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ABSTRACT

We consider the problem of synthetic aperture radar (SAR)
image formation, where the underlying scene is to be recon-
structed from undersampled observed data. Sparsity-based
methods for SAR imaging have employed overcomplete dic-
tionaries to represent the magnitude of the complex-valued
field sparsely. Selection of an appropriate dictionary with re-
spect to the features of the particular type of underlying scene
plays an important role in these methods. In this paper, we de-
velop a new reconstruction method that is based on learning
sparsifying dictionaries and using such learned dictionaries
in the reconstruction process. Adaptive dictionaries learned
from data have the potential to represent the magnitude of
complex-valued field more effectively and hence have the po-
tential to widen the applicability of sparsity-based radar imag-
ing. We demonstrate the performance of the proposed method
on both synthetic and real SAR images.

Index Terms— synthetic aperture radar (SAR), image re-
construction, dictionary learning, compressed sensing (CS),
sparse representation.

1. INTRODUCTION

Synthetic aperture radar (SAR) images are used in a variety
of applications ranging from target recognition to urban mon-
itoring and land cover classification. Conventionally, SAR
image reconstruction is performed using techniques such as
the polar format algorithm [1, 2]. However, such conventional
reconstruction techniques suffer from speckle, limited reso-
lution, and sidelobe artifacts due to the limited bandwidth of
SAR systems. Over the last decade, sparsity-driven methods
have been developed for SAR imaging, leading to various
improvements over conventional imaging especially in sce-
narios involving limited or low-quality data. For example, the
feature-enhanced imaging framework of [3] imposes sparsity
on the magnitudes of the complex-valued reflectivities or their
gradients, leading to enhancement of spatially-localized point
scatterers or piecewise smooth regions. This corresponds to
solving an analysis-based sparse representation problem with
complex-valued variables with sparsity constraints on the
magnitudes. While this approach has been shown to produce
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high quality images in challenging scenarios, it applies spar-
sity on limited, fixed features. A synthesis-based approach for
sparsity-driven SAR imaging has been developed in [4]. This
approach is able to preserve multiple types of features appear-
ing in different parts of the scene simultaneously. The phase
and the magnitude of the SAR reflectivity are separated and a
joint optimization problem is solved by optimizing one group
of variables while keeping others constant. Experimental
results demonstrate successful use of various dictionaries in
this framework. However, this approach uses pre-determined,
fixed dictionaries. The focus of our paper is to develop a
framework that lets us replace such fixed dictionaries with
dictionaries learned from data.

Dictionaries learned from training or test data have been
used in a variety of sparse image restoration and reconstruc-
tion problems [5, 6]. One of the most widely used dictionary
learning method is K-SVD [5] that jointly updates the dictio-
nary and the sparse coefficients. This method has been used
for many applications such as image denoising [7], color im-
age restoration [8], and medical image reconstruction [9, 10].

While existing sparsity-based methods for SAR imaging
have produced appealing results, we feel exploiting spar-
sity with demonstrable benefits in a wider diversity of SAR
scenes in various applications requires the sparse represen-
tation dictionaries to be adapted to the particular context in
a data-driven fashion. Motivated by this observation, in this
paper we propose an approach that expands the idea of dic-
tionary learning to the complex-valued SAR image formation
problem. This is the main contribution of our paper. To the
best of our knowledge, there exists no prior work that consid-
ers the complex-valued inverse problem for SAR imaging and
uses a dictionary learning-based approach for sparse repre-
sentation of reflectivity magnitudes. We propose a framework
for dictionary learning and SAR image formation, in which
dictionaries can be learned from training data in an offline
manner, or from the test data in an online manner. For dic-
tionary learning we use K-SVD. The image formation piece
of our framework involves updates for the magnitude and
the phase of the complex-valued reflectivities. Preliminary
experimental results on synthetic and real scenes demonstrate
the potential of the proposed approach.



2. BACKGROUND
2.1. Sparsity-Driven SAR Image Reconstruction

The complex-valued and potentially random-phase nature
of SAR reflectivities make the formulation of a sparse
representation-based framework for solving the inverse prob-
lem of SAR image formation just a bit more challenging than
inverse problems involving real-valued fields, such as those
appearing several medical imaging applications. The recent
work in [4] proposes a synthesis-based sparse representa-
tion framework for SAR imaging that involves solving the
magnitude and the phase of the reflectivities separately. This
approach paves the way for using overcomplete dictionaries
to represent the magnitude of the reflectivity field sparsely. In
particular, introducing the notation f = Θ |f |, where Θ is a
diagonal matrix containing the unknown phase of the reflec-
tivity in exponentiated form and |f | represents the magnitude
of the reflectivity with an overcomplete dictionary Ψ such
that |f | = Ψα ,[4] poses the following joint optimization
problem for SAR image formation:

α̂, Θ̂ = arg min
α,Θ
‖g −HΘΨα‖22 + λ ‖α‖pp (1)

where α denotes the sparse coefficients and λ is a regulariza-
tion parameter balancing data fidelity and reflectivity magni-
tude sparsity in terms of dictionary Ψ. Using a number of dic-
tionaries such as wavelets, and shape-based dictionaries en-
hances some features of the magnitude. While this approach
produces very good results in certain contexts using dictio-
naries simultaneously representing multiple types of features,
one of its limitations is that these dictionaries are pre-defined
and cannot be easily adapted for a certain context in a data-
driven manner.

2.2. Dictionary Learning

The general idea of patch-based dictionary learning can be ex-
plained as follows. Given and image f ∈ CN and its
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image patches column-stacked into vectors fs ∈ Cn (where
s is the patch index), the goal is to represent these patches
with sparse coefficients αs ∈ CK and dictionary D ∈ Cn×K
where K is the number of atoms in the dictionary. If K > n,
the dictionary is overcomplete. Within this context, the dic-
tionary learning problem can be expressed as follows:

min
D,αs

∑
s

‖Esf −Dαs‖22 +
∑
s

µs ‖αs‖0 (2)

where Es ∈ Cn×N is 2D patch extraction operator. The first
term measures the proximity between sparse representation
and training patches, and the second term measures the spar-
sity level. This problem is NP-hard because of the l0 norm in
the sparsity term. K-SVD solves this problem approximately
by iterating between sparse coding stage and the codebook
update stage. In the first stage, sparse solutions of the prob-
lem αs are found by orthogonal matching pursuit (OMP) [11]

while keeping the dictionary D fixed. In the codebook update
stage, each column of D is updated sequentially. For each
column and its corresponding sparse coefficients the error is
calculated. In the process of minimizing the error, singular
value decomposition of the error matrix is utilized and the
approach involves a generalization of K-means clustering.
Accordingly, this approach is called K-SVD. An important
difference of K-SVD from other existing ways of general-
izing K-means is that it updates both the dictionary and the
sparse coefficients in the codebook update step.

Although dictionary learning methods, especially K-
SVD, have been widely used in various fields of image
processing, they have not yet had a significant presence in
SAR imaging. In [12] incomplete SAR data are reconstructed
using K-SVD approach as an image inpainting problem. In
[13] a dictionary learning algorithm is used for SAR image
despeckling. In [14] dictionary learning algorithm has been
proposed for SAR image super-resolution. In [15], K-SVD
is used in the process of decomposing a SAR image into a
spatially sparse and a spatially non-sparse component.

3. PROPOSED FRAMEWORK

In this section we describe our approach for integrating patch-
based dictionary learning into sparsity-driven SAR imaging.
As explained before, the random phase nature of reflectivities
in SAR suggest the use of sparsifying dictionaries over the
magnitude of the complex-valued reflectivity field f . Using
the notation of f = Θ|f | as before, we define the following
joint problem for dictionary learning and image formation.{
|̂f |, Θ̂, D̂, α̂s

}
= arg min

|f |,Θ,D,αs

∑
s

‖Es |f | −Dαs‖22

+
∑
s

µs ‖αs‖0

+ λ ‖g −HΘ |f |‖22

(3)

In this optimization problem; the first term measures the prox-
imity between sparse representations and the magnitude of
the image patches, the second term measures the sparsity of
the image patches, and the third term measures data fidelity,
where λ is the weight of the data fidelity term. This parameter
depends on measurement noise. In particular, if the variance
of the noise is known such as σ2 this parameter can be ex-
pressed as C

σ2 where C is positive constant. Therefore, when
observation noise level is high, weight of the data fidelity term
decreased.

Solution of this optimization problem needs an alternat-
ing solution procedure. In order to solve one parameter, other
parameters assumed to be fixed. There are four different pa-
rameters to be solved: |̂f |, Θ̂, D̂, α̂s. If the dictionary D is
learned from several training patches offline, before the im-
age reconstruction process, then the formulation decomposes
into sequential steps of offline dictionary learning and online



Fig. 1. Dictionary learned for real SAR images (left), syn-
thetic images (right).

image formation. In this case, the online process would not
contain the dictionary as one if its unknowns. For the sake
of generality, here we describe the solution of the problem
as formulated in (3). Each iteration of this process involves
three steps: Dictionary learning, phase update, and magnitude
update. In the first step, the dictionary D and the sparse co-
efficients αs are jointly updated. If the dictionary is learned
offline, then in the online process, this step only update the
αs through a pursuit algorithm. The second step minimizes
the phase of the reflectivity field by using the iterative method
used in [4]. The last step reconstruct the magnitude of the
reflectivity field. Next we explain these three update steps in
detail.

3.1. Dictionary Learning Step

This steps solves for the patch-based overcomplete dictionary
as well as the sparse representation coefficients over that dic-
tionary, while keeping |f | and Θ fixed. More specifically, in
this step we solve the following subproblem of (3):{
D̂, α̂s

}
= arg min

D,αs

∑
s

‖Es |f | −Dαs‖22 +
∑
s

µs ‖αs‖0

(4)
This subproblem can be solved by K-SVD. As mentioned

before, K-SVD employs alternating updates of the sparse co-
efficients and the dictionary. The sparse coefficients are up-
dated using OMP. The dictionary is updated as described in
Section 2.2. In the case of offline dictionary learning (4) is
used in the offline learning stage as well as during the online
reconstruction stage. In the offline stage, the variable f in (4)
corresponds to training images. In the online stage, the dic-
tionary learned offline is fixed and (4) is used to update the
sparse coefficients only.

3.2. Phase Update Step

In this step, the phase of the reflectivity field is estimated by
keeping the other parameters fixed. This requires solving a
subproblem of (3) involving the last term in (3) only. An al-
gorithm for solving such a phase estimation problem has been
proposed in [4, 16], which we utilize in this step. Let us intro-
duce a vector p ∈ CN that contains the diagonal elements of

the phase matrix Θ, and the matrix B ∈ CN×N whose diag-
onal elements contain information about the reflectivity mag-
nitudes. Let us also invoke the constraint that the magnitudes
of the elements of p should be 1, simply because they contain
phases in the form ejφ(f) where φ(·) denotes the phase. Then,
we obtain the following optimization problem in Lagrangian
form:

p̂ = arg min
p
‖g −HBp||22 + λ2

N∑
i=1

(|pi| − 1)2 (5)

where

B = diag

{ (∑
sE

T
s Dαs

)
i

(
∑
sE

T
s Es)(i,i)

}
(6)

and λ2 is a Lagrange multiplier. As mentioned above, B con-
tains information about the current estimate of the reflectivity
magnitudes. Here we could use the estimate of |f | from the
previous iteration, but instead we choose to incorporate its
sparse representation from the current iteration through the
αs. Since this representation is patch-based, (6) performs ap-
propriate operations to produce an N × N matrix, whose N
diagonal entries correspond to the N reflectivity magnitudes
in the scene. As in [4], we solve this optimization problem
through a fixed point algorithm, which can also be shown
to be equivalent to a particular quasi-Newton algorithm. In
particular, the non-quadratic optimization problem in (5) is
solved by turning it into a series of quadratic problems. Then,
each quadratic problem can be efficiently solved by the con-
jugate gradient algorithm.

3.3. Magnitude Update Step

In this last step, the magnitude of the reflectivity field is esti-
mated keeping the other parameters fixed.The subproblem of
(3) for updating the reflectivity magnitudes can be expressed
as:

|̂f | = arg min
|f |

∑
s

‖Es |f | −Dαs‖22+λ ‖g −HΘ |f |‖22 (7)

This is a quadratic optimization problem with a closed form
solution. Taking the derivative with respect to |f | and equat-
ing it zero gives the following equation.(∑

s

ET
s Es + λΘHHHHΘ

)
|̂f | = λΘHHHg +

∑
s

ET
s Dαs

(8)
We solve this linear set of equations using the conjugate gradi-
ent algorithm. One important point in this step is the solution
of the subproblem may produce a complex values. One can
propose to convert this problem to into a constrained problem
to enforce zero phase. However, this constraint will compli-
cate the solution further. Thus, we simply take the magnitude
part of the solution at each iteration.

4. EXPERIMENTAL RESULTS
We present preliminary experimental results on both synthetic
and real SAR data. For the former, we constitute 128 × 128



Fig. 2. Synthetic scene reconstruction experiment. Conven-
tional reconstruction (top-left); sparsity-driven imaging with
a point-region dictionary (top-right); proposed method with
offline dictionary learning (bottom-left) and online dictionary
learning (bottom-right).

synthetic scenes, representing reflectivity magnitudes, and
add random phase. We simulate the returns from such syn-
thetic reflectivity fields as SAR data in the phase history do-
main, and our forward model involves a band-limited Fourier
transform operation. Our results on such a synthetic scene are
shown in Figure 2. We demonstrate the performance of our
approach using both dictionaries learned offline (see Figure
1(b)) from training images, as well as dictionaries learned
online from the data used for reconstruction. For the offline
case, the synthetic training images we use are different from
the test image. Our approaches provide enhancements over
the conventional image for point and distributed objects as
well as for smooth and textured regions. The performance of
our offline learning approach,which utilizes high-quality syn-
thetic scenes for dictionary learning is better than our online
approach as expected. We also compare our results to that of
sparsity-driven imaging with a point-region dictionary, i.e.,
a dictionary that aims to preserve spatially-localized point
scatterers and piecewise smooth regions. These are the most
widely used types of features in sparsity-driven SAR imag-
ing. This approach performs well in parts of the scene that
match the spatial structure of the used dictionaries, however
it performs significantly worse than our approach particularly
in regions involving textures. Some quantitative results on
performance can be found in Table 1. This example demon-
strates the flexibility and adaptivity of our approach to various
types of features that can be learned from data. We also show
preliminary results on a real SAR scene from TerraSAR-X in
Figure 31. For this particular scene, both our approach and

1Astrium TerraSAR-X sample imagery: http://www.astrium-
geo.com/en/23-sample-imagery

Fig. 3. Real SAR data (TerraSAR-X) reconstruction experi-
ment. Conventional reconstruction (top-left); sparsity-driven
imaging with a point-region dictionary (top-right); proposed
method with offline dictionary learning (bottom-left) and on-
line dictionary learning (bottom-right).

the fixed-dictionary approach provide improvements over the
conventional image, in terms of, e.g., speckle suppression.
For this experiment, we used conventional SAR images from
the same satellite for offline dictionary learning. These im-
ages suffer from noise and artifacts themselves. We expect
that using improved SAR images that provide a better repre-
sentation of the ground truth within our framework in future
work will enable the demonstration of the full potential of our
approach.

Table 1. Performance of reconstruction methods in terms of
SNR of the formed imagery for the experiment in Figure 2.

Method SNR (dB)
Conventional 2.0907
Non-quadratic 4.0820

Offline dictionary learning 9.9730
Online dictionary learning 5.2029

5. CONCLUSION

We have proposed a new, dictionary-learning-based approach
for sparsity-driven SAR imaging. Our approach considers
the complex-valued nature of SAR reflectivities and incor-
porates learning-based dictionaries for sparsely representing
the magnitude of the field, while reconstructing its phase as
well. Our approach can learn dictionaries from a training set
of images offline, or from the data to be used in image recon-
struction online. Our preliminary experimental results sug-
gest such learning-based approaches can widen the domain
of applicability of sparsity-driven SAR imaging, and enable
exploitation of context-based knowledge for more effective
sparse representation in SAR.
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