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Abstract

Visual sensor networks (VSNs) consist of image sensors, embedded processors

and wireless transceivers which are powered by batteries. Since the energy and

bandwidth resources are limited, setting up a tracking system in VSNs is a

challenging problem. In this paper, we present a framework for human tracking

in VSNs. The traditional approach of sending compressed images to a central

node has certain disadvantages such as decreasing the performance of further

processing (i.e., tracking) because of low quality images. Instead, in our method,

each camera performs feature extraction and obtains likelihood functions. By

transforming to an appropriate domain and taking only the significant coeffi-

cients, these likelihood functions are compressed and this new representation

is sent to the fusion node. An appropriate domain is selected by performing a

comparison between well-known transforms. We have applied our method for

indoor people tracking and demonstrated the superiority of our system over the

traditional approach.
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1. Introduction1

With the birth of wireless sensor networks, new applications are enabled by2

large-scale networks of small devices capable of (i) measuring information from3

the physical environment, such as temperature, pressure, etc., (ii) performing4

simple processing on the extracted data, and (iii) transmitting the processed5

data to remote locations by also considering the limited resources such as en-6

ergy and bandwidth. More recently, the availability of inexpensive hardware7

such as CMOS cameras that are able to capture visual data from the environ-8

ment has supported the development of Visual Sensor Networks (VSNs), i.e.,9

networks of wirelessly interconnected devices that acquire video data.10

11

Using a camera in a wireless network leads to unique and challenging prob-12

lems that are more complex than the traditional wireless sensor networks might13

have. For instance, most sensors provide measurements of temporal signals that14

represent physical quantities such as temperature. On the other hand, at each15

time instant image sensors provide a 2D set of data points, which we see as an16

image. This richer information content increases the complexity of data pro-17

cessing and analysis. Performing complex tasks, such as tracking, recognition,18

etc., in a communication-constrained VSN environment is extremely challeng-19

ing. With a data compression perspective, the common approach is to compress20

images and collect them in a central unit to perform the tasks of interest. In21

this strategy, the main goal is to focus on low-level communication. The com-22

munication load is decreased by compressing the raw data without regard to23

the final inference goal based on the information content of the data. Since such24

a strategy will affect the quality of the transmitted data, it may decrease the25

performance of further inference tasks. In this paper, we propose a different26

strategy for decreasing the communication that is better matched to problems27

with a defined final inference goal, which, in the context of this paper, is tracking.28

29

There has been some work proposed for solving the problems mentioned above.30
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To minimize the amount of data to be communicated, in some methods simple31

features are used for communication. For instance, 2D trajectories are used32

in [1]. In [2], 3D trajectories together with color histograms are used. Hue33

histograms along with 2D position are used in [3]. Moreover, there are decen-34

tralized approaches in which cameras are grouped into clusters and tracking is35

performed by local cluster fusion nodes. This kind of approaches have been36

applied to the multi-camera target tracking problem in various ways [4, 5, 6].37

For a nonoverlapping camera setup, tracking is performed by maximizing the38

similarity between the observed features from each camera and minimizing the39

long-term variation in appearance using graph matching at the fusion node [4].40

For an overlapping camera setup, a cluster-based Kalman filter in a network41

of wireless cameras is proposed in [5, 6]. Local measurements of the target ac-42

quired by members of the cluster are sent to the fusion node. Then, the fusion43

node estimates the target position via an extended Kalman filter, relating the44

measurements acquired by the cameras to the actual position of the target by45

nonlinear transformations.46

47

Previous works proposed for VSNs have some handicaps. The methods in48

[1, 2, 3] that use simpler features may be capable of decreasing the commu-49

nication, but they are not capable of maintaining robustness. For the sake50

of bandwidth constraints, these methods choose to change the features from51

complex and robust to simpler but not so effective ones. As in the methods52

proposed in [4, 5, 6], performing local processing and collecting features to the53

fusion node may not satisfy the bandwidth requirements in a communication-54

constrained VSN environment. In particular, depending on the size of image55

features and the number of cameras in the network, even collecting features to56

the fusion node may become expensive for the network. In such cases, further57

approximations on features are necessary. An efficient approach that reduces58

the bandwidth requirements without significantly decreasing the quality of im-59

age features is needed.60

61
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In this paper, we propose a framework that is suitable for energy and band-62

width constraints in VSNs. It is capable of performing multi-person tracking63

without significant performance loss. Our method is a decentralized tracking64

approach in which each camera node in the network performs feature extraction65

by itself and obtains image features (likelihood functions). Instead of directly66

sending likelihood functions to the fusion node, a block-based compression is67

performed on likelihoods by transforming each block to an appropriate domain.68

Then, in this new representation we only take the significant coefficients and69

send them to the fusion node. Hence, multi-view tracking can be performed70

without overloading the network. The main contribution of this work is the71

idea of performing goal-directed compression in a VSN. In the tracking context,72

this is achieved by performing local processing at the nodes and compressing73

the resulting likelihood functions which are related to the tracking goal, rather74

than compressing raw images. To the best of our knowledge, compression of75

likelihood functions computed in the context of tracking in a VSN has not been76

proposed in previous work.77

78

We have used our method within the context of a well-known multi-camera79

human tracking algorithm [7]. We have modified the method in [7] to obtain80

a decentralized tracking algorithm. In order to choose an appropriate domain81

for likelihood functions, we have performed a comparison between well-known82

transforms. A traditional approach in camera networks is transmitting com-83

pressed images. Both by qualitative and quantitative results, we have shown84

that our method is better than the traditional approach of sending compressed85

images and can work under VSN constraints without degrading the tracking86

performance.87

88

In Section 2, how we integrate multi-view information in our decentralized ap-89

proach is described. Section 3 presents our feature compression framework in90

detail and contains a comparison of various domains for likelihood representa-91

tion. Experimental setup and results are given in Section 4. Finally in Section92
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5, we conclude and suggest a number of directions for potential future work.93

2. Multi-Camera Integration94

2.1. Decentralized Tracking95

In a traditional setup of camera networks, which we call centralized tracking,96

each camera acquires an image and sends this raw data to a central unit. In97

the central unit, multi-view data are collected, relevant features are extracted98

and combined, finally, using these features, the positions of the humans are99

estimated. Hence, integration of multi-view information is done in raw-data100

level by pooling all images in a central unit. The presence of a single global101

fusion center leads to high data-transfer rates and the need for a computation-102

ally powerful machine, thereby, to a lack of scalability and energy efficiency.103

Compressing raw image data may decrease the communication in the network,104

but since the quality of images drops, it might also decrease the tracking per-105

formance. For this reason, centralized trackers are not very appropriate for use106

in VSN environments. In decentralized tracking, there is no central unit that107

collects all raw data from the cameras. Cameras are grouped into clusters and108

nodes communicate with their local cluster fusion nodes only [8]. Communi-109

cation overhead is reduced by limiting the cooperation within each cluster and110

among fusion nodes. After acquiring the images, each camera extracts useful111

features from the images it has observed and sends these features to the local112

fusion node. Using the multi-view image features, tracking is performed in the113

local fusion node. Hence, we can say that in decentralized tracking, multi-view114

information is integrated in feature-level by combining the features in small clus-115

ters. The decentralized approaches fits very well to VSNs in many aspects. The116

processing capability of each camera is utilized by performing feature extraction117

at camera-level. Since cameras are grouped into clusters, the communication118

overhead is reduced by limiting the cooperation within each cluster and among119

fusion nodes. In other words, by a decentralized approach, feature extraction120

and communication are distributed among cameras in clusters, therefore, effi-121
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Figure 1: The flow diagram of a decentralized tracker using a probabilistic framework.

cient estimation can be performed.122

123

Modeling the dynamics of humans in a probabilistic framework is a common124

perspective of many multi-camera human tracking methods [7, 9, 10, 11]. In125

tracking methods based on a probabilistic framework, data and/or extracted fea-126

tures are represented by likelihood functions, p(y|x) where y ∈ Rd and x ∈ Rm127

are the observation and state vectors, respectively. In other words, for each128

camera, a likelihood function is defined in terms of the observations obtained129

from its field of view. In centralized tracking, of course, the likelihood functions130

are computed after collecting the image data of each camera at the central unit.131

For a decentralized approach, since each camera node extracts local features132

from its field of view, these likelihood functions can be evaluated at the camera133

nodes and they can be sent to the fusion node. Then, in the fusion node the134

likelihoods can be combined and tracking can be performed in the probabilistic135

framework. A flow diagram of the decentralized approach is illustrated in Fig-136

ure 1. Following this line of thought, we have converted the tracking approach137

described in Section 2.2 to a decentralized tracker as explained in Section 2.3.138
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2.2. Multi-Camera Tracking Algorithm139

In this section we describe the tracking method of [7], as we apply our pro-140

posed approach within in the context of this method in this paper. In [7],141

the visible part of the ground plane is discretized into a finite number G of142

regularly spaced 2D locations. Let Lt = (L1
t , ..., L

N∗

t ) be the locations of in-143

dividuals at time t, where N∗ stands for the maximum allowable number of144

individuals. Given T temporal frames from C cameras, I = (I1, ..., IT ) where145

It = (I1
t , ..., I

C
t ), the goal is to maximize the posterior conditional probability:146

P (L1 = l1, ...,LN
∗

= lN
∗
|I) = P (L1 = l1|I)

N∗∏
n=2

P (Ln = ln|I,L1 = l1, ...,Ln−1 = ln−1) (1)

where Ln = (Ln1 , ..., L
n
T ) is the trajectory of person n. Simultaneous optimiza-147

tion of all the Lis would be intractable. Instead, one trajectory after the other148

is optimized. Ln is estimated by seeking the maximum of the probability of149

both the observations and the trajectory ending up at location k at time t:150

Φt(k) = max
ln1 ,...,l

n
t−1

P (I1, L
n
1 = ln1 , ..., It, L

n
t = k) (2)

Under a hidden Markov model, the above expression turns into the classical151

recursive expression:152

Φt(k) = P (It|Lnt = k)︸ ︷︷ ︸
Appearance model

max
τ

P (Lnt = k|Lnt−1 = τ)︸ ︷︷ ︸
Motion model

Φt−1(τ) (3)

The motion model P (Lnt = k|Lnt−1 = τ) is a distribution into a disc of limited153

radius and center τ , which corresponds to a loose bound on the maximum speed154

of a walking human.155

156

From the input images It, by using background subtraction, foreground bi-157

nary masks, Bt, are obtained. Let the colors of the pixels inside the blobs are158

denoted as Tt and Xt
k be a Boolean random variable denoting the presence of159

an individual at location k of the grid at time t. It is shown in [7] that the160
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appearance model in Eq. 3 can be decomposed as:161

Appearance model︷ ︸︸ ︷
P (It|Lnt = k) ∝ P (Lnt = k|Xt

k = 1,Tt)︸ ︷︷ ︸
Color model

P (Xt
k = 1|Bt)︸ ︷︷ ︸

Ground plane occupancy

(4)

162

In [7], humans are represented as simple rectangles and these rectangles are used163

to create synthetic ideal images that would be observed if people were at given164

locations. Within this model, the ground plane occupancy is approximated by165

measuring the similarity between ideal images and foreground binary masks.166

167

Let T ct (k) denote the color of the pixels taken at the intersection of the fore-168

ground binary mask, Bct , from camera c at time t and the rectangle Ack corre-169

sponding to location k in that same field of view. Say we have the reference color170

distributions (histograms) of the N∗ individuals present in the scene, µc1, ..., µ
c
N∗ .171

The color model of person n in Eq. 4 can be expressed as:172

Color model︷ ︸︸ ︷
P (Lnt = k|Xt

k = 1,Tt) ∝ P (Tt|Lnt = k) = P (T 1
t (k), ..., TCt (k)|Lnt = k)

=
∏C
c=1 P (T ct (k)|Lnt = k) (5)

In [7], by assuming the pixels whose colors are represented by T ct (k) are in-173

dependent, P (T ct (k)|Lnt = k) is evaluated by a product of the marginal color174

distribution µcn at each pixel,– P (T ct (k)|Lnt = k) =
∏
r∈T c

t (k) µ
c
n(r). In this ap-175

proach, a patch with constant color intensity corresponding to the the mode176

of the color distribution would be most likely. Hence, this approach may177

fail to capture the statistical color variability represented by the full proba-178

bility density function estimated from a spatial patch. Instead, we represent179

P (T ct (k)|Lnt = k) by comparing the observed and reference color distribu-180

tions, which is a well known approach used in many computer vision methods181

[12, 13, 14]. In particular, we compare the estimated color distribution (his-182

togram) of the pixels in T ct (k) and the color distribution µcn with a distance183

metric – P (T ct (k)|Lnt = k) = exp(−S(Hc,k
t , µcn)) where Hc,k

t denotes the his-184

togram of the pixels in T ct (k) and S(.) is a distance metric. As a distance185
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metric, we use the Bhattacharya coefficient between two distributions. In this186

way, we can evaluate the degree of match between the intensity distribution of187

an observed patch and the reference color distribution.188

189

By performing a global search with dynamic programming using Eq. 3, the190

trajectory of each person can be estimated.191

2.3. Decentralized Version of the Tracking Algorithm192

From the above formulation, we can see that there are two different likeli-193

hood functions defined in the method. One is the ground plane occupancy map194

(GOM), P (Xt
k = 1|Bt), approximated using the foreground binary masks. The195

other is the ground plane color map (GCM), P (Lnt = k|Xt
k = 1,Tt), which is a196

multi-view color likelihood function defined for each person individually. This197

map is obtained by combining the individual color maps, P (T ct (k)|Lnt = k),198

evaluated using the images each camera acquired. Since foreground binary199

masks are simple binary images that can be easily compressed by a lossless200

compression method, they can be directly sent to the fusion node without over-201

loading the network. Therefore, we keep these binary images as in the original202

method and GOM is evaluated at the fusion node. In our framework, we eval-203

uate GCM in a decentralized way (as presented in Figure 1): At each camera204

node (c = 1, · · · , C), the local color likelihood function for the person of interest205

(P (T ct (k)|Lnt = k)) is evaluated by using the image acquired from that camera.206

Then, these likelihood functions are sent to the fusion node. At the fusion node,207

these likelihood functions are integrated to obtain the multi-view color likeli-208

hood function (GCM) (Eq. 5). By combining GCM and GOM with the motion209

model, the trajectory of the person of interest is estimated at the fusion node210

using dynamic programming (Eq. 3). The whole process is run for each person211

in the scene.212

213

Fusion node selection and sensor resource management (sensor tasking) is out of214

scope of this paper. We have assumed that one of the camera nodes, relatively215
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more powerful one, has been selected as the fusion node.216

3. Feature Compression Framework217

3.1. Compressing Likelihood Functions218

The bandwidth required for sending local likelihood functions depends on219

the size of likelihoods (i.e., the number of ”pixels” in a 2D likelihood function)220

and the number of cameras in the network. To make the communication in the221

network feasible, we propose a feature compression framework. In our frame-222

work, similar to image compression, we compress the likelihood functions by223

transforming them to a proper domain and keeping only the significant coef-224

ficients, assuming significant parts of the likelihood functions are sufficient for225

performing tracking. At each camera node, we first split the likelihood function226

into blocks. Then, we transform each block to a proper domain and take only227

the significant coefficients in the new representation. Instead of sending the228

function itself, we send this new representation of each block. In this way, we229

reduce the communication in the network.230

231

Mathematically, we have the following linear system:232

ybc = A · xbc (6)

where ybc and xbc represent the bth block of the likelihood function of camera c233

(for a person of interest in a particular time instant, P (T ct (k)|Lnt = k) in Eq. 5)234

and its representation, respectively, and A is the domain we transform ybc to. In235

most of the compression methods, the matrix A is chosen to be a unitary matrix.236

Hence, we can obtain xbc by multiplying ybc with the Hermitian transpose of A:237

xbc = A∗ · ybc (7)

Figure 2 illustrates our likelihood compression scheme.238

239

Notice that in our feature compression framework, we do not require the use240
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Figure 2: Our Likelihood compression scheme. On the left, there is a local likelihood function

(P (T c
t (k)|Ln

t = k) in Eq. 5). First, we split the likelihood into blocks, then we transform each

block to the domain represented by matrix A and obtain the representation xb
c. We only take

significant coefficients in this representation and obtain a new representation x̃b
c. For each

block, we send this new representation to fusion node. Finally, by reconstructing each block

we obtain the whole likelihood function on the right.

of specific image features or likelihood functions. The only requirement is that241

the tracking method should be based on a probabilistic framework, which is a242

common approach for modeling the dynamics of humans. Hence, our frame-243

work is a generic framework that can be used with many probabilistic tracking244

algorithms in a VSN environment.245

246

In all camera nodes and fusion nodes, the matrix A is common, therefore, at the247

fusion node, likelihood functions of each camera can be reconstructed simply by248

multiplying the new representation with the matrix A. In general, this may249

require an offline coordination step to decide the domain that is matched with250

the task of interest. In the next subsection, we go through the question of which251

domain should be selected in Eq. (6).252

3.2. A Proper Domain for Compression253

By sending the compressed likelihoods to the fusion node, our goal is to254

decrease the communication in the network without affecting the tracking per-255

formance significantly. On one hand, we want to send less coefficients, on the256

other hand, we do not want to decrease the quality of the likelihoods, i.e., we257

want to have small reconstruction error. For this reason, we need to select a258
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domain that is well-matched to the likelihood functions, providing the oppor-259

tunity to accurately reconstruct the likelihoods back using a small number of260

coefficients.261

262

Image compression using transforms is a mature research area. Numerous trans-263

forms such as the discrete cosine transform (DCT), the Haar transform, symm-264

lets, coiflets have been proposed and proven to be successful [15, 16, 17]. DCT265

is a well-known transform that has the ability to analyze non-periodic signals.266

Haar wavelet is the first known wavelet basis that consists of orthonormal func-267

tions. In wavelet theory, number of vanishing moments and size of support are268

two important properties that affect the ability of wavelet bases to approximate269

a particular class of functions with few non-zero wavelet coefficients [18]. In270

order to reconstruct likelihoods accurately using from a small number of coef-271

ficients, we wish wavelet functions to have large number of vanishing moments272

and small size of support. Coiflets [19] are a wavelet basis with large number of273

vanishing moments and Symmlets [20] are a wavelet basis that have minimum274

size of support. The performance of these domains has been analyzed in the275

context of our experiments and a proper domain has been selected accordingly276

as described in Section 4.2.277

4. Experimental Results278

4.1. Setup279

In the experiments, we have simulated the VSN environment by using the in-280

door multi-camera dataset in [7]. This dataset includes four people sequentially281

entering a room and walking around. The sequence was shot by four synchro-282

nized cameras in a 50 m2 room. The cameras were located at each corner of the283

room. In this sequence, the area of interest was of size 5.5 m× 5.5 m ' 30 m2
284

and discretized into G = 56 × 56 = 3136 locations, corresponding to a regular285

grid with a 10cm resolution. For the correspondence between camera views and286

the top view, the homography matrices provided with the dataset are used. The287
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Figure 3: A sample set of images from the indoor multi-camera dataset [7].

size of the images are 360× 288 pixels and the frame rate for all of the cameras288

is 25 fps. The sequence is approximately 2.5 minutes ( ' 3, 800 frames) long.289

290

Starting from the frames around the 2,000th, we have observed failures in the291

original method [7] on preserving identities. For this reason, we have used the292

sequence consisting of the first 2,000 frames for testing. A sample set of images293

is shown in Figure 3.294

4.2. Comparison of Domains295

As discussed in Section 3.2, it is very important to select a domain (matrix296

A in Eq. (6)) that can compress the likelihood functions effectively. To select a297

proper domain, we have performed a comparison between DCT, Haar, Symmlet,298

and Coiflet domains and examined the errors in reconstructing the likelihoods299

using various number of coefficients. For the Symmlet domain, the size of sup-300

port is set to 8 and for the Coiflet domain, the number of vanishing moments301

is set to 10. In the comparison, we have used 20 different likelihood functions302

obtained from the tracker in [7]. We have also analyzed the effect of block size303

by choosing two different block sizes: 8×8 and 4×4. After we transform each304

block to a domain, we have reconstructed the blocks by using only 1, 2, 3, 4, 5,305

and 10 most significant coefficient(s). In total, for a block size of 8×8, taking306

the most significant 2 coefficients results in 98 coefficients overall. According307

to the structure of the likelihood functions, the elements in a block may all be308

zero. For such a block all the coefficients will be zero, thereby we do not need to309

take coefficients. Thus, we may end up with even smaller number of coefficients.310
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Figure 4: The average reconstruction errors of DCT, Haar, Symmlet, and Coiflet domain for

block sizes of 8×8 and 4×4 using 1, 2, 3, 4, 5 and 10 most significant coefficient(s) per block.

311

Figure 4 shows the average of reconstruction errors of each domain for differ-312

ent block sizes. As explained above, the total number of significant coefficients313

used for reconstruction may change depending on the structure of likelihoods.314

For this reason, the x-axis in Figure 4 are the average of number of coefficients315

obtained by taking the 1, 2, 3, 4, 5 and 10 most significant coefficient(s) per316

block. We can see that using DCT with a block size of 8×8 outperforms other317

domains. Following this observation, in our tracking experiments, this setting318

has been used.319

4.3. Tracking Results320

In this subsection, we present the performance of our method used for multi-321

view multi-person tracking. In the experiments, we have compared our method322

with the traditional centralized approach of compressing raw images. In this323

centralized approach, after the raw images are acquired by the cameras, similar324

to JPEG compression, each color channel in the images are compressed and325

sent to the central node. In the central node, features are extracted from the326

reconstructed images and tracking is performed using the method in [7]. For327
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both our method and the centralized approach we have used DCT domain with328

a block size of 8×8 and took only the 1, 2, 3, 4, 5, 10, and 25 most significant329

coefficient(s). Consequently, in our method with the likelihoods of 56×56 size,330

at each camera in total we end up with at most 49, 98, 147, 196, 245, 490331

and 1225 coefficients per person. Since there are four individuals in the scene332

at maximum, each camera sends at most 196, 392, 588, 784, 980, 1960 and333

4900 coefficients. As mentioned in the previous section, these are the maximum334

number of coefficients, since there may be some all-zero blocks. To make a fair335

comparison, in the centralized approach we compress the images with 360×288336

size and 3 color channels. Hence, at each camera we end up with 4860, 9720,337

14580, 19440, 24300, 48600 and 121500 coefficients.338

339

A groundtruth for this sequence is obtained by manually marking the peo-340

ple on ground plane, in intervals of 25 frames. Tracking errors are evaluated341

via Euclidean distance between the tracking and manual marking results (in342

intervals of 25 frames). Figure 5 presents the average of tracking errors over all343

people versus the total number of significant coefficients used in communication344

for the centralized approach and for our method. Since the total number of sig-345

nificant coefficients sent by a camera in our method may change depending on346

the structure of likelihood functions and the number of people at that moment,347

the maximum is shown in Figure 5. It can be clearly seen that the centralized348

approach is not capable of decreasing the communication without affecting the349

tracking performance. It needs at least 121500 significant coefficients in total to350

achieve an error of around 1 pixel in the grid on average. On the other hand,351

our method, down to using 3 significant coefficients per block, achieves an error352

of around 1 pixel in the grid on average. In our experiments, this led to sending353

at most 408 coefficients for four people. Taking less than 3 coefficients per block354

affects the performance of the tracker and produces an error of 11.5 pixels in355

the grid on average. But in overall, our method significantly outperforms the356

centralized approach.357

358
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The tracking errors for each person and the tracking results, obtained by the359

centralized approach using 48600 coefficients in total, are given in Figure 6-360

a and Figure 6-b, respectively. It can be seen that although the centralized361

approach can track the first and the second individuals very well, there is an362

identity association problem for the third and fourth individuals. In Figure 7-a363

and Figure 7-b, we present the tracking errors for each person and the tracking364

results obtained with our method using 3 coefficients per block, respectively.365

Clearly, we can see that all people in the scene can be tracked very well by our366

method. The reason of the peak error value in the third person is because the367

tracking starts a few frames after the third person enters the room. For this368

reason, there is a big error at the time third person enters the room. When the369

number of coefficients taken per block are less then 3, we also observe identity370

problems. But by selecting the number of coefficients per block greater than or371

equal to 3, we can track all the people in the scene accurately. The centralized372

approach, in total, requires at least more than two orders of magnitude coeffi-373

cients to achieve this level of accuracy.374

375

In the light of the results we obtained, for the same tracking performance,376

our framework saves 99.6% of the bandwidth compared to the centralized ap-377

proach. Our framework is also advantageous over an ordinary decentralized378

approach that directly sends likelihood functions to the fusion node. In such379

an approach, we send each data point in the likelihood function, resulting a380

need of sending 12544 values for tracking four people. The performance of this381

approach is also given in Figure 5. For the same level of tracking accuracy, our382

framework achieves saving 96.75% compared to the decentralized approach.383

5. Conclusion384

Visual sensor networks constitute a new paradigm that merges two well-385

known topics: computer vision and sensor networks. Consequently, it poses386

unique and challenging problems that do not exist either in computer vision or387
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Figure 5: The average tracking errors of the centralized approach (“ic-dct8x8“), our framework

(“fc-dct8x8“) both using DCT with 8×8 blocks and a decentralized method (“decent“) that

directly sends likelihood functions versus the total number of significant coefficients used in

reconstruction.

in sensor networks. This paper presents a novel method that can be used in388

VSNs for multi-camera person tracking applications. In our framework, track-389

ing is performed in a decentralized way: each camera extracts useful features390

from the images it has observed and sends them to a fusion node which collects391

the multi-view image features and performs tracking. In tracking, extracting392

features usually results a likelihood function. Instead of sending the likelihood393

functions itself to the fusion node, we compress the likelihoods by first splitting394

them into blocks, and then transforming each block to a proper domain and tak-395

ing only the most significant coefficients in this representation. By sending the396

most significant coefficients to the fusion node, we decrease the communication397

in the network. At the fusion node, the likelihood functions are reconstructed398

back and tracking is performed. The idea of performing goal-directed compres-399

sion in a VSN is the main contribution of this work. Rather than focusing on400

low-level communication without regard to the final inference goal, we propose a401

different compressing scheme that is better matched to the final inference goal,402

which, in the context of this paper, is tracking.403
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(a)

(b)

Figure 6: (a) The tracking errors for each person and (b) tracking results obtained by the

centralized approach using 48600 coefficients in total used in communication.
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(a)

(b)

Figure 7: (a) The tracking errors for each person and (b) tracking results obtained by our

framework using 3 coefficients per block used in communication.
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404

This framework fits well to the needs of the VSN environment in two aspects: i)405

the processing capabilities of cameras in the network are utilized by extracting406

image features at the camera-level, ii) using only the most significant coeffi-407

cients in network communication saves energy and bandwidth resources. We408

have achieved a goal-directed compression scheme for the tracking problem in409

VSNs by performing local processing at the nodes and compressing the resulting410

likelihood functions which are related to the tracking goal, rather than compress-411

ing raw images. To the best of our knowledge, this method is the first method412

that compresses likelihood functions and applies this idea for VSNs. Another413

advantage of this framework is that it does not require the use of a specific track-414

ing method. Without making significant changes on existing tracking methods415

(e.g., using simpler features, etc.), which may degrade the performance, such416

methods can be used within our framework in VSN environments. In the light417

of the experimental results, we can say that our feature compression approach418

can be used together with any robust probabilistic tracker in the VSN context.419

420

We believe that trying different dictionaries that are better matched to the421

structure of likelihood functions, thereby, leading to further reductions in the422

communication load, can be a possible direction for future work. In addition,423

an interesting future work direction can be the implementation of our method424

in a real VSN setup.425
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