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Keywords: financial risk management, optimal first-order methods, covariance

matrix estimation, semidefinite programming

Abstract

In this thesis the problem of interest is, within the setting of financial risk man-

agement, covariance matrix estimation from limited number of high dimensional

independent identically distributed (i.i.d.) multivariate samples when the random

variables of interest have a natural spatial indexing along a low-dimensional mani-

fold, e.g., along a line.

Sample covariance matrix estimate is fraught with peril in this context. A variety

of approaches to improve the covariance estimates have been developed by exploiting

knowledge of structure in the data, which, however, in general impose very strict

structure.

We instead exploit another formulation which assumes that the covariance ma-

trix is smooth and monotone with respect to the spatial indexing. Originally the

formulation is derived from the estimation problem within a convex-optimization

framework, and the resulting semidefinite-programming problem (SDP) is solved

by an interior-point method (IPM). However, solving SDP via an IPM can become

unduly computationally expensive for large covariance matrices.

Motivated by this observation, this thesis develops highly efficient first-order

solvers for smooth and monotone covariance matrix estimation. We propose two

types of solvers for covariance matrix estimation: first based on projected gradients,

and then based on recently developed optimal first order methods. Given such

numerical algorithms, we present a comprehensive experimental analysis. We first

demonstrate the benefits of imposing smoothness and monotonicity constraints in

covariance matrix estimation in a number of scenarios, involving limited, missing,



and asynchronous data. We then demonstrate the potential computational benefits

offered by first order methods through a detailed comparison to solution of the

problem via IPMs.
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TEKDÜZE VE PÜRÜZSÜZ ORTAK DEĞİŞİNTİ MATRİSİ KESTİRİMİ

İÇİN HIZLI ALGORİTMALAR

Adrian Aycan Corum

Elektronik Mühendisliği, Yüksek Lisans Tezi, 2012

Tez Danışmanı: Yard. Doç. Dr. Müjdat Çetin

Anahtar Sözcükler: finansal risk yönetimi, optimal birinci derece yöntemler, ortak

değişinti matrisi kestirimi, yarı kesin programlama

Özet

Bu tezin üzerine eğildiği problem, finansal risk yönetimi bağlamında, bağımsız

özdeş dağılımlara sahip sınırlı sayıda ve yüksek boyutlu çok-değişkenli örneklerden

söz konusu rasgele değişkenlerin düşük-boyutlu bir çok-katmanlı (örneğin bir doğru)

boyunca kendiliğinden uzamsal bir dizilimi olması koşulu altında ortak değişinti

matrisi kestirimidir.

Örneklem ortak değişinti matrisi kestirimi yaklaşımı söz konusu çerçeve içinde

birçok risk barındırmaktadır. Ortak değişinti matrisi kestirimlerini geliştirmek ama-

cıyla verinin yapısı hakkındaki bilgilerden faydalanan birtakım yaklaşımlar geliştiril-

miş olsa da genelde hepsi çok katı yapılar empoze etmektedirler.

Bu tezde ise, ortak değişinti matrisinin bahsi geçen uzamsal dizinlemeye göre

tekdüze ve pürüzsüz olduğunu varsayan farklı bir formülasyondan yararlanmaktayız.

Bu formülasyon orijinal olarak söz konusu kestirim probleminden dışbükey eniyileme

çerçevesi dahilinde türetilmiş olup sonucunda elde edilen yarı kesin programlama

problemi (SDP) bir dahili nokta yöntemi (IPM) ile çözülmektedir. Fakat bir IPM’ni

SDP ile çözmek büyük ortak değişinti matrisleri için hesaplama bakımından aşırı

masraflı olabilir.

Bu gözlemden harekete geçerek, bu tezde tekdüze ve pürüzsüz ortak değişinti

matrisi kestirimi için yüksek verimli birinci derece çözücüler geliştirmekteyiz. İlki

izdüşümsel gradyanlar, ikincisi de yeni geliştirilmiş optimal birinci derece yöntemler

üzerine dayalı olmak üzere ortak değişinti matrisi kestirimi için iki çeşit çözücü

önermekteyiz. Bu sayısal algoritmalar ile kapsamlı bir deneysel analiz sunmak-

tayız. Öncelikle verilerin sınırlı, eksik, veya zamanuyumsuz olduğu durumlarda

ortak değişinti matrisi kestirimi üzerinde tekdüzelik ve pürüzsüzlük kısıtlarını uygu-



lamanın faydalarını göstermekteyiz. Sonrasında birinci derece yöntemlerimizin olası

hesapsal faydalarını problemin IPM ile çözümüyle ayrıntılı bir şekilde karşılaştırarak

göstermekteyiz.
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Chapter 1

Introduction

In this thesis the problem of interest is covariance matrix estimation from limited

number of high dimensional independent identically distributed (i.i.d.) multivariate

samples when individual random variables of the random vector have a natural spa-

tial indexing along a low-dimensional manifold, e.g., along a line. For this problem

we take as basis the smooth-monotone estimation formulation that allows all the

elements of the covariance matrix to be treated as separate parameters, but requires

the covariance function to be smooth and monotone with respect to this index-

ing. The primary aim of the thesis is to develop highly efficient first-order solvers

for this smooth-monotone formulation. The secondary aim is to present extensive

simulations of (1) the developed first order solvers, which are based on this formu-

lation, regarding their computational benefits and of (2) the smooth and monotone

covariance estimation formulation regarding its accuracy.

1.1 Motivation

Modeling joint statistical dependence among a collection of random variables is one

of the central problems in statistics, machine learning and engineering. A recent

trend in these areas has been the analysis of high-dimensional models where the

number of parameters may be comparable or higher than the number of available

data points. This is because lately many of the applied problems have grown increas-

ingly high-dimensional, making these models not only of considerable theoretical

interest but also of practical importance in applications such as financial portfolio

management in financial engineering, pathway discrovery in gene-regulatory net-

works, computer vision, and many others in numerous other areas, including social

networks and brain and cognitive science. The covariance matrix remains one of the

the most popular tools for capturing the strength of association among the variables.

However, even estimating the covariance matrix from i.i.d. multivariate samples
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in high-dimensions is very challenging when one is faced with limited data. It is

well-known that the sample covariance matrix is fraught with peril in this setting.

In particular, the inconsistency of its eigenvalue spectrum has grave implications for

financial risk management when the sample covariance estimate is used within the

Markowitz portfolio optimization framework [32]. A variety of approaches to im-

prove the covariance estimates have been developed by exploiting knowledge of struc-

ture in the data, including low-rank models (principal component [2,20] and factor

analysis [21]), sparse inverse covariance [6], and parametric models [13]. Although

these models have successful practical applications in their respective domains, in

general they manage to reduce the required number of samples by imposing very

strict structure.

The limitations of the mentioned models leave an open end to study other for-

mulations assuming a different prior that does not directly limit the number of pa-

rameters but still reduces the complexity of the space of their joint configurations.

These more flexible formulations may be constructed in an optimization framework,

Once this framework is exploited, then the speed and efficiency of the algorithm

used for solving the formulation become an important practical aspect.

1.2 Problem Definition and State of the Art

The problem we want to solve, as mentioned at the beginning of this chapter, is

covariance matrix estimation from limited number of high dimensional i.i.d. mul-

tivariate samples when individual random variables of the random vector have a

natural spatial indexing along a low-dimensional manifold, e.g., along a line (To

visualize, one may think of, for example, acoustic measurements at microphones

along a linear sensor array. Note that the indexing is spatial). We will consider

this problem within the setting of financial risk management, where the Gaussian

model of risk is the underlying assumption of the Markowitz portfolio optimization

framework [34] widely used in the industry. To be specific, we will consider the appli-

cations of this problem in interest rate term-structure modeling (Again for example,

this time one may think of daily changes in prices of Eurodollar futures contract

with expiration k quarters (multiples of 3 months) from the present. In this case

the indexing is with respect to k, again a spatial indexing.). When large collection

of financial instruments are modeled in this setting, these instruments cause this

setting to be not only high dimensional due to the large size of the collection but

also interpretable as scarce data due to the fact that typically the data are quickly

evolving, rendering the old samples unreliable and hence limiting one to use only

recent samples.

Both statisticians [32] and practitioners have realized that using the sample co-
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variance matrix estimate is a disastrous choice when one is modeling large collection

of financial instruments in the setting of financial risk management. The sample

covariance matrix with scarce data produces an inconsistent estimate of the eigen-

value spectrum, and when it is used to create optimized portfolios the solution tends

to prefer those instruments which have underestimated risk. The end-result could

be a vast understatement of risk of the Markowitz portfolio. Therefore, although

the sample covariance matrix estimate is unbiased and consistent in the high-sample

regime, it requires strong regularization in the high-dimensional scarce data setting.

Progress can be made by relying on prior knowledge of the structure of the data.

Here, it is crucial to describe such a structured model carefully so that the complex-

ity of the parameter space can be simplified dramatically without adding significant

bias. However, in general, the assumptions for existing methods tend to impose too

strong of a structure, such as in the models briefly mentioned in the following.

A widely used assumption stipulates that the data lie on or near a low-dimensional

manifold, in particular a linear manifold. For covariance matrix estimation this

translates into principal component analysis (PCA) or factor analysis (FA) [35].

The covariance matrix is assumed to be low-rank plus perhaps a diagonal noise

term, thus reducing the number of parameters from N2 to NK, where N is the

dimension and K is the assumed rank. Another approach relies on the sparsity of

the information matrix, i.e., the inverse of the covariance matrix. This is known as a

covariance selection model in statistics and as Gaussian graphical model or Gaussian

Markov Random Field (MRF) in machine learning [7, 19]. The pattern of nonzero

elements of the information matrix captures the conditional independence struc-

ture, with the number of such elements often assumed to be bounded by a small

constant K, again reducing the total number of parameters to NK. Banded covari-

ance matrices that allow only a certain number of nonzero diagonals (bands) have

been investigated in [30]. Parametric models provide another popular regulariza-

tion choice by assuming that entries of the covariance matrix follow some functional

form: for example the i, j-th element P(i,j) of the covariance may be assumed to

decay exponentially or as a power-law with some notion of distance from i to j, e.g.,

P(i,j) ∝ exp(−d(i, j)). Gaussian Processes (GP) constitute a general framework for

such models [13]. Shrinkage estimates [31] take a weighted combination of the sam-

ple covariance matrix and a strongly-regularized model (such as low-rank). While

they do improve the expected mean-squared error, they do not add any new kind

of structure. We note that all of the above models have very successful domains of

applications, but in general they manage to reduce the required number of samples

by imposing very strict structure.

In this thesis we instead use the formulation originally presented in the short

paper [28] which investigates a different prior for random vectors indexed along a

3



low-dimensional manifold. This formulation allows all the elements of the covariance

matrix to be treated as separate parameters, but requires the covariance function

to be smooth and monotone (isotonic) with respect to this indexing, a natural

assumption for a variety of problems including those in our setting of financial risk

management, e.g., interest-rate risk modeling in financial engineering. While not

directly limiting the number of parameters, the complexity of the space of their

joint configurations is thus reduced: this is a regularization approach to covariance

estimation.

Related approaches have been studied in nonparametric statistics for applications

including monotone density and function estimation, spline smoothing, etc. [38].

Moreover, the smoothness of the covariance function has been mentioned in prior

work: its importance was noted in [36], where smoothness of covariance functions

via local-cosine bases expansions was used, and it was used as an assumption in [37]

to efficiently approximate variances in large-scale Gaussian MRF models. However,

in this thesis we are specifically interested not just in the diagonal of the covariance

matrix or its near-diagonal elements, but rather in the whole covariance matrix, just

like in [28], which also does not assume any MRF structure.

1.3 Contributions of the Thesis

We take the covariance matrix estimation approach in [28] as the basis of this thesis.

Our first contribution, described in Section 3.3, is to demonstrate the application of

this approach on a number of examples not only with limited data, but also with

missing and asynchronous data after describing its extensions to problems with

such data. With these extensions and experiments we show that it has the potential

to provide more accurate covariance matrix estimates than existing methods and

exhibits a desirable eigenvalue-spectrum correction effect.

A novel aspect of applying the approach in [28] is the inherent requirement of

semipositive-definiteness, and in that paper the estimation problem was formulated

as semidefinite programming (SDP) and solved via an interior-point method (IPM).

However, solving SDP via an IPM can become unduly computationally expensive

for large covariance matrices, as it involves computing the Hessian. This is the

motivation behind the main contribution of this thesis, which appears in Chapter

4. We present an alternate perspective and develop optimal first-order methods for

solving this optimization problem, especially with much larger covariance matrices.

In our derivation we first adapt the projected gradient method of [26] and accelerate

it following the ideas in [25].

Our final contribution, appearing in Section 4.5, is to demonstrate the compu-
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tational benefits offered by the first order methods we develop and to provide a

detailed comparison to solution of the problem via IPMs.

1.4 Thesis Organization

The remainder of this thesis is organized as follows.

� Chapter 2 – Background. In this chapter, we first overview a number of ex-

isting covariance matrix estimation approaches for the low sample regime. Before

starting this overview, we first explain and demonstrate the perils of using sam-

ple covariance matrix estimate in this setting, the simplest approach in covariance

matrix estimation. In order to improve on the sample covariance matrix estimate,

some kind of prior should be assumed. Therefore, the methods we present in the

overview rely on prior knowledge of the structure of the data, which include prin-

cipal component analysis and factor analysis, sparsity of the information matrix,

and parametric models. We also mention some other relevant methods, i.e., banded

approximation model and shrinkage estimate, at the end of the section. We then

provide some mathematical preliminaries which will be of use in the thesis.

� Chapter 3 – Smooth and Monotone Formulation for Covariance Matrix

Estimation. This chapter contains the formulation of covariance estimation in [28]

as an optimization problem involving a data fidelity term as well as constraints im-

posing smoothness and monotonicity of the covariance matrix. We first motivate

this formulation in Section 3.1. Following, in Section 3.2, we formulate the estima-

tion problem in a convex-optimization framework, and propose solving the resulting

semidefinite-programming problem by an interior-point method. In Section 3.3, we

make our first contribution by demonstrating the application of our approach on

a number of examples with limited, missing and asynchronous data, and showing

that it has the potential to provide more accurate covariance matrix estimates than

existing methods, and exhibits a desirable eigenvalue-spectrum correction effect.

� Chapter 4 – Fast Algorithms for Smooth and Monotone Covariance

Matrix Estimation. Solving an SDP using an IPM as proposed in Chapter 3

can become unduly computationally expensive for large covariance matrices, as it

involves computing the Hessian. In this chapter we make our main contribution

through Sections 4.2 - 4.4 by developing optimal first-order methods for solving

this optimization problem. In our derivation we first adapt the projected gradient

method of [26] and accelerate it following the ideas in [25]. Therefore, first of all, in

Section 4.1 we start with revisiting the original gradient projection method developed

by Boyd and Xiao [26]. After that section we start developing our ideas to produce

faster algorithms. For pedagogical reasons, we first develop these ideas for the special

5



case of our problem which contains monotonicity constraints only. Therefore, we

start with describing a dual first-order method based on gradient projection [26] for

our monotone problem in Section 4.2. Following, in Section 4.3, we develop a dual

projected coordinate descent solution for our smooth and monotone problem, which

is also a first-order method, inspired from the method developed for the monotone

problem. In Section 4.4 we develop even faster versions first for our monotone

problem and then for our smooth and monotone problem using FISTA, i.e., the

optimal first order ideas of [25]. Finally, we present our final contribution in Section

4.5 as a detailed experimental analysis demonstrating the computational benefits

offered by the algorithm we develop in this chapter.

� Chapter 5 – Conclusion. This chapter provides concluding remarks and sum-

marizes the main contributions of this thesis. Several extensions to the ideas pre-

sented here are discussed, with a number of suggestions for further research.
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Chapter 2

Background

In this chapter we overview a number of existing covariance matrix estimation ap-

proaches for low sample regime. Before starting this overview, we first explain and

demonstrate in Section 2.1 the perils of using in this setting sample covariance ma-

trix estimate, the simplest approach in covariance matrix estimation. In order to

improve on the sample covariance matrix estimate, some kind of prior should be

assumed. Therefore, the methods we present in the following overview rely on prior

knowledge of the structure of the data. We explain principal component analysis

and factor analysis in Section 2.2, sparsity of the information matrix in Section 2.3,

and parametric models in Section 2.4, mentioning some other relevant methods as

well in Section 2.5. The important point here from our perspective is that all of these

methods have successful practical applications in their domains but also limitations

since in general they manage to reduce the required number of samples by imposing

very strict structure.

2.1 Sample Covariance Matrix Estimate

The sample covariance matrix

P̂ , 1
T

∑N
i=1 x(ti)x(ti)

T (2.1)

is an unbiased and consistent estimate in the high-sample regime, T/N → ∞, but

with scarce data it has well-documented failures [32]. In particular, the eigenvalue

spectrum is biased with T/N held fixed, as T → ∞. This creates a significant

problem when sample covariance is used for risk-modeling in Markowitz portfolios:

the optimized portfolio tends to be aligned with the most underestimated compo-

nents of risk, and with less weight in over-estimated ones, causing severe overall risk

underestimates [32].

Consider the eigenvalues of the sample covariance matrix obtained from T i.i.d.

samples from the multivariate standard normal N (0, I) in N -dimensions, with ρ =
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Figure 2.1. Marcenko-Pastur law and the sample eigenvalue spectrum from
N (0, I). True eigenvalues are all 1.

N/T . The true eigenvalues are all 1. The sample eigenvalue spectrum asymptotically

follows the Marcenko-Pastur law1 illustrated in Figure 2.1:

fp(x) =
1

2π

√
(y+ − x)(x− y−)

x
,

where y± = (1±√
ρ)2. Hence, the smallest eigenvalue (corresponding to the direction

which allegedly has the least risk) is a severe underestimate of its true value 1 for

small and moderate T .
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Figure 2.2. (a) True spectrum, N = 150. (b) Spectrum from sample covariance,
T = 500 (c) T = 10000.

To illustrate the gravity of the problem we consider a numerical example with

N = 150 in Figure 2.2. The true covariance is taken to have a blocky eigen-spectrum

in plot (a). With T = 500 samples the sample covariance matrix produces a very

smoothed-out eigen-spectrum in plot (b). Even with T = 10, 000 in plot (c), we still

get a very distorted spectrum! (We will see in Subsection 3.3.5 that our approach

provides a much superior spectrum estimate than the sample covariance. This can

greatly help to mitigate the problem of bad risk forecasts in optimized portfolios

based on interest-rate curves.)

1The law is asymptotic, but empirically it also describes the finite sample cases well.
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2.2 Principal Component Analysis (PCA) and Factor Anal-

ysis (FA)

A widely used assumption for covariance matrix estimation is that the data lie

close to a low-dimensional subspace, which, for covariance estimation may translate

into PCA or FA [20]. In this respect, the motivation for PCA is to find a lower

dimensional subspace that captures most of the variance and this is done with eigen-

decomposition of the sample covariance matrix P̂ . Each principal component has a

corresponding eigenvector and eigenvalue, constituting

P̂ = QΛQT =
∑N

i=1 λiviv
T
i ,

where Q is N×N matrix of eigenvectors vi and where Λ is a diagonal N×N matrix

of eigenvalues λi, each corresponding to vi. These principal components are ordered

with respect to the information they carry about the matrix (their eigenvalues in

decreasing order to be specific). The assumption used in PCA, that most of the

variance in the real covariance matrix P lies in a K-dimensional subspace where

K < N [2], leads to the inference that only first K principal components carry

worthwhile information about P that hence an insignificant amount of error would

be made by attesting low-rank property to P , i.e., a rank of K < N . This reduces

the number of parameters from N2 to NK, and the covariance matrix estimate for

PCA becomes

P
∗
PCA =

∑K
i=1 λiviv

T
i , (2.2)

FA, or EFA (Exploratory Factor Analysis), is a related technique that assumes

that P can be decomposed as a sum of a rank-K matrix and a diagonal matrix and

which reduces the number of parameters to approximately again NK. FA is a latent

variable model [21] according to which the random vector x = (x1, x2, ..., xN)
T of

size N is actually determined by a smaller random vector s = (s1, ..., sK)
T , which

is of size K < N and where sj’s are independent, with a linear relation A plus an

independent zero-mean random error vector e = (ε1, ε2, ..., εN)
T :

x = As+ e,

i.e., each xi is determined by a linear combination of the sj’s plus an independent

zero-mean error term εi:

xi = [A](i,1)s1 + ...+ [A](i,K)sK + εi, for all i = 1, ..., N.

This assumption reduces P to a sum of a diagonal term Dε (dictated by the

structure of independent errors) and a matrix AAT of rank K which results from
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the linear transformation of s, reducing as well the number of parameters toN+NK:

PFA = PX = APSA
T + Pε = AAT +Dε, (2.3)

where the result PS = I by the assumption of independence of sj’s is exploited.

In all implementations of FA, eigen-decomposition of P̂ and its first K factors

are involved. The rest of the implementation, however, depends on how the diagonal

term is structured. In the simplest case the diagonal term is just the identity matrix

multiplied by a common standard deviation σ, then the problem reduces to just

finding σ and the factors. In that case, if in addition N−K eigenvalues of P̂ are

equal to σ2, both of these values can be found by the mentioned eigen-decomposition,

without the need for iteration [4,5]. Otherwise and also in the case that the diagonal

term is allowed to have arbitrary positive standard deviations, the first K factors

and the diagonal term are fitted iteratively.

It is important to note here that although PCA and FA are related models, PCA

is strictly a dimensionality reduction technique, while FA often comes from assuming

a generative model. One of most important resulting distinction is that FA treats

the covariance and variance separately (with AAT and Dε, respectively) whereas

PCA treats them identically [3, 21].

There are of course cases where these low-rank models work great, but their

corresponding assumptions may not be always valid.

2.3 Sparsity of the Information Matrix

An information matrix is by definition the inverse of a covariance matrix, and there

is a class of models using the sparsity of the information matrix. This method is

again used to reduce the total number of parameters to NK, by usually bounding

the number of nonzero elements of the information matrix by a constant K. The

reason for limiting the number of these elements is that the structure of conditional

independence is reflected by the pattern of these elements. The idea of sparsity of

the information matrix is realized under different names in separate disciplines. It is

known as a covariance selection model in statistics and as Gaussian graphical model

or Gaussian Markov Random Field (GMRF) in machine learning.

The development in the rest of this subsection follows that in [6]. A graphical

model in this context represents the joint probability distribution, and the aim in

using this model is to decompose the distribution into products of simple local func-

tions that only depend on small subsets of variables. In the graph, a random variable

is associated with each vertex, and the edges or cliques represent the local functions.

In areas such as computer vision and genomics the graph may have a direct physical
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meaning such as the embodiment of the similarity among nearby pixels or biological

interactions among genes as the edges and vertices respectively, in others it may

not have such a meaning and may be heavily used for the goal of efficiency. The

important point here is that what captures the conditional independence structure

among the random variables is this graph, and it makes the concept of graphical

models very effective.

To be able to use a graphical model in an application, choosing one of its special

cases is essential. One of the options is to restrict the model simultaneously to

undirected graphs, i.e. Markov random fields (MRF), and to variables with jointly

Gaussian distribution. With these two restrictions we are now looking at what is

called GMRF (or also Gaussian graphical model - GGM), while this model has been

earlier exploited with the name covariance selection model under the discipline of

statistics [7, 8]. These models are again used in numerous areas, including machine

learning and optimization, especially for quadratic problems [10, 11, 12].

What makes the GGM so special among the graphical models is that the men-

tioned structure of conditional independence among certain sets of variables can be

simply and explicitly obtained from the inverse covariance matrix J , P−1, i.e. the

information matrix. The explicitness is the key: When [J ](i,j) = 0, this corresponds

to the edge (i, j) being missing from the graph, and this leads to the direct inference

that xi and xj are conditionally independent given the rest of the variables. This

relates the sparsity of J to Markov structure, and major advantage of using J leads

to parameterizing the Gaussian probability density heavily in terms of J , an easy

modification since the original density already includes P−1 in the formulation:

p(x) ∝ exp
(
−1

2
(x−µx)TP−1(x−µx)

)
= exp

(
−1

2
(x−µx)TJ(x−µx)

)
∝ exp

(
−1

2
xTJx+ (Jµ)Tx

)
The way GGM reduces the total number of parameters in the model is to make

the prior model p(x) specify a sparse J matrix. Typically marginal densities (de-

scribed by marginal means and variances) at each node are used to compute the

MAP (max a-posteriori) estimate of x after adding the measurements on top of the

prior density and hence forming the posterior density.

One major downside of GGM is that its complexity is dominated by the matrix

inversion operation which has a cubic complexity in the number of the variables,

except for when there is an assumption that graph is very sparse or near-tree struc-

tured which is correspondingly a very heavy restriction. Another downside is of

course the direct restriction of parameters as in PCA and FA. Nevertheless, how-

ever, the method has always gathered a great attention and proposals for learning

methods to fit sparse inverse covariance matrices to the data (i.e. learning a GMRF)

have been one of the centers of this attention [9].
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2.4 Parametric Models

Parametric models assume that entries of the covariance matrix follow a functional

form, e.g., exponential or a power-law decay. This parametric function k : χ2 → R
cannot be arbitrary; it has to be positive definite, i.e., it should satisfy∫ ∫

χ2 k(x, x
′)f(x)f(x′) dx dx′ ≥ 0,

for all f ∈ L2(χ), where χ is the input space.

Gaussian Processes (GP) are a general framework for modeling random processes

as realization from a jointly Gaussian model with a specified parametric covariance

function [13]. While modeling random processes, the task of estimating the covari-

ance function the adapted GP will have is equivalent to determining what that GP

will exactly be. Therefore, this is a vital intrinsic task of the framework. To that

end, [13] presents the following table of some possible positive definite functions as

candidates for covariance function:

covariance function expression

constant σ2
0

linear
∑D

d=1 σ
2
dxdxd

polynomial (x · x′ + σ2
0)
p

squared exponential exp(− r2

2l2
)

exponential exp(− r
l
)

γ-exponential exp
(
−
(
r
l

)γ)
rational quadratic (1 + r2

2αl2
)−α

Table 2.1: Summary of several commonly-used covariance functions.

Not only one is limited to these covariance functions, but also it is possible to

create new covariance functions from existing ones. New covariance functions can be

obtained by several separate operations varying from the simple ones such as plain

summation and multiplication to more complicated ones such as convolution.

Both of the problems of choosing the appropriate covariance function and choos-

ing the ”hyperparameter”s of the corresponding covariance function are referred

to as ”model selection” or ”training of the Gaussian process” and needed to be

addressed in order to find a covariance function estimate at the end. Generally

the family and the parameters of this covariance function estimate is sought to be

selected such that average error with this estimate is minimized on unseen test ex-

amples. This covariance function estimate k can be used to find the covariance

matrix estimate P through [P ](i,j) = Cov(xi, xj) = k(xi, xj). It should be noted

that Gaussian processes are very flexible and allow to define the covariance over the
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continuous domain, interpolating the covariance function in between the samples

that we have seen. For our application this is typically not needed, as expirations of

financial contracts occur at specified discrete times, and interpolation is not needed.

The major shortcoming of parametric models is again its strict parametric re-

striction. Although it presents the opportunity to model covariance function in

many different forms, the true covariance matrix may not actually be following any

of these forms.

2.5 Other methods

Besides the methods presented, which are among the most frequently used for co-

variance matrix estimation, there are other methods again with assumptions on the

structure of the data. One of these approaches, which we may call banded approxi-

mation model [30], consists of allowing only a certain number of non-zero diagonals

(bands) in, namely banding or tapering, the sample covariance matrix or its inverse,

the latter achieved by the Cholesky decomposition of the inverse (the latter also

has connections with graphical models). One downside of this approach is that the

classes of covariance matrices that is described by [30] and referred to as the classes

for which banding makes sense, such as

K(m,C) = {P : [P ](i,i) ≤ Ci−m, for all i},

are very restrictive.

Another approach is to calculate the shrinkage estimates, which take a weighted

combination of the sample covariance matrix and a strongly-regularized model (such

as low-rank). For example in [31] this strongly-regularized model corresponds to the

identity matrix. While the general approach does improve the expected mean-square

error, it does not add any new kind of structure.
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Chapter 3

Smooth and Monotone

Formulation for Covariance

Matrix Estimation

This chapter contains our formulation of covariance estimation as an optimization

problem involving a data fidelity term as well as constraints imposing smoothness

and monotonicity of the covariance matrix. We first motivate our formulation in

Section 3.1. Following, in Section 3.2 we formulate the estimation problem in

a convex-optimization framework, and propose solving the resulting semidefinite-

programming problem by an interior-point method. In Section 3.3, we demonstrate

the application of our approach on a number of examples with limited, missing

and asynchronous data, and show that it has the potential to provide more accu-

rate covariance matrix estimates than existing methods, and exhibits a desirable

eigenvalue-spectrum correction effect.

� Bibliographic notes. The formulation is originally of D. M. Malioutov, who

presented first it in his short paper [28], from which therefore major part of Section

3.2 is borrowed, especially up until to Subsection 3.2.2. Some of the rest of this

chapter is based on our joint submission [29] reflecting research done in collaboration

with D. M. Malioutov, as parts of the rest of the thesis are.

3.1 Motivation

WE now introduce our setting for covariance regularization and motivate some

relevant applications. Our starting assumption is that the random variables

of interest have an ordering according to some manifold – for example they may be

acoustic measurements at microphones along a linear or a spatial array, or they may

be the changes in prices for interest rates along an interest rate curve. We aim to
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estimate the spatial (cross-sectional) covariance matrix for these types of random

variables from a scarce number of samples.

Parametric models of covariances may be too restrictive for some applications and

may introduce strong bias. We instead consider a non-parametric approach which

stipulates that the desired correlation structure “respects” the manifold ordering

– namely – the covariance function is monotonic with the manifold distance and,

furthermore, it is well-behaved – continuous or even smooth – along the manifold.

Both of these are very natural assumptions when dealing with spatial data. For

example in the sensor network case: if sensor i is located closer to sensor j than

to sensor k, then we expect the correlation [P ](i,j) to be higher than [P ](i,k). This

corresponds to the monotone structure in the covariance matrix. Also, knowing the

physics of the noise generating process one may have strong evidence not to expect

discontinuities in the correlation structure. This second point enables us to impose

smoothness for off-diagonal entries in the covariance matrix.

As implied in the first paragraph of this section, we can assume this kind of

structure not only for the case of modeling data covariances in sensor arrays and

other engineering topics such as computer vision, but also for computational finance

problems such as interest rate modeling. In the interest-rate example, when the i-th

contract is located closer to the j-th contract than to the k-th one, then we expect

the correlation [P ](i,j) to be higher than [P ](i,k). Also, again there is rarely a good

reason to expect discontinuities in the correlation structure.

3.2 Formulation and Solution through IPM

3.2.1 Formulation

We now formulate the regularization problem for smooth isotonic covariances for

processes consisting of variables that exhibit a natural ordering on a line. Sup-

pose we have a zero-mean (without loss of generality) random vector x(t), where

x(t) = (x1(t), ..., xN(t))
T . We are interested in the spatial covariance matrix of

x, P ∗ = E[xxT ], and also in the matrix of the correlation coefficients, [P̃ ∗](i,j) ∝
[P ∗](i,j)√

[P ∗](i,i)[P ∗](j,j)
. We assume that temporal correlation is negligible and ignore it in

this thesis. Suppose that only a small number of samples x(t1), ..., x(tT ) are available

with T comparable or even smaller than N . We aim to leverage the assumptions

of monotonicity and smoothness to get a better estimate of P ∗ than the ordinary

sample covariance matrix P̂ , 1
T

∑
ix(ti)x(ti)

T .

To that end we formulate a regularized covariance estimator. Let M be the class
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Figure 3.1: Term-rate covariances: (a) true (b) sample estimate.

of monotone positive semi-definite (psd) covariance functions:

M = {P |P ≽ 0, [P ](i,j) ≥ [P ](i,k) for i < j < k}. (3.1)

Then, we obtain our first monotonic estimate of the covariance as follows:

min
P
D(P, P̂ ) such that P ∈ M (3.2)

where D(P, P̂ ) is an error metric of our choice: we will use the squared Frobenius

norm

D(P, P̂ ) = ∥P − P̂∥2F =
∑N

i=1

∑N
i=1

(
[P ](i,j) − [P̂ ](i,j)

)2
, (3.3)

but KL-divergence and the operator norm are also possible. Note that the constraint

set M is a convex set, with linear and positive definiteness constraints, and for

natural choices of the metric D the objective will also be convex. When D is either

the operator norm or the Frobenius norm, our regularizer can be found as a solution

to a semi-definite programming problem (SDP). For the error metric, we can also use

Kullback-Leibler (KL) divergence, which for two-zero mean Gaussian distributions

with covariances P and Q is defined as

D(P ||Q) = 1

2
[log(detQP−1)) + tr(QP−1)−N ] (3.4)

Remark. If the true covariance indeed belongs to M, then projecting the sam-

ple covariance onto M is guaranteed to decrease the error1 due to the contraction

property of projections onto convex sets: ∥ΠM(P̂ − P )∥ ≤ ∥P̂ − P∥.

We now consider a computational example that we describe in detail in Section

3.3. In Figure 3.1 we plot a true smooth-monotone covariance, and the sample esti-

mate exhibiting finite-sample noise. In Figure 3.2 (a) we see that simply restricting

1If the projection is done with respect to the same metric with which we evaluate errors, e.g.,

the Frobenius norm.
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Figure 3.2: Covariance regularization: (a) monotone (b) monotone and smooth.

the covariance functions to be monotone produces a “staircase”-like effect. We do

not expect natural phenomena to exhibit such discontinuous effects, and we also re-

quire that the covariance functions have some degree of smoothness. To that end we

penalize the curvature over the surface of the covariance function P (x1, x2), namely

we penalize: ∫ ∫
S

(∇2P (x1, x2))
2dx1dx2 (3.5)

where S = {(x1, x2) | x2 > x1}. For a covariance matrix P this penalty imposes

smoothness in the upper-triangular part, avoiding smoothing over the diagonal. To

implement this numerically, over a discrete grid, we use the discrete version of the

Laplacian operator on the manifold at the point of interest v and then sum its square

over all v, yielding the penalty as∑
v

(
∇2
vf
)2
, where ∇2

vf =
∑

u∈N(v)

(f(xu)− f(xv)) (3.6)

Here, N(v) is the set of neighbors of point v: for covariance [P ](i,j) the neighbors of

vertex v = (i, j) can be set to (i± 1, j), and (i, j ± 1). The optimization problem is

now:

min
P

D(P, P̂ ) + λ
∑
v

(∇2
v(P ))

2 (3.7)

such that P ∈ M

where the parameter λ trades off smoothness with data-fidelity, and should ideally

be chosen automatically, e.g., via cross-validation. The problem is still convex: the

objective is convex quadratic, and the constraint set is semi-definite, making the

problem an SDP. To see the benefit of enforcing smoothness we contrast covariance

estimates in Figure 3.2 (a) and (b) and we see that this produces much smoother,

and also, as we will see in Section 3.3, more accurate estimates.
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Remark. It is straightforward to add additional constraints, e.g., [P ](i,i) = 1 to

(3.7) when dealing with correlation coefficient matrices, or positivity of correlations.

In such cases it is only needed to change the constraint set M from the class of

monotone covariance functions into a smaller set M′ which respects the additional

constraints.

3.2.2 Solution through IPM

In this subsection, we state that the optimization problem in (3.7) can be solved as

an SDP and show in what form it can be solved via IPM. As it was mentioned in the

end of the previous subsection, (3.7) is not only convex but also can be represented

as a semidefinite optimization problem [22]:

min ∥P − P̂∥2F + λ∥Ms ◦ (DsP )∥2F (3.8)

such that P ≽ 0, Mm,l ◦ (Dm,lP ) +Mm,u ◦ (Dm,uP ) ≥ 0

where the operations Ms ◦ (DsP ) and Mm,l ◦ (Dm,lP ) + Mm,u ◦ (Dm,uP ) encode

smoothness and monotonicity constrains, respectively. In other words, we will have

to select the matrices Ms, Ds, Mm,l, Dm,l, Mm,u and Dm,u such that

∥Ms ◦ (DsP )∥2F =
∑
v

(∇2
v(P ))

2, (3.9)

{P | Mm,l◦(Dm,lP ) +Mm,u◦(Dm,uP ) ≥ 0} ≡ M. (3.10)

We now first specify how we select these matrices and then explain its reasons.

Here, Ds is a (N−2)×N matrix of zeros except that [Ds](i,[i i+1 i+2]) = (1, −2, 1);

Ms is a matrix of ones except that [Ms](i,i−1) = 0; Dm,l and Dm,u are (N−1) × N

matrices of zeros except that [Dm,l](i,[i i+1]) = (1 −1) and [Dm,l](i,[i i+1]) = (−1, 1);

and Mm,l and Mm,u are (N−1) × N matrices of ones except that [Mm,l](i,j) = 0 for

i < j and [Mm,u](i,j) = 0 for i ≥ j.

Let us explain why the matrices are chosen such. The matrices Ds and Dm,l,

Dm,u compute differences of entries of P column-wise with weighting adjusted for

corresponding encoding. However, these matrices go over all of the entries of P

columnwise, and some of the entries of the products should be discarded for proper

encoding. To encode smoothness properly, i.e., to exclude the diagonals of P from

smoothness constraints, the masking matrix Ms of ones and zeros is multiplied with

DsP elementwise (denoted by the operator ◦) so that the elements of DsP corre-

sponding to smoothing over the diagonal of P are multiplied with zero while other

elements of DsP are multiplied with 1. Similarly, to encode monotonicity properly,

the masking matrices Mm,l and Mm,u of ones and zeros are multiplied elementwise

with Dm,lP and Dm,uP , respectively. Dm,l subtracts each row from the above row in
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P , hence Mm,l is selected such that it keeps the lower triangular part of the product

Dm,lP in order to represent column-wise monoticity in lower triangular part of P .

Similarly Mm,u and Dm,u are selected such that Mm,u ◦ (Dm,uP ) represents column-

wise monoticity in upper triangular part of P . Since positive semi definiteness is

another constraint on P , column-wise monoticity automatically guarantees row-wise

monoticity in P as well.

The resulting SDP problem (3.8) can be readily solved via an interior point

method using one of a number of standard SDP optimization packages, e.g., SDPT3

[23]. We are also using SDPT3 through YALMIP for the experiments of this chapter.

Note that again it is straightforward to add additional constraints, e.g., [P ](i,i) =

1 or positivity of correlations to (3.8), as it was for (3.7). For instance, the mentioned

constraints can be added by includingMd◦P =Md or P ≥ 0 in the constraint set of

(3.8), whereMd is a diagonal NxN matrix of ones and ≥ is elementwise comparison.

Such modifications don’t change the fact that the problem is still an SDP and it can

be readily solved through IPM.

A Brief Glance at Interior Point Methods

We now present a brief look at IPMs, summarizing from [35]. Due to the existence

of extensive theoretical results on their convergence and complexity combined with

their extreme reliability in practice, the use of IPMs is most attractive not only

for SDP but also for other special classes of convex programming such as second

order cone (SOC) programming and linear programming (LP), while they can also

be applied to various other linear and nonlinear programs.

Let us consider a general convex problem with a convex constraint region χ. The

basic idea of IPMs is to introduce a parameterized family of problems augmented

with a barrier function for the convex region. The barrier function has to be well-

defined in the feasible region, smooth, strongly convex2 in the interior of χ, and

increase to infinity as the boundary of χ is approached. By applying a barrier

function, the convex constrained problem is transformed into a family of convex

unconstrained problems which are infinite outside the feasible region of the original

problem. Then, Newton’s method is applied with reweighing on the these problems

to find a point sufficiently close to the original problem.

For the class of convex problems a theory of self-concordant3 barriers has been

developed [22], which can be used to prove polynomial-time convergence for all

2f(x) is strongly convex if it is convex, and additionally, (∇f(x)−∇f(y))T (x− y) ≥ α∥x− y∥22
for some α > 0, and ∀x, y ∈ Rn

3Self-concordance means satisfying several properties with respect to the local variability of the

Hessian of the barrier function.
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convex problems, including IPMs, when self-concordant barriers are used (for more

details refer to [1], and references therein). However, the worst-case results are not

representative of the average-case performance which is seen in practice. It has been

observed that using a faster step-size rule and a greater number of Newton’s steps

leads to much better practical performance. The worst case complexity results for

long-step IPMs however do not provide strong guarantees, unlike their short-step

counterparts.

3.3 Experimental Results

In this section we apply our proposed covariance estimation approach on an im-

portant problem in mathematical finance. In particular, we consider the problem

of term-structure modeling, which we first describe in the following subsection and

then on which we apply our method through Subsections 3.3.2 - 3.3.4, going through

mainly comparisons with other methods as well as a modification of our method for

the special scenario of missing data. In Subsection 3.3.5, we take a different direc-

tion and show how our method can be valuable for consistency of the eigenvalue

spectrum of the covariance matrix estimate in the high-dimensional setting with

limited data.

3.3.1 Term-structure Modeling

We now describe the interest-rate risk modeling problem that we will use as an

example of our smooth-monotone covariance estimation framework. The interest

rate curve describes the available interest rate as a function of the duration for

which the investment is locked in. The curve changes with time and takes on a

variety of different shapes. We expect the correlations between variables in the

curve to be monotonic with respect to the difference in duration, and also expect

not to have persistent discontinuities in such a structure – thus fitting well with the

framework in this thesis. (We note that the approach does not directly apply to

equities data, as there is no natural manifold ordering.)

To be specific we will look at the Eurodollar (ED) curve, which describes the

prices of the Eurodollar futures contract with expiration k quarters (multiples of 3

months) from the present. For historical reasons Eurodollars are measured as 100−x
where x is the interest rate for the contract. Some sample Eurodollar futures curves

as a function of time to expiration (delivery) are shown in Figure 3.3 for a few

different dates, with linear interpolation in between contracts4.

4Data used with permission from the Wall Street Journal online.
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At any time point t, we order the unexpired contracts with respect to their time

left to expiration (beginning from the closest one to expire) and call this index i (the

difference between the time left to expiration of two nearby contracts is 1 quarter,

i.e., 3 months). Therefore, if we let the random variable yi represent the price of

the i-th Eurodollar contract, then yi(t) is its realization at time t. When the 1st

contract expires (e.g., on March 11th, 2013), all the contracts roll over, i.e., the 2nd

contract (with expiration date June 11th, 2013) becomes the 1st, the 3rd contract

(with expiration date September 11th, 2013) becomes the 2nd, ..., the (N+1)-th

contract becomes the N -th, and so on.

Continuing with definitions, the i-th spread is defined as the random variable

xi , yi − yi+1, i.e., as the difference in nearby contracts, whose realization in each

time point t is xi(t) = yi(t) − yi+1(t). What we are interested in is the risk for a

portfolio of ED spreads, which will be defined via the covariances for daily changes

in prices of the spreads, i.e., via the covariance matrix of the random variables ∆xi,

whose each realization is ∆xi(t) = xi(t)−xi(t−1), for i = 1, ..., N (we only consider

the first N spreads).

The reason we are focusing on the spreads instead of the future contracts is that

the main component of risk in term-rate models is a parallel shift, i.e., same amount

of change in the prices of all future contracts. One is almost hedged against (i.e.,

not sensitive to) parallel shifts in the curve if no net position is taken in future

contracts. Therefore, practically, for some trading desks the requirement is that

they are almost flat futures, but they can hold some spreads, for risk purposes.

A popular model for the term-rate curve is based on PCA and approximates

the covariance by three main PCA factors, having informal interpretation of level,

slope, and curvature. However, a more accurate covariance model may be desired

when dealing with spreads, as the dominant first principal component gets largely

removed. It shoud also noted that for this reason using the Eurodollar futures curve
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Figure 3.4: Alternative estimates: (a) MRF (b) PCA.

for our experiments and focusing on risk in ED spreads makes covariance estimation

more challenging.

3.3.2 Experiments with a Known Underlying Covariance

Matrix

In our first experiment we generate a number of samples from a known smooth

monotone covariance P , and use them to estimate P . It should be noted that in

practice one never has the ’true’ covariance – here we took a sample covariance from

ED data, and smoothed it, as a proxy for the true one.

In Figure 3.1 we show the true covariance, and the sample estimate, for the case

of N = 40, T = 40. In Figure 3.2 we apply (a) our monotone and (b) smooth-

monotone regularization5 from (3.2) and (3.7), respectively. We can see that while

the monotone version suffers from the stair-case effect, the smoothed version looks

qualitatively close to the true covariance.

For comparison we compute the PCA estimate with K = 3 and an MRF model

estimate with the information matrix restricted to have K = 5 non-zero diagonals,

learned by iterative proportional fitting (IPF). Figure 3.4 shows that the estimated

covariance matrices exhibit only a rough similarity to the original.

Finally, we compute the average Frobenius error over 25 trials and present the

results in Figure 3.5 for all the methods, as a function of the number of available

samples. The Gaussian MRF, and the PCA methods are biased for fixed K: the

estimates do not improve with more samples. However, the monotone and the

smooth-monotone estimates provide a significant improvement in accuracy over the

5For simplicity λ was set by trial and error in these experiments.
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sample covariance. These results suggest the appeal of our approach.

3.3.3 Missing data

Missing data plagues all of applied science and has many incarnations in finance:

(i) prices for illiquid instruments may not be available for days, (ii) related products

in the futures space may have different expirations: one product may expire while

a related product is still active, (iii) holiday schedules in different countries do not

generally agree: prices for financial instruments are not available when the corre-

sponding market is closed. To illustrate robustness to missing data we consider an

example where some entries in the sample covariance matrix are missing (unknown).

Suppose that we have P̂ for only some subset I of entries: (i, j) ∈ I ⊂ {1, .., N}2,
and no observations for the rest. Our smooth-monotone optimization formulation

can be immediately adapted to this setting:

min
P

DI(P, P̂ ) + λ
∑
v

∇2
v(P )

such that P ∈ M,

where, since for D we use the squared Frobenius norm, DI becomes

DI(P, P̂ ) =
∑

(i,j)∈I

(
[P ](i,j) − [P̂ ](i,j)

)2
This does not affect the convexity of the problem, and can be solved using the

same optimization methods. We continue our interest-rate curve example, with

N = 40, and T = 50 samples, and 10-percent of the samples missing. The sample

covariance matrix for this case is shown in Figure 3.6 (a). For this missing data

problem, the covariance matrix estimated by our proposed approach is shown in 3.6

(b). Clearly the approach is very robust against moderate missing data and recovers

a very similar estimate to the fully observed case.
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Figure 3.6. (a) Sample covariance with missing data. (b) Recovered smooth-
monotone covariance.

3.3.4 Out-of-sample Covariance Prediction

We now present a study of forecasting future correlation coefficient matrices over

several years of historical data of ED prices. The accuracy of this prediction is

crucial since portfolio selection methods, such as Markowitz portfolios, depend on

it in order to optimally allocate assets.

To be specific, we first compute the sample correlation coefficient matrix over a

training window of TTR business days and use this matrix to estimate the correlation

coefficient matrix using our proposed method as well as alternative methods. We

then compute the realized (i.e., sample) correlation coefficient matrix over a test

window, of TTEST business days immediately following the training window, and

compare it to our forecasts. The experiment uses running windows with shifts of 5

business days over the course of a year. The data set we use contains information

regarding 40 future contracts at a time, corresponding to 39 spreads; therefore, for

correlation coefficient matrix sizes of 40 or larger we artificially create new future

contracts by linearly interpolating the daily prices of already existing futures and

calculate new spreads from these new future contracts.

In Figure 3.7 we show the average error (in Frobenius norm) as a function of

TTR with TTEST set to 50, when the ratio k , TTEST/TTR is 4. We observe that

PSM performs significantly better and gives much smaller errors than the other

methods. Figure 3.7 (c) shows the percentage improvement of smooth-monotone

over the sample estimate. Smooth and monotone regularization appears especially

valuable for small TTR, demonstrating its robustness in forecasting risk in scenarious

with severely limited data.

Since Figure 3.7 (c) shows the performance of PSM versus P̂ for a single value
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Figure 3.7. (a) Frobenius error over running windows. (b) Average Frobenius
errors as a function of training window length. (c) Average percentage improvement

of forecast error from PSM over P̂ .

of k, we extend this analysis of percentage improvement of smooth-monotone over

the sample estimate to several k in Figure 3.8 (a). Here we can see that the relative

performance of PSM improves as k increases and observe the same relative behavior

over TTR for all k. As an example for the latter, PSM outperforms P̂ most always

when TTR is around 15. The improvement PSM provides over P̂ becomes more

pronounced for relatively smaller training windows, demonstrating its robustness in

limited data scenarios. To provide further evidence, in Figure 3.8 (b) we present

a similar analysis, this time for several TTEST values instead of k, and observe a

similar behavior.
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3.3.5 Spectral Correction

As we mentioned in Chapter 2, in Section 2.1 to be specific, one of the symptoms of

a catastrophic breakdown of the sample covariance estimate in the high-dimensional

setting with limited data is the inconsistency of the eigenvalue spectrum. We pro-

vide motivation and conduct a numerical study showing that smooth and monotone

regularization can help dramatically in that respect.

A particularly important and challenging case for correcting the eigenvalue spec-

trum of a sample covariance matrix is the asynchronous setting arising in practical

applications. When several time series occur at different temporal resolutions, in

order to estimate the covariance matrix it is easiest to look at each pair of time se-
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Figure 3.9: Projection onto the p.s.d. cone vs. smooth and monotone solution.

ries, align6 them, and compute the pairwise covariance. However, once this is done

for each pair, the covariance matrix is no longer guaranteed to be positive definite.

Previous solutions to fix this defect simply projected the covariance matrix onto the

space of p.d. matrices [27]:

minD(P, P̂ ) such that P ≻ 0 (3.11)

For the case of D(P, P̂ ) = ∥P − P̂∥2f , there is a closed form solution based on the

eigen-decomposition: take P̂ = USV T , where U and V are orthogonal, and S is

diagonal. Then the solution to (3.11) is simply

P ∗ = U max(S, 0)V T , (3.12)

i.e., the negative eigenvalues are set to zero.

We consider the merits of our smooth-monotone approach in spectral correction.

The motivation (mainly to build intuition, and not to be taken too literally) is

illustrated in Figure 3.9. When we find the closest p.s.d. matrix, we simply project

P̂ onto the p.s.d cone. However when we have side-information of smoothness and

monotonicity, then our approach will tend to guide the solution into the interior of

the p.s.d. cone and closer to the correct solution.

We consider a numerical example with N = 36, and T = 40 asynchronous

samples: each Pij is estimated from a pairwise sample {xi(t), xj(t)}t∈1,..,T , drawn
independent of other pairs. We fix P to be unit-diagonal. We use the asynchronous

covariance as P̂ , and apply our approach in (3.7). In Figure 3.10 we plot eigen-

values of the (i) true covariance matrix, (ii) asynchronous sample covariance (iii)

smooth-monotone fit to the sample covariance. The left plot shows the spectra,

with the detail shown in the middle plot. Sample-covariance spectrum breaks down

completely, with about half of the eigenvalues negative. Projection onto the p.s.d.

6For example one can re-sample the time series to include time points from both. This would

be very costly for much more than two series together.
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Figure 3.10. (a) True, sample, and smooth-monotone eigen-spectra. (b) detail
(c) log-scale of true and smooth-monotone spectra

cone would simply set the negative eigenvalues to zero, leaving the positive mis-

estimated eigenvalues intact. However, the smooth-monotone eigenvalue spectrum

follows the true one closely. A log-plot of the true and smooth-monotone spectra

appears in the right-most plot, and we see that indeed we match the spectrum very

closely! This experiment suggests that smooth-monotone regularization can be very

effective in spectral correction for covariance estimation, and is especially valuable

for asynchronous settings.

29



30



Chapter 4

Fast Algorithms for Smooth and

Monotone Covariance Matrix

Estimation

RECALL that in Chapter 3 we presented the smooth and monotone optimization

problem in (3.7) as:

min
P

D(P, P̂ ) + λ
∑
v

(∇2
v(P ))

2

such that P ∈ M

and solved the resulting semidefinite optimization problem given below (and in (3.8))

via an IPM:

min 1
2
∥P − P̂∥2F + λ∥Ms ◦ (DsP )∥2F

such that P ≽ 0, Mm,l ◦ (Dm,lP ) +Mm,u ◦ (Dm,uP ) ≥ 0

Solving SDP via an IPM can become unduly computationally expensive for large

covariance matrices, as it involves computing the Hessian. In this chapter, we present

an alternate perspective and develop optimal first-order methods for solving this

optimization problem. Such methods are an exciting recent development in opti-

mization, generalizing classical gradient projection by a clever use of smoothing and

acceleration techniques [24, 25]. An important requirement to use such methods

is that the projection onto the constraint set can be done efficiently. This can be

achieved by considering the dual of the problem in (3.8).

Our ultimate aim in this chapter is to convey the principles of how we develop

highly efficient first-order solvers for smooth and monotone covariance matrix es-

timation and to present this development. For pedagogical reasons, we first de-

velop these ideas for the special case of our problem which contains monotonicity

constraints only (see (3.2)). Therefore, we start with describing a dual first-order

31



method based on gradient projection [26] for our monotone problem in Section 4.2.

Following, in Section 4.3, we develop a dual projected coordinate descent solution

for our smooth and monotone problem, which is also a first-order method, inspired

from the method developed for the monotone problem. In Section 4.4 we develop

even faster versions first for our monotone problem and then for our smooth and

monotone problem using FISTA, i.e., the optimal first order ideas of [25]. Finally,

in Section 4.5 we present a detailed experimental analysis demonstrating the com-

putational benefits offered by the algorithm we develop in this chapter.

However, first of all we start with revisiting the original gradient projection

method developed by Boyd and Xiao [26] for a quick recall. This material will be

useful in derivation of our algorithms in the subsequent sections.

4.1 Original Gradient Projection Method Revisited

The optimization problem Boyd and Xiao solve in [26], i.e., the least-squares covari-

ance adjustment problem (LSCAP) is:

min 1
2
∥X −G∥2F (4.1)

such that X ≽ 0,

Tr AiX = bi, i = 1, ..., p,

Tr CjX ≤ dj, j = 1, ...,m,

where the matrices X, G, Ai, and Cj are N × N symmetric and real matrices.

All of these matrices except X are given. The Lagrangian of LSCAP (4.1) can be

simplified to:

L(X,Z, ν, µ) = 1
2
∥X −G∥2F +Tr X(−Z + A(ν) + C(µ))− νT b− µTd, (4.2)

where A(ν)=
∑p

i=1 νiAi, C(µ)=
∑m

j=1 µjCj, and ν1,...νp, µ1,...µm, and Z are Lagrange

multipliers. Setting the gradient of L with respect toX to zero, theX that minimizes

L is

Xm(Z, ν, µ) , G− A(ν)− C(µ) + Z. (4.3)

Substituting this expression for X back into the Lagrangian L and obtaining the

simplified dual function g(Z, ν, µ) = infX L(X,Z, ν, µ) = L(Xm, Z, ν, µ), the dual

problem is found:

maximize g(Z, ν, µ) such that Z ≽ 0, µ ≥ 0, (4.4)

where g(Z, ν, µ) = −1
2
∥G−A(ν)−C(µ)+Z∥2F + 1

2
∥G∥2F − νT b− µTd,
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Weak duality always holds for this problem [26]. Therefore, if the LSCAP (4.1)

is strictly feasible, i.e., there exists an X ≽ 0 that satisfies the constraints in (4.1),

then strong duality holds: there exist Z∗, ν∗, and µ∗ that are optimal for the dual

problem (4.4) and that give the optimal solution X∗ of the LSCAP (4.1) via (4.3).

One of the critical points in [26] is that it is possible to analytically maximize g

over the variable Z within the constraint Z ≽ 0 by choosing

Z∗ = (G− A(ν)− C(µ))−. (4.5)

Using this Z simplifies the dual problem (4.4) to

maximize ψ(ν, µ) such that µ ≥ 0, (4.6)

where ψ(ν, µ) = −1
2
∥(G− A(ν)− C(µ))+∥2F + 1

2
∥G∥2F − νT b− µTd.

Defining X(ν, µ) , (G− A(ν)− C(µ))+, the gradients of the dual objective are

∂ψ

∂µj
= Tr CjX(ν, µ)− dj,

∂ψ

∂νi
= Tr AiX(ν, µ)− bi. (4.7)

After these steps, the dual projected gradient algorithm Boyd and Xiao suggest

is

1. Update X. Set X := (G− A(ν)− C(µ) + Z)+.

2. Projected gradient update for µ and ν:

(a) Evaluate dual gradients: ∂ψ
∂µj

= TrCjX(ν, µ)− dj,
∂ψ
∂νi

= TrAiX(ν, µ)− bi.

(b) Set µj := (µj + α ∂ψ
∂µj

)+, νi := (νi + α ∂ψ
∂νj

),

The gradient has a Lipschitz constant of L =
∑p

i=1 ∥Ai∥2+
∑m

j=1 ∥Cj∥2, and step

size of α < 2/L guarantees convergence.

4.2 Dual Projected Gradient Solution for the Monotone

Problem

Recall that the monotone version of our problem was described in (3.2) as:

min
P
D(P, P̂ ) such that P ∈ M,

which can be solved via IPM when it is presented in the following form:

min ∥P − P̂∥2F (4.8)

such that P ≽ 0, Mm,l ◦ (Dm,lP ) +Mm,u ◦ (Dm,uP ) ≥ 0
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which is in the same form as the smooth and monotone problem (3.8), except for

the absence of the second (smoothing) term which exists in the objective of (3.8).

We can express our monotone problem in (4.8) fully in LSCAP form, enabling

us to directly apply the gradient projection method to this LSCAP form. The

objectives of (4.8) and (4.1) are the same, as the corresponding matrices from (4.8)

are X = P and G = P̂ . There is no equality constraint in (4.8), so there will be

no Ai in the corresponding LSCAP form. Therefore, for the transformation, the

only thing we need to do is to transform the monoticity constraint Mm,l ◦ (Dm,lP )+

Mm,u ◦ (Dm,uP ) ≥ 0 into the form of TrCjP ≤ dj for j = 1, ...,m.

The monoticity constraint in (4.8) ensures that the elements of P in every col-

umn are in non-increasing order in the direction away from the diagonal, and the

symmetry property of P due to the positive semi-definiteness constraint P ≽ 0 ex-

tends this contraint to rows P . We can encode a non-decreasing constraint for each

pair of column-wise neighbor elements of P as TrDkP ≥ 0, where TrDkP calculates

the difference [P ](i,j) − [P ](i+1,j) if i ≥ j and [P ](i+1,j) − [P ](i,j) if i < j and where

i and j are respectively the quotient and the remainder from the division of k by

N , i.e., i, j ∈ Z+ are such that k = N(i − 1) + j. To yield this calculation, Dk is

selected as a N × N matrix of zeros except that [Dk]([j j+1],i) = (1, −1) if i ≥ j

and [Dk]([j j+1],i) = (−1, 1) if i < j. Since there are a total of N × (N−1) column-

wise pairs of elements in P , k runs from 1 to m = N(N−1). The Ck’s we need to

construct, however, are required to be symmetric, hence we assign

Ck = −(Dk +DT
k ), k = 1, ..., N(N−1), (4.9)

where the added DT
k encodes additionally non-decreasing constraint for the pair of

row-wise neighbor elements that is symmetric with the column-wise pair in P (whose

monoticity is encoded with Dk). This modification is still in accordance with the

constraints in our monotone problem in (4.8) since the symmetry from the positive

semi-definiteness constraint P ≽ 0 in (4.8) extends this contraint to the rows P as

mentioned above. The minus sign in (4.9) is to convert TrDkP ≥ 0 to TrCjP ≤ dj,

and it is now clear that dj should be selected zero for all j. To be in the same

notation with [26] we will index Ck’s with j instead of k, and hence will be using

the notation with Cj’s.

We can now express our monotone problem in the following LSCAP (primal)

form, i.e., monotone LSCAP:

min 1
2
∥P − P̂∥2F (4.10)

such that P ≽ 0,

Tr CjP ≤ 0, j = 1, ..., N(N − 1),
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Algorithm 1 Dual Projected Gradient Solution for the Monotone Problem

Init: Set µ = 0, pick step-size parameter α.

repeat

Compute C(µ) =
∑N(N−1)

j=1 µjCj
Set Pk = (P̂ − C(µ))+
Compute gradients: ∂ψ/∂µj = trace(CjPk)

Let µj = (µj + α trace(CjPk))+.

until convergence

to which we will also refer as the monotone problem where it’s appropriate.

The solution of this problem with its dual follows exactly the same path described

in the previous section, just with no Ai’s and νi’s involved. The key to be able to

use this solution method is that strict duality holds for the monotone LSCAP (4.10)

since it is strictly feasible.

Claim. Monotone LSCAP (4.10) is strictly feasible, i.e., there exists a P ≻ 0 that

satisfies the linear inequalities in (4.10).

Proof. Let P = I ≻ 0. I also satisfies the monotonicity constraints in (4.10). The

latter can also be verified from the fact that TrCjP = TrCjI = TrCj ≤ 0

for all j = 1, ...,m since for all j the diagonal of Cj by definition consists of

integers 0 and sometimes one entry of −2. �
The primal solution of our monotone LSCAP (4.10) is P ∗ = (P̂−C(µ∗))+, where

µ∗ is the optimal Lagrangian multiplier for the dual of the monotone LSCAP. To find

this P ∗ via µ∗ as in gradient projection method, we implement the dual projected

gradient algorithm as in Algorithm 1.

The Lipschitz constant for gradient ∇ψ of the simplified dual objective ψ, i.e.,

the mapping from µ to ∂ψ/∂µ determines the step size α for which the convergence

is guaranteed by the relation α < 2/L. Since there is no Ai in our monotone LSCAP

(4.10), using the value of L derived in [26] and mentioned in Section 4.1 gives us

L =
∑m

j=1 ∥Cj∥2. There are one entry of −2 and two entries of −1 in Cj’s encoding

monotonicity for the pairs of P whose one element is on the diagonal of P , while all

of other Cj’s consist of two entries of 1’s and two entries of −1’s (the rest of Cj’s

are filled with zeros). Since there are 2(N−1) of the first kind of Cj’s, there are

m−2(N−1) = N(N−1)−2(N−1) = (N−1)(N−2) of the second kind of Cj’s. This

yields

L =
m∑
j=1

∥Cj∥2 =
2(N−1)∑
j1=1

[(−2)2+2(12)] +

(N−1)(N−2)∑
j2=1

[2(12)+2(−1)2] = 4(N+1)(N−1). (4.11)

Therefore a step size of α < 1/2(N+1)(N−1) guarantees convergence. However,
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the size of L which is O(N2) makes this step size too small in practice, as this leads

to too many iterations, increasing the computation time. In practical situations

one can instead choose much more aggressive step sizes and still usually achieve

convergence. We will refer to this fact and to value of L when we describe our

experiments in Section 4.5.

� Modification with additional constraints

We stated in Chapter 3 that it is straightforward to add additional constraints,

e.g., [P ](i,i) = 1 to our formulation when dealing with correlation coefficient matrices,

or positivity of correlations. It is also straightforward to add such constraints to

monotone LSCAP (4.10) and modify the solution algorithm accordingly. To provide

an example, we now assume that we want to add the constraint [P ](i,i) = 1.

In the modified monotone LSCAP, the constraint of [P ](i,i) = 1 takes form as

TrAiP = 1 for i = 1, ..., N , where Ai’s are N × N matrices of zeros except that

[Ai](i,i) = 1. Hence the modified monotone LSCAP becomes

min 1
2
∥P − P̂∥2F (4.12)

such that P ≽ 0,

Tr AiP = 1, i = 1, ..., N,

Tr CjP ≤ 0, j = 1, ..., N(N−1),

to which we will also refer as the modified monotone problem where it’s appropriate

or simply as the monotone problem with additional constraints.

Again the solution of this problem with its dual follows exactly the same path

described in previous section, this time including Ai’s and νi’s. We are still able to

use this solution method since the modified monotone LSCAP (4.12) is also strictly

feasible: Again let P = I, which satisfies all of the constraints in (4.12).

The primal solution of our modified monotone LSCAP (4.12) is now P ∗ = (P̂ −
C(µ∗) − A(ν∗))+, where ν

∗ comes into play as the additional optimal Lagrangian

multiplier for the dual of the monotone LSCAP. To find this P ∗ via µ∗ and ν∗

as again in gradient projection method, we implement in Algorithm 2 a slightly

modified version of the dual projected gradient algorithm.

As the final step, let us again calculate the Lipschitz constant L for gradient

∇ψ. This time the corresponding mapping is from (µ, ν) to (∂ψ/∂µ, ∂ψ/∂ν), and L

is given by L =
∑N(N−1)

j=1 ∥Cj∥2 +
∑N

i=1 ∥Ai∥2. We already know that the first sum

term is 4(N+1)(N−1). Since each Ai we constructed consists of only one entry of

1 and the rest with zeros, the second sum term is N . This yields

L = 4(N+1)(N−1) +N, (4.13)

without causing a dramatic change from the unmodified monotone LSCAP (4.10).
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Algorithm 2 Dual Projected Gradient Solution for the Monotone Problem with

Additional Constraints
Init: Set µ = ν = 0, pick step-size parameter α.

repeat

Compute C(µ) =
∑N(N−1)

j=1 µjCj and A(ν) =
∑N

i=1 νiAi
Set Pk = (P̂ − C(µ)− A(ν))+
Compute gradients: ∂ψ/∂µj = trace(CjPk) and ∂ψ/∂νi = trace(AiPk)

Let µj = (µj + α trace(CjPk))+ and νi = νi + α trace(AiPk).

until convergence

4.3 Dual Projected Coordinate Descent Solution for the

Smooth and Monotone Problem

Now we turn back to our smooth and monotone problem (3.8):

min 1
2
∥P − P̂∥2F + λ∥Ms ◦ (DsP )∥2F

such that P ≽ 0, Mm,l ◦ (Dm,lP ) +Mm,u ◦ (Dm,uP ) ≥ 0

The constraints of this problem are the same as those of our monotone prob-

lem (4.8) which was transformed into the LSCAP form (4.10). Following a similar

development, we can express our smooth and monotone problem in the following

form:

min 1
2
∥P − P̂∥2F + λ∥Ms ◦ (DsP )∥2F (4.14)

such that P ≽ 0,

Tr CjP ≤ 0, j = 1, ..., N(N − 1).

However, this form is not fully in LSCAP form (4.1) due to the extra second

(smoothing) term in the objective. Although it may look like that this extra term

wouldn’t change the solution of the dual problem much, it actually substantially

complicates it. First of all, the gradients become more complicated due to this

smoothing term. However, most important of all, the smoothing term prevents

us from deriving a closed form Z∗, which is the Lagrangian multiplier Z that is

optimal for the dual of the problem (4.14) over the choice of Z ≽ 0. We will show

this explicity in Subsection 4.3.2. In Section 4.1 we emphasized that while solving

the original LSCAP (4.1) we are able to find this Z∗, which analytically maximizes

the dual problem (4.4) over Z ≽ 0. This is crucial since we cannot find the optimal

Z∗ by using regular matrix calculus, i.e., by taking derivatives, just like that it is

not possible to find optimal values µ∗, ν∗ of the other Lagrangian multiplier in this

way. Therefore, the only way to find a closed form of Z∗ is analytical, and this is
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not possible for the dual of our problem (4.14) since, as we will show in Subsection

4.3.2, Z∗ appears inside a number of terms in the dual function instead of just one

term in the dual function (4.4) of the original LSCAP.

The fact that we cannot find a closed form Z∗ enforces us to do descent in Z,

just like we already do in µ and ν. We call the solution method we derive this

way in Subsection 4.3.2 (dual) projected coordinate descent solution for the smooth

and monotone problem. However, since it is simpler and sets a good introductory

example, let us first show in the following Subsection 4.2.1 the application of this

solution for the LSCAP (4.1), namely, how we would solve the LSCAP if we didn’t

know how to find the closed form Z∗ optimal for its dual. We will also show in this

subsection why we call our solution method projected coordinate descent instead of

projected gradient descent as in its original name.

4.3.1 Exercise: Dual Projected Coordinate Descent Solu-

tion for the LSCAP

In this section we will assume that we are not able to find a closed form Z∗ while

solving the dual (4.4) of the LSCAP (4.1) to demonstrate the application of our

coodinate descent method. Recall that the LSCAP (4.1) was:

min 1
2
∥X −G∥2F

such that X ≽ 0,

Tr AiP = bi, j = 1, ..., p,

Tr CjP ≤ dj, j = 1, ...,m.

The Dual Problem and Properties

The X minimizing the Lagrangian (4.2) of the LSCAP (4.1) was given by (4.3):

Xm(Z, ν, µ) = G− A(ν)− C(µ) + Z,

which by plugging in the Lagrangian (4.2) yielded the following dual problem (4.4)

of the LSCAP:

maximize g(Z, ν, µ) such that Z ≽ 0, µ ≥ 0,

where g(Z, ν, µ) = −1
2
∥G−A(ν)−C(µ)+Z∥2F + 1

2
∥G∥2F − νT b− µTd,

or, in terms of Xm, g(Z, ν, µ) = −1
2
∥Xm∥2F + 1

2
∥G∥2F − νT b− µTd,

for which weak duality always held and for which strong duality also held if the

LSCAP (4.1) was strictly feasible. Note that Xm is symmetric since all of the

matrices involved in it are symmetric. Note also that Z∗, ν∗, and µ∗ which are
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the maximizer Lagrange multipliers (satisfying their own constraints) of this dual

problem gave the optimal solution X∗ of the LSCAP (4.1) via Xm, i.e., X∗ =

Xm(Z
∗, ν∗, µ∗).

The Critical Assumption

One of the critical points in [26] is that it is possible to analytically maximize g over

the variable Z within the constraint Z ≽ 0 by choosing

Z∗ = (G− A(ν)− C(µ))−,

which simplifies the dual problem (4.4) (to (4.6)). Now suppose that we weren’t

able to find such a closed form for Z∗. Then we wouldn’t be able to simplify the

dual problem (4.4) and would have to calculate the gradients of the dual objective

from this dual function g. Not only the gradients with respect to µ and ν but now

also the gradient with respect to Z need to be calculated.

Finding the Gradients of the Dual Objective with respect to the Lagrange

multipliers

Using the numerator layout,let us first find the gradient of g with respect to Xm:

∂g

∂Xm

=
∂
(
−1

2
∥Xm∥2F

)
∂Xm

= −XT
m = −Xm, (4.15)

since Xm is symmetric. Since Xm is a linear function of Z, A(ν), and C(µ) and they

appear in g via only Xm, the gradients of g with respect to Z, A(ν), and C(µ) can

be found by a simple chain rule:

∂g

∂Z
=

∂g

∂Xm

∂Xm

∂Z
= −XmI = −Xm,

∂g

∂A(ν)
=

∂g

∂Xm

∂Xm

∂A(ν)
= (−Xm)(−I) = Xm,

∂g

∂C(µ)
=

∂g

∂Xm

∂Xm

∂C(µ)
= (−Xm)(−I) = Xm.

Since νi’s and µj’s are also involved in the dot products νT b and µTd respectively

in g, these dot products should be accounted for while calculating the gradients of

g with respect to νi and µj. Also using the chain rule (A.22) for scalar by scalar

derivative involving matrices

∂g(U)

∂x
= Tr

[
∂g(U)

∂U

∂U

∂x

]
,
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Algorithm 3 Dual Projected Coordinate Descent Solution for the LSCAP

Init: Set µ = ν = 0, Z = 0, pick step-size parameter α

Compute C(µ) =
∑N(N−1)

j=1 µjCj and A(ν) =
∑N

i=1 νiAi
repeat

Set Xk,1 = G− C(µ)− A(ν) + Z

Compute gradients ∂g/∂µj = trace(CjXk,1), let µj = (µj + α trace(CjXk,1))+
Compute C(µ) =

∑N(N−1)
j=1 µjCj

Set Xk,2 = G− C(µ)− A(ν) + Z

Compute gradients ∂g/∂νi = trace(AiXk,2), let νi = νi + α trace(AiXk,2)

Compute A(ν) =
∑N

i=1 νiAi
Set Xk,3 = G− C(µ)− A(ν) + Z

Compute gradient ∂g/∂Z = −Xk,3, let Z = (Z + α(−Xk,3))+
until convergence

X∗ = (G− C(µ)− A(ν) + Z)+.

these gradients are

∂g

∂νi
= Tr

[
∂g

∂A(ν)

∂A(ν)

∂νi

]
+
∂(−νT b)
∂νi

= Tr
[
XmA

T
i

]
− bi = Tr [XmAi]− bi,

∂g

∂µj
= Tr

[
∂g

∂C(µ)

∂C(µ)

∂µj

]
+
∂(−µTd)
∂µj

= Tr
[
XmC

T
j

]
− dj = Tr [XmCj]− dj,

The Algorithm

We can finally present our dual projected coordinate descent algorithm for the

LSCAP in Algorithm 3. This algorithm has three differences from its original gra-

dient projection counterpart, first two of which are major and the last of which is

minor:

1. The intermediate X’s are no more projected onto the positive semidefinite

cone.

2. Since now updating X has a very small cost, we update it after descent in

each of µ, ν, and Z. Therefore, we call our algorithm a coordinate descent

instead of a gradient descent.

3. There is now a final required step after the iterations are finished: Since we no

longer project the intermediate X’s onto the p.s.d. cone, we project it at the

end, but totaling to only once in the algorithm (It should be noted, however,

that this operation brings a very minor additional cost since we are projecting

Z at each iteration.). We need to do this operation since however much the

intermediate XK,3 calculated in the last iteration K may be close to the real

p.s.d. X∗, there is always the possibility that XK,3 is in fact not p.s.d..
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There are of course many similarities to the gradient projection method, and most

important of them is the complexity of the projected coordinate descent algorithm.

Although the intermediate X is no more projected onto the p.s.d. cone, now Z is

projected onto the p.s.d. cone in its update stage once in every iteration. Therefore,

there is still one operation of projection onto the p.s.d. cone in every iteration.

Since the main complexity of both of the algorithms lies in the evaluation of the

SVD needed for these projections, the two algorithms have similar complexity.

4.3.2 Solution for the Smooth and Monotone Problem

Now we turn back once again to our smooth and monotone problem (3.8):

min 1
2
∥P − P̂∥2F + λ∥Ms ◦ (DsP )∥2F

such that P ≽ 0, Mm,l ◦ (Dm,lP ) +Mm,u ◦ (Dm,uP ) ≥ 0

which we also expressed in (4.14) as

min 1
2
∥P − P̂∥2F + λ∥Ms ◦ (DsP )∥2F

such that P ≽ 0,

Tr CjP ≤ 0, j = 1, ..., N(N − 1).

which we noted that is not fully in the LSCAP form (4.1) due to the extra second

(smoothing) term in the objective, explaining how this term changes the solution of

the problem with its dual.

Modification in the Objective

The Lagrangian of the problem (4.14) can be obtained easily with a modification

on the Lagrangian L (4.2) of the LSCAP (4.1) through the addition of the extra

smoothing term and the removal of the elements related to ν. Then we find the

Lagrangian of the problem (4.14) as

L̃sm(P,Z, µ) =
1
2
∥P−P̂∥2F + λ∥Ms◦(DsP )∥2F +TrP (−Z+C(µ))− µTd, (4.16)

which has one problem: The P that minimizes the Lagrangian L̃sm does not neces-

sarily have symmetry property intrinsically, a property from which we benefited in

the derivation of the solution of the LSCAP (4.1). For this reason we make a slight

change in the expression of (4.14) and express the smooth and monotone problem

from now on as

minimize fsm(P ) (4.17)

where fsm(P ) =
1
2
∥P − P̂∥2F + λ

2
∥Ms ◦ (DsP )∥2F + λ

2
∥Ms ◦ (DsP

T )∥2F ,
such that P ≽ 0,

Tr CjP ≤ 0, j = 1, ..., N(N − 1),
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This formulation is equivalent to (4.14) since the sum of the second and third terms

in the objective of (4.17), i.e., λ
2
∥Ms ◦ (DsP )∥2F + λ

2
∥Ms ◦ (DsP

T )∥2F is equal to the

second term in the objective of (4.14), i.e., λ∥Ms ◦ (DsP )∥2F due to the symmetry

property of P from the positive semi-definite constraint P ≽ 0.

Finding the Minimizer P of the Lagrangian

The Lagrangian of this problem (4.17) can be again obtained easily:

Lsm(P,Z, µ) =
1
2
∥P−P̂∥2F + λ

2
∥Ms◦(DsP )∥2F + λ

2
∥Ms◦(DsP

T )∥2F
+TrP (−Z+C(µ))− µTd, (4.18)

for which we make the following claim and prove that claim.

Claim. Lsm has a unique and symmetric minimizer Psm.

Proof. (i) Uniqueness: Since fsm (the objective of (4.17)) and the constraint set are

convex, at least one minimizer exists. Call it Psm.

Now suppose that there exists Y such that Lsm(Y )=Lsm(Psm) but Y ̸=Psm.

Then, however, W=(Psm+Y )/2 both satisfies all of the constraints and

fsm(W ) < fsm(Psm)=fsm(Y ), since fsm is a summation of strictly convex

and linear terms.

Hence contradiction.

(ii) Symmetry: Suppose Psm is not symmetric, i.e., P T
sm ̸=Psm. However, P

T
sm

satisfies all of the constraints and L(P T
sm)=L(Psm), and due to the strict

convexity of Lsm, Lsm((Psm+P
T
sm)/2) < Lsm(Psm).

Hence contradiction. �
We can now start solving the smooth and monotone problem (4.17). We first

need to find Psm in a closed expression. To that end, we first transform P into a

vector vec(P ) by stacking its columns, i.e., by the stacking operation:

vec(X) =
∑N

i=1 I
i
N2xNXI

i
Nx1, (4.19)

where

[I iN2xN ](k,l) =

{
1, if k=l+(i−1)N

0, otherwise
and [I iNx1]k =

{
1, if k=i

0, otherwise
,

i.e., I iN2xN is an N2×N matrix of zeros except that its ith block is an identity matrix,

and I iNx1 is a N × 1 vector of zeros except that its ith entry is 1.

We can now define (N−2)(N−1)×N2 matrices Ds1 and Ds2 such that

∥Ms◦(DsP )∥2F = ∥Ds1vec(P )∥2F and ∥Ms◦(DsP
T )∥2F = ∥Ds2vec(P )∥2F . (4.20)
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We already know that Ds is a (N−2) × N matrix and that Ms multiplies (N−2)

entries ofDsP with zero. This is the reason the size of (N−2)(N−1)×N2 is sufficient

for Ds1 and Ds2.

To calculate the gradient of the Lagrangian Lsm with respect to X, we will need

to find the gradients of smoothing terms (4.20) with respect to P . For that, we first

express these smoothing terms in a simpler, trace function form:

∥Ms◦(DsP )∥2F = ∥Ds1vec(P )∥2F =

∥∥∥∥∥
N∑
i=1

Ds1I
i
N2xNPI

i
Nx1

∥∥∥∥∥
2

F

= Tr

[(
N∑
i=1

I i TNx1P
T I i TN2xND

T
s1

)(
N∑
j=1

Ds1I
j
N2xNPI

j
Nx1

)]

=
N∑
i=1

N∑
j=1

Tr
[
IjNx1I

i T
Nx1P

T I i TN2xND
T
s1Ds1I

j
N2xNP

]
=

N∑
i=1

N∑
j=1

Tr
[
Nj,iP

TRi,jP
]
,

where we used the fact that the trace function allows cyclic permutation. Here,

Ni,j=I
i
Nx1I

j T
Nx1, i.e., an N × N matrix of zeros with only its (i,j)th entry 1, and

Ri,j = I i TN2xND
T
s1Ds1I

j
N2xN , i.e., (i,j)

th N ×N block of N2 ×N2 matrix DT
s1Ds1. An

important property of these matrices which we will use frequently is that NT
i,j=Nj,i

and that RT
i,j=Rj,i (the latter is due to the symmetry of DT

s1Ds1.).

Now, using the identity (A.23) from matrix calculus

∂Tr[BXTAX]

∂X
= BTXTAT +BXTA

we find

∂∥Ms◦(DsP )∥2F
∂P

=
∂
∑N

i=1

∑N
j=1Tr

[
Nj,iP

TRi,jP
]

∂P

=
N∑
i=1

N∑
j=1


Ni,j︷︸︸︷
NT
j,i P

T

Rj,i︷︸︸︷
RT
i,j +Nj,iP

TRi,j

 = 2
N∑
i=1

N∑
j=1

Ni,jP
TRj,i

Similarly, if we let Ki,j = I i TN2xND
T
s2Ds2I

j
N2xN , i.e., (i,j)

th N×N block of N2×N2

matrix DT
s2Ds2, then

∂∥Ms◦(DsP
T )∥2F

∂P
=
∂∥Ds2vec(P )∥2F

∂P
= 2

N∑
i=1

N∑
j=1

Ni,jP
TKj,i,

where again Ki,j has the property KT
i,j=Kj,i due to the symmetry of DT

s2Ds2.

Now we can set the gradient of the Lagrangian Lsm to zero to find Psm:

0 = ∂Lsm/∂P (4.21)

= P T
sm−P̂ T+

λ

2

(
2

N∑
i=1

N∑
j=1

Ni,jP
T
smRj,i

)
+
λ

2

(
2

N∑
i=1

N∑
j=1

Ni,jP
T
smKj,i

)
−Z+C(µ).
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Stacking columns, denoting

G̃(Z, µ) = P̂ + Z − C(µ) (4.22)

using the symmetry of P̂ , and also using the formerly proven symmetry of Psm, we

can express the equation (4.21) as

vec(Psm) + vec

(
λ

N∑
i=1

N∑
j=1

Ni,jPsm(Rj,i+Kj,i)

)
= vec(G̃). (4.23)

Using the propery that vec(ABC) = (CT ⊗ A)vec(B) where ⊗ is the Kronecker

product, we can simplify Equation (4.23) further as(
I + λ

N∑
i=1

N∑
j=1

[(
RT
j,i +KT

j,i

)
⊗Ni,j

])
︸ ︷︷ ︸

B̃(λ)

vec(Psm) = vec(G̃). (4.24)

The properties RT
i,j=Rj,i, K

T
i,j=Kj,i, and N

T
i,j=Nj,i makes the N2 ×N2 matrix B̃(λ)

symmetric. Moreover, since we have proved that Psm is unique, B̃ is invertible.

Therefore, vec(Psm) is given by

vec(Psm) = B̃−1vec(G̃), (4.25)

where B̃−1 is symmetric since B̃ is.

We need to transform vec(Psm) back into matrix form Psm to derive the dual

function. Therefore, this time we use the unstacking operation

mat(vec(X)) =
N∑
i=1

I iNxN2vec(X)I i1xN , where I iNxN2=I i TN2xN and I i1xN=I
i T
Nx1, (4.26)

on vec(Psm) which is defined by (4.25), i.e., unstack the columns of vec(Psm):

Psm = mat(vec(Psm)) = mat(B̃−1vec(G̃)) =
N∑
i=1

I iNxN2B̃−1vec(G̃)I i1xN

=
N∑
i=1

I iNxN2B̃−1

(
N∑
j=1

IjN2xNG̃I
j
Nx1

)
I i1xN =

N∑
i=1

N∑
j=1

I iNxN2B̃−1IjN2xNG̃

Nj,i︷ ︸︸ ︷
IjNx1I

i
1xN

DefiningMi,j(λ) = I iNxN2(B̃−1(λ))IjN2xN , i.e., (i,j)
th N×N block of N2×N2 matrix

B̃−1, this gives:

Psm =
∑N

i=1

∑N
j=1Mi,jG̃Nj,i, (4.27)

where also Mi,j has the property that MT
i,j=Mj,i.
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The Dual Problem and Properties

Now we can turn back to the Lagrangian Lsm and plug in Psm to find the dual

function gsm(Z, µ) = Lsm(Psm, Z, µ):

gsm(Z, µ) =
1
2
∥Psm−P̂∥2F + λ

2
∥Ms◦(DsPsm)∥2F + λ

2
∥Ms◦(DsP

T
sm)∥2F

+TrPsm(−Z+C(µ))− µTd, (4.28)

Substituting the first term with its quadratic expansion, i.e., with

1
2
∥Psm−P̂∥2F = 1

2
∥Psm∥2F −Tr[P T

smP̂ ]+
1
2
∥P̂∥2F (4.29)

and exploiting the symmetry of Psm, the dual function gsm in (4.28) becomes

gsm(Z, µ) =
1
2
∥Psm∥2F −Tr[PsmP̂ ]+

1
2
∥P̂∥2F + λ∥Ms◦(DsPsm)∥2F

+TrPsm(−Z+C(µ))− µTd, (4.30)

hence using our notation G̃(Z, µ)=P̂+Z−C(µ), the dual problem becomes

max gsm(Z, µ) such that Z ≽ 0, µ ≥ 0, (4.31)

where gsm(Z, µ) =
1
2
∥Psm∥2F + λ∥Ms◦(DsPsm)∥2F −Tr[PsmG̃]+

1
2
∥P̂∥2F − µTd.

Again, weak duality always holds for this problem. Strong duality also holds since

the smooth and monotone problem (4.17) is strictly feasible, i.e., there exists a P ≻ 0

that satisfies the inequalities in (4.17): Take once again P = I, which satisfied the

inequalities in (4.10), which had the same inequalities with (4.17). Therefore there

exist Z∗ and µ∗ that are optimal for this dual problem with dual objective and that

give the optimal solution P ∗ of the smooth and monotone problem (4.17) via Psm,

i.e., via P ∗=Psm(Z
∗, µ∗).

Finding the Gradients of the Dual Objective with respect to the Lagrange

multipliers

Here, we refer the reader to Appendix B for the derivation of the gradients

∂gsm
∂Z

= mat
{
MG̃ vec(G̃)

}
, (4.32)

∂gsm
∂µj

= −Tr
[
mat

{
MG̃ vec(G̃)

}
Cj

]
, (4.33)

where MG̃ is an N2 ×N2 matrix and a function of λ given in (B.5) as

MG̃(λ) =
N∑
i=1

N∑
j=1

−2
[
NT
j,i ⊗Mi,j(λ)

]
+

N∑
l=1

(Mi,j(λ))
T ( Ei,l(λ)︸ ︷︷ ︸

Ml,i(λ)+2λ
∑N

k=1Ml,k(λ)Rk,i

)T ⊗Nj,l


(4.34)
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Algorithm 4 Dual Projected Coordinate Descent Solution for the Smooth and

Monotone Problem

Init: Set µ=0, Z=0, pick step-size parameter α, compute C(µ) =
∑N(N−1)

j=1 µjCj
repeat

Set G̃k,1 = P̂ − C(µ) + Z

Compute gradients ∂gsm
∂µj

= −Tr
(
mat{MG̃vec(G̃)}Cj

)
, let µj =

(
µj + α∂gsm

∂µj

)
+

Compute C(µ) =
∑N(N−1)

j=1 µjCj
Set G̃k,2 = P̂ − C(µ) + Z

Compute gradient ∂gsm
∂Z

= mat{MG̃vec(G̃)}Cj, let Z =
(
Z + α∂gsm

∂Z

)
+

until convergence

Psm =
∑N

i=1

∑N
j=1Mi,j(P̂−C(µ)+Z)Nj,i, P

∗ = (Psm)+.

The Algorithm

We can finally present our dual projected coordinate descent algorithm for the

smooth and monotone problem in Algorithm 4. This algorithm has six major dif-

ferences from the dual gradient projection algorithm for the LSCAP, or, for the

monotone problem (i.e. Algorithm 1), the last three of which are similar to those

explained in the last subsection during the comparison of Algorithm 3 with Algo-

rithm 1, but first three of which are very different:

1. First of all, the two algorithms solve two different problems (i.e. problems

with different objectives to be minimized). Specifically, as we will show in the

Remarks thread at the end of this subsection, when we set λ=0, i.e., force the

smoothing term in the objective to have no effect in Algorithm 4, then Algorithm

4 reduces to the version of Algorithm 3 with no equality contraints, i.e., no Ai.

Since Algorithm 3 solves the same problem that Algorithm 1 does, in effect then

Algorithm 4 reduces to Algorithm 1 for λ=0.

2. Another important point of Algorithm 4 is that the matrix that is needed to

be updated is not the minimizer Psm (4.27) of the Lagrangian Lsm (4.18) but it

is G̃, which is much easier to compute than it is to compute Psm, as opposed

to all other algorithms we have covered, all of which require the minimizer of

the Lagrangian to be updated in each iteration. This difference also brings the

following difference into play.

3. There is now a final required operation consisting of two steps after the iterations

have finished, but the first of these steps is very different than the one required

at the end of Algorithm 3. This step is to finally calculate from the converged

G̃ the minimizer Psm (4.27) of the Lagrangian Lsm (4.18), where the converged

G̃ here yields the converged Psm, which is very close to the optimal solution of
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the smooth and monotone problem, its closeness being dependent on the error

tolerance for convergence. The interesting point here is that this Psm is evaluated

only once and at the end of the algorithm. The second step of the final operation

is a distinct difference and therefore is mentioned as a 6th difference below.

4. The matrix that is needed to be updated in each iteration, i.e. G̃ is not required to

be projected onto the positive semidefinite cone as part of this update operation

as opposed to the update of Pk in Algorithm 1, where the projection of Pk onto

the p.s.d. cone is a required step of the update operation in each iteration.

5. Since updating G̃ has a very small cost, we update it sequentially after descent

in each of µ and Z as opposed to Pk in Algorithm 1, where Pk is only updated

after simultaneous descents in µ and Z due to the high cost of projection of the

projection on the p.s.d. cone. Therefore, we call our algorithm coordinate descent

instead of gradient descent.

6. Now the second step of the final operation after the iterations have finished is also

required: We project the Psm constructed in the first step of the final operation

onto the p.s.d. cone. We need to do this operation since however much the

intermediate Psm calculated in the first step of the final operation may be close

to the real p.s.d. P ∗, there is always the possibility that Psm is in fact not p.s.d..

It should be noted, however, that this projection would not be necessary if the

algorithm converged to the matrix P ∗ it converges exactly.

There are of course many similarities to the gradient projection method, and most

important of them is the complexity of the projected coordinate descent algorithm.

Although the intermediate G̃ is not projected onto the p.s.d. cone, this time Z is

projected onto the p.s.d. cone in its update stage once in every iteration. Therefore,

there is still one operation of projection onto the p.s.d. in every iteration. In spite

of the vec and mat operations required twice in each iteration of Algorithm 4, the

main complexity of both algorithms still lies in the evaluation of the SVD needed

for these projections, and, therefore, the two algorithms have similar complexity.

Modification with Additional Constraints

We stated in Chapter 3 that it is straightforward to add additional constraints, e.g.,

[P ](i,i) = 1 to our smooth and monotone formulation when dealing with correlation

coefficient matrices, or positivity of correlations. It is again straightforward to add

such constraints to the smooth and monotone problem (4.17) and modify the solution

algorithm we just derived accordingly. To set an example, we now assume that we

want to add the constraint [P ](i,i) = 1.

In the modified smooth and monotone problem, the constraint of [P ](i,i) = 1
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again takes form as TrAiP = 1 for i = 1, ..., N , where Ai’s are N × N matrices of

zeros except that [Ai](i,i) = 1. Hence the modified smooth and monotone problem

becomes

minimize fsm(P ) (4.35)

where fsm(P ) =
1
2
∥P − P̂∥2F + λ

2
∥Ms ◦ (DsP )∥2F + λ

2
∥Ms ◦ (DsP

T )∥2F ,
such that P ≽ 0,

Tr AiP = 1, j = 1, ..., N,

Tr CjP ≤ 0, j = 1, ..., N(N − 1),

to which we will also simply refer as the smooth and monotone problem with addi-

tional constraints.

The solution of this problem with its dual follows exactly the same path described

until this thread in this subsection, this time including Ai’s and νi’s with the same

format Cj’s and µj’s are in respectively. We are still able to use this solution method

since the modified smooth and monotone problem (4.35) is also strictly feasible:

Again let P = I, which satisfies all of the constraints in (4.35).

To be more specific, the slight changes the addition of Ai’s and νi’s cause with the

respect to the order in the derivation of the solution can be listed as:

1. The terms TrPA(ν) and −νT b are added to the Lagrangian Lsm (4.18).

2. The term−A(ν) is added to the G̃(Z, µ) (4.22) changing it to G̃(Z, µ, ν)=P̂−C(µ)−A(ν)+Z,
although G̃(Z, µ, ν) is used exactly the same in the rest of the derivation.

3. Due to the 1st change above, the terms TrPsmA(ν) and −νT b are added to the

dual function gsm in the dual problem (4.31).

4. Due to the 2nd change above, the primal solution is now

P ∗ = Psm(Z
∗, µ∗, ν∗) =

∑N
i=1

∑N
j=1Mi,jG̃(Z

∗, µ∗, ν∗)Nj,i

=
∑N

i=1

∑N
j=1Mi,j(P̂−C(µ∗)−A(ν∗)+Z)Nj,i, (4.36)

where ν∗ comes into play as the optimal additional Lagrangian multiplier for the

dual gsm of the modified smooth and monotone problem.

5. Since νi’s are now additional Lagrange multipliers, we need to calculate the

gradient ∂gsm/∂νi as well. The derivation of this gradient follows exactly that of

∂gsm/∂µj through (B.8) and (B.9) with dj, µj, Cj, and C(µ) replaced with bi, νi,

Ai, and A(ν) respectively. This replacement yields

∂gsm
∂νi

= −Tr
[
mat

{
MG̃ vec(G̃)

}
Ai

]
− 1, (4.37)

as bi=1 for all i=1, ..., N .
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Algorithm 5 Dual Projected Coordinate Descent Solution for the Smooth and

Monotone Problem with Additional Constraints
Init: Set µ = ν = 0, Z = 0, pick step-size parameter α

Compute C(µ) =
∑N(N−1)

j=1 µjCj and A(ν) =
∑N

i=1 νiAi
repeat

Set G̃k,1 = P̂ − C(µ)− A(ν) + Z

Compute gradient ∂gsm
∂µj

= −Tr
(
mat{MG̃vec(G̃)}Cj

)
, let µj =

(
µj + α∂gsm

∂µj

)
+

Compute C(µ) =
∑N(N−1)

j=1 µjCj
Set G̃k,2 = P̂ − C(µ)− A(ν) + Z

Compute gradient ∂gsm
∂Z

= mat{MG̃vec(G̃)}Cj, let Z =
(
Z + α∂gsm

∂Z

)
+

Set G̃k,3 = P̂ − C(µ)− A(ν) + Z

Compute gradients ∂gsm
∂νi

= −Tr
(
mat{MG̃vec(G̃)}Ai

)
, let νi = νi + α∂gsm

∂νi

Compute A(ν) =
∑N

i=1 νiAi
until convergence

Psm =
∑N

i=1

∑N
j=1Mi,j(P̂−C(µ)−A(ν)+Z)Nj,i, P

∗
sm = (Psm)+.

To find the new P ∗(Z∗, µ∗, ν∗) via the gradients of gsm with respect to Z, µj, and

newly added νi as in the unmodified projected coordinate descent algorithm (i.e.

Algorithm 4), we implement in Algorithm 5 a slightly modified version reflecting

the changes listed above. Specifically, the 2nd, 4rd, and 5th are the apparent changes

directly affecting the implementation of the algorithm, whereas the other changes

are the indirect ones causing the emergence of the apparent ones.

As a last point, all of the points made on the comparison of Algorithm 4 with

Algorithm 1 are also valid for the comparison of Algorithm 5 with Algorithm 2.

Smoothness of the Dual Function

Whether the dual function gsm is smooth will be of importance in the next subsection,

in which we will adapt FISTA to the algorithms we derived; therefore, we briefly

prove it for the modified projected coordinate descent solution (Algorithm 5). Since

the unmodified algorithm (Algorithm 4) is a reduced version of this algorithm, then

the proof for the former is trivial.

Now recall that a function g : Rn → R is smooth if there exists a Lipschitz

constant L(g) for the gradient ∇g, i.e., for the mapping from x to (∂g/∂x) such

that

∥∇g(x)−∇g(y)∥ ≤ L(g)∥x− y∥

for every x, y ∈ Rn.
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In our case g = gsm(Z, µ, ν), x = (Zx, µx, νx) (i.e., the concatenation of Z, µ, and

ν), and n = N2 + N(N−1) + N (each term in the summation reflecting the total

number of elements in Z, µ, and ν respectively). Therefore, we should prove the

existence of a Lipschitz constant L(gsm) for the gradient ∇gsm, i.e., for the mapping

from (Z, µ, ν) to (∂gsm/∂Z, ∂gsm/∂µ, ∂gsm/∂ν) such that

∥∇gsm(Zx, µx, νx)−∇gsm(Zy, µy, νy)∥ ≤ L(gsm)∥(Zx, µx, νx)− (Zy, µy, νy)∥ (4.38)

for every x = (Zx, µx, νx), y = (Zy, µy, νy) ∈ Rn.

Proof. We can make use of a simple trick to make this proof much easier. The only

terms in gsm in (4.31) that incorporate Z, µ, or ν not via G̃ is −µTd− νT b,

which is a linear element of gsm and which is a linear transformation of µ

and ν. This term, therefore, isn’t a candidate to prevent to existence of a

Lipschitz constant since

∥∇(µTx d+ νTx b)−∇(µTy d+ νTy b)∥ = 0

and we can ignore this term from this regard. Moreover, G̃(Z, µ, ν) =

P̂ − C(µ)−A(ν) + Z is a linear function of Z, µ, and ν. Due to these two

reasons, to prove the existence of a Lipschitz constant L(gsm) it is sufficient

to prove the existence of another Lipschitz constant LG̃(gsm) again for the

gradient ∇gsm but this time for the mapping from G̃(x) to (∂gsm/∂G̃(x))

such that ∥∥∥∥∂gsm(x)∂G̃(x)
− ∂gsm(y)

∂G̃(y)

∥∥∥∥ ≤ LG̃(gsm)
∥∥∥G̃(x)− G̃(y)

∥∥∥
for any G̃(x), G̃(y) for every x, y ∈ Rn. From the expression (B.6) for

∂gsm/∂G̃ we can simplify this inequality to∥∥∥mat{MG̃vec
(
G̃(x)

)}
−mat

{
MG̃vec

(
G̃(y)

)}∥∥∥ ≤ LG̃(gsm)
∥∥∥G̃(x)−G̃(y)∥∥∥

which if we apply vec operation to the inside of the norms on both sides

since vec operation has no effect on the norm operation, combined with the

linearity of vec operation and the fact that vec(mat(v)) = v, becomes∥∥∥MG̃ vec
(
G̃(x)− G̃(y)

)∥∥∥ ≤ LG̃(gsm)
∥∥∥vec(G̃(x)− G̃(y)

)∥∥∥ .
Such a constant LG̃(gsm) exists, which is equal to the maximum eigenvalue

of MG̃; therefore, gsm(Z, µ, ν) is a smooth function. �
The same proof can be used for the dual projected coordinate descent solution

(Algorithm 4) for the smooth and monotone problem, i.e., the unmodified projected

coordinate descent solution, where both gsm and G̃ are functions of (Z, µ) instead of

(Z, µ, ν). This change in the expression of gsm and G̃ changes nothing in the flow of

the above proof.
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Remark for the Case when λ = 0

We mentioned during the discussion of Algorithm 4 that when λ = 0 Algorithm 4

reduces to the version of Algorithm 3 with no equality contraints, i.e., no Ai. Then

this would mean that for λ = 0 Algorithm 5, which is the version of Algorithm

4 with equality constraints, should reduce directly to Algorithm 3. We will now

mathematically prove the latter, i.e., the reduction of Algorithm 5 to Algorithm 3

for λ = 0, which will automatically prove the former, i.e., the reduction of Algorithm

4 for λ = 0 to the version of Algorithm 3 with no equality constraints.

Proof. Let us define IK as a K × K identity matrix for any K. When λ = 0,

B̃(λ) = IN2 by its definition in (4.24). This makes B̃−1 = IN2 as well,

which further makes

Mi,j(λ)|λ=0 = I iNxN2(B̃−1(0))IjN2xN = I iNxN2IN2IjN2xN =

{
IN , if j=i

0, otherwise

since the second expression from the left hand side above meant that Mi,j

is (i,j)th N ×N block of N2 ×N2 matrix B̃−1. This further makes

Ei,l(λ)|λ=0 =Ml,i(0)+2λ
N∑
k=1

Ml,k(0)Rk,i =Ml,i(0) =

{
IN , if l=i

0, otherwise

Now we can simplify ∂gsm/∂G̃ given in (B.4):

∂gsm

∂G̃

∣∣∣∣
λ=0

=
N∑
i=1

N∑
j=1

(
−2Mi,j(0)G̃Nj,i +

N∑
l=1

Nj,lG̃Ei,l(0)Mi,j(0)

)

=
N∑
i=1

(
−2G̃Ni,i +Ni,iG̃

)
= −2G̃

(
N∑
i=1

Ni,i

)
+

(
N∑
i=1

Ni,i

)
G̃

= −2G̃IN + ING̃ = −G̃

Now, the important points are:

1. G̃(Z, ν, µ) = P̂−C(µ)−A(ν)+Z is exactly the same for G=P̂ with

Xm(Z, ν, µ) = G−C(µ)−A(ν)+Z which was defined in (4.3) and which

yielded ∂g/∂Xm = −Xm (in (4.15)) during the derivation of Algorithm 3

in Subsection 4.3.1. Therefore, ∂gsm/∂G̃|λ=0 and ∂g/∂Xm are exactly the

same. (Here, g is the dual objective of the problem (4.4) Algorithm 3 solves.)

2. During the derivation of Algorithm 3, ∂g/∂Xm is used to calculate the

gradients ∂g/∂Z, ∂g/∂µj, and ∂g/∂νi exactly the same way ∂gsm/∂G̃ is

used to calculate the gradients ∂gsm/∂Z, ∂gsm/∂µj, and ∂gsm/∂νi during

the derivation of Algorithm 5. Since ∂g/∂Xm and ∂gsm/∂G̃ are the sole
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determiners of these gradients respectively and ∂g/∂Xm = ∂gsm/∂G̃|λ=0,

the corresponding gradients used in both algorithms are exactly equal, i.e.:

∂g

∂Z
=
∂gsm
∂Z

∣∣∣∣
λ=0

,
∂g

∂µj
=
∂gsm
∂µj

∣∣∣∣
λ=0

,
∂g

∂νi
=
∂gsm
∂νi

∣∣∣∣
λ=0

(4.39)

This equivalence makes the iterations of both algorithms exactly the same.

3. The only thing that is left to show is that the final operations done after

the iterations have finished in both algorithms are equivalent. For λ = 0,

the final operation of Algorithm 5 becomes:(∑N
i=1

∑N
j=1Mi,j(0)(P̂−C(µ)−A(ν)+Z)Nj,i

)
+

=
(∑N

i=1(P̂−C(µ)−A(ν)+Z)Ni,i

)
+

=
(
(P̂−C(µ)−A(ν)+Z)

∑N
i=1Ni,i

)
+
= (G−C(µ)−A(ν)+Z)+

∣∣
G=P̂

,

i.e., the final operation of Algorithm 3 given G = P̂ . �

4.4 Optimal First Order Methods with FISTA

The algorithms we have developed (i.e. Algorithms 1 - 5) avoid computing the Hes-

sian, but unfortunately they are plagued by slow convergence, with error decreasing

as O(1/k), where k is the iteration number. However, Nesterov has shown in [24]

that it is possible to obtain O(1/k2) convergence for a multi-step first order method

by a careful combination of the current and previous gradients. An extension of

Nesterov’s method to projected gradients was developed in [25], called FISTA.

In this section we optimize the first order methods we have derived previously

in this Chapter, i.e., the dual projected gradient solution for the monotone problem

derived in Section 4.2 and the dual projected coordinate descent solution for the

smooth and monotone problem derived in Subsection 4.3.2. We do this optimization

by developing faster versions of first Algorithm 2 in Subsection 4.4.2 and then of

Algorithm 5 in Subsection 4.4.3, adapting FISTA to our problems. However, we

start with revisiting FISTA in the next subsection for a quick recall.

4.4.1 FISTA Revisited

The main aim of Beck and Teboulle in [25] is to present a faster version of the class

of Iterative Shrinkage-Thresholding Algorithms (ISTA). The general formulation of

the problem in which the authors are interested in is

min{F (x) , g(x) + f(x) : x ∈ Rn}, (4.40)
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where f : Rn → Rn is a continuous convex function which is possibly nonsmooth

and g : Rn → Rn is a smooth convex function with gradient which is Lipschitz

continuous. That is, there exists a constant L(g) for which

∥∇g(x)−∇g(y)∥ ≤ L(g)∥x− y∥

for every x, y ∈ Rn.

When F itself is a smooth convex function, i.e., when f(x) := 0 making F = g,

the general step of ISTA reduces to form of gradient descent, i.e.,

xk+1 = xk − tk∇g(xk)

reducing ISTA to a gradient method. Letting tk = L(g) it is proved that ISTA in

general has a worst-case complexity of O(1/k), which is improved to O(1/k2) by the

FISTA with constant step size. The special case of this algorithm for the case when

F = g is given below:

Input: L = L(g) - A Lipschitz constant of ∇g.
Step 0. Take y1 = x0 ∈ Rn, t1 = 1.

Step k. (k ≥ 0) Compute (a) xk = yk − 1
L
∇g(yk),

(b) tk+1 = (1 +
√

1+4t2k)/2,

(c) yk+1 = xk +
tk−1
tk+1

(xk − xk−1),

where the convergence of this algorithm is guaranteed for this step size of 1/L.

However, we make an important remark at the end of the next subsection about the

use of Lipschitz constant this way.

4.4.2 Optimal First Order Method for the Monotone Prob-

lem

In this subsection we adapt FISTA to our dual projected gradient solution we derived

for the monotone problem in Section 4.2. To be specific, we adapt it to the solution of

the problem with additional constraints (i.e., to Algorithm 2) since the adaptation to

that without the additional constraints (i.e., to Algorithm 1) is then straightforward

due to the fact that Algorithm 2 reduces to Algorithm 1 when all Ai’s are changed

to zero matrices.

The dual objective ψ(µ, ν) (given in the dual problem (4.6)) of the monotone

problem with additional constraints (4.12) is convex and Lipschitz continuous with

the Lipschitz constant L = 4(N+1)(N−1)+N as the latter shown in (4.13). Since

in addition the dual projected solution is obtained by maximizing this objective, we

can adapt FISTA to this dual problem. Smooth function g of FISTA corresponds

to −ψ of our solution (i.e., of Algorithm 2), and x of FISTA corresponds to (µ, ν)
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Algorithm 6 Dual FISTA for the Monotone Problem with Additional Constraints

Init: Set µx0 = µy = νx0 = νy = 0, let step-size parameter α = 1/L, t1 = 1.

repeat

Compute tk+1 = (1 +
√
1+4t2k)/2

Compute C(µy) =
∑N(N−1)

j=1 (µy)jCj and A(νy) =
∑N

i=1(νy)iAi
Set Pk(y) = (P̂ − C(µy)− A(νy))+

Compute gradients:
(
∂ψ
∂µj

)
(y) = Tr(CjPk(y)) and

(
∂ψ
∂νi

)
(y) = Tr(AiPk(y))

Let (µxk)j = ((µy)j + αTr(CjPk(y)))+ and (νxk)i = (νy)i + αTr(AiPk(y))

Let (µy)j = (µxk)j +
tk−1
tk+1

((µxk)j − (µxk−1
)j) and

(νy)i = (νxk)i +
tk−1
tk+1

((νxk)i − (νxk−1
)i)

until convergence

of Algorithm 2 since ψ is a function of these variables. Therefore, the gradient

∇g(x) of FISTA corresponds to −∇ψ(µ, ν) = −(∂ψ/∂µ, ∂ψ/∂ν) in our Algorithm

2, finally enabling us to adapt FISTA to this algorithm. We present the adapted

algorithm, i.e., the dual FISTA for the monotone problem with additional constraints

in Algorithm 6. Note that we project µxk onto the positive orthant in each iteration

since that is the constraint set of the dual problem (4.6).

Important Remark Regarding the Use of the Lipshitz Constant(s)

One remark that should be made about this algorithm is that, as we will see in

Section 4.5, in effect the step-size paramater choice of α = 1/L is too small for

practical use and yields a slow convergence rate, preventing us from taking the full

advantage of FISTA. This is due to the large value of L which is on the order of

O(N2) (this is also valid for the case without additional constraints since then again

L = 4(N+1)(N−1) ∝ O(N2) (4.11).). Therefore, again as we will show in Section

4.5, choosing a value for α by trial and error so that it is sufficiently small not to

prevent convergence in any trial yields a much faster convergence rate for Algorithm

6 than choosing α = 1/L does.

The last fact means that we won’t actually make use of the Lipschitz constant

when implementing Algorithm 6, and, regarding the algorithm we will develop in

the next subsection, it is the reason we didn’t derive a Lipschitz constant (although

we proved its existence) for the gradient of the dual objective gsm of the smooth

and monotone problem while proving its smoothness in Subsection 4.3.2 (the latter

of which, however, is necessary to know how to adapt FISTA). Since the gradient

∇gsm(Z, µ, ν) (expressed through (4.32), (4.33), and (4.37)) involves much heavier

operations on the variables (Z, µ, ν) it is mapped from than ∇ψ(µ, ν) involves, the
Lipschitz constant Lsm for ∇gsm is expected to be much larger than the one for ∇ψ.
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This corresponds to a much smaller step size α when α = 1/Lsm for the dual FISTA

for the smooth and monotone problem we will derive in the next subsection, making

the convergence rate too small to have any practical significance. Therefore, in

Section 4.5 we will find an α value for the dual FISTA for the smooth and monotone

problem just like we will do for the one for the monotone problem, i.e., for Algorithm

6. For this reason, in the next subsection we won’t be using a Lipschitz constant

in the dual FISTA for the smooth and monotone problem when presenting the

algorithm.

4.4.3 Optimal First Order Method for the Smooth andMono-

tone Problem

After the remark made at the end of the previous subsection, we now proceed to

adapt FISTA this time to our dual projected coordinate descent solution we derived

for the smooth and monotone problem in Subsection 4.3.2. To be specific, we adapt

it to the solution of the problem with additional constraints (i.e. to Algorithm 5)

since the adaptation to that without the additional constraints (i.e. to Algorithm 4)

is then again straightforward due to the fact that Algorithm 5 reduces to Algorithm

4 when all Ai’s are changed to zero matrices.

The flow of the adaptation is quite similar to that of we did in the previous

subsection. The dual objective gsm(Z, µ, ν) (given in the dual problem (4.31)) of

the smooth and monotone problem with additional constraints (4.35) is convex and

smooth as the latter proven in Subsection 4.3.2. Since in addition the dual projected

solution is again obtained by maximizing this objective, we can adapt FISTA to this

dual problem as well. Smooth function g of FISTA corresponds to −gsm of our

solution (i.e. of Algorithm 5), and x of FISTA corresponds to (Z, µ, ν) of Algorithm

5 since gsm is a function of these variables. Therefore, the gradient ∇g(x) of FISTA
corresponds to −∇gsm(Z, µ, ν) = −(∂gsm/∂Z, ∂gsm/∂µ, ∂gsm/∂ν) in our Algorithm

5, finally enabling us to adapt FISTA to this algorithm as well. We present the

adapted algorithm, i.e., the dual FISTA for the smooth and monotone problem with

additional constraints in Algorithm 7.

Comparison between Algorithms 7 and 6

Although there are many similarities between the derivations of the two algorithms,

Algorithms 7 and 6, there are a total of nine major differences between these adapted

algorithms. Six of these differences are exactly the same with the differences between

Algorithms 5 and 2, from which Algorithms 7 and 6 are adapted respectively, and

were during their comparison in Subsection 4.3.2 referred to those between Algo-

rithms 4 and 1, whose differences were listed previously in the same subsection. Now
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Algorithm 7 Dual FISTA for the Smooth and Monotone Problem with Additional

Constraints
Init: Set µx0 = µy = νx0 = νy = 0, Zx0 = Zy = 0, pick step-size parameter α

Let t1 = 1, compute C(µy) =
∑N(N−1)

j=1 (µy)jCj and A(νy) =
∑N

i=1(νy)iAi
repeat

Compute tk+1 = (1 +
√
1+4t2k)/2

Set G̃k,1 = P̂ − C(µy)− A(νy) + Zy

Compute gradients
(
∂gsm
∂µj

)
(y) = −Tr

(
mat{MG̃vec(G̃)}Cj

)
Let (µxk)j =

(
(µy)j + α

(
∂gsm
∂µj

)
(y)
)
+
, let (µy)j = (µxk)j+

tk−1
tk+1

((µxk)j−(µxk−1
)j)

Compute C(µy) =
∑N(N−1)

j=1 (µy)jCj
Set G̃k,2 = P̂ − C(µy)− A(νy) + Zy
Compute gradient

(
∂gsm
∂Z

)
(y) = mat{MG̃vec(G̃)}

Let Zxk =
(
Zy + α

(
∂gsm
∂Z

)
(y)
)
+
, let Zy = Zxk +

tk−1
tk+1

(Zxk−Zxk−1
)

Set G̃k,3 = P̂ − C(µy)− A(νy) + Zy

Compute gradients
(
∂gsm
∂νi

)
(y) = −Tr

(
mat{MG̃vec(G̃)}Ai

)
Let (νxk)i = (νy)i + α

(
∂gsm
∂νi

)
(y), let (νy)i = (νxk)i +

tk−1
tk+1

((νxk)i − (νxk−1
)i)

Compute A(νy) =
∑N

i=1(νy)iAi
until convergence

Psm =
∑N

i=1

∑N
j=1Mi,j(P̂−C(µy)−A(νy)+Zy)Nj,i, P

∗
sm = (Psm)+.

we list the other three (distinct) differences.

The first of the three distinct differences is that this time we project in each itera-

tion not only µxk onto the positive orthant but also Zxk onto the positive semidefinite

cone due to the constraint set of the dual problem (4.31). The second one is more

profound and is due to the fact that while Algorithm 6 is derived from a gradient

method in which Pk is only updated after simultaneous descents in µ and Z, Al-

gorithm 7 is derived from a coordinate descent algorithm in which G̃ is updated

sequentially after descent in each of Z, µ and ν: In Algorithm 7 FISTA is applied

in each of these sequential descent steps separately as opposed to Algorithm 6 in

which FISTA is applied on the descent steps in µ and ν at the same time.

Finally, the last of the distinct differences, whose reason was explained in the

remark made at the end of the previous subsection and will be explicitly shown

in Section 4.5, is that Algorithm 7 is presented without the Lipschitz constant for

the gradient ∇gsm as an input to the algorithm and that the step-size parameter α

is chosen independently of the Lipschitz constant, both of which are in contrary to

Algorithm 6, in which L is an input and in which α is chosen α = 1/L (where L is the

Lipschitz constant for the gradient of the corresponding maximized (dual) objective,
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i.e., for ∇ψ). It should be noted, however, again as its reason was explained in the

same remark and will be reminded of in Section 4.5, we won’t actually make use of

this Lipschitz constant L when implementing Algorithm 6 in Section 4.5 and will

set the value of α by trial and error, i.e., independently of the Lipschitz constant

L. From this regard the two algorithms will be bearing a similarity in practical

implementation as opposed to the difference they now bear in their theoretical forms.

As there are between Algorithms 5 and 2, there are of course many similarities

also between Algorithms 7 and 6, most important of which is the same with the

one between Algorithms 5 and 2 and which was again referred to the similarity

between Algorithms 4 and 1 explained previously in Subsection 4.3.2. As a summary,

Algorithms 7 and 6 have similar complexity due to the fact that the main complexity

of both algorithms still lies in the evaluation of the SVD needed for projection

operation done onto the positive semidefinite cone once in each iteration in both

algorithms.

4.5 Experiments and Results

In this section we present a detailed experimental analysis demonstrating the compu-

tational benefits offered by the algorithms we developed in this chapter. Throughout

this analysis, we use IPM as a benchmark via the SDP optimization package SDPT3.

For the solution of IPM we use an error tolerance of 10−7 so that IPM stops iter-

ating when both the relative gap and the infeasibilities are less than this tolerance.

If we were to set the error tolerance lower, of course IPM would iterate more and

converge to a finer point, but we deem the level of accuracy we achieve with this

error tolerance satisfactory for any practical purpose.

In the experiments of this section we generate a number of samples from a known

smooth monotone covariance P and use them to estimate P , just like we did in

Subsection 3.3.2. It should be again noted that in practice one never has the ’true’

covariance – here for each size N we took a sample covariance from ED data used

in Section 3.3 and smoothed it, as a proxy for the true one.

The scalability of algorithms used for smooth monotone covariance estimation

is one of the aspects we are interested in, as the size of the problem can get large,

both in covariance estimation applications in general, and in a number of scenarios

of interest in the context of the specific applications considered in this thesis. For

example, the problem size gets larger as we use contracts with closer dates of expira-

tions (e.g., monthly, as opposed to quarterly as considered in Section 3.3). Another

scenario involving a larger problem size emerges when we consider combinations of

several products, e.g., interest rates in EU, UK, Japan, and US, together. In this
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Figure 4.1. Convergence characteristics (∥Pgrad,k − P ∗
IPM∥F at each iteration k)

of Algorithm 1 when N = 15 for step sizes (a) α = 2/L = 2/896 (b) α = 1/8.

case the number of variables grows with the number of countries (although the co-

variance structure will change when several curvatures are modeled jointly, similar

computational approaches would still be of interest).

The structure of the rest of the section is as follows: We start with presenting the

analysis of the algorithms we developed for the monotone problem, i.e., Algorithms

1 and 6 in Subsection 4.5.1. We then present the same analysis for the smooth and

monotone problem, i.e., Algorithms 4 and 7 in Subsection 4.5.2.

Remark. In order to keep parallelism with Algorithms 1 and 4, throughout

the section we will be using the versions of Algorithms 6 and 7 without additional

constraints.

4.5.1 The Monotone Problem

Now we focus on the dual projected gradient algorithm for the monotone problem

(Algorithm 1) and its FISTA adaptation, the dual FISTA (Algorithm 6). We first

show their individual behaviors and then proceed to comparing both with each other

and with IPM.

Individual Behaviors of the Algorithms

We start with the simplest algorithm, Algorithm 1, the first figure regarding which

we give in Figure 4.1. To construct this figure, we first find the solution via IPM,

which we call P ∗
IPM. Then, in this figure we present the typical characteristics of this

algorithm for convergence to P ∗
IPM when N = 15 for different step-size parameters.

In (a) we plot the convergence for step size α = 2/L, which is the constant step size

that guarantees convergence as mentioned in Sections 4.1 and 4.2, and where L is

the Lipschitz constant for gradient ∇ψ of the simplified dual objective ψ in (4.6),

i.e., the mapping from µ to ∂ψ/∂µ, and it is equal to L = 4(N + 1)(N − 1) = 896
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Figure 4.2. Characteristics of Algorithm 1 when N = 15 for convergence to P ∗
IPM

and P ∗
grad (∥Pgrad,k − P ∗

IPM∥F and ∥Pgrad,k − P ∗
grad∥F at each iteration k).

as calculated in Section 4.2. However, as mentioned in that section, this step size is

too small and yields a slow convergence rate. Instead, we choose the largest value

for α by trial and error so that it is sufficiently small not to prevent convergence in

any trial. This value for N = 15 is α = 1/8, and we plot the convergence for this

step size in (b). As it is seen in (b), choosing this step-size parameter yields a much

higher convergence rate, over 60-fold in this instance. Therefore, we will continue

to choose step sizes via this method.

In the introduction of this section we mentioned that the implemented IPM

stops iterating after some point because of its selected error tolerance, which yields

a level of accuracy we deem satisfactory for any practical purpose. Although the

optimal points for both IPM and Algorithm 1 are exactly the same, for this reason

the implemented Algorithm 1 keeps descending even after reaching the proximity of

P ∗
IPM and converges to a slightly finer solution, which we will call P ∗

grad and which

is very close to (and practically indistinguishable than) P ∗
IPM. This phenomenon is

shown in Figure 4.2. (Actually the algorithm would never stop descending if we ran it

on a theoretical infinite precision arithmetic computer and would converge to a even

finer solution, but it practically converges to a point due to finite-precision arithmetic

by which we are limited). Now we can make the definition for convergence of the

algorithm to P ∗
IPM: we say that the algorithm has converged to P ∗

IPM at iteration

k when ∥Pgrad,k − P ∗
IPM∥F is smaller than ∥P ∗

grad − P ∗
IPM∥F , implying that Pgrad,k is

as close to P ∗
IPM at least as P ∗

grad is (i.e., that Pgrad,k is practically indistinguishable

than both P ∗
IPM), and we mark this iteration k by the square box in the figure.

Now we proceed to Algorithm 6. In Figure 4.3, we present the typical charac-

teristics of this algorithm for convergence to P ∗
IPM when N = 15, again for different

step-size parameters. In (a) we plot the convergence for step size α = 1/L (instead
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Figure 4.3. Convergence characteristics (∥Pgrad+FISTA,k − P ∗
IPM∥F at each iter-

ation k) of Algorithm 6 when N = 15 for step sizes (a) α = 1/L = 1/896 (b)
α = 1/12.

of 2/L), which is the constant step size FISTA guarantees convergence as mentioned

in Subsection 4.4.1. However, as mentioned in Subsection 4.4.2, this step size is also

too small, and again we can choose the largest value for α by trial and error so that

it is sufficiently small not to prevent convergence in any trial. This value for N = 15

is α = 1/12, for which we plot the convergence behavior in (b). This step-size pa-

rameter again yields a much higher convergence rate, over 50-fold in this instance.

We will also continue to choose step sizes for this algorithm via this method.

We typically observe oscillations in the descent of Algorithm 6. These downward

oscillations mean that, in spite of the general descent trend of the algorithm, the

covariance matrix iterates Pgrad+FISTA,k keep switching between getting closer to

P ∗
IPM and getting away from it, the latter movement in relatively lesser amount. This

behavior is in contrary not only to the consistent descent behavior of Algorithm 1,

but also to our expectations on theoretical considerations of FISTA, and therefore

has surprised us. Moreover, although it may be thought that these oscillations are

a symptom of a descent process that is too fast and that they can ameliorated by

using a smaller step-size parameter, we can see that the same behavior is valid for all

step-size parameters in Figure 4.4 (a), where we plot the convergence characteristics

for 4 different step-size parameters, each at a different order of magnitude: 1/12,

1/100, 1/896, and 1/10000. We are still investigating the reason of the occurence of

these undesired oscillations in continuing work.

Nevertheless, however, although one may think that this oscillatory behavior

would cause the potential risk of being near the top of an oscillation (i.e., far from

P ∗
IPM) at the final iteration without knowing it, this situation may be prevented.

For that purpose we plotted in (b) the norm change between the covariance matrix

iterates. These norm change plots behave exactly opposite as their convergence plot

counterparts in (a), i.e., they make a dip when there is a peak in (a), and vice versa.

In (b) we mark the iterations at which norm changes hit an order of magnitude with
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Figure 4.4. When N = 15 and for step sizes (for curves from left to right) α =
1/12, 1/100, 1/896, 1/1000, and 1/10000, characteristics of Algorithm 6 regarding
(a) convergence (b) norm change between the covariance matrix iterates.

circles, and use these markings in (a) exactly at the same iterations, as a summary

of (b). It can be seen that when the circle is at a dip in (b), it is at a peak in (a).

Therefore, since we already calculate these iterates in each iteration, we can detect

the peaks in (b), enabling us to stop when we hit a dip in (a). So, effectively, we

can connect the dips of curves in (a) and claim them as our convergence curves.

As it wasn’t for Algorithm 1, P ∗
IPM is also not the final point Algorithm 6 con-

verges to since again the algorithm keeps descending to a slightly finer point as

shown in Figure 4.5. This descent continues until the algorithm reaches the same

point Algorithm 1 converges to, i.e., P ∗
grad. Every point we have previously made

about the relation between P ∗
IPM and P ∗

grad during the discussion of Algorithm 1 is

still valid. We also define convergence of the algorithm to P ∗
IPM the same way we

did for Algorithm 1 and mark the convergence iteration k again by the square box

in the figure.

Comparison

We now start comparing Algorithms 1 and 6 both with each other and with IPM. It

is important to remind here that solving an SDP such as our problem via an IPM

can become unduly computationally expensive for large covariance matrices, as it

involves computing the Hessian. In Figure 4.6 we present three illustrative plots

in each of which relative performance of Algorithm 6 with respect to Algorithm 1
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Figure 4.6. Different performances of Algorithm 6 (blue curves) with respect to
Algorithm 1 (red curves) for different samples: Algorithm 6 converges to P ∗

IPM(a)
faster than (b) as fast as (c) slower than Algorithm 1.

changes with different samples obtained from the true covariance matrix. As it can

be seen in (b) and (c), however, one behavior is sometimes observed: First Algorithm

6 descends faster, then Algorithm 1 takes the lead and is the first one to converge

to P ∗
grad. When this is the case, the question of which one converges to P ∗

IPM faster,

a question which we are interested in, depends on when Algorithm 1 catches up

Algorthm 6. We are also interested in the question of how much Algorithm 6 is

advantageous with respect to Algorithm 1 when less accuracy of the solution, e.g.,

10−2 or 10−3 is sufficient.

We now proceed to timing analysis and first show in Figure 4.7 the timing analysis

for IPM, Algorithm 1, and Algorithm 6 regarding the time it takes to converge to

P ∗
IPM for dimensions from N = 10 to N = 50. We note that we measure this timing

in running time rather than in number of iterations, as the former is what matters

at the end regarding convergence speed. For this purpose we repeat the experiments
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Figure 4.7. Median and 25th-75th percentile time it takes for IPM (black curves),
Algorithm 1 (red curves), and Algorithm 6 (blue curves) to converge to P ∗

IPM for
N from 10 to 50.

we have done 20 times for each N , and then use median and 25th and 75th percentile

information from these experiments. We see that for any N , Algorithms 1 and 6

converge to P ∗
IPM at least about 5 and 8 times faster than IPM, respectively.

Although Algorithm 6 seems to be a bit more advantageous for N = 40 and 50

in Figure 4.7, to our surprise the major of the theoretical advantage of FISTA as it

promises on theoretical grounds is not as evident in its practical performance, and

for further work we will not only investigate it closely but also experiment with other

first-order methods. Nevertheless, the realized advantage of FISTA in Algorithm 6

is not limited to that observed in Figure 4.7 and is more evident in Figure 4.8, in

which we give a timing analysis of Algorithms 1 and 6 again for the same N values,

but this time regarding the time it takes to reach 10−x proximity of P ∗
IPM for some

x values (instead of the time it takes to reach ∥P ∗
IPM − P ∗

grad∥F , i.e., to converge

to P ∗
IPM by our definition). Again we measure the timing in running time. Here

the advantage of Algorithm 6 can be seen more clearly: Algorithm 6 reaches 10−x

proximity of P ∗
IPM faster than Algorithm 1 does for x = 1, 3 (and also for 2 and

4, although not shown) at least 87.5% of the time and for x = 5 at least 50% of

the time. Moreover, on average Algorithm 6 reaches 10−x proximity of P ∗
IPM for at

least one value of N up to 8, 16, 15, 7, and 4 times faster than Algorithm 1 for

x = 1, 2, 3, 4, and 5 respectively, the gap generally increasing for larger N .

63



10 15 20 25 30 35 40 45 50

−10

−8

−6

−4

−2

0
x=

1

time elapsed until 10−x proximity to P*
IPM

 

 

grad, median
grad, 25th & 75th %−tile
grad+FISTA, median
grad+FISTA, 25th & 75th %−tile

10 15 20 25 30 35 40 45 50

−8

−6

−4

−2

0

2

lo
g 2(t

im
e 

el
ap

se
d)

 x
=

3

 

 

10 15 20 25 30 35 40 45 50

−6

−4

−2

0

2

Covariance Matrix Dimension (N)

x=
5

 

 

Figure 4.8. Median time it takes for Algorithm 1 (red curves) and Algorithm 6
(blue curves) to reach to 10−x proximity of P ∗

IPM for (a) x = 1 (b) x = 3 (c) x = 5,
including 25th-75th percentiles for (a) and (b), for N from 10 to 50.

4.5.2 The Smooth and Monotone Problem

Now we focus on the dual projected gradient algorithm for the smooth and monotone

problem (Algorithm 4) and its FISTA adaptation, the dual FISTA (Algorithm 7).

Since when we tested we observed that their individual behaviors are the same as

the algorithms analyzed in the previous subsection and that there is no change, we

directly proceed to comparing the timing results of the algorithms again both with

each other and with IPM.

We first show in Figure 4.9 the timing analysis for IPM, Algorithm 4 and Algo-

rithm 7 regarding the time it takes to converge to P ∗
IPM for dimensions from N = 10

to N = 50, where we again measure this timing in running time rather than in

number of iterations. For this purpose we repeat the experiments we have done 20

times for each N , and then use median and 25th and 75th percentile information

64



10 15 20 25 30 35 40 45 50
−10

−8

−6

−4

−2

0

2

4

6

8

covariance matrix dimension (N)

lo
g 2(t

im
e 

el
ap

se
d)

time elapsed until convergence to P*
IPM

 

 

IPM, median
IPM, 25th & 75th %−tile
grad, median
grad, 25th & 75th %−tile
grad+FISTA, median
grad+FISTA, 25th & 75th %−tile

Figure 4.9. Smooth-monotone: median and 25th-75th percentile time it takes for
IPM (black curves), Algorithm 4 (red curves), and Algorithm 7 (blue curves) to
converge to P ∗

IPM for N from 10 to 50.

from these experiments. We see that for any N , both Algorithm 4 and 7 converge

to P ∗
IPM at least 2 times faster than IPM.

Although Algorithm 7 seems to be a bit more advantageous for N = 30, 45 and

50 in Figure 4.9 , the major of the theoretical advantage of FISTA as it promises

on theoretical grounds is again not as evident in its practical performance, a result

not in the fully desired direction which will be investigated in the future work as

mentioned previously. Nevertheless, the realized advantage of FISTA in Algorithm

7 is again not limited to that observed in Figure 4.9 and is more evident in Figure

4.10, in which we give a timing analysis of Algorithms 4 and 7 again for the same

N values, but this time regarding the time it takes to reach 10−x proximity of P ∗
IPM

for some x values (instead of the time it takes to reach ∥P ∗
IPM − P ∗

grad∥F , , i.e., to
converge to P ∗

IPM by our definition). Here the advantage of Algorithm 7 can be seen

more clearly: Algorithm 7 reaches 10−x proximity of P ∗
IPM faster than Algorithm

4 does for x = 1, 3 (and also for 2 and 4, although not shown) at least 87.5% of

the time, for x = 5 at least 75% of the time, and for x = 6 at least 50% of the

time. Moreover, on average Algorithm 7 reaches to 10−x proximity of P ∗
IPM for at

least one value of N up to 6, 8, 16, 16, 8 and 1.5 times faster than Algorithm 4 for

x = 1, 2, 3, 4, 5, and 6 respectively, the gap generally enlargening for larger N .
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Figure 4.10. Smooth-monotone: median time it takes for Algorithm 4 (red curves)
and Algorithm 7 (blue curves) to reach to 10−x proximity of P ∗

IPM for (a) x = 1
(b) x = 3 (c) x = 6, including 25th-75th percentiles for (a) and (b), for N from 10
to 50.
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Chapter 5

Conclusion

In this thesis the problem of interest is covariance matrix estimation from limited

number of high dimensional i.i.d. multivariate samples when the random variables of

interest have a natural spatial indexing along a low-dimensional manifold, e.g., along

a line. For this problem we take as basis the smooth-monotone estimation formula-

tion that allows all the elements of the covariance matrix to be treated as separate

parameters, but requires the covariance function to be smooth and monotone with

respect to this indexing. The primary aim of the thesis is to develop highly effi-

cient first-order solvers for this smooth-monotone formulation. The secondary aim

is to present extensive simulations of (1) the developed first order solvers, which

are based on this formulation, regarding their computational benefits and of (2) the

smooth-monotone covariance estimation formulation regarding its accuracy.

In this chapter we first summarize the thesis and the contributions in Section

5.1. In Section 5.2 we discuss several extensions to the ideas presented in the thesis,

with a number of suggestions for further research.

5.1 Summary of the Thesis and of the Contributions

After providing a background in Chapter 2, we proceeded to Chapter 3, which

contained the formulation we used as basis for covariance estimation. In that chap-

ter, after motivating the use of this formulation and posing the estimation problem

in a convex-optimization framework, we re-presented the solution of the resulting

semidefinite-programming problem by an interior-point method (We also mentioned

that solving an SDP this way can become unduly computationally expensive for

large covariance matrices, as it involves computing the Hessian.). Then we started

to make our own contributions one-by-one:

1. In Section 3.3, we made our first contribution by demonstrating the appli-

cation of our approach on a number of examples with limited, missing and
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asynchronous data, and showing that it has the potential to provide more

accurate covariance matrix estimates than existing methods, and exhibits a

desirable eigenvalue-spectrum correction effect.

2. We then proceeded to Chapter 4, in which after a quick revisit to the original

gradient projection method developed in [26] we made our main contribu-

tion through Sections 4.2 - 4.4 by developing optimal first-order methods for

solving our optimization problem. In our derivation we first adapted the pro-

jected gradient method of [26] in Sections 4.2 and 4.3 and accelerated them

following the optimal first order ideas of [25] in Section 4.4. To be specific, we

first described a dual first-order method for the special case of our problem

which contains only monotonicity constraints in Section 4.2 for pedagogical

reasons and then a dual projected coordinate descent solution for our smooth

and monotone problem in Section 4.3.

3. Finally, we presented our final contribution in Section 4.5 as a detailed ex-

perimental analysis demonstrating the computational benefits offered by the

algorithm we developed in Chapter 4.

5.2 Future Work

We can divide potential future work to three categories: application, analysis, and

formulation.

5.2.1 Application

The first future application we can study is a direct extension of the one we already

did. We presented in Section 3.3 the application of the smooth-monotone formu-

lation on term-structure modeling, where in Section 3.3.4 we presented a study of

forecasting future correlation coefficient matrices over several years of historical data

of ED prices. We can take this one step further and forecast future covariance ma-

trices instead of just correlation coefficient matrices, by using GARCH (Generalized

Autoregressive Conditional Heteroskedasticity) modeling [41] to predict the diago-

nal of variances and fusing it with our smooth-monotone estimate of the correlation

structure. Then we can directly use the predicted covariance matrices to see the

performance improvement in the allocation of the assets in the mentioned portfolio

selection methods, such as Markowitz portfolios.

Other potential applications include extension of the smooth-monotone frame-

work to 2D regular grids, for example in modeling volatility surfaces [40].
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5.2.2 Analysis

The most important future work in this category is the investigation of FISTA fur-

ther in an attempt to find out the reason why the major of the theoretical advantage

of FISTA as it promises on theoretical grounds is not as evident in practical perfor-

mances of Algorithms 6 and 7 as shown and discussed in Section 4.5. An important

portion of this investigation is the study of the possible reasons of the undesired

oscillations observed when these algorithms are implemented, in contrary to our

expectations on theoretical considerations of FISTA.

As a separate future work, a more extensive analysis of the algorithms we have

developed can be sought. Two of possible investigations of this kind could be re-

garding the theoretical characterization of the convergence rates and of the number

of samples required for convergence, where in the latter convergence is in terms of

estimation accuracy as opposed to optimization accuracy (i.e., converging to the

true minimizer) as meant in the former. Other possible guarantees of numerical

performance can be investigated as well.

Finally, the performance of our algorithms can be compared to alternative first-

order methods as well in addition to IPM, such as NESTA and its variations [39],

or those studied in [44-50].

5.2.3 Formulation

The first formulation-wise improvement could be regarding the first order ideas

implemented. The most basic step in this direction would be instead of adapting

FISTA with constant step size to our Algorithms 1 and 4, adapting FISTA with

backtracking which was again described in [25]. This version of FISTA, which uses

adaptive step size instead of a constant step size, may provide faster convergence by

initializing a larger step size and increasing it when necessary. A larger step would

be using other first-order alternatives to FISTA altogether, such as NESTA and its

variations [39], or [44-50] as mentioned above.

A more fundamental attempt could be using alternative optimization methods

instead of the gradient projection method of [26] to solve our optimization problem.

One example to these alternative methods is [51], which deals with the same problem

as [26].

A third possible improvement could be achieved by choosing a different error

metric D(P, P̂ ) for our formulation as we mentioned in Section 3.2, for example we

can also use Kullback-Leibler (KL) divergence, which for two-zero mean Gaussian

distributions with covariances P and Q is defined as (see (3.4))

D(P ||Q) = 1
2
[log(detQP−1)) + tr(QP−1)−N ].
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Of course, using such an error metric would change the optimization method we

need to use since the gradient projection method of [26] is applicable only when the

error metric is Frobenius norm.
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Appendix A

Mathematical Preliminaries

In this appendix we provide some mathematical preliminaries which will be of use

in the thesis. The material in this section is borrowed from [33], to which the reader

is referred for a more thorough understanding.

A.1 Convex Sets and Cones, and Relation to Positive Semidef-

initeness and Generalized Inequalities

Convex Sets

A set C is a convex if the line segment between any two points in C lies in C, i.e.,

if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C.

We call a point of the form θ1x1 + ... + θkxk, where θ1 + ... + θk = 1 and θi ≥
0, i = 1, ..., k, a convex combination of the points x1, ..., xk. A set is convex if and

only if it contains every convex combination of its points. A convex combination of

points can be thought of as a mixture or weighted average of the points, with θi the

fraction of xi in the mixture.

Cones and Convex Cones

A set C is called a cone if for every x ∈ C and θ ≥ 0 we have θx ∈ C. A set C is

a convex cone if it is convex and a cone, which means that for any x1, x2 ∈ C and

θ1, θ2 ≥ 0, we have

θ1x1 + θ2x2 ∈ C.

A point of the form θ1x1+...+θkxk with θ1, ..., θk ≥ 0 is called a conic combination

of x1, ..., xk. If xi are in a convex cone C, then every conic combination of xi is in C.
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Conversely, a set C is a convex cone if and only if it contains all conic combinations

of its elements.

The Positive Semidefinite Cone

We use the notation Sn to denote the set symmetric n× n matrices,

Sn = {X ∈ Rn×n | X = XT}

which is a vector space with dimension n(n+1)/2. We use the notation Sn+ to denote

the set of symmetric positive semidefinite matrices:

Sn+ = {X ∈ Sn | X ≽ 0},

where the matrix inequality X ≽ 0 means that X is positive semidefinite, i.e.,

zTXz ≥ 0 for all non-zero vectors z with real entries (z ∈ Rn). If moreover zTXz > 0

for all such z, then it means that X is positive definite and we denote it by X ≻ 0.

We use the notation Sn++ to denote the set of symmetric positive definite matrices:

Sn++ = {X ∈ Sn | X ≻ 0}.

(This notation is meant to be analogous to R+, which denotes the nonnegative reals,

and R++, which denotes the positive reals.)

The set Sn+ is a convex cone: if θ1, θ2 ≥ 0 and A,B ∈ Sn+, then θ1A+ θ2B ∈ Sn+.

This can be seen directly from the definiton of positive semidefiniteness: for any

x ∈ Rn, we have

xT (θ1A+ θ2B)x = θ1x
TAx+ θ2x

TBx ≥ 0,

if A ≽ 0, B ≽ 0 and θ1, θ2 ≥ 0.

Generalized inequalities and Matrix Inequality

A cone K ⊆ Rn is called a proper cone if it is at the same time (1) convex, (2) closed,

(3) solid, which means it has nonempty interior, and (4) pointed, which means that

it contains no line.

A proper cone K can be used to define a generalized inequality, which is a partial

ordering on Rn that has many of the properties of the standard ordering on R (refer

to p. 44 in [33] for a full list of these properties). We associate with the proper cone

K the partial ordering on Rn defined by

x ≽K y ⇐⇒ x− y ∈ K.
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We also write y ≼K x for x ≽K y. Similarly, we define an associated strict partial

ordering by

x ≻K y ⇐⇒ x− y ∈ intK,

and write y ≺K x for x ≻K y. (To distinguish the generalized inequality≽K from the

strict generalized inequality, we sometimes refer to ≽K as the nonstrict generalized

inequality.)

When K = R+, the partial ordering ≽K is the usual ordering ≥ on R, and the

strict partial ordering ≻ is the same as the usual strict ordering > on R. So general-

ized inequalities include as a special case ordinary (nonstrict and strict) inequality

in R.

The positive semidefinite cone Sn+ is a proper cone in Sn. The associated gen-

eralized inequality ≽K is the usual matrix inequality: X ≽K Y means X − Y is

positive semidefinite. The interior of Sn+ (in Sn) consists of the positive definite ma-

trices, so the strict generalized inequality also agrees with the usual strict inequality

between symmetric matrices: X ≻K Y means X − Y is positive definite. Here, too,

the partial ordering arises so frequently that we drop the subscript: for symmetric

matrices we write simply X ≽ Y or X ≻ Y . It is understood that the generalized

inequalities are with respect to the positive semidefinite cone.

Projection onto the Positive Semidefinite Cone

The material in this part is borrowed from [26]. The positive and negative semidef-

inite parts of a N ×N symmetric matrix X, denoted by X+ and X−, respectively,

are defined implicitly by the conditions

X = X+ −X−, X+ = XT
+ ≽ 0, X− = XT

− ≽ 0, X+X− = 0.

The positive semidefinite part X+ is the projection of X onto the positive semidefi-

nite cone, i.e., we have

∥X −X+∥F = ∥X−∥F ≤ ∥X − Z∥F . (A.1)

for any positive semidefinite Z. In a similar way, ∥X + Z∥F is minimized, over all

positive semidefinite matrices Z, by the choice of Z = X− (see, e.g., [33, Section

8.1.1]).

We can express the positive and negative semidefinite parts explicitly as

X+ =
∑
λi>0

λiqiq
T
i , X− =

∑
λi<0

λiqiq
T
i , (A.2)

where X =
∑N

i=1 λiqiq
T
i is an eigendecomposition of X, i.e., q1, ..., qN is a set of

orthonormal eigenvectors of X with corresponding eigenvalues λ1, ..., λN .
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A.2 Convex Optimization

Convex Functions

A function f : Rn → R is convex if domf is a convex set and if for all x, y ∈ domf ,

and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (A.3)

A function f is strictly convex if strict inequality holds in (A.5) whenever x ̸= y and

0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is strictly

convex.

Suppose K ⊆ Rm is a proper cone with associated generalized inequality ≼K .

We say f : Rm → Rn is K-convex if it satisfies

f(θx+ (1− θ)y) ≼K θf(x) + (1− θ)f(y) (A.4)

for all x, y, and 0 ≤ θ ≤ 1, and strictly K-convex if for all x ̸= y and 0 < θ < 1 it

satisfies

f(θx+ (1− θ)y) ≺K θf(x) + (1− θ)f(y). (A.5)

These definitions reduce to ordinary convexity and strict convexity when m = 1

(and K=R+).

The α-sublevel set of a function f : Rn → R is defined as

Cα = {x ∈ domf | f(x) ≤ α},

Sublevel sets of a convex function are convex, for any value of α.

Convex Optimization Problem

The simplest form of a convex optimization problem is

minimize f0(x) (A.6)

subject to fi(x) ≤ 0, for i = 1, ...,m,

where the functions f0, ..., fm : Rn → R are convex.

It is easy to modify (A.6) to include equality constraints. Suppose that we

want to add the equality constraint h(x) = 0 where again h : Rn → R. We may

include this constraint in (A.6) via adding both h(x) ≤ 0 and −h(x) ≤ 0 to the

constraint set. To be able to this, however, both h(x) and −h(x) have to be convex,

meaning that h(x) has to be linear, or affine, i.e., has to be expressable in the form
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h(x) = aTx − b where a, b are column vectors. Therefore, we can now express a

convex optimization in its standard form

minimize f0(x) (A.7)

subject to fi(x) ≤ 0, for i = 1, ...,m,

aTj x = bj, for j = 1, ..., p,

where the functions f0, ..., fm : Rn → R are again convex and aj ∈ Rn, bj ∈ R for all

j = 1, ..., p.

Now, suppose that we now want use matrix respresentation X instead of column

vector representation x. We can again easily modify (A.7) for this representation.

In this case, a convex optimization problem can be expressed as

minimize f0(X) (A.8)

subject to fi(X) ≤ 0, for i = 1, ...,m,

Tr AjX = bj, for j = 1, ..., p,

where the functions f0, ..., fm : RM×N → R are again convex, Aj ∈ RN×M for all

j = 1, ..., p, and Tr denotes the trace of a matrix, i.e., if U is a N ×N matrix, then

Tr U =
∑N

i=1[U ](i,i).

Remark. If the objective f0 of convex optimization problem (A.6) (or equiv-

alently of (A.7) or (A.8)) has bounded sublevel sets and, in addition, is strictly

convex, then the feasibility of convex optimization problem is a sufficient condition

for it to have a unique solution x∗ (or X∗).

Generalized Inequality Constraints and Semidefinite Programming

One very useful generalization of the standard form convex optimization problem

(A.7) is obtained by allowing the inequality constraint functions to be vector valued,

and using generalized inequalities in the constraints:

minimize f0(x) (A.9)

subject to fi(x) ≺Ki
0, for i = 1, ...,m,

Ax = b,

where f0 : Rn → R, Ki ⊆ Rki are proper cones, and fi : Rn → Rki are Ki-convex.

We refer to this problem as a (standard) form convex optimization problem with

generalized inequality contraints. Problem (A.7) is a special case with Ki = R+ for

all i = 1, ...,m.
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The type of problem that will be most relevant to us under this category is

Semidefinite Programming, which is subcategory for Ki = SN+ . A standard form

SDP has linear equality contraints, and a (matrix) nonnegativity constraint on the

variables X ∈ SN :

minimize Tr CX (A.10)

subject to X ≽ 0,

Tr AiX = bi, for i = 1, ..., p,

where C,A1, ...Ap ∈ Sn and bi ∈ R for all i = 1, ..., p. The version of this problem

with additional linear inequality contraints, as given in the following, is also a SDP:

minimize Tr CX (A.11)

subject to X ≽ 0,

Tr AiX = bi, for i = 1, ..., p,

Tr CjX ≤ dj, for j = 1, ...,m,

where C,A1, ...Ap, C1, ..., Cm ∈ Sn and b1, ..., bp, d1, ..., dm ∈ R.

A.3 Duality

In this section we cover Lagrangian duality, which plays a central role in convex

optimization and which will be of specific importance in the thesis.

The Lagrangian

We consider an (not necessarily convex) optimization problem in the standard form:

minimize f0(x) (A.12)

subject to fi(x) ≤ 0, for i = 1, ...,m,

hi(x) = 0, for i = 1, ..., p,

with variable x ∈ Rn. We assume its domain D = (∩mi=0domfi) ∩ (∩pi=0domhi) is

nonempty, and denote the optimal value of (A.12) by p∗.

The basic idea in Lagrangian duality is to take the constraints in (A.12) into

account by augmenting the objective function with a weighted sum of the constraint

functions. We define the Lagrangian L : Rn × Rm × Rp → R associated with the

problem (A.12) as

L(x, µ, ν) = f0(x) +
∑m

i=1 µifi(x) +
∑p

i=1 νihi(x),
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with domL = D × Rm × Rp. We refer to µi as the Lagrange multiplier associated

with the ith inequality constraint fi(x) ≤ 0; similarly we refer to νi as the Lagrange

multiplier associated with the ith equality constraint hi(x) = 0. The vectors µ and

ν are called the dual variables or Lagrange multiplier vectors associated with the

problem (A.12).

The Lagrange Dual Function

We define the Lagrange dual function (or just dual function) g : Rm × Rp → R as

the minimum value of the Lagrangian over x: for µ ∈ Rm, ν ∈ Rp,

g(µ, ν) = infx∈D L(x, µ, ν) = infx∈D (f0(x) +
∑m

i=1 µifi(x) +
∑p

i=1 νihi(x)) .

When the Lagrangian is unbounded below in x, the dual function takes on the value

−∞. Since the dual function is the pointwise infimum of a family of affine functions

of (µ, ν), it is concave, even when the problem (A.12) is not convex. The dual

function yields lower bounds on the optimal value p∗ of the problem (A.12): For any

µ ≽ 0 and any ν we have

g(µ, ν) ≤ p∗, (A.13)

which follows from the fact that g(µ, ν) ≤ f0(x̃) holds for every feasible point x̃.

The inequality (A.13) holds, but is vacuous, when g(µ, ν) = −∞. The dual function

gives a nontrivial lower bound on p∗ only when µ ≽ 0 and (µ, ν) ∈ domg, i.e.,

g(µ, ν) > −∞. We refer to a pair (µ, ν) with µ ≽ 0 and (µ, ν) ∈ domg as dual

feasible, for reasons explained in the following.

The Lagrange Dual Problem

The optimization problem

maximize g(µ, ν) (A.14)

subject to µ ≽ 0

is called the Lagrange dual problem associated with the problem (A.12). In this

context the original problem (A.12) is sometimes called the primal problem. The

term dual feasible, to describe a pair (µ, ν) with µ ≽ 0 and g(µ, ν) > −∞, now makes

sense. It means, as the name implies, that (µ, ν) is feasible for the dual problem

(A.14). We refer to (µ∗, ν∗) as dual optimal or optimal Lagrange multipliers if they

are optimal for the problem (A.14).

The Lagrange dual problem (A.14) is a convex optimization problem, since the

objective to be maximized is concave and the constraint is convex. This is the case

whether or not the primal problem (A.12) is convex.

77



Weak Duality

The optimal value of the Lagrange dual problem, which we denote d∗, is, by def-

inition, the best lower bound on p∗ that can be obtained from the Lagrange dual

function. In particular, we have the simple but important inequality

d∗ ≤ p∗, (A.15)

which holds even if the original problem is not convex. This property is called weak

duality, and we refer to the difference p∗−d∗ as the optimal duality gap of the original

problem, since it gives the gap between the optimal value of the primal problem and

the best (i.e., greatest) lower bound on it that can obtained from the Lagrange dual

function. The optimal duality gap is always nonnegative.

Strong Duality and Slater’s Constraint Qualification

If the equality

d∗ = p∗ (A.16)

holds, i.e., the optimal duality gap is zero, then we say that strong duality holds.

Strong duality does not, in general, hold. But if the primal problem (A.12) is convex,

i.e., of the form

minimize f0(x) (A.17)

subject to fi(x) ≤ 0, for i = 1, ...,m,

Ax = b,

with f0, ..., fm convex, we usually (but not always) have strong duality. There are

many results that establish conditions on the problem, beyond convexity, under

which strong duality holds. These conditions are called constraint qualifications.

One simple constraint qualification is Slater’s condition: There exists an x ∈ relintD

(the interior of D relative to the affine hull of D) such that

fi(x) < 0 for i = 1, ...,m, and Ax = b. (A.18)

Such a point is sometimes called strictly feasible, since the inequality constraints hold

with strict inequalities. Slater’s theorem states that if Slater’s condition holds and

the problem is convex, then strong duality holds. Slater’s condition implies not only

strong duality for convex problems, but also that the dual optimal value is attained

when d∗ > −∞, i.e., there exists a dual feasible (µ∗, ν∗) with g(µ∗, ν∗) = d∗ = p∗.

78



Applying Duality to a Specific Type of Convex Optimization Problem

Involving Matrices

We now slightly modify (A.17) by using the matrix variable X for the unknown

variable, which was previously the scalar variable x, and present the following devel-

opment using ideas from [26]. One version of the problem with this matrix represen-

tation, on which we focus most in the thesis, is when f1, ..., fm are linear operations

and there is a psd constraint on X, i.e.,

minimize f0(X) (A.19)

subject to X ≽ 0,

Tr AiX = bi, for i = 1, ..., p,

Tr CjX ≤ dj, for j = 1, ...,m,

where A1, ...Ap, C1, ..., Cm ∈ Sn, b1, ..., bp, d1, ..., dm ∈ R, and f0 is convex. Note the

similarity to (A.11) and that (A.19) is still a convex optimization problem.

Introducing the Lagrange multipliers ν1, ..., νp associated with the equality con-

straints, µ1, ..., µm associated with the inequality constraints, and the symmetric

n × n matrix Z associated with the matrix inequality X ≽ 0 (which we write as

−X ≼ 0), the Lagrangian of problem (A.19) is then

L(X,Z, ν, µ) = f0(X)−TrZX +

p∑
i=1

νi(TrAiX − bi) +
m∑
j=1

µj(TrCjX − dj), (A.20)

and the (Lagrangian) dual problem associated with the problem (A.19) is

maximize g(Z, µ, ν) (A.21)

subject to Z ≽ 0, µ ≽ 0,

where the dual function, i.e., the objective is given by g(Z, µ, ν) = infX L(X,Z, ν, µ).

Weak duality always holds for the dual problem (A.21): if Z, ν, and µ are dual

feasible, i.e., Z ≽ 0 and µ ≽ 0, then the dual objective is a lower bound on the opti-

mal value of problem (A.19). If (A.19) is strictly feasible, i.e., there exists an X ≻ 0

that satisfies the linear equalities and inequalities in (A.19), then strong duality

holds: there exist Z∗, ν∗, µ∗ that are optimal for the dual problem (A.21) with dual

objective equal to the optimal value of the problem (A.19). Moreover, in some special

cases (such as the strict convexity of the Lagrangian with respect to the primal vari-

ableX), the optimal solution of the problem (A.19), X∗ = argminX L(X,Z
∗, ν∗, µ∗),

can be recovered from the dual optimal variables.
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Advantages of Dual Methods

When there is no duality gap, dual methods in general allow one to solve the dual

problem, a related problem to the primal problem, and recover the solution of the

primal problem. So one can use either the primal or the dual problem and find the

same solution. The advantage is that sometimes solving the dual problem can be

computationally easier than solving the primal. This may be due to the simpler

form of the objective, the constraint set or both in the dual problem in comparison

with the primal. In the thesis the reason we are using duality is that it results in

a dual problem which has a much simpler constraint set than that of the primal

problem.

A.4 Matrix Calculus

Numerator-layout Notation

Throughout the thesis we use the numerator-layout notation [42]. According to this

notation, if Y = (y(i,j)) is an m× n matrix and x is a scalar, then:

1. ∂Y/∂x is an m× n matrix with (i, j)th element being ∂y(i,j)/∂x, and

2. ∂x/∂Y is an n×m matrix with (i, j)th element being ∂x/∂y(j,i).

Chain Rule for Scalar by Scalar Derivative Involving Matrices

Let U(x) be a matrix and a function of a scalar x. Then the derivative of the

scalar-valued function g(U) with respect to x in numerator-layout notation [43] is

∂g(U)

∂x
= Tr

[
∂g(U)

∂U

∂U

∂x

]
(A.22)

Derivative of a Trace Function with respect to a Matrix

Now, we will derive the identity (again in numerator-layout notation)

∂Tr[BXTAX]

∂X
= BTXTAT +BXTA. (A.23)

In numerator-layout notation, this is equivalent to deriving the identity

dTr
[
BXTAX

]
= Tr

[
(BTXTAT +BXTA)dX

]
. (A.24)

For that purpose, we will be using two properties of trace function:

1. It allows transposing, i.e., Tr
[
AT
]
= Tr [A], and

2. It allows cyclic permutation, i.e., Tr [ABC] = Tr [BCA] = Tr [CAB].
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Now we proceed to the derivation:

dTr
[
BXTAX

]
= dTr

[
AXBXT

]
= Tr

[
d(AXBXT )

]
= Tr

[
AXd(BXT ) + d(AX)BXT

]
= Tr

[
AXBd(XT )

]
+Tr

[
A(dX)BXT

]
= Tr

[
AXB(dX)T

]
+Tr

[
A(dX)BXT

]
= Tr

[
(AXB(dX)T )T

]
+Tr

[
A(dX)BXT

]
= Tr

[
(dX)BTXTAT

]
+Tr

[
A(dX)BXT

]
= Tr

[
BTXTAT (dX)

]
+Tr

[
BXTA(dX)

]
= Tr

[
(BTXTAT +BXTA)dX

]
.
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Appendix B

Derivations for Subsection 4.3.2

In this appendix we derive the gradients (4.32, 4.33) of the dual objective gsm, which

is given below (and in (4.31)):

gsm(Z, µ) =
1
2
∥Psm∥2F + λ∥Ms◦(DsPsm)∥2F −Tr[PsmG̃]+

1
2
∥P̂∥2F − µTd

Now, using the numerator layout, the fact that the trace function allows cyclic

permutation, and the identity (A.23) from matrix calculus

∂Tr[BXTAX]

∂X
= BTXTAT +BXTA

as all explained in Section A.4, with the expansion formula for Psm from (4.27), the

symmetry property of G̃, the properties NT
i,j=Nj,i andM

T
i,j=Mj,i, and the definitions

I iNxN2=I i TN2xN and I i1xN=I
i T
Nx1 as well, we will first find the gradient of each term of

gsm in (4.31) with respect to G̃. We will express each term in the form of a trace

function of G̃ before each gradient operation. Let us start with the first term.

∥Psm∥2F = Tr
[
P T
smPsm

]
= Tr

[(
N∑
i=1

N∑
j=1

NT
j,iG̃

TMT
i,j

)(
N∑
k=1

N∑
l=1

Mk,lG̃Nl,k

)]

=
N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

Tr[Nl,kNi,j︸ ︷︷ ︸
Nl,j if k=i, 0 otherwise

G̃TMj,iMk,lG̃] =
N∑
i=1

N∑
j=1

N∑
l=1

Tr
[
Nl,jG̃

TMj,iMi,lG̃
]

∂Tr[Nl,jG̃
TMj,iMi,lG̃]

∂G̃
= NT

l,jG̃
TMT

i,lM
T
j,i +Nl,jG̃

TMj,iMi,l

= Nj,lG̃Ml,iMi,j +Nl,jG̃Mj,iMi,l

So, the derivative of the first term of gsm in (4.31) with respect to G̃ is

∂∥Psm∥2F
∂G̃

=
∑N

i=1

∑N
j=1

∑N
l=1[Nj,lG̃Ml,iMi,j+Nl,jG̃Mj,iMi,l]

= 2
∑N

i=1

∑N
j=1

∑N
l=1Nj,lG̃Ml,iMi,j. (B.1)
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Let us now derive for the second term:

∥Ms◦(DsPsm)∥2F = ∥Ds1vec(Psm)∥2F =

∥∥∥∥∥∥∥
N∑
i=1

Ds1I
i
N2xN

∑N
k=1

∑n
j=1Mk,jG̃Nj,k︷︸︸︷
Psm I iNx1

∥∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥∥∥
N∑
i=1

N∑
k=1

N∑
j=1

Ds1I
i
N2xNMk,jG̃

IjNx1if i = k, 0 otherwise︷ ︸︸ ︷
Nj,kI

i
Nx1

∥∥∥∥∥∥∥∥
2

F

=

∥∥∥∥∥
N∑
i=1

N∑
j=1

Ds1I
i
N2xNMi,jG̃I

j
Nx1

∥∥∥∥∥
2

F

=
N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

Tr[ I lnx1I
j T
nx1︸ ︷︷ ︸

Nl,j

G̃TMT
i,j I

i T
n2xnD

T
s1Ds1I

k
n2xn︸ ︷︷ ︸

Ri,k

Mk,lG̃]

=
N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

Tr
[
Nl,jG̃

TMj,iRi,kMk,lG̃
]

∂Tr[Nl,jG̃
TMj,iRi,kMk,lG̃]

∂G̃
= NT

l,jG̃
TMT

k,lR
T
i,kM

T
j,i +Nl,jG̃

TMj,iRi,kMk,l

= Nj,lG̃Ml,kRk,iMi,j +Nl,jG̃
TMj,iRi,kMk,l

So, the derivative of the second term of gsm in (4.31) with respect to G̃ is

∂∥Ms◦(DsPsm)∥2F
∂G̃

=
N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

[
Nj,lG̃Ml,kRk,iMi,j+Nl,jG̃

TMj,iRi,kMk,l

]
= 2

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

Nj,lG̃Ml,kRk,iMi,j. (B.2)

Now, we derive for the third term:

Tr[PsmG̃] = Tr
n∑
i=1

n∑
j=1

Mi,jG̃Nj,iG̃ =
n∑
i=1

n∑
j=1

Tr
[
Mi,jG̃

TNj,iG̃
]

∂Tr[Mi,jG̃
TNj,iG̃]

∂G̃
=MT

i,jG̃
TNT

j,i +Mi,jG̃
TNj,i =Mj,iG̃Ni,j +Mi,jG̃Nj,i

So, the derivative of the third term of gsm in (4.31) with respect to G̃ is

∂Tr[PsmG̃]

∂G̃
=

N∑
i=1

N∑
j=1

[
Mj,iG̃Ni,j+Mi,jG̃Nj,i

]
= 2

N∑
i=1

N∑
j=1

Mi,jG̃Nj,i. (B.3)

Now we can combine the results (B.1), (B.2), and (B.3) to write down the gra-
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dient of the dual function gsm in (4.31) with respect to G̃:

∂gsm

∂G̃
=

1

2
· 2

N∑
i=1

N∑
j=1

N∑
l=1

Nj,lG̃Ml,iMi,j

+ λ · 2
N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

Nj,lG̃Ml,kRk,iMi,j − 2
N∑
i=1

N∑
j=1

Mi,jG̃Nj,i

=
N∑
i=1

N∑
j=1

{
−2Mi,jG̃Nj,i +

N∑
l=1

[
Nj,lG̃

(
Ml,i + 2λ

N∑
k=1

Ml,kRk,i

)
Mi,j

]}
,

which we can simplify to the following form if we denote Ei,l(λ) = Ml,i(λ) +

2λ
∑N

k=1Ml,k(λ)Rk,i:

∂gsm

∂G̃
=

N∑
i=1

N∑
j=1

(
−2Mi,jG̃Nj,i +

N∑
l=1

Nj,lG̃Ei,lMi,j

)
. (B.4)

To reduce the complexity of the calculation of ∂gsm/∂G̃ in (B.4) from O(N3) to much

less, we will do a final trick before proceeding to finding the gradients of gsm with

respect to Z and µ. We use once again the propery that vec(ABC) = (CT⊗A)vec(B)

where ⊗ is the Kronecker product, to transform (B.4) into

∂gsm

∂G̃
= mat

{
vec

[
∂gsm

∂G̃

]}
= mat

{
vec

[
N∑
i=1

N∑
j=1

(
−2Mi,jG̃Nj,i +

N∑
l=1

Nj,lG̃Ei,lMi,j

)]}

= mat


[

N∑
i=1

N∑
j=1

(
−2
[
NT
j,i ⊗Mi,j

]
+

N∑
l=1

[
MT

i,jE
T
i,l ⊗Nj,l

])]
︸ ︷︷ ︸

MG̃(λ)

vec(G̃)


(B.5)

= mat
{
MG̃ vec(G̃)

}
, (B.6)

which simplifies the operation needed to compute ∂gsm/∂G̃ significantly. We will

use this expression in (B.6) for this gradient from now on.

Now, using the chain rule exactly as in the previous subsection, we can finally

proceed to find the gradients of gsm in (4.31) with respect to Z and µ.

Since G̃ is a linear function of Z and C(µ) and they appear in gsm via only G̃,

the gradients of gsm with respect to Z and C(µ) can be found by a simple chain rule:

∂gsm
∂Z

=
∂gsm

∂G̃

∂G̃

∂Z
=
(
mat

{
MG̃ vec(G̃)

})
I = mat

{
MG̃ vec(G̃)

}
, (B.7)

∂gsm
∂C(µ)

=
∂gsm

∂G̃

∂G̃

∂C(µ)
=
(
mat

{
MG̃ vec(G̃)

})
(−I) = −mat

{
MG̃ vec(G̃)

}
. (B.8)
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Since µj’s are also involved in the dot product µTd in gsm, this dot product should

be accounted for while calculating the gradient of gsm with respect to µj. Also using

the chain rule (A.22) for scalar by scalar derivative involving matrices

∂g(U)

∂x
= Tr

[
∂g(U)

∂U

∂U

∂x

]
,

this gradient is

∂gsm
∂µj

= Tr

[
∂gsm
∂C(µ)

∂C(µ)

∂µj

]
+
∂(−µTd)
∂µj

= Tr
[
−mat

{
MG̃ vec(G̃)

}
CT
j

]
− dj

= −Tr
[
mat

{
MG̃ vec(G̃)

}
Cj

]
, (B.9)

as dj=0 for all j=1, ..., N(N−1).
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