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Abstract: We propose a framework for solving airline revenue management problems on large networks, where

the main concern is to allocate the flight leg capacities to customer requests under fixed class fares. This framework

is based on a mathematical programming model that decomposes the network into origin-destination pairs so that

each pair can be treated as a single flight leg problem. We first discuss that the proposed framework is quite

generic in the sense that not only several well-known models from the literature fit into this framework but also

many single flight leg models can be easily extended to a network setting through the prescribed construction.

Then, we analyze the structure of the overall mathematical programming model and establish its relationship

with other models frequently used in practice. The application of the proposed framework is illustrated through

two examples based on static and dynamic single-leg models, respectively. These illustrative examples are then

benchmarked against several existing methods on a set of real-life network problems.

Keywords: airline network revenue management; generic framework; decomposition; computational study.

1. Introduction. Historically the early adopters of computer reservations systems were mainly from

the airline industry. Having these systems at hand, the airline executives had the chance to investigate

the efficient ways for managing their limited seat inventories. Particularly after the deregulations in the

industry, the revenue management techniques have become indispensable for airline capacity control.

Naturally, the increase in the airline revenues has not been left unnoticed by other service industries

including tourism, transportation, entertainment, and so on. This considerable attention in practice

has also motivated the researchers to work on revenue management problems in the last five decades

(Talluri and van Ryzin, 2005).

The first mathematical approaches to airline revenue management were focused on single-leg problems.

These models are generally grouped into two classes called static and dynamic. In short, the static models

do not explicitly consider the dynamic nature of the arrivals of the requests over time, whereas the

dynamic models are more responsive to the volatility in the demand as the end of the reservation period

approaches and the seat capacity diminishes. Commonly used policies for capacity control center around

booking limits or protection levels, nested allocations and bid-prices. In case of a booking limit policy, the

capacity of the aircraft is allocated to different fare classes. If a specific amount is reserved (protected)

for different classes, then the control policy is based on protection levels. Nesting is a very intuitive
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notion for adjusting the booking limits or the protection levels. The main idea is to make the capacities

for those lower-ranked (usually in terms of fares) classes available for higher-ranked (more expensive)

classes. With a nested policy, a customer may book a seat as long as there is capacity available reserved

for the requested fare class or for the lower fare classes. Therefore, a higher fare class customer is never

denied because of lack of capacity when there is available capacity for the lower fare class customers.

Consequently, the entire aircraft capacity is always available for the highest fare class customers. Unlike

setting the booking levels or the protection levels, a bid-price is used to determine the threshold price

(marginal revenue) of allocating a seat. This threshold price is then used for accepting or denying a

request depending on whether the revenue from the request exceeds the threshold price. Because of

their simplicity, the bid-prices are used quite often in the industry for booking control. An effective

implementation of this policy has to consider frequently updating the bid-prices as time progresses and

the available capacity changes. In this work, our focus shall be on determining the booking limits and

the bid-prices.

An airline typically controls the booking process over a large network of flights. As in the case of

single-leg problems, it is relatively easy to write a stochastic dynamic programming model for the overall

network problem. Unfortunately this model suffers from the infamous curse-of-dimensionality because the

state space becomes basically the Cartesian product of aircraft capacities in the flight network. Clearly,

the resulting problem is intractable even for an airline running a relatively small-sized flight network. To

overcome this difficulty, approximation methods based on decomposition and mathematical programming

are proposed. The output of any one of these methods is then used to construct controls of various types,

such as bid-pricing and partitioned or (approximate) nested allocations.

Although leg-based decomposition approaches play an important role in network seat allocation, they

focus on locally optimizing the booking, and hence, may undermine the network effects of shared aircraft

capacities among multi-leg itineraries between origin-destination (OD) pairs. The main idea behind

this type of decomposition is to represent the network problem as independent single-leg problems. To

somehow consider the network effect, those single-leg problems are structured in such a way that they

carry some information about the overall network. Among these leg-based decomposition methods, we

can list dynamic programming decomposition (see Section 4 of this work for an implementation), prorated

EMSR and OD factors method (Talluri and van Ryzin, 2005).

We propose an approach that could be used to extend many single-leg models to the network setting by

using an OD-based decomposition instead of a leg-based decomposition. A critical point in our proposal

is based on the observation that whenever a capacity is allocated to an OD-pair (route), then the resulting

problem over this particular route becomes a single-leg problem. Therefore, our approach consists of two

stages: the optimal allocation of network capacities to OD-pairs and then, applying booking controls

to different fare classes within each OD-pair (itineraries) after solving a single-leg problem. We not

only concentrate on obtaining partitioned or nested booking limits but also discuss that the proposed

approach can be easily applied when bid-price control is exercised. When it comes to positioning our

paper in the literature, the most noticeable work that is related to our approach is given by Curry (1990).

In this seminal paper, Curry proposes an approach that is a combination of mathematical programming

and nested allocation. Similar to our approach, his idea is also based on allocating capacities to the
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OD pairs, but he then concentrates on the case where the fare classes within each OD-pair is nested.

Curry himself did not report any computational results. Although his work is cited by many people,

only a few papers in the literature conducted a numerical study with this approach (Williamson, 1992).

We propose, on the other hand, a general framework where Curry’s idea becomes a special case. We

also complement our discussion with a numerical study on a network structure obtained from a major

European airline through a consulting project1 and benchmark the results against some well-known

strategies used both in practice and in the literature. Our analysis along with the computational study

suggest that Curry’s idea can be extended to a broader setting when its generic nature is explicitly

analyzed and supported by the numerical results as we do here. We also observe for moderate size

networks that the dynamic programming decomposition (DPD) is the most competitive method against

the illustrative implementations of our framework and obtains higher average revenues than all considered

strategies. However, DPD suffers from a high computational burden, particularly when the network size

is large, and does not immediately yield to a general framework similar to the one proposed in this work.

Our contributions. We propose and analyze a generic two-stage approach for solving large-scale

airline network revenue management problems. We show that many single-leg solution methods can be

used within the proposed framework. In fact by using this framework, we also introduce a new model

based on solving a dynamic single-leg problem at the first stage. The proposed framework also allows us to

discuss immediate extensions of the proposed approach in other more recent network revenue management

research areas, like robust optimization and customer choice models. We also establish that some special

cases of the proposed approach are equivalent to several well-known network airline revenue management

methods from the literature. We conduct a thorough computational study on large-scale networks that

are extracted from a real-life data. To the best of our knowledge, we report results for networks that are

much larger than those reported in the literature to this day. Our computational results indicate that

two straightforward implementations of the proposed approach, coupled with a dynamic and a static

single-leg solution methods, perform very well when compared against several standard benchmarking

strategies in terms of collected revenue or computation time.

The rest of the paper is organized as follows. In Section 2, we give an overview of related literature.

We introduce the proposed generic approach in Section 3 along with its immediate extensions to other

airline revenue management models. In Section 4, we present our computational study. We conclude and

discuss some future research directions in Section 5.

2. Review of Related Literature. The proposed approach in this paper relies on single-leg meth-

ods and extends those methods to a network setting. Therefore, we start with a brief account of the

well-known methods in single-leg seat allocation literature. Then, we review the airline network rev-

enue management literature. It is important to note that we do not explicitly consider overbooking,

cancellations, customer choice behavior or robustness. However, we do mention, particularly in Section

3.3 and Section 5, some possible ways of extending the present work to those settings. We refer the

interested reader to several recent single-leg and network papers and the references therein for a more

complete overview (Aydın et al., 2012; Kunnumkal and Topaloglu, 2011; van Ryzin and Vulcano, 2008b;

Perakis and Roels, 2010).

1Therefore, the authors are not permitted to disclose the name of the airline.
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The earliest work on single-leg problem is given by Littlewood (1972). He proposes a solution method

for the case with only two fare classes. The idea behind his model is to equate the marginal rev-

enues in each of the two fare classes. In his thesis, Belobaba (1987) extends this idea to a multi-class

problem and introduces the expected marginal seat revenue heuristic for the general approach. Later,

Brumelle and McGill (1993) work on this heuristic and obtain optimal policies for the multi-class prob-

lem. All of these solution methods are developed for the static problem, and they assume low-to-high

fare class arrival pattern. Brumelle and McGill demonstrate that as long as the low-to-high fare class as-

sumption holds, the static methods give the optimal solutions. Lee and Hersh (1993) address the dynamic

problem by formulating it as a Markov decision process. In this model, the reservation period is divided

into sufficiently small time intervals to allow only one arrival. In each period, a reservation request is

accepted whenever its fare is higher than the expected marginal revenue of the seat. This work is refined

by Liang (1999) and Lautenbacher and Stidham (1999). While Liang reformulates the model in con-

tinuous time, Lautenbacher and Stidham combine the dynamic and static approaches under a common

Markov decision process formulation. Recent studies in revenue management focus on the availability of

information. Adaptive methods are used when there exists no or limited information about the demand.

Most of these methods assume that there is access only to the samples from the demand distributions.

They mainly compute the booking limits based on the past information but also react to the possible in-

accuracies related to the estimates of demand (van Ryzin and McGill, 2000; Huh and Rusmevichientong,

2006; Lan et al., 2008; Kunnumkal and Topaloglu, 2009; Birbil et al., 2009; Ball and Queyranne, 2009).

Glover et al. (1982) present the first mathematical programming approach to network airline revenue

management. They formulate the problem as a minimum cost network flow problem with side constraints.

With this formulation, they were able to solve a large network problem by linear programming but they

did not consider the probabilistic passenger demand. In addition, their model is applicable only when

the passengers are indifferent among the routes between OD pairs. Wollmer (1986) proposes a binary

programming formulation which incorporates demand stochasticity into the model by taking expected

marginal seat revenues as coefficients in the objective function. Although he shows that this problem can

be efficiently solved as a minimum cost network flow problem, the model itself is impractical to use in

large-scale networks. Curry (1990) develops a mathematical programming approach based on allocating

capacities to the OD-pairs where the fare classes within each OD-pair is nested. The earliest work on bid-

price controls is given by Simpson (1989), who proposes solving a linear programming model of the network

problem and then using the optimal dual variables to obtain the bid-prices. Later in her thesis, Williamson

(1992) gives a comprehensive study of similar mathematical programming formulations. Although the

deterministic linear programming model of Simpson is now considered as a classic in the field, this model

is also criticized because it considers only the expected demands (which is slightly alleviated by frequently

re-evaluating the bid-prices) and assumes an additive structure of the duals. Observing the lack of rigorous

analysis in Simpson’s and Williamson’s works, Talluri and van Ryzin (1998) study in-depth the bid-price

controls and their asymptotic behavior. They show that the bid-price controls do not provide optimal

solutions in general but they perform well asymptotically. In a follow-up work, Talluri and van Ryzin

(1999) propose a randomized linear programming model for computing the network bid-prices.

Most of the standard bid-prices are found by solving only the static network models.

Bertsimas and Popescu (2003) introduce an algorithm based on approximate dynamic programming to
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capture the dynamics of the reservation process. Their approach is based on finding the total opportu-

nity cost of the flight leg capacities consumed by an itinerary request. For each itinerary, the marginal

value of a flight leg capacity is computed by taking the finite difference in the value functions. Although

the numerical results demonstrate that their method outperforms the deterministic linear program, its

computation time increases drastically as the network becomes larger. Adelman (2007) works with a

linear programming representation of the dynamic programming formulation and aims at obtaining time

dependent (dynamic) bid-prices. Topaloglu (2009), on the other hand, uses Lagrangean relaxation to

compute bid-prices that depend on the remaining capacity. In a short note, Talluri (2008) orders the

bounds obtained by the deterministic linear programming model, the randomized linear programming

model and the models proposed by Adelman and Topaloglu. Using a stochastic approximation method,

Topaloglu (2008) later computes the bid-prices by visualizing the expected demand as a function of the

bid-prices and then works with sample path-based derivatives to search for a better set of bid-prices. Sur-

prisingly, Williamson (1992) observes that the elementary deterministic approximation methods based

on average demands usually perform better than those advanced heuristics considering the probabilistic

demand information. De Boer et al. (2002) investigate this phenomenon and conclude that this perfor-

mance decrease is due to ignoring the nesting strategy. Although deterministic methods also do not

consider nesting, the probabilistic methods suffer more from this negligence.

The virtual nesting method developed at American Airlines is one of the first decomposition approaches

in airline revenue management (Smith et al., 1992). This method distributes the total demand to a set

of predefined virtual classes and then solves a multi-class single-leg problem. Therefore, the capacities

of the flight legs can be administered independently. This decomposed structure allows nested control

throughout the flight network. Two papers using simulation-based optimization methods that also inves-

tigate nesting over the network are written by Bertsimas and De Boer (2005) and van Ryzin and Vulcano

(2008a). Bertsimas and De Boer propose a general framework to consider virtual classes and nesting as a

general class of control strategies, which are parametrized by the set of protection levels on the network.

Starting then with a set of nested booking limits, they use approximate dynamic programming to improve

the booking limits. The model proposed by Bertsimas and De Boer considers discrete capacities and de-

mand, and hence, their solution method does not guarantee convergence. van Ryzin and Vulcano, on the

other hand, analyze the continuous version of the work of Bertsimas and De Boer and propose a faster

and locally convergent algorithm. Another decomposition method combining mathematical programming

methods and Markov decision processes is also proposed by Cooper and Homem-de-Mello (2007). In a

recent work, Zhang (2011) proposes an approximation approach to solve the network revenue manage-

ment problem with customer choice. The approach is similar to dynamic programming decomposition

and leads to new bounds on the optimal expected revenue.

3. OD-based Decomposition Approach. In this section, we introduce our generic OD-based

decomposition approach. The main idea behind the proposed approach is to separate the decision of

allocating the flight leg capacities to the OD-pairs from the decision of reserving seats to different fare

classes within each OD-pair. In other words, the allocation of capacities to different OD-pair fare classes

is carried out in two steps. In the first step, the capacity of a certain OD-pair is determined. Then

in the second step, this capacity is distributed to the fare classes of the same OD-pair. An important
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observation at this point is that the optimal distribution of the predetermined OD-pair capacity among

its fare classes boils down to solving a single-leg problem.

To formalize our discussion, we start with a generic mathematical model. Suppose that there are S

distinct OD-pairs on the network that belong to set S = {1, · · · , S}, and that there are J different flight

legs coming from the set J = {1, · · · , J}. Moreover, we assume for each flight leg j ∈ J that the available

seat capacity equals Cj ∈ Z+. Let

ajs =

{

1, if flight leg j is on OD-pair s;

0, otherwise.

Then, the generic model is given by

maximize

S
∑

s=1

φs(xs), (1)

subject to

S
∑

s=1

ajsxs ≤ Cj , j ∈ J , (2)

xs ∈ Z+, s ∈ S, (3)

where for a given xs, the objective function φs(xs) in (1) is an optimization problem itself that yields

the optimal allocation of xs capacities to different fare classes. Note that this is nothing but solving a

single-leg problem with xs capacities. We assume that xs 7→ φs(xs) is a discrete concave function. Later,

we shall discuss that many well-known single-leg models that are proposed in the literature satisfy this

assumption. The first set of constraints (2) ensures that the allocation to an OD-pair does not exceed the

bottleneck flight leg capacity on that particular OD-pair. This leads us to explicitly define the bottleneck

capacity on each OD-pair s ∈ S by

Bs = min
j∈J

{Cj | ajs = 1} . (4)

Notice that this definition of a bottleneck only applies to a selected OD-pair. That is, the bottleneck

capacity is simply the minimum leg-capacity on a multi-leg OD-pair. However, it should be noted that

in a typical network problem, the capacity of a single-leg is certainly shared by many OD-pairs and this

causes –as more commonly used– bottlenecks on the network. Figure 1 shows the flight legs and the

OD-pairs on a small time-space network. It is also important to recall that a prominent advantage of

using this kind of mathematical programming approach is to be able to use side constraints in the model

like imposing an upper bound on the number of passengers for a particular OD-pair.

At first glance, the construction of the objective function (1) may require intensive computational

effort because one needs to solve for each s ∈ S the single-leg problem φs(xs) for all integer values of xs

from 1 to Bs. However, this is usually not required because almost all existing solution methods for the

single-leg models in the literature can produce an optimal solution for φs(Bs) which implicitly includes the

optimal solutions for all the intermediate values, xs ∈ {1, · · · , Bs−1}. This is accomplished, for instance,

through a dynamic programming algorithm, where the dimension of the state space is determined by the

capacity, and hence, the optimal policy table already includes all optimal solutions from 1 to Bs. The

complexity of constructing the objective function then depends mainly on the number of OD-pairs existing

in the network rather than the summation of all bottleneck capacities over all OD-pairs. Naturally, this

observation leads to significant savings in the computation time.
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Time

City 1

City 2

1

2 3 4

City 3

Possible OD−pairs

C1 = 301

C4 = 300

C3 = 303

C2 = 302

1

1 → 2

1 → 2 → 3

2

2 → 3

2 → 3 → 4

3

3 → 4

4

1 → 2 → 3 → 4

Figure 1: A flight network with 4 flight legs and 10 possible OD-pairs. For example, the bottleneck

capacity on the sixth OD-pair (2 → 3) is B6 = 302.

In the sequel, we shall use the solution of problem (1)-(3) to implement booking controls with parti-

tioned or nested limits. Furthermore, we shall also consider the continuous relaxation of the same problem

and obtain the dual optimal variables corresponding to the flight capacities. This would then allow us to

apply bid-price booking control strategies.

3.1 Two Illustrative Examples. We next consider one static and one dynamic single-leg mod-

els from the literature to exemplify the proposed OD-based decomposition approach. The static model

assumes only probabilistic information about the total number of requests for a certain fare class cor-

responding to an itinerary. The dynamic model, on the other hand, assumes that the customers arrive

over time and ask for different fare class tickets. The main purpose of our focus on these two particular

models is twofold: First, these models belong to the broad classes known as static and dynamic models

in the literature (Talluri and van Ryzin, 2005). Moreover, we shall later show that the first model is

related to a well-known model from the literature. Second, these two models shall be used with different

booking controls in our computational study, where we benchmark the proposed OD-based decomposi-

tion against several approaches that are frequently used for solving network problems in airline network

revenue management.

Before we give the models, let us introduce the notation related to different fare classes within each

OD-pair. There are Is fare classes in each OD-pair s ∈ S that come from set Is = {1, · · · , Is}. The

revenue of an fare class i seat in OD-pair s is given by ris, and for each fixed OD-pair s ∈ S, we assume

without loss of generality that

0 < r1s < r2s < · · · < rIss, (5)

where the no-sales class is simply represented by 0 with null revenue. If the integer decision variable xis

represents the number of reserved fare class i seats in OD-pair s, then for every j ∈ J , the seat capacity

restrictions (2) can also be written as

S
∑

s=1

ajs

Is
∑

i=1

xis ≤ Cj , j ∈ J .
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Moreover by relation (4) and the definition of xis, we simply obtain

xs =

Is
∑

i=1

xis ≤ Bs.

The static model assumes that we have probabilistic information about the aggregate demands for the

OD-pair fare classes. Thus, the total demand Dis for fare class i seat in OD-pair s is a random variable.

It is also assumed that each customer requesting a fare class i seat in OD-pair s is not buying a different

fare class once fare class i in OD-pair s is sold out. In other words, the demands for different OD-pair

fare classes are independent (Talluri and van Ryzin, 2005). Then, it follows for each realization Dis(ω)

that min{xis,Dis(ω)} will be the number of occupied fare class i seats in OD-pair s at departure. Thus,

E [min{xis,Dis}] is the expected number of occupied fare class i seats in OD-pair s, and we obtain the

corresponding reformulation of problem (1)-(3) as

maximize

S
∑

s=1

fs(xs), (6)

subject to
S
∑

s=1

ajsxs ≤ Cj , j ∈ J , (7)

xs ∈ Z+, s ∈ S, (8)

where

fs(xs) = max

{

Is
∑

i=1

risE [min{xis,Dis}] |
Is
∑

i=1

xis ≤ xs, xis ∈ Z+, i ∈ Is

}

. (9)

Note that (9) is just a single-leg problem with capacity xs. Birbil et al. (2009) introduced a fast algorithm

to solve this problem. When this algorithm is called to solve fs(Bs), it also produces, like dynamic

programming, all optimal solutions for the intermediate values of xs from 1 to Bs. Birbil et al. also

showed for s ∈ S that xs 7→ fs(xs) is discrete concave. Thus, the mathematical programming model

(6)-(8) is in the structure required by the generic model (1)-(3). We shall see in the next section that this

is a well-known and frequently used model in the literature. Note that the optimal solution to this model

gives partitioned booking limits. However, these limits can be used heuristically to obtain the booking

limits that are nested by fares; cf. (Williamson, 1992). In fact, this shall also be our approach in our

computational study (Section 4).

Next we consider a dynamic model, where the demand for a fare class of an OD-pair is realized over

time. In classical dynamic single-leg models of airline revenue management literature, it is quite common

to assume that at each time period, at most one request arrives. Then depending on the remaining ca-

pacity, the optimal strategy dictates whether to accept or reject the request (Lautenbacher and Stidham,

1999). Using a similar approach, we also assume that there is at most one request for a fare class of

an OD-pair at each period. Let T and T̂ be the length of the reservation period and the number of

discretization periods (epochs), respectively. If gts(xs) is the expected optimal revenue for OD-pair s with

available capacity xs from period t to the departure in the last period, then the dynamic model within

the proposed decomposition approach becomes

maximize
S
∑

s=1

g1s(xs), (10)

subject to

S
∑

s=1

ajsxs ≤ Cj , j ∈ J , (11)
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xs ∈ Z+, s ∈ S. (12)

To be precise, if we denote the random revenue generated at time t by ξt, then it is straightforward to

obtain the dynamic programming recursion given by

gts(xs) = E
[

max{ξt + gt+1
s (xs − 1), gt+1

s (xs)}
]

(13)

with the boundary condition

gT̂s (xs) =

{

E
[

ξ
T̂

]

, if xs > 0;

0, if xs = 0.

As xs is fixed, the optimal value functions g1s(xs), corresponding to a single-leg dynamic programming

problem, can be solved very efficiently. Furthermore, for each OD-pair s ∈ S, the function xs 7→ g1s(xs)

is discrete concave, and hence, problem (10)-(12) is again a special case of the generic model (1)-(3).

It is important to note that the booking limits obtained by the optimal solution of g1s(xs) is already

nested (Lautenbacher and Stidham, 1999). The computational savings with this model are also worth

mentioning. On one hand, the optimal policy table clearly includes the possible values of g1s(xs) for all

xs ∈ {1, · · · , Bs}. On the other hand, note that the other dimension of the optimal policy table is time.

Hence, this also leads to additional savings in computational effort, when one needs to reoptimize the

problem at a time within the planning horizon. This is because the optimal policy table already includes

for t ∈ {1, · · · , T̂} the optimal values gts(xs) for all xs ∈ {1, · · · , Bs}. Such reoptimizations are commonly

carried out in practice, since it is advantageous to revise the booking control decisions as time elapses

and the reservations materialize.

Although we call (10)-(12) as a dynamic model, it should be emphasized that this model can only be

considered as a partially dynamic model. That is because the allocations to the OD-pairs are done at

the beginning of the reservation period before the capacity of an OD-pair is depleted by the requests over

time. A complete dynamic model, on the other hand, considers simultaneously the remaining capacities

on each flight leg over time. Unfortunately, the complete dynamic model is intractable because keeping

track of each remaining flight leg capacity leads to an explosion of the state space, and hence, solving the

complete dynamic model is not possible even for small-scale problems (Talluri and van Ryzin, 2005).

The OD-based dynamic model given by (10)-(12) has another eminent role. As mentioned above, the

complete dynamic model considers all possible combinations of capacity allocations. Therefore, allocating

capacities to OD-pairs and then constructing optimal policies by solving the resulting model (10)-(12) is

clearly a feasible solution to the complete dynamic model. Consequently, the optimal objective function

value of the OD-based dynamic model gives a lower bound for the complete dynamic model. On the

other hand, it is well-known that the deterministic linear program gives an upper bound for the complete

dynamic model; cf. Talluri (2008). Then, the difference between the objective function values of the

deterministic linear programming model and the OD-based dynamic model gives the decision makers an

estimate of the error by solving an approximation instead of solving the complete model. We shall revisit

this remark in our computational study section and report some numerical results (see Section 4).

3.2 Properties of The Proposed Model. Note that a flight network in practice involves several

hundreds of flight legs, and hence, the number of OD-pairs can become quite large. Therefore, it is

customary to discuss the properties of the generic model given in (1)-(3). Furthermore, we observe that
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several well-known models from the literature are just special cases of our generic model. This section is

devoted to discuss these properties and observations.

We start with a somewhat disconcerting result. Lemma 3.1 and its proof show that the problems

resulting from our generic model are NP-hard, even if the objective function is linear and the variables

are binary.

Lemma 3.1 Problem (1)-(3) is NP-hard.

Proof. Let A ∈ {0, 1}J×S, c ∈ R
S and e be J dimensional vector of all ones. Then it is well-known

that the set covering problem given by

minimize c⊺y,

subject to Ay ≥ e,

y ∈ {0, 1}S,

is NP-hard; see also (Srinivasan, 1999). By a simple change of variables x = e− y, we obtain

maximize c⊺x (14)

subject to Ax ≤ b, (15)

x ∈ {0, 1}S, (16)

where b = Ae − e. Clearly, problem (14)-(16) is also NP-hard.

We shall now show that problem (14)-(16) reduces polynomially to a special case of problem (1)-(3)

with a linear objective function and binary variables. Take for each row in A, a hypothetical one-hour

flight from city 1 to city 2. Assume that there is one hour interval between any two consecutive flights.

We obtain the flight network illustrated in Figure 2. Note that any column in A consists of disconnected

Time

City 1

City 2

1 hour

...1 2 3 J

Figure 2: The flight network used in the proof of Lemma 3.1.

flight legs all from city 1 to city 2. To make sure that each column in A can be represented as an OD-pair,

we next duplicate flight network by adding one-hour auxiliary flights from city 2 to city 1 such that each

new flight is a mirror flight of the flights associated with the original rows of A. Figure 3 shows the

flight network with these auxiliary flights. By using these auxiliary flights in between the original flights,

we can always construct OD-pairs from the columns in A. Whenever an auxiliary flight is used for an

OD-pair, then the coefficient in the row that corresponds to the auxiliary flight becomes 1. If we denote
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Time

City 1

City 2

...1 2 3 J

Figure 3: The flight network after introducing the auxiliary flights.

the appended matrix by Ā, then we obtain

maximize c⊺x, (17)

subject to

[

A

Ā

]

x ≤

[

b

b

]

, (18)

x ∈ {0, 1}S. (19)

We observe that problem (17)-(19) is a special case of a problem defined by (1)-(3). Therefore, we finish

our polynomial reduction and conclude that the problem defined by (1)-(3) is NP-hard. �

As problem (1)-(3) is difficult to solve, in the subsequent discussion we shall concentrate on the linear

programming relaxation of this problem. Given the discrete concavity of its objective function, we can

always replace the objective function by a piecewise linear concave function and relax the integrality

constraints. Then, the resulting model simply becomes a linear programming problem. However, the

optimal solution of this linear programming model may be noninteger as formally implied by Lemma 3.1.

To complement this discussion, we show in Example 3.1 that even for a very simple flight network with

linear objective function, the optimal solution of the approximate problem can be fractional; see also

Glover et al. (1982); Bertsimas and De Boer (2005) for a discussion on network flow formulations that

yield integer optimal solutions.

Example 3.1 Consider the flight network shown in Figure 1 with only three OD-pairs, 1 → 4, 1 → 2,

and 2 → 3 → 4, respectively. If we assume for simplicity that the objective function of problem (1)-(3) is

given by a simple linear function, then the linear programming relaxation of this problem becomes

maximize x1 + x2 + x3,

subject to x1 + x2 ≤ 301,

x2 + x3 ≤ 302,

x3 ≤ 303,

x1 + x3 ≤ 300,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The unique optimal solution of this problem is given by

(x∗
1, x

∗
2, x

∗
3) = (149.5, 151.5, 150.5).

Since we propose to solve the linear programming relaxation of problem (1)-(3), we can then simply

round down the noninteger allocation xs to obtain a feasible solution. Let x∗
s be the optimal solution of
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problem (1)-(3) and x̂s be the optimal solution of its LP relaxation. Clearly, the rounded down solution

x̄s := ⌊x̂s⌋ is feasible for problem (1)-(3). If we denote the objective function values by v∗ =
∑S

s=1 φs(x
∗
s),

v̂ =
∑S

s=1 φs(x̂s) and v̄ =
∑S

s=1 φs(x̄s), then we have v̄ ≤ v∗ ≤ v̂. As we shall see in our computational

study, the gap v̂ − v̄ turns out to be quite tight for the two illustrative examples.

A very important advantage of using the linear programming relaxation of problem (1)-(3) is the

information gained by its dual. In other words, when this relaxation is solved to optimality, there will

be an optimal dual variable associated with each flight leg. Using this optimal dual solution, we can

also discuss the shadow prices associated with the changes in the capacities of the flight legs. This is

nothing but using the bid-price control as a booking strategy. A straightforward implementation is then

to grant a seat to an OD-pair request when the revenue gained from the request exceeds the sum of the

optimal dual variables corresponding those flights traversed by the requested OD-pair. Consequently, the

difficulty with obtaining an integer solution to (1)-(3) also disappears. With most of static models, the

bid-price approach and its performance have been studied before. However, for other models embedded

in our framework, like our dynamic model (10)-(12), this type of bid-price control leads to interesting

results and observations as we elaborate in Section 4.

The proposed generic model has also some close ties with several previous work in the literature. We

start with the famous deterministic linear programming model considered initially by Glover et al. (1982);

Wollmer (1986); Simpson (1989); Williamson (1992), and show that it is a special case of our proposed

model (1)-(3). We shall then revisit our static model (6)-(8) and present that this model is also equivalent

to another model discussed in (Wollmer, 1986; Williamson, 1992; Talluri and van Ryzin, 2005).

Suppose the expected demand dis ∈ Z+ for fare class i seats in OD-pair s is given. Then min{xis, dis}

is the number of occupied fare class i seats in OD-pair s at the departure time. Then, we obtain

maximize

S
∑

s=1

hs(xs), (20)

subject to

S
∑

s=1

ajsxs ≤ Cj , j ∈ J , (21)

xs ∈ Z+, s ∈ S, (22)

where

hs(xs) = max

{

Is
∑

i=1

ris min{xis, dis} |
Is
∑

i=1

xis ≤ xs, xis ∈ Z+, i ∈ Is

}

. (23)

As shown by Birbil et al. (2009), the single-leg problem (23) enjoys an analytical solution for fixed xs,

and its trivial to see that the optimal objective function value is concave in terms of xs. It is clear

then the objective function (20) also becomes discrete concave and hence, this formulation nicely fits

into the generic framework given by (1)-(3). As a side note, we also remark that the optimal objective

function value of problem (20)-(22) can serve as an upper bound for the static problem (6)-(8) due to

the well-known inequality

E [min{xis,Dis}] ≤ min{xis, dis},

where Dis denotes the random demand for fare class i in OD-pair s with E [Dis] = dis.

As discussed in (Wollmer, 1986; De Boer et al., 2002; Talluri and van Ryzin, 2005), one can give the
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following integer programming formulation to the same problem:

maximize

S
∑

s=1

Is
∑

i=1

ris min{xis, dis}, (24)

subject to

S
∑

s=1

ajs

Is
∑

i=1

xis ≤ Cj , j ∈ J , (25)

xis ∈ Z+, s ∈ S, i ∈ Is. (26)

An equivalent integer programming formulation is also given by

maximize

S
∑

s=1

Is
∑

i=1

risxis, (27)

subject to

S
∑

s=1

ajs

Is
∑

i=1

xis ≤ Cj , j ∈ J , (28)

xis ≤ dis, s ∈ S, i ∈ Is, (29)

xis ∈ Z+, s ∈ S, i ∈ Is. (30)

The following lemma shows that all three preceding mathematical programming models are equivalent.

This may be a noteworthy result also from a computational point of view because after constructing the

objective function, which can be done by solving (23) analytically, our model (20)-(22) has less number

of variables and the same number of constraints as in (27)-(30). This gain in computation time may even

increase when frequent reoptimizations are carried out because the flight capacities, and consequently the

bottleneck capacities, decrease as time elapses. Moreover, in real life instances the problems may involve

enormous numbers of itineraries, and hence, it may be viable to select our formulation, since its memory

requirements are better than those of the deterministic linear program.

Lemma 3.2 If (x∗
s)s∈S is an optimal solution of problem (20)-(22), then it follows that (x∗

is)i∈IS ,s∈S with

for each s ∈ S the vector (x∗
is)i∈Is

an optimal solution of the optimization problem associated with hs(x
∗
s)

is an optimal solution of (24)-(26). Moreover, the optimal objective values of the problems (24)-(26) and

(27)-(30) are the same, and (x∗
is) is also an optimal solution of (27)-(30).

Proof. We start with the first part. Since for each s the vector (x∗
is)i∈Is

is integer and an optimal

solution of problem (23) for integer x∗
s is again integer, it must hold by definition that the inequality in

(23) is binding. This means that x∗
s =

∑Is
i=1 x

∗
is. Thus, (x

∗
is) is feasible for problem (24)-(26). This shows

that v ≤ v0, where v and v0 denote the optimal objective values of (20)-(22) and (24)-(26), respectively.

Also by the definition of (x∗
is)1≤i≤Is1≤s≤S we obtain that

S
∑

s=1

Is
∑

i=1

ris min{x∗
is, dis} =

S
∑

s=1

fs(x
∗
s).

Moreover, for any feasible solution (xis) of problem (24)-(26) we obtain that xs :=
∑Is

i=1 xis is feasible

for (20)-(22) and by the definition of fs(·) that

S
∑

s=1

Is
∑

i=1

ris min{xis, dis} ≤
S
∑

s=1

fs(xs).

This shows the first part.
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In the second part, notice that the feasible region F1 of optimization problem (27)-(30) is a subset

of the feasible region F0 of optimization problem (24)-(26), and for every (xis) ∈ F1 it holds that

xis = min{xis, dis}. Thus, we obtain v1 ≤ v0, where v1 is the optimal objective function value of problem

(27)-(30). Moreover, if (x∗
is) is an optimal solution of optimization problem (24)-(26), then clearly the

vector (x∗
is) with x∗

is = min{x∗
is, dis} is feasible for problem (27)-(30) and both objective values coincide.

This shows that v0 ≤ v1 and so, v0 = v1. By this and the relation F1 ⊆ F0, the last part becomes

obvious. �

As we mentioned previously, the continuous relaxation of (27)-(30) is known as the deterministic linear

programming problem. In particular, the majority of the models proposing different bid-price control

strategies stems from this relaxation. Therefore, this model is frequently used for benchmarking in the

literature. Using a similar argument as in Lemma 3.2, one can easily show that the optimal solution of

the deterministic linear programming problem can also be obtained by solving the continuous relaxation

of problem (20)-(22). As before, the continuous relaxation of subproblem (23) has an analytical solution.

Thus, the possible computational savings that we discussed above are still applicable. To be precise, the

number of variables in the standard deterministic linear program is equal to the number of itineraries (the

total number of classes in all OD-pairs) and the number of constraints is equal to the number of flight legs

in (28) plus the number of itineraries in (29). The number of variables in the continuous relaxation of our

model (20)-(22), on the other hand, is equal to the number of OD-pairs. After applying a straightforward

reformulation to the piecewise linear objective function, the number of variables in the resulting linear

program is doubled and the number of constraints is increased by the number of itineraries. However, we

should note that the constraints designated by (29) are just upper bound constraints, whereas the same

number of constraints coming from the reformulation of the objective function of our model corresponds

to the linear pieces of each xs 7→ hs(xs), s ∈ S. The upper bound constraints can be effectively dealt

with a bounded simplex method implementation. The same advantage does not immediately apply to the

constraints added by our method. Even so, there could be a remedy for this drawback if one implements a

specialized simplex method such as the one proposed by Fourer (1992), who observed that the additional

constraints are not needed and the solution time can be decreased significantly when compared against

a standard simplex method (see also the sequence of papers by the same author cited in that reference).

It is well-known that the deterministic linear programming problem does not necessarily yield optimal

integer solutions (also demonstrated by Example 3.1). Nonetheless, the following lemma shows that if

the capacity and the demand values are integer, then at the optimal solution of the LP relaxation of

problem (27)-(30), there will be at most one fare class on each OD-pair that has noninteger allocation.

This result illustrates why the LP relaxation optimal objective function value is frequently quite close,

or even equal, to the integer optimal objective function value.

Lemma 3.3 Suppose that dis for all i ∈ Is, s ∈ S and Cj for all j ∈ J are integer. Let (x∗
is) be the

optimal solution of the LP relaxation of problem (27)-(30). Then, for each OD-pair s ∈ S, there will be

at most one fare class is ∈ Is such that x∗
iss

is noninteger.

Proof. Lemma 3.2 establishes the equivalence between problems (20)-(22) and (27)-(30). Therefore,

if we obtain a noninteger solution for an OD-pair in (20)-(22), then the noninteger part will be allocated
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to only one fare class as a direct consequence of relation (5). �

In his seminal work, Wollmer (1986) discusses a model that boils down to the following integer pro-

gramming formulation:

maximize

S
∑

s=1

Is
∑

i=1

risE [min{xis,Dis}] , (31)

subject to

S
∑

s=1

ajs
∑Is

i=1
xis ≤ Cj , j ∈ J , (32)

zis ∈ Z+, i ∈ Is, s ∈ S. (33)

The continuous relaxation of this model is also considered in Talluri and van Ryzin (1998); De Boer et al.

(2002). As shown in Lemma 3.4, problems (6)-(8) and (31)-(33) are equivalent.

Lemma 3.4 If (x∗
s)s∈S is an optimal solution of problem (6)-(8), then it follows that (x∗

is)i∈IS ,s∈S with

for each s ∈ S the vector (x∗
is)i∈Is

an optimal solution of the optimization problem associated with gs(x
∗
s)

is an optimal solution of (31)-(33).

Proof. See the first part of Lemma 3.2. �

Wollmer (1986) in fact considered a binary programming formulation of problem (31)-(33), where the

decision variable xis is replaced by the summation of binary variables xisl. Observe that the function

Fis : Z+ → R given by

Fis(n) := E [min{n,Dis}] (34)

satisfies

Fis(n)− Fis(n− 1) = P {Dik ≥ n} . (35)

Hence, it is decreasing in n and so the function Fis is a discrete concave function on Z+. Using relation

(35) and the fact that Fis(·) is a discrete concave function, we obtain the binary programming model

equivalent to problem (31)-(33)

maximize

S
∑

s=1

Is
∑

i=1

ris

Bs
∑

l=1

xislP {Dis ≥ l} , (36)

subject to

S
∑

s=1

ajs

Is
∑

i=1

Bs
∑

l=1

xisl ≤ Cj , j ∈ J , (37)

xisl ∈ {0, 1}, s ∈ S, i ∈ Is, l = 1, ..., Bs. (38)

The same optimization problem is also discussed in (De Boer et al., 2002; Talluri and van Ryzin, 2005).

This binary problem has the same optimal objective value as (31)-(33), and for (x∗
isl) being an optimal

solution of (36)-(38), the corresponding optimal solution of problem (31)-(33) is given by

x∗
is =

Bs
∑

l=1

x∗
isl.

Clearly, problem (36)-(38) has a huge number of variables and in general it is quite difficult to transform

the feasible solution of the original problem. Therefore, the binary programming formulation is not very

suitable from a computational point of view. With our formulation (6)-(8), however, subproblem (9)

can be solved very efficiently. Consequently, the computation times are reduced significantly like the

OD-based formulation of the deterministic linear programming problem.
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3.3 Other Applications of The Proposed Model. It is important to underline that the structure

of the proposed model (1)-(3) allows us to carry many different single-leg models to a network setting.

Recall that the main requirement in the proposed model is to have a discrete concave objective function.

This requirement is met whenever the optimal objective function value of the underlying single-leg prob-

lem is concave with respect to the allocated capacity. Fortunately, ample number of well-known models

from the literature satisfy this condition.

One of the definitive references on revenue management is written by Talluri and van Ryzin (2005).

In Chapter 2 of their work, Talluri and van Ryzin summarize single resource optimal capacity control for

static, dynamic and customer choice models. Majority of these models are analyzed by considering the

opportunity cost through the structure of a value function that measures the optimal expected revenue

as a function of the remaining capacity. A key result in such an analysis is showing that the opportunity

costs are nonincreasing. This result is quite intuitive, since one does not expect that the marginal

revenues obtained by allocating more resources shall increase unceasingly. As a direct consequence, these

diminishing marginal values imply that the optimal objective function values of these single resource

models are discrete concave with respect to the capacity. Therefore, not only the static and dynamic

models but even some of the customer choice models used in single resource control can be used for

solving multiple-resource (network) models in practice by incorporating them into the objective function

of the proposed model (1)-(3).

In their recent work, Birbil et al. (2009) study the robust versions of the standard static and dynamic

single-leg problems, where they consider the inaccuracies associated with the probability distributions

of the customer demands. Their robust optimization models basically couple the standard (nonrobust)

models with analytically solvable problems, and hence, the overall problem structure does not change.

Therefore, the resulting robust static and dynamic models remain to have discrete concave optimal

objective function values with respect to the flight leg capacities. This immediately implies that the robust

single-leg models can be used within our generic model (1)-(3). Thus, a robust optimization approach,

based on the work of Birbil et al., can also be proposed for the network airline revenue management

problem.

4. Computational Study. Though the main motivation of this work is to introduce a general

framework, we also want to show in this section that even straightforward implementations within the

proposed framework may yield competitive solution methods. Next, we present a set of numerical exper-

iments and compare our two illustrative models against several well-known network revenue management

models from the literature.

We use a real network structure obtained from a major European airline. This data includes the actual

flight legs, their capacities and the OD-pairs. The airline also provided the ticket price for each fare class.

However, this data was stored per flight leg. Therefore, we had to generate the fares for OD-pair classes

by taking into account the given ticket prices on the flight legs within each OD-pair. As shown in Table 1,

we worked on subnetworks with varying sizes extracted from the overall network. The largest subnetwork

that we use includes 5,000 OD-pairs. To the best of our knowledge, this is by far the largest number of

OD-pairs among those reported in the airline revenue management literature. The largest network that

we are aware of is studied by van Ryzin and Vulcano (2008a), and this network includes only 62 flight
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legs and contains in total 1,844 itineraries. Note that, this figure corresponds roughly to the number of

OD-pairs multiplied by the average number of fare classes within OD-pairs. For our largest subnetwork,

the same number turns out to be 45,182.

Table 1: The numbers of itineraries and flight legs in the subnetworks

Network Size∗

100 500 1,000 5,000

Number of Flight Legs 119 428 583 678

Number of Itineraries 869 4,470 9,170 45,182
∗Total number of OD-pairs in the subnetwork.

To give a further idea of our network structure, Table 2 and Table 3 show for each subnetwork the

breakdown of the total number of OD-pairs in terms of the number of flight legs and the number of fare

classes, respectively. Table 2 shows that the longest OD-pair consists of 5 flight legs, and the majority of

the OD-pairs are constructed with 1 to 3 flight legs. As Table 3 illustrates, the total number of OD-pairs

is distributed almost uniformly among different numbers of fare-classes. The exceptions to this pattern

may be the extreme cases of 3 and 15 fare classes.

Table 2: Breakdown of the total number of OD-pairs in terms of number of flight legs

Network Number of Flight Legs

Size 1 2 3 4 5

100 65 30 5 - -

500 280 178 40 2 -

1,000 428 455 105 12 -

5,000 631 3,353 934 80 2

Table 3: Breakdown of the total number of OD-pairs in terms of number of fare classes

Network Number of Fare Classes

Size 3 4 5 6 7 8 9 10 11 12 13 14 15

100 6 11 7 3 14 9 9 8 9 5 5 11 3

500 27 34 47 38 44 39 42 41 41 55 36 37 19

1,000 45 66 81 77 83 76 86 92 84 101 89 72 48

5,000 182 416 426 405 435 393 441 409 434 401 446 400 212

4.1 Simulation Setup. Lacking the actual demand distributions, we simulate the arrival of reser-

vation requests in a planning horizon of length T . We assume that the requests for OD-pair s ∈ S arrive

according to a homogeneous Poisson process with rate λs. Given a request for OD-pair s arrives at time

t, this request is for fare class i with probability pis(t). Clearly, pis(t) ≥ 0 and
∑Is

i=1 pis(t) = 1 for all

s ∈ S. Thus, each arriving request is labeled as a certain fare class request by using the multinomial

probabilities that vary over time, pis(t), i = 1, · · · , Is, 0 ≤ t ≤ T . Assuming that in reality the lower

fare class requests arrive more frequently in the early periods than the higher fare classes, we set the

multinomial probabilities as

pis(t) =
(vTis − v0is)t+ Tv0is

∑Is
j=1(v

T
js − v0is)t+ Tv0js

, i = 1, · · · , Is,
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where 0 ≤ v0Iss < v0Is−1s < . . . < v01s, and 0 ≤ vT1s < vT2s < . . . < vTIss are predefined parameters. This

way of setting the multinomial probabilities complies with the desired demand pattern. An illustration

is given in Figure 4.

0 10 20 30 40 50 60 70 80 90 T=100

0.05

0.1

0.15

0.2
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0.3

t

p is
(t

)

 

 

p
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(t) p
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(t) p
5s

(t)

Figure 4: An example of the changes in multinomial probabilities over time (Is = 5)

The booking requests arriving over time are simulated as follows: We first generate the arrival time of

a booking request for each OD-pair during planning horizon T . The minimum time among the booking

request times determines the arriving OD-pair and the next event time. Then using the multinomial

probabilities, we find the fare class of the request and apply the booking policy of interest. After the

numbers of reservations for all fare-classes in that OD-pair are updated, the simulation continues with

determining the next event time. To test the performances of the booking policies against varying arrival

intensities, we also use the load factor parameter (ρ) and tie the arrival rate of an OD-pair s to the given

load factor. First, we come up with an estimate of arrival rate µj for each flight leg j ∈ J by

µj = ρ
Cj

TSj

,

where Sj denotes the number of OD-pairs using flight leg j. Then, the arrival rate for an OD-pair s ∈ S

simply becomes

λs =

∑Js

j=1 µj

Js
,

where Js is the number of flight legs that are used by OD-pair s.

4.2 Benchmarking Strategies. In the network revenue management literature and also in practice,

the deterministic linear program (27)-(30) and its variations are favored as viable solution methods for

network problems due to their simplicity and speed. In our benchmarking study, we also use two of those

methods. Unless resolved frequently, the bid-prices obtained by the mathematical programming based

methods do not depend on time and inventory. To compare against bid-pricing approaches, we also use

a dynamic programming leg-based decomposition heuristic. All these benchmarking strategies as well as

our illustrative methods are detailed below:

(i) Deterministic Linear Program (DLP): This strategy solves the model (27)-(30) for approximating

the optimal total expected revenue as well as computing the bid-prices. When a request for an
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itinerary arrives, the summation of the optimal dual variables corresponding to those flight

legs used by the itinerary is used as the bid-price for accepting or rejecting the request; cf.

Talluri and van Ryzin (1998).

(ii) Finite Differences on Deterministic Linear Program (FDD): This strategy focuses on the total

opportunity cost of the flight leg capacities consumed by an OD-pair request (itinerary). We first

compute the optimal expected revenue with the current levels of the capacities by solving (27)-

(30). Then, for each OD-pair a new linear program is setup, where the capacities of those flight

legs used in the OD-pair is decreased by one. This reflects the situation of allocating one seat

to a request from that OD-pair. After solving this new linear program, the difference between

the optimal expected revenues of the problem with the original capacities and the new problem

becomes the threshold value. We accept an arriving OD-pair request, if the fare price of this

itinerary is greater than the calculated threshold value. We repeat these steps for all OD-pairs;

cf. Bertsimas and Popescu (2003). In this strategy a separate linear program is solved for each

OD-pair.

(iii) OD-based Decomposition - The Static Models (ODB-STA, ODB-STB and ODB-STD): These

three strategies are related to our first illustrative model (6)-(8) using only the static demand

information. The subproblem (9) is solved by the algorithm proposed by Birbil et al. (2009). In

ODB-STA we obtain the partitioned booking limits and use them in the simulation after nesting

them. ODB-STB uses the optimal dual variables to compute the bid-prices. The third strategy,

ODB-STD is similar to FDD, where we resolve the problem for each OD-pair after reducing the

associated flight leg capacities by one. Then, the difference in the objective function values is

used as the threshold value for accepting or rejecting an itinerary request.

(iv) OD-based Decomposition - The Dynamic Models (ODB-DPA, ODB-DPB and ODB-DPD): The

remaining three strategies are variations of our second model (10)-(12), where the objective

function is constructed by solving the dynamic programming recursion given by (13). After

solving the model, ODB-DPA uses the optimal nested booking limits as a control policy, whereas

ODB-DPB stores the optimal dual variables to obtain the bid-prices. Like ODB-STD, the final

strategy ODB-DPD works with the total opportunity cost of allocating a seat to an itinerary

request.

(v) Dynamic Programming Decomposition (DPD): This is a decomposition heuristic based on using

displacement-adjusted revenues to decompose the network into a series of single-leg problems

(Talluri and van Ryzin, 2005, Section 3.4.4). The decomposition starts with a set of fixed bid-

prices for each flight leg. As also suggested by Talluri and van Ryzin, we solve DLP to obtain

these fixed bid-prices. The displacement-adjusted revenue for an itinerary using a particular

flight leg is evaluated by subtracting the fixed bid-prices of the other flight legs used by the same

itinerary from the itinerary’s actual revenue. Then, these displacement-adjusted revenues for

a particular flight leg is used to solve a single resource dynamic programming model given by

the recursion (13). Note that in this method, a single-leg dynamic model is solved for a much

larger number of classes than solving it for an OD-pair. This is because a vast number of OD-

pairs may share the same flight leg, and consequently, all of their classes need to be considered

in the dynamic programming recursion. This heuristic requires a very fine discretization of
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the reservation period, since the dynamic model (13) assumes that there is at most one arrival

(itinerary request) in one period; see also Section 2.5 in (Talluri and van Ryzin, 2005).

To consider the effects of reoptimization, we also divide the planning horizon into K equal segments

and revise the strategies at the beginning of each segment with the updated capacities. In the sequel, we

refer to ODB-STA and ODB-DPA as the allocation-based strategies, whereas all the remaining ones are

called the bid-price strategies.

4.3 Numerical Results. In our simulation experiments, the parameters for the multinomial prob-

abilities, vTis and v0is are uniformly distributed from the interval (0, 3Is) and then sorted in the required

order for each s ∈ S and i ∈ Is. Our experimental design is based on various factors such as the network

size, the load factor (ρ) and the number of reoptimization segments in a solution period (K). We test the

benchmark strategies with respect to load factor values ρ ∈ {1.0, 1.2} to represent regular and high loads.

The last parameter set comes from the number of segments in the planning horizon K ∈ {1, 5, 10}. The

average revenues and computation times obtained by different benchmark strategies are reported over 25

simulation runs. We take the reservation period length as T = 100. For OD-based dynamic strategies

(ODB-A, ODB-B and ODB-D), the discretization mesh size is set to 5.0e− 2 for moderate size networks

and 1.0e − 1 for large size networks. For DPD, the mesh size is further divided into smaller periods to

ensure that there is at most one arrival in each epoch.

Figure 5 and Figure 6 show our results for moderate size networks with 100 and 500 OD-pairs, respec-

tively. Both figures demonstrate that when reoptimization is not applied (K = 1), the allocation-based

strategy, ODB-DPA and the decomposition heuristic, DPD outperform all other strategies. The average

revenue obtained by DPD is marginally better than that of ODB-DPA. As expected, applying reoptimiza-

tion has a significant effect on those remaining methods that rely on bid-prices. However, the same effect

on allocation-based strategies is not that substantial. When reoptimizations are carried out (K = 5 and

K = 10) and the network becomes larger, OD-based decomposition methods using bid-prices, ODB-STB,

ODB-STD, ODB-DPB and ODB-DPD, along with DLP and FDD obtain average revenues that are close

to those obtained by ODB-DPA and DPD. In fact, as the bar plots for K = 5 and K = 10 in Figure 6

show, ODB-DPD and ODB-DPB obtain even slightly higher revenues than that of ODB-DPA but still

less than DPD. The load-factor, in general, does not seem to have a large impact on the line-up of the

strategies but it does slightly boost the performance of ODB-DPA as this dynamic model responds to

the increase in the number of customer requests better than the other OD-based decomposition strate-

gies. As Figure 5 illustrates, for the network with 100 OD-pairs, the other allocation-based strategy,

ODB-STA outperforms only two strategies, DLP and FDD when reoptimization is abandoned (K = 1).

Unfortunately, when the network size increases its performance deteriorates even when K = 1, and it

becomes the least effective strategy. When we look at the results for the moderate size networks, we

observe that there is almost no difference between using bid-prices or finite differences for OD-based

static (ODB-STB versus ODB-STD) or dynamic (ODB-DPB versus ODB-DPD) strategies. Surprisingly

the difference between DLP and FDD, on the other hand, is more striking.

We report in Figure 7 the average computation times obtained with different strategies on a semi-

logarithmic plot (the average computation times in vertical axis are given in logarithmic scale). Note

that ODB-STA and ODB-STB and similarly, ODB-DPA and ODB-DPB take the same computation
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Figure 5: The average revenues obtained by all strategies for varying load-factor (ρ) and reoptimization

(K) parameters (Network Size = 100 OD-pairs)

time. Thus, we give only one figure for each pair. The first thing one notices in Figure 7 is that DPD

takes by far the largest computation time among all strategies. This is due to the fact that the single-leg

dynamic programming models, which have to be solved for each flight leg in the DPD method, require

much finer discretization because the number of fare classes increase tremendously, especially when, the

network size increases. In ODB-based approaches, the number of fare-classes is at most 15 for an OD-pair

(see Table 3). However, the total number of fare-classes sharing a flight leg goes up to several hundreds

as the network size increases simply because a flight leg is shared by too many OD-pairs. Therefore,

each dynamic program that needs to solved for the DPD method takes a very long time and the memory

requirement is far more than that of a dynamic model solved for the OD-based methods. Furthermore,

the DPD method starts with a guess of initial bid-prices to evaluate the displacement adjusted revenues

(Talluri and van Ryzin, 2005, Section 3.4.4). To serve this purpose, we have solved DLP and used its

dual optimal solution. Thus, when we apply reoptimization, all those single-leg dynamic programs used

in the DPD method have to be solved once again. However, when it comes to ODB-DPA(B) method, the

single-leg dynamic programs are solved once at the very beginning and never again. This is also clear from

Figure 7; the increase in the computation time for ODB-DPA(B) is insignificant when reoptimizations

are carried out but applying reoptimization increases the computation time considerably for the DPD

method. Among the OD-based strategies, the dynamic models take more computation time than the
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Figure 6: The average revenues obtained by all strategies for varying load-factor (ρ) and reoptimization

(K) parameters (Network Size = 500 OD-pairs)

static models. This is due to the construction of the optimal policy tables in the objective functions.

In both static and dynamic OD-based models, the strategies based on finite differences (ODB-STD and

ODB-DPD) require longer computation times than their counterparts based on bid-prices (ODB-STB

and ODB-DPB).

In Figure 8 and Figure 9, we report our results for large size networks with 1,000 and 5,000 OD-pairs,

respectively. As we noted for the moderate size networks, the strategies based on finite differences (FDD,

ODB-STD, ODB-DPD) and leg-based decomposition strategy (DPD) take excessively long time and their

computational efforts depend exclusively on the network size. In addition, their performances are not

significantly better than other strategies, especially the ones that are based on bid-prices. Therefore, we

do not consider the results with the finite difference methods and DPD for the large size networks.

Both Figure 8 and Figure 9 show that when reoptimizations are carried out, the OD-based strate-

gies based on bid-prices, ODB-STB and ODB-DPB, are performing better than their allocation-based

counterparts, ODB-STA and ODB-DPA, respectively. The main reason behind the performance decrease

of allocation-based methods is their lack of consideration for the cross-effects of capacity sharing. In

other words, preallocating the capacities to each OD-pair independent of the other pairs undermines the

proper control of network-wide inventories. The importance of capacity sharing is even more evident as
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Figure 7: The average computation times of all strategies for moderate size networks (ρ = 1.0, K = 1)

the network size becomes larger. When a flight leg is shared among many OD-pairs, this causes the frag-

mentation of the flight leg capacity and hence, many seats remain unsold to some itineraries even if there

is excess demand from other OD-pairs. We note that a similar concern has been already raised in the

literature, particularly, by Curry (1990) and Williamson (1992). However, though allocation based, the

dynamic strategy ODB-DPA is still relatively competitive for the network with 1,000 OD-pairs (Figure

8). Among those strategies based on bid-prices, ODB-DPB obtains the highest average revenue. The

OD-based static model, however, does not perform equally well and it is comparable to the famous DLP

method. This difference between ODB-STB and the other strategies is in accordance with the observation

of Williamson (1992), who also notes that the deterministic methods based on average demand values

perform better than those methods based on probabilistic demand information. Paraphrasing further

from De Boer et al. (2002), the static methods using probabilistic information seem to suffer more from

ignoring the nesting of the allocations than the deterministic methods. Figure 8 and Figure 9 clearly

demonstrate that the DLP method is very successful as the size of the network becomes larger and the

reoptimizations are carried out.

We also compare the average computation times of the benchmarking strategies used for solving large

size networks. Although their performances are quite good, the dynamic OD-based strategies take longer

time than DLP. Unlike the moderate size problems, we observe that the construction and the solution

time of the linear programming problem obtained by the reformulation of (10)-(12) takes some time when
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Figure 8: The average revenues obtained by all strategies for varying load-factor (ρ) and reoptimization

(K) parameters (Network Size = 1,000 OD-pairs)

the network size increases. Therefore, we see a slight increase in the computation times of the dynamic

OD-based strategies when reoptimizations are carried out.

Overall, our results demonstrate that if the network size is moderate and reoptimizations are not

possible, then the allocation based strategy, ODB-DPA is a proper choice to obtain high revenues. When

reoptimization can be applied and the network size becomes larger, the strategies based on bid-prices

take over, and ODB-DPB becomes the most successful one among them. However, this performance

gain comes at the expense of increased computation time. When the network becomes quite large and

congested (high load factor), the performance of DLP is noteworthy. This well-known strategy obtains

high revenues with a minor computational effort.

At the end of Section 3.1, we mentioned that the optimal objective function values of the OD-based

dynamic model (10)-(12) and the deterministic linear program give lower and upper bounds for the

complete dynamic model, respectively. We observe that the percentage differences between these two

values are less than 5% for the first three network sizes. However, this difference goes slightly above 8%

for the largest network. These figures are even better as the load factor increases. These observations

indicate that the OD-based dynamic model could be a useful tool for decision makers also for estimating

the loss in revenue due to not being able to solve the complete dynamic model.
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Figure 9: The average revenues obtained by all strategies for varying load-factor (ρ) and reoptimization

(K) parameters (Network Size = 5,000 OD-pairs)

Our last discussion in this section is about the gaps between the objective function values of the linear

programming relaxation optimal solution and the rounded-down integer feasible solution for both static

and dynamic OD-based models. Our results demonstrate that, as expected, the average gap increases

slightly when the network size increases. However, one observation is crucial: The average gap increases

almost linearly with a quite small slope. In all the experiments, the average gaps for the dynamic models

are slightly better than those of the static models. When it comes to the effect of the load-factor, we

observe that the difference between static and dynamic models in terms of the average gap decreases

marginally as the load factor increases.

5. Conclusions and Future Research. We have discussed that the proposed generic framework

is quite promising for extending various single-leg models to a network setting. We have illustrated this

observation through two illustrative examples, one of which led to a new model that was not considered

before in the literature. We have also discussed that several well-known models from the literature can

also be modeled in our framework, and consequently, one may save some computational effort by solving

them with the proposed two stage approach.

Our computational study on a set of real-life instances demonstrates that when the network size is

moderate, OD-based strategies using allocations, in particular the dynamic model, perform quite well.
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However, as the network size becomes larger, the OD-based strategies relying on bid-prices take the

lead. Overall, the results obtained by the proposed OD-based dynamic models are very encouraging. By

solving the dynamic model, one obtains both the allocations and the bid-prices. Therefore, moderate or

large, different network problems with varying sizes can be solved effectively by the proposed OD-based

dynamic model. Furthermore, the optimal objective function value of the OD-based dynamic model

gives a lower bound for the complete dynamic model that suffers from the curse of dimensionality. When

used with the upper bound obtained from the well-known deterministic linear program, the difference

between these upper and lower bounds can help the decision makers to estimate their loss by committing

to a heuristic rather than solving the complete dynamic model. A possible disadvantage of using the

proposed OD-based decomposition, however, may be undermining the impact of capacity sharing. Since

the capacity allocated to each OD-pair is independent of the other pairs, the control of the network-wide

inventories may be poor. This performance decrease can be more significant as the network becomes

large and congested.

We have shown that the generic mathematical programming model is NP-hard. However, our nu-

merical experiments have indicated that solving the linear programming relaxation and rounding down

its optimal solution gives an integer solution with an objective function value close to the optimal value.

One may invest more effort in identifying even a better integer solution but we believe solving the integer

problem to optimality is not the major issue. As also observed by other researchers, it seems much more

important to come up with a new method that considers the cross-effects of capacity sharing among the

OD-pairs when the network size becomes very large.

As we mentioned in Section 3.3, the recent studies in single-leg airline revenue management concentrate

on customer choice models as well as on those models that consider inaccuracies with the stochastic

information. The optimal policies proposed by some of these single-leg models lead to objective functions

that are discrete concave in terms of the capacities. Therefore, these models can also be extended to

a network setting with the proposed construction here. An important issue in revenue management is

overbooking. Again following our construction here, the overbooking problem over a network of flights can

also be solved in two stages; for instance, Aydın et al. (2012) gives approximate overbooking models for

single-leg models that satisfy our assumptions. However, if one partitions the capacities and determines

the overbooking limits for each OD-pair independently, then these limits would accumulate on flight legs

that are used by many itineraries. This would then not only overshoot the overbooking cost but also

makes it significantly more difficult to decide which itinerary’s customers should be denied boarding.

Using the bid-prices of the overall problem may be a remedy to avoid the partitioning of the capacities

but the challenge of evaluating the overbooking cost correctly remains.
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Aydın, N., Birbil, Ş. İ.., Frenk, J. B. G., and Noyan, N. (2012). Single-leg airline revenue management

with overbooking. Transportation Science, in press.

Ball, M. O. and Queyranne, M. (2009). Toward robust revenue management: Competitive analysis of

online booking. Operations Research, 57:950–963.

Belobaba, P. P. (1987). Air Travel Demand and Airline Seat Inventory Management. PhD thesis, Flight

Transportation Laboratory, Massachusetts Institute of Technology, Cambridge, MA.

Bertsimas, D. and De Boer, S. V. (2005). Simulation-based booking limits for airline revenue management.

Operations Research, 53:90–106.

Bertsimas, D. and Popescu, I. (2003). Revenue management in dynamic network environment. Trans-

portation Science, 37:257–277.
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