Conclusion 

Three samples have successfully been fabricated using in-situ controlled thermal 

evaporation.  The details of the fabrication technique and the home-made experimental 

setup are discussed thoroughly.  The samples are observed, analyzed and characterized 

by using high resolution SEM images and electrical measurements.  The procedure of 

fitting of the experimental data to the theoretical model (Simmons’ model) is explained 

in detail and the extracted tunnel junction parameters are provided.  Further sweep and 

sampling measurements have proven that all the fabricated nanogaps are stable.  The 

summary of the results of three samples is given in Table 5.1. 

 

Table 5.1.  Summary of the important process parameters and resulting junction 
parameters from controlled fabrication of three different samples are given. 

 
 

Initial gap 
(nm) 

Deposited 
gold 

thickness 
(Å) 

Fitting 
Pressure 
(mBar) 

s (Å) φ (eV) 

Sample 1 22 78 atmospheric 9.3 1.1 

Sample 2 27 120 3 × 10�� 9.9 4 

   3 × 10�� 9.5 3.9 

Sample 3 25 130 atmospheric 11.3 0.8 
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For all three samples, the deposition rate was 1 Å/s in the last cycle when the 

tunnel junction was formed.  This rate is small enough to easily control the average 

filling in the gap.  The response of the thermal evaporator is sufficient to stop the gap 

narrowing with < 1 Å resolution.  In all samples, there were fluctuations and minor 

jumps in the tunneling current during and after the deposition.  According to the 

Simmons’ Model, the tunneling current is affected by three parameters: gap size, 

potential barrier height and emission area.  The variations in any of these parameters are 

reflected in the tunneling current as fluctuations and jumps:   

 

1. Gap Size:  The gap size changes when the distance between the very ends 

of the metal tips change.  The high electrical field between the tips (> 108 

V/m) might result in atomic rearrangements at the metal tip ends which 

ultimately changes the gap size and causes discrete and sudden jumps in 

the tunneling current.  The gap size might also change when the tips move 

towards or away from each other as a result of the contraction or 

relaxation in any of the layers of the device (silicon, oxide, nitride and 

metal layers).  The contraction/relaxation can occur as a result of the 

thermally oriented stresses on the sample and the mechanical vibrations 

coming from outside.   

 

2. Potential Barrier Height:  The potential barrier height depends on the 

Fermi energy level of the metal electrodes and the vacuum condition in the 

gap.  Therefore, the chemical composition and purity of the metal tips and 

the gap affects the effective potential barrier height and hence the 

tunneling current.  The contaminations on the metal tips and inside the gap 

continuously changes in time and causes fluctuations in the tunneling 

current.  Even though, an ideally square potential barrier shape is assumed 

in Simmons’ model, in reality the changes in the potential barrier shape 

also affect the tunneling current.   

 

3. Emission Area: Throughout the fittings the emission area is assumed to be 

the cross-sectional area of a single atom since the tunneling occurs 

between the two closest atoms.  Therefore, the emission area can be 

assumed to remain unchanged. 
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Despite the fluctuations and jumps in the tunneling current, once the threshold current is 

exceeded, the tunnel junction is formed irreversibly and remains in the tunneling 

regime.  The fabricated junctions are very robust against handling and pressure changes 

and have lifetime over weeks. 

 

The I-V curves of the fabricated nanogaps were fitted to the Simmons’ model 

which is the most widely-used theoretical model in similar works in literature 120, 132.  

The two important device characteristics, φ  and s, were deduced by fitting the 
experimental data to the model.  The small error values in φ and s, and the visual 
inspection of fitted curve to the experimental data prove that the fabricated devices 

operate in tunneling regime.  The gap sizes are calculated to be approximately 1 nm 

which is a typical value for tunnel junctions.  The effective barrier heights of Sample 1 

and Sample 3 are calculated for atmospheric pressures and the results are consistent 

with the previous studies 133.  The effective barrier height of Sample 2 is interrogated 

for two different vacuum values of 10-1 and 10-6 mBar.  These measurements generated 

higher φ values compared to the atmospheric pressures as expected.  However, there 
was no noteworthy difference between φ  values for 10-1 and 10-6 mBar.  The 
dependence of φ on vacuum condition can not be understood totally from these results 
and it needs further investigation with more samples.      

 

Numerous experiments were performed on initially wider gaps (>40 nm) but none 

of them produced successful results.  As mentioned before, the deposition thickness has 

to be higher for initially wider gaps.  As a result, not only these samples go through 

more heat and cool cycles, but they also experience higher temperatures.  These thermal 

effects can easily distort the shape of the metal tips and ruin the sample.  Additionally, 

when the surface is coated with a thicker metal, the chance of an unwanted parallel 

conductance increases.  Our experiments showed that, for nanogap fabrication, the 

initial gap size should be smaller than 40 nm before controlled thermal evaporation.  On 

the other hand, most of the samples fabricated had a gap size over 100 nm due to the 

“widening of the gap size after release” problem.  At this point, a new technique is 

developed to compensate the gap widening and to obtain initially narrow gaps.  This 

technique will be discussed in the next chapter.   
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In conclusion, we have developed a fabrication method for the formation of 

nanogaps, using conventional lithography and in-situ controlled thermal evaporation.  

With this method, it is possible to fabricate nanogaps at a predetermined conductance 

and accordingly at a predetermined size.  The fabricated devices are stable and robust 

and have lifetime over weeks.  Even though, only nanogaps between gold electrodes are 

demonstrated in this study, any material compatible with thermal evaporation can be 

used for the fabrication of tunnel junctions.   
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CHAPTER 6 

 

TUNING OF NANOGAP SIZE IN HIGH TENSILE STRESS THIN FILMS  

6.1   Introduction 

High tensile stress thin films are widely used for the fabrication of suspended 

nanomechanical structures since they offer higher quality factors and resonant 

frequencies 43-46, 66, 67, 69.  Additionally, they are mechanically durable and stable and 

more resilient to the fabrication problems like stiction 138.  On the other hand, the 

intrinsic high tensile stress cause shape distortions such as contracting, buckling and 

twisting, once the structures are released from the underlying layer.  Even though there 

are some studies that actually utilize the shape deformation for the fabrication of 3D 

structures 139,141, it becomes problematic when the precise positioning of the suspended 

structures is desired.  It is already mentioned in the previous chapter that the main issue 

with the fabrication of nanogaps using controlled thermal evaporation is the gap 

widening problem.  The metal tips move apart from each other after wet etch as a result 

of the intrinsic high tensile stress of nitride thin film.  The fabrication yield decreases 

dramatically since the over-wide gaps are not compatible with the controlled thermal 

evaporation method.  Therefore, a new technique is developed with the motivation of 

compensating the gap widening and maintaining the original gap size after release.  The 

chapter starts with a literature review on the use of high tensile stress thin films in 

nanomechanics with pros and cons.  Examples from earlier studies that either utilize or 

compensate the effects of high tensile stress are introduced.  Then, the implementation 

of the technique, geometrical design and the device fabrication procedures are given.  

Finally, the results of the experiments are presented by comparing before and after SEM 

images of the gap width and supporting the experimental data with FEA.   
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6.2   High-Stress Thin Films and Nanomechanics  

The growing interest on NEMS over the last decades has been expressed in detail 

in Chapter 2.  The primary component of NEMS is a suspended mechanical resonator 

with micro- and nano-dimensions.  As a consequence of their diminished size, 

nanomechanical resonators have extremely small effective masses and very high 

fundamental resonant frequencies 13.  Owing to these unique properties, NEMS have 

been employed in numerous applications for the ultrafast and ultrasensitive detection of 

various physical properties such as mass, position, and charge 3, 11-21, 60.  In addition, the 

extraordinary dynamical behavior of nanomechanical resonators arouses the interest of 

fundamental research in the context of energy dissipation and damping 43, 44. 

 

The sensitivity of a NEMS detector is maximized by decreasing the mass as well 

as increasing the quality factor of the resonator. However, the experimental results show 

that the mechanical quality factor diminishes as the dimensions and hence the mass of a 

nanoresonator decrease 13.  As a solution to this dilemma, previous studies show that 

tensile stress can be used to increase the quality factor of a nanomechanical resonator 

for a given dimension 43-46, 66.  High tensile stress thin films can be grown using low 

pressure chemical vapor deposition (LPCVD).  In literature, the most widely preferred 

material is the LPCVD grown silicon nitride thin film with high tensile stress, ranging 

from hundreds of MPa to few GPa 43-46, 66, 67, 69.  A quality factor over a million at room 

temperature has been reported using this material 46.  In addition to high tensile stress, 

silicon nitride has also high Young’s modulus which is demanded for high resonance 

frequency as given in Equation 2.12.  Last but not least, high tensile stress combined 

with high Young’s modulus makes the nanostructures mechanically stable and durable.  

They are more resilient against the stiction effect which is a well-known problem for the 

fabrication of suspended micro and nano structures 138.  On account of high tensile 

stress, it is possible to fabricate doubly clamped beams as long as hundreds of microns 

without using sophisticated techniques like critical point drying 46.   
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Despite its numerous advantages mentioned above, the main drawback of high 

tensile stress is that the structures will be deformed in- and out-of-plane once they are 

released from the layers underneath.  Depending on the geometry of the pattern, the 

deformation occurs in a complex way by contracting, buckling, bending and twisting 

the structures.  In some applications, the shape deformation can be utilized for the 

fabrication of 3D structures like micro-turbines 139, sensors 140, and atomic force 

microscope cantilevers 141.  On the other hand, in some applications such as the 

fabrication of tunnel junctions, the original positions of the patterned structures must be 

preserved after release process.  In some earlier work, different geometries are proposed 

and implemented to reduce the sensitivity of the suspended structures to thin film 

stresses 142, 143.  However, these geometries are tested only for relatively small tensile 

stresses (70MPa) compared to the silicon nitride films used in contemporary NEMS.  In 

some other studies, the intrinsic tensile stress of the nanoresonator is reduced by 

embedding spring-like structures on doubly-clamped beams 144, 145.  All in all, there is a 

great need for a fabrication technique which incorporates the tensile stress to fabricate 

suspended structures with nanometer range precision.  The main motivation behind 

developing this technique is to control the gap size between two suspended structures 

made of high tensile stress silicon nitride, after release.   

6.3   Device Fabrication  

The free standing nanogap structures studied in this thesis were fabricated from a 

100 nm thick stoichiometric LPCVD grown nitride film (NOVA Electronic Materials).  

The nitride film has the tensile stress of 800 MPa (provided by the manufacturer) and is 

grown on top of a 1 µm thick thermal oxide which is used as the sacrificial layer.  

During this study, all the inspections and measurements were performed by SEM 

imaging and no electrical connections were required.  Therefore, there was no need for 

optical lithography and all the patterns were defined by EBL only.  The patterns were 

transferred to nitride layer by anisotropic dry etch and the underlying oxide layer is 

removed by wet etch to release the structures.  The fabrication steps are illustrated in 

Figure 6.1 and the details of device fabrication methods are provided in Chapter 4.  The 

device fabrication process flow can be summarized as:  
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1. The structures are patterned using bilayer EBL, 5 s O2 plasma, metal coating 

(5nm Cr/30 nm Au) and lift-off in acetone.  This metal pattern serves as an etch 

mask during the physical etching of nitride layer. 

 

2. Nitride layer is etched vertically in a CHF3/O2 plasma using ICP-RIE.  3 minute 

O2 plasma is performed after dry etch to remove the organic byproducts. 

 

3. The oxide layer is etched isotropically using buffered HF to release the nitride 

structures.  

 

 
 

Figure 6.1:  The fabrication steps of the device: (a) Bilayer PMMA covered on top of 
LPCVD nitride thin film, then exposed and developed, (b) a thin layer of Cr/Au coated 
and lifted-off, (c) the pattern is transferred to nitride layer using fluorine plasma, (d) the 
sacrificial oxide layer etched using buffered HF to suspend the nitride structures. 
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6.4   Results and Discussions  

The most handicapping problem faced during nanogap fabrication was the 

widening of the gap between the suspended structures when they were released from the 

layers underneath.  The EBL could define two metal tips separated by sub-10 nm gap 

but, the gap size increased by 50-100 nm after wet etch (Figure 4.21).  As discussed 

previously in Chapter 4, the widening of the gap impaired the nanogap fabrication using 

controlled thermal evaporation, in many different ways.  Therefore, this problem had to 

be solved to increase the yield and repeatability of the method developed for nanogap 

fabrication.  The controlled experiments and the literature review revealed that the 

problem was originated from the intrinsic high tensile stress of the nitride layer.  As a 

result, we started to work on a new technique in which the position of the suspended 

structures, which are made of high tensile stress thin film, can be controlled by tailoring 

the geometry of the structures.   

 

The main motivation is to design a geometry which compensates for the widening 

of the gap.  Since the geometry of the nanomechanical resonator cannot be modified, 

the previously fixed metal tip is now placed on a completely suspended structure which 

is supposed to approach the tip to the resonator after release.  In the earliest model, the 

metal tip is placed on a free structure that has multiple grids as shown in Figure 6.2.  

These grids are supposed to contract and pull the metal tip towards the doubly-clamped 

beam.  In this model, it is assumed that the only reason behind the widening of the gap 

is the linear contraction of the nitride layer in the active region.  Hence, the length of the 

grids is chosen equal to the amount of the nitride layer that will be contracted in the 

active region (Figure 6.2).  This new design has complex structures with small windows 

and the proximity effect ruins the lift-off even though bilayer process is employed.  

Therefore, a different development method using ultrasonically-assisted development in 

water:IPA is used instead of the conventional MIBK:IPA development 126.   The SEM 

images in Figure 6.3 compare the results of both development methods and prove the 

superiority of water:IPA ultrasonic development for this particular pattern. 

 

 



 

Figure 6.2:  The first model developed for the compensation of gap widening and its 

 

Figure 6.3:  The lift
ultrasonically

 

The new devices successfully fabricated using ultrasonically

development are first dry

wet etching.  The SEM images of two separate devices before dry etch and after release 

are given in Figure 6.4.  
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The first model developed for the compensation of gap widening and its 

basic operation principle are illustrated.  

 

 
The lift-off results of bilayer EBL using MIBK:IPA (top) and 

ultrasonically-assisted water:IPA (bottom) development are given.

The new devices successfully fabricated using ultrasonically-

development are first dry-etched vertically and then the structures are released using 

wet etching.  The SEM images of two separate devices before dry etch and after release 

are given in Figure 6.4.   

 

The first model developed for the compensation of gap widening and its 

 

 

off results of bilayer EBL using MIBK:IPA (top) and 
assisted water:IPA (bottom) development are given. 

-assisted water:IPA 

then the structures are released using 

wet etching.  The SEM images of two separate devices before dry etch and after release 
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Figure 6.4:  The SEM images of the gap before (left) and after (right) wet etch are given 
for two separate devices. The gap width increases approximately 75 nm after release for 

both devices.  
 

Contrary to the expectations, the SEM images show that the gap size increases 

approximately 75 nm after release.  Thus, this heuristic design with grids cannot correct 

the widening of the gap.  These results suggest that there ought to be mechanisms other 

than the linear contraction of the nitride layer.  The detailed SEM images from different 

viewports reveal that, in addition to the contracting, the structures undergo a complex 

shape deformation by buckling, bending and curling (Figure 6.5).  Actually, it can be 

observed that the metal film on nitride layer wrinkles at points where the shape 

deformation is most pronounced.  The deformation tends the middle of the structure to 

move towards its center of mass.  Therefore, the metal tips move away from each other 

after release.  The earliest model was unsuccessful since it did not take into account the 

complex shape deformation mechanisms other than linear contraction.   

 



 104

  
 

Figure 6.5:  The top view (left) and side view (right) SEM images of the earliest design 
show that the intrinsic high tensile stress causes complex shape deformation by 

contracting, buckling and bending the structure. 
 

The displacement of the nitride structures can be analyzed by static beam 

equations via stress-strain relations to picture the shape deformation.  The structure is 

analyzed by numerical calculations to estimate the displacement distribution.  Comsol 

Multiphysics 4.2 Finite Element Analysis Simulation Software is utilized to find the 

displacement, strain and stress distributions over the whole structure.  The tensile stress 

is along the planar directions, σxx = σyy = 800 MPa and σzz = 0.  Young’s modulus and 

the Poisson’s ratio of nitride is taken to be E = 270 MPa and υ = 0.23 respectively.  The 

thermal oxide layer is assumed to have an internal compressive stress of 350 MPa.  

However, the stress in the oxide layer is virtually ineffective since its bottom is 

completely fixed to the substrate.  The simulation results giving the displacement along 

the gap direction are compared to the experimental results in Figure 6.6.  The simulation 

confirms that the suspended structures contract and deform due to tensile stress and the 

metal tip moves apart from the doubly-clamped beam.  The simulations predict that the 

gap widens by 55 nm after release.  On the other hand, in the actual sample, the gap size 

is increased by 75 nm.  Apart from this 20 nm discrepancy, which will be discussed 

later in this chapter, the simualtions and the experimental findings yield parallel results.  

The simulation can sufficiently predict how the sturucture will deform after release.  

Therefore, new designs are first tested with simulations before the fabrication of the real 

devices. 
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Figure 6.6:  The SEM image (top) and the FEA simulation (bottom) of the 
uncompensated structure.  The color-code represents the displacement in the y-direction 
in nanometers and the surface deformation is the total displacement of the material. 

 

In the earliest design, grid model with multiple arms forms a rigid structure which 

cannot bend or buckle.  On the other hand, only the linear contraction of multiple arms 

is not enough to compensate the shape deformation in the central region.  The length of 

the multiple arms should be around 25 µm to be able to pull the metal tip to its original 

position.  Such long arms are not feasible due to the increased device area and stiction 

problem.  Therefore, the new models are designed with single arms in order to have a 

more flexible and controllable structure.  In the first design, it is observed that the long, 

straight beam, on which the metal tip is placed, tends to curve back and pull the metal 

tip away from the nanobeam.  In the new models, this long straight beam is replaced 

with three different central geometries which have shorter central beams along the x-
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axis to minimize the curving back and zigzag or straight components in the y-axis to 

absorb the excessive stress.  The simulation results of new models are shown in    

Figure 6.7.  All the models have single arms with length, L but the central geometries 

are slightly different.  The color code and the surface deformation represent the position 

change in y-direction and the total displacement of the material, respectively.  In the 

simulation results, the calculated values for total displacement of the material are 

amplified ten times to be able to observe the surface deformation more evidently.   

 

 
 

Figure 6.7:  The FEA simulations of the new models are given.  The color-code 
represents the displacement in the y-direction in µm and the surface deformation is the 

total displacement of the material (x10). 
 



 107

The simulation results show that, the widening of the gap can be compensated in 

all three models.  Six different arm lengths between 1.7 µm and 3.0 µm are simulated 

for all models to investigate how the gap size changes with respect to the arm length.  

The calculation results show that for all models, the widening of the gap decreases as 

the arm length increases (Figure 6.8).  According to the simulations, it is also possible 

to further shrink the gap size from its original value using longer arms.  The change in 

the gap size varies from model to model for a given arm length but the general behavior 

resembles each other.   

 

 
 

Figure 6.8:  FEA results for the gap size change with respect to the length of the 
compensation arm for the structures shown in Figure 6.7 are given. 

 

The designed models are fabricated using the process flow summarized in Part 

6.3.  Since there are no small windows in these structures, standard MIBK:IPA 

development is enough to develop successful lift-off results.  The SEM images of 

fabricated devices after lift-off are shown in Figure 6.9.  The arm lengths of the real 

devices are 100 nm shorter than the designed values.  Therefore the simulations are 

repeated with the correct arm lengths during the comparison of the simulations and the 

experimental results. 
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Figure 6.9:  The SEM images of the fabricated three new structures are shown. 
 

The initial gap sizes are measured after lift-off using ultra-high magnification 

SEM imaging.  The distance between the metal tips is determined by placing the cursors 

to the very end of the tips.  Then, the samples are etched in CHF3/O2 plasma using ICP-

RIE.  Finally, the structures are released by wet etching.  The size of the gap after 

release is determined similarly using SEM and the difference between two 

measurements give the change in gap size, ∆d.  The metal tips that are originally in 

contact or the contaminated gaps are excluded since they cannot be measured correctly.  

Only the devices for which the initial and final gap sizes can exactly be determined are 

taken into account.  The SEM images of one of the samples which show the initial and 

final gap sizes are given in Figure 6.10.  The graph presents the calculated (SIM) and 

the real (EXP) gap width change with respect to arm length for all devices.  In total, 

there are five, two and one data for Model 1, Model 2, and Model 3, respectively.  The 

experimental data and the simulations agree with each other apart from an offset.  As 

mentioned before, this offset is also present for the uncompensated structure.   
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Figure 6.10:  The SEM images of Model 1, L=2.1 µm after lift-off (top-left) and after 
wet etch (top-right) are given.  The graph compares the calculations (SIM) and the 

experimental data (EXP) for different models and arm lengths. 
 

New samples are fabricated to increase the number of experimental data.  Model 1 

is preferred for the new samples since this structure has the highest yield in the previous 

experiments.  Instead of measuring the initial gap width after lift-off, this time, it is 

measured after dry etch so that the shape distortions coming from physical etching 

cannot affect ∆d calculations.  This way, the difference between the initial and final gap 

width exactly reflects the shape deformation as a result of the intrinsic high tensile 



 110

stress only.  The SEM images taken before and after wet etch for a device with              

L = 2.9 µm are shown in Figure 6.11.  The initial gap width of 79 nm remains almost 

the same after wet etch.  The less bright shadowy pattern around the metal in before 

release is the oxide layer. This can be verified from the side-view image of the same gap 

which shows that the nitride is etched almost vertically but the oxide has a slightly 

positive profile. Since the oxide layer is removed after wet etch, initial gap width is 

measured from metal to metal.  

 

 
 

Figure 6.11:  The SEM images of a device with L = 2.9 µm before (top-left) and after 
(top-right) wet etch are given.  The original gap width is preserved after release for this 
particular device.  The side-view SEM image (bottom) shows that the bright shadows 

seen in SEM image before wet etch are oxide. 
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The graph in Figure 6.12 compares the experimental and simulated values of ∆d 

for all the implemented L sizes.  Overall the experimental results and the calculations 

are parallel to each other apart from an offset of 18 nm.  The standard deviation of the 

experimental results from the best fit line with slope = 1 is 2.4 nm.  Therefore the offset 

corresponds to a systematic shift in all the samples. The reasons for this shift may be 

due to some nonlinear effects ignored in the calculations, the compressive stress in the 

metal layer built due to evaporation, a systematic error in the gap measurements since 

before and after wet etching imaging conditions change.  The contrast differences 

between images may lead to over or under estimation of the gap size.  Possible errors in 

the tensile stress and Young’s modulus are omitted since they would cause the best line 

slope to significantly deviate from 1.  Apart from this offset, the experimental data 

agrees with the simulation and proves that with this design the final gap width can be 

controlled in a reasonable manner. 

 

 
 

Figure 6.12:  The experimental versus calculated gap width change, ∆d for Model 1 is 
given.  Symbols represent different compensation arm lengths, L.  The dashed line 
shows the best fit with a slope of 1 with the standart error of 2.4 nm.  Experimental 

results are -18 nm offset with respect to the simulation results. 
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The structure has many degrees of freedom and it is affected by various complex 

shape deformation mechanisms like bending, buckling and contracting.  Therefore, it is 

not straightforward to formulate a quantitative analysis which can exactly explain the 

working principle of the developed model.  Still, the action can be comprehended 

intuitively based on the fact that once the structure is released everything tends to 

contract.  The contraction of the zigzag beam along the x direction by Dx, applies a 

force to the arms and bends them inwards by Dx/2.  Dx increases as L increases.  The 

displacement of the zig-zag beam can be classified into two cases depending on the 

magnitude of Dx: 

 

1. Dx is large: The beam has small internal stress and small stress gradient with 

nearly zero deformation at the zig-zag angles, hence it acts similar to a straight 

beam which would displace in the –y direction. Therefore the tip also displaces 

in the –y direction (Figure 6.13(a)).  

 

2. Dx is small: There is high internal stress left in the zig-zag beam. Due to stress 

its center of mass displaces towards the middle of its fixed ends. The tip moves 

in the +y direction (Figure 6.13(c)).  

 

For an intermediate L, the tip would not displace after release (Figure 6.13(b)).  

The zig-zag angle does not affect the final results significantly.  As previously 

mentioned, wide angle (Model 2) or vertical (Model 3) elbows have been implemented 

successfully and the same qualitative behavior has been observed for all models.   

 

The the gap size change, Dd with respect to the arm length, L is given in Figure 

6.13 (d) for six different arm lengths using the simulation results of Model 1.  By 

varying L from 1.6 to 2.9 µm, the Dd changes from +22 to -26 nm.  This graph shows 

that one can tune the gap size from its lithographically defined size in any direction by 

changing a single fabrication parameter L.  
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Figure 6.13:  FEA results of Model 1 are given for arm lengths of a) L = 1.6, b) L =  2.1 
and c) L = 2.9 µm.  The color scale shows the displacement along the y-direction in 
nanometers.  d) The graph shows the FEA results for the gap size change, Dd with 

respect to the arm length, L for the same structure. 
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6.5   Conclusion  

The built-in stress in thin films leads to serious shape deformations in suspended 

structures once they are released from the layers underneath.  The relative positions of 

two suspended structures can change significantly as a result of these shape 

deformations.  For instance, the lithographically defined distance between two metal 

tips placed on two different suspended beams increases dramatically after release.  In 

this work, we managed to develop a geometry that employs the built-in stress in a 

counteracting way to compensate for the unintentional widening of the gap.  The new 

design can control the gap width between two suspended structures which would 

otherwise be widened due to the high tensile stress of the thin film.  The method 

provides tuning of the gap between two beams via easily controllable single fabrication 

parameter, the length of the compensation arms, L.  The technique is simulated by finite 

element analysis and experimentally implemented.  The experimental results support the 

tuning capability with a statistical deviation of 2.4 nm.  Although there is a systematic 

shift of 18 nm of the experimental results from the simulations is not completely 

resolved, the overall tuning capability is valid.  With this technique, nanogaps beyond 

the lithography limits can be realized.  
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CHAPTER 7 

 

CONCLUSION AND FUTURE WORK 

There are primarily two outcomes of this thesis: a well-controlled, high-yield 

fabrication method is developed for the realization of tunnel junctions/nanogaps and a 

new technique is proposed and implemented for the utilization of high tensile stress to 

control the gap width between two silicon nitride suspended structures.  Three tunnel 

junctions have successfully been fabricated using in-situ controlled thermal evaporation.  

Initially wide gaps defined by EBL (20-40 nm) are shrunk down to a nanometer size by 

filling the gap with thermally evaporated gold atoms.  The size of the gap can be 

predetermined and controlled within 1 Å resolution.  The fabricated tunnel junctions are 
characterized using I-V measurements and theoretical Simmons’ model.  The tunnel 

junctions are stable and have life-time of over weeks.  The main problem we faced 

during the fabrication of nanogaps was “the gap widening”.  The lithographically 

defined gaps (as small as 10 nm) become ten times wider when the nitride structures are 

suspended as a result of the built-in high tensile stress.  The experiments showed that it 

is not possible to fabricate nanogaps from such wide gaps using the method we 

developed.  Eventually, we developed a new technique which can compensate the gap 

widening by implementing a geometry which utilizes the built-in stress of the nitride 

structures.  The experimental results are compared with finite element analysis and a 

tuning capability with a statistical deviation of 2.4 nm is demonstrated.  Beyond the 

compensation, this method can be used to obtain gap widths beyond the lithographic 

resolution.  In addition to these two important outcomes, the nanofabrication process 

recipes and flows are presented in detail for each device.        
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The future research suggestions in the light of the outcomes of this thesis can be 

summarized as following: 

 

1. The number of tunnel junctions fabricated by controlled thermal 

evaporation can be increased using the compensation geometry.  The 

factors that affect the characteristics of tunnel junctions such as gap size 

and effective work function can be better understood with new 

experiments.  For instance, the dependence of the effective work 

function on environment conditions like pressure and temperature can 

be tested.  The fabrication can be performed using different metals to 

observe the role of the material chemistry on the tunnel junction 

characteristic.  Last but not least, the origin of the fluctuations and 

discrete steps in the tunneling current can be investigated. 

 

2.  The developed compensation and fabrication techniques can be used 

for the fabrication of a tunnel junction displacement detector coupled to 

a nanomechanical resonator.  The mechanical properties of the 

nanoresonator such as resonance frequency and quality factor can be 

measured at cryogenic temperatures using the reflectometry technique 

discussed in the main body.  The careful measurement of noise 

properties and sensitivity limit of a tunnel junction displacement 

detector would have an important impact in both basic and applied 

science.  
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