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Abstract. We present a novel perspective on shape characterization using the screened Poisson
equation. We discuss that the e↵ect of the screening parameter is a change of measure of the
underlying metric space; also indicating a conditioned random walker biased by the choice of measure.
A continuum of shape fields is created, by varying the screening parameter or equivalently the bias of
the random walker. In addition to creating a regional encoding of the di↵usion with a di↵erent bias,
we further break down the influence of boundary interactions by considering a number of independent
random walks, each emanating from a certain boundary point, and the superposition of which yields
the screened Poisson field. Probing the screened Poisson equation from these two complementary
perspectives leads to a high-dimensional hyper-field: a rich characterization of the shape that encodes
global, local, interior and boundary interactions. To extract particular shape information as needed
in a compact way from the hyper-field, we apply various decompositions either to unveil parts of a
shape or parts of boundary or to create consistent mappings. The latter technique involves lower
dimensional embeddings, which we call Screened Poisson Encoding Maps (SPEM). The expressive
power of the SPEM is demonstrated via illustrative experiments as well as a quantitative shape
retrieval experiment over a public benchmark database on which the SPEM method shows a high-
ranking performance among the existing state-of-the-art shape retrieval methods.
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1. Introduction. Geometric information regarding the shape of objects is a
significant component of visual information, which is one of the main sensory inputs
utilized in our perception of the world. The question of how to best represent a
shape mathematically for its use in artificial intelligence systems has been studied for
many decades. Computational vision problems such as object recognition require a
shape representation that should be primarily: well-descriptive of the object geome-
try; invariant with respect to a certain geometric transformation group for robustness;
compact for e�cient computation and storage. Many di↵erent approaches to repre-
sent an object’s geometry have been proposed including mainly medial axes-based,
boundary- or surface-based, and region- or volume-based shape representations. In
this paper, we present a novel shape representation, where shape information is en-
coded inside the shape by exploiting internal distance relationships via the screened
Poisson equation.

In the 90’s, it was observed that shapes can be embedded as zeros of a function
defined over the shape domain, opening the way to an active research area in im-
plicit shape representations ([1], [2]). In this area of research, the signed distance
transform was popularized heavily by the level-set framework [3] and its fast imple-
mentation [4]. The distance function is created via solution of the Eikonal equation
|ru(x)| = 1, x 2 ⌦ subject to boundary condition u|

@⌦ = 0. The governing equation
forces the absolute value of the gradient to be constant. Equipped with a suitable

†R.A. Guler is with the Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul
Turkey.

‡S. Tari is with the Computer Engineering Department, METU, Ankara, Turkey.
§G. Unal is with the Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul

Turkey.
¶Corresponding Author: gozdeunal@sabanciuniv.edu
kThis work was supported by TUBITAK Grant No: 112E320.

1

Gozde Unal
To Appear SIAM Journal on Imaging Sciences, December Issue, 2014.



Guler, Tari, Unal Screened Poisson Hyper-Fields

boundary condition, the solution u(x) is interpreted as the shortest time needed to
travel from the boundary to the point x. Signed Distance Transform (SDT) is formed
by setting positive and negative of the distances exterior and interior to the shape or
vice versa, facilitating regional encoding of shape domain and its exterior by minimal
distances to the shape boundary. The shape is then represented as the zero level set
of the signed distance transform (SDT). This representation of the shape, i.e. via
embedding the shape boundary as the level set of SDT, became quite instrumental in
developing approximate schemes for segmentation functionals and introducing shape
knowledge in segmentation problems, e.g.,[5, 6, 7, 8, 9].

In the late 90’s and the following decade, elliptic PDEs started to appear as
alternative models for computing smooth distance fields. In [10], screened Poisson
PDE is employed:

�v �
v

⇢2
= 0(1.1)

v|
@⌦ = 1,

where 1
⇢

2 is the screening parameter that controls the level of smoothing. The ap-
proximate distance field created by this PDE is smooth and di↵erentiable, and has
smooth level sets, in contrast to the level sets of the distance transform obtained from
the Eikonal equation. With any given ⇢ value, the field’s value of 1 at the shape
boundary drop towards the interior of the shape. While a motivation in [10] was
to create a shape scale space, demonstrated particularly for shape skeletons via the
controlled smoothing parameter, in [11], the intuition of a random walker starting at
an interior point and its mean hitting time required to reach the shape boundary led
from its discrete interpretation to the continuous Poisson equation with zero Dirichlet
boundary conditions on the shape boundary. Various measures based on the solution
field were extracted and shape properties were used for classification of shapes as well
as actions [12]. In [13], the authors also utilized the Poisson equation to derive a
shape characteristic measure based on the variation over the streamlines of the solu-
tion field, and used it to di↵erentiate between the shapes of anatomical structures for
healthy and diseased populations. Recently, Poisson equation is revisited as a tool for
robust skeletonization [14, 15]. In [16, 17], a connection between nonlinear Hamilton-
Jacobi equations, for which the Eikonal equation is a special case, and the screened
Poisson equation by taking ⇢ �! 0 is presented, along with an e�cient approximate
distance transform computation using FFT. The importance of the linearity of shape
embedding space was brought into attention by the work of [18], [19] that represented
contours as zero level set of a harmonic function in the solution of the Laplace PDE.
The linearity property, which was also emphasized in [16], enables proper addition of
shape fields, facilitating creation of shape template or atlas representations that stay
within the original spaces of shapes. [20] solved heat flow with a fixed time parame-
ter and used its normalized gradient field to obtain the closest scalar potential field
with the same gradient. In [21], smooth distance fields are considered as L

p

distance
fields, where p is the control variable. A recent shape field related to the screened
Poisson [22] is a fluctuating one consisting of both negative and positive values inside
the shape by addition of a zero-mean constraint to the shape field. The zero-level
set then partitioned the shape domain into two: one that corresponds to the central
region, a coarse and compact shape, and one to the peripheral region, which included
protrusions from a shape.

The screened Poisson PDE was employed for several other applications with a
typically fixed screening parameter: for image processing applications as in image
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filtering and sharpening of [23]; for mesh filtering applications as in anisotropic and
interactive geometric filtering over meshes of [24]; and for surface reconstruction in
[25]. [23] started from a variational perspective by writing out the gradient of an
unknown function to be close to a given vector field as well as a term of data fidelity
to a given function which ”screens” the 2D Poisson equation. This was then Fourier
transformed to show that the screened Poisson can be interpreted in frequency domain
as a filtering operation for images, while it can be solved using an FFT or DCT. [24]
extended [23] to meshes for localised editing by changing the Riemannian metric
of the underlying space, proportional to surface curvature, as well as a multi-grid
implementation of the equation. The e↵ect of the fidelity value, i.e. the screening
parameter, was also discussed to result in more dampening and amplification at low
frequencies with smaller parameter values. [25] modified this method by putting
positional constraints, i.e. the data fidelity, only over a set of input points rather than
over the full domain. Adding a screening term to the Poisson surface reconstruction
framework, the screening parameter was also adjusted to the resolution in a multi-grid
implementation.

In a parallel line of research, from the heat equation perspective, the multi-scale
property of the heat kernel led to development of shape signatures that take advantage
of heat di↵usion process on surfaces [26]. This line of work makes use of the spectral
properties of the Laplace-Beltrami operator, which is the generalization of the Laplace
operator from the Euclidean space to a Riemannian manifold. In [26], the heat kernel
signature (HKS) at a point on the shape manifold is defined in terms of the weighted
sum of the squares of the eigenfunctions at the point. The weights are given by
the exponentials of the negated eigenvalues multiplied by the temporal variable t in
heat flow. It was shown that under certain conditions (i.e., if the eigenvalues of the
operator are not repeated) the heat kernel signature is as informative as the family of
heat kernel functions parameterized both in space and time. The HKS also relates to
global point signatures [27], which are based on eigenfunctions normalized by square
root of the corresponding eigenvalues, and to di↵usion distance [28, 29, 30] between
two points over the shape manifold, which is defined by the distances between the
eigenfunctions at those two points. [31] constructs a scale-invariant HKS (SI-HKS)
by logarithmically sampling the time-scale that translates into a time shift, which
is then removed through taking a Fourier transform modulus to overcome the scale
sensitivity of HKS. A volumetric extension of HKS was shown in [32].

Recently, Wave Kernel Signature [33] based on complex Schrodinger equation is
presented as an alternative to HKS. The authors make the point that HKS employs a
collection of low-pass filters parameterized by time variable, causing the suppression
of high frequency shape information whereas the WKS captures both the high and
the low frequency shape information.

Meanwhile, works such as Shape DNA [34] showed the utility of the eigenvalues
of the Laplace operator, where the distances between shapes were expressed as the p-
norm of the di↵erence between the truncated eigenvalue sequences for the two shapes.
In [35], a normalized shape DNA distance, called the weighted spectral distance is
proposed.

Laplace-Beltrami eigenfunctions of surfaces proved to be extremely useful in ap-
plications of 3D shape matching and retrieval. In [36], it was shown that a bijective
mapping between a given pair of shapes induces a transformation of a function of
derived quantities between them. Furthermore, this transformation can be written as
a linear map between selected basis functions over both surfaces, exemplified by the
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Laplace-Beltrami eigenfunctions. [37] presented a method to perform shape matching
in a reduced space in which the symmetries of shapes were identified and factored out.
This was achieved within the functional maps framework of [36] where the functional
linear map was decomposed into its symmetric subspace and its orthogonal subspace,
and the former was utilised to carry out the shape matching between symmetric
shapes. For joint analysis of multiple shapes, [38] presented a coupled construction of
common Laplacian eigenfunctions using approximate joint diagonalizations.

In [39], a shape-aware interior-mesh distance was defined by propagating a dis-
tance measure defined on the mesh to the surface interior, while preserving distance
properties. This was exemplified by the di↵usion distance and mean-value coordinates
selected as the barycentric coordinates. [40] later applied this idea to interpolating
the Laplace-Beltrami eigenfunctions of the boundary into the interior volume by using
barycentric coordinates. This way, a volumetric measure was constructed from the
HKS, i.e. the interior HKS, and adopted to finding correspondences between volumes
and shape retrieval.

1.1. Our Contribution. In this paper, we present a novel perspective on shape
characterization using the screened Poisson equation. Both the Poisson and the
screened Poisson equations found increased utility in various shape descriptors. As the
screening parameter in (1.1) tends to 1, the screened Poisson equation approaches to
the Poisson equation. The controlled smoothing provided by the screening parameter
is advocated by some researchers and recent works [23, 15, 17, 22, 20, 25] rejuvenated
the model.

Our work di↵ers in several aspects. We consider multiple instances of the screened
Poisson equation to decompose the sources of variability due to several factors includ-
ing the boundary sources and the screening parameter, both of which are novel. We
discuss that the e↵ect of screening parameter is a change of measure of the underlying
metric space, hence, fixing ⇢2 fixes the measure. Suitably sampling N values for the
screening parameter and m points for the shape boundary @⌦, we form a stack of
N ⇥ m screened Poisson fields. We call this collection as a screened Poisson hyper
field. This is not a scale-space in the usual sense but hides in it a two-dimensional
scale space of shapes, coarsening in the direction of increasing ⇢2 and decreasing field
values. We argue that the hyper field is a full characterization of all sorts of interac-
tions between shape elements: local-global and boundary-interior. Then we discuss
two low-dimensional embedding schemes, one to unveil parts and the other to produce
consistent mappings, which we call Screened Poisson Encoding Maps (SPEM), for the
purpose of shape matching and shape retrieval.

Encoding a change in the di↵usion using the varying screening rates in the
screened Poisson equation forms a remarkable parallelism with the class of meth-
ods in spectral shape analysis. We argue that a coverage of ⇢2 parameter space for
(1.1) over the shape domain brings advantages over the coverage of the temporal
parameter space for the heat kernel over the shape in terms of producing a direct
volumetric shape representation. [32], extending the heat kernel signatures to vol-
umes, noted that the boundary isometries of the HKS do not carry over to volume
isometries, however, volumetric HKS can still faithfully model nearly isometric defor-
mations, which are argued to be more suitable in modelling of natural articulations
and deformations of solid objects. On the other hand, [40] propagated HKS on the
surface towards the interior of the shape to be able to construct volumetric mea-
sures to benefit from nice properties of the HKS, including the surface isometry, the
multi-scaleness and insensitivity to topological noise at small scales however at the
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expense of its sensitivity to scale of the shape [32, 41]. Di↵erent from these earlier
heat-kernel based approaches, here, we directly compute volumetric distances from
the solution to the volumetric screened Poisson PDE, which enjoys properties such
as multi-scaleness based on a varying screening-parameter that tunes smoothness of
the level curves of the field, an adaptation to scale by an appropriate mapping, and
a near isometry-invariance as demonstrated experimentally by the robustness of the
proposed method under a 3D nonrigid shape retrieval application (§ 5.5).

As an alternative to the heat equation and its kernel, our work presents a dif-
ferent di↵erential operator, a di↵erent kernel, and demonstrates the high-ranking
performance of the SPEM to articulated pose and deformation in a publicly avail-
able large-scale benchmark data set: SHREC’11 Shape Retrieval on Non-Rigid 3D
Watertight Meshes [42]. Our method, as shown in the presented 3D shape retrieval
application, provides a robust and high-performance alternative to those methods
based on shape’s intrinsic surface properties. Furthermore, existence of fast solvers
for the screened Poisson PDE, as realised by [23, 24, 17, 25] in other applications of
image filtering and mesh processing, is another factor that makes it attractive to be
adopted in a new shape representation idea as in this paper.

The organization of the paper is as follows. In § 2, we show separation of the
sources of variability in the v-field, and present the construction of the new shape
hyper-field. We expound properties of the new hyper-field and the SPEM in § 3
through a random walk interpretation, relation to geodesic distances, and a connection
to spectral methods. In § 4 we present how decompositions on shape hyper fields via
two alternative techniques produce consistent mappings and part decompositions.
Finally in § 5, we present our experimental results followed by conclusions.

2. A new hyper-field. In this section, first the existing two-dimensional scale
space parameterized by ⇢ and the values of v (§ 2.1) is explained. Then we describe
the two dimensions of the new shape representation: the varying of the ⇢ (§ 2.2), and
decomposition of the boundary sources (§ 2.3). The new hyper-field thus includes two
dimensions of variability: (i) by variation of ⇢, it covers the internal smoothing char-
acteristics of v; (ii) by variation of boundary sources, it covers interactions between
individual boundary nodes versus all internal nodes. We note that the decomposition
into those two dimensions do not create a true scale-space per se, however, creates a
rich shape hyper-field representation from which descriptive volumetric shape encod-
ing maps (SPEM) can be extracted.

2.1. A two-dimensional Scale Space. The information encoded in the result-
ing field v of Eq.(1.1), as a shape representation, is highly dependent on the value of
⇢2. The influence of the parameter ⇢2 can be observed in Fig. 1, where di↵erent fields
that arise using di↵erent ⇢2 values are presented for a cat shape. Smaller ⇢2 values
lead to fields where distinct relations in the regions that are close to shape boundary
(protrusions, indentations) are extracted, but are clueless about the central part of
the shape and global interactions. In contrast, larger values of ⇢2 generate fields that
are coarse in the regions close to the boundary, but able to capture global interactions
within the shape. Unlike the level curves of the solution of the Eikonal Equation, the
level curves of v (the solution of screened Poisson Equation) has smooth level sets, and
as one moves along the gradient lines, the level curves gets smoother. As discussed in
[43, 10]

(2.1) v(x ) ⇡ ⇢

✓
1 +

⇢

2
curv(x )

◆
@v

@n
+O

✓
⇢3
◆

5



Guler, Tari, Unal Screened Poisson Hyper-Fields

Fig. 1: v fields for di↵erent values of ⇢2.

where curv(x ) is the curvature of the level curve of v passing through the point x at
x , and n is the direction of the normal. Thus, one can imagine a two-parameter family
of level curves parameterized by v and ⇢. Smoothing increases with a decrease in v
and an increase in ⇢2. This is a very interesting property. This explains how the linear
screened Poisson mimics a non-linear reaction-di↵usion. Though this observation was
made in the early work of [10], the follow up work on screened Poisson typically
focused on isolated treatment of the ⇢2. Rangarajan [17, 16] took a very small value
to approximate the Eikonal Equation, while Tari [15, 22] and Shah [44] used very
large values.

We believe that isolated treatment is hindering full utilization of the controlled
smoothing o↵ered by the model. As we show in §4.2, once the entire scale space is
utilized, both local and global interactions can be realized and a natural hierarchical
central to peripheral decomposition of the shape domain is achieved without requiring
the recent non-local term in [22].

2.2. Varying ⇢2: Sweeping Internal Smoothing Characteristics. In a set-
ting where the screening parameter is considered as an additional dimension to the
spatial ones, it is clear that the n+1-Dimensional field calculated for a shape embed-
ded in Rn, where the parameter ⇢2 is swept from 0 to 1 inherits all the information
that is possible to be extracted using such a method about the shape. The collection
of fields {v⇢}

⇢

2 consists of a 1D family of functions that sweeps the ⇢2 dimension for
each node on the lattice that the shape is described on. A field created using only
one of these values would explain only limited portion of the variance. In order to
capture this high dimensional information, we linearly sample ⇢2 values to N bins,
and calculate v⇢ for each ⇢2

j

value for j = 1, ..., N . Each v⇢ field as a single instance
explain relatively little variation of the shape in comparison to the whole family.

We depict via an example that the v function is coding characteristics that extend
beyond the distance to the nearest boundary point as well as curvature (Fig 2). We
consider several nodes in a shape domain. They are marked with colored crosses.
Each node has a di↵erent character: The blue one is central; the other four are
closer to shape boundary, pink being the closest; and red is on a peripheral part
(finger). The v versus ⇢ plot on the right depicts striking di↵erences among v(·, ⇢)
profiles for these di↵erent shape nodes. For example, the two points colored red and
pink respectively have closer profiles as they have comparable proximity to the shape
boundary. However, the profiles are not nearly identical because the red node is
residing in a thin part of the shape while on the contrary the pink one is not.

Fig. 3 demonstrates further coding characteristics of the v⇢ field. A set of 1D
profiles (v⇢(x̃ )) for a set of locations x̃ on a hand silhouette are depicted. Here, the
point we emphasise is that the selected locations, x̃ 2 ⌦ are equidistant to the shape
boundary. Observe that the 1D curve describing the relation between v and ⇢ shows
a quite di↵erent character for each point, which has the same Euclidean distance to
the boundary, while the v-field is able to encode the diversity of the geometric shape
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Fig. 2: Field value versus ⇢ at five selected nodes of distinct characters. v function is
coding characteristics that extend beyond usual distances. A dense linear sampling is
used between ⇢ = 2 and ⇢ = 30.

information among those points.

Fig. 3: Behavior of v⇢ in ⇢ dimension for sampled points on the domain that are
equidistant to the boundary.

2.3. Fixing ⇢2: Decomposition of Boundary Sources. The two-dimensional
scale space is a continuous collection of simple closed curves parameterized by [1, 0)⇥
{1, 2, · · · , N}. For a fixed screening parameter, a one-dimensional scale space is
formed by the collection of the level curves of the field v⇢, which is a union of these
level curves. This is not the only way to envision v⇢. Thanks to the linearity of the
equation, it is also possible to express v⇢ as a superposition of basis fields each of
which is expressing the contribution due to a single “unit” of inhomogeneity.

In order to elaborate on the super-positioning aspect of the screened Poisson
PDE for a fixed ⇢2 and better understand geometric properties induced by boundary
interactions, we consider decomposing the sources of inhomogeneity in the boundary
condition. Assuming that the shape boundary is given as a set of points @⌦ =
{p1 ,p2 , ..pm }, we consider m independent PDEs:

(2.2)
�vpi (x )�

vpi (x )

⇢2
= 0

vpi (p )|
p2@⌦ = �(p � pi )

where vpi denotes the solution when the only inhomogeneity is due to the point
pi 2 @⌦. Thanks to the linearity of the equation, these “sub-fields” are the building
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blocks that make up the field v described in (1.1):

(2.3) v =
mX

i=1

vpi

The super-positioning of the sources is demonstrated on a 1D example in Fig.4. The
boundary condition on the third column is an addition of the two boundary conditions
used in the first two columns. Hence the solutions in the third column are superpo-
sitions of the pair of solutions given on the respective row of the first two columns.

Fig. 4: Solutions of the screened Poisson equation for a 1D experiment using three
di↵erent boundary conditions (columns) and three di↵erent ⇢ values (rows).

In Fig. 5, the logarithm of the field vpi obtained from a boundary point pi on the
hand shape is visualized on the left. It can be observed that the v field shows a sharp
fall of its values over the fingers whereas a much less steep slope of fall is observed from
the boundary points of the hand’s side palm regions (e.g. close to the wrist). This
di↵erent behaviour is expected. To analyse it on a simpler case, assume a spherical
geometry with a source term s(r ) at the origin, and consider the Poisson equation:
�v = s(r ), the fundamental solution is: g(r ) / 1

r

, whereas for the screened Poisson

equation: �v � v

⇢

2 = s(r ), the fundamental solution reads: g(r ) / e

�r

⇢2

r

[45]. Hence
with a nonzero source term the solution is given by:

(2.4) v(r ) =

Z

⌦
dr 0s(r )

1

|r � r

0
|

e
� |r�r 0|

⇢2 .

For a spherical symmetric case, the source is di↵used to its surrounding points by
a convolution with a kernel inversely proportional to the distance between the source
and the given point for the standard Poisson case, whereas for the screened Poisson
the convolving kernel is in addition weighted by a decaying exponential. Although for
the arbitrary geometric configuration of our boundary conditions we cannot write an
integral equation to solve for the result, we can observe the exponential decay e↵ect
in our v-field from a single source point to other points. With a union of all boundary
sources, the e↵ect is even more pronounced. Similarly in § 2.2, we changed the rate
of decay by varying ⇢ to probe this property. We will further discuss the relation of
the v-field to geodesic distances in § 3.2.
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Fig. 5: Restricting the boundary inhomogeneity to a single point pi on the little
finger. a) Iso-contours (bottom) and values of v-field using log(vpi ) visualised as a

point cloud; b) Normalized gradient, rv

pi

|rv

pi |
for the ’thumb’; c) Streamlines obtained

by tracking along the normalized gradient directions.

2.4. Putting it altogether: The New Hyper-field. By considering a total
of N ⇥m screened Poisson equations, we form a stack of fields. This stack of fields
hides separation of several sources of variability due to all kind of interactions: local,
global, region and boundary. The schematic depiction is given in Fig. 6. Intuitively,
this can be best explained as simultaneous decomposition layers.

Fig. 6: Separating sources of variability in the shape hyper-field.

In the first decomposition layer, ⇢2 is varied to obtain a stack of fields {v⇢i
}

i=1···N .
Each slice in the stack is an interpretation of the shape with a certain bias – choice
of measure, and is a collection of shape boundaries embedded as level curves hence
parameterizable by a continuous parameter s 2 (0, 1]. This is the second layer of de-
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composition. The stack of fields {v⇢i
}

i=1···N as parameterized by (0, 1]⇥ {1, · · · , N}

defines a 2D scale space of shapes, coarsening in the direction of increasing ⇢2 and
decreasing s. At the final decomposition layer, the e↵ect of inhomogeneity (note that
the solution to the PDE in (1.1) is the trivial solution in the absence of inhomo-
geneities) is individuated by considering m-fields v⇢i,pj for j = 1 · · ·m, which add up
to v⇢i =

P
m

j=1 v
⇢i,pj . This last layer added by the boundary source sweep is built

on top of the nonlinear scale-space of ⇢ and level curves of v, hence maintains a more
complex structure.

The hyper field provides a rich characterization of the shape. We will present
how to extract this information in a robust way in §4.

3. Screened Poisson: Properties.

3.1. Screened Poisson as a conditioned random walk. In this section, we
expound the underlying stochastic interpretation of the v⇢ field in order to gain more
intuition into its coding properties. Specifically, we are interested in understanding
better the e↵ects of 1) the change of ⇢, and 2) the boundary interactions.

First, let us shift the inhomogeneity in the boundary condition in (1.1) to the
right hand side as a source term, and then consider an inhomogeneous heat equation:
(�+ @

@t

)u(x , t) = f(x ). On one hand, the steady state solution as t ! 1 is 1�v⇢ for
⇢ ! 1 (i.e., the solution of the Poisson Equation). On the other hand, the transient
solution is

(3.1) u(x , t) =

Z
p
t

(x ,y )f(y )dµ(y )

where µ is the Lebesgue measure and p
t

(x ,y ) is the transition probability from point
x to y in time t. The transition probability (also called heat kernel) is given by the
Gaussian function:

(3.2) p
t

(x ,y ) =
1

(4⇡t)/2
exp

✓
�

|x� y|2

4t

◆

Now let µ be a measure on a Riemanian manifold M. The inhomogeneous heat
equation with the corresponding Laplace (-Beltrami) operator on the manifold is

(�
µ

+
@

@t
)u(x , t) = f(x )

The transient solution is given by (3.1). Let us examine the e↵ect of screening fol-
lowing Grigoryan [46]. We note that introducing screening to the Poisson equation
corresponds to a change of measure. Let eµ be the new measure, then �eµ is related to
(�

µ

�

1
⇢

2 ) by the Doob h-transform.

(3.3) �eµ =
1

h
� (�

µ

�

1

⇢2
) � h �! �eµv =

1

h
(�

µ

�

1

⇢2
)(vh)

To summarize, di↵usion is a stochastic Markov process, indeed a Brownian motion
with heat kernel as its transition probability. In the case of the di↵usion governed by
screened Poisson, the new transition kernel ep

t

that relates to the original transition
kernel is the heat kernel on the Riemannian manifold with measure deµ = h2dµ [46].
For a random walk on a network, when p

t

(x ,y ) is induced by conductances c
xy

,
then ep

t

is induced by conductances ec
xy

= h(x)h(y)c
xy

[47] [48]. This means that the
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conditioned random walk behaves like the unconditioned walk but is biased by an
isotropic drift h.

The conditioned random walk with a certain ⇢2-value a↵ects a point in the shape
domain with a certain bias, making it possible to probe multiple random walkers
going through di↵erent conductances over the shape. We believe that this is how
the continuum of fields encodes the shape characteristics both locally and globally
with its varying screening rates or biases. This can also be interpreted as Brownian
motions with di↵erent drift amounts, the zero drift corresponding to the unconditioned
random walk, hence pure di↵usion without any screening term of the standard Poisson
equation.

For a fixed ⇢2, the field 1 � v⇢ is a superposition of multiple random walks on
a manifold with a measure eµ. Note that the transient solution (after the change of
measure) for the time-dependent equation then would be given by

(3.4) 1� v⇢(x , t) = h
⇢

(x )

Z
ep
t

(x ,y )f(y )h
⇢

(y )dµ(y )

At the steady-state, the transition kernel becomes only a function of distance indepen-
dent of t. Thus, separating the boundary condition to a set of points, and solving the
screened Poisson PDE for each single point as in Eq. (2.2), each field value vpi (x )
(after a normalization) is interpreted as the probability that the biased random walker
emanating from pi to arrive at the locations x . We note that the intuition of the
boundary condition on a random walker was mentioned by [20] for the heat flow,
with the zero Dirichlet boundary condition implying absorption of heat that leads to
random walker ”falling o↵” the grid. With this interpretation, the way we set the
point source on the boundary to unity while setting all other boundary points to zero
implies that the probability of the walker falling o↵ the grid di↵ers substantially for
di↵erent local geometric regions of the shape (see Fig. 3 for this e↵ect).

3.2. Relation to Geodesic Distances. There is a strong link between the
values of the vpi field and the geodesic distance from pi to another shape node, with
the underlying Riemannian metric. A prominent aspect that forms this link is the
gradient directions of vpi , which are parallel to geodesics. The choice of boundary
conditions configures the resulting gradient field. For instance, Dirichlet boundary
conditions attract the flux to the medial locus. In Fig. 5 (middle and right figures),
we show normalized gradient directions along with streamlines obtained by tracking
points in the gradient direction. The link between the heat flow kernel (i.e. the ⇢ ! 1

case) and geodesic distances was established by Varadhan: �

p
�4t log(p

t

), where t
corresponds to the amount of time that passes after heat di↵usion starts [49]. Simply
taking the logarithm of the v field leads to an encoding of the local relationships in a
rather useful manner and preserves the gradient directions. The choice of logarithm
stems from the exponential decay of the field (Eq. 2.4) also noted by [10], [16], and the
logarithm of the field values become strictly negative, decreasing as the probabilities
for the random walkers get less likely. We note that this is not an attempt to make the
v-field values similar to Euclidean distances. Taking the square-root as in Varadhan’s
formula [49] also preserves the gradient directions but suppresses high rates of decay.
This sort of treatment would compromise a very desirable property for part based
analysis of shapes: at nodes that belong to articulated regions on the shape domain,
as the probabilities for random walkers to go o↵ the grid increases, the rate of decay
increases drastically. This property was observed in Fig. 5 (on the left). Therefore,
with the v-field, we are exploiting an exponential decay e↵ect with a complementary
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contribution from the shape boundary conditions, to construct a beneficial ”geodesic
distance” from the given shape geometry. Observe the e↵ect of this complementary
contribution in Fig. 3, where the points that have equal Euclidean distances to the
boundary have v⇢ field values which encode a geodesic distance that both shows an
exponential character and is more global in the sense that it is a↵ected by the full
shape boundary conditions.

3.3. Relation to Spectral Methods. The popularity of the heat-kernel-based
methods in non-rigid shape matching is due to the usefulness of the heat kernel func-
tion in finding near-isometric correspondences between shapes. This is appealing
because many expected deformations between shape surfaces, particularly the artic-
ulated motion, can be approximated by an isometric mapping. Because the isometry
of a manifold preserves the heat kernel [46], heat kernel signature was shown to be
isometrically-invariant in [26]. However, a volumetric isometric invariance was not
sought for in the volumetric HKS of [32], and it was argued that the articulations and
non-rigid deformations of solid objects do not follow a boundary isometry. Similarly,
although we do not show an isometry property for our volumetric Screened Poisson
Encoding Maps (SPEM), we discuss our approach against the heat-kernel-based ap-
proaches next. With µ as the Lebesgue measure, the heat kernel in (3.2) can be
expressed as [46]:

(3.5) p
t

(x ,y ) =
1X

k=1

e��kt'
k

(x )'
k

(y )

where '
k

are the eigenvectors and � are the eigenvalues of the Laplace operator:
�

µ

' + �' = 0. Based on the heat kernel, Ovsjanikov [50] defined the heat kernel
map ⇥

q

(x ) = p
t

(q ,x ), which measures the amount of heat transferred from a source
point q to other points x over a given shape surface. The idea is to match the point
from the target surface whose heat kernel map is closest to that of the given point
in the reference surface. Hence, a correspondence between the two shapes can be
established. On the other hand, by varying the t parameter, the heat kernel signature
(HKS) [26] creates a 1-parameter family of functions from the diagonal of the heat
kernel, also called the auto-di↵usivity function: p

t1(x ,x ), ..., p
tn(x ,x )).

The constructed 1-parameter family of functions based on time t in the heat kernel
approaches is similar in spirit to our method. However, rather than the time variable
t, we vary ⇢ variable in the screened Poisson operator. In the former, the tempo-
ral evolution of the heat operator is considered, hence the multi-scale heat di↵usion
characteristic in time is taken into account, whereas in our approach, the 1-parameter
family of solution fields to the screened Poisson PDE with varying screening parame-
ters provides the biased di↵usion of the boundary sources, from the boundary towards
the shape interior. Similar to the Heat Kernel Map [50], it would be possible to match
shapes by sampling a set of source points qj inside the shape and using directly the

1-parameter family of the screened Poisson hyper-fields {v
⇢i,qj
i=1···N} at points x on the

shape surface. Our work di↵ers by the following: (i) in contrary to the heat kernel map
approach, we put the sources on the boundary and di↵use those towards the inside of
the shape with a di↵erent di↵erential operator, i.e. the screened Poisson; (ii) instead
of directly using the 1-parameter screened Poisson fields, we create a low-dimensional
embedding of these functions over the ⇢-dimension (§4.2). The embedding unveils
the di↵usion bias in projection maps which provide beneficial properties like scale
adaptation, compactness and representation power, which are experimentally verified
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(§5.4,5.5).

4. Extracting information from Hyper-fields.

4.1. Unveiling parts from the hyper field via sparse coding. We first focus
on a single slice of the hyper-field (a fixed measure). This is a collection ofm fields that
forms a vector field and contains individuated boundary-internal node interactions of
the shape. One may construct di↵erent useful measures from these interaction vectors.
For instance, analysis of correlation between two internal nodes either inside the shape
domain or between two boundary nodes, or between a boundary and an internal node
are all possible using this collection. Even basic clustering methods such as k-means
or Gaussian mixture models will lead to intuitive clusters of internal nodes. However,
we chose to employ a specific matrix factorization technique (non negative sparse
coding) to portray the decomposability of the global-local information to unveil the
parts of shape.

In order to decompose the collection onto a set of components, we start with a
normalized log field which has zero mean at each point:

V

pi (x ) = log(vpi (x ))�
1

m

mX

j=1

log(vpj (x)),

= log(vpi (x ))� log
m
p

vp1 vp2 ...vpm (x)(4.1)

Note that centering the log-field by its mean is equivalent to centering the field by its
geometric mean:

(4.2) V (x ) = log{
v

m
p

vp1 vp2 ...vpm
}(x )

In order to apply the non-negative matrix factorization, the vector elements that are
lower than the mean are replaced by zeros. Though this normalization procedure
ignores a region within a certain proximity to the boundary node of interest, thanks
to the centering of the data, remaining regions are encoded in a manner that allows
distinction of prominent parts. The resulting non-negative vector field can now be
analyzed as an additive combination of some bases, leading to a part-based represen-
tation. The non-negative measurements obtained by a normalization with the mean
and median are depicted in Fig.7.

Fig. 7: Non-negative measurements: y
j

(i), where the same pi in Fig. 5 is used. Left:
Normalization by median. Right: Normalization by mean.

Arranging the measurements V (x ) into columns of a matrix Y m⇥|⌦| for each
shape node x , would allow the linear decomposition of the data as Y ⇡ AS, where
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the matrix A is the mixing matrix with basis vectors as its columns. The rows
of S contains the hidden components that encodes the contribution of each mixing
vector while reconstructing the input vectors. When both factors A and S are forced
to be non-negative, the decomposition corresponds to the method of non-negative
matrix factorization (NMF) [51][52]. The non-negativity of the factors makes the
representation additive as desired.

Many variants of NMF have been proposed since the pioneering work of Lee
and Seung [52]. Due to its additive nature, NMF produces a sparse representation
of the data, where the data is represented using inherent active components. Non-
negative sparse coding (NNSC), introduced by Hoyer[53], forms an analogy between
NMF and sparse coding [54]. NNSC provides control over the sparseness of the
hidden components by adding a sparsity-inducing penalty to the objective function,
which is very desirable feature for obtaining shape parts as active components that
are described on the shape domain. By selecting k mixture elements, the objective
function of the NNSC is formulated as:

(4.3) min
A2Rm⇥k

,S2Rk⇥|⌦|

|⌦|X

i=1

⇣1
2
ky

i

�AS
i

k

2
2 + �kS

i

k1

⌘
s.t. A � 0, 8i, S

i

� 0,

where the first term forces minimization of reconstruction error and the second term
forces the sparseness. � controls the tradeo↵ between sparseness and accurate recon-
struction of Y . Sparsity is enforced by using the L1 norm, this formulation can also
be considered as the constraint in the Lasso problem [55]. � = 0 case is equivalent
to NMF formulation (i.e. no additional sparsity). The problem is solved using the
method of Mairal et al. [56][57], which outperforms method of Hoyer [53] in minimiz-
ing the objective function in batch mode.

The resulting shape decomposition as NNSC components for a hand shape is
presented in Fig.8. The results are produced using the slice corresponding to ⇢ ! 1.
In the first experiment (Fig.8.a), the shape is decomposed into six components, with
a larger � value. The fingers and the central part of the hand are separated as
expected. In the second experiment (Fig.8.b), twelve components are obtained with
a relaxed sparseness constraint. Notice that the components that represent fingers,
which are the most prominent parts, are preserved. Additional components represent
the connection points of articulated parts to the central part of hand. Also, the central
part of the hand is partitioned into three di↵erent parts. The fact that important parts
are preserved even when the separation settings are relaxed illustrates the nature of
the information preserved in the measurements and robustness of the representation.

4.2. Producing consistent mappings for shape correspondence: SPEM.
In the previous section, we have concentrated on a single slice in the hyper-field and
demonstrated that sparse coding unveils parts by integrating local-global interactions.
In this section, we focus on a complementary problem in shape analysis: defining real-
valued functions on a shape domain that can be used for the purpose of matching or
registration. In the other dimension of the hyper-field, the 1-parameter space that is
spanned by varying ⇢-values encodes the boundary-interior di↵usion characteristics.
Although it is possible to utilize this 1-parameter field directly for shape matching,
we take one step further and we compactly code the variation in the ⇢ dimension
to produce consistent mappings through a low-dimensional embedding. There is a
vast number of dimensionality reduction approaches. We advocate use of principal
component analysis (PCA) which produces consistent maps that exhibit adaptation
to scale (see Fig. 9 and Fig. 10).
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(a)

(b)

Fig. 8: a) NNSC components obtained using a large � and k = 5; b) NNSC compo-
nents obtained using a low � and k = 12.

We find the linear PCA very intuitive as compared to some other popular decom-
position methods. Orthogonality of the bases provides quite a consistent mapping
across shapes. Independent component analysis based methods form inconsistent
mappings. We have observed that non-linear methods such as locally linear embed-
ding [58] or Di↵usion Maps [29] over-learn the ⇢-space, leading to less number of
features and less consistency. Linear PCA also outperforms latent variable meth-
ods such as Probabilistic PCA solved by maximum likelihood estimation [59]. The
data is created by a linear operator, and it is extremely smooth. We have observed
consistency (among di↵erent poses of similar shapes) using a direct singular value
decomposition even for the projections that explain variance as small as (10�14).

We now consider all ⇢2-slices of the hyper-field, i.e. consider the |⌦|⇥N matrix
Y . Each column of Y is a v field for a certain choice of ⇢2. The covariance matrix of
Y is computed, and then decomposed to yield an orthogonal set of bases: the eigen
maps �

n

, n = 1, ...N of the hyper field. After the new bases are calculated, the hyper
field can be projected to form N mappings, where each mapping P

n

is related to a
measure of the variance explained by the nth basis:

(4.4) P

n

= Y �
n

.

The low-dimensional embedding facilitates a principled selection of a handful of
projections maps, as we call them the SPEM (Screened Poisson Encoding Maps). We
note that we observe some interesting properties such as almost perfect representation
of the variability in just several bases (or projections). We relate this to the linearity
and smoothness of the screened Poisson operator. Using these bases, we observe visual
correspondence even in 2D shapes under a perspective transform.

4.2.1. Adaptation to Scale. The resulting eigenvectors �
n

for a hand shape
can be observed in Fig. 9. The eigenvectors adapt to global changes of the shape,
leading to a robust representation. This is exemplified by scaling the hand shape.
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Notice that the eigenvectors change because a specific characteristic that is detected
for a larger distance corresponds to a larger ⇢ value. This adaptation does not mean
that the field is scale invariant, because discretization in spatial and ⇢ domains would
not allow direct invariance. However, the representation does not change abruptly as
scale increases. In order to show this, we computed peak-SNR (PSNR) values (in dB)
between the original hand shape (maximum value of distance transform is 20 pixels)
and its scaled versions up to scale 4 (Fig. 9 scale changes are coded by colour on
the bottom right). Note the slow monotonical change across scale for the projections,
which provides coherence against shape scale changes.

Fig. 9: For the hand shape: Left: calculated �
n

colored according to corresponding
scale ratios; Right: PSNR values for projections obtained using �

n

across di↵erent
shape scales show a slow monotonically changing behaviour, which provides a desired
robustness to scale changes, color coded as shown on the bottom right.

Adaptation of the principal directions in ⇢-space to scale is also presented in Fig.
10. Class of {n/4} regular star polygons for n = 9, .., 20 are depicted, where all the
vertices are lying on circles of a constant radius. As n increases, the shapes become
more circular. This change of internal distance relationships a↵ects the characteristics
of the hyper-field in its ⇢-dimension. The eigenvectors of the covariance matrices are
altered in accordance, leading to robustness to scale changes. The six eigenvectors on
the right are almost identical and they are calculated for the shapes that are scaled
to have the same maximum distance to boundary. This property of the projections
imply that the discriminability of the projections originate from local and global
spatial relationships. The model o↵ers a framework where globally similar shapes
should have similar projections in locally similar regions, which makes it a promising
tool for shape analysis along with robustness to global scale e↵ects.

5. Results and Discussions. In this section, we demonstrate the expressive
power and robustness of projections of the new hyper-field. After discussing compu-
tational issues, we first present qualitative results with sparse coding over boundary
decomposition of the shape hyper field. Next, we show first a study on 2D shape
classification that demonstrates the usefulness of the SPEM with a moment-feature
based evaluation. Finally, we validate the new SPEM descriptor over the 3D SHREC
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Fig. 10: Top:{n/4}regular star polygons, for n = 9, .., 20 Left: First six eigenvectors
�1, ..�6 for the shapes colored accordingly. Right: The first six eigenvectors �1, ..�6

for the shapes after re-scaling with respect to the maximum value of the shortest
distance to the boundary.

benchmark data set [42].

5.1. Computational Aspects. Computation of each field v
⇢

or v
p

⇢

can be done
in parallel in both approaches that we presented. Notice that we calculate projections
P

i

using all the boundary nodes used as sources. Also, we fix ⇢ for the calculation
of the fields for the sparse coding (NNSC) application. Calculating a field for each
boundary node taken as a source for a 3D shape is not feasible, yet it is possible
to apply a similar approach to calculation of fields over segmented regions on the
boundary. This requires a fast initial partitioning of the boundary nodes with large
granularity.

We implement the hyper-field as a sparse matrix vector multiplication on a
NVIDIA Tesla K20c GPU. The screened Poisson operator is represented as a sparse
matrix: P|⌦|⇥|⌦| = (� �

1
⇢

2 I)�(B.C.), where � is the five-point discretization of the

Laplace operator and �(B.C.)|⌦|⇥|⌦| ! {0, 1} is an indicator function for the edges

that are allowed by the desired boundary condition. The gradient descent solution to
the screened Poisson field is then obtained by iterating the following multiplication:
vn+1 = vn(1 + ⌧P ), where ⌧ is the artificial time step. In our implementation we
use MATLAB Parallel Processing Toolbox and CUSP library [60], which is a generic
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CUDA library for sparse linear algebra. The computation time of each screened Pois-
son field v

⇢

or v
p

⇢

for a shape of 250.000 voxels is 2 seconds. The total computation
time of a hyper-field is directly proportional to the number of boundary segments for
the approach in § 4.1 and number of samples from the ⇢ domain for SPEMs(§ 4.2).
For 2D shapes, we concatenate sparse matrices of the operators � �

1
⇢

2 I and solve
the fields simultaneously, which is not an option for 3D shapes due to GPU memory
constraints. The calculation of the projections for each shape in 1000 shape database
[15] takes approximately 3 seconds.

Each field is a solution to an elliptic linear PDE, which is a problem that occurs
in various fields, and many fast alternative solvers exists. Adaptation of GPU’s is
an ongoing study for more than a decade [61]. While sparse Cholesky decomposition
and FFT based approaches work in subquadratic time [23, 20], multifrontal methods
[62, 63] and multigrid methods [11, 64] can reach O(N), which is the lower bound for
the problem. Certainly, a more customized and e�cient GPU implementation would
lead to a faster computation, yet our implementation is satisfactory for the 2D and
3D experiments we present.

5.2. Boundary Decomposition Based on Regional Information. As de-
scribed previously in §4.1, a natural application of the non-negative sparse decompo-
sition of the shape hyper-field was partitioning of the shape domain into its “meaning-
ful” components. The decomposition is applied to nodes on the shape domain based
on their random walk distances to all the boundary nodes as in the demonstration on
the hand shape in Fig. 8 in §. 4.1.

Here, we demonstrate another setting where the shape decomposition is achieved
by minimizing the objective function in (4.3) in §.4.1 using the transpose of the mea-
surement matrix Y without normalization (4.2). In this setting, in contrast to the
previous setting §. 4.1, the boundary nodes are decomposed based on their random
walk distances to all the nodes in the shape domain. Minimization of the reconstruc-
tion error in the objective function depends on boundary nodes and the regions that
are associated with each node. That is, the boundary nodes that relate to similar re-
gions are more likely to belong to the same boundary partition. Hence, the resulting
decomposition of the boundary inherently depends on a regional partitioning of the
shape. An example on a human figure is presented in Fig. 11, where decomposed parts
and corresponding regions can be observed as active components and basis vectors
(respectively) that are factorized from the hyper-field using NNSC.

Fig. 11: Decomposition of the human figure and associated regions. k = 8.

Introducing information about regional characteristics of a shape for decompo-
sition of its boundaries leads to rather consistent results. We demonstrate this in
Fig. 12 for three distinctively di↵erent cat poses. The structures after decomposition
are very coherent. The sparse decomposition into eight boundary segments reveals the
head, the front and rear parts of central body, the tail and four legs. In the third pose
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only, an additional segment is included in the leg whose regional characteristics are
altered due to the significant articulation and deformation, however the inconsistent
segment can easily be detected and eliminated considering its low intensity.

Fig. 12: Non-negative sparse decomposition over shape hyper-fields of three highly
di↵erent cat poses partition shape boundary into: the head, the cat frontal body, the
back body, its tail, and its legs in a consistent manner.

5.3. Orthogonal Projections Based On ⇢2 Sweep: SPEM. For the SPEM,
we experimented with a set of shapes that are not necessarily related by isometry.
In Fig. 13, the projections obtained using the first five principal components are
presented for six di↵erent cat shapes. The first two projections, which explain most
of the variance in the data, are much smoother compared to the remaining projections.
In the first projection, it is observed that the nodes in the vicinity of the boundary
attain highly positive values, hence, can be distinguished from the interior nodes,
giving only a rough sense of central/peripheral separation. The second projection,
on the other hand, exhibits a much stronger central/peripheral separation similar to
[22]. The projections(SPEM) obtained using the third or higher eigenvectors encode
more subtle details. For example, the third projection reveals ears, head, legs and tail
of the respective cat. Notice that these explicitly expressed parts are intuitive and
consistent across deformations of the cat shape.

Figure 14 demonstrates two things: (i) human figure, with di↵erent articulated
motion as well as small local deformations shows the projections preserve their char-
acter across those nonrigid deformations; (ii) hand figure with occlusion, local de-
formation and noise e↵ects show robustness of the projections against noise. The
consistency, which can be observed among the projections over each row across the
varying instances of the human and the hand shapes, is poised to provide the desired
robustness in shape representation required for shape matching and recognition.

In Fig. 15, a 3D example of the SPEM is presented. The projections of the 4D
hyper-field computed from a 3D horse form onto second to sixth projections are de-
picted. Since a 3D form conveys the exact geometry of a real world object as opposed
to a 2D shape, which is a perspective projection, our projected fields are naturally
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Fig. 13: Left-Right: First five projections(SPEM): P1,...,5 for 6 di↵erent poses of a cat
shape, depicted in each row. Each column corresponds to a di↵erent projection mode.
Hotter colors indicate positive and high values while colder colors indicate negative
and low values. Consistency of projections across deformations of the cat shape is
observed.

more consistent across arbitrary pose changes. In order to be able to visualize di↵erent
sections distinguished by each projection, we applied a histogram based thresholding
procedure. For each projection, one positive and one negative threshold is selected
and the surfaces corresponding to the level-sets of those thresholds are visualized.
Thresholds were selected at the first jump in the histogram for all the projections and
the same threshold was used for the same projections of shapes under di↵erent poses.
The same remark that was made about the smoothness of the projected fields in the
2D case holds for the 3D case as well. Although some of the thresholded parts can
be detached, as in the blue neck part in the sixth projection, the consistency and the
similarity of the 3D fields even after the thresholding are notable.
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Fig. 14: First six projections(SPEM): P1,...,6 (on each row) for five di↵erent instances
(on each column) of a human and a hand silhouette. Human figure displays articu-
lated motion and local deformations. Hand figure displays di↵erent noise conditions:
occluding a finger; shortening of fingers; protruding two new parts from the hand.
Hotter colors indicate positive and high values while colder colors indicate negative
and low values. Robustness of projections against occlusion, local deformation, and
noise is observed.
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Fig. 15: Top-Down: Second to sixth projections(SPEM): P2,...,6 for three di↵erent
poses of a 3D horse. Consistency of each projection across a row for di↵erent poses
can be observed.
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5.4. A Moment Based Evaluation of Consistency and Correspondence.
In order to quantitatively demonstrate the consistency of the projections, we con-
ducted a classification experiment on the 2D ”1000-shape” database, which is an
extended version of [15]. The database consists of 50 classes, each containing 20
shapes varying significantly with severe deformations and articulations. From each
class, 10 shapes are randomly selected as training data and remaining 10 is used for
testing. In order to experiment with the classification performance using a moment-
based representation, we extract a group of shapes with disjoint parts from each input
single connected binary shape in the database.

The shapes in the database are scaled to a fixed maximum distance to boundary
of 20 voxels. Next, the hyper-fields are created, and principal directions are calculated
in the ⇢ dimension. To each projection obtained from a given shape, a basic k-means
clustering is applied (k = 3) using the intensities of the projections. Thanks to the
nature of the SPEM, the resulting cluster centers are very similar: One of the cluster
means is very close to zero in terms of projection intensity value and the other two are
from the shape nodes that have positive and negative intensity projections, charac-
terizing positive and negative nodal domains. We use the mean of the corresponding
cluster for both the negative and positive clusters to generate two new shape maps
for each projection. This can be considered as a rough yet straightforward approach
for detecting regions that behave similar in ⇢2 space, specifically in a certain prin-
cipal direction of the hyper-field. We note that a common positive and a negative
threshold value is utilized for all shapes in the database. In Fig.16, we exemplify the
positive and negative shape clusters obtained by thresholding the first five projections
on several cat shapes from the database.

Fig. 16: Each row contains the negative-positive nodal domain clusters for corre-
sponding to first 5 projections of 7 cat shapes.

As features, we computed Hu’s seven invariant moments [65], which are invari-
ant to translation, scale and orientation as features for the classification. The weak
sense of similarity that these simple moments provide allows us to evaluate the cor-
respondences more clearly. We train linear Support Vector Machines (SVM’s) using
moments of each generated shape both by stacking features in a cumulative manner
and individually to each projection. The classification results for both experiments
that are repeated 100 times, randomized over selection of 10 training and 10 test
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shapes, can be observed at Fig.17.
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Fig. 17: SVM Classification accuracies using moment features of: binary shape
moments (blue); individual thresholded projections (red); and cumulatively adding
thresholded projections (black). Notice that the success rate jumps from %30 (blue)
to %80 (blacks) when our approach is used.

From the experiments where the SVMs are trained using features from individual
shape projections (red), it is clear that the moments for the newly generated shape
maps are much more informative compared to only the input shape’s moments (blue).
This alone shows that level curves of the SPEMs are consistent among shapes of
same category and corresponding regions on shapes of the same category have similar
projections. The moments obtained from even the ninth projections, which explain
very little portion of the variance in the hyper-field, are almost twice as descriptive
compared to the original shapes moments (see Fig.17). The monotonic behavior in
classification performance obtained using the combinations of the moments (black)
as features implies that new projections introduce new information (that even the
moments can express), which is an observation that is greatly in accordance with
orthogonality of the projections.

5.5. Non-Rigid Shape Retrieval Using Screened Poisson Encoding Maps.
To address the problem of retrieving similar shapes from a database given a query
shape, we utilize the information extracted from the Screened Poisson Encoding Maps
(SPEMs). We use a feature-based approach to obtain a compact global shape descrip-
tor from SPEM using feature encoding methods.

An analogy between feature-based 3D shape retrieval and image retrieval was
made in [66], where an image is treated as a collection of primitive elements, namely,
local image descriptors as visual words. The analogy is formed by obtaining geometric
words using multiscale di↵usion heat kernels, which are represented by a geometric
vocabulary using soft vector quantization. A similar feature-based approach is used in
[40], where Interior Heat Kernel Signatures (iHKS) are used as geometric words with
a similar representation proposed in [66]. Our retrieval approach is mainly similar to
those in perspective, yet it di↵ers in the way geometric words are obtained and the
way the features are encoded.

As features, we use the SPEMs explained in § 4.2. Considering the nature of the
problem, due to large variability of the shapes undergoing non-rigid deformations,

24



Guler, Tari, Unal Screened Poisson Hyper-Fields

the features should be robust to bending and articulations, which cause topological
changes in the volumetric representation. In Fig. 18, we present joint histograms of
projections for several shapes that go through large pose changes. The shapes belong
to the SHREC’11 benchmark[42]. The histograms are obtained from the values of
SPEMs: P4(x )(horizontal axis) and P3(x )(vertical axis) for all x 2 ⌦, the logarithm
of the number of nodes in the bins are visualized. The choice of fourth and third
projections is purely arbitrary, other projections also give coherent results.

Fig. 18: Joint histograms inside SPEMs: P4 vs P3 for corresponding shapes on the
right. The histogram intensities are displayed using a logarithmic scale. The articu-
lations have almost no e↵ect on the joint histograms and there is large variation in
histograms of shapes with di↵erent volumetric structures.

The histograms visualized in Fig.18 provide only a hint of what the feature space
looks like, yet the distinctiveness of the volumetric information encoded is clearly
revealed. Even for the shapes that go through large articulated motion and defor-
mation, the representation remains unaltered. Also notice that the representation of
woman and man shapes are more similar (yet still distinguishable) in comparison to
the representation of other shapes that are less related.

In order to compactly represent a shape for the retrieval application, we use
the feature encoding method: Vector of Locally Aggregated Descriptors (VLAD)[67].
VLAD characterizes the distribution of vectors with respect to the pre-computed cen-
ters, words that belong to a vocabulary. Unlike the Bag of Features or soft vector
quantization approaches, where the distances of the features to centers are accumu-
lated, the di↵erence vectors from each feature to assigned center are aggregated.

For a node in the shape domain x 2 ⌦, the SPEM S(x ) consists of the projections
P(x ): S(x ) = {P1(x ), . . . ,P

d

(x )} where d is the number of projections used. A
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codebook, C = {c 1, , . . . , c k

}, of k representative points c
i

2 Rd is acquired using k-
means clustering algorithm. Each node in the shape domain is assigned to the nearest
cluster center, as a hard vector quantization to obtain NN 2 Rd:

(5.1) NN (x ) = argmin
c i2C

kS(x )� c

i

k

The di↵erences S(x )�c

i

of the vectors assigned to each center c
i

are accumulated
to obtain d dimensional residual sum vectors R

i

:

(5.2) R

i

=
X

x2⌦ : NN (x )=c i

S(x )� c

i

The aggregated residual vectors R

i

are then normalized so that they have unit
L2 norm. This is followed by a power normalization, which can be considered as a
variance stabilizing transform:

(5.3) ✓
i

= sign(R
i

)

✓
R

i

kR

i

k

◆
↵

where the power operates element wise on the given vector. This normalization helps
coping with the undesired burstiness of the encoded vectors. One of the sources of
burstiness is the di↵erent number of nodes assigned to each center. In [68], several ap-
proximations are introduced that associate (5.3) to earlier work on variance stabilizing
transforms on a compound Poisson distribution [69, 70]. Another source of variance in
our case is the di↵erences in the intensities of the projections. The SPEM projections
that correspond to eigenvalues that express little variance have much lower intensities,
hence little contribution in comparison to, say, P1. The power transform enhances
their contribution in the overall representation. The vectors ✓ are concatenated and
again normalized to have unit L2 norm as a vector of length k ⇥ d to form the final
representation of a shape.

We conducted the retrieval experiment using the SHREC’11 Shape Retrieval on
Non-Rigid 3D Watertight Meshes benchmark[42]. The database consists of 30 classes,
each with 20 samples that inherit large intra-class variation in terms of articulated
motion and non-rigid deformation. In our implementation, all of the shapes in the
database were normalised to a constant scale of ⇠ 250, 000 voxels. We used first six
projections d = 6, and trained a vocabulary C of size k = 32 words, resulting into
a 192 dimensional vector as a global descriptor of shape. The vocabulary is learned
from 50000 randomly sampled nodes from each shape in the database. Standard
deviations for the SPEM projections that belong to each projection index are also es-
timated using this training data. While evaluating, each SPEM projection is first L2

normalized then multiplied by the standard deviation estimated for that projection
index. The nodes that are next to the boundary are discarded while encoding, since
they are less informative and might get a↵ected from boundary discretization. The
idea is to normalize the projection intensities, without changing the intensity range of
the projections. We observed that such a normalization causes an increase in retrieval
performance. For power normalization of VLAD, we use ↵ = 0.25 in Eq.(5.3). Cor-
relation distance between the 192 dimensional global descriptor is used as a measure
of dissimilarity between query shape and all shapes in the database.
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The retrieval performance is demonstrated in Table 1 using five standard retrieval
statistics: nearest neighbor (NN), first tier (FT), second tier (ST), E-measure (E),
and discounted cumulative gain (DCG). For the details regarding the measures, we
refer to [71]. Results for best four methods from the participants in the contest
are presented. The results for these are taken from [72], where the methods are also
briefly presented. Additional results in the table are taken from the work of Rustamov:
iHKS [40] and Konukoglu’s spectral distance method: WESD [35]. Hybrid method
results are obtained the way SD-GDM + MeshSift hybrid method is presented in
[42], specifically, by applying a min-max algorithm to distances obtained using two
methods and adding them up to obtain the final distance matrix. We merge our results
with other methods in the proposed manner, using the distance matrices participated
in SHREC contest, to demonstrate how combination of our work and existing work
performs. We also present the precision-recall performance of our retrieval approach
and the top four contestants in SHREC’11 track in Fig.19.

Table 1: SHREC’11 Retrieval on Non-Rigid 3D Watertight Meshes Database Results

NN FT ST E DCG

Methods: Our Method (SPEM) 99.8 97.4 98.6 73.3 99.3
SD-GDM [73] 100.0 96.2 98.4 73.1 99.4

iHKS[40] 99.5 92.2 95.5 71.0 98.0
MDS-CM-BOF[74] 99.5 91.3 96.9 71.7 98.2
ShapeDNA[34] 99.2 91.5 95.7 70.5 97.8
WESD[35] 99.3 90.2 93.05 69.0 97.1

MeshSIFT [75] 99.5 88.4 96.2 70.8 98.0

Hybrid SPEM+SD-GDM 100.0 98.4 99.5 74.0 99.7
Methods: SPEM+MDS-CM-BOF 100.0 97.5 99.1 73.7 99.6

SPEM+MeshSift 99.7 97.6 98.9 73.5 99.5
SD-GDM+MeshSift 100.0 97.2 99.0 73.6 99.6

Our method outperforms existing methods in terms of first-tier, second-tier and
E-measure performance. It ranks the second for the NN and DCG measures with very
close numbers. Only one of the nearest neighbor results out of 600 is retrieved falsely,
which is a sample from the ants class. Generally, the method only fails when internal
distance relations undergo large changes, which occasionally happen in ants class
deformations. Among the methods compared, only iHKS uses volumetric information.
Our method clearly outperforms iHKS with respect to all of the performance measures.

The results suggest that extracting volumetric information in a robust way can
lead to enhancement in the non-rigid shape retrieval performance when compared
to extracting information regarding only intrinsic surface properties. Moreover, as
expected, combining volumetric information and surface information results in a sig-
nificant boost in performance, as observed in resulting hybrid performance of SPEM
in Table 1.

6. Conclusion. In this paper, we provided a novel distance hyper-field repre-
sentation for shapes via screened Poisson PDE. An acknowledged advantage of the
presented shape representation, which is valid for all distance-based shape representa-
tions, is that the shape model is free from the dimensions of the shape: the volumetric
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Fig. 19: Precision - Recall Performances in Shrec’11 Non-Rigid Database

description of the hyper-fields we propose is readily extendable to any shape embed-
ding dimensions in Rn for n = 2, 3, 4....

For an n� d shape with m boundary points, the hyper-field is a scale-space stack
parameterized by the screening parameter, where each member of the stack v⇢ is a
superposition of m fields, each of which is the solution of the PDE with a point source
placed at a boundary point. The shape hyper-field captures all sorts of characteristic
information within and on the boundary of the shape, therefore encodes both local-
global and interior-boundary interactions.

The new representation is also tied to a collection of conditioned random walks,
each walk emanating from a fixed boundary point and walking with a bias controlled
by the screening parameter; and, the e↵ect of the screening parameter is a change of
measure.

Furthermore, we demonstrated extraction of shape information from the hyper-
field, which is a rich high-dimensional representation, by two felicitous compact de-
compositions to exemplify: (i) natural shape partitions (NNSC); (ii) consistent shape
maps through SPEM. The potential of extracting various shape descriptors from
the introduced shape hyper-field was demonstrated over both a 2D ”1000-shape”
database[15], and a benchmark dataset SHREC’11 [42]. The SPEM performance
was evaluated by using the VLAD method [67] for volumetric feature encoding. The
SPEM consistently ranked the first or the second in all measures, and ranked the first
when a hybrid combination with top surface-based methods was computed. Another
interesting property of the SPEM was its adaptation to scale, which was experimen-
tally verified by its performance over the benchmark.

The shape hyper-field representation presented in this paper is constructed over
the whole shape domain, therefore, it is certainly possible to either define new shape
measures or adopt existing popular descriptors, even image descriptors, in order to
apply the introduced hyper-field framework to shape matching, classification or par-
titioning problems.

To sum up, as we introduced the foundations of the new shape hyper-field, the
SPEM volumetric features, and demonstrated its strength in a large-scale 3D nonrigid
shape retrieval application, we believe that it will find ubiquitous use in various shape
analysis applications.
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