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Abstract 

 

Lipases are enzymes that hydrolyze the ester bond between acyl groups and glycerol in 

triacylglycerides which gives the products of glycerol and fatty acids. Bacillus 

thermocatenulatus lipase (BTL2) has shown highest activity toward tributyrin (C4) as 

substrate. While broad selectivity on the chain length of the fatty acids has a key role in 

waste water treatment, and laundry formulations; short chain length specificity can be 

used in the food and cosmetic industry. In order to predict its chain length substrate 

specificity (tributyrin (C4)/tricaprylin (C8)) upon mutation, we developed a scoring 

function which combines in silico docking and molecular dynamics tools. After 

calibration on experimentally validated mutants, our scoring function is able to 

discriminate substrates specificities and predict the impact of a mutation (whether it 

enhances or reduces) in a rapid and accurate manner (overall correlation r=0.7930, 

p=0.0007). Also ranking of substrate specificities within the mutants were 100% 

correct. This method can be powerfully adapted to other protein families to predict the 

effect of a mutation for the one specific substrate or multiple substrates. 
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Özet 

 

Lipazlar trigliseritlerdeki açil grup ile gliserol arasındaki ester bağını keserek gliserol ve 

yağ asidi oluşturmaktadır. Bacillus thermocatenulatus lipaz (BTL2) en yüksek 

aktivitesini tributyrin (C4) substratı üzerinde göstermektedir. Zincir uzunluklarına göre 

geniş substrat selektivitesi göstermesi atık su arıtımında ve deterjan formüllerinde 

kullanılırken, kısa zincirlere spesifik aktivite göstermesi gıda ve kozmetik sanayilerinde 

önemli rol oynamaktadır. Mutasyonların yağ asidi spesifitesine (tributyrin (C4)/trikaprin 

(C8)) etkisini tahmin edebilmek için dok ve moleküler dinamik araçları birleştiren bir 

skor fonksiyonu geliştirdik. Skor fonksiyonu, mutant enzimlerin deneysel aktivitesine 

göre kalibre edildikten sonra, substrat spesifisitelerini ayırt edebilmekte ve mutasyonun 

aktivite üzerindeki azaltıcı ya da arttırıcı etkisini hızlı ve doğru bir biçimde tahmin 

edebilmektedir (tüm datanın korelasyonu r=0.7930, p=0.0007).  Bununla beraber 

mutantların kendi içindeki spesifisite sıralaması %100 doğru sonuç vermiştir. Bu metot 

diğer protein ailelerine uyarlanabilir olmakla beraber, mutasyonun etkisini bir substrat 

için ya da birden fazla substratı karşılaştırarak tahmin edebilmektedir.  
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CHAPTER I 

1. INTRODUCTION 

1.1 Motivation 

This century is the century of green technology. One of the most challenging issues for 

green technology is the development of alternative solutions to chemicals that are used 

in industrial processes. Enzymes are the key organic molecules that can replace the role 

of chemicals in industry. Since enzymes are naturally found molecules they work 

efficiently at certain temperature, pH range and are specific to certain types of 

substrates. It is crucial to tailor enzymes that can solve the needs of industrial processes 

using protein engineering methods. One of the applications of enzyme engineering is to 

modify the substrate specificity of native enzymes.  

Lipases are an important group of enzymes for biotechnology, as they accept 

surprisingly wide range of substrates and perform different reactions in various 

temperature, pH and solvents. In aqueous conditions, lipases hydrolyze the ester bond in 

triacylglycerides, whereas under micro-aqueous conditions, lipases can do the reverse 

reaction as esterification, alcoholysis and acidolysis [2,9]. This huge potential provides 

a variety of biotechnological solutions for the food, dairy, detergent and pharmaceutical 

industries and make the lipases second largest group of industrial biocatalysts, after 

proteases [23,24]. One of the key aims of protein engineering for the improved 

industrial applications is enhancing the specificity of a stable and active enzyme for a 

particular substrate.  

In the interest of predicting valuable mutations, numerous computational procedures 

have been proposed to predict the enzyme specificity for particular substrate which can 

accelerate the returns of mutagenesis experiments. Free energy methods such as 

thermodynamic integration (TI), free energy perturbation (FEP), potential of mean force 

calculations (e.g. Umbrella Sampling), and steered molecular dynamics (SMD) can 
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reach relatively accurate free energy values for substrate binding under different 

conditions, but their computationally expensive nature cannot allow them to be used as 

common practice in screening of large mutation and ligand libraries [53]. Therefore, 

computationally inexpensive strategies have been introduced by docking algorithms that 

provide slightly inaccurate, but fast and simple solutions. Alternatively, the combination 

of the molecular dynamics and docking methods would give an alternative and effective 

solution to this problem [53].  

We propose an easy-to-implement computational procedure that can predict the impact 

of mutations to the enzyme specificity for a substrate, where the accuracy of molecular 

dynamics simulations and high speed of docking algorithms are combined. In order to 

reduce computational cost of quantum mechanical (QM) calculation for every enzyme-

substrate complex, we present an alternative method for predicting substrate specificity. 

Considering the mean interaction energy, desolvation energy of the enzyme substrate 

complex and the conformational entropy of the ligand, we were able to predict the 

impact of mutations to the substrate specificity of BTL lipase. 

One goal of the project is the prediction of the specific activity upon a mutation that 

should be taken to account with complex protein reorganization. This conformational 

rearrangement of our enzyme examined with molecular dynamics simulations. Besides, 

initial binding pose of the ligand is another key component of the binding energy, this 

component requires searching the vast conformational space, and is achieved by using 

docking algorithm. Overall, our scoring function involves electrostatic energy, Van der 

Waals energy, desolvation energy and conformational entropy. 

Since our application procedure provides a fast and accurate binding energy calculation; 

it can be used for rational design of enzymes, drug design, or other biomolecule 

designing purposes. 

Bacillus thermocatenulatus lipase (BTL2) has shown the highest activity toward 

tributyrin (C4) as a substrate. In order to predict its substrate specificity upon 

triacylglycerides, our computational procedure was used. Our scoring function was 

calibrated by the specific activity of the wild type and two experimentally verified 

mutants and finally our scoring function was able to predict the specificity of other three 

mutants.  
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1.2 Outline 

The organization of the thesis as follows: Chapter 2 presents a brief biological back-

ground and an overview of the related works. In Chapter 3, we explain our approach in 

detail. Chapter 4 discusses the experiments and the results. Lastly in Chapter 5, the 

conclusions and the future works are given. 
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CHAPTER 2 

2. BACKGROUND AND RELATED WORK 

2.1. Lipases 

2.1.1. Lipase structure and function  

Lipases (E.C. 3.1.1.3) are enzymes and in aqueous conditions, hydrolyze the 

ester bond between acyl groups and glycerol in triacylglycerides which gives the 

products of glycerol and fatty acids. However, under micro-aqueous conditions, lipases 

change its reaction to reverse as esterification, alcoholysis and acidolysis. 

All lipases are members of the α/ß hydrolase fold family which involves eight 

hydrophobic ß-sheets at the center and covered with amphipathic α-helices [1,3,4,5]. α/ß 

hydrolases have conserved catalytic machinery with the consistent geometry that 

composed of serine, histidine, and aspartic (or glutamic) acid residues on top of the ß-

sheet. Histidine acts as a general acid/base catalyst for the nucleophilic reactions 

involving serine, and aspartic (or glutamic) acid stabilizes the doubly protonated 

histidine that is formed during the reaction. Catalytic activity is performed in five 

subsequent steps [6]. Binding of a substrate ester initiates the formation of a first 

tetrahedral intermediate by the attack of serine on the sp2 carbon atom of the substrate 

ester. Generated oxyanion is held by hydrogen bonds at the oxyanion hole (Fig. 2.1, 

transition state). The ester bond is cleaved and the alcohol moiety leaves the enzyme. 

The final step is the hydrolysis of the acyl enzyme with the aid of water [2,6]. 

Most of the lipases have a lid structure which is closed in aqueous medium. 

Because triglycerides are not soluble in water, catalytic activity is performed in water–

lipid interface which leads to non-classical enzyme kinetics [20]. The inner surface of 



 

 

the lid is generally comprised 

hydrophobic active site cleft from aqueous solvent

lipid/water interfaces or organic media

displacement of the lid region

α-helices whose motions 

activated with interfacial activation 

binding site becomes acc

(C4) to long chain (C16) fatty acids, only particular lipases able to hydrolyze longer 

chain fatty acids such as C22 triglyceride

Figure 2.1: First three steps of the triglyceride hydrolysis

2.1.2 Triglyceride selectivity of lipases

Substrate specificity of lipases could be classified into three categories as nonspecific, 

regiospecific and fatty acid

which ends with complete hydrolysis of triacylglycerides molecule

regiospecific lipases target the hydrolysis of 1,3

diacylglyceride and 2-

hydrolyze triacylglycerides 

Alcaligenes EF2 [11] and P. 

triacylglycerides, whereas

length triacylglycerides 
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generally comprised of non-polar residues which covers and protects 

hydrophobic active site cleft from aqueous solvent [21]. However, the presence 

lipid/water interfaces or organic media lead to conformational changes such as 

displacement of the lid region [7]. Generally, mobile lid region is formed by one or two 

helices whose motions are controlled with flexible structural elements

activated with interfacial activation as lid of lipase adsorbs at the lipid

accessible to the substrate [8]. Whereas all lipases accept short 

(C4) to long chain (C16) fatty acids, only particular lipases able to hydrolyze longer 

chain fatty acids such as C22 triglyceride [6].  

First three steps of the triglyceride hydrolysis on BTL2 lipase

Triglyceride selectivity of lipases 

Substrate specificity of lipases could be classified into three categories as nonspecific, 

regiospecific and fatty acid-specific. Nonspecific lipases target any of the ester bonds 

with complete hydrolysis of triacylglycerides molecule

regiospecific lipases target the hydrolysis of 1,3-ester bonds which would give 1,2(2,3)

-monoacylglyceride. The final group of lipases specifically 

hydrolyze triacylglycerides of particular length. For instance, Bacillus

and P. Alkaligenes 24 [12] show specificity for 

whereas other lipases show preference for small and medium chain 

length triacylglycerides such as lipase from B. Subtilis 168 [13], Bacillus

polar residues which covers and protects 

. However, the presence of 

lead to conformational changes such as 

Generally, mobile lid region is formed by one or two 

controlled with flexible structural elements [22]. Lipase 

lipidic interface, and 

Whereas all lipases accept short 

(C4) to long chain (C16) fatty acids, only particular lipases able to hydrolyze longer 

 

on BTL2 lipase [6] 

Substrate specificity of lipases could be classified into three categories as nonspecific, 

ases target any of the ester bonds 

with complete hydrolysis of triacylglycerides molecule [9]. However, 

ester bonds which would give 1,2(2,3)-

inal group of lipases specifically 

Bacillus sp. [10], P. 

show specificity for long chain length 

eference for small and medium chain 

, Bacillus sp. THL027 
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[14], P. Aeruginosa 10145 [15], P. Fluorescens [16], Pseudomonas sp. ATCC 21808 

[17], C. Viscosum [18] and Aeromonas hydrophila [19].  

2.1.3 Lipase applications 

Lipases are a very important group of enzymes for biotechnological applications, 

because of their surprising capacity in accepting wide range of substrates and 

performing different reactions in various solvents. In aqueous conditions, lipases 

hydrolyze the ester bond in triacylglycerides, whereas in organic solvents, lipases can 

do the esterification, alcoholysis and acidolysis [2].  

Besides their wide range of selectivity (nonspecific, regiospecific and fatty acid-

specific) towards particular substrates, their tolerance for the broad range of 

environmental conditions such as temperature, pH and solvents, and efficient 

immobilization unlike other enzymes, are the key properties for various types of 

applications [23]. Therefore, in the food [24], dairy, detergent (in combination with 

proteases), pharmaceutical industries (fine organic synthesis, racemic mixtures), paper 

pulp processing, and leather industry, lipases serve various biotechnological solutions 

[2,9]. The central aim of lipase engineering for the improved industrial applications is 

the enhanced stability and high specificity for a particular substrate as well as high 

turnover rate.  

For instance, the specificity for the short chain triglycerides can be efficiently used in 

the production of flavours in cosmetics and food industry. Particularly in food industry, 

fats and oils are modified in order to achieve higher nutritional value, and improved 

texture/physical properties, and also bread and cheese are enhanced for better flavor and 

texture [2]. Broad selectivity for the triglycerides provides advantage for the application 

areas in waste water treatment and in laundry formulations. On the other hand, in 

pharmaceutical industry, high enantioselectivity is become crucial factor medical 

practice. For example, BTL2 shows excellent enantioselectivity (E>100) while 

performing the hydrolysis of 1-phenylethyl acetate and the acylation of 1-phenylethanol 

and 1-phenylpropanol with vinyl acetate [2]. 



 

 

2.1.4. BTL2 Lipase 

2.1.4.1 BTL2 Lipase structure 

Bacillus thermocatenulatus

(α/ß) hydrolase fold which involves seven 

helices (Figure 2.3). The c

residues coordinate each ion and these residues are His82, His88, Asp65, Asp239 for 

Zn2+ ion and Glu361, Asp366, Gly287, Pro367 for Ca

Figure 2.2: Surface of the open BTL2 structure with tributyrin. Lid region (169

colored in purple and 

2.1.4.1.1 Catalytic mechanism

The characteristic property 

oxyanion hole in order to perform their catalytic activity

catalytic triad is the Ser

the catalytic machinery is

backbone nitrogen atoms of Phe

7 

.1 BTL2 Lipase structure and function 

Bacillus thermocatenulatus lipase (BTL2) consists of 389 residues and 

which involves seven ß-sheet at the center and 

The crystal structure has two different ions, zinc and calcium. Four 

residues coordinate each ion and these residues are His82, His88, Asp65, Asp239 for 

and Glu361, Asp366, Gly287, Pro367 for Ca2+ ion [25]. 

 

Surface of the open BTL2 structure with tributyrin. Lid region (169

colored in purple and the rest of the protein in green. Tributyrin is 

representation. 

mechanism 

characteristic property of thermoalkalophilic lipases is the catalytic triad and the 

in order to perform their catalytic activity. General consensus for the 

Ser-His-Asp and, it is Ser114, His359, Asp318 for the BTL2 and 

the catalytic machinery is completed [25] with oxyanion hole which 

backbone nitrogen atoms of Phe-17 and Gln-115 (Figure 2.1) (Table 2.1)

389 residues and has an unusual 

at the center and encircled with α-

rystal structure has two different ions, zinc and calcium. Four 

residues coordinate each ion and these residues are His82, His88, Asp65, Asp239 for 

Surface of the open BTL2 structure with tributyrin. Lid region (169–239) is 

is shown with stick 

catalytic triad and the 

General consensus for the 

and, it is Ser114, His359, Asp318 for the BTL2 and 

with oxyanion hole which is formed by 

(Table 2.1). 
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Figure 2.3: Labelled cartoon structure of BTL2. (α/ß) hydrolase core is shown in green, 

lid domain in purple, the zinc ion domain in yellow, and calcium ion in red. Two Triton 

X-100 molecules are in stick representation at the center (Figure is taken from Carrasco-

López C et al. “Activation of bacterial thermoalkalophilic lipases is spurred by dramatic 

structural rearrangements” [25]) 

Catalytic serine is the key residue for the substrate binding. Despite most of the lipases 

having Gly-X-Ser-X-Gly motif, thermoalkalophilic lipases and BTL2 share Ala-X-Ser-

X-Gly motif around their catalytic serine [26].  

The crystal structure of L1 lipase, which is a close homolog of BTL2, was determined 

in the closed state, and shows a firm residue packing (His113, Phe17, Ile320, Thr270, 

and Met326) around the catalytic serine which leads to stabilization of the serine loop 

[27]. At this state, the catalytic serine is packed and not exposed to solvent.  

However, the crystal structure of BTL2 was determined in the opened state; again 

catalytic serine has shown tight packing but excluding the Phe17. Oϒ group of Phe17 is 

rotated (100° torsion angle for x1 side chain) and opens area to catalytic serine for 

substrate binding (Figure 2.4). Catalytic serine becomes exposed to the solvent and 

available for substrate binding, once the lipase lid is opened by the interfacial activation 

[25]. 

 

 



 

 

Structural Role 

Catalytic triad  

Oxyanion hole 

Zn2+ coordination 

Ca2+ coordination 

Stabilization of the serine loop and 
contributing to the lipase thermostability
Stabilizing role in the oxyanion
pocket and lid opening

The hyperexposure of aromatic side 
chains upon activation 

Conserved motif  
Gly- Phe/Leu/Ile -X
Conserved motif  around 
Ala-X-Ser-X-Gly 

Lipid interface interaction

SN-1 Pocket 

SN-2 Pocket 

SN-3 Pocket 

Lid region 

Table 2.1: Structural Role of 

Figure 2.4: (A) Closed and 

group of Phe17 showed in red 

 

 

A 
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Structural Role  Key residues 

Ser114, His359, Asp318 

Phe17, Gln115 

 His82, His88, Asp65, Asp239 

 Glu361, Asp366, Gly287, Pro367

tabilization of the serine loop and 
contributing to the lipase thermostability 

His113, Phe17, Ile320, Thr270, 
Met326 

tabilizing role in the oxyanion-binding 
pening 

Arg63 

he hyperexposure of aromatic side 
upon activation  

Phe28, Phe177, Phe181, Phe182, 
Tyr200, Tyr205, Phe207, Phe222, 
Phe226, Phe299 

X-Gly 
16Gly 19Gly 

around Ser114 
 

Ala112- X - Ser114- Gly115

Lipid interface interaction Phe177, Phe181, Phe182 

Ile320, Val321, Leu171, Val175, 
Leu184, Met174, Phe291, Val
Ile363, Trp20, Phe28, Met25, Leu360, 
Val365   
Phe17, Leu184, Val188, Leu189, 
Leu57, Leu209,Leu214, Trp

Thr169 to Asp239  

Table 2.1: Structural Role of Important Residues on BTL2 L

Closed and (B) open lid structure of BTL2. 100 degree r

showed in red stick and catalytic serine showed in

B 

His82, His88, Asp65, Asp239  

Glu361, Asp366, Gly287, Pro367 

His113, Phe17, Ile320, Thr270, 

Phe28, Phe177, Phe181, Phe182, 
Tyr200, Tyr205, Phe207, Phe222, 

115 

Ile320, Val321, Leu171, Val175, 
Leu184, Met174, Phe291, Val295  
Ile363, Trp20, Phe28, Met25, Leu360, 

Phe17, Leu184, Val188, Leu189, 
Leu57, Leu209,Leu214, Trp212  

BTL2 Lipase [25] 

 

100 degree rotation of Oϒ 

in blue surface. 
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2.1.4.1.2. Oxyanion  

Lipid cleavage reaction is maintained with the formation of a tetrahedral intermediate 

which is stabilized by the oxyanion hole. In bacterial lipases (in families I.1 and I.2) and 

BTL2, intermediate oxyanion is stabilized with main chain amide groups which have 

identical positions in structural alignment [28]. In BTL2, backbone nitrogen atoms of 

Phe17 and Gln115 form the oxyanion hole. Phe17 is located in a conserved motif in I.5 

family bacterial lipases as the second residue in Gly-Phe/Leu/Ile-X-Gly motif. 

Moreover, the conserved and buried Arg63 residue connects the oxyanion hole to the 

loop between strand ß3 and helix α2 which enhances the stability of the oxyanion hole 

and support the stability of the lid while opening [28]. 

2.1.4.1.3. The Active Site Cleft and Substrate Binding  

In the crystal structure of BTL2, at the active site, two Triton detergent molecules were 

present whose positions illustrate the binding conformation of the substrate. Similarly, 

the crystal structure of Pseudomonas aeruginosa lipase (PAL) with triglyceride-like 

inhibitor [28] shows that two chains (sn-1 and sn-3) of the triacylglycerols substrate are 

well-fitted in superposition with two Triton X-100 detergent molecules of BTL2 (Figure 

2.5). Triton X-100 detergent mimics the actual substrate and opens the lipase lid. It has 

an inhibitory effect at concentrations higher than 1mM in which a competitive 

inhibitory effect could stop the substrate catalysis [25]. Carrasco-López et al. couldn’t 

crystallize BTL2 with actual substrate; instead they used a detergent that can mimic 

binding [25]. 

Three binding pockets for the three branches of the actual substrate have been defined 

and are shown in Figure 2.5. Branches are mostly surrounded with hydrophobic and 

aliphatic residues. First, sn-1 branch (HB binding pocket) is lined by Ile320, Val321, 

Leu171, Val-175, Leu184,Met174, Phe291, Val295; second sn-2 branch (HH binding 

pocket) is lined by Ile363, Trp20, Phe28, Met25, Leu360, Val365; and final sn-3 branch 

(HA binding pocket) is lined by Phe17, Leu184, Val188, Leu189, Leu57, Leu209, 

Leu214, Trp212 [25]. 



 

 

Figure 2.5: Surface of sn

structure) and two Triton

cyan stick, and 

2.1.4.1.4. Activation Mechanism

Lid opening involves two 

α6-helix (Figure 2.3). The lid region covers 

Asp239. While, the α7

classical hinge motion, α6

unfolding; the core of the BTL2 stay

of the α6-helix are integrated into 

helices. Eventually the opening of the lid creates a large 

three pockets [25].  

Activation causes N-terminal residue of the α6

solvent upon lipid interaction. Similarly, Phe181, and Phe182 

solvent, additionally they 

SN
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2.3). Also Asp-179 forms a salt bridge with Arg-242 which is located at the (α/ß) 

hydrolase core and anchors the lid to the core [25].  

The open structure of BTL2 shows that Zn2+ binding domain is highly conserved in I.5 

family of lipases and is crucial for stabilization of this large lid movement in lipases 

[25]. As α7-helix moves around the hinge of a region 211 to 239, starting residue 

Gln211 makes a hydrogen bond with Asp-62 which coordinates Zn2+ cation and finally 

residue Asp239 has a direct role in Zn2+ coordination [25].  

For the case of α6-helix lid, residues from 208 to 211 act as a hinge; and Lys208 and 

Asp210 connect the lid regions to the core of BTL2 (Figure 2.3). All of these 

interactions are conserved on both open and closed configurations of BTL2 and this 

conservation may let us infer that any mutation on these critical sites would probably 

affect stability, thermostability and activity negatively [25]. 

2.1.4.2 Triglyceride specificity of BTL2 lipase 

In 2003, Quyen et al. [29] published the relative activity of BTL2 towards various 

triglycerides. The pH-stat assays were performed at 65◦C and pH 7.5 or pH 8.5 and 

BTL2 lipase shows the highest activity towards tributyrin (C4).  As shown in Figure 

2.6, at pH 7.5 and 8.5, substrate specificity profiles show very little difference [29]. In 

Figure 2.6, tributyrin activity at pH 8.5 is fixed as 100% activity for comparison with 

other substrates. Except for the substrates with chain length C2, C6 and C14, other 

substrates show slightly (1-3%) higher activity at pH 8.5 than at pH 7.5. The relative 

activities for acyl groups C8, C6, C10, C16, C2 are 40%, ~20%, ~20%, ~20%, and 

~4%, respectively [29]. 



 

13 
 

 

Figure 2.6: Substrate specificity of BTL2. The pH-stat assays were performed at 65◦C 
and pH 7.5 or pH 8.5 [29]. 

2.1.4.3. Applications of BTL2 lipase 

Thermophilic lipases are used in various industries, such as detergent additives, 

biodiesel production, waste water treatment, removal of oils and fats from fabrics and 

stereospecific synthesis of compounds for pharmaceuticals, cosmetics and perfumery, 

with respect to their extreme stability at high temperatures and in organic solvents. 

Therefore, they have become the focus of many protein engineering structural studies. 

Thermophilic BTL2 is specific for short length triglycerides and show low activity with 

medium and longer substrates. Broad selectivity on the chain length of the fatty acids 

has a key role in waste water treatment, and laundry formulations [2]. Also, long chain 

length specificity of lipase would give advantage for fat liquefaction. In contrast, short 

chain length specificity towards esters can be used in the food (cheese, bread, etc.) and 

cosmetic industry, specifically for the production of particular flavours [30]. These 

applications show the importance of the mechanisms that alters the chain length 

specificity which would be used in various particular applications. For instance, various 

lipases were tested in the hydrolysis of natural oils and show very promising results. 

This indicates the potential usage of BTL2 lipases in the food industry as enhancing the 

texture and nutritional value of natural oils. Another example is the potential usage in 

the laundry formulations, as BTL2 lipase is highly stable at elevated temperatures and 

in alkaline mediums [2]. Also, positional specificity is another attractive property for 

BTL2 which is sn-1,3 specific for triglycerides and can be used in the production of 

structured triglycerides that are used in clinical nutrition [29]. 
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2.2 Computational Methods 

2.2.1 Scoring Functions 

The main aim of the scoring functions is achievement of rapid and accurate predictions 

with respect to experimental results. However, most of the time there is a trade-off 

between speed and accuracy.  

The usage of scoring functions can be categorized into three major applications. First, 

determination of binding conformation between protein and ligand provide structural 

analysis of the complexes. Docking methods search different reasonable conformations 

according to their searching strategy and these conformations ranked by scoring 

functions. In order to select the experimentally determined orientation of the ligand and 

receptor, scoring functions are optimized according to the experimental binding mode. 

Accurate prediction of the binding configuration would explain the structural 

mechanism of binding and will lead to design of new drugs or modify the binding site 

for enhancement of binding to a particular substrate [31]. 

The second application is the prediction of absolute binding affinity with respect to the 

experimental results. This goal most efficiently is achieved by ab initio quantum 

methodologies which are computationally expensive. Alternatively, simplified scoring 

functions use several components of binding interaction energy, which give an 

approximate binding score. This prediction is mostly used in lead optimization or 

mutation selection problems that require accurate score predictions between sets of 

ligands or receptors. Reliable detection of a particular lead or mutation can decrease the 

potentially high cost of experimental procedures and the synthesis of new ligands. 

The third application is the commonly used technique which is called virtual screening 

that involves detection of potential drug molecules in large sets of ligand databases. In 

this application, both binding affinity and the conformation prediction have important 

role for ranking of potential drugs. Therefore ligands that are experimentally known to 

show high affinity for the given receptor should give high scores at the initial screening. 
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All these applications require a reliable docking methodology and scoring function. 

There are three basic categories of scoring functions which are force field-based, 

empirical, and knowledge-based [31]. 

2.2.1.1. Force field scoring function 

There are three mostly used force fields, CHARMM, AMBER, and GROMACS which 

are basically derived from experimental data and ab initio quantum mechanical 

calculations. The main idea is to express the potential energy of a system of particles 

with the parameters of mathematical functions that are based on the physical atomic 

interactions [32].  These interactions are essentially classified as non-bonded (van der 

Waals (vdW), and electrostatic interactions) and bonded (bond, angle, and torsion) 

interactions. Based on these interaction types, force field scoring functions are 

developed. Most popular example is the scoring functions of Autodock 4. Autodock 4 

developed by Morris [70] and uses a genetic algorithm to search the poses of the ligand. 

It utilizes the Lamarckian version of genetic algorithm where the variations in 

conformations are used to generate new offspring poses after optimization [43]. All 

poses evaluated for vdW, hydrogen bonding, electrostatics, and desolvation terms as 

shown at Equation 2.1. In addition, based on the ligand, a conformation entropy term is 

added to Autodock 4 scoring function, which is explained in section 2.2.1.1.3. 

            (2.1) 

In equation 2.1, W is the weight constants for each term which was calibrated with 

experimental binding affinity data. The first term is a 6/12 potential for vdW 

interactions; the second term is a hydrogen bonding term based on a 10/12 potential. 

Third is the Coulomb potential for electrostatic interactions and the final term is a 

desolvation potential which is explained in section 2.2.1.1.2 [43].  

The key challenge is the calculation of the solvation effect in the force field scoring 

functions [31]. Instead of using explicit water molecules which requires high 

computational cost [31,33,34], a number of methods provide rapid and reasonably 
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accurate solutions for the solvation energy problem for specific circumstances, such as 

Poisson–Boltzmann surface area (PBSA) model [35], the generalized-Born surface area 

(GBSA) model  [36] and Autodock desolvation term [43]. 

2.2.1.1.1. Poisson–Boltzmann and the generalized-Born surface area model 

One practical assumption is the treatment of water molecules implicitly as a continuum 

dielectric medium. In this way, computational cost is reduced and results are used for 

relative comparison and virtual screening studies [40]. Two common examples for the 

implicit solvent method are the Poisson–Boltzmann surface area (PBSA) model [35] 

and the generalized-Born surface area (GBSA) model [36] the latter is faster and 

basically an approximation of the PBSA method. In general, implicit solvent methods 

have boundaries and their capacity is limited by only non-specific interactions. 

Therefore, comprehensive interactions between solvent and solute, such as strong 

solvent–solute interactions [37], and strong solvent effects by ions [38,39], are not 

efficiently calculated by these methods.  

Besides, one comparison study showed that solvation energy results of generalized-

Born (GB) is not necessarily proper for binding calculations which should be calibrated 

with empirical parameters to get very accurate Born radii. This limitation restrains the 

speed of virtual screening and turn GBSA into an impractical solution [41].  

Apart from the speed and accuracy of solvation effect, combining each energy term is 

also another challenging issue. Usually, weighting coefficients have to be used because 

each energy component is calculated from unrelated methods. For instance, electrostatic 

part of the solvation comes from Coulombic, PB or GB and hydrophobic part is 

approximated by the change of solvent-accessible surface area. Therefore, they cannot 

be simply summed up; instead, individual weighting coefficients should be calibrated 

for the selected protein or the protein family. This concept indicates the challenge of 

finding a universal set of parameters for the most of the protein complexes [31]. 
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2.2.1.1.2. Autodock Desolvation Term 

The desolvation term is developed based on the Wesson and Eisenberg method [42]. 

The main assumption of this method is that the change in the surface area accessible to 

solvent is proportional to the desolvation energy. In addition, each atom type should 

contribute differently, according to their polarity and hydrophobicity [43].  

In order to calculate desolvation score, two parameters are used. First, according to the 

atom type, solvation parameters are assigned, and second is the amount of desolvation 

according to ligand. In detail, atom based solvation parameter describes the energy for 

transferring an atom from solution to buried state. In addition, the amount of 

desolvation is calculated with the percentage of the volume around an atom which is not 

occupied. This volume-summing method (similar to Stouten et al. method [44]) 

effectively represents the atomic degree of exposure which is linearly correlated with 

solvation energy.  

In addition, solvation parameters for each atom are represented by Equation 2.2 [43].  

                                     (2.2)           

In this approach S is the solvation parameter for given atom whereas ASP and QASP 

are the calibrated parameters. In detail, ASP changes according to six atom types such 

as aliphatic carbons (C), aromatic carbons, (A), nitrogen, oxygen, sulfur, and hydrogen; 

however, QASP is constant for each atom and is calibrated according to each sets of 

atomic charges (Table 2.2). In this way, atomic charge is incorporated into solvation 

parameter which decreases the number of atom types since it prevents using separate 

oxygen and nitrogen types according to their charge. If an electron is delocalized within 

the molecule such as in carboxylate, the charge is located on the most accessible atom. 

Therefore a new map of interaction potentials is prevented for each new atom type in 

Autodock [43].  
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 ASP (std error) 

C -0.00143 (0.00019) 

A -0.00052 (0.00012) 

N -0.00162 (0.00182) 

O -0.00251 (0.00189) 

H 0.00051 (0.00052) 

S -0.00214 (0.00118) 

QASP = 0.01097 (0.00263) 

Table 2.2: Calibration of the ASP and QASP parameters for desolvation model for 

aliphatic carbons (C), aromatic carbons (A), nitrogen (N), oxygen (O), hydrogen (H) 

and sulphur (S). 

Since the amount of shielding upon binding correlate with the desolvation energy, 

solvent accessible surface area difference is calculated between the bound and separate 

states. Atomic volumes are defined as a sphere with radius equal to the contact radius of 

each atom (C/A, 2.00; N, 1.75; O, 1.60; S, 2.00) and maximum ∆V is calibrated for 

each amino acid type over 188 proteins (from the Ligand–Protein Database [63]) 

according to, 

                               (2.3) 

In Equation 2.3, k is the number of atoms in the protein and, i is the atoms of the 

selected amino acid residue for ∆Vi calculation, rik is the distance between the centers of 

atoms i and k; and the distance weighting factor, σ is set to 3.5 Å, based on the original 

paper. Finally, a least-squares fit method is used for calibrating atomic ASP and QASP 

parameters and final values are shown at Table 2.2 [43].  

2.2.1.1.3. Autodock Conformational Entropy Term 

The entropic component of a binding energy is particularly difficult to calculate for 

docking purposes. Autodock 4 scoring algorithm uses the sum of the torsional degrees 

of freedom of the ligand for predicting conformational entropy. This approximation is 
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based on the idea that loss of torsional entropy upon binding is proportional to the 

number of rotatable bonds in the ligand. The term ∆Sconf represent the conformational 

entropy, Ntors is the number of rotatable bonds and Wconf is the calibrated weight 

parameter for entropy term [43], 

                                     (2.4) 

 2.2.1.2 Empirical scoring function 

Empirical scoring functions use sets of weighted energy terms such as vdW, 

electrostatics, hydrogen bond, desolvation, entropy and hydrophobicity, in order to 

achieve the best correlation with the experimental data [31]. In some cases, other 

features can be taken into account such as the number and geometry of hydrogen bonds, 

the size of the contact surface, the electrostatic potential, the size of the binding cavities, 

and the flexibility of the ligand [45]. In contrast to the complexity of the force field 

scoring functions, the empirical ones provide simplicity for each energy term which 

reduces the computational cost. Eventually, sets of protein–ligand binding affinity data 

are used to calibrate the weight of the energy terms. 

Addition of several terms to accurately represent the binding affinity brings with it 

multiple-counting problem. Sometimes one term is included in another term in a 

different way which may lead to miscalculation and double counting of the energy. 

Also, the capacity of the empirical scoring functions is limited with the size and the 

nature of the training of data set [31]. 

The new version of Autodock 4, Autodock Vina [68], reached an about two orders of 

magnitude speed-up compared to Autodock 4, while improving the accuracy of the 

binding mode predictions. Autodock Vina combines advantages of knowledge-based 

potentials and empirical scoring functions since it used empirical data from both the 

conformational binding modes of the receptor-ligand complexes and the experimental 

affinity measurements. 

 

 



 

20 
 

2.2.1.3 Knowledge-based scoring function 

Knowledge-based scoring functions use the experimental structural data to generate 

statistical energy potentials. In this method, the occurrence frequency of atom pairs turn 

into atomic potentials with the conversion of Boltzmann relation [46]. Because of the 

simple Boltzmann relation, knowledge-based scoring functions provide as fast 

calculations as empirical scoring functions. Nevertheless, the use of structural 

information from training dataset is different; it gives an ability to use large and diverse 

training datasets without fitting parameters to specific type of dataset. Therefore, 

calculations are slightly independent from their training data set which gives an ability 

to perform on different subjects with similar accuracy [47]. However, assigning a 

reference state for the occurrence frequency calculation is a challenging task for this 

method [48]. Two alternative solutions have been introduced as choosing a randomized 

state or a physical approximation, but neither one improved the accuracy of the method 

[48]. Another well-known problem is the limited capability in discriminating the wrong 

binding modes [48]. As the predicted potential is derived from the pairwise atomic 

potentials of the ideally-bound structures, a little difference from the ideal pose can drop 

the overall accuracy of the knowledge-based scoring function [48].  

2.2.2 Molecular Dynamics 

Biological macromolecules have been recently investigated by one of the most handy 

and widely applied computational techniques called molecular dynamic (MD) 

simulations. At various timescales, protein can be simulated for fast internal motions to 

slow conformational changes. Molecular dynamics allows studying the solvent effect 

explicitly, and calculating other parameters such as the stability, density, dipole 

moment, entropy, enthalpy, interaction energy, potential energy and kinetic energy [49]. 

Therefore experimental calculations may be validated with molecular dynamics and 

several studies have shown the good correlation between molecular dynamics and 

experimental results [65,66,67].  

Molecular dynamics uses simplified energy terms in order to simulate real molecular 

motions. These energy terms are parameterized to fit experimental data and QM 

calculations and all these parameters are called a force field. Several force fields are 
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commonly used for biomolecular simulations are Amber, NAMD, CHARMM, and 

GROMOS [53]. Although their parameterization methods are different, retrieved results 

are generally similar. All parameters in these force fields can be divided into two 

categories as bonded and non-bonded energy terms. The bonded terms include bond, 

angular and dihedral bond potentials and non-bonded terms involves van der Waals and 

electrostatic interactions.  

For instance, NAMD [50] uses bond potential term that describes a spring between a 

pair of bonded atoms which is defined as , where 

 describes the distance between the pair of atoms, r0 is the given 

equilibrium distance, and k is the spring constant. 

Angular bond potential defined in triple covalently bonded atoms as

, where θ is the angle between vectors, θ0 is 

the equilibrium angle, and kθ is the angle constant. Second term defines non-covalent 

spring between outer atoms which is similar to bond potential with kub as the spring 

constant and rub as the equilibrium distance. 

Torsion (dihedral) angle potential defined in the sequentially bonded four atoms as

 ,                          (2.5) 

where n indicates the periodicity, ψ is the angle between the two defined planes, φ is the 

phase shift angle and k is the multiplicative constant. Given two equations are used to 

define the torsion term, which gives ability to express complex angular variation, which 

is truncated from Fourier series. 

Van der Waals interactions are defined with the Lennard-Jones 6-12 potential as 

,                        (2.6) 

where rij is the distance between two atoms within the cut-off distance, 

 is the minimum of the energy term, at the distance Rmin (Figure 
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2.7). As r increases, potential energy function reaches zero quickly, and cut-off term is 

needed to truncate these long distance (frequently above 12Å) interactions. 

 

Figure 2.7: The van der Waals energy function [50] 

Electrostatic (charged) interactions modelled with Coulomb’s law as repulsive or 

attractive force according to atomic charges. Electrostatic potential defined with

, where rij is the distance between two atoms within the cut-off 

distance, qi and qj are the atomic charges, C is the Coulomb’s constant, ε0 is the 

dielectric constant, ε14 is the scaling factor [50].  

Molecular dynamic studies allow simulating an explicit solvent, ions, and even complex 

membrane structure with more convenient force fields, improved algorithms to control 

periodic boundary conditions, temperature and pressure. However, despite all these 

improvements, non-standard molecules like covalently bound ligands require time-

consuming Quantum Mechanical (QM) calculations, in order to generate new force 

field parameters [51,52]. Also the reaction intermediates are high energy molecules and 

cannot be precisely represented by the MD force fields. This drawback makes MD 

calculations impractical for every different enzyme/substrate intermediate and become 

practically impossible to be used in the selectivity calculations for vast numbers of 

enzyme/substrate pairs [51,53].  
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2.2.2.1. Combining Docking With Molecular Dynamics  

The computational cost and the accuracy of predictions are the most important factors 

that reveal the effectiveness and the applicability of computational methods. Docking 

programs generally serve simple solutions to binding energy problem with fast, slightly 

inaccurate and inexpensive algorithms. Therefore, they can search the huge 

conformational space of ligands quickly. The main disadvantage comes from the lack, 

or limited flexibility of the protein, especially upon binding. Whereas, molecular 

dynamic simulations are computationally costly, they expand the conformational space 

and permit flexible movements/rotations for both the protein and the ligand. This 

strategy supplies induced fit conformations around the binding site which increases the 

accuracy of binding energy calculations. In addition to conformational variety, solvation 

effect comes from the explicit water molecules which enhance the accuracy of 

trajectories and calculated binding energies [53].  

Consequently, the combination of the two methods gives an advantage where docking is 

used for rapid screening of vast conformational space and molecular dynamic 

simulations optimize the complex structure and increase the calculated accuracy of 

binding energy [53]. 

In numerous studies, MD and docking have been used for examining the dynamic 

properties of the binding process. In the study of human cytochrome P450 2A6 [55], the 

mutation effect have been investigated on the enzymatic pathway, in another study, 

inhibitor of tyrosine kinase EphB4 screened by high-throughput docking and continued 

with 45 ns MD simulation for detailed binding mode exploration [56]. Also 

combination of MD with covalent docking gives structural information of enzyme-

substrate complex as in the study of glycoside hydrolase and monosaccharides [57]. 

2.2.3 Free Energy Methods 

Free energy methods are computationally expensive and usually take a long 

computational time to present results. Frequently used examples are thermodynamic 

integration, potential of mean force calculations and steered molecular dynamics. 



 

24 
 

2.2.3.1. Thermodynamic integration  

Thermodynamic integration (TI) is a method used to compute the free energy difference 

between two states, usually the initial and the final state. In order to calculate the free 

energy difference, thermodynamic parameters are slowly changed between the states 

and at each stage system should be in equilibrium. Typically molecular dynamics or 

Metropolis Monte Carlo simulations are used for sampling each stage. Finally, along the 

defined reversible path, the integration is performed over thermodynamic parameters 

such as the energy, temperature, and the specific heat [58]. While TI is an accurate and 

flexible approach, it has some limitations on the conformational changes of the whole 

protein which may prevent the convergence over long simulation times. Also 

mutagenesis studies may become impractical since controlling the size and shape of the 

active site for each state is difficult and the structural variance of two microstates is too 

large for feasible integration [59].  

2.2.3.2 Potential of Mean Force calculations  

Potential of mean force (PMF) is simply determining free energy between two states of 

reaction using the Boltzmann-weighted average over all degrees of freedom [60]. One 

of the popular sampling techniques, Umbrella sampling, provides effective calculation 

of PMF from MD trajectories [61]. This technique adds the biasing potential to the 

Hamiltonian in order to lead the simulations toward a particular target, to cause a 

particular conformational transition. Therefore, large energy barriers are dealt with more 

efficiently. Finally, the data from all simulations are combined to get accurate and 

unbiased free energy prediction. The disadvantage of the Umbrella sampling is in 

deciding a conformational target of the system in order to receive a successful umbrella 

potential [61]. 

2.2.3.3 Steered Molecular Dynamics 

Steered molecular dynamics (SMD) is an MD simulation method to mimic the idea of 

atomic force microscopy (AFM). In standard SMD, a force is applied to the ligand with 

spring in the chosen direction, and the overall work done by the ligand over the 
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trajectory is calculated according to Jarzynski’s equality [72] to retrieve the absolute 

free energy of binding [62]. SMD has already been used to examine the pathway of the 

ligand along binding which also explains the induced fit changes of the protein. 

However, randomly or guessed pulling direction of the spring may change the pathway 

and affect efficiency. Therefore, the calculated energy may belong to an unfavourable 

pathway which leads to erroneous result [62].  

2.2.4. Scoring strategy based on the factors that affect triglyceride specificity 

In general, the prediction of binding affinity is a challenging task because it is not only 

the result of collective non-covalent interactions as performed by most docking 

algorithms. The main reason for failure is the inability of the scoring functions to 

discriminate between native and non-native substrate conformations. In particular, 

docking algorithms tend to bend substrates excessively in order to increase their scores 

[31].  

Docking algorithms mostly assign a common set of weights to the individual energy 

terms that contribute to the overall energy score; on the other hand, these weights 

should be protein family dependent [31]. In addition, they wrongly assume that 

individual interactions that contribute toward the total binding affinity in an additive 

linear manner. In nature, non-covalent interactions often contribute in a nonlinear 

manner [31,40].  

Prediction of binding affinity in a catalytic manner is dependent on several factors 

including the ability of the ligand to access the binding site, the desolvation free energy 

of the ligand and the binding site. Also entropy and enthalpy changes in the ligand, 

protein, and solvent, transition-state stabilization, steric complementarity of the enzyme 

to both substrate and intermediate state are critical factors for binding energy and 

catalytic activity [31,40]. 

Lipases perform their activity at a water-substrate interface which may lead to complex 

explanation for the chain length dependency [6]. Simply decreasing the shape of the 

substrate binding site would lead to steric blockage for the substrate, while increasing 

its size would give additional space leading to alternative binding of substrates and 

therefore decreasing kcat [63]. In addition to the substrate binding site, other structural 
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features such as structure and hydrophobicity of the lid should be taken into account for 

more accurate prediction [6].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

3.1. Computational Method

3.1.1. System setup 

X-ray structure of BTL2 was obtained from the Protein Data Bank (PDB entry 2W22) 

and used in MD simulations and docking runs

crystal structure were removed.

plugin of VMD. Especially, active site and oxyanion hole protonations were checked 

for appropriate catalytic state

tricaprylin (Figure 3.1) 

parameter files.  

Figure 3.1: Structures of 
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ray structure of BTL2 was obtained from the Protein Data Bank (PDB entry 2W22) 

in MD simulations and docking runs. Water and ligand molecules in the 

re were removed. All hydrogen atoms were added using the 

specially, active site and oxyanion hole protonations were checked 

catalytic state coordination (Figure 2.1B). Structure of tributyrin and 

(Figure 3.1) substrates were generated with the CHARMM27 topology and 

of A. Tributyrin (C4) and B. tricaprylin (C8) and 

sn-3 chains 

ray structure of BTL2 was obtained from the Protein Data Bank (PDB entry 2W22) 

Water and ligand molecules in the 

hydrogen atoms were added using the AUTOPSF 

specially, active site and oxyanion hole protonations were checked 

Structure of tributyrin and 

with the CHARMM27 topology and 

 

and their sn-1, sn-2, 
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3.1.2. Docking setup 

Protonated structure of BTL2 is used for Autodock Vina [68] simulation. Both the 

ligand and the receptor molecules were converted in pdbqt format (Autodock4 format) 

in which the Gasteiger charges were assigned and non-polar hydrogens were merged by 

AutoDockTools (ADT). Size of the grid box is selected so as to contain the active site 

and binding pockets and also provide enough space for the ligand translation and 

rotation. In docking runs, the exhaustiveness parameter defines the time spent on the 

search and a higher value decreases the probability of not finding the global minimum 

[68]. In our runs, exhaustiveness parameter was selected as 100 (the default is 8) and the 

number of binding modes (generated output poses) was selected as 20 (the default is 9) 

for detailed exploration of the ligand conformational and orientational space as in the 

work of Azoia et al. [71].  

3.1.3. Docking pose selection 

For the first equilibration run, only tributyrin (C4) substrate was docked by 

Autodock Vina [68]. Poses were selected based on three criteria; i) ligand chains should 

be placed on correct clefts (see Figure 3.2 for tributyrin and Figure 2.5 for tricaprylin), 

ii) the distance between attacking serine oxygen atom and sp2 carbon atom of the 

substrate ester should be 3.2 Å maximum, iii) double bonded oxygen of substrate should 

point out towards oxyanion hole. If these three criteria hold for multiple poses, the pose 

that has the smallest distance for the second criteria is selected for subsequent analysis. 

 



 

 

Figure 3.2: Surface of sn

structure) and two triton molecules (X

and two triton molecules are in dark red and magenta.

3.1.4. Equilibration 

 Selected docking pose is used for assigning ligand coordinates. 

simulations were performed using NAMD 2.7 with 

particle-mesh Ewald (PME) method and a 12 Å nonbond

tributyrin were embedded in TIP3P water box 

way to leave a 1 nm space around the solute. 

into the water box to neutralize the system 

system was then subjected to energy minimization

and line search algorithm

Along minimization procedure, t

steps from 10, 9, 8, 7, 6, 5, 4, 3, 2 to 1 kcal/mol, then every 200 steps from 1, 0.8, 0.5, 

0.3 to 0.1 kcal/mol and followed by a 500 steps 

energy-minimized structure

equilibrated for 1 ns at 1 atm 
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Figure 3.2: Surface of sn-1, sn-2 and sn-3 binding pockets, tributyrin (C4) (docked 

structure) and two triton molecules (X-ray structure). Tributyrin shown

and two triton molecules are in dark red and magenta.

Selected docking pose is used for assigning ligand coordinates. 

simulations were performed using NAMD 2.7 with periodic boundary conditions, 

mesh Ewald (PME) method and a 12 Å nonbonded cutoff

embedded in TIP3P water box with the “solvate plugin” in VMD, 

1 nm space around the solute. After that Na+ and Cl

to neutralize the system with final 0.15 M NaCl 

ubjected to energy minimization (combination of conjugate gradient 

algorithm) with harmonically constraints on protein and substrate

Along minimization procedure, the force constants were gradually decreased every 

8, 7, 6, 5, 4, 3, 2 to 1 kcal/mol, then every 200 steps from 1, 0.8, 0.5, 

0.3 to 0.1 kcal/mol and followed by a 500 steps of non-restrained simulation. 

nimized structure was heated gradually from 0 to 298 K in 0.

at 1 atm with Langevin piston pressure method

SN-1 

SN-2 

SN-3 

 

tributyrin (C4) (docked 

ay structure). Tributyrin shown in cyan stick, 

and two triton molecules are in dark red and magenta. 

Selected docking pose is used for assigning ligand coordinates. All MD 

periodic boundary conditions, 

cutoff. Protein and 

“solvate plugin” in VMD, in a 

and Cl- ions were added 

 concentration. The 

combination of conjugate gradient 

protein and substrate atoms. 

he force constants were gradually decreased every 100 

8, 7, 6, 5, 4, 3, 2 to 1 kcal/mol, then every 200 steps from 1, 0.8, 0.5, 

restrained simulation. The 

K in 0.01 ns and then 

method and Langevin 

 



 

 

dynamics temperature control. 

SHAKE algorithm. 

3.1.5. Mutants and Re-

The equilibrated structure 

experimentally examined mutants

F182A, I320F, L360F, Figure 

the visualization package VMD.

the generated mutated proteins while mutated side chains were 

Docking parameters and pose selection criteria

docking run. 

Figure 3.3: Surface of the 

residues F17, V175, D176, T178, F181, F182, I320, 

green stick. 

L360
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temperature control. All MD runs was performed with 2 fs time

-docking 

quilibrated structure was used for subsequent mutant

experimentally examined mutants (F17A, V175A, V175F, D176F, 

, Figure 3.3) were subjected into “mutate residue” algorithm from 

the visualization package VMD. Tributyrin (C4) and tricaprylin (C8) were docked 

enerated mutated proteins while mutated side chains were allowed to be 

and pose selection criteria were the same as

Surface of the wildtype BTL2 with mutated residues and 

residues F17, V175, D176, T178, F181, F182, I320, and L360 are labelled and shown

. Tricaprylin (C8) is shown in blue lines at the center

 

F17 

V175 

D176 

T178 

F181 

F182 

I320 

L360 

All MD runs was performed with 2 fs time-step with the 

mutant generation. All 

F17A, V175A, V175F, D176F, T178V, F181A, 

were subjected into “mutate residue” algorithm from 

Tributyrin (C4) and tricaprylin (C8) were docked on 

allowed to be flexible. 

as in the previous 

 

and tributyrin. Mutated 

are labelled and shown in 

at the center. 
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3.1.6. Production Phase 

For consistency both the mutated and the wild-type structures were solvated in a water 

box which leave a 1 nm space around the solute and systems were neutralized with 0.15 

mol/L NaCl ions. The system was again subjected to 2500 step energy minimizations 

with harmonic constraints same as the previous MD run. The energy-minimized 

structures were again heated gradually and then subjected to 4 ns MD run. First 2 ns 

part of the run was used for RMSD calculation and the final 2 ns part used for scoring 

calculations. All simulations were performed at 1 atm with Langevin piston pressure 

method and 298 K with Langevin dynamics temperature control. 

3.1.7. Scoring Methodology 

The final 2 ns part of the 4 ns production trajectories were used for scoring calculation. 

The electrostatic (EElec) and van der Waals (EvdW) interaction energies were calculated 

using NAMDEnergy in NAMD2.7 at 2 ps intervals and using a cutoff distance of 12 Å 

for energy calculations. Desolvation energy (Edesolv) and loss of torsional entropy upon 

binding (∆Sconf) for each snapshot of the MD trajectory were calculated with 

“compute_AutoDock41_score” python script. Weights of the four parameters in 

Equation 3.1 were calibrated with linear regression (by using MATLAB) in order to 

maximize the Pearson and Spearman correlations between experimental activity and 

computational scores. Pearson coefficient, r defines the strength of linear dependence, 

whereas Spearman describes the ranking power. In this way, BTL2 dependent scoring 

scheme is optimized. 

Score = a(EElec)+b(EvdW)+c(Edesolv)+d(∆Sconf)                             (3.1) 

Equation 3.1: Scoring scheme. Electrostatic energy (EElec), van der Waals energy 

(EvdW), desolvation energy (Edesolv) and conformational entropy (∆Sconf) terms with their 

weights. 
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3.1.8. RMSD analysis  

To evaluate the stability, RMSD (root mean-square deviation) of the protein backbone 

was calculated with RMSD Visualizer tool in VMD 1.9.1. Prior to the analysis, 

backbone atoms (N, C, O, CA) of protein were aligned, to the initial structure. 

Afterwards, RMSD of the protein was calculated based on backbone atoms (N, C, O, 

CA) to evaluate the stability of the protein during the simulation. Also, RMSD of the 

substrates were calculated based on overall atoms to track the structural rearrangements 

of the substrates during the simulation. 

3.2. Experimental Method 

3.2.1. Site-directed Mutagenesis and Expression 

All experiments were performed by Sezerman’s group. BTL2 gene (1,167-bp) is cloned 

into pMCSG-7 vector using the ligation independent cloning sites which are shown with 

bold at below on the primer sequences. 

Wild_Forward: 5’-tacttccaatccaatgaagcggcatccccacgcg-3’ 
Wild_Reverse:  5’-ttatccacttccaatgaaaggccgcaaactcgccaa-3’ 

In the experimental stage, seven point mutations (F17A, V175A, V175F, D176F, 

T178V, I320F, L360F) which were introduced by Overlap Extension PCR. Primers that 

were used for introducing the mutation are listed at below.  

T178V_Forward: 5'-gtcaatatggtcgatttcgtggatcgcttctttgacctg-3' 
T178V_Reverse: 5'-caggtcaaagaagcgatccacgaaatcgaccatattgac-3' 
D176F_Forward: 5’-gacgacacttgtcaatatggtctttttcactgatcgcttctttgac-3’ 
D176F_Reverse: 5’-gtcaaagaagcgatcagtgaaaaagaccatattgacaagtgtcgtc-3’ 

For each mutant, two PCR reactions were performed. At first, wild_forward primer and 

mutant_reverse were used, in the second PCR, mutant_forward and wild_reverse were 

used. These mutant fragments were cloned into pMCSG-7 using ligation independent 

approach. The positive clones were chosen after sequence verification. 
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In the cloning stage, Escherichia coli (E. coli) XL1-Blue was used with E. coli 

SHuffle® Express host. E. coli cells were cultivated at 37°C with suitable antibiotics. 1 

mM isopropyl-β-d-thiogalactopyranosideat was used for induction. 

3.2.2. Purification and Enzyme Assays 

Polyhistidine tags were used to purify the protein on to nickel coated beads (GenScript). 

For purifications 20 mM Potassium Phosphate buffer, and for elution 500 mM 

Imidazole was used. 10 kDa Filters (Millipore) were used in buffer-exchange method 

which uses 0.1 M Tris pH 7.3 versus 500 mM Imidazole. 

Direct titration of fatty acids was used for measuring lipase activity and one unit is 

described as the amount of enzyme to release one µmole fatty acid in one minute. 

Specific activities of lipases towards tributyrin (C4) and tricaprylin (C8) was measured 

and replicated two times at 55◦C, and pH 8.0 in terms of units/mg. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

4.1. First Docking 

Before the first equilibration simulation (1

docked; all of the obtained poses 

conformations of both substrates were

satisfied (Figure 4.2). In table 4.1

criteria checklist (for detail

Figure 4.1: All docked poses of tributyrin (C4) and
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CHAPTER IV 

4. RESULTS  

Before the first equilibration simulation (1 ns), tributyrin (C4) and tricaprylin (C8) were 

obtained poses are shown at Figure 4.1. As expected, 

conformations of both substrates were obtained and our pose selection criteria were 

. In table 4.1, typical output of Autodock Vina is shown

(for details see section 3.1.3 under methods).  

: All docked poses of tributyrin (C4) and tricaprylin (C8) 

structure of BTL2  

), tributyrin (C4) and tricaprylin (C8) were 

. As expected, valid 

obtained and our pose selection criteria were 

utput of Autodock Vina is shown with our 

 

tricaprylin (C8) on the X-ray 
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Figure 4.2: Docked poses of tributyrin (C4) and tricaprylin (C8) at the active site of the 

BTL2 before the first 1 ns equilibration 

All docked poses of tributyrin (C4) All docked poses of tricaprylin (C8) 

Po
se
 affinity 
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RMSD 
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bound 

RMSD 
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bound 
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C
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ri
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1 -5.8 0.000 0.000 x x x 1 -6.1 0.000 0.000 √ √ √ 
2 -5.7 1.471 7.033 x x x 2 -6.0 1.297 4.869 x x x 
3 -5.7 1.211 1.929 x x x 3 -6.0 1.968 8.121 x x x 
4 -5.6 1.840 4.573 x x x 4 -6.0 2.027 5.814 x x x 
5 -5.6 2.661 7.997 x x x 5 -6.0 1.887 2.811 √ x x 
6 -5.6 1.635 7.042 x x x 6 -6.0 1.814 8.253 x x x 
7 -5.6 1.785 4.309 x x x 7 -6.0 2.002 4.899 x x x 
8 -5.6 1.734 2.843 x x x 8 -6.0 1.877 8.033 x x x 
9 -5.6 1.613 2.228 √ √ x 9 -5.9 1.857 8.221 x x x 
10 -5.6 1.806 7.136 x x x 10 -5.9 2.179 4.789 x x x 
11 -5.5 1.804 5.606 x x x 11 -5.9 1.828 6.891 x x x 
12 -5.5 0.911 6.788 x x x 12 -5.9 1.528 7.774 x x x 
13 -5.5 1.331 6.437 √ √ √ 13 -5.9 1.070 7.378 x x x 
14 -5.5 1.425 1.760 x x x 14 -5.9 1.337 7.108 x x x 
15 -5.5 1.121 5.283 x x x 15 -5.9 2.070 8.695 x x x 
16 -5.5 1.441 5.804 x x x 16 -5.9 2.023 7.512 x x x 
17 -5.4 1.334 6.681 x x x 17 -5.9 1.836 6.664 x x x 
18 -5.4 2.686 5.295 √ √ x 18 -5.8 1.916 8.842 x x x 
19 -5.4 1.962 5.173 x x x 19 -5.8 1.824 6.249 x x x 
20 -5.3 1.373 3.129 x x x 20 -5.8 0.999 4.981 x x x 
Table 4.1: Autodock Vina output [affinity (in kcal/mol), RMSD lower bound, RMSD 
upper bound)] and our criteria checklist (criterion 1, 2 and 3). RMSD values are calculated 
relative to the best predicted pose and based on the heavy atoms. Two alternative RMSD values are given 
differing in how the atoms are matched in the RMSD calculation. Criterion 1: substrate branches placed 
on correct clefts, criterion 2: the distance between attacking serine oxygen and sp2 carbon atom of the 
substrate is maximum 3.2 Å, criterion 3: double bonded oxygen of substrate point out to oxyanion hole.  
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4.2. Equilibration Simulation 

Before introducing mutations, a 1 ns equilibration simulation was performed with 

tributyrin (C4). To evaluate the stability of the protein structure during the simulations, 

a root mean-square deviation (RMSD) was calculated on the backbone atoms after 

aligning the trajectory on the backbone atoms. During the simulation, the RSMD 

reaches a plateau around 1 Å after 300ps for protein (Figure 4.3). Similarly RMSD of 

the ligand shows a stabilized pattern between 1.5-2.5 Å after 300 ps (Figure 4.3). 

 

Figure 4.3: RMSD of protein backbone and tributyrin (C4) from first equilibration MD 

4.3. Production Phase 

During the 4 ns production simulation, the mutant protein and substrate stability were 

checked with RMSD (Figure 4.4). As shown in Figure 4.5, the distance between 

attacking serine oxygen atom and sp2 carbon atom of the substrate (d1); between 

oxyanion hole and double bonded oxygen of substrate (d5, d6); and stabilized catalytic 

triad interactions between serine, histidine and aspartic acid (d2, d3, d4) that should be 

conserved during the simulation are measured and their average values over the second 

2 ns part of the production MD simulation are shown on Table 4.2. Only one MD 

simulation (C8-Leu360Phe) was not generated as the substrate could not be stabilized 

during the first 1 ns of the simulation despite 10 repeated simulations.   
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Figure 4.4: RMSD of protein (wildtype, F17A, V175A, V175F, D176F, T178V, I320F 

and L360F) in blue lines and substrate (tributyrin or tricaprylin) in red lines during 4 ns 

MD simulation. 
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Figure 4.5: Distances in the binding pocket as d1, d2, d3, d4, d5 and d6. 

 d1 d2 d3 d4 d5 d6 
4C wildtype 3.160 2.058 2.816 1.784 2.366 2.876 
4C F17A 3.176 2.419 2.770 1.798 1.970 2.302 
4C V175A 3.074 2.192 2.805 1.783 2.007 2.490 
4C V175F 3.117 1.968 2.941 1.777 2.027 2.614 
4C D176F 3.059 2.122 2.759 1.782 1.990 2.488 
4C T178V 3.101 2.106 2.767 1.795 2.037 2.491 
4C F181A 3.050 2.281 2.762 1.768 1.957 2.412 
4C F182A 3.066 2.222 2.826 1.789 1.986 2.385 
4C I320F 3.098 2.103 2.829 1.775 2.148 2.764 
4C L360F 3.086 2.258 2.754 1.766 2.021 2.476 
8C wildtype 3.084 2.111 2.819 1.750 2.023 2.658 
8C F17A 3.131 2.252 2.734 1.805 1.933 2.451 
8C V175A 3.062 2.094 2.776 1.783 2.014 2.630 
8C V175F 3.078 2.050 2.836 1.793 1.991 2.561 
8C D176F 3.100 2.209 2.792 1.789 2.037 2.601 
8C T178V 3.079 2.154 2.915 1.811 2.056 2.622 
8C F181A 3.059 2.172 2.860 1.788 2.021 2.580 
8C F182A 3.063 2.246 2.812 1.774 2.009 2.389 
8C I320F 3.085 2.268 2.761 1.769 1.989 2.414 

Table 4.2: Average distances during the second 2 ns part of the production MD 

simulation between substrate and protein atoms which are defined in Figure 4.5 as d1, 

d2, d3, d4, d5 and d6. 

The final 2 ns part of the 4 ns production simulations were used for scoring calculation. 

Average values of the 2 ns simulation were calculated based on the information given 

under the methods section and results shown in Table 4.3 and 4.4.  
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Substrate -Protein Electrostatics vdW Desolvation Conf. Entropy 

C4-Wildtype  -23.3996 -32.7005 34.19415 17 
C4-Phe17Ala -21.6883 -32.1534 36.164 17 
C4-Val175Ala -25.8687 -32.8823 36.95152 17 
C4-Val175Phe -27.438 -32.8815 37.70971 17 
C4-Asp176Phe -26.27 -32.123 35.08078 17 
C4-Thr178Val -26.452 -31.551 34.44336 17 
C4-Phe181Ala -23.4172 -34.6931 36.69598 17 
C4-Phe182Ala -22.5677 -33.5853 36.13598 17 
C4-Ile320Phe -25.8829 -33.8285 38.45747 17 
C4-Leu360Phe -24.553 -36.2894 39.87395 17 
Table 4.3: Average values of electrostatics, vdW, desolvation energy from 2 ns 

production phase simulation with tributyrin and conformational entropy according to 

substrate. 

 

Substrate -Protein Electrostatics vdW Desolvation Conf. Entropy 

C8-Wildtype  -23.6097 -48.6684 45.80038 29 
C8-Phe17Ala -27.2476 -52.4624 50.24974 29 
C8-Val175Ala -25.9222 -49.246 46.79106 29 
C8-Val175Phe -27.9326 -51.0876 45.35592 29 
C8-Asp176Phe -26.947 -50.5465 46.50245 29 
C8-Thr178Val -26.4045 -48.9606 43.91499 29 
C8-Phe181Ala -27.9076 -49.9145 45.185 29 
C8-Phe182Ala -25.4707 -51.17 47.04334 29 
C8-Ile320Phe -26.1359 -52.7581 47.75737 29 
C8-Leu360Phe N.A.* N.A. N.A. N.A. 
Table 4.4: Average values of electrostatics, vdW, desolvation energy from 2 ns 

production phase simulation with tricaprylin and conformational entropy according to 

substrate. *N.A.: Not available  

Substrate-protein simulation of C8-Leu360Phe was not generated as its substrate is not 

stabilized during the first 1 ns of the simulation, and its averaged values are defined as 

“not available” in Table 4.4. This substrate-mutant pair is directly classified as “non-

binding” and removed from the calibration data.    
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4.4. Purified Lipases and Experimental Activity Assays 

For the purified two mutant lipases (T178V and D176F), SDS gel electrophoresis was 

performed and related bands were shown at Figure 4.6 with the prestained plus 

molecular weight marker (Fermentas). 

 

Figure 4.6: Result of SDS gel analysis. Prestained plus molecular weight marker 

(Fermentas), and T178V and D176F mutant lipases were highlighted. 

Specific activities of all lipases (wildtype, F17A, V175A, V175F, D176F, T178V, 

I320F and L360F), towards tributyrin (C4) and tricaprylin (C8) are measured and 

replicated two times to evaluate consistency. Measured specific activities (U/mg) and 

their standard deviation are summarized in Figure 4.8A.  

4.5. Coefficient Calibration for Both Tributyrin (4C) and Tricaprylin (8C)  

Coefficients of scoring function were calibrated with linear regression for every 

possible training set that has at least three different mutation data points. Both tributyrin 

and tricaprylin data were used for every selected mutation and wild type data should 

exist in all training sets. 

T178V 

D176F 

Marker 
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By using calibrated coefficients, scores were calculated for each case and correlation of 

training set, test-set and overall data were calculated. Several important calibrated 

coefficients with Pearson and Spearman correlation coefficients are shown at Table 4.5 

Training 
set 

Test Set a b c d 
Training 
set Corr.* 

Test Set 
Corr.* 
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Table 4.5: Training set, test set, calibrated coefficients (a, b, c, d) (Equation 3.1) of both 

substrates, correlation coefficients for each dataset and accuracy of directional 

prediction (enhanced or reduced) of the mutation effect according wildtype. *Values are 
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given for Pearson correlation coefficient (Pearson p-value) and Spearman correlation 

coefficient. 

 

 

Figure 4.7: Pearson correlation for training, test and overall datasets with respect to 

training set. 

In order to predict the impact of mutation on specificity, one of the best correlated 

coefficients are selected from “wildtype-F17A-V175A” training set and coefficients a, 

b, c, d are determined as -101.92, -113.14, -100.56, -102.34, respectively. Predicted 

scores versus experimental specific activity are shown in Figure 4.8.  

 

Figure 4.8: (A) Specific activities of BTL2 mutants towards tributyrin (C4) and 

tricaprylin (C8) in terms of units/mg. (Standard deviation shown with error bars) 

A 

B 
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(Unpublished results from Sezerman’s Lab.) (B) The impact of mutations on the 

computational score of tributyrin (4C) and tricaprylin (8C). Wildtype, F17A and V175A 

selected as training set for calibration. 

4.5.1. Specificity Prediction of Previously Published Mutations  

In the previously published article [64], pH-stat (55◦C in pH 8.5) assay were used for 

specific activity calculations. One specific activity unit was described as the amount of 

enzyme that released 1.0µmol of fatty acid per minute. Experimental specific activities 

are shown in Figure 4.9A and predicted scores by our scoring function are shown in 

Figure 4.9B.  

   

Figure 4.9: The effect of 181Ala and 182Ala on the (A) specific activity and (B) 

computational score. Previously calibrated coefficients (-101.92, -113.14, -100.56, -

102.34) were used in the scoring function. 

4.6. Coefficient Calibration for Tributyrin (4C) Only 

Coefficients of tributyrin (4C) specific scoring function were calibrated with only the 

tributyrin data. For the possible training sets that has at least three different mutations 

and wildtype data points, scoring function coefficients and correlation of training set, 

test set and overall data were calculated. Several important calibrated coefficients with 

Pearson and Spearman correlation coefficients are shown in Table 4.6. 

 

A B 
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Training 
set 

Test 
Set 

a b c d 
Training 
set Corr.* 

Test Set 
Corr.* 

Overall 
Corr.* 

Accuracy of 
Predicted 

Mutation Impact 
W.t. 
F17A 
V175F 
V175A 
L360F 

D176F 
T178V 
I320F 

 -1
13

.8
7 

-1
90

.6
2 

-1
36

.1
5 

-1
89

.0
4 0.953 

(0.0122) 
0.900 

0.278 
(0.8204) 
0.500 

0.710 
(0.0486) 
0.476 

5/7 

W.t. 
F17A 
V175F 
I320F 
L360F 

V175A 
D176F 
T178V 

 -1
33

.4
0 

-1
58

.1
0 

-1
13

.9
9 

-1
97

.2
7 0.965 

(0.0080) 
0.700 

0.578 
(0.6080) 
0.500 

0.709 
(0.0489) 
0.405 

5/7 

W.t. 
F17A 
V175A 
I320F 
L360F 

V175F 
D176F 
T178V -1

13
.4
6 

-1
76

.1
3 

-1
12

.5
4 

-2
09

.6
1 0.885 

(0.0457) 
0.500 

0.581 
(0.6052) 
0.500 

0.699 
(0.0535) 
0.548 

5/7 

W.t. 
F17A 
V175F 
T178V 
L360F 

V175A 
D176F 
I320F -1

04
.0
5 

-1
73

.1
4 

-1
06

.6
8 

-2
04

.1
6 0.959 

(0.0101) 
0.500 

0.947 
(0.2076) 

1 

0.691 
(0.0578) 
0.571 

5/7 

W.t. 
V175F 
V175A 
T178V 
L360F 

W.t. 
F17A 
D176F 
I320F -1

04
.9
1 

-1
93

.5
3 

-1
22

.1
0 

-2
13

.5
3 0.546 

(0.3408) 
0.500 

0.957 
(0.1882) 

1 

0.689 
(0.0587) 
0.571 

5/7 

W.t. 
F17A 
V175F 
L360F 

V175A 
D176F 
T178V 
I320F -1

27
.2
1 

-1
75

.3
8 

-1
32

.6
9 

-1
83

.6
1 1 

(0) 
1 

0.443 
(0.5573) 

0 

0.716 
(0.0460) 
0.381 

5/7 

Table 4.6: Tributyrin training set, test set, calibrated coefficients (a, b, c, d), correlation coefficients for 
each dataset and accuracy of directional prediction (enhanced or reduced) of the mutation effect 
according wildtype. *Values are given for Pearson correlation coefficient (Pearson p-value) and 
Spearman correlation coefficient. 

One of the top correlated coefficients is selected from “wildtype-F17A-V175F- L360F” 

training set and coefficients a, b, c, d is assigned as -127.21, -175.38, -132.69, and 

183.61 respectively. Predicted scores and experimental specific activity values are 

shown in Figure 4.10.  

 

Figure 4.10: Specific activity of tributyrin (4C) and computational score. Wildtype, 
F17A, V175F and L360F selected as training set for calibration. 



 

46 
 

4.7. Coefficient Calibration for Tricaprylin (C8) Only 

Coefficients of tricaprylin (8C) specific scoring function were calibrated with only the 

tricaprylin data. Training sets were generated with criteria that have at least three 

different mutations and wildtype data points. Then coefficients were calibrated and 

correlation of the training set, test set and overall data were calculated. A number of 

calibrated coefficients with significant Pearson and Spearman correlation coefficients 

are shown in Table 4.7. 

Training 
set 

Test 
Set 

a b c d 
Training 
set Corr.* 

Test Set 
Corr.* 

Overall 
Corr.* 

Accuracy of 
Predicted 

Mutation Impact 

W.t. 
F17A 
D176F 
I320F 

V175F
V175A
T178V -5

4.
67
 

-6
1.
45
 

-7
5.
30
 

-1
0.
37
 1 

(0) 
1 

0.917 
(0.2618) 

1.0 

0.814 
(0.0258) 
0.857 

5/6 

W.t. 
F17A 
V175F 
I320F 

V175F 
D176F
T178V -8

5.
94
 

-1
23

.2
7 

-1
53

.5
8 

-1
5.
95
 1 

(0) 
1 

0.798 
(0.4123) 

0.5 

0.808 
(0.0279) 
0.750 

5/6 

W.t. 
F17A 
T178V 
I320F 

V175F
V175A
D176F -3

0.
73
 

-1
4.
12
 

-1
5.
37
 

-6
.1
0 1 

(0) 
1 

0.999 
(0.0267) 

1.0 

0.776 
(0.0402) 
0.857 

5/6 

W.t. 
F17A 
V175F 
T178V 
I320F 

V175A
D176F -8

7.
96
 

-1
01

.6
0 

-1
02

.0
9 

-6
6.
59
 0.852 

(0.0669) 
1 

1 
(N.A.) 

1 

0.848 
(0.0158) 
0.929 

5/6 

Table 4.7: Tricaprylin training set, test set, calibrated coefficients (a, b, c, d), correlation 
coefficients for each dataset and accuracy of directional prediction (enhanced or 
reduced) of the mutation effect according wildtype. *Values are given for Pearson 
correlation coefficient (Pearson p-value) and Spearman correlation coefficient. 

One of the best correlated coefficients is selected from “wildtype-F17A-D176F-I320F” 

training set and coefficients a, b, c, d is defined as -54.67, -61.45, -75.30, and 10.37, 

respectively. Predicted scores versus experimental specific activity are shown in Figure 

4.11.  
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Figure 4.11: Specific activity of tricaprylin (8C) and computational score. Wildtype, 

F17A, D176F and I320F selected as training set for calibration. 
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CHAPTER V 

5. DISCUSSION 

We developed a scoring function to predict the impact of a mutation on substrate 

specificity. Calibrated coefficients of electrostatics, vdW, desolvation and 

conformational entropy were able to distinguish the reducing and enhancing mutations 

in a robust and rapid way. When coefficients were calibrated for both substrates, 

correlation coefficient of training set was 0.836, test-set was 0.713 and overall data was 

0.793.  In this training set, wildtype and two mutants (F17A and V175A) were able to 

generate powerful coefficients that can predict the impact of other four mutations 

(V175F, D176F, T178V, I320F) with correlation r=0.713 (p=0.047). Apart from 

Pearson correlation, Spearman correlation coefficient for the test set was r=0.762 

(p=0.0368) and for the overall data was r=0.895 (p=0) which indicate the robustness of 

our method in ranking. After calibration, scoring method correctly predicted the 

enhancement of tributyrin-V175F, tributyrin-D176F, tricaprylin-F17A, tricaprylin-

V175F, tricaprylin-D176F, tricaprylin-T178V, tricaprylin-I320F and the reduction of 

tributyrin-F17A. As shown in Figure 4.8, ranking of substrate specificities within the 

mutant were 100% correctly predicted by our scoring function. Therefore our method 

would be used for discriminating substrates specificities and deciding on the impact of a 

mutation (whether it enhances or reduces) in a rapid and accurate manner (overall 

correlation r=0.793, p=0.0007). In addition, regardless of the change in training set, the 

overall correlation stayed secure between 0.76 and 0.81 as shown in Figure 4.7. This 

fact reveals the data-independent nature of our scoring function which allows adapting 

it into other enzyme-substrate problems.  

In 2009 [64], pH-stat assay was performed at 55◦C in pH 8.5 which is somewhat 

different from our experimental procedure as we performed assays at 55◦C, and pH 8.0. 

Because of the different assay conditions (pH or temperature) or variation in 
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emulsification of triglycerides, specific activity of tributyrin (4C) and tricaprylin (8C) 

shows variation from the 2009 article; therein 4C/8C specific activity ratio is close to 

one which is dissimilar from our measurements. Nevertheless, our scoring function 

correctly predicts the tricaprylin (8C) specificity which is enhanced by F181A and 

F182A mutations and especially higher for F181A against F182A (Figure 4.9). 

However, predictions for specificity of tributyrin (4C) may be negatively affected by the 

variation in experimental values and lead to wrong results (Figure 4.9).  

When coefficients were calibrated for tributyrin (4C), the correlation coefficient of the 

training set was 1, test-set was 0.443 and overall data was 0.716. It shows a lower 

correlation when compared with the correlation values that come from both substrates. 

This impact originated from the low amounts of data points which negatively affected 

both the training and the test set correlations. In order to generate more accurate scoring 

function coefficients, sampling data should be enlarged. However, when coefficients 

were calibrated for tricaprylin (8C), correlation coefficient of the training set was 1, 

test-set was 0.917 and overall data was 0.814. This high correlation continued in the 

ranking correlations as the overall Spearman correlation was 0.857. These results show 

the high accuracy of our method even with a low amount of training and test samples. In 

this way our method can be easily adapted into only single substrate problems with high 

accuracy. Because using the same substrate in all simulations would decrease the 

variation in binding pattern that comes from the intrinsic factors of the specific 

substrates, we suggest this method would be used more efficiently to predict the impact 

of a mutation for the one specific substrate.   

Since our scoring function is not an absolute free energy method, it requires calibration 

of each scoring parameter for the selected protein or protein family in order to get more 

accurate results. Other factors that can affect the specific activity are the internal energy 

of ligand, size/shape of the contact surface, hydrophobicity of binding pocket, and 

volume of binding cavity. These parameters can be adapted into our scoring function to 

improve the overall correlation with experimental data. 

Four nanosecond MD simulations give critical information about substrate stabilization, 

complementarity and binding affinity. Favoured substrates were stabilized near the 

catalytic triad. On the other hand, unstable tricaprylin (8C) – 360F mutant simulation 
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gives insights about the negative effect of mutation into the binding modes, as substrate 

specificity was also shown to be decreased experimentally (Figure 4.8A).  

According to the RMSD analysis, except for the simulations of tributyrin-V175A and 

tricaprylin-V175A, other simulations showed stabilization pattern for both protein and 

ligand after 2 ns (Figure 4.4). The alternative binding modes of V175A mutant may 

decrease the specific activity for both substrates. Our scoring function didn't explain the 

decrease of specific activity and gave better score. Nevertheless for the both cases, 

calculated desolvation energy increased by 1-2 kcal/mol which gives a signal for 

unfavourable binding modes. 

The average distances of important interactions (Table 4.2) have provided significant 

information about the specific activity of the substrate. In particular, enhanced specific 

activities were seen with the decreased distances of d1, d5 and d6 when compared to the 

wildtype. Largest decrease in d1, d5 and d6 distances were seen in D176F, F181A and 

F182A mutants for tributyrin (C4) and 175A, F181A and F182A mutants for tricaprylin 

(8C). Since these entire six mutants experimentally showed the biggest improvements in 

specific activity, the distance between attacking serine oxygen atom and sp2 carbon 

atom of the substrate (d1) and distance between oxyanion hole and substrate oxygen 

(d5, d6) are good candidates for predicting the impact of a mutation. 

Substrate specificity is associated with the shape of the binding site. As decreasing its 

size would cause steric blockage with the substrate, while increasing its size would 

create additional space which may lead to alternative binding modes and thus decrease 

substrate specificity [6]. This idea is supported in the mutants of D176F and I320F in 

which the volume of the binding pocket is decreased with bulky phenylalanine mutation 

and their specificity is enhanced towards tributyrin (4C). In these mutants, short-length 

substrate (4C) can be more efficiently stabilized and alternative binding modes in the 

large cavity can be avoided. 

It has been proposed that tight packing of the active site with hydrophobic residues 

would contribute to thermoactivity and stability of the enzyme at high temperatures 

[69]. For the case of F17A mutation, bulky hydrophobic residue (F17) around the 

catalytic serine mutated to small residue alanine would negatively affect thermoactivity 

and stability of the enzyme at elevated temperatures [69]. Our results showed that 

specific activity of tributyrin (4C) is decreased by half and tricaprylin (8C) is increased 
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by 97 U/mg. The decrease of specific activity for tributyrin (4C) may arise from the 

destabilization of the active site which leads to the reduction of interaction energy in 

MD runs (Table 4.3). 

Substrate binding is mainly directed by the head part of the substrate which forms 

crucial interactions for catalysis. Any mutation to catalytic residues (Ser-His-Asp) or 

their nearby residues would probably decrease the catalytic activity and make major 

impact on substrate selectivity. However, our aim was to change chain length specificity 

of the substrates by mutating the residues that are located at the binding pockets, and 

interact with substrate branches (F17, D176, V175, T178, I320, and L360). We 

proposed that these sites are directly related to chain length specificity of the 

triglycerides and we did not expect to damage the mechanism of the catalysis. As 

expected, most of the mutations did not negatively affect the catalytic activity, but 

instead changed its specificity towards particular substrate [F175F and F17A for 

tricaprylin (8C) and D176F for tributyrin (4C)].  
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CHAPTER VI 

6. CONCLUSIONS AND FUTURE WORK 

We developed a scoring function that can be used for discriminating substrates 

specificities and deciding on the impact of a mutation (whether it enhances or reduces 

activity) in a rapid and accurate manner (overall correlation r=0.793, p=0.0007), before 

doing time-consuming and laborious experimental assays. Our predictions are 

experimentally verified for BTL2 lipase. After calibration of scoring parameters, our 

method correctly predicted the enhancement of tributyrin-V175F, tributyrin-D176F, 

tricaprylin-F17A, tricaprylin-V175F, tricaprylin-D176F, tricaprylin-T178V, tricaprylin-

I320F and the reduction of tributyrin-F17A substrate-mutant pairs. Also, ranking of 

substrate specificities within the mutants were 100% correct. This method would be 

efficiently adapted to other protein families to predict the impact of a mutation for the 

one specific substrate or multiple substrates. 

Currently, our algorithm uses vdW energy, electrostatic energy, desolvation energy and 

conformational entropy terms, however, with small improvement prediction accuracy 

can be improved by adding other features, such as internal energy of ligand, size/shape 

of the contact surface, hydrophobicity of the binding pocket, and volume of binding 

cavity. 

Theoretically, this methodology is expected to give good results within the same protein 

family. In order to verify this assumption, different lipase-substrate pairs should be 

analyzed in future work. Also these studies would investigate the nature of our scoring 

function for its universality or dependence to protein/substrate. In addition, the 

experimental data should be enlarged with other probable mutants to increase the 

confidence of calibration. In this manner, the overall correlation would be explored and 

confidence of our scoring function would be tested. 
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