
1

Moving Forward with Combinatorial
Interaction Testing

Cemal Yilmaz, Sandro Fouché, Myra B. Cohen, Adam Porter, Gulsen Demiroz, and Ugur Koc

Abstract—Combinatorial interaction testing (CIT) is an efficient and effective method of detecting failures that are caused by
the interactions of various system input parameters. In this paper, we discuss CIT, point out some of the difficulties of applying
it in practice, and highlight some recent advances that have improved CIT’s applicability to modern systems. We also provide
a roadmap for future research and directions; one that we hope will lead to new CIT research and to higher quality testing of
industrial systems.

Index Terms—Combinatorial interaction testing, covering arrays

✦

1 INTRODUCTION
Modern software systems frequently embody hun-
dreds or even thousands of configuration options.
For example, a recent version of the Apache web
server has 172 user-configurable options – 158 of these
are binary, eight are ternary, four have four settings,
one has five, and the last one has six. As a result,
this system has 1.8× 1055 unique configurations. The
implications for fully testing such a system are clear.
It can’t be done. Even if it only took one second to test
each configuration, the time needed to test all possible
system configurations is longer than the Earth has
existed. Equally astounding calculations emerge when
looking at other kinds of system variabilities, that
also require testing, such as user inputs, sequences
of operations, or protocol options.

For this reason alone, the testing of industrial sys-
tems will almost always involve sampling enormous
input spaces and testing representative instances of a
system’s behavior. In practice, therefore, this sampling
is commonly performed with techniques collectively
referred to as combinatorial interaction testing, (or
CIT) [5], [7]. CIT typically models a system under test
(SUT) as a set of factors (choice points or parame-
ters), each of which takes its values from a particular
domain. Based on this model, CIT then generates a

• Cemal Yilmaz, Gulsen Demiroz, and Ugur Koc are with the Faculty
of Engineering and Natural Sciences, Sabanci University, Istanbul,
Turkey.
E-mail: {cyilmaz, gulsend, ugurkoc}@sabanciuniv.edu

• Sandro Fouché is with the Department of Computer and Information
Sciences, Towson University, Towson, MD 21252.
E-mail: sfouche@towson.edu

• Myra B. Cohen is with the Department of Computer Science and
Engineering, University of Nebraska, Lincoln, NE 68558.
E-mail: myra@cse.unl.edu

• Adam Porter is with the Department of Computer Science , University
of Maryland, College Park, MD 20742.
E-mail: aporter@cs.umd.edu

sample, meeting a specified coverage criteria. That is,
the sample contains some specified combinations of
the factors and their values. For instance, pairwise
testing requires that each possible combination of
values, for each pair of factors, appears at least once
in the sample. This is the most common case, and is
typically realized through the use of a combinatorial
structure called a covering array [7].

Techniques like CIT are currently being used in
many domains, and a wide variety of free and com-
mercial tools exist to support this process. We en-
courage readers interested in learning more broadly
about this topic refer to a comprehensive survey,
such as that of Nie and Leung [7]. Despite its many
successes, it can be difficult to apply CIT in practice.
Therefore, our goal in this paper is to focus on how
researchers and practitioners are working to make it
easier to apply CIT in practice. To do this, we will
point out some of the practical difficulties of applying
CIT, and discuss recent advances and open avenues
for research that have come out of the application
of CIT to modern systems. In particular, we believe
that it’s time to broaden CIT, moving beyond the
traditional view of CIT as a static method that models
and samples a system’s user inputs or configurations,
towards a new understanding in which CIT is used
for alternative notions of input, such as sequences
of events and software product lines, by examining
more flexible notions of coverage, including varying
the coverage requirements based on test outcomes or
cost considerations, and by adopting incremental and
adaptive approaches that don’t treat testing as a batch
job, but carry it out over multiple, feedback-driven
iterations. Finally, we also provide our roadmap for
future research and directions; one that should hope-
fully lead both to new CIT research and better testing
of real systems.

At a high level, CIT can be broken down into four
major phases, shown in Figure 1. The first two of these

2

 Sampling

Test Analyze

1

2

3 4

Modeling

WHAT?!
(static)

HOW?!
(dynamic)

Fig. 1: Four Phases of CIT

phases, modeling and sampling, typically address the
“WHAT” of testing – what are the characteristics
of the SUT, and what are the inputs against which
it should be tested? Modeling involves determining
what aspect of the system to model (i.e., inputs, con-
figurations, sequences of operations). Sampling refers
to the process or algorithm by which we determine
a means to cover the model generated in the first
phase (e.g., all pairs of all factors, etc.). Currently,
these phases are typically static, done once at the be-
ginning of the process (though they can have optional
feedback from the later phases).

The second two phases, testing and analysis, typi-
cally address the “HOW” of testing – actually running
the tests and then examining the test results. These
phases tend to be more process-driven than the first
two phases, unfolding over a more extended period
of time. In testing, developers may test in a batch
mode, or test more incrementally or adaptively. And
finally, developers analyze the test results, at a mini-
mum to understand which test cases have passed and
which have failed. In some cases, developers can use
the testing and analysis phases to provide feedback
to improve and refine later modeling and sampling
activities.

2 MODELING
The first step of CIT is to model the SUT and its input
space. The term input here is used in a general sense;
anything that can affect the behavior of the system
and that can be kept under control is considered an
input.

The range of the entities that will be varied during
testing logically defines the SUT’s input space and is
specified in the form of a model called the input space
model. In this model, an input is normally expressed as
a factor that takes on a small number of values. If the
input factor is a continuous parameter or takes on a
large number of values, then the factor will usually be
discretized in some way, for instance, by using well-
known techniques such as equivalence partitioning and
boundary value analysis. Input space models can thus
represent abstract or concrete tests.

A single set of values, one for each factor, is often
referred to as a configuration. However, not all combi-
nations of factor values may be valid as some factor
values have dependencies. Such invalid combinations
are often identified by logically specifying inter-factor
constraints. For example, if factor 1 (TCP/IP) takes the
value true then factor 2 (NETWORK ENABLED) must take
the true as well. An inter-factor constraint expressed
in terms of factors and their values, thus invalidates
some combinations of factor values, removing con-
figurations containing those combinations from the
configuration space – the set of all valid configurations.

Inter-factor constraints come in two varieties:
system-wide constraints and test-case-specific con-
straints. System-wide constraints apply to any use of
the SUT. Test-case-specific constraints, on the other
hand, apply only to specific test cases run on the
SUT, and are typically used to indicate input space
configurations in which the test case cannot run.
Constraints (either system-wide or test-case-specific)
can also be classified as hard and soft constraints. Hard
constraints mark the combinations of factor values
that are not feasible or not permitted, whereas soft
constraints mark combinations that are permitted, but
undesirable, perhaps, because they are believed to
provide little or no benefit during testing.

A model can also have a seed. A seed is a set of
fully or partially specified set of combinations, which
must or must not be part of any samples later drawn
from this model. There are two common uses of the
seeding mechanism: 1) to guarantee the inclusion of
certain combinations or configurations in the sample
and 2) to avoid testing already tested combinations.

3 SAMPLING

Input space models implicitly define the SUT’s
valid input space. CIT approaches systematically sam-
ple this input space, producing a set of configura-
tions which will be tested in the next phase. The
sampling is done by computing a highly economical
combinatorial object, which by construction, satisfies
a given sampling/coverage criteria. In this section
we’ll discuss various sampling criteria used by CIT
approaches. Specifically, we’ll focus on static sampling
approaches, which generate a single sample of the
input space.

3.1 Covering Arrays

A t-way covering array, for a given a input space
model, is a set of configurations in which each valid
combination of factor values for every combination of
t factors appears at least once [7]. The parameter t is
often referred to as the coverage strength and tools that
construct these covering arrays will generally attempt

3

TABLE 1: An example traditional 2-way covering
array.

A B C D E

0 1 1 2 0
0 0 0 0 0
0 0 0 1 1
1 1 1 0 1
0 1 0 0 2
1 0 1 1 0
1 1 1 1 2
1 0 0 2 1
1 0 0 2 2

to do so using the minimum number of configurations
possible.

As an example, consider the following system with
three binary factors: A, B, and C, each with possible
values: 0 and 1, and two ternary factors: D and E,
each with possible values: 0, 1, and 2. In the absence
of any inter-factor constraints, this system has 72 valid
configurations. A 2-way covering array for this system
is shown in Table 1, which has 9 configurations. As
promised, for any two factors, all possible pairs of
factor values can be found in these 9 configurations.

The reason for using covering arrays is that they can
cost-effectively exercise all system behaviors caused
by the values of t or fewer factors. Furthermore, for a
fixed strength t, as the number of factors increases, the
covering array size represents an increasingly smaller
proportion of the whole configuration space. Thus,
very large configuration spaces can be efficiently cov-
ered.

In practice, several empirical studies suggest that
low strength coverage tends to be correlated with high
statement and branch coverage [7]. These studies also
suggest that a majority of factor-related failures are
caused by the interactions of only a small number
of factors [7]. That is, in practice, t is much smaller
than the number of factors, typically 2 ≤ t ≤ 6 with
t=2 being the most common case. Therefore, cover-
ing arrays can be an effective and efficient way of
detecting faulty interactions – factors and their values
that cause specific failures to manifest. Of course, once
developers choose a particular value of t, if there are
faulty behaviors involving more than t factors, t-way
covering arrays may not detect them.

One problem that arises in practice with covering
arrays is that of masking effects. If a configuration
fails during testing, then none of the combinations of
factor-values in that configuration can be considered
covered; i.e. the failure of one combination masks the
others. We also see masking effects when particular
options are selected. For instance, if the help option
is used in many programs, it simply shows the help
menu and exits (leaving all other behavior untested).

3.2 Variable-Strength Covering Arrays

Covering arrays define a fixed strength, t, across
all factors. However, it is sometimes desirable to test
certain groups of factors more strongly (i.e., higher
strength for certain factor groups) while maintaining a
t-way coverage across the whole system. This is useful
when, for example, it is expensive to increase t across
all factors or when developers know that some factor
groups are more likely to cause failures or cause more
serious failures.

In essence, variable-strength covering arrays allow
the coverage strength to vary across the configuration
space. More formally, a variable-strength covering array
is a covering array of strength t with subsets of factors
of strength greater than t [7]. In the remainder of the
document, fixed-strength and variable-strength cov-
ering arrays will be referred to as traditional covering
arrays.

3.3 Error Locating Arrays
While traditional covering arrays help developers de-
tect failures, static error locating arrays (ELAs) help
developers detect and isolate faulty interactions [6].
ELAs do this by constructing covering arrays using
a coverage criteria that builds systematic redundancy
into the sample. Given certain assumptions, this re-
dundancy allows the specific combination of factor
values leading to a failure to be isolated.

ELAs, however, may not exist for all input space
models. The exact conditions for the existence of ELAs
can be found in [6]. One sufficient, but not necessary,
condition for the existence of ELAs is that the input
space model has safe values – at least one value for
every factor in the input space model that is not
present in any faulty interaction.

Given an input space model known to have safe
values, a strength t, and an upper bound d on the
number of faulty interactions, a (t, d)-way ELA is
simply a traditional (t+ d)-way covering array. If the
input space model has no safe values, then a (t, d)-
way ELA would be a traditional t(d+1)-way covering
array.

3.4 Test Case-Aware Covering Arrays

In the earliest CIT efforts, input space factors corre-
sponded to user inputs and, thus, each covering array
configuration mapped to a single test case (made
up of various user inputs). However, When CIT is
applied to other kinds of inputs, such as system
configuration options, test cases can become orthogo-
nal to covering array configurations. Covering array
configurations, in these cases, map to system config-
urations, and each test case in the SUT’s test suite
is run on each configuration in the covering array.

4

TABLE 2: An example 2-way test case-aware cover-
ing array.

A B C D E scheduled test cases

0 1 1 2 0 {t2 , t3}
0 0 0 0 0 {t1 , t3}
0 0 0 1 1 {t1 , t3}
1 1 1 0 1 {t1 , t2, t3}
0 1 0 0 2 {t1 , t2, t3}
1 0 1 1 0 {t1 , t2, t3}
1 1 1 1 2 {t1 , t2, t3}
1 0 0 2 1 {t1 , t2, t3}
1 0 0 2 2 {t1 , t2, t3}
1 1 1 2 0 {t1}
0 1 0 2 1 {t1}
1 0 0 0 0 {t2}
0 1 0 1 1 {t2}

Some test cases may be runnable in specific systems
configurations, for instance, because the test case tests
a feature that is disabled in certain configurations. In
these cases, developers will need to include test-case-
specific constraints in their initial input space model.

In the presence of unaccounted for test-case-specific
constraints, traditional covering arrays are particu-
larly vulnerable to masking effects. Specifically, when
a test case fails to run in a particular configuration,
nearly all of the factor combinations captured in that
configuration have not actually been tested.

Test case-aware covering arrays address this problem
by allowing developers to specify both system-wide
constraints and test-case-specific constraints, and then
taking these constraints into account when construct-
ing covering arrays [11]. A t-way test case-aware
covering array is constructed in such a way that, 1)
none of the selected configurations violate system-
wide constraints, 2) no test case is scheduled to be
executed in a configuration that violates its test-case-
specific constraint, and 3) for each test case, every
valid t-way combination of factor values for the test
case appears at least once in the set of configurations
in which the test case is scheduled to be executed.

As an example, consider the SUT discussed in
Table 1 which needs to be tested by using three
test cases: t1, t2, and t3. Test cases t1 and t2 have
some test-case-specific constraints: t1 cannot run when
(A=0 ∧ C=1), and t2 cannot run when (A=0 ∧ B=0).
Test case t3, on the other hand, has no test-case-
specific constraints. Table 2 depicts a 2-way test case-
aware covering array, for this scenario, which re-
quires 28 test runs on a total of 13 configurations.
As promised, all test-case-specific constraints are ac-
counted for thus no masking effects caused by vio-
lated constraints occur.

In practice, there is often a trade-off between mini-
mizing the number of configurations and minimizing
the number of test runs in test case-aware covering
arrays. Therefore, naive techniques, such as creating
a traditional covering array for each test case in isola-
tion, may result in overly large covering arrays [11].

3.5 Cost-Aware Covering Arrays

The sampling criteria we have discussed so far,
assume a simple execution cost model – in which
every configuration (or test run) has the same cost. If
tests have such a uniform cost, then you can reduce
the cost of testing by reducing the number of config-
urations (or test runs) required. This model, however,
does not fit well with all test scenarios. For example,
some configurations can cost more to construct then
others – such as ones that require software installation
or compilation. With configuration-dependent costs,
reducing the number of configurations or test runs
does not necessarily reduce the total cost of testing [2],
[9].

Cost-aware covering arrays take the estimated actual
cost of testing into account, when constructing inter-
action test suites. In particular, a t-way cost-aware
covering array is a traditional t-way covering array
that “minimizes” a given cost function. One approach
to compute such covering arrays is to take as input a
precomputed covering array and reorder the selected
configurations such that the switching overhead is
minimized [9]. Another approach is to consider the
cost directly when building the covering arrays [2].
For example, in an SUT with runtime factors A and
B and compile-time factors C, D, and E, changing the
settings for factors C, D, and E will require a partial
or full rebuild of the system – which is costly. On the
other hand, factors A and B are set at runtime and
the cost of doing so is negligible compared to that
of building the system. In this scenario, reducing the
cost of testing is the same as reducing the number of
times the system is built, i.e., the number of compile-
time configurations. In [9] the difference in runtime
order could be on the order of weeks, when the cost
of installing new software between configurations is
considered.

3.6 Sequence-Covering Arrays

With traditional covering arrays, the order of fac-
tor values in a given configuration is assumed to
have no effect on the fault revealing ability of the
configuration. Any permutation of the factor values
present in a configuration covers the same set of factor
value combinations, and should detect the same faulty
interactions. This assumption, however, does not hold
in event-driven systems, such as found in graphical
user interfaces and device drivers, where the way an
event is processed often depends on the sequence of
preceding events. Therefore, different orderings of the
same set of events can reveal different failures.

Sequence-covering arrays are built to cover orderings
of events that are implicitly specified by a given cover-
age criterion, in a “minimum” number of fixed-length
event sequences [5], [12]. Existing approaches differ

5

in the coverage criteria they employ. One criterion,
for example, ensures that every possible sequence
of unique events of length t is tested at least once,
while the events in the sequence can be interleaved
with other events [5]. Another criterion ensures that
every possible permutation of t consecutive events
starting at every possible position in a fixed-length
event sequence, is tested at least once [12]. Sequence-
covering arrays have been so far used for testing
graphical user interfaces [12] and testing a factory
automation system [5].

All told, CIT sampling approaches take an input
space model and generate the smallest set of config-
urations they can find that meet a specified coverage
criteria. Different approaches vary in terms of the
models they use and the criteria they attempt to cover.

4 TESTING
When implementing a CIT process practitioners need
to 1) decide on key CIT parameters (t, input space
model, constraints, etc.), 2) execute test cases, and 3)
analyze the resulting test data, for instance, to isolate
any observed faults. Traditional CIT approaches have
required developers to determine these parameters
up-front, and then to execute and analyze tests as
a one-shot, batch process. Each CIT step, however,
poses significant technical challenges which are com-
plicated by the dynamic and inherently unpredictable
nature of testing.

Traditionally, developer judgement has guided the
first step of deciding key parameters. Developers have
had to guess at the right sampling strength (t), create
their own input space models, and determine any
relevant constraints. This is always tricky because
there are no concrete rules on which developers can
reliably base these judgements. In addition, each of
these key parameters varies, not only with the char-
acteristics of SUT, but also with an SUT’s lifecycle
stage, economic constraints, and more. For example,
as the SUT evolves, the input space model may need
to be revised to reflect areas of code churn, newly
discovered constraints, or emerging masking effects.
Depending on the size of the input space and the sam-
pling methodology used, scheduling test case man-
agement and execution can become complicated. Test
processes may require sophisticated support for build
and test execution and for test case prioritization.
Finally, masking effects can make it difficult to isolate
the factors responsible for specific test failures.

To address these problems, researchers have begun
to focus on new CIT approaches, that try to relieve
developers of the need to make so many static, up-
front parameter decisions. A key strategy behind
this research has been to make CIT incremental and
adaptive, so that decisions can be made dynamically
based on the observable behavior of the SUT. Such
adaptation is used, for instance, to establish key test

parameters, to learn the SUT’s input space model, and
to react to failures that may create masking effects.

4.1 Determining Key Values
Typically developers base input space models and
constraints on their knowledge of the SUT. They
also use their judgement to determine the desired
sampling strength – t. Unfortunately, there are few,
if any, reliable guidelines for determining appropriate
values for these key parameters and the result of
choosing incorrectly can be either under-testing the
system, leaving out key factors, failing to consider key
constraints, or over-testing at significant cost in time
and resources.

In choosing a sampling strength, t, developers
never know with any certainty what value will be
needed to find and classify failures in a given system.
If they choose pairwise interactions (t = 2) then any
3 or 4-way failures in the system may be not be
found. If they choose strength 4, then 4-way and lower
level failures will be correctly classified, but given
the large size of the 4-way covering arrays, many
configurations may have been unnecessary and any
actual 2-way failures may not be found until most or
all of the entire 4-way schedule is completed, delaying
feedback to the SUT’s developers.
Incremental Covering Arrays. Incremental covering
arrays (ICA) address this problem by never choosing t

at all, but rather by incrementally increasing sampling
strength as testing resources allow [4]. ICA constructs
each covering array using a seed taken from already
run lower strength arrays, such that their size will be
approximately that of a traditionally built covering
array. As mentioned earlier, seeding means that we
fix a set of configurations at the start, and construct
the new covering array by filling in the required t-way
interactions not already contained in the seed. Because
an incrementally constructed t strength covering array
is built using a previously constructed (t − 1)-way
array as a seed, the existing configurations are reused
and only a smaller number of new configurations
have to be run to get complete t-way coverage; i.e.
classification of 2-way failures completes before em-
barking on 3-way coverage, but it costs almost the
same as executing a traditional 3-way array.

Creating the input space model to begin with also
relies on the incomplete and possible error-prone
knowledge of software interactions by the develop-
ment team. Incorrect models will result in confusing
test errors, masking effects, and wasted testing effort.
In addition, the assumption that the models map to
real control or data dependencies in the code may not
hold, leading to gaps and redundancies in testing.
Interaction tree discovery. Interaction tree discovery
(iTree) removes the need to create an input space
model by iteratively computing the effective input
space using machine learning techniques [8]. iTree

6

works by instrumenting code coverage on the system
under test, then computing a small set of configura-
tions on which to test the SUT. After subsequent test
execution, iTree uses the resulting coverage data as
input to machine learning algorithms. These ML algo-
rithms attempt to uncover conjunctions of factors and
values that alter code coverage. iTree then iterates,
computing new configuration sets that may increase
code coverage. iTrees handles determining not only
the input space model, but avoids the entire issue
of choosing sampling strength by providing a type
of variable strength sampling as a side-effect of the
adaptive process.

4.2 Executing Tests

Managing the test process itself is also not a trivial
problem. Traditionally, CIT research has not focused
extensively on test case management and execution,
nor has it fully considered the test case execution
orders.
Test Execution Support Systems. Executing test
schedules requires converting CIT covering arrays
into runtime test execution, and requires processing
the results to drive adaptive CIT. Several systems have
been created to simplify this process. For example, the
Skoll framework provides mechanisms that support
CIT using covering arrays and performs continuous,
distributed testing. Fouche et al [4] describe how
Skoll was used to support a large-scale CIT process
running on dozens of testing nodes, over a several
month period, to sample an input space of 72+ million
configurations for MySQL.
Prioritization. While CIT can successfully sample a
large input space to test a single version of a software
system, time and budget is always a consideration.
When the amount of work required exceeds available
time and resource constraints, developers will often
want to run the most important tests first. Several
approaches for prioritizing, or ordering CIT test suites
exist. The goal of prioritization is to include important
configurations early in testing, to maximize early
fault finding. To address prioritization, Bryce and
Colbourn [1] define a new type of covering array
called a biased covering arrays. Biased covering arrays
use a set of weights, provided by the tester, to cover
the most important parameter values early in testing.
Empirical studies show that using both biased cover-
ing arrays (as well as traditional covering arrays that
are re-ordered) can improve early fault detection. The
weights in this case are informed by code (or fault)
coverage from earlier versions of the system. Another
way to prioritize test suites (when information from
prior versions is not available) is to simply prioritize
by the number of interactions that have been covered;
this is a biased covering array with equal weights on
all values and has also been shown to be effective.

4.3 Reducing Masking Effects
When performing CIT, if one configuration fails to run
to completion, then all the combinations of parameter
values in that configuration are no longer guaranteed
to have been tested. This leads to masking effects.
Since faults may not be fixed immediately, or the
failures may be due to improper modeling, adaptive
methods have been proposed as a way to handle this
problem.

For example, the iTree approach described earlier
iteratively generates the input space model, and the
process utilizes feedback from prior test executions to
adapt the effective model. As an additional benefit,
masking effects that alter the runtime code coverage
are automatically addressed by the machine learning
process. But this technique does not address masking
effects which exercise the same sections of the source
code, for instance by running the same section of code
a different number of times or in a different order.
Feedback Driven Adaptive Combinatorial Interac-
tion Testing (FDA-CIT). FDA-CIT [3] is designed
specifically to address this problem. It first defines an
interaction coverage criterion that aims to ensure that
each test case has a fair chance to execute all of its
required combinations of factor values. This criterion
is then used to direct a feedback-driven adaptive
process. Each iteration of this process detects poten-
tial masking effects, isolates likely causes, and then
generates configurations that omit those causes, but
still contain all the previously masked combinations.
The process iterates until the coverage criterion has
been achieved.
Adaptive Error Locating Arrays. Adaptive ELAs [6]
is another approach that can handle masking effects.
Adaptive ELAs look for conclusive evidence of mask-
ing effects, rather than relying on statistical evidence
as FDA-CIT does. This approach works when certain
strong assumptions are met. For example, one type of
adaptive ELAs is defined only for t = 2 and requires
that all faulty interactions involve at most two factors
and that safe values (known not to be part of masking
effects) are already known. Another type of adaptive
ELAs, which does not require safe values to be known
a priori, requires that all factors are binary. While
not appropriate for every system, if these conditions
hold, then adaptive ELAs are guaranteed to remove
all masking effects.

5 ANALYSIS
After testing, developers normally examine the test
results. One of the first questions they ask is whether
the tests passed or failed. When some test cases fail,
developers will normally analyze the test results to
better understand the observed failures and to search
for clues on how to fix the underlying faults. Because
covering arrays have a known structure, sophisticated

7

analyses can be perfomed. These analyses often in-
volve identifying the factors and values that cause
observed failures to manifest, which can help devel-
opers reduce the turnaround time for bug fixes. We
call this process, fault characterization.

At a high level, there are two types of fault char-
acterization approaches; probabilistic [3] and exact [6]
approaches. With probabilistic approaches, fault char-
acterization is done by testing a covering array and
feeding the results to some kind of data mining
algorithm, such as a classification tree algorithm. The
output is a model describing the factors and their
values that best predict the observed failures. The
adaptive FDA-CIT process discussed in Section 4,
for example, uses a probabilistic approach. Exact ap-
proaches [6], on the other hand, look for conclusive,
rather than statistical, evidence in fault characteriza-
tion, i.e., every potential failure diagnosis is validated
by further testing, rather than being accepted once
a statistical threshold has been reached. With these
approaches, if a configuration in a covering array
fails, that configuration is first divided into smaller
partitions using a divide-and-conquer approach. Each
partition contains a subset of the factor values present
in the original failing configuration, with the remain-
ing values replaced by safe values. These partitions
are then retested to determine whether they are also
failure inducing. The iterations terminate when all the
faulty interactions in the original failing configuration
have been determined.

Each of these fault characterization approaches
have their own pros and cons. In particular, prob-
abilistic approaches typically require fewer configu-
rations, but can produce inaccurate results, whereas
exact approaches produce accurate fault characteriza-
tion models, but they typically do so at the cost of
testing more configurations and requiring some a pri-
ori knowledge, such as the safe values. Therefore, the
choice of approach depends on the tester’s objectives
and requirements.

A final question that developers may ask is whether
each covering array configuration and test case pro-
vides unique testing value. For example, analyzing
data from our previous work with the MySQL project
we observed that clusters of test cases had perfectly
correlated outcomes – one passed, they all passed;
one failed, they all failed. Such information could be
used to prune some test cases from our test suite, or,
alternatively, to prioritize each test case’s execution.
We also observed patterns suggesting that some pa-
rameters were effectively “dead” with respect to some
test cases; changing the value of the dead parameter,
did not change the observed behavior of the test
case. This kind of information could greatly limit the
number of configurations that need to be tested, and
can be obtained via analysis of the covering array
configurations and their test results.

6 RESEARCH ROADMAP
In this article, we have examined the theory and
practice of CIT. We also discussed problems with
the current CIT practice and provided an overview
of some of the interesting efforts to overcome them.
Some of our major findings and future directions by
phase are:
Modeling. Several recent advances in CIT are driven
by the idea that we can exploit the benefits of CIT
on many “non-traditional” combinatorial spaces. In
addition to traditional user inputs, CIT is increasingly
being applied to different kinds of inputs, such as
configuration options, GUI events, protocols, software
product line features and web navigation events [5],
[10], [12]. However, currently input space models
are for the most part created manually, which is a
cumbersome and error-prone process, causing testing
to be incomplete or needlessly expensive. A challenge
for the future is deriving partially or fully automated
processes to extract the CIT model and to handle
evolving models as they change over time. Such pro-
cesses could (1) extract factors and their values from
software artifacts, (2) suggest the constraints among
factors, and (3) aid in deciding the interaction strength
to which different groups of factors should be tested.
Sampling. Once the input space model is created, the
space then needs to be sampled. Numerous sampling
approaches exist, yet observe that many practical test
scenarios are still poorly supported. We believe that
the applicability of CIT approaches in practice would
greatly be improved, if there were better tools that
allowed practitioners to define their own application-
specific models and coverage criteria. That is, rather
than having researchers develop specific models and
coverage criteria, provide a general way for practi-
tioners to flexibly define their own criteria, supported
by powerful tools for generating samples. Although
such generic tools may not be as efficient as their
specialized counterparts, they certainly can provide
the flexibility needed in practice.
Test. No matter how accurate the initial model and
sampling are, unanticipated events during testing,
such as masking effects, or insufficient time can pre-
vent CIT from achieving its objectives. Therefore,
we believe that incremental and adaptive approaches
that steer the test process to avoid consequences of
unanticipated events, such that testing objectives can
be achieved in a cost-effective manner, are key aspects
of practical CIT.
Analyze. After (or during) testing, test results need to
be analyzed. In this paper we focused only on fault
characterization. One interesting avenue for future
research is to combine probabilistic and exact fault
characterization approaches to develop a hybrid fault
characterization approach, which can reduce the test-
ing cost, compared to exact approaches, yet improve
accuracy, compared to probabilistic approaches. In

8

general better tool support for detecting and locating
faulty interactions as well as assessing the thorough-
ness of interaction testing are of practical importance.

REFERENCES
[1] R. C. Bryce and C. J. Colbourn. Prioritized interaction testing

for pair-wise coverage with seeding and constraints. Informa-
tion and Software Technology, 48(10):960 – 970, 2006.

[2] G. Demiroz and C. Yilmaz. Cost-aware combinatorial interac-
tion testing. In Proceedings of the 2012 International Conference on
Advances in System Testing and Validation Lifecycle, pages 9–16,
2012.

[3] E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter. Feedback
driven adaptive combinatorial testing. In Proceedings of the
2011 International Symposium on Software Testing and Analysis,
pages 243–253, 2011.

[4] S. Fouché, M. B. Cohen, and A. Porter. Incremental covering
array failure characterization in large configuration spaces. In
Proceedings of the eighteenth international symposium on Software
testing and analysis, pages 177–188, 2009.

[5] D. R. Kuhn, J. M. Higdon, J. F. Lawrence, R. N. Kacker, and
Y. Lei. Combinatorial methods for event sequence testing. In
Proceedings of the 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, pages 601–609, 2012.

[6] C. Martı́nez, L. Moura, D. Panario, and B. Stevens. Locating
errors using ELAs, covering arrays, and adaptive testing algo-
rithms. SIAM Journal of Discrete Mathematics, 23(4):1776–1799,
2009.

[7] C. Nie and H. Leung. A survey of combinatorial testing. ACM
Comput. Surv., 43:11:1–11:29, 2011.

[8] C. Song, A. Porter, and J. S. Foster. iTree: efficiently dis-
covering high-coverage configurations using interaction trees.
In Proceedings of the 2012 International Conference on Software
Engineering, pages 903–913, 2012.

[9] H. Srikanth, M. B. Cohen, and X. Qu. Reducing field failures
in system configurable software: cost-based prioritization. In
Proceedings of the 20th IEEE international conference on software
reliability engineering, pages 61–70, 2009.

[10] W. Wang, Y. Lei, S. Sampath, R. Kacker, R. Kuhn, and
J. Lawrence. A combinatorial approach to building navigation
graphs for dynamic web applications. In IEEE International
Conference on Software Maintenance, pages 211–220, 2009.

[11] C. Yilmaz. Test case-aware combinatorial interaction testing.
Software Engineering, IEEE Transactions on, 39(5):684–706, 2013.

[12] X. Yuan, M. B. Cohen, and A. M. Memon. GUI interaction
testing: Incorporating event context. IEEE Trans. Softw. Eng.,
37(4):559–574, 2011.

