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Abstract

We investigate hypergraph partitioning-based methods for efficient
parallelization of communicating tasks. A good partitioning method should
divide the load among the processors as evenly as possible and minimize
the inter-processor communication overhead. The total communication
volume is the most popular communication overhead metric which is re-
duced by the existing state-of-the-art hypergraph partitioners. However,
other metrics such as the total number of messages, the maximum amount
of data transferred by a processor, or a combination of them are equally,
if not more, important. Existing hypergraph-based solutions use a two
phase approach to minimize such metrics where in each phase, they min-
imize a different metric, sometimes at the expense of others. We propose
a one-phase approach where all the communication cost metrics can be
effectively minimized in a multi-objective setting and reductions can be
achieved for all metrics together. For an accurate modeling of the max-
imum volume and the number of messages sent and received by a pro-
cessor, we propose the use of directed hypergraphs. The directions on
hyperedges necessitate revisiting the standard partitioning heuristics. We
do so and propose a multi-objective, multi-level hypergraph partitioner
called UMPa. The partitioner takes various prioritized communication
metrics into account, and optimizes all of them together in the same phase.
Compared to the state-of-the-art methods which only minimize the total
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communication volume, we show on a large number of problem instances
that UMPa produces better partitions in terms of several communication
metrics.

1 Introduction

Finding a good partition of communicating tasks among the available processing
units is crucial for obtaining short execution times, using less energy, and utiliz-
ing the computation and communication resources better. To solve this problem,
several graph and hypergraph models have been proposed [1, 2, 3, 4, 5, 6]. These
models transform the problem at hand to a balanced partitioning problem. The
balance restriction on part weights in conventional partitioning corresponds to
the load balance in a parallel environment, and the minimization objective for
a given metric relates to the minimization of the communication between the
processing units.

The most widely used communication metric is the total communication vol-
ume. Other communication metrics, such as the total number of messages [7],
the maximum volume of messages sent and/or received by a processor [7, 8], or
the maximum number of messages sent by a processor have also been shown to
be important. The latency-based metrics, which model the communication by
using the number of messages sent/received throughout the execution, become
more and more important as the number of processors increases. Ideal parti-
tions yield perfect computational load balance and minimize the communication
requirements by minimizing all the mentioned metrics.

Given an application, our main objective is to partition the tasks evenly
among processing units and to minimize the communication overhead by mini-
mizing several communication cost metrics. Previous studies addressing differ-
ent communication cost metrics (such as [7, 8]) work in two phases where the
phases are concerned with disjoint subsets of communication cost metrics. We
present a novel approach to treat the minimization of multiple communication
metrics as a multi-objective minimization in a single phase. In order to achieve
that, we propose the use of directed hypergraph models. We have materialized
our approach in UMPa (pronounced as “Oompa”), which is a multi-level par-
titioner employing a directed hypergraph model and novel K-way refinement
heuristics. In an earlier work [9], we had presented how minimization of the
maximum communication volume can be modeled. Here, we extend that work
for a more generic framework. UMPa not only takes the total and the maximum
communication metric into account, but it also treats the total and maximum
number of messages in a more generalized framework. It aims to minimize
the primary metric and obtains improvements in the secondary communica-
tion metrics. Compared to the state of the art partitioning tools PaToH [10],
Mondriaan [11], and Zoltan [12] using the standard hypergraph model, which
minimize the total communication volume, we show on a large number of prob-
lem instances that UMPa produces much better partitions in terms of several
communication metrics with 128, 256, 512, and 1024 processing units.
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The organization of the paper is as follows. In Section 2, the background
material on the hypergraph partitioning is given. We also summarize the pre-
vious work on minimizing multiple communication cost metrics in this section.
Section 3 presents the directed hypergraph model, and explains how the commu-
nication metrics are encoded by those hypergraphs. In Section 4, we present our
multi-level, multi-objective partitioning tool UMPa and give its implementation
details in Section 5. Section 6 presents the experimental results, and Section 7
concludes the paper.

2 Background

2.1 Hypergraph partitioning

A hypergraph H = (V,N ) is defined as a set of vertices V and a set of nets
(hyperedges) N among those vertices. A net n ∈ N is a subset of vertices and
the vertices in n are called its pins. The number of pins of a net is called the
size of it, and the degree of a vertex is equal to the number of nets it belongs
to. We use pins[n] and nets[v] to represent the pin set of a net n, and the set of
nets containing a vertex v, respectively. Vertices can be associated with weights,
denoted with w[·], and nets can be associated with costs, denoted with c[·].

A K-way partition of a hypergraph H is a partition of its vertex set, which
is denoted as Π={V1,V2, . . . ,VK}, where

• parts are pairwise disjoint, i.e., Vk ∩ V` = ∅ for all 1 ≤ k < ` ≤ K,

• each part Vk is a nonempty subset of V, i.e., Vk ⊆ V and Vk 6= ∅ for
1 ≤ k ≤ K,

• the union of K parts is equal to V, i.e.,
⋃K

k=1 Vk =V.

Let Wk denote the total vertex weight in Vk, that is Wk =
∑

v∈Vkw[v], and
Wavg denote the weight of each part when the total vertex weight is equally
distributed, that is Wavg =

∑
v∈V w[v]/K. If each part Vk ∈ Π satisfies the

balance criterion

Wk ≤Wavg(1 + ε), for k = 1, 2, . . . ,K (2.1)

we say that Π is ε-balanced where ε is called the maximum allowed imbalance
ratio.

For a K-way partition Π, a net that has at least one pin (vertex) in a part is
said to connect that part. The number of parts connected by a net n is called
its connectivity and denoted as λn. A net n is said to be uncut (internal) if
it connects exactly one part (i.e., λn = 1), and cut (external), otherwise (i.e.,
λn > 1). Given a partition Π, if a vertex is in the pin set of at least one cut
net, it is called a boundary vertex.

In the text, we use part[v] to denote the part of vertex v and prts[n] to denote
the set of parts net n is connected to. Let Λ(n, p) = |pins[n]∩Vp| be the number
of pins of net n in part p. Hence, Λ(n, p) > 0 if and only if p ∈ prts[n].
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There are various cutsize definitions [13] for hypergraph partitioning. The
one which is widely used in the literature and shown to accurately model the
total communication volume of parallel sparse matrix-vector multiplication [2]
is called the connectivity-1 metric. This cutsize metric is defined as:

χ(Π) =
∑
n∈N

c[n](λn − 1) . (2.2)

In this metric, each cut net n contributes c[n](λn − 1) to the cutsize. The
hypergraph partitioning problem can be defined as the task of finding a balanced
partition Π with K parts such that χ(Π) is minimized. This problem is NP-
hard [13].

2.2 Multi-level framework and partitioning

The multi-level approach has been shown to be the most successful heuristic
for various graph/hypergraph partitioning problems [2, 14, 15, 16, 17, 18]. In
the multi-level approach, a given hypergraph is successively (i.e., level by level)
coarsened to a much smaller one, a partition is obtained on the smallest hyper-
graph, and that partition is successively projected to the original hypergraph
while being improved at each level. These three phases are called the coarsen-
ing, initial partitioning, and uncoarsening phases, respectively. In a coarsening
level, similar vertices are merged into a single vertex, reducing the size of the
hypergraph at each level. In the corresponding uncoarsening level, the merged
vertices are split, and the partition of the coarser hypergraph is refined for the
finer one using Kernighan-Lin (KL) [19] and Fiduccia-Mattheyses (FM) [20]
based heuristics.

Most of the multi-level partitioning tools used in practice, such as the sequen-
tial partitioning tools like PaToH [10] and hypergraph partitioning implementa-
tion of Mondriaan [11], and parallel hypergraph partitioning implementation of
Zoltan [12], are based on recursive bisection. In recursive bisection, the multi-
level approach is used to partition a given hypergraph into two. Each of these
parts is further partitioned into two recursively until K parts are obtained in
total. Hence, to partition a hypergraph into K = 2k, the recursive bisection
approach uses K − 1 coarsening, initial partitioning, and uncoarsening phases.

A direct K-way partitioning approach within the multi-level framework is
also possible [18, 17] Given the hypergraph, the partitioner gradually coarsens
it in a single coarsening phase and then partitions the coarsest hypergraph
directly into K parts in the initial partitioning phase. Starting with this initial
partition, at each level of the uncoarsening phase, the partitioner applies a K-
way refinement heuristic after projecting the partition of the coarser hypergraph
to the finer one.
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2.3 Standard hypergraph partitioning models

The total amount of data transfer throughout the execution of the tasks is
called the total communication volume (TV). Given an application with inter-
acting tasks, in the traditional hypergraph model, the tasks, interactions, and
processors correspond to vertices, nets, and parts, respectively. In this model,
when a net n is connected to multiple parts, a communication of size c[n] from
one of those parts to others (i.e., to λn−1 parts) is required, hence resulting in a
communication cost of c[n](λn− 1). Hence, the connectivity-1 metric (2.2) cor-
responds exactly to the total communication volume [2]. Note that this metric
is independent from the direction of the interactions.

The traditional undirected hypergraph model is used for circuit partitioning
in VLSI layout design [13]. It is also widely used to model various scientific
computations such as the sparse-matrix vector multiplication (SpMxV) [2, 3, 11].
There are three basic models for partitioning a matrix by using a hypergraph:
column-net, row-net, and fine-grain. In the column-net model, the rows and
the columns are represented with vertices and nets, respectively [2]. It is vice
versa for the row-net model. In the fine grain model, the nonzeros of the matrix
correspond to the vertices and the rows and columns correspond to the nets [21].
A one-dimensional row (column) partitioning is applied when the matrix is
modeled with a column-net (row-net) hypergraph. For the fine-grain model,
a 2D partitioning of the nonzeros is employed. We refer the reader to [3] for
further information and comparative evaluation of these models.

2.4 Related work and contributions

Although minimizing the total communication volume TV is important, it is
sometimes preferable to reduce other communication metrics [4]. The previous
studies on minimizing multiple communication cost metrics are based on two-
phase approaches. Generally, the first phase tries to obtain a proper partition
of data for which the total communication volume is reduced. Starting from
the partition of the first phase, the second phase tries to optimize another
communication metric. Such two-phase approaches could allow the use of state-
of-the-art techniques in one or both of the phases. However, they could get
stuck in some local optima that it cannot be improved in the other phase, as
the solutions that are sought in one phase are oblivious to the metric used in
the other phase.

Bisseling and Meesen [8] discuss how to reduce the maximum send and re-
ceive volume per processor in the second phase, while keeping the total volume
of communication intact. This is achieved by a greedy assignment algorithm
that assigns a data source to a processor that needs it and that has the small-
est send/receive volume under current assignments. Bisseling and Meesen also
discuss a greedy improvement algorithm applied after the assignments are done.

Uçar and Aykanat [7] discuss how to reduce the total number of messages
and achieve balance on the maximum volume of messages sent by a processor
as a hypergraph partitioning problem in the second phase. The balance on the
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volume of messages sent by a processor is achieved only approximately (the
proposed model does not encode the send volume of a processor exactly). The
metric of the maximum number of messages sent by a processor is somehow
incorporated into the second phase as well. Both these second phase alterna-
tives, however, can increase the total volume of communication found in the
first phase. The amount of increase is bounded by the number of cut nets found
in the first phase.

Both of the mentioned studies [7, 8] consider applications where some input
data is combined to yield the output data, as in the sparse matrix-vector multi-
ply operation y ← Ax. In such settings, sometimes it is advisable to align the
partition on the input and output vectors, e.g., in y ← Ax the processor that
holds an xi holds the corresponding entry yi. This latter requirement is called
symmetric vector partitioning and cannot be satisfied easily with the methods
proposed in these two studies.

Uçar and Aykanat [22] discuss how to extend their earlier approach to ad-
dress the symmetric partitioning requirement as well for the computations of
the form y← Ax. Their approach can only handle the cases where one has the
liberty to partition the vector entries independent of the matrix partition. In
their work, Uçar and Aykanat show how this liberty arises when A is partitioned
on the nonzero basis. Again, the second phase can increase the total volume of
communication found in the first phase where a non-trivial upper bound on the
amount of increase is known. In some other cases, for example, when the matrix
is to be partitioned rowwise and the owner computes rule has to be respected,
then the method is not applicable. The entry yi should be computed at the
processor holding the ith row of A (this, in turn, determines the partition on
x), unless of course one is ready to pay for another communication round.

Our main contribution in this work is to address multiple communication
cost metrics in a single phase. Addressing all the metrics in a single phase would
allow trading off the cost associated with one metric in favor of that associated
with another one. The standard hypergraph model cannot see the communi-
cation metrics that are defined on a per-processor basis, therefore balance on
communication loads of the processors cannot be formulated naturally. Further-
more, since all the state-of-the-art partitioners use iterative-improvement-based
heuristics for the refinement, a single-phase approach increases search space by
avoiding to get stuck in a local optimum for a single metric. In order to overcome
these obstacles, we propose to use directed hyperedges and minimize a priori-
tized set of metrics all together. We associate each input and output data and
computational tasks with a vertex as is done in the standard hypergraph mod-
els [23]. We then encode the dependencies among the data and computational
tasks with directed hyperedges so that a unique source or a destination is defined
for each hyperedge. This way, we are able to accurately model the total as well as
per-processor communication cost metrics and reduce all metrics together. Fur-
thermore, this allows the optimization of the communication cost metrics both
in unsymmetric and symmetric input and output data partitions constraints, by
incorporating the vertex amalgamation technique discussed in [23]. Directions
on hyperedges necessitate revisiting some parts of the standard multi-level par-
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titioning heuristics. We do so and realize our communication cost minimizing
methods in a multi-objective, multi-level hypergraph partitioner called UMPa.
As balancing the per-processor communication cost metrics requires a global
view of the partition, we design a direct K-way refinement heuristic. One more
positive side effect of using the proposed directed model, as we will demon-
strate in the experimental evaluation section, is that one could further reduce a
primary metric when additional secondary and tertiary metrics (related to the
communication) are given to UMPa.

3 The directed hypergraph model

Let A = (T ,D) be an application where T is the set of tasks to be executed
and D the set of data elements processed during the application. The tasks may
have different execution times; for a task t ∈ T , we use exec(t) to denote its
execution time. The data elements may have different sizes; for a data element
d ∈ D, we use size(d) to denote its size. Data elements can be input and output
elements, hence, respectively, they may not have any producer or consumer task
in the application, or they can be produced by some tasks and consumed/used
by other tasks. Graphs, and their variants, such as the standard and bipartite
graphs [4], directed acyclic graphs [24], and hypergraphs [3] have been used to
model many such applications with different dependency constraints.

Here, we are interested in a set of applications that can be executed in paral-
lel similar to the bulk synchronous parallel (BSP) model of execution [25, 26]. In
other words, the set of tasks will be executed concurrently on a set of processors,
consume and produce data elements, and then they will exchange data among
each other. This process is usually repeated, and the same computation and
communication patterns are realized in multiple iterations. To ensure that the
data dependencies are met, one can either have an explicit barrier synchroniza-
tion between each iteration, as in the original BSP model, or a more complex
scheduling can be used in each processor that would delay the execution of the
tasks for which input data elements have not been received yet. Such an execu-
tion model fits well to many scientific computations [26], iterative solvers, and
also to generalization of other execution models, such as parallel reductions [27],
MapReduce [28], and its iterative [29] and pipelined [30] variants.

We assume the owner-computes rule: each task t ∈ T is executed by the
processing unit to which t is assigned. Consider an iterative solver for a linear
system of equations (such as the conjugate gradients) that repeatedly performs
y← Ax and applies linear vector operations on x and y. One way to parallelize
such a solver is to use rowwise matrix partitioning and assign sets of matrix
rows and corresponding y and x elements to the processing units [2, 26]. In
such an assignment, the atomic task ti is defined as the computation of the
inner product of the i-th row with the x vector, i.e., yi ← Ai∗x, where data
element yi is produced by task ti.

We assume that during the application execution, the producers of the data
elements send data to their consumers. If they exist, the consumers of a data
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element from D are all in T . In some applications, there is a direct one-to-one
mapping of the data elements and tasks. That is, task ti produces data element
di. However, in general, there can be data in D which are given as input and
may not be produced by a task.

3.1 Modeling the application

We propose modeling the application with a directed hypergraph [31]. Given an
application A, we construct the directed hypergraph H = (V,N ) as follows.
For each task ti ∈ T , we have a corresponding vertex vi ∈ V. For each data
element dj ∈ D, we have a corresponding vertex vj ∈ V and a corresponding
net nj ∈ N , where

w[v] =

{
exec(t) if v corresponds to a task t,

0 if v corresponds to a data item.

and c[nj ] = size(dj). Since we are interested in balancing the computational
load of the processors, the vertices corresponding to data items have zero weight.
If one also wants to balance the storage, which may be necessary for memory-
restricted processing units, a multiconstraint hypergraph partitioning scheme [32]
can be used with extra positive weights, representing size of data elements, on
these vertices and zero weights on the vertices corresponding to tasks.

The pins of a net nj , pins[nj ], include a producer (also called source), which
will be denoted as src[nj ], and consumers of the corresponding data item dj . In
this directed hypergraph model, the communication represented by a net n is
flowing from its producer vertex to its consumer vertices pins[n] \ {src[n]}.

Figure 1a shows the sparse matrix and vectors of the SpMxV operation y←
Ax in a sample of the iterative solver application mentioned above. Figure 1b
shows the associated directed hypergraph model in the case where a rowwise
partitioning is required. In the model, there are three types of vertices (xi, yi,
and ri for i = 1, . . . , 6), each modeling an x- or a y-vector entry, or a row of
A. The vertices are shown as labeled white circles. The nets are shown as
filled, small circles. The directions of the pins are set from x-vertices to the
corresponding nets, from those nets to the row vertices. The y-vertices are the
destinations of the corresponding nets whose sources are the corresponding row
vertices.

In the directed hypergraph model of Figure 1b, there is a single sender and
multiple receivers for each net. This model fits well with many scientific ap-
plications where there is a single owner of the data, who is also responsible
for distributing the updated value to processors that needs it. There are ap-
plications in which there are multiple senders that send, usually, their partial
updates to the owner of the data. Some other applications use both of these
models iteratively, such as gathering of partial updates followed by distribution
of the updated values (e.g., [33]). A directed hypergraph can model such ap-
plications. However, the current implementation of UMPa supports only the
discussed applications with a single sender. We note that in SpMxV when the
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Figure 1: Sample sparse matrix-vector multiplication and the corresponding
directed hypergraph model.

partitioning is columnwise or on nonzero basis (that is a two dimensional parti-
tioning on the matrix), some nets of the directed hypergraph will have multiple
senders, in which case UMPa cannot be used in its current form.

In our directed hypergraph model, a part p corresponds to a processing
unit p, and the balance restriction of the partitioning problem on the part
weights necessitates a balanced distribution of the computational load among
the processing units. In addition, the total communication volume corresponds
to the connectivity-1 metric in (2.2).

3.2 Communication cost metrics using direction informa-
tion

Given a K-way partition, let SV[p] and RV[p] be the data volume the processing
unit p sends and receives, respectively. That is

SV[p] =
∑

part[src[n]]=p

c[n](λn − 1) , (3.1)

RV[p] =
∑

part[src[n]] 6=p
p∈prts[n]

c[n] . (3.2)

Hence, TV equals
∑K

i=1 SV[pi] =
∑K

i=1 RV[pi]. Let SRV[p] = SV[p] + RV[p] be
the total volume of data sent/received by the processor p. The maximum data
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Figure 2: A 3-way partition of the simplified directed hypergraph. A vertex vi
now represents xi, yi and row ri. Among the nets, only the ones that are cut
are shown.

volume sent MSV and sent/received MSRV by a single processor are defined as

MSV = max
i
{SV[pi]} , (3.3)

MSRV = max
i
{SRV[pi]} . (3.4)

Let SM[pi] be the number of messages the processing unit pi sends, that is

SM[pi] = |{pj : ∃n s.t. part[src[n]] = pi and pj ∈ prts[n] \ {pi}}| . (3.5)

The total number of messages TM, and the maximum number of messages sent
by a single processor MSM are defined as

TM =
∑
i

SM[pi] , (3.6)

MSM = max
i
{SM[pi]} . (3.7)

Consider again the sparse matrix-vector multiplication of Fig. 1 in the con-
text of an iterative solver where the vectors x and y undergo linear operations
(such as xi ← xi + βyi for a scalar β to form the x of the next iteration).
In this case, the hypergraph can be simplified by using a set of modifications
which are useful to avoid some extra communications. First, the data items xi

and yi should be in the same part upon partitioning—otherwise an extra data
transfer is required during the vector operations. Second, yi is produced by
ri; unless they are in the same part, an extra communication is required. It is
therefore advisable to combine the vertices xi, yi, and ri for all i (see the vertex
amalgamation operation introduced in [7]; see also [23]). This simplified model
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corresponds to the column-net hypergraph model [2]. Consider the 3-way parti-
tion of the resulting hypergraph depicted in Fig. 2 (internal nets are not shown
for clarity). Under this partition, the processor p1, corresponding to the part
P1, holds vector entries x1, x4, rows r1, r4 and is responsible for computing y1
and y4 at the end of multiplication. Similar data and computation assignments
apply to the processors p2 and p3 corresponding to the parts P2 and P3. As
seen with the directions on the pins of the cut nets, processor p1 sends x1 to p3
and x4 to p2; processor p2 sends x2 to p1 and p3; and p3 sends x3 and x6 to p1.
Combining these, we see that SV[pi] = 2, for all i; RV[p1] = 3, RV[p2] = 1, and
RV[p3] = 2. We further note that SM[p1] = SM[p2] = 2, SM[p3] = 1.

The directions on the hyperedges help to quantify the sends and receives of
each processor. Without directions, one would not know, for example, if the
information flow on n3x should have been as described. If there were no vertex
amalgamation, it would be possible to compute these without directions, but
with a little bookkeeping and additional computation. However, vertex amalga-
mation type operations (e.g., the coarsening phase in a multi-level partitioner)
always take place in the state-of-the-art partitioners. In this case, quantifying
the sends and receives of each processor would require too much bookkeeping
(the contents of a composite vertex and connections of the composing vertices to
the nets) and too much computation to be useful in the multi-level partitioning
framework. The directions in the nets avoid this difficulty, but necessitate the
development of suitable partitioning tools.

4 UMPa: A multi-objective partitioning tool for
communication minimization

The proposed partitioner, UMPa, aims to optimize a given volume- or latency-
based primary metric and tries to reduce a set of secondary communication
metrics. Although the recursive bisection approach can work well for the total
communication volume metric (TV), it is not suitable for the maximum vol-
ume (MSV), the total number of messages (TM), and the maximum number
of messages sent by a processor (MSM). Since we aim to handle multiple com-
munication metrics all together, UMPa follows the direct K-way partitioning
approach.

4.1 Multi-level coarsening phase

In this phase, the original hypergraph is gradually coarsened in multiple levels
by clustering subsets of vertices at each level. There are two types of clustering
algorithms: matching-based and agglomerative. The matching-based algorithms
put at most two similar vertices in a cluster, whereas the agglomerative ones
allow any number of similar vertices. There are various similarity metrics—see
for example [10, 34, 12]. All these metrics are defined only on two adjacent
vertices (one of them can be a vertex cluster). Two vertices are adjacent if they
share a net and they can be in the same cluster if they are adjacent.
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We use an agglomerative algorithm and the absorption clustering metric
using pins [10, 34]. For this metric, the similarity between two adjacent vertices
u and v is ∑

n∈nets[u]∩nets[v]

c[n]

|pins[n]| − 1

This is also the default metric in PaToH [10]. In each level `, we start with a
finer hypergraph H` and obtain a coarser one H`+1. If VC ⊂ V` is a subset of
vertices deemed to be clustered, we create the cluster vertex u ∈ V`+1 where
nets[u] = ∪v∈VCnets[v]. We also update the pin sets of the nets in nets[u]
accordingly.

Since we need the direction, we always store the source vertex of a net n ∈ N
as the first pin in pins[n]. To maintain this information, when a cluster vertex
u is formed in the coarsening phase, we put u to the head of pins[n] for each net
n whose source vertex is in the cluster. We also discard the nets that become
singleton at each step of the coarsening phase as well as the initial singleton
nets, since they do not cause any communication.

4.2 Initial partitioning phase

To obtain an initial partition for the coarsest hypergraph, we use PaToH [10],
which is proved to produce high quality partitions with respect to the total
communication volume [2]. We execute PaToH five times and get the best
partition according to the given primary metric. We chose to use PaToH for
three reasons. First, since we always take TV into account either as a primary
or a secondary metric, it is better to start with an initial partition having a good
total communication volume. Second, since TV is the sum of the send volumes
of all parts, minimizing it should also be good for both MSV and MSRV and even
for the latency-based metrics. We verified the second reason, although it sounds
intuitive, in preliminary experiments [9]. The third reason is more esoteric. The
coarsest hypergraph which has small net sizes and high vertex degrees lends itself
gracefully to the recursive bisection and FM-based improvement heuristics (see
also elsewhere [18]).

4.3 Uncoarsening phase and one-phase K-way refinement

The uncoarsening phase is realized in multiple levels corresponding to the coars-
ening levels where at the `th level, we project the partition Π`+1 obtained for
H`+1 to H`. Then, we refine it by using a novel K-way refinement heuristic
which takes the primary and the secondary metrics into account. The proposed
heuristic runs in multiple passes where in a pass it visits each boundary vertex
u and either leaves it in part[u], or moves it to another part according to some
move selection policy.

UMPa provides refinement methods for four primary metrics: the total com-
munication volume TV; the maximum send volume MSV; the total number of
messages TM; and the maximum number of messages a processing unit sends
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MSM. We use the notation UMPaX to denote the partitioner with the primary
objective function X during the refinement. These methods take secondary and
sometimes tertiary metrics into accounts. As an aid to the refinement process,
the part weights can be used for tie-breaking purposes while selecting the best
move.

Since each metric is different, the implementation details of the refinement
heuristics are also different. However, their main logic is the same. The heuris-
tics perform a number of passes on the boundary vertices. To be precise, UMPa
uses at most 2` passes for H`, the hypergraph at the `th coarsening level. We
observed that most of the improvement on the metrics are coming from the
refinement on the coarser hypergraphs. Furthermore, since these hypergraphs
are smaller, the passes on them take much less time. That is, the impact of
these passes are high and their overhead is low. Hence, we decided to perform
more passes on the coarser hypergraphs. UMPa also stops the passes when the
improvement on the primary metric is not significant during a pass.

Algorithm 1: A generic pass for K-way refinement

Data: H = (V,N ), (M1,M2,M3): the metrics,
part: the part assignments, W: part weights

for each u ∈ boundary do
pbest ←part [u]

1 Lbest ← (gainM1 , gainM2 , gainM3)← leaveVertex(H, u, part)
2 for each part p 6= part[u] do

if p has enough space for vertex u then
3 L = (lossM1 , lossM2 , lossM3)← putVertex (H, u, p)
4 (pbest,Lbest)← selectMove(p,L, pbest,Lbest,W )

if pbest 6= part[u] then
5 move u to pbest,

update part, W and the other data structures accordingly

The high-level structure of a pass is given in Algorithm 1. In a pass, the
heuristic visits the boundary vertices in a random order and for each visited
vertex u and for all p 6= part[u], it computes how the communication metrics in
(M1,M2,M3) are affected when u is moved from part[u] to p. This computation
is realized in two steps. First, u is removed from part[u] and the leave gains for
the communication metrics are computed with leaveVertex (line 1). Second,
u is tentatively put into a candidate part p and the arrival losses are calculated
with putVertex (line 3). We first set the processing unit for the best move as
pbest = part[u]. Since the leave gains and arrival losses are equal while removing
a vertex from its part and putting it back (the total gain is zero), initially, the
best arrival loss triplet Lbest is set to (gainM1 , gainM2 , gainM3). Then, for each
possible target processing unit p, the arrival losses on the metrics are computed.
With the selectMove heuristic, which is given in Algorithm 2, these losses
are compared with Lbest to select the best move (line 4). After trying all target
processing units and computing the arrival losses of the corresponding moves, u
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is moved to pbest. If pbest 6= part[u] the data structures, such as boundary, part, λ,
and Λ, used throughout the partitioning process are updated accordingly.

Algorithm 2: The generic selectMove operation

Data: p,L = (L1,L2,L3), p′,L′ = (L′
1,L′

2,L′
3), W

if L1 < L′
1 then

return (p,L) .Primary metric

else if L1 = L′
1 and L2 < L′

2 then
return (p,L) .Secondary metric

else if L1 = L′
1, L2 = L′

2 and L3 < L′
3 then

return (p,L) .Tertiary metric

else if L1 = L′
1, L2 = L′

2, L3 = L′
3 and Wp < Wp′ then

return (p,L) .Tie-breaking

return (p′,L′)

The selectMove heuristic given in Algorithm 2 compares two vectors
(L1,L2,L3,Wp) and (L′1,L′2,L′3,Wp′). Starting from the first ones, it compares
the vector entries one by one. When a smaller entry is found, the corresponding
processing unit is returned as the better candidate.

5 Multi-objective one-phase K-way Refinement

Although the structure of a pass and the execution logic is the same, the com-
putation of the leave gains and arrival losses differ with respect to the commu-
nication metrics used. Here we describe the implementation of the functions
leaveVertex and putVertex for UMPaTV, UMPaMSV with secondary and
tertiary metrics MSRV and TV, and UMPaTM with a secondary metric TV. We
also implemented UMPaMSM and used it in the experiments. But we do not give
the details of its leave gain and arrival loss computations since the structure of
these algorithms is similar to the ones described below.

5.1 Total communication volume

In the directed hypergraph model, the total volume of the communication
sent/received throughout the execution corresponds to the cutsize definition (2.2)
as in the standard hypergraph model. In other words, the TV metric is global
and hence, the sense of direction does not have any effect in its computation.
Here we describe UMPaTV which takes a single communication metric TV into
account, i.e., it is a standard hypergraph partitioner with the traditional objec-
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tive function (2.2).

Algorithm 3: leaveVertexTV

Data: H = (V,N ), u, part
gainTV ← 0
Pu ← ∅
for each n ∈ nets[u] do

if Λ(n, part[u]) = 1 then
1 gainTV ← gainTV + c[n]

2 Pu ← Pu ∪ prts[n]

return(gainTV,Pu)

As described above, the refinement heuristic performs passes on the bound-
ary vertices. Let u be the boundary vertex visited during a pass. The leaveV-
ertexTV method given in Algorithm 3 computes the gain on TV when u leaves
part[u]. After the move, there will be a gain if and only if the target proces-
sor p contains at least one vertex which shares a net with u. Let Pu be the
set of such parts. To be more efficient, this set can be computed beforehand
and the for loop in Algorithm 1 (line 2) can be iterated over p ∈ Pu instead
of p ∈ {1, . . . ,K} \ part[u]. For this reason, leaveVertexTV also builds this
set (line 2) while computing gainTV.

Algorithm 4: putVertexTV

Data: H = (V,N ), u, p (the candidate part)
lossTV ← 0
for each n ∈ nets[u] do

if Λ(n, p) = 0 then
1 lossTV ← lossTV + c[n]

return lossTV

After u leaves part[u] and the leave gain is computed, the refinement heuristic
computes the arrival losses for all target parts Pu\part[u]. Algorithm 4 gives the
description of the putVertexTV function. Given u and a part p, the function
computes the increase on TV after putting u to p. For each net n ∈ nets[u], TV
increases by c[n] if u will be the only pin of n in p (line 1).

5.1.1 Total number of messages

Although the directionality is not important for the total volume, the flow of
communication is crucial while minimizing other metrics. Hence for each net n
affected by a move, we need to use the source information src[n]. Here we de-
scribe the leave gain and arrival loss computations of UMPaTM which minimizes
the total number of messages throughout the execution by also taking the total
volume of communication, TV, into account as the secondary metric.

Let netComm(p, p′) be the number of nets n such that p, p′ ∈ prts[n] and
src[n] = p, i.e., the number of data to be sent from the processing unit p to the
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Algorithm 5: leaveVertexTM

Data: H = (V,N ), u, part
gainTV ← 0, gainTM ← 0
senders← ∅, receivers← ∅
pu ← part[u]
for each n ∈ nets[u] do

1 if Λ(n, pu) = 1 then
gainTV ← gainTV + c[n]

2 if src[n] = u then
if Λ(n, pu) > 1 then

receivers← receivers ∪ {pu}
3 for each p ∈ prts[n] \{pu} do

receivers← receivers ∪ {p}
netComm(pu, p)← netComm(pu, p)− 1
if netComm(pu, p) = 0 then

gainTM ← gainTM + 1

4 else
psender ← part[src[n]]
senders← senders ∪ {psender}
if Λ(n, pu) = 1 then

netComm(psender, pu)← netComm(psender, pu)− 1
if netComm(psender, pu) = 0 then

gainTM ← gainTM + 1

return (gainTM, gainTV, senders, receivers)
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processing unit p′. The refinement heuristic performs passes on the boundary
vertices. Let u be the boundary vertex visited during a pass. When u leaves
part[u], the gains on TM and TV are computed by leaveVertexTM given in
Algorithm 5. The gain on TV (line 1) is computed as described in the previous
subsection. For the gain on TM, there are two cases:

1. u is the source pin of a net n (line 2): For each part p ∈ prts[n], there is a
gain if netComm(part[u], p) = 0 after removing u from part[u]. Note that
a vertex can be a source for multiple nets.

2. u is a non-source pin of a net n (line 4): Let psender be the part having
the source of n. There is a gain if netComm(psender, part[u]) = 0 after
removing u from part[u].

In addition to gain computations, the set of the parts that receive data from
u (i.e., u is the source of a net connected to the receiver part), receivers, and
send data to u (i.e., u is a non-source pin of a net whose source is in the sender
part), senders, are obtained. These sets are used to efficiently compute the
arrival losses for each target part candidate.

Algorithm 6: putVertexTM

Data: H = (V,N ), u, p (the candidate part), senders, receivers
lossTM ← 0, lossTV ← 0
for each n ∈ nets[u] do

if Λ(n, p) = 0 then
lossTV ← lossTV + c[n]

1 for each preceiver ∈ receivers do
if netComm(p, preceiver) = 0 then

lossTM ← lossTM + 1

2 for each psender ∈ senders do
if netComm(psender, p) = 0 then

lossTM ← lossTM + 1

return (lossTM, lossTV)

After the leave gains are computed with leaveVertexTM, the heuristic
tentatively moves the boundary vertex to the candidate parts and computes the
losses on the communication metrics with putVertexTM given in Algorithm 6.
Let p be the target part. The function first computes the arrival loss on TV
as described in the previous subsection. Then for all preceiver ∈ receivers, it
checks if a new message from p to preceiver is necessary. This implies a loss
on TM. It repeats a similar process for all psender ∈ senders and checks if a
message from psender to p, which was not necessary before the move, is now
necessary.
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5.1.2 Maximum communication volume

Here we describe UMPaMSV which minimizes MSV, the maximum volume sent by
a processing unit, and also takes MSRV (the maximum send and receive volume),
and TV into account as the secondary and tertiary metrics, respectively. This
metric configuration is useful when one wants a partition which does not yield
a bottleneck processor and does not use the network extensively.

The generic structure of the refinement heuristic given in Algorithm 1 also
applies to the local communication metrics such as MSV and MSM. But for an
efficient implementation, we slightly alter this structure for UMPaMSV. When
a vertex is taken from its part and put to another one during the refinement,
instead of computing the exact gains/losses on the metrics, we compute a set of
intermediate values which correspond to the changes in the send/receive volumes
of a processing unit p, i.e., SV[p] and RV[p]. After each move, these intermediate
values are used to compute the exact changes on the metrics, and the best move
is selected in a similar fashion.

Algorithm 7: leaveVertexMSV

Data: H = (V,N ), u, part
toOldPart← 0
gainRV ← 0
for each processing unit p do

gainSV[p]← 0

pu ← part[u]
for each n ∈ nets[u] do

psender ← part[src[n]]
if src[n] = u then

gainSV[pu]← gainSV[pu] + c[n](λn − 1)
1 if Λ(n, pu) > 1 then

gainRV ← gainRV − c[n]
toOldPart← toOldPart+ c[n]

else
if Λ(n, pu) = 1 then

2 gainSV[psender]← gainSV[psender] + c[n]
3 gainRV ← gainRV + c[n]

return (gainSV, gainRV , toOldPart)

Algorithm 7 describes the leaveVertexMSV function. To store the changes
on the send volumes of the processing units after the leave operation, the func-
tion uses an array gainSV[·] of size K. It also stores the change on RV[part[u]],
i.e., the receive volume of part[u], in a variable gainRV . If u is the source for a
net n, removing u yields c[n](λn − 1) gain on the send volume of part[u]. But
after the move, there will also be an increase on RV[part[u]] if there are more
pins of n in part[u] (line 1). The potential increase due to the nets having u
as the source does not depend on the target part. It is stored in a variable
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toOldPart which later will be used by the putVertexMSV function to com-
pute the overall change on the send volume of each target part. When u leaves
part[u], RV[part[u]] decreases by c[n] if u is not the source of n and if it is the
only pin of n in part[u] (line 2). The same decrease must also be observed on
SV[psender], the send volume of the part containing u’s source pin (line 3).

If u is the source pin of n, as described above, we take the gain on SV[part[u]]
into account. However, we do not do the same for the corresponding gains on the
RV values of other parts in prts[n]. That is, we do not compute all the reductions
on RV, and hence, if we compute the metrics here the MSRV value will not be
exact. Although exact RV values and hence the exact gains on the metrics can
be computed, we chose to follow this approach to be more efficient. Because,
after putting u to the target part p, these reductions on the receive volumes of
the processing units in prts[n] \{part[u], p} will not be effective anymore since
these processing units will continue to receive n’s data from p. Hence, if one
computes the exact RV values here most of the computation will be redundant.

The details of the putVertexMSV function are given in Algorithm 8. Sim-
ilar to leaveVertexMSV, the algorithm computes the increase on the send
volumes of all parts and the increase on the receive volume of the target part p.
After the move, the target processing unit will send the data which was sent by
part[u] before. Hence, the value lossSV[p] must cover gainSV[pu]. It also needs
to contain the amount of the communication from p to part[u] due to the nets
having u as the source that remain connected to part[u], i.e., toOldPart (line 1).
The rest of the loss updates are similar to the ones in the previous algorithms.

Algorithm 8: putVertexMSV

Data: H = (V,N ), u, p (the candidate part), gainSV, toOldPart, part
lossRV ← 0
for each processing unit q do

lossSV[q]← 0

pu ← part[u]
1 lossSV[p]← gainSV[pu] + toOldPart

for each n ∈ nets[u] do
psender ← part[src[n]]
if src[n] = u then

if Λ(n, p) > 0 then
2 lossSV[p]← lossSV[p]− c[n]

lossRV ← lossRV − c[n]

else
if Λ(n, p) = 0 then

lossSV[psender]← lossSV[psender] + c[n]
lossRV ← lossRV + c[n]

return (lossSV, lossRV )

Algorithm 9 shows a pass of the proposed refinement heuristic of UMPaMSV.
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Firstly, u is removed from part[u], and the intermediate values, partial gains
on the send/receive volumes, are computed by leaveVertexMSV. Then, u is
tentatively put to each target candidate p, and the intermediate values, arrival
losses on the send/receive volumes, are obtained by putVertexMSV. As de-
scribed above, although these intermediate values are inexact, their sum gives
the exact change on the send/receive volumes for each processor. After com-
puting these changes and the send/receive volumes after the move, the metrics
are computed and the best move is selected in a similar fashion. That is the
move with the smallest value on the primary metric is preferred. If these values
are equal for two target processors, then the secondary metric is considered. In
case of equality for the secondary metric values, the tertiary metric is taken into
account. As we will show in the experimental results section, this move selection
policy and tie-breaking scheme have positive impact on all the communication
metrics.

Algorithm 9: A pass for K-way maximum send volume refinement

Data: H = (V,N ), part: the part assignments, W: part weights
for each u ∈ boundary do

(gainSV, gainRV , toOldPart)← leaveVertexMSV(H = (V,N ), u, part)
Mbest ← (MSV,MSRV, TV )
pbest ← part[u]
for each part p 6= part[u] do

if p has enough space for vertex u then
(lossSV, lossRV )← putVertexMSV(H, u, p, gainSV,

toOldPart, part)
1 for each part q do

∆S ← lossSV[q]− gainSV[q]
SV ′[q]← SV[q] + ∆S

SRV ′[q]← SV[q] + ∆S + RV[q]

SRV ′[part[u]]← SRV ′[part[u]]− gainRV

SRV ′[p]← SRV ′[p] + lossRV

Mp ← (max(SV ′),max(SRV ′), TV + lossRV − gainRV )
(pbest,Mbest)← selectMoveMSV(p,M, pbest,Mbest,W )

if pbest 6= part[u] then
move u to pbest,
update part, W and the other data structures accordingly

5.1.3 Implementation Details

During the gain computations, the heuristic uses the connectivity information
between the nets and parts stored in data structures λ, Λ, and netComm. These
structures are constructed after the initial partitioning phase and maintained
by the uncoarsening phase. When a vertex u is moved, we revisit the nets of u
and update the data structures accordingly. When new boundary vertices are
detected, they are inserted to the array boundary and visited in the same pass.
We restrict the number of moves for a vertex u during a pass to 4, in order to

20



limit the execution time. When this number is reached the vertex is locked and
removed from the boundary.

Let ρ =
∑

n∈N |pins[n]| be the number of pins in a hypergraph. For UMPaTV,
considering the restriction on the number of moves per vertex, the time com-
plexity of the leave gain and arrival loss computations is O(ρ) and O(ρK),
respectively. Hence, the overall complexity of a refinement pass is O(ρK). The
factor K comes from the number of candidate target parts for each move. For
UMPaTV, we only visit the boundary vertices and try the parts of the visited
vertex’s nets as target candidates. In practice, these numbers are much smaller
than |V| and K as a side-effect of the minimization of the objective functions.

For UMPaTM, UMPaMSV, and UMPaMSM, the overall time complexity of a
refinement pass is O(ρK + |V|K2) since all these variants need an additional
for loop which iterates O(K) times (lines 1 and 2 in Algorithm 6 and line 1 in
Algorithm 9). However, since only the boundary vertices and parts of the nets
are visited, the factors are much smaller in practice, and the worst-case analysis
is very loose.

To store the numbers of pins per part for each net, Λ, we use a 2-dimensional
array. Hence, the space complexity is O(K|N |). This can be improved by using
a sparse storage as shown in [18].

6 Experimental results

The experiments are conducted on a computer with 2.27GHz dual quad-core
Intel Xeon CPUs and 48GB main memory.

We compare the quality and efficiency of the partitioners UMPa, Zoltan [12],
Mondriaan [11] (version 4.0) and PaToH [10] (in default setting)1. UMPa is
implemented in C++, while the other partitioners are implemented in C. All im-
plementations are compiled with the gcc suite version 4.4.4. To obtain our data
set, we used several graphs with 100K–1, 500K vertices and 409K–38, 354K edges
from the 10th DIMACS implementation challenge dataset [35] which contains
38 graphs from eight different classes. The names and the details of these graphs
are given in Table 1. These graphs are translated into hypergraphs using the
column-net model to fit the problem definition of the 10th DIMACS challenge2.
In all of our experiments, the vertices have unit weights, while the nets may have
non-uniform costs (as in the ComputationalTask graphs). Although Zoltan hy-
pergraph partitioner is designed to work on distributed memory machines, all
executions are run serially in our experiments. The reported results are the
averages of five different executions. The performances of the partitioners are
evaluated for five different communication metrics in addition to execution time.
These are the maximum send volume (MSV), the maximum send/receive vol-
ume (MSRV), the total volume (TV), the maximum send message (MSM), and

1The default setting of PaToH is chosen instead of quality setting, as the quality option
obtains only 4% better cut sizes. On the other hand, the default option is 3.56 times faster.

2 http://www.cc.gatech.edu/dimacs10/data/dimacs10-rules.pdf
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the total message (TM). The chosen hypergraphs are partitioned into 128, 256,
512, and 1024 parts with ε=0.03.

We first compare the execution time and the quality of the existing hyper-
graph partitioning tools. Although Mondriaan uses a hypergraph model, the
partitioner is specifically designed for matrices, and it does not accept non-
uniform net weights. For this reason, the experiment is run on 36 (out of 38)
graphs excluding the ones in the ComputationalTask class. We adjust Mondri-
aan as described in [36] for the experiment. Figure 3 gives the communication
metrics and execution times of Zoltan and Mondriaan normalized w.r.t. PaToH.
As seen in the figure, Mondriaan obtains partitions whose TV values are similar
to that of PaToH on TV. However, its quality on the other metrics is slightly
worse. Furthermore, it is significantly slower than PaToH. Although the par-
titions found by Zoltan yield similar communication metrics when K is small,
Zoltan’s partitioning quality gets worse as K increases. We attribute this to the
simplified refinement implementations for the parallelization purposes. Since
PaToH obtains the best quality and the best serial execution time, we compare
the performance of UMPa against PaToH for the rest of the experiments. A
fair comparision between UMPa and existing work [7, 8] is not feasible due to
the different partitioning contexts, as noted before (in Sections 2.4 and 3.1).

Figures 4 and 5 show the average values of the metrics normalized with
respect to the corresponding average metric value of PaToH partition. Each
column of the table (and its visual representation as a group of five bars) cor-
responds to an UMPa variant with a different metric and tie-breaking combi-
nation, while each row of the table corresponds to the values with respect to
a different communication metric. We experimented with four main variants
UMPaX with the primary metric X ∈ {TV,MSV,TM,MSM}. For each of these
variants, we tried different combinations where in the first one only the primary
metric is taken into account with no tie-breaking. Then, except for UMPaTV,
we obtained a variant which use additional metrics (shown with a ‘+’ sign in
the figures). At last, we added tie-breaking and obtained the full variant (shown
with “+ PW” in the figures). We executed each of these 11 variants and Pa-
ToH on all 38 hypergraphs 5 times and obtain 5 different partitions. For each
variant/metric pair, the geometric mean of these 190 executions are computed,
and the averages for the UMPa variants are normalized with respect to PaToH’s
averages. The figures show these normalized values.

As the first two columns in the tables (and the first two bar groups) of
the figures show, for various K values, UMPaTV is as good as PaToH for all
the communication metrics. Furthermore, its MSV and MSRV (2nd and 3rd
rows/bars) values are 4-8% better than PaToH for allK values. The tie-breaking
scheme (the second column denoted with PW), which uses the part weight in-
formation, improves the performance of UMPaTV (the first column) by around
2%. Since the direction information is not important while minimizing TV, the
undirected hypergraph model and recursive bisection can be used as is. There-
fore, the proposed directed hypergraph model and the K-way partitioning do
not have an advantage for TV unlike for the other communication metrics as we
discuss below.
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Zoltan	   Mondriaan	   Zoltan	   Mondriaan	   Zoltan	   Mondriaan	   Zoltan	   Mondriaan	  
128	   256	   512	   1024	  

TV	   1.01	   1.02	   1.03	   1.02	   1.07	   1.01	   1.11	   1.01	  

MSV	   1.00	   1.02	   1.05	   1.01	   1.16	   1.05	   1.28	   1.04	  

MSRV	   1.01	   1.03	   1.08	   1.02	   1.21	   1.06	   1.36	   1.05	  

TM	   1.03	   1.08	   1.05	   1.08	   1.09	   1.08	   1.14	   1.08	  

SM	   1.01	   1.13	   1.07	   1.14	   1.18	   1.17	   1.29	   1.13	  
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(a) Normalized communication metrics

128	   256	   512	   1024	  
Zoltan	   1.63	   1.67	   1.71	   1.74	  

Mondriaan	   3.87	   3.83	   3.87	   3.91	  

0.00	  

0.50	  

1.00	  

1.50	  

2.00	  

2.50	  

3.00	  

3.50	  

4.00	  

N
or
m
al
iz
ed

	  w
.r.
t.	  
Pa

To
H	  
Ti
m
e	  

(b) Normalized execution times

Figure 3: The normalized communication metrics and execution times of Zoltan
and Mondriaan w.r.t. PaToH for K ∈ {128, 256, 512, 1024}.

We experimented with three UMPaMSV variants to carefully evaluate the ef-
fects of the secondary and tertiary objectives and the tie-breaking mechanism.
Although minimizing only with the primary metric and no tie-breaking (col-
umn 3) obtains 7–11% better MSV value, with respect to the other metrics,
UMPaMSV is worse than PaToH. Using MSRV and TV as the secondary and
tertiary objectives (column 4) has positive effects on the other communication
metrics. Moreover, this approach further improves the primary communication
metric MSV. This variant of UMPaMSV doubles the improvement on the pri-
mary metric MSV and reduces it 17–22% on the average. Furthermore, it also
obtains decent values for the other metrics with respect to PaToH. Extending
the refinement with part weight tie-breaking (column 5) also reduces all the
volume-based communication metrics around 2%. These observations are not
only true on the average but also for most of the graphs in the dataset. For all
partitionings with different K values, UMPaMSV with tie-breaking obtains more

23



than 20% improvement in MSV for 12 graphs. The improvement is between 10%
and 20% for 13 graphs, and between 2% to 10% for the remaining 13 graphs.

Only with a primary metric, UMPaTM with no tie-breaking (column 6) im-
proves TM about 7–12%. It also improves MSM with respect to PaToH, but its
effect is almost always negative for the volume-based metrics. Using TV as the
secondary objective to UMPaTM (column 7) reduces the increase on these met-
rics. Furthermore, it also improves TM by 2–3% more. Similar to other cases,
the communication metrics are improved around 3% more with the addition of
tie-breaking (column 8).

The results for UMPaMSM are similar to that of other variants. Only with the
primary objective function (column 9), UMPaMSM obtains 5–7% better MSM
values than PaToH. Using TM and TV as the secondary and tertiary objec-
tives (column 10) makes the difference around 7–19%. A further 2–3% improve-
ment is obtained with the addition of tie-breaking (column 11).

Figure 6 shows the UMPa variants’ runtimes normalized with respect to Pa-
ToH. As a K-way partitioner, the complexity of the refinement is linear with the
number of parts for UMPaTV and UMPaTM, and quadratic for UMPaMSV and
UMPaMSM. Therefore, as K increases, the proposed direct K-way method is ex-
pected to be slower than a recursive-bisection-based partitioner. For 128 parts,
except UMPaMSV, the execution times are closer to that of PaToH. However,
when the number of parts get bigger, the slowdown increases.

Table 1 gives the individual execution times and the volume metric results
of PaToH for K = 512. The normalized execution times and normalized volume
metrics of the UMPa variants are listed on the right side of the table. As seen
in the table, the best TV improvement of the UMPaTV is 18% improvement on
G n pin pout, while it obtains 5% TV degrade on eu-2005. UMPaMSV obtains
its best MSV improvement on preferentialAttachment as 85%, while it obtains
its worst improvement on thermal2 graph by 1%. UMPaTM and UMPaMSM have
their best improvements on smallworld as 45% and 43%, respectively.

As Table 1 shows, the Citation and Clustering graphs have relatively large
MSV, TM, and MSM values compared to other classes. For these graphs, the
UMPa variants obtain decent improvements. However, when these metrics have
small values, e.g., PaToH’s MSM values for the Sparse class, the improvements
are not significant. Since PaToH minimizes only the total communication vol-
ume, a small metric value implies that minimizing TV also minimizes that met-
ric. We believe that this is due to the structure of the graphs. For example,
the Delaunay graphs are planar. Hence, when PaToH puts similar vertices in
the same part, the nets connected to a part will have similar pin sets. Even
if some of these nets are in the cut, the corresponding communications can be
packed into a few messages. The same argument is also true for the Random
Geometric graphs where only the vertices close to each other in the Euclidian
space are connected.
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	  +PW	   	  +MSRV
+TV	   	  +PW	   	  +TV	   	  +PW	   	  +TM

+TV	   	  +PW	  

TV	   1.01	   0.99	   1.15	   1.04	   1.02	   1.21	   1.09	   1.07	   1.13	   1.10	   1.08	  

MSV	   0.94	   0.93	   0.93	   0.78	   0.76	   1.09	   0.99	   0.97	   1.03	   1.00	   0.98	  

MSRV	   0.96	   0.95	   1.00	   0.84	   0.83	   1.10	   1.01	   1.00	   1.05	   1.01	   1.00	  

TM	   1.00	   1.00	   1.05	   1.03	   1.02	   0.93	   0.90	   0.88	   1.03	   0.90	   0.89	  

MSM	   1.00	   0.99	   1.03	   0.99	   0.99	   0.95	   0.94	   0.94	   0.95	   0.89	   0.88	  
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(a) K = 128

	  +PW	   	  +MSRV
+TV	   	  +PW	   	  +TV	   	  +PW	   	  +TM

+TV	   	  +PW	  

TV	   1.01	   0.99	   1.10	   1.03	   1.01	   1.18	   1.09	   1.07	   1.09	   1.10	   1.08	  

MSV	   0.94	   0.93	   0.93	   0.81	   0.79	   1.08	   1.01	   0.98	   1.01	   1.00	   0.98	  

MSRV	   0.95	   0.94	   0.98	   0.85	   0.83	   1.07	   1.01	   1.01	   1.01	   1.00	   0.99	  
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Figure 4: The normalized metrics of UMPa w.r.t. PaToH for K = 128 and
K = 256.

7 Conclusions and future work

We proposed a directed hypergraph model and a multi-level partitioner UMPa.
The partitioner uses a novelK-way refinement heuristic employing a tie-breaking
scheme to handle multiple communication metrics. UMPa yields good commu-
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Figure 5: The normalized metrics of UMPa w.r.t. PaToH for K = 512 and
K = 1024.

nication patterns by reducing multiple communication metrics all together.
Although most of the previous research has mainly focused on the minimiza-

tion of the total communication volume, there are studies on the minimization of
multiple metrics. Existing hypergraph-based solutions on multiple metrics fol-
low a two-phase approach where in each phase a different metric is minimized,

27



	  +PW	   	  +MSRV
+TV	   	  +PW	   	  +TV	   	  +PW	   	  +TM
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Figure 6: The normalized execution times of UMPa w.r.t. PaToH.

sometimes at the expense of others. UMPa follows a one-phase approach where
all the communication cost metrics are effectively minimized in a multi-objective
setting where reductions in all metrics can be achieved at the same time, thanks
to the proposed directed hypergraph model (undirected models were discussed
to be inadequate). We conducted experiments with large hypergraphs and up
to 1024 parts in which the proposed approach yielded improvements over the
state-of-the-art hypergraph partitioner PaToH. For example, for K = 1024,
UMPaMSM produces 20% and 14% better partitions in terms of MSM and TM,
respectively.

We plan to speed up UMPa and the proposed refinement approach by imple-
menting them on modern parallel architectures. Investigating the hypergraph
partitioning models and communication metrics for hierarchical memory sys-
tems, such as clusters of multi-socket, multi-core machines with accelerators
is another direction of research. We plan to extend UMPa to handle the di-
rected hypergraphs with multiple senders. Such directed hypergraph models
can be used to model computations which require communications for outputs
or for both inputs and outputs. Columnwise or nonzero-based sparse matrix
partitioning models yield such directed hypergraphs.
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